aix: Fix building fat library for AIX
[official-gcc.git] / gcc / cp / search.cc
blob827f48e8604f6b8f6acb0461fcc521a4602b5756
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987-2024 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* High-level class interface. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "cp-tree.h"
28 #include "intl.h"
29 #include "toplev.h"
30 #include "spellcheck-tree.h"
31 #include "stringpool.h"
32 #include "attribs.h"
33 #include "tree-inline.h"
35 static int is_subobject_of_p (tree, tree);
36 static tree dfs_lookup_base (tree, void *);
37 static tree dfs_dcast_hint_pre (tree, void *);
38 static tree dfs_dcast_hint_post (tree, void *);
39 static tree dfs_debug_mark (tree, void *);
40 static int check_hidden_convs (tree, int, int, tree, tree, tree);
41 static tree split_conversions (tree, tree, tree, tree);
42 static int lookup_conversions_r (tree, int, int, tree, tree, tree *);
43 static int look_for_overrides_r (tree, tree);
44 static tree lookup_field_r (tree, void *);
45 static tree dfs_accessible_post (tree, void *);
46 static tree dfs_walk_once_accessible (tree, bool,
47 tree (*pre_fn) (tree, void *),
48 tree (*post_fn) (tree, void *),
49 void *data);
50 static tree dfs_access_in_type (tree, void *);
51 static access_kind access_in_type (tree, tree);
52 static tree dfs_get_pure_virtuals (tree, void *);
55 /* Data for lookup_base and its workers. */
57 struct lookup_base_data_s
59 HOST_WIDE_INT offset; /* Offset we want, or -1 if any. */
60 tree t; /* type being searched. */
61 tree base; /* The base type we're looking for. */
62 tree binfo; /* Found binfo. */
63 bool via_virtual; /* Found via a virtual path. */
64 bool ambiguous; /* Found multiply ambiguous */
65 bool repeated_base; /* Whether there are repeated bases in the
66 hierarchy. */
67 bool want_any; /* Whether we want any matching binfo. */
70 /* Worker function for lookup_base. See if we've found the desired
71 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
73 static tree
74 dfs_lookup_base (tree binfo, void *data_)
76 struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
78 if (data->offset != -1)
80 /* We're looking for the type at a particular offset. */
81 int comp = compare_tree_int (BINFO_OFFSET (binfo), data->offset);
82 if (comp > 0)
83 /* Don't bother looking into bases laid out later; even if they
84 do virtually inherit from the base we want, we can get there
85 by another path. */
86 return dfs_skip_bases;
87 else if (comp != 0
88 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
89 /* Right type, wrong offset. */
90 return dfs_skip_bases;
91 /* Fall through. */
94 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
96 if (!data->binfo)
98 data->binfo = binfo;
99 data->via_virtual
100 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
102 if (!data->repeated_base)
103 /* If there are no repeated bases, we can stop now. */
104 return binfo;
106 if (data->want_any && !data->via_virtual)
107 /* If this is a non-virtual base, then we can't do
108 better. */
109 return binfo;
111 return dfs_skip_bases;
113 else
115 gcc_assert (binfo != data->binfo);
117 /* We've found more than one matching binfo. */
118 if (!data->want_any)
120 /* This is immediately ambiguous. */
121 data->binfo = NULL_TREE;
122 data->ambiguous = true;
123 return error_mark_node;
126 /* Prefer one via a non-virtual path. */
127 if (!binfo_via_virtual (binfo, data->t))
129 data->binfo = binfo;
130 data->via_virtual = false;
131 return binfo;
134 /* There must be repeated bases, otherwise we'd have stopped
135 on the first base we found. */
136 return dfs_skip_bases;
140 return NULL_TREE;
143 /* This deals with bug PR17314.
145 DECL is a declaration and BINFO represents a class that has attempted (but
146 failed) to access DECL.
148 Examine the parent binfos of BINFO and determine whether any of them had
149 private access to DECL. If they did, return the parent binfo. This helps
150 in figuring out the correct error message to show (if the parents had
151 access, it's their fault for not giving sufficient access to BINFO).
153 If no parents had access, return NULL_TREE. */
155 tree
156 get_parent_with_private_access (tree decl, tree binfo)
158 /* Only BINFOs should come through here. */
159 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
161 tree base_binfo = NULL_TREE;
163 /* Iterate through immediate parent classes. */
164 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
166 /* This parent had private access. Therefore that's why BINFO can't
167 access DECL. */
168 if (access_in_type (BINFO_TYPE (base_binfo), decl) == ak_private)
169 return base_binfo;
172 /* None of the parents had access. Note: it's impossible for one of the
173 parents to have had public or protected access to DECL, since then
174 BINFO would have been able to access DECL too. */
175 return NULL_TREE;
178 /* Returns true if type BASE is accessible in T. (BASE is known to be
179 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
180 true, consider any special access of the current scope, or access
181 bestowed by friendship. */
183 bool
184 accessible_base_p (tree t, tree base, bool consider_local_p)
186 tree decl;
188 /* [class.access.base]
190 A base class is said to be accessible if an invented public
191 member of the base class is accessible.
193 If BASE is a non-proper base, this condition is trivially
194 true. */
195 if (same_type_p (t, base))
196 return true;
197 /* Rather than inventing a public member, we use the implicit
198 public typedef created in the scope of every class. */
199 decl = TYPE_FIELDS (base);
200 while (!DECL_SELF_REFERENCE_P (decl))
201 decl = DECL_CHAIN (decl);
202 while (ANON_AGGR_TYPE_P (t))
203 t = TYPE_CONTEXT (t);
204 return accessible_p (t, decl, consider_local_p);
207 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
208 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
209 non-NULL, fill with information about what kind of base we
210 discovered. If OFFSET is other than -1, only match at that offset.
212 If the base is inaccessible, or ambiguous, then error_mark_node is
213 returned. If the tf_error bit of COMPLAIN is not set, no error
214 is issued. */
216 tree
217 lookup_base (tree t, tree base, base_access access,
218 base_kind *kind_ptr, tsubst_flags_t complain,
219 HOST_WIDE_INT offset /* = -1 */)
221 tree binfo;
222 tree t_binfo;
223 base_kind bk;
225 /* "Nothing" is definitely not derived from Base. */
226 if (t == NULL_TREE)
228 if (kind_ptr)
229 *kind_ptr = bk_not_base;
230 return NULL_TREE;
233 if (t == error_mark_node || base == error_mark_node)
235 if (kind_ptr)
236 *kind_ptr = bk_not_base;
237 return error_mark_node;
239 gcc_assert (TYPE_P (base));
241 if (!TYPE_P (t))
243 t_binfo = t;
244 t = BINFO_TYPE (t);
246 else
248 t = complete_type (TYPE_MAIN_VARIANT (t));
249 if (dependent_type_p (t))
250 if (tree open = currently_open_class (t))
251 t = open;
252 t_binfo = TYPE_BINFO (t);
255 base = TYPE_MAIN_VARIANT (base);
257 /* If BASE is incomplete, it can't be a base of T--and instantiating it
258 might cause an error. */
259 if (t_binfo && CLASS_TYPE_P (base) && COMPLETE_OR_OPEN_TYPE_P (base))
261 struct lookup_base_data_s data;
263 data.t = t;
264 data.base = base;
265 data.binfo = NULL_TREE;
266 data.ambiguous = data.via_virtual = false;
267 data.repeated_base = (offset == -1) && CLASSTYPE_REPEATED_BASE_P (t);
268 data.want_any = access == ba_any;
269 data.offset = offset;
271 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
272 binfo = data.binfo;
274 if (!binfo)
275 bk = data.ambiguous ? bk_ambig : bk_not_base;
276 else if (binfo == t_binfo)
277 bk = bk_same_type;
278 else if (data.via_virtual)
279 bk = bk_via_virtual;
280 else
281 bk = bk_proper_base;
283 else
285 binfo = NULL_TREE;
286 bk = bk_not_base;
289 /* Check that the base is unambiguous and accessible. */
290 if (access != ba_any)
291 switch (bk)
293 case bk_not_base:
294 break;
296 case bk_ambig:
297 if (complain & tf_error)
298 error ("%qT is an ambiguous base of %qT", base, t);
299 binfo = error_mark_node;
300 break;
302 default:
303 if ((access & ba_check_bit)
304 /* If BASE is incomplete, then BASE and TYPE are probably
305 the same, in which case BASE is accessible. If they
306 are not the same, then TYPE is invalid. In that case,
307 there's no need to issue another error here, and
308 there's no implicit typedef to use in the code that
309 follows, so we skip the check. */
310 && COMPLETE_TYPE_P (base)
311 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
313 if (complain & tf_error)
314 error ("%qT is an inaccessible base of %qT", base, t);
315 binfo = error_mark_node;
316 bk = bk_inaccessible;
318 break;
321 if (kind_ptr)
322 *kind_ptr = bk;
324 return binfo;
327 /* Data for dcast_base_hint walker. */
329 struct dcast_data_s
331 tree subtype; /* The base type we're looking for. */
332 int virt_depth; /* Number of virtual bases encountered from most
333 derived. */
334 tree offset; /* Best hint offset discovered so far. */
335 bool repeated_base; /* Whether there are repeated bases in the
336 hierarchy. */
339 /* Worker for dcast_base_hint. Search for the base type being cast
340 from. */
342 static tree
343 dfs_dcast_hint_pre (tree binfo, void *data_)
345 struct dcast_data_s *data = (struct dcast_data_s *) data_;
347 if (BINFO_VIRTUAL_P (binfo))
348 data->virt_depth++;
350 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
352 if (data->virt_depth)
354 data->offset = ssize_int (-1);
355 return data->offset;
357 if (data->offset)
358 data->offset = ssize_int (-3);
359 else
360 data->offset = BINFO_OFFSET (binfo);
362 return data->repeated_base ? dfs_skip_bases : data->offset;
365 return NULL_TREE;
368 /* Worker for dcast_base_hint. Track the virtual depth. */
370 static tree
371 dfs_dcast_hint_post (tree binfo, void *data_)
373 struct dcast_data_s *data = (struct dcast_data_s *) data_;
375 if (BINFO_VIRTUAL_P (binfo))
376 data->virt_depth--;
378 return NULL_TREE;
381 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
382 started from is related to the required TARGET type, in order to optimize
383 the inheritance graph search. This information is independent of the
384 current context, and ignores private paths, hence get_base_distance is
385 inappropriate. Return a TREE specifying the base offset, BOFF.
386 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
387 and there are no public virtual SUBTYPE bases.
388 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
389 BOFF == -2, SUBTYPE is not a public base.
390 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
392 tree
393 dcast_base_hint (tree subtype, tree target)
395 struct dcast_data_s data;
397 data.subtype = subtype;
398 data.virt_depth = 0;
399 data.offset = NULL_TREE;
400 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
402 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
403 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
404 return data.offset ? data.offset : ssize_int (-2);
407 /* Search for a member with name NAME in a multiple inheritance
408 lattice specified by TYPE. If it does not exist, return NULL_TREE.
409 If the member is ambiguously referenced, return `error_mark_node'.
410 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
411 true, type declarations are preferred. */
413 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
414 NAMESPACE_DECL corresponding to the innermost non-block scope. */
416 tree
417 current_scope (void)
419 /* There are a number of cases we need to be aware of here:
420 current_class_type current_function_decl
421 global NULL NULL
422 fn-local NULL SET
423 class-local SET NULL
424 class->fn SET SET
425 fn->class SET SET
427 Those last two make life interesting. If we're in a function which is
428 itself inside a class, we need decls to go into the fn's decls (our
429 second case below). But if we're in a class and the class itself is
430 inside a function, we need decls to go into the decls for the class. To
431 achieve this last goal, we must see if, when both current_class_ptr and
432 current_function_decl are set, the class was declared inside that
433 function. If so, we know to put the decls into the class's scope. */
434 if (current_function_decl && current_class_type
435 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
436 && same_type_p (DECL_CONTEXT (current_function_decl),
437 current_class_type))
438 || (DECL_FRIEND_CONTEXT (current_function_decl)
439 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
440 current_class_type))))
441 return current_function_decl;
443 if (current_class_type)
444 return current_class_type;
446 if (current_function_decl)
447 return current_function_decl;
449 return current_namespace;
452 /* Returns nonzero if we are currently in a function scope. Note
453 that this function returns zero if we are within a local class, but
454 not within a member function body of the local class. */
457 at_function_scope_p (void)
459 tree cs = current_scope ();
460 /* Also check cfun to make sure that we're really compiling
461 this function (as opposed to having set current_function_decl
462 for access checking or some such). */
463 return (cs && TREE_CODE (cs) == FUNCTION_DECL
464 && cfun && cfun->decl == current_function_decl);
467 /* Returns true if the innermost active scope is a class scope. */
469 bool
470 at_class_scope_p (void)
472 tree cs = current_scope ();
473 return cs && TYPE_P (cs);
476 /* Returns true if the innermost active scope is a namespace scope. */
478 bool
479 at_namespace_scope_p (void)
481 tree cs = current_scope ();
482 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
485 /* Return the scope of DECL, as appropriate when doing name-lookup. */
487 tree
488 context_for_name_lookup (tree decl)
490 /* [class.union]
492 For the purposes of name lookup, after the anonymous union
493 definition, the members of the anonymous union are considered to
494 have been defined in the scope in which the anonymous union is
495 declared. */
496 tree context = DECL_CONTEXT (decl);
498 while (context && TYPE_P (context)
499 && (ANON_AGGR_TYPE_P (context) || UNSCOPED_ENUM_P (context)))
500 context = TYPE_CONTEXT (context);
501 if (!context)
502 context = global_namespace;
504 return context;
507 /* Like the above, but always return a type, because it's simpler for member
508 handling to refer to the anonymous aggr rather than a function. */
510 tree
511 type_context_for_name_lookup (tree decl)
513 tree context = DECL_P (decl) ? DECL_CONTEXT (decl) : decl;
514 gcc_checking_assert (CLASS_TYPE_P (context));
516 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
518 tree next = TYPE_CONTEXT (context);
519 if (!TYPE_P (next))
520 break;
521 context = next;
523 return context;
526 /* Returns true iff DECL is declared in TYPE. */
528 static bool
529 member_declared_in_type (tree decl, tree type)
531 /* A normal declaration obviously counts. */
532 if (context_for_name_lookup (decl) == type)
533 return true;
534 /* So does a using or access declaration. */
535 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl)
536 && purpose_member (type, DECL_ACCESS (decl)))
537 return true;
538 return false;
541 /* The accessibility routines use BINFO_ACCESS for scratch space
542 during the computation of the accessibility of some declaration. */
544 /* Avoid walking up past a declaration of the member. */
546 static tree
547 dfs_access_in_type_pre (tree binfo, void *data)
549 tree decl = (tree) data;
550 tree type = BINFO_TYPE (binfo);
551 if (member_declared_in_type (decl, type))
552 return dfs_skip_bases;
553 return NULL_TREE;
556 #define BINFO_ACCESS(NODE) \
557 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
559 /* Set the access associated with NODE to ACCESS. */
561 #define SET_BINFO_ACCESS(NODE, ACCESS) \
562 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
563 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
565 /* Called from access_in_type via dfs_walk. Calculate the access to
566 DATA (which is really a DECL) in BINFO. */
568 static tree
569 dfs_access_in_type (tree binfo, void *data)
571 tree decl = (tree) data;
572 tree type = BINFO_TYPE (binfo);
573 access_kind access = ak_none;
575 if (context_for_name_lookup (decl) == type)
577 /* If we have descended to the scope of DECL, just note the
578 appropriate access. */
579 if (TREE_PRIVATE (decl))
580 access = ak_private;
581 else if (TREE_PROTECTED (decl))
582 access = ak_protected;
583 else
584 access = ak_public;
586 else
588 /* First, check for an access-declaration that gives us more
589 access to the DECL. */
590 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
592 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
594 if (decl_access)
596 decl_access = TREE_VALUE (decl_access);
598 if (decl_access == access_public_node)
599 access = ak_public;
600 else if (decl_access == access_protected_node)
601 access = ak_protected;
602 else if (decl_access == access_private_node)
603 access = ak_private;
604 else
605 gcc_unreachable ();
609 if (!access)
611 int i;
612 tree base_binfo;
613 vec<tree, va_gc> *accesses;
615 /* Otherwise, scan our baseclasses, and pick the most favorable
616 access. */
617 accesses = BINFO_BASE_ACCESSES (binfo);
618 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
620 tree base_access = (*accesses)[i];
621 access_kind base_access_now = BINFO_ACCESS (base_binfo);
623 if (base_access_now == ak_none || base_access_now == ak_private)
624 /* If it was not accessible in the base, or only
625 accessible as a private member, we can't access it
626 all. */
627 base_access_now = ak_none;
628 else if (base_access == access_protected_node)
629 /* Public and protected members in the base become
630 protected here. */
631 base_access_now = ak_protected;
632 else if (base_access == access_private_node)
633 /* Public and protected members in the base become
634 private here. */
635 base_access_now = ak_private;
637 /* See if the new access, via this base, gives more
638 access than our previous best access. */
639 if (base_access_now != ak_none
640 && (access == ak_none || base_access_now < access))
642 access = base_access_now;
644 /* If the new access is public, we can't do better. */
645 if (access == ak_public)
646 break;
652 /* Note the access to DECL in TYPE. */
653 SET_BINFO_ACCESS (binfo, access);
655 return NULL_TREE;
658 /* Return the access to DECL in TYPE. */
660 static access_kind
661 access_in_type (tree type, tree decl)
663 tree binfo = TYPE_BINFO (type);
665 /* We must take into account
667 [class.paths]
669 If a name can be reached by several paths through a multiple
670 inheritance graph, the access is that of the path that gives
671 most access.
673 The algorithm we use is to make a post-order depth-first traversal
674 of the base-class hierarchy. As we come up the tree, we annotate
675 each node with the most lenient access. */
676 dfs_walk_once (binfo, dfs_access_in_type_pre, dfs_access_in_type, decl);
678 return BINFO_ACCESS (binfo);
681 /* Returns nonzero if it is OK to access DECL named in TYPE through an object
682 of OTYPE in the context of DERIVED. */
684 static int
685 protected_accessible_p (tree decl, tree derived, tree type, tree otype)
687 /* We're checking this clause from [class.access.base]
689 m as a member of N is protected, and the reference occurs in a
690 member or friend of class N, or in a member or friend of a
691 class P derived from N, where m as a member of P is public, private
692 or protected.
694 Here DERIVED is a possible P, DECL is m and TYPE is N. */
696 /* If DERIVED isn't derived from N, then it can't be a P. */
697 if (!DERIVED_FROM_P (type, derived))
698 return 0;
700 /* DECL_NONSTATIC_MEMBER_P won't work for USING_DECLs. */
701 decl = strip_using_decl (decl);
702 /* We don't expect or support dependent decls. */
703 gcc_assert (TREE_CODE (decl) != USING_DECL);
705 /* [class.protected]
707 When a friend or a member function of a derived class references
708 a protected non-static member of a base class, an access check
709 applies in addition to those described earlier in clause
710 _class.access_) Except when forming a pointer to member
711 (_expr.unary.op_), the access must be through a pointer to,
712 reference to, or object of the derived class itself (or any class
713 derived from that class) (_expr.ref_). If the access is to form
714 a pointer to member, the nested-name-specifier shall name the
715 derived class (or any class derived from that class). */
716 if (DECL_NONSTATIC_MEMBER_P (decl)
717 && !DERIVED_FROM_P (derived, otype))
718 return 0;
720 return 1;
723 /* Returns nonzero if SCOPE is a type or a friend of a type which would be able
724 to access DECL through TYPE. OTYPE is the type of the object. */
726 static int
727 friend_accessible_p (tree scope, tree decl, tree type, tree otype)
729 /* We're checking this clause from [class.access.base]
731 m as a member of N is protected, and the reference occurs in a
732 member or friend of class N, or in a member or friend of a
733 class P derived from N, where m as a member of P is public, private
734 or protected.
736 Here DECL is m and TYPE is N. SCOPE is the current context,
737 and we check all its possible Ps. */
738 tree befriending_classes;
739 tree t;
741 if (!scope)
742 return 0;
744 if (is_global_friend (scope))
745 return 1;
747 /* Is SCOPE itself a suitable P? */
748 if (TYPE_P (scope) && protected_accessible_p (decl, scope, type, otype))
749 return 1;
751 if (DECL_DECLARES_FUNCTION_P (scope))
752 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
753 else if (TYPE_P (scope))
754 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
755 else
756 return 0;
758 for (t = befriending_classes; t; t = TREE_CHAIN (t))
759 if (protected_accessible_p (decl, TREE_VALUE (t), type, otype))
760 return 1;
762 /* Nested classes have the same access as their enclosing types, as
763 per DR 45 (this is a change from C++98). */
764 if (TYPE_P (scope))
765 if (friend_accessible_p (TYPE_CONTEXT (scope), decl, type, otype))
766 return 1;
768 if (DECL_DECLARES_FUNCTION_P (scope))
770 /* Perhaps this SCOPE is a member of a class which is a
771 friend. */
772 if (DECL_CLASS_SCOPE_P (scope)
773 && friend_accessible_p (DECL_CONTEXT (scope), decl, type, otype))
774 return 1;
775 /* Perhaps SCOPE is a friend function defined inside a class from which
776 DECL is accessible. */
777 if (tree fctx = DECL_FRIEND_CONTEXT (scope))
778 if (friend_accessible_p (fctx, decl, type, otype))
779 return 1;
782 /* Maybe scope's template is a friend. */
783 if (tree tinfo = get_template_info (scope))
785 tree tmpl = TI_TEMPLATE (tinfo);
786 if (DECL_CLASS_TEMPLATE_P (tmpl))
787 tmpl = TREE_TYPE (tmpl);
788 else
789 tmpl = DECL_TEMPLATE_RESULT (tmpl);
790 if (tmpl != scope)
792 /* Increment processing_template_decl to make sure that
793 dependent_type_p works correctly. */
794 ++processing_template_decl;
795 int ret = friend_accessible_p (tmpl, decl, type, otype);
796 --processing_template_decl;
797 if (ret)
798 return 1;
802 /* If is_friend is true, we should have found a befriending class. */
803 gcc_checking_assert (!is_friend (type, scope));
805 return 0;
808 struct dfs_accessible_data
810 tree decl;
811 tree object_type;
814 /* Avoid walking up past a declaration of the member. */
816 static tree
817 dfs_accessible_pre (tree binfo, void *data)
819 dfs_accessible_data *d = (dfs_accessible_data *)data;
820 tree type = BINFO_TYPE (binfo);
821 if (member_declared_in_type (d->decl, type))
822 return dfs_skip_bases;
823 return NULL_TREE;
826 /* Called via dfs_walk_once_accessible from accessible_p */
828 static tree
829 dfs_accessible_post (tree binfo, void *data)
831 /* access_in_type already set BINFO_ACCESS for us. */
832 access_kind access = BINFO_ACCESS (binfo);
833 tree N = BINFO_TYPE (binfo);
834 dfs_accessible_data *d = (dfs_accessible_data *)data;
835 tree decl = d->decl;
836 tree scope = current_nonlambda_scope ();
838 /* A member m is accessible at the point R when named in class N if */
839 switch (access)
841 case ak_none:
842 return NULL_TREE;
844 case ak_public:
845 /* m as a member of N is public, or */
846 return binfo;
848 case ak_private:
850 /* m as a member of N is private, and R occurs in a member or friend of
851 class N, or */
852 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
853 && is_friend (N, scope))
854 return binfo;
855 return NULL_TREE;
858 case ak_protected:
860 /* m as a member of N is protected, and R occurs in a member or friend
861 of class N, or in a member or friend of a class P derived from N,
862 where m as a member of P is public, private, or protected */
863 if (friend_accessible_p (scope, decl, N, d->object_type))
864 return binfo;
865 return NULL_TREE;
868 default:
869 gcc_unreachable ();
873 /* Like accessible_p below, but within a template returns true iff DECL is
874 accessible in TYPE to all possible instantiations of the template. */
877 accessible_in_template_p (tree type, tree decl)
879 int save_ptd = processing_template_decl;
880 processing_template_decl = 0;
881 int val = accessible_p (type, decl, false);
882 processing_template_decl = save_ptd;
883 return val;
886 /* DECL is a declaration from a base class of TYPE, which was the
887 class used to name DECL. Return nonzero if, in the current
888 context, DECL is accessible. If TYPE is actually a BINFO node,
889 then we can tell in what context the access is occurring by looking
890 at the most derived class along the path indicated by BINFO. If
891 CONSIDER_LOCAL is true, do consider special access the current
892 scope or friendship thereof we might have. */
895 accessible_p (tree type, tree decl, bool consider_local_p)
897 tree binfo;
898 access_kind access;
900 /* If this declaration is in a block or namespace scope, there's no
901 access control. */
902 if (!TYPE_P (context_for_name_lookup (decl)))
903 return 1;
905 /* There is no need to perform access checks inside a thunk. */
906 if (current_function_decl && DECL_THUNK_P (current_function_decl))
907 return 1;
909 tree otype = NULL_TREE;
910 if (!TYPE_P (type))
912 /* When accessing a non-static member, the most derived type in the
913 binfo chain is the type of the object; remember that type for
914 protected_accessible_p. */
915 for (tree b = type; b; b = BINFO_INHERITANCE_CHAIN (b))
916 otype = BINFO_TYPE (b);
917 type = BINFO_TYPE (type);
919 else
920 otype = type;
922 /* Anonymous unions don't have their own access. */
923 if (ANON_AGGR_TYPE_P (type))
924 type = type_context_for_name_lookup (type);
926 /* [class.access.base]
928 A member m is accessible when named in class N if
930 --m as a member of N is public, or
932 --m as a member of N is private, and the reference occurs in a
933 member or friend of class N, or
935 --m as a member of N is protected, and the reference occurs in a
936 member or friend of class N, or in a member or friend of a
937 class P derived from N, where m as a member of P is public, private or
938 protected, or
940 --there exists a base class B of N that is accessible at the point
941 of reference, and m is accessible when named in class B.
943 We walk the base class hierarchy, checking these conditions. */
945 /* We walk using TYPE_BINFO (type) because access_in_type will set
946 BINFO_ACCESS on it and its bases. */
947 binfo = TYPE_BINFO (type);
949 /* Compute the accessibility of DECL in the class hierarchy
950 dominated by type. */
951 access = access_in_type (type, decl);
952 if (access == ak_public)
953 return 1;
955 /* If we aren't considering the point of reference, only the first bullet
956 applies. */
957 if (!consider_local_p)
958 return 0;
960 dfs_accessible_data d = { decl, otype };
962 /* Walk the hierarchy again, looking for a base class that allows
963 access. */
964 return dfs_walk_once_accessible (binfo, /*friends=*/true,
965 dfs_accessible_pre,
966 dfs_accessible_post, &d)
967 != NULL_TREE;
970 struct lookup_field_info {
971 /* The type in which we're looking. */
972 tree type;
973 /* The name of the field for which we're looking. */
974 tree name;
975 /* If non-NULL, the current result of the lookup. */
976 tree rval;
977 /* The path to RVAL. */
978 tree rval_binfo;
979 /* If non-NULL, the lookup was ambiguous, and this is a list of the
980 candidates. */
981 tree ambiguous;
982 /* If nonzero, we are looking for types, not data members. */
983 int want_type;
986 /* True for a class member means that it is shared between all objects
987 of that class.
989 [class.member.lookup]:If the resulting set of declarations are not all
990 from sub-objects of the same type, or the set has a non-static member
991 and includes members from distinct sub-objects, there is an ambiguity
992 and the program is ill-formed.
994 This function checks that T contains no non-static members. */
996 bool
997 shared_member_p (tree t)
999 if (VAR_P (t) || TREE_CODE (t) == TYPE_DECL
1000 || TREE_CODE (t) == CONST_DECL)
1001 return true;
1002 if (is_overloaded_fn (t))
1004 for (ovl_iterator iter (get_fns (t)); iter; ++iter)
1006 tree decl = strip_using_decl (*iter);
1007 if (TREE_CODE (decl) == USING_DECL)
1008 /* Conservatively assume a dependent using-declaration
1009 might resolve to a non-static member. */
1010 return false;
1011 if (DECL_OBJECT_MEMBER_FUNCTION_P (decl))
1012 return false;
1014 return true;
1016 return false;
1019 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1020 found as a base class and sub-object of the object denoted by
1021 BINFO. */
1023 static int
1024 is_subobject_of_p (tree parent, tree binfo)
1026 tree probe;
1028 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1030 if (probe == binfo)
1031 return 1;
1032 if (BINFO_VIRTUAL_P (probe))
1033 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1034 != NULL_TREE);
1036 return 0;
1039 /* DATA is really a struct lookup_field_info. Look for a field with
1040 the name indicated there in BINFO. If this function returns a
1041 non-NULL value it is the result of the lookup. Called from
1042 lookup_field via breadth_first_search. */
1044 static tree
1045 lookup_field_r (tree binfo, void *data)
1047 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1048 tree type = BINFO_TYPE (binfo);
1049 tree nval = NULL_TREE;
1051 /* If this is a dependent base, don't look in it. */
1052 if (BINFO_DEPENDENT_BASE_P (binfo))
1053 return NULL_TREE;
1055 /* If this base class is hidden by the best-known value so far, we
1056 don't need to look. */
1057 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1058 && !BINFO_VIRTUAL_P (binfo))
1059 return dfs_skip_bases;
1061 nval = get_class_binding (type, lfi->name, lfi->want_type);
1063 /* If there is no declaration with the indicated name in this type,
1064 then there's nothing to do. */
1065 if (!nval)
1066 goto done;
1068 /* If the lookup already found a match, and the new value doesn't
1069 hide the old one, we might have an ambiguity. */
1070 if (lfi->rval_binfo
1071 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1074 if (nval == lfi->rval && shared_member_p (nval))
1075 /* The two things are really the same. */
1077 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1078 /* The previous value hides the new one. */
1080 else
1082 /* We have a real ambiguity. We keep a chain of all the
1083 candidates. */
1084 if (!lfi->ambiguous && lfi->rval)
1086 /* This is the first time we noticed an ambiguity. Add
1087 what we previously thought was a reasonable candidate
1088 to the list. */
1089 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1090 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1093 /* Add the new value. */
1094 if (TREE_CODE (nval) == TREE_LIST)
1095 lfi->ambiguous = chainon (nval, lfi->ambiguous);
1096 else
1098 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1099 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1103 else
1105 if (TREE_CODE (nval) == TREE_LIST)
1107 lfi->ambiguous = chainon (nval, lfi->ambiguous);
1108 lfi->rval = TREE_VALUE (nval);
1110 else
1111 lfi->rval = nval;
1112 lfi->rval_binfo = binfo;
1115 done:
1116 /* Don't look for constructors or destructors in base classes. */
1117 if (IDENTIFIER_CDTOR_P (lfi->name))
1118 return dfs_skip_bases;
1119 return NULL_TREE;
1122 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1123 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1124 FUNCTIONS, and OPTYPE respectively. */
1126 tree
1127 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1129 tree baselink;
1131 gcc_assert (OVL_P (functions) || TREE_CODE (functions) == TEMPLATE_ID_EXPR);
1132 gcc_assert (!optype || TYPE_P (optype));
1133 gcc_assert (TREE_TYPE (functions));
1135 baselink = make_node (BASELINK);
1136 TREE_TYPE (baselink) = TREE_TYPE (functions);
1137 BASELINK_BINFO (baselink) = binfo;
1138 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1139 BASELINK_FUNCTIONS (baselink) = functions;
1140 BASELINK_OPTYPE (baselink) = optype;
1142 if (binfo == access_binfo
1143 && TYPE_BEING_DEFINED (BINFO_TYPE (access_binfo)))
1144 BASELINK_FUNCTIONS_MAYBE_INCOMPLETE_P (baselink) = true;
1146 return baselink;
1149 /* Look for a member named NAME in an inheritance lattice dominated by
1150 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1151 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1152 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1153 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1154 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1155 TREE_VALUEs are the list of ambiguous candidates.
1157 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1159 If nothing can be found return NULL_TREE and do not issue an error.
1161 If non-NULL, failure information is written back to AFI. */
1163 tree
1164 lookup_member (tree xbasetype, tree name, int protect, bool want_type,
1165 tsubst_flags_t complain, access_failure_info *afi /* = NULL */)
1167 tree rval, rval_binfo = NULL_TREE;
1168 tree type = NULL_TREE, basetype_path = NULL_TREE;
1169 struct lookup_field_info lfi;
1171 /* rval_binfo is the binfo associated with the found member, note,
1172 this can be set with useful information, even when rval is not
1173 set, because it must deal with ALL members, not just non-function
1174 members. It is used for ambiguity checking and the hidden
1175 checks. Whereas rval is only set if a proper (not hidden)
1176 non-function member is found. */
1178 if (name == error_mark_node
1179 || xbasetype == NULL_TREE
1180 || xbasetype == error_mark_node)
1181 return NULL_TREE;
1183 gcc_assert (identifier_p (name));
1185 if (TREE_CODE (xbasetype) == TREE_BINFO)
1187 type = BINFO_TYPE (xbasetype);
1188 basetype_path = xbasetype;
1190 else
1192 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1193 return NULL_TREE;
1194 type = xbasetype;
1195 xbasetype = NULL_TREE;
1198 type = complete_type (type);
1200 /* Make sure we're looking for a member of the current instantiation in the
1201 right partial specialization. */
1202 if (dependent_type_p (type))
1203 if (tree t = currently_open_class (type))
1204 type = t;
1206 if (!basetype_path)
1207 basetype_path = TYPE_BINFO (type);
1209 if (!basetype_path)
1210 return NULL_TREE;
1212 memset (&lfi, 0, sizeof (lfi));
1213 lfi.type = type;
1214 lfi.name = name;
1215 lfi.want_type = want_type;
1216 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1217 rval = lfi.rval;
1218 rval_binfo = lfi.rval_binfo;
1219 if (rval_binfo)
1220 type = BINFO_TYPE (rval_binfo);
1222 if (lfi.ambiguous)
1224 if (protect == 0)
1225 return NULL_TREE;
1226 else if (protect == 1)
1228 if (complain & tf_error)
1230 error ("request for member %qD is ambiguous", name);
1231 print_candidates (lfi.ambiguous);
1233 return error_mark_node;
1235 else if (protect == 2)
1236 return lfi.ambiguous;
1239 if (!rval)
1240 return NULL_TREE;
1242 /* [class.access]
1244 In the case of overloaded function names, access control is
1245 applied to the function selected by overloaded resolution.
1247 We cannot check here, even if RVAL is only a single non-static
1248 member function, since we do not know what the "this" pointer
1249 will be. For:
1251 class A { protected: void f(); };
1252 class B : public A {
1253 void g(A *p) {
1254 f(); // OK
1255 p->f(); // Not OK.
1259 only the first call to "f" is valid. However, if the function is
1260 static, we can check. */
1261 if (protect == 1 && !really_overloaded_fn (rval))
1263 tree decl = is_overloaded_fn (rval) ? get_first_fn (rval) : rval;
1264 decl = strip_using_decl (decl);
1265 /* A dependent USING_DECL will be checked after tsubsting. */
1266 if (TREE_CODE (decl) != USING_DECL
1267 && !DECL_IOBJ_MEMBER_FUNCTION_P (decl)
1268 && !perform_or_defer_access_check (basetype_path, decl, decl,
1269 complain, afi))
1270 return error_mark_node;
1273 if (is_overloaded_fn (rval)
1274 /* Don't use a BASELINK for class-scope deduction guides since
1275 they're not actually member functions. */
1276 && !dguide_name_p (name))
1277 rval = build_baselink (rval_binfo, basetype_path, rval,
1278 (IDENTIFIER_CONV_OP_P (name)
1279 ? TREE_TYPE (name): NULL_TREE));
1280 return rval;
1283 /* Helper class for lookup_member_fuzzy. */
1285 class lookup_field_fuzzy_info
1287 public:
1288 lookup_field_fuzzy_info (bool want_type_p) :
1289 m_want_type_p (want_type_p), m_candidates () {}
1291 void fuzzy_lookup_field (tree type);
1293 /* If true, we are looking for types, not data members. */
1294 bool m_want_type_p;
1295 /* The result: a vec of identifiers. */
1296 auto_vec<tree> m_candidates;
1299 /* Locate all fields within TYPE, append them to m_candidates. */
1301 void
1302 lookup_field_fuzzy_info::fuzzy_lookup_field (tree type)
1304 if (!CLASS_TYPE_P (type))
1305 return;
1307 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1309 if (m_want_type_p && !DECL_DECLARES_TYPE_P (field))
1310 continue;
1312 if (!DECL_NAME (field))
1313 continue;
1315 if (is_lambda_ignored_entity (field))
1316 continue;
1318 /* Ignore special identifiers with space at the end like cdtor or
1319 conversion op identifiers. */
1320 if (TREE_CODE (DECL_NAME (field)) == IDENTIFIER_NODE)
1321 if (unsigned int len = IDENTIFIER_LENGTH (DECL_NAME (field)))
1322 if (IDENTIFIER_POINTER (DECL_NAME (field))[len - 1] == ' ')
1323 continue;
1325 m_candidates.safe_push (DECL_NAME (field));
1330 /* Helper function for lookup_member_fuzzy, called via dfs_walk_all
1331 DATA is really a lookup_field_fuzzy_info. Look for a field with
1332 the name indicated there in BINFO. Gathers pertinent identifiers into
1333 m_candidates. */
1335 static tree
1336 lookup_field_fuzzy_r (tree binfo, void *data)
1338 lookup_field_fuzzy_info *lffi = (lookup_field_fuzzy_info *) data;
1339 tree type = BINFO_TYPE (binfo);
1341 lffi->fuzzy_lookup_field (type);
1343 return NULL_TREE;
1346 /* Like lookup_member, but try to find the closest match for NAME,
1347 rather than an exact match, and return an identifier (or NULL_TREE).
1348 Do not complain. */
1350 tree
1351 lookup_member_fuzzy (tree xbasetype, tree name, bool want_type_p)
1353 tree type = NULL_TREE, basetype_path = NULL_TREE;
1354 class lookup_field_fuzzy_info lffi (want_type_p);
1356 /* rval_binfo is the binfo associated with the found member, note,
1357 this can be set with useful information, even when rval is not
1358 set, because it must deal with ALL members, not just non-function
1359 members. It is used for ambiguity checking and the hidden
1360 checks. Whereas rval is only set if a proper (not hidden)
1361 non-function member is found. */
1363 if (name == error_mark_node
1364 || xbasetype == NULL_TREE
1365 || xbasetype == error_mark_node)
1366 return NULL_TREE;
1368 gcc_assert (identifier_p (name));
1370 if (TREE_CODE (xbasetype) == TREE_BINFO)
1372 type = BINFO_TYPE (xbasetype);
1373 basetype_path = xbasetype;
1375 else
1377 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1378 return NULL_TREE;
1379 type = xbasetype;
1380 xbasetype = NULL_TREE;
1383 type = complete_type (type);
1385 /* Make sure we're looking for a member of the current instantiation in the
1386 right partial specialization. */
1387 if (flag_concepts && dependent_type_p (type))
1388 type = currently_open_class (type);
1390 if (!basetype_path)
1391 basetype_path = TYPE_BINFO (type);
1393 if (!basetype_path)
1394 return NULL_TREE;
1396 /* Populate lffi.m_candidates. */
1397 dfs_walk_all (basetype_path, &lookup_field_fuzzy_r, NULL, &lffi);
1399 return find_closest_identifier (name, &lffi.m_candidates);
1402 /* Like lookup_member, except that if we find a function member we
1403 return NULL_TREE. */
1405 tree
1406 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1408 tree rval = lookup_member (xbasetype, name, protect, want_type,
1409 tf_warning_or_error);
1411 /* Ignore functions, but propagate the ambiguity list. */
1412 if (!error_operand_p (rval)
1413 && (rval && BASELINK_P (rval)))
1414 return NULL_TREE;
1416 return rval;
1419 /* Like lookup_member, except that if we find a non-function member we
1420 return NULL_TREE. */
1422 tree
1423 lookup_fnfields (tree xbasetype, tree name, int protect,
1424 tsubst_flags_t complain)
1426 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false,
1427 complain);
1429 /* Ignore non-functions, but propagate the ambiguity list. */
1430 if (!error_operand_p (rval)
1431 && (rval && !BASELINK_P (rval)))
1432 return NULL_TREE;
1434 return rval;
1437 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1438 the class or namespace used to qualify the name. CONTEXT_CLASS is
1439 the class corresponding to the object in which DECL will be used.
1440 Return a possibly modified version of DECL that takes into account
1441 the CONTEXT_CLASS.
1443 In particular, consider an expression like `B::m' in the context of
1444 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1445 then the most derived class indicated by the BASELINK_BINFO will be
1446 `B', not `D'. This function makes that adjustment. */
1448 tree
1449 adjust_result_of_qualified_name_lookup (tree decl,
1450 tree qualifying_scope,
1451 tree context_class)
1453 if (context_class && context_class != error_mark_node
1454 && CLASS_TYPE_P (context_class)
1455 && CLASS_TYPE_P (qualifying_scope)
1456 && DERIVED_FROM_P (qualifying_scope, context_class)
1457 && BASELINK_P (decl))
1459 tree base;
1461 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1462 Because we do not yet know which function will be chosen by
1463 overload resolution, we cannot yet check either accessibility
1464 or ambiguity -- in either case, the choice of a static member
1465 function might make the usage valid. */
1466 base = lookup_base (context_class, qualifying_scope,
1467 ba_unique, NULL, tf_none);
1468 if (base && base != error_mark_node)
1470 BASELINK_ACCESS_BINFO (decl) = base;
1471 tree decl_binfo
1472 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1473 ba_unique, NULL, tf_none);
1474 if (decl_binfo && decl_binfo != error_mark_node)
1475 BASELINK_BINFO (decl) = decl_binfo;
1479 if (BASELINK_P (decl))
1480 BASELINK_QUALIFIED_P (decl) = true;
1482 return decl;
1486 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1487 PRE_FN is called in preorder, while POST_FN is called in postorder.
1488 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1489 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1490 that value is immediately returned and the walk is terminated. One
1491 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1492 POST_FN are passed the binfo to examine and the caller's DATA
1493 value. All paths are walked, thus virtual and morally virtual
1494 binfos can be multiply walked. */
1496 tree
1497 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1498 tree (*post_fn) (tree, void *), void *data)
1500 tree rval;
1501 unsigned ix;
1502 tree base_binfo;
1504 /* Call the pre-order walking function. */
1505 if (pre_fn)
1507 rval = pre_fn (binfo, data);
1508 if (rval)
1510 if (rval == dfs_skip_bases)
1511 goto skip_bases;
1512 return rval;
1516 /* Find the next child binfo to walk. */
1517 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1519 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1520 if (rval)
1521 return rval;
1524 skip_bases:
1525 /* Call the post-order walking function. */
1526 if (post_fn)
1528 rval = post_fn (binfo, data);
1529 gcc_assert (rval != dfs_skip_bases);
1530 return rval;
1533 return NULL_TREE;
1536 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1537 that binfos are walked at most once. */
1539 static tree
1540 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1541 tree (*post_fn) (tree, void *), hash_set<tree> *pset,
1542 void *data)
1544 tree rval;
1545 unsigned ix;
1546 tree base_binfo;
1548 /* Call the pre-order walking function. */
1549 if (pre_fn)
1551 rval = pre_fn (binfo, data);
1552 if (rval)
1554 if (rval == dfs_skip_bases)
1555 goto skip_bases;
1557 return rval;
1561 /* Find the next child binfo to walk. */
1562 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1564 if (BINFO_VIRTUAL_P (base_binfo))
1565 if (pset->add (base_binfo))
1566 continue;
1568 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, pset, data);
1569 if (rval)
1570 return rval;
1573 skip_bases:
1574 /* Call the post-order walking function. */
1575 if (post_fn)
1577 rval = post_fn (binfo, data);
1578 gcc_assert (rval != dfs_skip_bases);
1579 return rval;
1582 return NULL_TREE;
1585 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1586 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1587 For diamond shaped hierarchies we must mark the virtual bases, to
1588 avoid multiple walks. */
1590 tree
1591 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1592 tree (*post_fn) (tree, void *), void *data)
1594 static int active = 0; /* We must not be called recursively. */
1595 tree rval;
1597 gcc_assert (pre_fn || post_fn);
1598 gcc_assert (!active);
1599 active++;
1601 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1602 /* We are not diamond shaped, and therefore cannot encounter the
1603 same binfo twice. */
1604 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1605 else
1607 hash_set<tree> pset;
1608 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, &pset, data);
1611 active--;
1613 return rval;
1616 /* Worker function for dfs_walk_once_accessible. Behaves like
1617 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1618 access given by the current context should be considered, (b) ONCE
1619 indicates whether bases should be marked during traversal. */
1621 static tree
1622 dfs_walk_once_accessible_r (tree binfo, bool friends_p, hash_set<tree> *pset,
1623 tree (*pre_fn) (tree, void *),
1624 tree (*post_fn) (tree, void *), void *data)
1626 tree rval = NULL_TREE;
1627 unsigned ix;
1628 tree base_binfo;
1630 /* Call the pre-order walking function. */
1631 if (pre_fn)
1633 rval = pre_fn (binfo, data);
1634 if (rval)
1636 if (rval == dfs_skip_bases)
1637 goto skip_bases;
1639 return rval;
1643 /* Find the next child binfo to walk. */
1644 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1646 bool mark = pset && BINFO_VIRTUAL_P (base_binfo);
1648 if (mark && pset->contains (base_binfo))
1649 continue;
1651 /* If the base is inherited via private or protected
1652 inheritance, then we can't see it, unless we are a friend of
1653 the current binfo. */
1654 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1656 tree scope;
1657 if (!friends_p)
1658 continue;
1659 scope = current_scope ();
1660 if (!scope
1661 || TREE_CODE (scope) == NAMESPACE_DECL
1662 || !is_friend (BINFO_TYPE (binfo), scope))
1663 continue;
1666 if (mark)
1667 pset->add (base_binfo);
1669 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, pset,
1670 pre_fn, post_fn, data);
1671 if (rval)
1672 return rval;
1675 skip_bases:
1676 /* Call the post-order walking function. */
1677 if (post_fn)
1679 rval = post_fn (binfo, data);
1680 gcc_assert (rval != dfs_skip_bases);
1681 return rval;
1684 return NULL_TREE;
1687 /* Like dfs_walk_once except that only accessible bases are walked.
1688 FRIENDS_P indicates whether friendship of the local context
1689 should be considered when determining accessibility. */
1691 static tree
1692 dfs_walk_once_accessible (tree binfo, bool friends_p,
1693 tree (*pre_fn) (tree, void *),
1694 tree (*post_fn) (tree, void *), void *data)
1696 hash_set<tree> *pset = NULL;
1697 if (CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1698 pset = new hash_set<tree>;
1699 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, pset,
1700 pre_fn, post_fn, data);
1702 if (pset)
1703 delete pset;
1704 return rval;
1707 /* Return true iff the code of T is CODE, and it has compatible
1708 type with TYPE. */
1710 static bool
1711 matches_code_and_type_p (tree t, enum tree_code code, tree type)
1713 if (TREE_CODE (t) != code)
1714 return false;
1715 if (!cxx_types_compatible_p (TREE_TYPE (t), type))
1716 return false;
1717 return true;
1720 /* Subroutine of direct_accessor_p and reference_accessor_p.
1721 Determine if COMPONENT_REF is a simple field lookup of this->FIELD_DECL.
1722 We expect a tree of the form:
1723 <component_ref:
1724 <indirect_ref:S>
1725 <nop_expr:P*
1726 <parm_decl (this)>
1727 <field_decl (FIELD_DECL)>>>. */
1729 static bool
1730 field_access_p (tree component_ref, tree field_decl, tree field_type)
1732 if (!matches_code_and_type_p (component_ref, COMPONENT_REF, field_type))
1733 return false;
1735 tree indirect_ref = TREE_OPERAND (component_ref, 0);
1736 if (!INDIRECT_REF_P (indirect_ref))
1737 return false;
1739 tree ptr = STRIP_NOPS (TREE_OPERAND (indirect_ref, 0));
1740 if (!is_object_parameter (ptr))
1741 return false;
1743 /* Must access the correct field. */
1744 if (TREE_OPERAND (component_ref, 1) != field_decl)
1745 return false;
1746 return true;
1749 /* Subroutine of field_accessor_p.
1751 Assuming that INIT_EXPR has already had its code and type checked,
1752 determine if it is a simple accessor for FIELD_DECL
1753 (of type FIELD_TYPE).
1755 Specifically, a simple accessor within struct S of the form:
1756 T get_field () { return m_field; }
1757 should have a constexpr_fn_retval (saved_tree) of the form:
1758 <init_expr:T
1759 <result_decl:T
1760 <nop_expr:T
1761 <component_ref:
1762 <indirect_ref:S>
1763 <nop_expr:P*
1764 <parm_decl (this)>
1765 <field_decl (FIELD_DECL)>>>>>. */
1767 static bool
1768 direct_accessor_p (tree init_expr, tree field_decl, tree field_type)
1770 tree result_decl = TREE_OPERAND (init_expr, 0);
1771 if (!matches_code_and_type_p (result_decl, RESULT_DECL, field_type))
1772 return false;
1774 tree component_ref = STRIP_NOPS (TREE_OPERAND (init_expr, 1));
1775 if (!field_access_p (component_ref, field_decl, field_type))
1776 return false;
1778 return true;
1781 /* Subroutine of field_accessor_p.
1783 Assuming that INIT_EXPR has already had its code and type checked,
1784 determine if it is a "reference" accessor for FIELD_DECL
1785 (of type FIELD_REFERENCE_TYPE).
1787 Specifically, a simple accessor within struct S of the form:
1788 T& get_field () { return m_field; }
1789 should have a constexpr_fn_retval (saved_tree) of the form:
1790 <init_expr:T&
1791 <result_decl:T&
1792 <nop_expr: T&
1793 <addr_expr: T*
1794 <component_ref:T
1795 <indirect_ref:S
1796 <nop_expr
1797 <parm_decl (this)>>
1798 <field (FIELD_DECL)>>>>>>. */
1799 static bool
1800 reference_accessor_p (tree init_expr, tree field_decl, tree field_type,
1801 tree field_reference_type)
1803 tree result_decl = TREE_OPERAND (init_expr, 0);
1804 if (!matches_code_and_type_p (result_decl, RESULT_DECL, field_reference_type))
1805 return false;
1807 tree field_pointer_type = build_pointer_type (field_type);
1808 tree addr_expr = STRIP_NOPS (TREE_OPERAND (init_expr, 1));
1809 if (!matches_code_and_type_p (addr_expr, ADDR_EXPR, field_pointer_type))
1810 return false;
1812 tree component_ref = STRIP_NOPS (TREE_OPERAND (addr_expr, 0));
1814 if (!field_access_p (component_ref, field_decl, field_type))
1815 return false;
1817 return true;
1820 /* Return the class of the `this' or explicit object parameter of FN. */
1822 static tree
1823 class_of_object_parm (const_tree fn)
1825 tree fntype = TREE_TYPE (fn);
1826 if (DECL_XOBJ_MEMBER_FUNCTION_P (fn))
1827 return non_reference (TREE_VALUE (TYPE_ARG_TYPES (fntype)));
1828 return class_of_this_parm (fntype);
1831 /* Return true if FN is an accessor method for FIELD_DECL.
1832 i.e. a method of the form { return FIELD; }, with no
1833 conversions.
1835 If CONST_P, then additionally require that FN be a const
1836 method. */
1838 static bool
1839 field_accessor_p (tree fn, tree field_decl, bool const_p)
1841 if (TREE_CODE (fn) != FUNCTION_DECL)
1842 return false;
1844 /* We don't yet support looking up static data, just fields. */
1845 if (TREE_CODE (field_decl) != FIELD_DECL)
1846 return false;
1848 if (!DECL_OBJECT_MEMBER_FUNCTION_P (fn))
1849 return false;
1851 /* If the field is accessed via a const "this" argument, verify
1852 that the "this" parameter is const. */
1853 if (const_p)
1855 tree this_class = class_of_object_parm (fn);
1856 if (!TYPE_READONLY (this_class))
1857 return false;
1860 tree saved_tree = DECL_SAVED_TREE (fn);
1862 if (saved_tree == NULL_TREE)
1863 return false;
1865 /* Attempt to extract a single return value from the function,
1866 if it has one. */
1867 tree retval = constexpr_fn_retval (saved_tree);
1868 if (retval == NULL_TREE || retval == error_mark_node)
1869 return false;
1870 /* Require an INIT_EXPR. */
1871 if (TREE_CODE (retval) != INIT_EXPR)
1872 return false;
1873 tree init_expr = retval;
1875 /* Determine if this is a simple accessor within struct S of the form:
1876 T get_field () { return m_field; }. */
1877 tree field_type = TREE_TYPE (field_decl);
1878 if (cxx_types_compatible_p (TREE_TYPE (init_expr), field_type))
1879 return direct_accessor_p (init_expr, field_decl, field_type);
1881 /* Failing that, determine if it is an accessor of the form:
1882 T& get_field () { return m_field; }. */
1883 tree field_reference_type = cp_build_reference_type (field_type, false);
1884 if (cxx_types_compatible_p (TREE_TYPE (init_expr), field_reference_type))
1885 return reference_accessor_p (init_expr, field_decl, field_type,
1886 field_reference_type);
1888 return false;
1891 /* Callback data for dfs_locate_field_accessor_pre. */
1893 class locate_field_data
1895 public:
1896 locate_field_data (tree field_decl_, bool const_p_)
1897 : field_decl (field_decl_), const_p (const_p_) {}
1899 tree field_decl;
1900 bool const_p;
1903 /* Return a FUNCTION_DECL that is an "accessor" method for DATA, a FIELD_DECL,
1904 callable via binfo, if one exists, otherwise return NULL_TREE.
1906 Callback for dfs_walk_once_accessible for use within
1907 locate_field_accessor. */
1909 static tree
1910 dfs_locate_field_accessor_pre (tree binfo, void *data)
1912 locate_field_data *lfd = (locate_field_data *)data;
1913 tree type = BINFO_TYPE (binfo);
1915 vec<tree, va_gc> *member_vec;
1916 tree fn;
1917 size_t i;
1919 if (!CLASS_TYPE_P (type))
1920 return NULL_TREE;
1922 member_vec = CLASSTYPE_MEMBER_VEC (type);
1923 if (!member_vec)
1924 return NULL_TREE;
1926 for (i = 0; vec_safe_iterate (member_vec, i, &fn); ++i)
1927 if (fn)
1928 if (field_accessor_p (fn, lfd->field_decl, lfd->const_p))
1929 return fn;
1931 return NULL_TREE;
1934 /* Return a FUNCTION_DECL that is an "accessor" method for FIELD_DECL,
1935 callable via BASETYPE_PATH, if one exists, otherwise return NULL_TREE. */
1937 tree
1938 locate_field_accessor (tree basetype_path, tree field_decl, bool const_p)
1940 if (TREE_CODE (basetype_path) != TREE_BINFO)
1941 return NULL_TREE;
1943 /* Walk the hierarchy, looking for a method of some base class that allows
1944 access to the field. */
1945 locate_field_data lfd (field_decl, const_p);
1946 return dfs_walk_once_accessible (basetype_path, /*friends=*/true,
1947 dfs_locate_field_accessor_pre,
1948 NULL, &lfd);
1951 /* Check throw specifier of OVERRIDER is at least as strict as
1952 the one of BASEFN. This is due to [except.spec]: "If a virtual function
1953 has a non-throwing exception specification, all declarations, including
1954 the definition, of any function that overrides that virtual function in
1955 any derived class shall have a non-throwing exception specification,
1956 unless the overriding function is defined as deleted." */
1958 bool
1959 maybe_check_overriding_exception_spec (tree overrider, tree basefn)
1961 maybe_instantiate_noexcept (basefn);
1962 maybe_instantiate_noexcept (overrider);
1963 tree base_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (basefn));
1964 tree over_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (overrider));
1966 if (DECL_INVALID_OVERRIDER_P (overrider)
1967 /* CWG 1351 added the "unless the overriding function is defined as
1968 deleted" wording. */
1969 || DECL_DELETED_FN (overrider))
1970 return true;
1972 /* Can't check this yet. Pretend this is fine and let
1973 noexcept_override_late_checks check this later. */
1974 if (UNPARSED_NOEXCEPT_SPEC_P (base_throw)
1975 || UNPARSED_NOEXCEPT_SPEC_P (over_throw))
1976 return true;
1978 /* We also have to defer checking when we're in a template and couldn't
1979 instantiate & evaluate the noexcept to true/false. */
1980 if (processing_template_decl)
1981 if ((base_throw
1982 && base_throw != noexcept_true_spec
1983 && base_throw != noexcept_false_spec)
1984 || (over_throw
1985 && over_throw != noexcept_true_spec
1986 && over_throw != noexcept_false_spec))
1987 return true;
1989 if (!comp_except_specs (base_throw, over_throw, ce_derived))
1991 auto_diagnostic_group d;
1992 error ("looser exception specification on overriding virtual function "
1993 "%q+#F", overrider);
1994 inform (DECL_SOURCE_LOCATION (basefn),
1995 "overridden function is %q#F", basefn);
1996 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1997 return false;
1999 return true;
2002 /* Check that virtual overrider OVERRIDER is acceptable for base function
2003 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
2005 static int
2006 check_final_overrider (tree overrider, tree basefn)
2008 tree over_type = TREE_TYPE (overrider);
2009 tree base_type = TREE_TYPE (basefn);
2010 tree over_return = fndecl_declared_return_type (overrider);
2011 tree base_return = fndecl_declared_return_type (basefn);
2013 int fail = 0;
2015 if (DECL_INVALID_OVERRIDER_P (overrider))
2016 return 0;
2018 if (same_type_p (base_return, over_return))
2019 /* OK */;
2020 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
2021 || (TREE_CODE (base_return) == TREE_CODE (over_return)
2022 && INDIRECT_TYPE_P (base_return)))
2024 /* Potentially covariant. */
2025 unsigned base_quals, over_quals;
2027 fail = !INDIRECT_TYPE_P (base_return);
2028 if (!fail)
2030 if (cp_type_quals (base_return) != cp_type_quals (over_return))
2031 fail = 1;
2033 if (TYPE_REF_P (base_return)
2034 && (TYPE_REF_IS_RVALUE (base_return)
2035 != TYPE_REF_IS_RVALUE (over_return)))
2036 fail = 1;
2038 base_return = TREE_TYPE (base_return);
2039 over_return = TREE_TYPE (over_return);
2041 base_quals = cp_type_quals (base_return);
2042 over_quals = cp_type_quals (over_return);
2044 if ((base_quals & over_quals) != over_quals)
2045 fail = 1;
2047 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
2049 /* Strictly speaking, the standard requires the return type to be
2050 complete even if it only differs in cv-quals, but that seems
2051 like a bug in the wording. */
2052 if (!same_type_ignoring_top_level_qualifiers_p (base_return,
2053 over_return))
2055 tree binfo = lookup_base (over_return, base_return,
2056 ba_check, NULL, tf_none);
2058 if (!binfo || binfo == error_mark_node)
2059 fail = 1;
2062 else if (can_convert_standard (TREE_TYPE (base_type),
2063 TREE_TYPE (over_type),
2064 tf_warning_or_error))
2065 /* GNU extension, allow trivial pointer conversions such as
2066 converting to void *, or qualification conversion. */
2068 auto_diagnostic_group d;
2069 if (pedwarn (DECL_SOURCE_LOCATION (overrider), 0,
2070 "invalid covariant return type for %q#D", overrider))
2071 inform (DECL_SOURCE_LOCATION (basefn),
2072 "overridden function is %q#D", basefn);
2074 else
2075 fail = 2;
2077 else
2078 fail = 2;
2079 if (!fail)
2080 /* OK */;
2081 else
2083 auto_diagnostic_group d;
2084 if (fail == 1)
2085 error ("invalid covariant return type for %q+#D", overrider);
2086 else
2087 error ("conflicting return type specified for %q+#D", overrider);
2088 inform (DECL_SOURCE_LOCATION (basefn),
2089 "overridden function is %q#D", basefn);
2090 DECL_INVALID_OVERRIDER_P (overrider) = 1;
2091 return 0;
2094 if (!maybe_check_overriding_exception_spec (overrider, basefn))
2095 return 0;
2097 /* Check for conflicting type attributes. But leave transaction_safe for
2098 set_one_vmethod_tm_attributes. */
2099 if (!comp_type_attributes (over_type, base_type)
2100 && !tx_safe_fn_type_p (base_type)
2101 && !tx_safe_fn_type_p (over_type))
2103 auto_diagnostic_group d;
2104 error ("conflicting type attributes specified for %q+#D", overrider);
2105 inform (DECL_SOURCE_LOCATION (basefn),
2106 "overridden function is %q#D", basefn);
2107 DECL_INVALID_OVERRIDER_P (overrider) = 1;
2108 return 0;
2111 /* A consteval virtual function shall not override a virtual function that is
2112 not consteval. A consteval virtual function shall not be overridden by a
2113 virtual function that is not consteval. */
2114 if (DECL_IMMEDIATE_FUNCTION_P (overrider)
2115 != DECL_IMMEDIATE_FUNCTION_P (basefn))
2117 auto_diagnostic_group d;
2118 if (DECL_IMMEDIATE_FUNCTION_P (overrider))
2119 error ("%<consteval%> function %q+D overriding non-%<consteval%> "
2120 "function", overrider);
2121 else
2122 error ("non-%<consteval%> function %q+D overriding %<consteval%> "
2123 "function", overrider);
2124 inform (DECL_SOURCE_LOCATION (basefn),
2125 "overridden function is %qD", basefn);
2126 DECL_INVALID_OVERRIDER_P (overrider) = 1;
2127 return 0;
2130 /* A function declared transaction_safe_dynamic that overrides a function
2131 declared transaction_safe (but not transaction_safe_dynamic) is
2132 ill-formed. */
2133 if (tx_safe_fn_type_p (base_type)
2134 && lookup_attribute ("transaction_safe_dynamic",
2135 DECL_ATTRIBUTES (overrider))
2136 && !lookup_attribute ("transaction_safe_dynamic",
2137 DECL_ATTRIBUTES (basefn)))
2139 auto_diagnostic_group d;
2140 error_at (DECL_SOURCE_LOCATION (overrider),
2141 "%qD declared %<transaction_safe_dynamic%>", overrider);
2142 inform (DECL_SOURCE_LOCATION (basefn),
2143 "overriding %qD declared %<transaction_safe%>", basefn);
2146 if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider))
2148 if (DECL_DELETED_FN (overrider))
2150 auto_diagnostic_group d;
2151 error ("deleted function %q+D overriding non-deleted function",
2152 overrider);
2153 inform (DECL_SOURCE_LOCATION (basefn),
2154 "overridden function is %qD", basefn);
2155 maybe_explain_implicit_delete (overrider);
2157 else
2159 auto_diagnostic_group d;
2160 error ("non-deleted function %q+D overriding deleted function",
2161 overrider);
2162 inform (DECL_SOURCE_LOCATION (basefn),
2163 "overridden function is %qD", basefn);
2165 return 0;
2168 if (!DECL_HAS_CONTRACTS_P (basefn) && DECL_HAS_CONTRACTS_P (overrider))
2170 auto_diagnostic_group d;
2171 error ("function with contracts %q+D overriding contractless function",
2172 overrider);
2173 inform (DECL_SOURCE_LOCATION (basefn),
2174 "overridden function is %qD", basefn);
2175 return 0;
2177 else if (DECL_HAS_CONTRACTS_P (basefn) && !DECL_HAS_CONTRACTS_P (overrider))
2179 /* We're inheriting basefn's contracts; create a copy of them but
2180 replace references to their parms to our parms. */
2181 inherit_base_contracts (overrider, basefn);
2183 else if (DECL_HAS_CONTRACTS_P (basefn) && DECL_HAS_CONTRACTS_P (overrider))
2185 /* We're in the process of completing the overrider's class, which means
2186 our conditions definitely are not parsed so simply chain on the
2187 basefn for later checking.
2189 Note that OVERRIDER's contracts will have been fully parsed at the
2190 point the deferred match is run. */
2191 defer_guarded_contract_match (overrider, basefn, DECL_CONTRACTS (basefn));
2194 if (DECL_FINAL_P (basefn))
2196 auto_diagnostic_group d;
2197 error ("virtual function %q+D overriding final function", overrider);
2198 inform (DECL_SOURCE_LOCATION (basefn),
2199 "overridden function is %qD", basefn);
2200 return 0;
2202 return 1;
2205 /* Given a class TYPE, and a function decl FNDECL, look for
2206 virtual functions in TYPE's hierarchy which FNDECL overrides.
2207 We do not look in TYPE itself, only its bases.
2209 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
2210 find that it overrides anything.
2212 We check that every function which is overridden, is correctly
2213 overridden. */
2216 look_for_overrides (tree type, tree fndecl)
2218 tree binfo = TYPE_BINFO (type);
2219 tree base_binfo;
2220 int ix;
2221 int found = 0;
2223 /* A constructor for a class T does not override a function T
2224 in a base class. */
2225 if (DECL_CONSTRUCTOR_P (fndecl))
2226 return 0;
2228 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2230 tree basetype = BINFO_TYPE (base_binfo);
2232 if (TYPE_POLYMORPHIC_P (basetype))
2233 found += look_for_overrides_r (basetype, fndecl);
2235 return found;
2238 /* Look in TYPE for virtual functions with the same signature as
2239 FNDECL. */
2241 tree
2242 look_for_overrides_here (tree type, tree fndecl)
2244 tree ovl = get_class_binding (type, DECL_NAME (fndecl));
2246 for (ovl_iterator iter (ovl); iter; ++iter)
2248 tree fn = *iter;
2250 if (!DECL_VIRTUAL_P (fn))
2251 /* Not a virtual. */;
2252 else if (DECL_CONTEXT (fn) != type)
2253 /* Introduced with a using declaration. */;
2254 else if (DECL_STATIC_FUNCTION_P (fndecl)
2255 || DECL_XOBJ_MEMBER_FUNCTION_P (fndecl))
2257 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
2258 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2259 dtypes = DECL_XOBJ_MEMBER_FUNCTION_P (fndecl) ? TREE_CHAIN (dtypes)
2260 : dtypes;
2261 if (compparms (TREE_CHAIN (btypes), dtypes))
2262 return fn;
2264 else if (same_signature_p (fndecl, fn))
2265 return fn;
2268 return NULL_TREE;
2271 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
2272 TYPE itself and its bases. */
2274 static int
2275 look_for_overrides_r (tree type, tree fndecl)
2277 tree fn = look_for_overrides_here (type, fndecl);
2278 if (fn)
2280 if (DECL_STATIC_FUNCTION_P (fndecl))
2282 /* A static member function cannot match an inherited
2283 virtual member function. */
2284 auto_diagnostic_group d;
2285 error ("%q+#D cannot be declared", fndecl);
2286 error (" since %q+#D declared in base class", fn);
2288 else if (DECL_XOBJ_MEMBER_FUNCTION_P (fndecl))
2290 auto_diagnostic_group d;
2291 error_at (DECL_SOURCE_LOCATION (fndecl),
2292 "explicit object member function "
2293 "overrides virtual function");
2294 inform (DECL_SOURCE_LOCATION (fn),
2295 "virtual function declared here");
2297 else
2299 /* It's definitely virtual, even if not explicitly set. */
2300 DECL_VIRTUAL_P (fndecl) = 1;
2301 check_final_overrider (fndecl, fn);
2303 return 1;
2306 /* We failed to find one declared in this class. Look in its bases. */
2307 return look_for_overrides (type, fndecl);
2310 /* Called via dfs_walk from dfs_get_pure_virtuals. */
2312 static tree
2313 dfs_get_pure_virtuals (tree binfo, void *data)
2315 tree type = (tree) data;
2317 /* We're not interested in primary base classes; the derived class
2318 of which they are a primary base will contain the information we
2319 need. */
2320 if (!BINFO_PRIMARY_P (binfo))
2322 tree virtuals;
2324 for (virtuals = BINFO_VIRTUALS (binfo);
2325 virtuals;
2326 virtuals = TREE_CHAIN (virtuals))
2327 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2328 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (type), BV_FN (virtuals));
2331 return NULL_TREE;
2334 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2336 void
2337 get_pure_virtuals (tree type)
2339 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2340 is going to be overridden. */
2341 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2342 /* Now, run through all the bases which are not primary bases, and
2343 collect the pure virtual functions. We look at the vtable in
2344 each class to determine what pure virtual functions are present.
2345 (A primary base is not interesting because the derived class of
2346 which it is a primary base will contain vtable entries for the
2347 pure virtuals in the base class. */
2348 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2351 /* Debug info for C++ classes can get very large; try to avoid
2352 emitting it everywhere.
2354 Note that this optimization wins even when the target supports
2355 BINCL (if only slightly), and reduces the amount of work for the
2356 linker. */
2358 void
2359 maybe_suppress_debug_info (tree t)
2361 if (write_symbols == NO_DEBUG)
2362 return;
2364 /* We might have set this earlier in cp_finish_decl. */
2365 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2367 /* Always emit the information for each class every time. */
2368 if (flag_emit_class_debug_always)
2369 return;
2371 /* If we already know how we're handling this class, handle debug info
2372 the same way. */
2373 if (CLASSTYPE_INTERFACE_KNOWN (t))
2375 if (CLASSTYPE_INTERFACE_ONLY (t))
2376 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2377 /* else don't set it. */
2379 /* If the class has a vtable, write out the debug info along with
2380 the vtable. */
2381 else if (TYPE_CONTAINS_VPTR_P (t))
2382 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2384 /* Otherwise, just emit the debug info normally. */
2387 /* Note that we want debugging information for a base class of a class
2388 whose vtable is being emitted. Normally, this would happen because
2389 calling the constructor for a derived class implies calling the
2390 constructors for all bases, which involve initializing the
2391 appropriate vptr with the vtable for the base class; but in the
2392 presence of optimization, this initialization may be optimized
2393 away, so we tell finish_vtable_vardecl that we want the debugging
2394 information anyway. */
2396 static tree
2397 dfs_debug_mark (tree binfo, void * /*data*/)
2399 tree t = BINFO_TYPE (binfo);
2401 if (CLASSTYPE_DEBUG_REQUESTED (t))
2402 return dfs_skip_bases;
2404 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2406 return NULL_TREE;
2409 /* Write out the debugging information for TYPE, whose vtable is being
2410 emitted. Also walk through our bases and note that we want to
2411 write out information for them. This avoids the problem of not
2412 writing any debug info for intermediate basetypes whose
2413 constructors, and thus the references to their vtables, and thus
2414 the vtables themselves, were optimized away. */
2416 void
2417 note_debug_info_needed (tree type)
2419 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2421 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2422 rest_of_type_compilation (type, namespace_bindings_p ());
2425 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2428 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2429 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2430 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2431 bases have been encountered already in the tree walk. PARENT_CONVS
2432 is the list of lists of conversion functions that could hide CONV
2433 and OTHER_CONVS is the list of lists of conversion functions that
2434 could hide or be hidden by CONV, should virtualness be involved in
2435 the hierarchy. Merely checking the conversion op's name is not
2436 enough because two conversion operators to the same type can have
2437 different names. Return nonzero if we are visible. */
2439 static int
2440 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2441 tree to_type, tree parent_convs, tree other_convs)
2443 tree level, probe;
2445 /* See if we are hidden by a parent conversion. */
2446 for (level = parent_convs; level; level = TREE_CHAIN (level))
2447 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2448 if (same_type_p (to_type, TREE_TYPE (probe)))
2449 return 0;
2451 if (virtual_depth || virtualness)
2453 /* In a virtual hierarchy, we could be hidden, or could hide a
2454 conversion function on the other_convs list. */
2455 for (level = other_convs; level; level = TREE_CHAIN (level))
2457 int we_hide_them;
2458 int they_hide_us;
2459 tree *prev, other;
2461 if (!(virtual_depth || TREE_STATIC (level)))
2462 /* Neither is morally virtual, so cannot hide each other. */
2463 continue;
2465 if (!TREE_VALUE (level))
2466 /* They evaporated away already. */
2467 continue;
2469 they_hide_us = (virtual_depth
2470 && original_binfo (binfo, TREE_PURPOSE (level)));
2471 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2472 && original_binfo (TREE_PURPOSE (level), binfo));
2474 if (!(we_hide_them || they_hide_us))
2475 /* Neither is within the other, so no hiding can occur. */
2476 continue;
2478 for (prev = &TREE_VALUE (level), other = *prev; other;)
2480 if (same_type_p (to_type, TREE_TYPE (other)))
2482 if (they_hide_us)
2483 /* We are hidden. */
2484 return 0;
2486 if (we_hide_them)
2488 /* We hide the other one. */
2489 other = TREE_CHAIN (other);
2490 *prev = other;
2491 continue;
2494 prev = &TREE_CHAIN (other);
2495 other = *prev;
2499 return 1;
2502 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2503 of conversion functions, the first slot will be for the current
2504 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2505 of conversion functions from children of the current binfo,
2506 concatenated with conversions from elsewhere in the hierarchy --
2507 that list begins with OTHER_CONVS. Return a single list of lists
2508 containing only conversions from the current binfo and its
2509 children. */
2511 static tree
2512 split_conversions (tree my_convs, tree parent_convs,
2513 tree child_convs, tree other_convs)
2515 tree t;
2516 tree prev;
2518 /* Remove the original other_convs portion from child_convs. */
2519 for (prev = NULL, t = child_convs;
2520 t != other_convs; prev = t, t = TREE_CHAIN (t))
2521 continue;
2523 if (prev)
2524 TREE_CHAIN (prev) = NULL_TREE;
2525 else
2526 child_convs = NULL_TREE;
2528 /* Attach the child convs to any we had at this level. */
2529 if (my_convs)
2531 my_convs = parent_convs;
2532 TREE_CHAIN (my_convs) = child_convs;
2534 else
2535 my_convs = child_convs;
2537 return my_convs;
2540 /* Worker for lookup_conversions. Lookup conversion functions in
2541 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in a
2542 morally virtual base, and VIRTUALNESS is nonzero, if we've
2543 encountered virtual bases already in the tree walk. PARENT_CONVS
2544 is a list of conversions within parent binfos. OTHER_CONVS are
2545 conversions found elsewhere in the tree. Return the conversions
2546 found within this portion of the graph in CONVS. Return nonzero if
2547 we encountered virtualness. We keep template and non-template
2548 conversions separate, to avoid unnecessary type comparisons.
2550 The located conversion functions are held in lists of lists. The
2551 TREE_VALUE of the outer list is the list of conversion functions
2552 found in a particular binfo. The TREE_PURPOSE of both the outer
2553 and inner lists is the binfo at which those conversions were
2554 found. TREE_STATIC is set for those lists within of morally
2555 virtual binfos. The TREE_VALUE of the inner list is the conversion
2556 function or overload itself. The TREE_TYPE of each inner list node
2557 is the converted-to type. */
2559 static int
2560 lookup_conversions_r (tree binfo, int virtual_depth, int virtualness,
2561 tree parent_convs, tree other_convs, tree *convs)
2563 int my_virtualness = 0;
2564 tree my_convs = NULL_TREE;
2565 tree child_convs = NULL_TREE;
2567 /* If we have no conversion operators, then don't look. */
2568 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2570 *convs = NULL_TREE;
2572 return 0;
2575 if (BINFO_VIRTUAL_P (binfo))
2576 virtual_depth++;
2578 /* First, locate the unhidden ones at this level. */
2579 if (tree conv = get_class_binding (BINFO_TYPE (binfo), conv_op_identifier))
2580 for (ovl_iterator iter (conv); iter; ++iter)
2582 tree fn = *iter;
2583 tree type = DECL_CONV_FN_TYPE (fn);
2585 if (TREE_CODE (fn) != TEMPLATE_DECL && type_uses_auto (type))
2587 mark_used (fn);
2588 type = DECL_CONV_FN_TYPE (fn);
2591 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2592 type, parent_convs, other_convs))
2594 my_convs = tree_cons (binfo, fn, my_convs);
2595 TREE_TYPE (my_convs) = type;
2596 if (virtual_depth)
2598 TREE_STATIC (my_convs) = 1;
2599 my_virtualness = 1;
2604 if (my_convs)
2606 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2607 if (virtual_depth)
2608 TREE_STATIC (parent_convs) = 1;
2611 child_convs = other_convs;
2613 /* Now iterate over each base, looking for more conversions. */
2614 unsigned i;
2615 tree base_binfo;
2616 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2618 tree base_convs;
2619 unsigned base_virtualness;
2621 base_virtualness = lookup_conversions_r (base_binfo,
2622 virtual_depth, virtualness,
2623 parent_convs, child_convs,
2624 &base_convs);
2625 if (base_virtualness)
2626 my_virtualness = virtualness = 1;
2627 child_convs = chainon (base_convs, child_convs);
2630 *convs = split_conversions (my_convs, parent_convs,
2631 child_convs, other_convs);
2633 return my_virtualness;
2636 /* Return a TREE_LIST containing all the non-hidden user-defined
2637 conversion functions for TYPE (and its base-classes). The
2638 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2639 function. The TREE_PURPOSE is the BINFO from which the conversion
2640 functions in this node were selected. This function is effectively
2641 performing a set of member lookups as lookup_fnfield does, but
2642 using the type being converted to as the unique key, rather than the
2643 field name. */
2645 tree
2646 lookup_conversions (tree type)
2648 tree convs;
2650 complete_type (type);
2651 if (!CLASS_TYPE_P (type) || !TYPE_BINFO (type))
2652 return NULL_TREE;
2654 lookup_conversions_r (TYPE_BINFO (type), 0, 0, NULL_TREE, NULL_TREE, &convs);
2656 tree list = NULL_TREE;
2658 /* Flatten the list-of-lists */
2659 for (; convs; convs = TREE_CHAIN (convs))
2661 tree probe, next;
2663 for (probe = TREE_VALUE (convs); probe; probe = next)
2665 next = TREE_CHAIN (probe);
2667 TREE_CHAIN (probe) = list;
2668 list = probe;
2672 return list;
2675 /* Returns the binfo of the first direct or indirect virtual base derived
2676 from BINFO, or NULL if binfo is not via virtual. */
2678 tree
2679 binfo_from_vbase (tree binfo)
2681 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2683 if (BINFO_VIRTUAL_P (binfo))
2684 return binfo;
2686 return NULL_TREE;
2689 /* Returns the binfo of the first direct or indirect virtual base derived
2690 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2691 via virtual. */
2693 tree
2694 binfo_via_virtual (tree binfo, tree limit)
2696 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2697 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2698 return NULL_TREE;
2700 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2701 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2703 if (BINFO_VIRTUAL_P (binfo))
2704 return binfo;
2706 return NULL_TREE;
2709 /* BINFO is for a base class in some hierarchy. Return true iff it is a
2710 direct base. */
2712 bool
2713 binfo_direct_p (tree binfo)
2715 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
2716 if (BINFO_INHERITANCE_CHAIN (d_binfo))
2717 /* A second inheritance chain means indirect. */
2718 return false;
2719 if (!BINFO_VIRTUAL_P (binfo))
2720 /* Non-virtual, so only one inheritance chain means direct. */
2721 return true;
2722 /* A virtual base looks like a direct base, so we need to look through the
2723 direct bases to see if it's there. */
2724 tree b_binfo;
2725 for (int i = 0; BINFO_BASE_ITERATE (d_binfo, i, b_binfo); ++i)
2726 if (b_binfo == binfo)
2727 return true;
2728 return false;
2731 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2732 Find the equivalent binfo within whatever graph HERE is located.
2733 This is the inverse of original_binfo. */
2735 tree
2736 copied_binfo (tree binfo, tree here)
2738 tree result = NULL_TREE;
2740 if (BINFO_VIRTUAL_P (binfo))
2742 tree t;
2744 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2745 t = BINFO_INHERITANCE_CHAIN (t))
2746 continue;
2748 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2750 else if (BINFO_INHERITANCE_CHAIN (binfo))
2752 tree cbinfo;
2753 tree base_binfo;
2754 int ix;
2756 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2757 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2758 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2760 result = base_binfo;
2761 break;
2764 else
2766 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2767 result = here;
2770 gcc_assert (result);
2771 return result;
2774 tree
2775 binfo_for_vbase (tree base, tree t)
2777 unsigned ix;
2778 tree binfo;
2779 vec<tree, va_gc> *vbases;
2781 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2782 vec_safe_iterate (vbases, ix, &binfo); ix++)
2783 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2784 return binfo;
2785 return NULL;
2788 /* BINFO is some base binfo of HERE, within some other
2789 hierarchy. Return the equivalent binfo, but in the hierarchy
2790 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2791 is not a base binfo of HERE, returns NULL_TREE. */
2793 tree
2794 original_binfo (tree binfo, tree here)
2796 tree result = NULL;
2798 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2799 result = here;
2800 else if (BINFO_VIRTUAL_P (binfo))
2801 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2802 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2803 : NULL_TREE);
2804 else if (BINFO_INHERITANCE_CHAIN (binfo))
2806 tree base_binfos;
2808 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2809 if (base_binfos)
2811 int ix;
2812 tree base_binfo;
2814 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2815 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2816 BINFO_TYPE (binfo)))
2818 result = base_binfo;
2819 break;
2824 return result;
2827 /* True iff TYPE has any dependent bases (and therefore we can't say
2828 definitively that another class is not a base of an instantiation of
2829 TYPE). */
2831 bool
2832 any_dependent_bases_p (tree type)
2834 if (!type || !CLASS_TYPE_P (type) || !uses_template_parms (type))
2835 return false;
2837 /* If we haven't set TYPE_BINFO yet, we don't know anything about the bases.
2838 Return false because in this situation we aren't actually looking up names
2839 in the scope of the class, so it doesn't matter whether it has dependent
2840 bases. */
2841 if (!TYPE_BINFO (type))
2842 return false;
2844 unsigned i;
2845 tree base_binfo;
2846 FOR_EACH_VEC_SAFE_ELT (BINFO_BASE_BINFOS (TYPE_BINFO (type)), i, base_binfo)
2847 if (BINFO_DEPENDENT_BASE_P (base_binfo))
2848 return true;
2850 return false;