remove extraneous code checked in with previous delta
[official-gcc.git] / gcc / cse.c
blob8c2e9fc580a0709b2fc38e33ba88e9a1bbe501de
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 /* stdio.h must precede rtl.h for FFS. */
25 #include "system.h"
26 #include <setjmp.h>
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
42 /* The basic idea of common subexpression elimination is to go
43 through the code, keeping a record of expressions that would
44 have the same value at the current scan point, and replacing
45 expressions encountered with the cheapest equivalent expression.
47 It is too complicated to keep track of the different possibilities
48 when control paths merge in this code; so, at each label, we forget all
49 that is known and start fresh. This can be described as processing each
50 extended basic block separately. We have a separate pass to perform
51 global CSE.
53 Note CSE can turn a conditional or computed jump into a nop or
54 an unconditional jump. When this occurs we arrange to run the jump
55 optimizer after CSE to delete the unreachable code.
57 We use two data structures to record the equivalent expressions:
58 a hash table for most expressions, and a vector of "quantity
59 numbers" to record equivalent (pseudo) registers.
61 The use of the special data structure for registers is desirable
62 because it is faster. It is possible because registers references
63 contain a fairly small number, the register number, taken from
64 a contiguously allocated series, and two register references are
65 identical if they have the same number. General expressions
66 do not have any such thing, so the only way to retrieve the
67 information recorded on an expression other than a register
68 is to keep it in a hash table.
70 Registers and "quantity numbers":
72 At the start of each basic block, all of the (hardware and pseudo)
73 registers used in the function are given distinct quantity
74 numbers to indicate their contents. During scan, when the code
75 copies one register into another, we copy the quantity number.
76 When a register is loaded in any other way, we allocate a new
77 quantity number to describe the value generated by this operation.
78 `reg_qty' records what quantity a register is currently thought
79 of as containing.
81 All real quantity numbers are greater than or equal to `max_reg'.
82 If register N has not been assigned a quantity, reg_qty[N] will equal N.
84 Quantity numbers below `max_reg' do not exist and none of the `qty_table'
85 entries should be referenced with an index below `max_reg'.
87 We also maintain a bidirectional chain of registers for each
88 quantity number. The `qty_table` members `first_reg' and `last_reg',
89 and `reg_eqv_table' members `next' and `prev' hold these chains.
91 The first register in a chain is the one whose lifespan is least local.
92 Among equals, it is the one that was seen first.
93 We replace any equivalent register with that one.
95 If two registers have the same quantity number, it must be true that
96 REG expressions with qty_table `mode' must be in the hash table for both
97 registers and must be in the same class.
99 The converse is not true. Since hard registers may be referenced in
100 any mode, two REG expressions might be equivalent in the hash table
101 but not have the same quantity number if the quantity number of one
102 of the registers is not the same mode as those expressions.
104 Constants and quantity numbers
106 When a quantity has a known constant value, that value is stored
107 in the appropriate qty_table `const_rtx'. This is in addition to
108 putting the constant in the hash table as is usual for non-regs.
110 Whether a reg or a constant is preferred is determined by the configuration
111 macro CONST_COSTS and will often depend on the constant value. In any
112 event, expressions containing constants can be simplified, by fold_rtx.
114 When a quantity has a known nearly constant value (such as an address
115 of a stack slot), that value is stored in the appropriate qty_table
116 `const_rtx'.
118 Integer constants don't have a machine mode. However, cse
119 determines the intended machine mode from the destination
120 of the instruction that moves the constant. The machine mode
121 is recorded in the hash table along with the actual RTL
122 constant expression so that different modes are kept separate.
124 Other expressions:
126 To record known equivalences among expressions in general
127 we use a hash table called `table'. It has a fixed number of buckets
128 that contain chains of `struct table_elt' elements for expressions.
129 These chains connect the elements whose expressions have the same
130 hash codes.
132 Other chains through the same elements connect the elements which
133 currently have equivalent values.
135 Register references in an expression are canonicalized before hashing
136 the expression. This is done using `reg_qty' and qty_table `first_reg'.
137 The hash code of a register reference is computed using the quantity
138 number, not the register number.
140 When the value of an expression changes, it is necessary to remove from the
141 hash table not just that expression but all expressions whose values
142 could be different as a result.
144 1. If the value changing is in memory, except in special cases
145 ANYTHING referring to memory could be changed. That is because
146 nobody knows where a pointer does not point.
147 The function `invalidate_memory' removes what is necessary.
149 The special cases are when the address is constant or is
150 a constant plus a fixed register such as the frame pointer
151 or a static chain pointer. When such addresses are stored in,
152 we can tell exactly which other such addresses must be invalidated
153 due to overlap. `invalidate' does this.
154 All expressions that refer to non-constant
155 memory addresses are also invalidated. `invalidate_memory' does this.
157 2. If the value changing is a register, all expressions
158 containing references to that register, and only those,
159 must be removed.
161 Because searching the entire hash table for expressions that contain
162 a register is very slow, we try to figure out when it isn't necessary.
163 Precisely, this is necessary only when expressions have been
164 entered in the hash table using this register, and then the value has
165 changed, and then another expression wants to be added to refer to
166 the register's new value. This sequence of circumstances is rare
167 within any one basic block.
169 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
170 reg_tick[i] is incremented whenever a value is stored in register i.
171 reg_in_table[i] holds -1 if no references to register i have been
172 entered in the table; otherwise, it contains the value reg_tick[i] had
173 when the references were entered. If we want to enter a reference
174 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
175 Until we want to enter a new entry, the mere fact that the two vectors
176 don't match makes the entries be ignored if anyone tries to match them.
178 Registers themselves are entered in the hash table as well as in
179 the equivalent-register chains. However, the vectors `reg_tick'
180 and `reg_in_table' do not apply to expressions which are simple
181 register references. These expressions are removed from the table
182 immediately when they become invalid, and this can be done even if
183 we do not immediately search for all the expressions that refer to
184 the register.
186 A CLOBBER rtx in an instruction invalidates its operand for further
187 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
188 invalidates everything that resides in memory.
190 Related expressions:
192 Constant expressions that differ only by an additive integer
193 are called related. When a constant expression is put in
194 the table, the related expression with no constant term
195 is also entered. These are made to point at each other
196 so that it is possible to find out if there exists any
197 register equivalent to an expression related to a given expression. */
199 /* One plus largest register number used in this function. */
201 static int max_reg;
203 /* One plus largest instruction UID used in this function at time of
204 cse_main call. */
206 static int max_insn_uid;
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
211 static int max_qty;
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
216 static int next_qty;
218 /* Per-qty information tracking.
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
223 `mode' contains the machine mode of this quantity.
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
229 constant value.
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
243 struct qty_table_elem
245 rtx const_rtx;
246 rtx const_insn;
247 rtx comparison_const;
248 int comparison_qty;
249 int first_reg, last_reg;
250 enum machine_mode mode;
251 enum rtx_code comparison_code;
254 /* The table of all qtys, indexed by qty number. */
255 static struct qty_table_elem *qty_table;
257 #ifdef HAVE_cc0
258 /* For machines that have a CC0, we do not record its value in the hash
259 table since its use is guaranteed to be the insn immediately following
260 its definition and any other insn is presumed to invalidate it.
262 Instead, we store below the value last assigned to CC0. If it should
263 happen to be a constant, it is stored in preference to the actual
264 assigned value. In case it is a constant, we store the mode in which
265 the constant should be interpreted. */
267 static rtx prev_insn_cc0;
268 static enum machine_mode prev_insn_cc0_mode;
269 #endif
271 /* Previous actual insn. 0 if at first insn of basic block. */
273 static rtx prev_insn;
275 /* Insn being scanned. */
277 static rtx this_insn;
279 /* Index by register number, gives the number of the next (or
280 previous) register in the chain of registers sharing the same
281 value.
283 Or -1 if this register is at the end of the chain.
285 If reg_qty[N] == N, reg_eqv_table[N].next is undefined. */
287 /* Per-register equivalence chain. */
288 struct reg_eqv_elem
290 int next, prev;
293 /* The table of all register equivalence chains. */
294 static struct reg_eqv_elem *reg_eqv_table;
296 struct cse_reg_info
298 /* Next in hash chain. */
299 struct cse_reg_info *hash_next;
301 /* The next cse_reg_info structure in the free or used list. */
302 struct cse_reg_info *next;
304 /* Search key */
305 int regno;
307 /* The quantity number of the register's current contents. */
308 int reg_qty;
310 /* The number of times the register has been altered in the current
311 basic block. */
312 int reg_tick;
314 /* The REG_TICK value at which rtx's containing this register are
315 valid in the hash table. If this does not equal the current
316 reg_tick value, such expressions existing in the hash table are
317 invalid. */
318 int reg_in_table;
321 /* A free list of cse_reg_info entries. */
322 static struct cse_reg_info *cse_reg_info_free_list;
324 /* A used list of cse_reg_info entries. */
325 static struct cse_reg_info *cse_reg_info_used_list;
326 static struct cse_reg_info *cse_reg_info_used_list_end;
328 /* A mapping from registers to cse_reg_info data structures. */
329 #define REGHASH_SHIFT 7
330 #define REGHASH_SIZE (1 << REGHASH_SHIFT)
331 #define REGHASH_MASK (REGHASH_SIZE - 1)
332 static struct cse_reg_info *reg_hash[REGHASH_SIZE];
334 #define REGHASH_FN(REGNO) \
335 (((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
337 /* The last lookup we did into the cse_reg_info_tree. This allows us
338 to cache repeated lookups. */
339 static int cached_regno;
340 static struct cse_reg_info *cached_cse_reg_info;
342 /* A HARD_REG_SET containing all the hard registers for which there is
343 currently a REG expression in the hash table. Note the difference
344 from the above variables, which indicate if the REG is mentioned in some
345 expression in the table. */
347 static HARD_REG_SET hard_regs_in_table;
349 /* A HARD_REG_SET containing all the hard registers that are invalidated
350 by a CALL_INSN. */
352 static HARD_REG_SET regs_invalidated_by_call;
354 /* CUID of insn that starts the basic block currently being cse-processed. */
356 static int cse_basic_block_start;
358 /* CUID of insn that ends the basic block currently being cse-processed. */
360 static int cse_basic_block_end;
362 /* Vector mapping INSN_UIDs to cuids.
363 The cuids are like uids but increase monotonically always.
364 We use them to see whether a reg is used outside a given basic block. */
366 static int *uid_cuid;
368 /* Highest UID in UID_CUID. */
369 static int max_uid;
371 /* Get the cuid of an insn. */
373 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
375 /* Nonzero if this pass has made changes, and therefore it's
376 worthwhile to run the garbage collector. */
378 static int cse_altered;
380 /* Nonzero if cse has altered conditional jump insns
381 in such a way that jump optimization should be redone. */
383 static int cse_jumps_altered;
385 /* Nonzero if we put a LABEL_REF into the hash table. Since we may have put
386 it into an INSN without a REG_LABEL, we have to rerun jump after CSE
387 to put in the note. */
388 static int recorded_label_ref;
390 /* canon_hash stores 1 in do_not_record
391 if it notices a reference to CC0, PC, or some other volatile
392 subexpression. */
394 static int do_not_record;
396 #ifdef LOAD_EXTEND_OP
398 /* Scratch rtl used when looking for load-extended copy of a MEM. */
399 static rtx memory_extend_rtx;
400 #endif
402 /* canon_hash stores 1 in hash_arg_in_memory
403 if it notices a reference to memory within the expression being hashed. */
405 static int hash_arg_in_memory;
407 /* The hash table contains buckets which are chains of `struct table_elt's,
408 each recording one expression's information.
409 That expression is in the `exp' field.
411 Those elements with the same hash code are chained in both directions
412 through the `next_same_hash' and `prev_same_hash' fields.
414 Each set of expressions with equivalent values
415 are on a two-way chain through the `next_same_value'
416 and `prev_same_value' fields, and all point with
417 the `first_same_value' field at the first element in
418 that chain. The chain is in order of increasing cost.
419 Each element's cost value is in its `cost' field.
421 The `in_memory' field is nonzero for elements that
422 involve any reference to memory. These elements are removed
423 whenever a write is done to an unidentified location in memory.
424 To be safe, we assume that a memory address is unidentified unless
425 the address is either a symbol constant or a constant plus
426 the frame pointer or argument pointer.
428 The `related_value' field is used to connect related expressions
429 (that differ by adding an integer).
430 The related expressions are chained in a circular fashion.
431 `related_value' is zero for expressions for which this
432 chain is not useful.
434 The `cost' field stores the cost of this element's expression.
436 The `is_const' flag is set if the element is a constant (including
437 a fixed address).
439 The `flag' field is used as a temporary during some search routines.
441 The `mode' field is usually the same as GET_MODE (`exp'), but
442 if `exp' is a CONST_INT and has no machine mode then the `mode'
443 field is the mode it was being used as. Each constant is
444 recorded separately for each mode it is used with. */
447 struct table_elt
449 rtx exp;
450 struct table_elt *next_same_hash;
451 struct table_elt *prev_same_hash;
452 struct table_elt *next_same_value;
453 struct table_elt *prev_same_value;
454 struct table_elt *first_same_value;
455 struct table_elt *related_value;
456 int cost;
457 enum machine_mode mode;
458 char in_memory;
459 char is_const;
460 char flag;
463 /* We don't want a lot of buckets, because we rarely have very many
464 things stored in the hash table, and a lot of buckets slows
465 down a lot of loops that happen frequently. */
466 #define HASH_SHIFT 5
467 #define HASH_SIZE (1 << HASH_SHIFT)
468 #define HASH_MASK (HASH_SIZE - 1)
470 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
471 register (hard registers may require `do_not_record' to be set). */
473 #define HASH(X, M) \
474 ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
475 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
476 : canon_hash (X, M)) & HASH_MASK)
478 /* Determine whether register number N is considered a fixed register for CSE.
479 It is desirable to replace other regs with fixed regs, to reduce need for
480 non-fixed hard regs.
481 A reg wins if it is either the frame pointer or designated as fixed. */
482 #define FIXED_REGNO_P(N) \
483 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
484 || fixed_regs[N] || global_regs[N])
486 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
487 hard registers and pointers into the frame are the cheapest with a cost
488 of 0. Next come pseudos with a cost of one and other hard registers with
489 a cost of 2. Aside from these special cases, call `rtx_cost'. */
491 #define CHEAP_REGNO(N) \
492 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
493 || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
494 || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
495 || ((N) < FIRST_PSEUDO_REGISTER \
496 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
498 /* A register is cheap if it is a user variable assigned to the register
499 or if its register number always corresponds to a cheap register. */
501 #define CHEAP_REG(N) \
502 ((REG_USERVAR_P (N) && REGNO (N) < FIRST_PSEUDO_REGISTER) \
503 || CHEAP_REGNO (REGNO (N)))
505 #define COST(X) \
506 (GET_CODE (X) == REG \
507 ? (CHEAP_REG (X) ? 0 \
508 : REGNO (X) >= FIRST_PSEUDO_REGISTER ? 1 \
509 : 2) \
510 : notreg_cost(X))
512 /* Get the info associated with register N. */
514 #define GET_CSE_REG_INFO(N) \
515 (((N) == cached_regno && cached_cse_reg_info) \
516 ? cached_cse_reg_info : get_cse_reg_info ((N)))
518 /* Get the number of times this register has been updated in this
519 basic block. */
521 #define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
523 /* Get the point at which REG was recorded in the table. */
525 #define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)
527 /* Get the quantity number for REG. */
529 #define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)
531 /* Determine if the quantity number for register X represents a valid index
532 into the qty_table. */
534 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (N))
536 #ifdef ADDRESS_COST
537 /* The ADDRESS_COST macro does not deal with ADDRESSOF nodes. But,
538 during CSE, such nodes are present. Using an ADDRESSOF node which
539 refers to the address of a REG is a good thing because we can then
540 turn (MEM (ADDRESSSOF (REG))) into just plain REG. */
541 #define CSE_ADDRESS_COST(RTX) \
542 ((GET_CODE (RTX) == ADDRESSOF && REG_P (XEXP ((RTX), 0))) \
543 ? -1 : ADDRESS_COST(RTX))
544 #endif
546 static struct table_elt *table[HASH_SIZE];
548 /* Chain of `struct table_elt's made so far for this function
549 but currently removed from the table. */
551 static struct table_elt *free_element_chain;
553 /* Number of `struct table_elt' structures made so far for this function. */
555 static int n_elements_made;
557 /* Maximum value `n_elements_made' has had so far in this compilation
558 for functions previously processed. */
560 static int max_elements_made;
562 /* Surviving equivalence class when two equivalence classes are merged
563 by recording the effects of a jump in the last insn. Zero if the
564 last insn was not a conditional jump. */
566 static struct table_elt *last_jump_equiv_class;
568 /* Set to the cost of a constant pool reference if one was found for a
569 symbolic constant. If this was found, it means we should try to
570 convert constants into constant pool entries if they don't fit in
571 the insn. */
573 static int constant_pool_entries_cost;
575 /* Define maximum length of a branch path. */
577 #define PATHLENGTH 10
579 /* This data describes a block that will be processed by cse_basic_block. */
581 struct cse_basic_block_data
583 /* Lowest CUID value of insns in block. */
584 int low_cuid;
585 /* Highest CUID value of insns in block. */
586 int high_cuid;
587 /* Total number of SETs in block. */
588 int nsets;
589 /* Last insn in the block. */
590 rtx last;
591 /* Size of current branch path, if any. */
592 int path_size;
593 /* Current branch path, indicating which branches will be taken. */
594 struct branch_path
596 /* The branch insn. */
597 rtx branch;
598 /* Whether it should be taken or not. AROUND is the same as taken
599 except that it is used when the destination label is not preceded
600 by a BARRIER. */
601 enum taken {TAKEN, NOT_TAKEN, AROUND} status;
602 } path[PATHLENGTH];
605 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
606 virtual regs here because the simplify_*_operation routines are called
607 by integrate.c, which is called before virtual register instantiation.
609 ?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into
610 a header file so that their definitions can be shared with the
611 simplification routines in simplify-rtx.c. Until then, do not
612 change these macros without also changing the copy in simplify-rtx.c. */
614 #define FIXED_BASE_PLUS_P(X) \
615 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
616 || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
617 || (X) == virtual_stack_vars_rtx \
618 || (X) == virtual_incoming_args_rtx \
619 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
620 && (XEXP (X, 0) == frame_pointer_rtx \
621 || XEXP (X, 0) == hard_frame_pointer_rtx \
622 || ((X) == arg_pointer_rtx \
623 && fixed_regs[ARG_POINTER_REGNUM]) \
624 || XEXP (X, 0) == virtual_stack_vars_rtx \
625 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
626 || GET_CODE (X) == ADDRESSOF)
628 /* Similar, but also allows reference to the stack pointer.
630 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
631 arg_pointer_rtx by itself is nonzero, because on at least one machine,
632 the i960, the arg pointer is zero when it is unused. */
634 #define NONZERO_BASE_PLUS_P(X) \
635 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
636 || (X) == virtual_stack_vars_rtx \
637 || (X) == virtual_incoming_args_rtx \
638 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
639 && (XEXP (X, 0) == frame_pointer_rtx \
640 || XEXP (X, 0) == hard_frame_pointer_rtx \
641 || ((X) == arg_pointer_rtx \
642 && fixed_regs[ARG_POINTER_REGNUM]) \
643 || XEXP (X, 0) == virtual_stack_vars_rtx \
644 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
645 || (X) == stack_pointer_rtx \
646 || (X) == virtual_stack_dynamic_rtx \
647 || (X) == virtual_outgoing_args_rtx \
648 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
649 && (XEXP (X, 0) == stack_pointer_rtx \
650 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
651 || XEXP (X, 0) == virtual_outgoing_args_rtx)) \
652 || GET_CODE (X) == ADDRESSOF)
654 static int notreg_cost PARAMS ((rtx));
655 static void new_basic_block PARAMS ((void));
656 static void make_new_qty PARAMS ((int, enum machine_mode));
657 static void make_regs_eqv PARAMS ((int, int));
658 static void delete_reg_equiv PARAMS ((int));
659 static int mention_regs PARAMS ((rtx));
660 static int insert_regs PARAMS ((rtx, struct table_elt *, int));
661 static void remove_from_table PARAMS ((struct table_elt *, unsigned));
662 static struct table_elt *lookup PARAMS ((rtx, unsigned, enum machine_mode)),
663 *lookup_for_remove PARAMS ((rtx, unsigned, enum machine_mode));
664 static rtx lookup_as_function PARAMS ((rtx, enum rtx_code));
665 static struct table_elt *insert PARAMS ((rtx, struct table_elt *, unsigned,
666 enum machine_mode));
667 static void merge_equiv_classes PARAMS ((struct table_elt *,
668 struct table_elt *));
669 static void invalidate PARAMS ((rtx, enum machine_mode));
670 static int cse_rtx_varies_p PARAMS ((rtx));
671 static void remove_invalid_refs PARAMS ((int));
672 static void remove_invalid_subreg_refs PARAMS ((int, int, enum machine_mode));
673 static void rehash_using_reg PARAMS ((rtx));
674 static void invalidate_memory PARAMS ((void));
675 static void invalidate_for_call PARAMS ((void));
676 static rtx use_related_value PARAMS ((rtx, struct table_elt *));
677 static unsigned canon_hash PARAMS ((rtx, enum machine_mode));
678 static unsigned safe_hash PARAMS ((rtx, enum machine_mode));
679 static int exp_equiv_p PARAMS ((rtx, rtx, int, int));
680 static rtx canon_reg PARAMS ((rtx, rtx));
681 static void find_best_addr PARAMS ((rtx, rtx *));
682 static enum rtx_code find_comparison_args PARAMS ((enum rtx_code, rtx *, rtx *,
683 enum machine_mode *,
684 enum machine_mode *));
685 static rtx fold_rtx PARAMS ((rtx, rtx));
686 static rtx equiv_constant PARAMS ((rtx));
687 static void record_jump_equiv PARAMS ((rtx, int));
688 static void record_jump_cond PARAMS ((enum rtx_code, enum machine_mode,
689 rtx, rtx, int));
690 static void cse_insn PARAMS ((rtx, rtx));
691 static int addr_affects_sp_p PARAMS ((rtx));
692 static void invalidate_from_clobbers PARAMS ((rtx));
693 static rtx cse_process_notes PARAMS ((rtx, rtx));
694 static void cse_around_loop PARAMS ((rtx));
695 static void invalidate_skipped_set PARAMS ((rtx, rtx, void *));
696 static void invalidate_skipped_block PARAMS ((rtx));
697 static void cse_check_loop_start PARAMS ((rtx, rtx, void *));
698 static void cse_set_around_loop PARAMS ((rtx, rtx, rtx));
699 static rtx cse_basic_block PARAMS ((rtx, rtx, struct branch_path *, int));
700 static void count_reg_usage PARAMS ((rtx, int *, rtx, int));
701 extern void dump_class PARAMS ((struct table_elt*));
702 static struct cse_reg_info* get_cse_reg_info PARAMS ((int));
704 static void flush_hash_table PARAMS ((void));
706 /* Dump the expressions in the equivalence class indicated by CLASSP.
707 This function is used only for debugging. */
708 void
709 dump_class (classp)
710 struct table_elt *classp;
712 struct table_elt *elt;
714 fprintf (stderr, "Equivalence chain for ");
715 print_rtl (stderr, classp->exp);
716 fprintf (stderr, ": \n");
718 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
720 print_rtl (stderr, elt->exp);
721 fprintf (stderr, "\n");
725 /* Internal function, to compute cost when X is not a register; called
726 from COST macro to keep it simple. */
728 static int
729 notreg_cost (x)
730 rtx x;
732 return ((GET_CODE (x) == SUBREG
733 && GET_CODE (SUBREG_REG (x)) == REG
734 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
735 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
736 && (GET_MODE_SIZE (GET_MODE (x))
737 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
738 && subreg_lowpart_p (x)
739 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
740 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
741 ? (CHEAP_REG (SUBREG_REG (x)) ? 0
742 : (REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER ? 1
743 : 2))
744 : rtx_cost (x, SET) * 2);
747 /* Return the right cost to give to an operation
748 to make the cost of the corresponding register-to-register instruction
749 N times that of a fast register-to-register instruction. */
751 #define COSTS_N_INSNS(N) ((N) * 4 - 2)
753 /* Return an estimate of the cost of computing rtx X.
754 One use is in cse, to decide which expression to keep in the hash table.
755 Another is in rtl generation, to pick the cheapest way to multiply.
756 Other uses like the latter are expected in the future. */
759 rtx_cost (x, outer_code)
760 rtx x;
761 enum rtx_code outer_code ATTRIBUTE_UNUSED;
763 register int i, j;
764 register enum rtx_code code;
765 register const char *fmt;
766 register int total;
768 if (x == 0)
769 return 0;
771 /* Compute the default costs of certain things.
772 Note that RTX_COSTS can override the defaults. */
774 code = GET_CODE (x);
775 switch (code)
777 case MULT:
778 /* Count multiplication by 2**n as a shift,
779 because if we are considering it, we would output it as a shift. */
780 if (GET_CODE (XEXP (x, 1)) == CONST_INT
781 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
782 total = 2;
783 else
784 total = COSTS_N_INSNS (5);
785 break;
786 case DIV:
787 case UDIV:
788 case MOD:
789 case UMOD:
790 total = COSTS_N_INSNS (7);
791 break;
792 case USE:
793 /* Used in loop.c and combine.c as a marker. */
794 total = 0;
795 break;
796 case ASM_OPERANDS:
797 /* We don't want these to be used in substitutions because
798 we have no way of validating the resulting insn. So assign
799 anything containing an ASM_OPERANDS a very high cost. */
800 total = 1000;
801 break;
802 default:
803 total = 2;
806 switch (code)
808 case REG:
809 return ! CHEAP_REG (x);
811 case SUBREG:
812 /* If we can't tie these modes, make this expensive. The larger
813 the mode, the more expensive it is. */
814 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
815 return COSTS_N_INSNS (2
816 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
817 return 2;
818 #ifdef RTX_COSTS
819 RTX_COSTS (x, code, outer_code);
820 #endif
821 #ifdef CONST_COSTS
822 CONST_COSTS (x, code, outer_code);
823 #endif
825 default:
826 #ifdef DEFAULT_RTX_COSTS
827 DEFAULT_RTX_COSTS(x, code, outer_code);
828 #endif
829 break;
832 /* Sum the costs of the sub-rtx's, plus cost of this operation,
833 which is already in total. */
835 fmt = GET_RTX_FORMAT (code);
836 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
837 if (fmt[i] == 'e')
838 total += rtx_cost (XEXP (x, i), code);
839 else if (fmt[i] == 'E')
840 for (j = 0; j < XVECLEN (x, i); j++)
841 total += rtx_cost (XVECEXP (x, i, j), code);
843 return total;
846 static struct cse_reg_info *
847 get_cse_reg_info (regno)
848 int regno;
850 struct cse_reg_info **hash_head = &reg_hash[REGHASH_FN (regno)];
851 struct cse_reg_info *p;
853 for (p = *hash_head ; p != NULL; p = p->hash_next)
854 if (p->regno == regno)
855 break;
857 if (p == NULL)
859 /* Get a new cse_reg_info structure. */
860 if (cse_reg_info_free_list)
862 p = cse_reg_info_free_list;
863 cse_reg_info_free_list = p->next;
865 else
866 p = (struct cse_reg_info *) xmalloc (sizeof (struct cse_reg_info));
868 /* Insert into hash table. */
869 p->hash_next = *hash_head;
870 *hash_head = p;
872 /* Initialize it. */
873 p->reg_tick = 1;
874 p->reg_in_table = -1;
875 p->reg_qty = regno;
876 p->regno = regno;
877 p->next = cse_reg_info_used_list;
878 cse_reg_info_used_list = p;
879 if (!cse_reg_info_used_list_end)
880 cse_reg_info_used_list_end = p;
883 /* Cache this lookup; we tend to be looking up information about the
884 same register several times in a row. */
885 cached_regno = regno;
886 cached_cse_reg_info = p;
888 return p;
891 /* Clear the hash table and initialize each register with its own quantity,
892 for a new basic block. */
894 static void
895 new_basic_block ()
897 register int i;
899 next_qty = max_reg;
901 /* Clear out hash table state for this pass. */
903 bzero ((char *) reg_hash, sizeof reg_hash);
905 if (cse_reg_info_used_list)
907 cse_reg_info_used_list_end->next = cse_reg_info_free_list;
908 cse_reg_info_free_list = cse_reg_info_used_list;
909 cse_reg_info_used_list = cse_reg_info_used_list_end = 0;
911 cached_cse_reg_info = 0;
913 CLEAR_HARD_REG_SET (hard_regs_in_table);
915 /* The per-quantity values used to be initialized here, but it is
916 much faster to initialize each as it is made in `make_new_qty'. */
918 for (i = 0; i < HASH_SIZE; i++)
920 struct table_elt *first;
922 first = table[i];
923 if (first != NULL)
925 struct table_elt *last = first;
927 table[i] = NULL;
929 while (last->next_same_hash != NULL)
930 last = last->next_same_hash;
932 /* Now relink this hash entire chain into
933 the free element list. */
935 last->next_same_hash = free_element_chain;
936 free_element_chain = first;
940 prev_insn = 0;
942 #ifdef HAVE_cc0
943 prev_insn_cc0 = 0;
944 #endif
947 /* Say that register REG contains a quantity in mode MODE not in any
948 register before and initialize that quantity. */
950 static void
951 make_new_qty (reg, mode)
952 register int reg;
953 register enum machine_mode mode;
955 register int q;
956 register struct qty_table_elem *ent;
957 register struct reg_eqv_elem *eqv;
959 if (next_qty >= max_qty)
960 abort ();
962 q = REG_QTY (reg) = next_qty++;
963 ent = &qty_table[q];
964 ent->first_reg = reg;
965 ent->last_reg = reg;
966 ent->mode = mode;
967 ent->const_rtx = ent->const_insn = NULL_RTX;
968 ent->comparison_code = UNKNOWN;
970 eqv = &reg_eqv_table[reg];
971 eqv->next = eqv->prev = -1;
974 /* Make reg NEW equivalent to reg OLD.
975 OLD is not changing; NEW is. */
977 static void
978 make_regs_eqv (new, old)
979 register int new, old;
981 register int lastr, firstr;
982 register int q = REG_QTY (old);
983 register struct qty_table_elem *ent;
985 ent = &qty_table[q];
987 /* Nothing should become eqv until it has a "non-invalid" qty number. */
988 if (! REGNO_QTY_VALID_P (old))
989 abort ();
991 REG_QTY (new) = q;
992 firstr = ent->first_reg;
993 lastr = ent->last_reg;
995 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
996 hard regs. Among pseudos, if NEW will live longer than any other reg
997 of the same qty, and that is beyond the current basic block,
998 make it the new canonical replacement for this qty. */
999 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1000 /* Certain fixed registers might be of the class NO_REGS. This means
1001 that not only can they not be allocated by the compiler, but
1002 they cannot be used in substitutions or canonicalizations
1003 either. */
1004 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1005 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1006 || (new >= FIRST_PSEUDO_REGISTER
1007 && (firstr < FIRST_PSEUDO_REGISTER
1008 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1009 || (uid_cuid[REGNO_FIRST_UID (new)]
1010 < cse_basic_block_start))
1011 && (uid_cuid[REGNO_LAST_UID (new)]
1012 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
1014 reg_eqv_table[firstr].prev = new;
1015 reg_eqv_table[new].next = firstr;
1016 reg_eqv_table[new].prev = -1;
1017 ent->first_reg = new;
1019 else
1021 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1022 Otherwise, insert before any non-fixed hard regs that are at the
1023 end. Registers of class NO_REGS cannot be used as an
1024 equivalent for anything. */
1025 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
1026 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1027 && new >= FIRST_PSEUDO_REGISTER)
1028 lastr = reg_eqv_table[lastr].prev;
1029 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1030 if (reg_eqv_table[lastr].next >= 0)
1031 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
1032 else
1033 qty_table[q].last_reg = new;
1034 reg_eqv_table[lastr].next = new;
1035 reg_eqv_table[new].prev = lastr;
1039 /* Remove REG from its equivalence class. */
1041 static void
1042 delete_reg_equiv (reg)
1043 register int reg;
1045 register struct qty_table_elem *ent;
1046 register int q = REG_QTY (reg);
1047 register int p, n;
1049 /* If invalid, do nothing. */
1050 if (q == reg)
1051 return;
1053 ent = &qty_table[q];
1055 p = reg_eqv_table[reg].prev;
1056 n = reg_eqv_table[reg].next;
1058 if (n != -1)
1059 reg_eqv_table[n].prev = p;
1060 else
1061 ent->last_reg = p;
1062 if (p != -1)
1063 reg_eqv_table[p].next = n;
1064 else
1065 ent->first_reg = n;
1067 REG_QTY (reg) = reg;
1070 /* Remove any invalid expressions from the hash table
1071 that refer to any of the registers contained in expression X.
1073 Make sure that newly inserted references to those registers
1074 as subexpressions will be considered valid.
1076 mention_regs is not called when a register itself
1077 is being stored in the table.
1079 Return 1 if we have done something that may have changed the hash code
1080 of X. */
1082 static int
1083 mention_regs (x)
1084 rtx x;
1086 register enum rtx_code code;
1087 register int i, j;
1088 register const char *fmt;
1089 register int changed = 0;
1091 if (x == 0)
1092 return 0;
1094 code = GET_CODE (x);
1095 if (code == REG)
1097 register int regno = REGNO (x);
1098 register int endregno
1099 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1100 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
1101 int i;
1103 for (i = regno; i < endregno; i++)
1105 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1106 remove_invalid_refs (i);
1108 REG_IN_TABLE (i) = REG_TICK (i);
1111 return 0;
1114 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1115 pseudo if they don't use overlapping words. We handle only pseudos
1116 here for simplicity. */
1117 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1118 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1120 int i = REGNO (SUBREG_REG (x));
1122 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1124 /* If reg_tick has been incremented more than once since
1125 reg_in_table was last set, that means that the entire
1126 register has been set before, so discard anything memorized
1127 for the entrire register, including all SUBREG expressions. */
1128 if (REG_IN_TABLE (i) != REG_TICK (i) - 1)
1129 remove_invalid_refs (i);
1130 else
1131 remove_invalid_subreg_refs (i, SUBREG_WORD (x), GET_MODE (x));
1134 REG_IN_TABLE (i) = REG_TICK (i);
1135 return 0;
1138 /* If X is a comparison or a COMPARE and either operand is a register
1139 that does not have a quantity, give it one. This is so that a later
1140 call to record_jump_equiv won't cause X to be assigned a different
1141 hash code and not found in the table after that call.
1143 It is not necessary to do this here, since rehash_using_reg can
1144 fix up the table later, but doing this here eliminates the need to
1145 call that expensive function in the most common case where the only
1146 use of the register is in the comparison. */
1148 if (code == COMPARE || GET_RTX_CLASS (code) == '<')
1150 if (GET_CODE (XEXP (x, 0)) == REG
1151 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1152 if (insert_regs (XEXP (x, 0), NULL_PTR, 0))
1154 rehash_using_reg (XEXP (x, 0));
1155 changed = 1;
1158 if (GET_CODE (XEXP (x, 1)) == REG
1159 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1160 if (insert_regs (XEXP (x, 1), NULL_PTR, 0))
1162 rehash_using_reg (XEXP (x, 1));
1163 changed = 1;
1167 fmt = GET_RTX_FORMAT (code);
1168 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1169 if (fmt[i] == 'e')
1170 changed |= mention_regs (XEXP (x, i));
1171 else if (fmt[i] == 'E')
1172 for (j = 0; j < XVECLEN (x, i); j++)
1173 changed |= mention_regs (XVECEXP (x, i, j));
1175 return changed;
1178 /* Update the register quantities for inserting X into the hash table
1179 with a value equivalent to CLASSP.
1180 (If the class does not contain a REG, it is irrelevant.)
1181 If MODIFIED is nonzero, X is a destination; it is being modified.
1182 Note that delete_reg_equiv should be called on a register
1183 before insert_regs is done on that register with MODIFIED != 0.
1185 Nonzero value means that elements of reg_qty have changed
1186 so X's hash code may be different. */
1188 static int
1189 insert_regs (x, classp, modified)
1190 rtx x;
1191 struct table_elt *classp;
1192 int modified;
1194 if (GET_CODE (x) == REG)
1196 register int regno = REGNO (x);
1197 register int qty_valid;
1199 /* If REGNO is in the equivalence table already but is of the
1200 wrong mode for that equivalence, don't do anything here. */
1202 qty_valid = REGNO_QTY_VALID_P (regno);
1203 if (qty_valid)
1205 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1207 if (ent->mode != GET_MODE (x))
1208 return 0;
1211 if (modified || ! qty_valid)
1213 if (classp)
1214 for (classp = classp->first_same_value;
1215 classp != 0;
1216 classp = classp->next_same_value)
1217 if (GET_CODE (classp->exp) == REG
1218 && GET_MODE (classp->exp) == GET_MODE (x))
1220 make_regs_eqv (regno, REGNO (classp->exp));
1221 return 1;
1224 make_new_qty (regno, GET_MODE (x));
1225 return 1;
1228 return 0;
1231 /* If X is a SUBREG, we will likely be inserting the inner register in the
1232 table. If that register doesn't have an assigned quantity number at
1233 this point but does later, the insertion that we will be doing now will
1234 not be accessible because its hash code will have changed. So assign
1235 a quantity number now. */
1237 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1238 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1240 int regno = REGNO (SUBREG_REG (x));
1242 insert_regs (SUBREG_REG (x), NULL_PTR, 0);
1243 /* Mention_regs checks if REG_TICK is exactly one larger than
1244 REG_IN_TABLE to find out if there was only a single preceding
1245 invalidation - for the SUBREG - or another one, which would be
1246 for the full register. Since we don't invalidate the SUBREG
1247 here first, we might have to bump up REG_TICK so that mention_regs
1248 will do the right thing. */
1249 if (REG_IN_TABLE (regno) >= 0
1250 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1251 REG_TICK (regno)++;
1252 mention_regs (x);
1253 return 1;
1255 else
1256 return mention_regs (x);
1259 /* Look in or update the hash table. */
1261 /* Remove table element ELT from use in the table.
1262 HASH is its hash code, made using the HASH macro.
1263 It's an argument because often that is known in advance
1264 and we save much time not recomputing it. */
1266 static void
1267 remove_from_table (elt, hash)
1268 register struct table_elt *elt;
1269 unsigned hash;
1271 if (elt == 0)
1272 return;
1274 /* Mark this element as removed. See cse_insn. */
1275 elt->first_same_value = 0;
1277 /* Remove the table element from its equivalence class. */
1280 register struct table_elt *prev = elt->prev_same_value;
1281 register struct table_elt *next = elt->next_same_value;
1283 if (next) next->prev_same_value = prev;
1285 if (prev)
1286 prev->next_same_value = next;
1287 else
1289 register struct table_elt *newfirst = next;
1290 while (next)
1292 next->first_same_value = newfirst;
1293 next = next->next_same_value;
1298 /* Remove the table element from its hash bucket. */
1301 register struct table_elt *prev = elt->prev_same_hash;
1302 register struct table_elt *next = elt->next_same_hash;
1304 if (next) next->prev_same_hash = prev;
1306 if (prev)
1307 prev->next_same_hash = next;
1308 else if (table[hash] == elt)
1309 table[hash] = next;
1310 else
1312 /* This entry is not in the proper hash bucket. This can happen
1313 when two classes were merged by `merge_equiv_classes'. Search
1314 for the hash bucket that it heads. This happens only very
1315 rarely, so the cost is acceptable. */
1316 for (hash = 0; hash < HASH_SIZE; hash++)
1317 if (table[hash] == elt)
1318 table[hash] = next;
1322 /* Remove the table element from its related-value circular chain. */
1324 if (elt->related_value != 0 && elt->related_value != elt)
1326 register struct table_elt *p = elt->related_value;
1327 while (p->related_value != elt)
1328 p = p->related_value;
1329 p->related_value = elt->related_value;
1330 if (p->related_value == p)
1331 p->related_value = 0;
1334 /* Now add it to the free element chain. */
1335 elt->next_same_hash = free_element_chain;
1336 free_element_chain = elt;
1339 /* Look up X in the hash table and return its table element,
1340 or 0 if X is not in the table.
1342 MODE is the machine-mode of X, or if X is an integer constant
1343 with VOIDmode then MODE is the mode with which X will be used.
1345 Here we are satisfied to find an expression whose tree structure
1346 looks like X. */
1348 static struct table_elt *
1349 lookup (x, hash, mode)
1350 rtx x;
1351 unsigned hash;
1352 enum machine_mode mode;
1354 register struct table_elt *p;
1356 for (p = table[hash]; p; p = p->next_same_hash)
1357 if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
1358 || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
1359 return p;
1361 return 0;
1364 /* Like `lookup' but don't care whether the table element uses invalid regs.
1365 Also ignore discrepancies in the machine mode of a register. */
1367 static struct table_elt *
1368 lookup_for_remove (x, hash, mode)
1369 rtx x;
1370 unsigned hash;
1371 enum machine_mode mode;
1373 register struct table_elt *p;
1375 if (GET_CODE (x) == REG)
1377 int regno = REGNO (x);
1378 /* Don't check the machine mode when comparing registers;
1379 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1380 for (p = table[hash]; p; p = p->next_same_hash)
1381 if (GET_CODE (p->exp) == REG
1382 && REGNO (p->exp) == regno)
1383 return p;
1385 else
1387 for (p = table[hash]; p; p = p->next_same_hash)
1388 if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
1389 return p;
1392 return 0;
1395 /* Look for an expression equivalent to X and with code CODE.
1396 If one is found, return that expression. */
1398 static rtx
1399 lookup_as_function (x, code)
1400 rtx x;
1401 enum rtx_code code;
1403 register struct table_elt *p = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK,
1404 GET_MODE (x));
1405 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1406 long as we are narrowing. So if we looked in vain for a mode narrower
1407 than word_mode before, look for word_mode now. */
1408 if (p == 0 && code == CONST_INT
1409 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1411 x = copy_rtx (x);
1412 PUT_MODE (x, word_mode);
1413 p = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, word_mode);
1416 if (p == 0)
1417 return 0;
1419 for (p = p->first_same_value; p; p = p->next_same_value)
1421 if (GET_CODE (p->exp) == code
1422 /* Make sure this is a valid entry in the table. */
1423 && exp_equiv_p (p->exp, p->exp, 1, 0))
1424 return p->exp;
1427 return 0;
1430 /* Insert X in the hash table, assuming HASH is its hash code
1431 and CLASSP is an element of the class it should go in
1432 (or 0 if a new class should be made).
1433 It is inserted at the proper position to keep the class in
1434 the order cheapest first.
1436 MODE is the machine-mode of X, or if X is an integer constant
1437 with VOIDmode then MODE is the mode with which X will be used.
1439 For elements of equal cheapness, the most recent one
1440 goes in front, except that the first element in the list
1441 remains first unless a cheaper element is added. The order of
1442 pseudo-registers does not matter, as canon_reg will be called to
1443 find the cheapest when a register is retrieved from the table.
1445 The in_memory field in the hash table element is set to 0.
1446 The caller must set it nonzero if appropriate.
1448 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1449 and if insert_regs returns a nonzero value
1450 you must then recompute its hash code before calling here.
1452 If necessary, update table showing constant values of quantities. */
1454 #define CHEAPER(X,Y) ((X)->cost < (Y)->cost)
1456 static struct table_elt *
1457 insert (x, classp, hash, mode)
1458 register rtx x;
1459 register struct table_elt *classp;
1460 unsigned hash;
1461 enum machine_mode mode;
1463 register struct table_elt *elt;
1465 /* If X is a register and we haven't made a quantity for it,
1466 something is wrong. */
1467 if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
1468 abort ();
1470 /* If X is a hard register, show it is being put in the table. */
1471 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
1473 int regno = REGNO (x);
1474 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1475 int i;
1477 for (i = regno; i < endregno; i++)
1478 SET_HARD_REG_BIT (hard_regs_in_table, i);
1481 /* If X is a label, show we recorded it. */
1482 if (GET_CODE (x) == LABEL_REF
1483 || (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
1484 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF))
1485 recorded_label_ref = 1;
1487 /* Put an element for X into the right hash bucket. */
1489 elt = free_element_chain;
1490 if (elt)
1492 free_element_chain = elt->next_same_hash;
1494 else
1496 n_elements_made++;
1497 elt = (struct table_elt *) oballoc (sizeof (struct table_elt));
1500 elt->exp = x;
1501 elt->cost = COST (x);
1502 elt->next_same_value = 0;
1503 elt->prev_same_value = 0;
1504 elt->next_same_hash = table[hash];
1505 elt->prev_same_hash = 0;
1506 elt->related_value = 0;
1507 elt->in_memory = 0;
1508 elt->mode = mode;
1509 elt->is_const = (CONSTANT_P (x)
1510 /* GNU C++ takes advantage of this for `this'
1511 (and other const values). */
1512 || (RTX_UNCHANGING_P (x)
1513 && GET_CODE (x) == REG
1514 && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1515 || FIXED_BASE_PLUS_P (x));
1517 if (table[hash])
1518 table[hash]->prev_same_hash = elt;
1519 table[hash] = elt;
1521 /* Put it into the proper value-class. */
1522 if (classp)
1524 classp = classp->first_same_value;
1525 if (CHEAPER (elt, classp))
1526 /* Insert at the head of the class */
1528 register struct table_elt *p;
1529 elt->next_same_value = classp;
1530 classp->prev_same_value = elt;
1531 elt->first_same_value = elt;
1533 for (p = classp; p; p = p->next_same_value)
1534 p->first_same_value = elt;
1536 else
1538 /* Insert not at head of the class. */
1539 /* Put it after the last element cheaper than X. */
1540 register struct table_elt *p, *next;
1541 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1542 p = next);
1543 /* Put it after P and before NEXT. */
1544 elt->next_same_value = next;
1545 if (next)
1546 next->prev_same_value = elt;
1547 elt->prev_same_value = p;
1548 p->next_same_value = elt;
1549 elt->first_same_value = classp;
1552 else
1553 elt->first_same_value = elt;
1555 /* If this is a constant being set equivalent to a register or a register
1556 being set equivalent to a constant, note the constant equivalence.
1558 If this is a constant, it cannot be equivalent to a different constant,
1559 and a constant is the only thing that can be cheaper than a register. So
1560 we know the register is the head of the class (before the constant was
1561 inserted).
1563 If this is a register that is not already known equivalent to a
1564 constant, we must check the entire class.
1566 If this is a register that is already known equivalent to an insn,
1567 update the qtys `const_insn' to show that `this_insn' is the latest
1568 insn making that quantity equivalent to the constant. */
1570 if (elt->is_const && classp && GET_CODE (classp->exp) == REG
1571 && GET_CODE (x) != REG)
1573 int exp_q = REG_QTY (REGNO (classp->exp));
1574 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1576 exp_ent->const_rtx = gen_lowpart_if_possible (exp_ent->mode, x);
1577 exp_ent->const_insn = this_insn;
1580 else if (GET_CODE (x) == REG
1581 && classp
1582 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1583 && ! elt->is_const)
1585 register struct table_elt *p;
1587 for (p = classp; p != 0; p = p->next_same_value)
1589 if (p->is_const && GET_CODE (p->exp) != REG)
1591 int x_q = REG_QTY (REGNO (x));
1592 struct qty_table_elem *x_ent = &qty_table[x_q];
1594 x_ent->const_rtx = gen_lowpart_if_possible (GET_MODE (x), p->exp);
1595 x_ent->const_insn = this_insn;
1596 break;
1601 else if (GET_CODE (x) == REG
1602 && qty_table[REG_QTY (REGNO (x))].const_rtx
1603 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1604 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1606 /* If this is a constant with symbolic value,
1607 and it has a term with an explicit integer value,
1608 link it up with related expressions. */
1609 if (GET_CODE (x) == CONST)
1611 rtx subexp = get_related_value (x);
1612 unsigned subhash;
1613 struct table_elt *subelt, *subelt_prev;
1615 if (subexp != 0)
1617 /* Get the integer-free subexpression in the hash table. */
1618 subhash = safe_hash (subexp, mode) & HASH_MASK;
1619 subelt = lookup (subexp, subhash, mode);
1620 if (subelt == 0)
1621 subelt = insert (subexp, NULL_PTR, subhash, mode);
1622 /* Initialize SUBELT's circular chain if it has none. */
1623 if (subelt->related_value == 0)
1624 subelt->related_value = subelt;
1625 /* Find the element in the circular chain that precedes SUBELT. */
1626 subelt_prev = subelt;
1627 while (subelt_prev->related_value != subelt)
1628 subelt_prev = subelt_prev->related_value;
1629 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1630 This way the element that follows SUBELT is the oldest one. */
1631 elt->related_value = subelt_prev->related_value;
1632 subelt_prev->related_value = elt;
1636 return elt;
1639 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1640 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1641 the two classes equivalent.
1643 CLASS1 will be the surviving class; CLASS2 should not be used after this
1644 call.
1646 Any invalid entries in CLASS2 will not be copied. */
1648 static void
1649 merge_equiv_classes (class1, class2)
1650 struct table_elt *class1, *class2;
1652 struct table_elt *elt, *next, *new;
1654 /* Ensure we start with the head of the classes. */
1655 class1 = class1->first_same_value;
1656 class2 = class2->first_same_value;
1658 /* If they were already equal, forget it. */
1659 if (class1 == class2)
1660 return;
1662 for (elt = class2; elt; elt = next)
1664 unsigned hash;
1665 rtx exp = elt->exp;
1666 enum machine_mode mode = elt->mode;
1668 next = elt->next_same_value;
1670 /* Remove old entry, make a new one in CLASS1's class.
1671 Don't do this for invalid entries as we cannot find their
1672 hash code (it also isn't necessary). */
1673 if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
1675 hash_arg_in_memory = 0;
1676 hash = HASH (exp, mode);
1678 if (GET_CODE (exp) == REG)
1679 delete_reg_equiv (REGNO (exp));
1681 remove_from_table (elt, hash);
1683 if (insert_regs (exp, class1, 0))
1685 rehash_using_reg (exp);
1686 hash = HASH (exp, mode);
1688 new = insert (exp, class1, hash, mode);
1689 new->in_memory = hash_arg_in_memory;
1695 /* Flush the entire hash table. */
1697 static void
1698 flush_hash_table ()
1700 int i;
1701 struct table_elt *p;
1703 for (i = 0; i < HASH_SIZE; i++)
1704 for (p = table[i]; p; p = table[i])
1706 /* Note that invalidate can remove elements
1707 after P in the current hash chain. */
1708 if (GET_CODE (p->exp) == REG)
1709 invalidate (p->exp, p->mode);
1710 else
1711 remove_from_table (p, i);
1715 /* Remove from the hash table, or mark as invalid, all expressions whose
1716 values could be altered by storing in X. X is a register, a subreg, or
1717 a memory reference with nonvarying address (because, when a memory
1718 reference with a varying address is stored in, all memory references are
1719 removed by invalidate_memory so specific invalidation is superfluous).
1720 FULL_MODE, if not VOIDmode, indicates that this much should be
1721 invalidated instead of just the amount indicated by the mode of X. This
1722 is only used for bitfield stores into memory.
1724 A nonvarying address may be just a register or just a symbol reference,
1725 or it may be either of those plus a numeric offset. */
1727 static void
1728 invalidate (x, full_mode)
1729 rtx x;
1730 enum machine_mode full_mode;
1732 register int i;
1733 register struct table_elt *p;
1735 switch (GET_CODE (x))
1737 case REG:
1739 /* If X is a register, dependencies on its contents are recorded
1740 through the qty number mechanism. Just change the qty number of
1741 the register, mark it as invalid for expressions that refer to it,
1742 and remove it itself. */
1743 register int regno = REGNO (x);
1744 register unsigned hash = HASH (x, GET_MODE (x));
1746 /* Remove REGNO from any quantity list it might be on and indicate
1747 that its value might have changed. If it is a pseudo, remove its
1748 entry from the hash table.
1750 For a hard register, we do the first two actions above for any
1751 additional hard registers corresponding to X. Then, if any of these
1752 registers are in the table, we must remove any REG entries that
1753 overlap these registers. */
1755 delete_reg_equiv (regno);
1756 REG_TICK (regno)++;
1758 if (regno >= FIRST_PSEUDO_REGISTER)
1760 /* Because a register can be referenced in more than one mode,
1761 we might have to remove more than one table entry. */
1762 struct table_elt *elt;
1764 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1765 remove_from_table (elt, hash);
1767 else
1769 HOST_WIDE_INT in_table
1770 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1771 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1772 int tregno, tendregno;
1773 register struct table_elt *p, *next;
1775 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1777 for (i = regno + 1; i < endregno; i++)
1779 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, i);
1780 CLEAR_HARD_REG_BIT (hard_regs_in_table, i);
1781 delete_reg_equiv (i);
1782 REG_TICK (i)++;
1785 if (in_table)
1786 for (hash = 0; hash < HASH_SIZE; hash++)
1787 for (p = table[hash]; p; p = next)
1789 next = p->next_same_hash;
1791 if (GET_CODE (p->exp) != REG
1792 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1793 continue;
1795 tregno = REGNO (p->exp);
1796 tendregno
1797 = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
1798 if (tendregno > regno && tregno < endregno)
1799 remove_from_table (p, hash);
1803 return;
1805 case SUBREG:
1806 invalidate (SUBREG_REG (x), VOIDmode);
1807 return;
1809 case PARALLEL:
1810 for (i = XVECLEN (x, 0) - 1; i >= 0 ; --i)
1811 invalidate (XVECEXP (x, 0, i), VOIDmode);
1812 return;
1814 case EXPR_LIST:
1815 /* This is part of a disjoint return value; extract the location in
1816 question ignoring the offset. */
1817 invalidate (XEXP (x, 0), VOIDmode);
1818 return;
1820 case MEM:
1821 /* Remove all hash table elements that refer to overlapping pieces of
1822 memory. */
1823 if (full_mode == VOIDmode)
1824 full_mode = GET_MODE (x);
1826 for (i = 0; i < HASH_SIZE; i++)
1828 register struct table_elt *next;
1830 for (p = table[i]; p; p = next)
1832 next = p->next_same_hash;
1833 if (p->in_memory
1834 && (GET_CODE (p->exp) != MEM
1835 || true_dependence (x, full_mode, p->exp,
1836 cse_rtx_varies_p)))
1837 remove_from_table (p, i);
1840 return;
1842 default:
1843 abort ();
1847 /* Remove all expressions that refer to register REGNO,
1848 since they are already invalid, and we are about to
1849 mark that register valid again and don't want the old
1850 expressions to reappear as valid. */
1852 static void
1853 remove_invalid_refs (regno)
1854 int regno;
1856 register int i;
1857 register struct table_elt *p, *next;
1859 for (i = 0; i < HASH_SIZE; i++)
1860 for (p = table[i]; p; p = next)
1862 next = p->next_same_hash;
1863 if (GET_CODE (p->exp) != REG
1864 && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
1865 remove_from_table (p, i);
1869 /* Likewise for a subreg with subreg_reg WORD and mode MODE. */
1870 static void
1871 remove_invalid_subreg_refs (regno, word, mode)
1872 int regno;
1873 int word;
1874 enum machine_mode mode;
1876 register int i;
1877 register struct table_elt *p, *next;
1878 int end = word + (GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD;
1880 for (i = 0; i < HASH_SIZE; i++)
1881 for (p = table[i]; p; p = next)
1883 rtx exp;
1884 next = p->next_same_hash;
1886 exp = p->exp;
1887 if (GET_CODE (p->exp) != REG
1888 && (GET_CODE (exp) != SUBREG
1889 || GET_CODE (SUBREG_REG (exp)) != REG
1890 || REGNO (SUBREG_REG (exp)) != regno
1891 || (((SUBREG_WORD (exp)
1892 + (GET_MODE_SIZE (GET_MODE (exp)) - 1) / UNITS_PER_WORD)
1893 >= word)
1894 && SUBREG_WORD (exp) <= end))
1895 && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
1896 remove_from_table (p, i);
1900 /* Recompute the hash codes of any valid entries in the hash table that
1901 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1903 This is called when we make a jump equivalence. */
1905 static void
1906 rehash_using_reg (x)
1907 rtx x;
1909 unsigned int i;
1910 struct table_elt *p, *next;
1911 unsigned hash;
1913 if (GET_CODE (x) == SUBREG)
1914 x = SUBREG_REG (x);
1916 /* If X is not a register or if the register is known not to be in any
1917 valid entries in the table, we have no work to do. */
1919 if (GET_CODE (x) != REG
1920 || REG_IN_TABLE (REGNO (x)) < 0
1921 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1922 return;
1924 /* Scan all hash chains looking for valid entries that mention X.
1925 If we find one and it is in the wrong hash chain, move it. We can skip
1926 objects that are registers, since they are handled specially. */
1928 for (i = 0; i < HASH_SIZE; i++)
1929 for (p = table[i]; p; p = next)
1931 next = p->next_same_hash;
1932 if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
1933 && exp_equiv_p (p->exp, p->exp, 1, 0)
1934 && i != (hash = safe_hash (p->exp, p->mode) & HASH_MASK))
1936 if (p->next_same_hash)
1937 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1939 if (p->prev_same_hash)
1940 p->prev_same_hash->next_same_hash = p->next_same_hash;
1941 else
1942 table[i] = p->next_same_hash;
1944 p->next_same_hash = table[hash];
1945 p->prev_same_hash = 0;
1946 if (table[hash])
1947 table[hash]->prev_same_hash = p;
1948 table[hash] = p;
1953 /* Remove from the hash table any expression that is a call-clobbered
1954 register. Also update their TICK values. */
1956 static void
1957 invalidate_for_call ()
1959 int regno, endregno;
1960 int i;
1961 unsigned hash;
1962 struct table_elt *p, *next;
1963 int in_table = 0;
1965 /* Go through all the hard registers. For each that is clobbered in
1966 a CALL_INSN, remove the register from quantity chains and update
1967 reg_tick if defined. Also see if any of these registers is currently
1968 in the table. */
1970 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1971 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1973 delete_reg_equiv (regno);
1974 if (REG_TICK (regno) >= 0)
1975 REG_TICK (regno)++;
1977 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1980 /* In the case where we have no call-clobbered hard registers in the
1981 table, we are done. Otherwise, scan the table and remove any
1982 entry that overlaps a call-clobbered register. */
1984 if (in_table)
1985 for (hash = 0; hash < HASH_SIZE; hash++)
1986 for (p = table[hash]; p; p = next)
1988 next = p->next_same_hash;
1990 if (GET_CODE (p->exp) != REG
1991 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1992 continue;
1994 regno = REGNO (p->exp);
1995 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));
1997 for (i = regno; i < endregno; i++)
1998 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2000 remove_from_table (p, hash);
2001 break;
2006 /* Given an expression X of type CONST,
2007 and ELT which is its table entry (or 0 if it
2008 is not in the hash table),
2009 return an alternate expression for X as a register plus integer.
2010 If none can be found, return 0. */
2012 static rtx
2013 use_related_value (x, elt)
2014 rtx x;
2015 struct table_elt *elt;
2017 register struct table_elt *relt = 0;
2018 register struct table_elt *p, *q;
2019 HOST_WIDE_INT offset;
2021 /* First, is there anything related known?
2022 If we have a table element, we can tell from that.
2023 Otherwise, must look it up. */
2025 if (elt != 0 && elt->related_value != 0)
2026 relt = elt;
2027 else if (elt == 0 && GET_CODE (x) == CONST)
2029 rtx subexp = get_related_value (x);
2030 if (subexp != 0)
2031 relt = lookup (subexp,
2032 safe_hash (subexp, GET_MODE (subexp)) & HASH_MASK,
2033 GET_MODE (subexp));
2036 if (relt == 0)
2037 return 0;
2039 /* Search all related table entries for one that has an
2040 equivalent register. */
2042 p = relt;
2043 while (1)
2045 /* This loop is strange in that it is executed in two different cases.
2046 The first is when X is already in the table. Then it is searching
2047 the RELATED_VALUE list of X's class (RELT). The second case is when
2048 X is not in the table. Then RELT points to a class for the related
2049 value.
2051 Ensure that, whatever case we are in, that we ignore classes that have
2052 the same value as X. */
2054 if (rtx_equal_p (x, p->exp))
2055 q = 0;
2056 else
2057 for (q = p->first_same_value; q; q = q->next_same_value)
2058 if (GET_CODE (q->exp) == REG)
2059 break;
2061 if (q)
2062 break;
2064 p = p->related_value;
2066 /* We went all the way around, so there is nothing to be found.
2067 Alternatively, perhaps RELT was in the table for some other reason
2068 and it has no related values recorded. */
2069 if (p == relt || p == 0)
2070 break;
2073 if (q == 0)
2074 return 0;
2076 offset = (get_integer_term (x) - get_integer_term (p->exp));
2077 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2078 return plus_constant (q->exp, offset);
2081 /* Hash an rtx. We are careful to make sure the value is never negative.
2082 Equivalent registers hash identically.
2083 MODE is used in hashing for CONST_INTs only;
2084 otherwise the mode of X is used.
2086 Store 1 in do_not_record if any subexpression is volatile.
2088 Store 1 in hash_arg_in_memory if X contains a MEM rtx
2089 which does not have the RTX_UNCHANGING_P bit set.
2091 Note that cse_insn knows that the hash code of a MEM expression
2092 is just (int) MEM plus the hash code of the address. */
2094 static unsigned
2095 canon_hash (x, mode)
2096 rtx x;
2097 enum machine_mode mode;
2099 register int i, j;
2100 register unsigned hash = 0;
2101 register enum rtx_code code;
2102 register const char *fmt;
2104 /* repeat is used to turn tail-recursion into iteration. */
2105 repeat:
2106 if (x == 0)
2107 return hash;
2109 code = GET_CODE (x);
2110 switch (code)
2112 case REG:
2114 register int regno = REGNO (x);
2116 /* On some machines, we can't record any non-fixed hard register,
2117 because extending its life will cause reload problems. We
2118 consider ap, fp, and sp to be fixed for this purpose.
2120 We also consider CCmode registers to be fixed for this purpose;
2121 failure to do so leads to failure to simplify 0<100 type of
2122 conditionals.
2124 On all machines, we can't record any global registers. */
2126 if (regno < FIRST_PSEUDO_REGISTER
2127 && (global_regs[regno]
2128 || (SMALL_REGISTER_CLASSES
2129 && ! fixed_regs[regno]
2130 && regno != FRAME_POINTER_REGNUM
2131 && regno != HARD_FRAME_POINTER_REGNUM
2132 && regno != ARG_POINTER_REGNUM
2133 && regno != STACK_POINTER_REGNUM
2134 && GET_MODE_CLASS (GET_MODE (x)) != MODE_CC)))
2136 do_not_record = 1;
2137 return 0;
2139 hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
2140 return hash;
2143 /* We handle SUBREG of a REG specially because the underlying
2144 reg changes its hash value with every value change; we don't
2145 want to have to forget unrelated subregs when one subreg changes. */
2146 case SUBREG:
2148 if (GET_CODE (SUBREG_REG (x)) == REG)
2150 hash += (((unsigned) SUBREG << 7)
2151 + REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
2152 return hash;
2154 break;
2157 case CONST_INT:
2159 unsigned HOST_WIDE_INT tem = INTVAL (x);
2160 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
2161 return hash;
2164 case CONST_DOUBLE:
2165 /* This is like the general case, except that it only counts
2166 the integers representing the constant. */
2167 hash += (unsigned) code + (unsigned) GET_MODE (x);
2168 if (GET_MODE (x) != VOIDmode)
2169 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
2171 unsigned HOST_WIDE_INT tem = XWINT (x, i);
2172 hash += tem;
2174 else
2175 hash += ((unsigned) CONST_DOUBLE_LOW (x)
2176 + (unsigned) CONST_DOUBLE_HIGH (x));
2177 return hash;
2179 /* Assume there is only one rtx object for any given label. */
2180 case LABEL_REF:
2181 hash
2182 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
2183 return hash;
2185 case SYMBOL_REF:
2186 hash
2187 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
2188 return hash;
2190 case MEM:
2191 /* We don't record if marked volatile or if BLKmode since we don't
2192 know the size of the move. */
2193 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2195 do_not_record = 1;
2196 return 0;
2198 if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
2200 hash_arg_in_memory = 1;
2202 /* Now that we have already found this special case,
2203 might as well speed it up as much as possible. */
2204 hash += (unsigned) MEM;
2205 x = XEXP (x, 0);
2206 goto repeat;
2208 case PRE_DEC:
2209 case PRE_INC:
2210 case POST_DEC:
2211 case POST_INC:
2212 case PC:
2213 case CC0:
2214 case CALL:
2215 case UNSPEC_VOLATILE:
2216 do_not_record = 1;
2217 return 0;
2219 case ASM_OPERANDS:
2220 if (MEM_VOLATILE_P (x))
2222 do_not_record = 1;
2223 return 0;
2225 break;
2227 default:
2228 break;
2231 i = GET_RTX_LENGTH (code) - 1;
2232 hash += (unsigned) code + (unsigned) GET_MODE (x);
2233 fmt = GET_RTX_FORMAT (code);
2234 for (; i >= 0; i--)
2236 if (fmt[i] == 'e')
2238 rtx tem = XEXP (x, i);
2240 /* If we are about to do the last recursive call
2241 needed at this level, change it into iteration.
2242 This function is called enough to be worth it. */
2243 if (i == 0)
2245 x = tem;
2246 goto repeat;
2248 hash += canon_hash (tem, 0);
2250 else if (fmt[i] == 'E')
2251 for (j = 0; j < XVECLEN (x, i); j++)
2252 hash += canon_hash (XVECEXP (x, i, j), 0);
2253 else if (fmt[i] == 's')
2255 register const unsigned char *p =
2256 (const unsigned char *) XSTR (x, i);
2258 if (p)
2259 while (*p)
2260 hash += *p++;
2262 else if (fmt[i] == 'i')
2264 register unsigned tem = XINT (x, i);
2265 hash += tem;
2267 else if (fmt[i] == '0' || fmt[i] == 't')
2268 /* unused */;
2269 else
2270 abort ();
2272 return hash;
2275 /* Like canon_hash but with no side effects. */
2277 static unsigned
2278 safe_hash (x, mode)
2279 rtx x;
2280 enum machine_mode mode;
2282 int save_do_not_record = do_not_record;
2283 int save_hash_arg_in_memory = hash_arg_in_memory;
2284 unsigned hash = canon_hash (x, mode);
2285 hash_arg_in_memory = save_hash_arg_in_memory;
2286 do_not_record = save_do_not_record;
2287 return hash;
2290 /* Return 1 iff X and Y would canonicalize into the same thing,
2291 without actually constructing the canonicalization of either one.
2292 If VALIDATE is nonzero,
2293 we assume X is an expression being processed from the rtl
2294 and Y was found in the hash table. We check register refs
2295 in Y for being marked as valid.
2297 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
2298 that is known to be in the register. Ordinarily, we don't allow them
2299 to match, because letting them match would cause unpredictable results
2300 in all the places that search a hash table chain for an equivalent
2301 for a given value. A possible equivalent that has different structure
2302 has its hash code computed from different data. Whether the hash code
2303 is the same as that of the given value is pure luck. */
2305 static int
2306 exp_equiv_p (x, y, validate, equal_values)
2307 rtx x, y;
2308 int validate;
2309 int equal_values;
2311 register int i, j;
2312 register enum rtx_code code;
2313 register const char *fmt;
2315 /* Note: it is incorrect to assume an expression is equivalent to itself
2316 if VALIDATE is nonzero. */
2317 if (x == y && !validate)
2318 return 1;
2319 if (x == 0 || y == 0)
2320 return x == y;
2322 code = GET_CODE (x);
2323 if (code != GET_CODE (y))
2325 if (!equal_values)
2326 return 0;
2328 /* If X is a constant and Y is a register or vice versa, they may be
2329 equivalent. We only have to validate if Y is a register. */
2330 if (CONSTANT_P (x) && GET_CODE (y) == REG
2331 && REGNO_QTY_VALID_P (REGNO (y)))
2333 int y_q = REG_QTY (REGNO (y));
2334 struct qty_table_elem *y_ent = &qty_table[y_q];
2336 if (GET_MODE (y) == y_ent->mode
2337 && rtx_equal_p (x, y_ent->const_rtx)
2338 && (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
2339 return 1;
2342 if (CONSTANT_P (y) && code == REG
2343 && REGNO_QTY_VALID_P (REGNO (x)))
2345 int x_q = REG_QTY (REGNO (x));
2346 struct qty_table_elem *x_ent = &qty_table[x_q];
2348 if (GET_MODE (x) == x_ent->mode
2349 && rtx_equal_p (y, x_ent->const_rtx))
2350 return 1;
2353 return 0;
2356 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2357 if (GET_MODE (x) != GET_MODE (y))
2358 return 0;
2360 switch (code)
2362 case PC:
2363 case CC0:
2364 return x == y;
2366 case CONST_INT:
2367 return INTVAL (x) == INTVAL (y);
2369 case LABEL_REF:
2370 return XEXP (x, 0) == XEXP (y, 0);
2372 case SYMBOL_REF:
2373 return XSTR (x, 0) == XSTR (y, 0);
2375 case REG:
2377 int regno = REGNO (y);
2378 int endregno
2379 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2380 : HARD_REGNO_NREGS (regno, GET_MODE (y)));
2381 int i;
2383 /* If the quantities are not the same, the expressions are not
2384 equivalent. If there are and we are not to validate, they
2385 are equivalent. Otherwise, ensure all regs are up-to-date. */
2387 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2388 return 0;
2390 if (! validate)
2391 return 1;
2393 for (i = regno; i < endregno; i++)
2394 if (REG_IN_TABLE (i) != REG_TICK (i))
2395 return 0;
2397 return 1;
2400 /* For commutative operations, check both orders. */
2401 case PLUS:
2402 case MULT:
2403 case AND:
2404 case IOR:
2405 case XOR:
2406 case NE:
2407 case EQ:
2408 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
2409 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2410 validate, equal_values))
2411 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2412 validate, equal_values)
2413 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2414 validate, equal_values)));
2416 default:
2417 break;
2420 /* Compare the elements. If any pair of corresponding elements
2421 fail to match, return 0 for the whole things. */
2423 fmt = GET_RTX_FORMAT (code);
2424 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2426 switch (fmt[i])
2428 case 'e':
2429 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
2430 return 0;
2431 break;
2433 case 'E':
2434 if (XVECLEN (x, i) != XVECLEN (y, i))
2435 return 0;
2436 for (j = 0; j < XVECLEN (x, i); j++)
2437 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2438 validate, equal_values))
2439 return 0;
2440 break;
2442 case 's':
2443 if (strcmp (XSTR (x, i), XSTR (y, i)))
2444 return 0;
2445 break;
2447 case 'i':
2448 if (XINT (x, i) != XINT (y, i))
2449 return 0;
2450 break;
2452 case 'w':
2453 if (XWINT (x, i) != XWINT (y, i))
2454 return 0;
2455 break;
2457 case '0':
2458 case 't':
2459 break;
2461 default:
2462 abort ();
2466 return 1;
2469 /* Return 1 if X has a value that can vary even between two
2470 executions of the program. 0 means X can be compared reliably
2471 against certain constants or near-constants. */
2473 static int
2474 cse_rtx_varies_p (x)
2475 register rtx x;
2477 /* We need not check for X and the equivalence class being of the same
2478 mode because if X is equivalent to a constant in some mode, it
2479 doesn't vary in any mode. */
2481 if (GET_CODE (x) == REG
2482 && REGNO_QTY_VALID_P (REGNO (x)))
2484 int x_q = REG_QTY (REGNO (x));
2485 struct qty_table_elem *x_ent = &qty_table[x_q];
2487 if (GET_MODE (x) == x_ent->mode
2488 && x_ent->const_rtx != NULL_RTX)
2489 return 0;
2492 if (GET_CODE (x) == PLUS
2493 && GET_CODE (XEXP (x, 1)) == CONST_INT
2494 && GET_CODE (XEXP (x, 0)) == REG
2495 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2497 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2498 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2500 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2501 && x0_ent->const_rtx != NULL_RTX)
2502 return 0;
2505 /* This can happen as the result of virtual register instantiation, if
2506 the initial constant is too large to be a valid address. This gives
2507 us a three instruction sequence, load large offset into a register,
2508 load fp minus a constant into a register, then a MEM which is the
2509 sum of the two `constant' registers. */
2510 if (GET_CODE (x) == PLUS
2511 && GET_CODE (XEXP (x, 0)) == REG
2512 && GET_CODE (XEXP (x, 1)) == REG
2513 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2514 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2516 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2517 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2518 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2519 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2521 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2522 && x0_ent->const_rtx != NULL_RTX
2523 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2524 && x1_ent->const_rtx != NULL_RTX)
2525 return 0;
2528 return rtx_varies_p (x);
2531 /* Canonicalize an expression:
2532 replace each register reference inside it
2533 with the "oldest" equivalent register.
2535 If INSN is non-zero and we are replacing a pseudo with a hard register
2536 or vice versa, validate_change is used to ensure that INSN remains valid
2537 after we make our substitution. The calls are made with IN_GROUP non-zero
2538 so apply_change_group must be called upon the outermost return from this
2539 function (unless INSN is zero). The result of apply_change_group can
2540 generally be discarded since the changes we are making are optional. */
2542 static rtx
2543 canon_reg (x, insn)
2544 rtx x;
2545 rtx insn;
2547 register int i;
2548 register enum rtx_code code;
2549 register const char *fmt;
2551 if (x == 0)
2552 return x;
2554 code = GET_CODE (x);
2555 switch (code)
2557 case PC:
2558 case CC0:
2559 case CONST:
2560 case CONST_INT:
2561 case CONST_DOUBLE:
2562 case SYMBOL_REF:
2563 case LABEL_REF:
2564 case ADDR_VEC:
2565 case ADDR_DIFF_VEC:
2566 return x;
2568 case REG:
2570 register int first;
2571 register int q;
2572 register struct qty_table_elem *ent;
2574 /* Never replace a hard reg, because hard regs can appear
2575 in more than one machine mode, and we must preserve the mode
2576 of each occurrence. Also, some hard regs appear in
2577 MEMs that are shared and mustn't be altered. Don't try to
2578 replace any reg that maps to a reg of class NO_REGS. */
2579 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2580 || ! REGNO_QTY_VALID_P (REGNO (x)))
2581 return x;
2583 q = REG_QTY (REGNO(x));
2584 ent = &qty_table[q];
2585 first = ent->first_reg;
2586 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2587 : REGNO_REG_CLASS (first) == NO_REGS ? x
2588 : gen_rtx_REG (ent->mode, first));
2591 default:
2592 break;
2595 fmt = GET_RTX_FORMAT (code);
2596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2598 register int j;
2600 if (fmt[i] == 'e')
2602 rtx new = canon_reg (XEXP (x, i), insn);
2603 int insn_code;
2605 /* If replacing pseudo with hard reg or vice versa, ensure the
2606 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2607 if (insn != 0 && new != 0
2608 && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2609 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2610 != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2611 || (insn_code = recog_memoized (insn)) < 0
2612 || insn_data[insn_code].n_dups > 0))
2613 validate_change (insn, &XEXP (x, i), new, 1);
2614 else
2615 XEXP (x, i) = new;
2617 else if (fmt[i] == 'E')
2618 for (j = 0; j < XVECLEN (x, i); j++)
2619 XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
2622 return x;
2625 /* LOC is a location within INSN that is an operand address (the contents of
2626 a MEM). Find the best equivalent address to use that is valid for this
2627 insn.
2629 On most CISC machines, complicated address modes are costly, and rtx_cost
2630 is a good approximation for that cost. However, most RISC machines have
2631 only a few (usually only one) memory reference formats. If an address is
2632 valid at all, it is often just as cheap as any other address. Hence, for
2633 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2634 costs of various addresses. For two addresses of equal cost, choose the one
2635 with the highest `rtx_cost' value as that has the potential of eliminating
2636 the most insns. For equal costs, we choose the first in the equivalence
2637 class. Note that we ignore the fact that pseudo registers are cheaper
2638 than hard registers here because we would also prefer the pseudo registers.
2641 static void
2642 find_best_addr (insn, loc)
2643 rtx insn;
2644 rtx *loc;
2646 struct table_elt *elt;
2647 rtx addr = *loc;
2648 #ifdef ADDRESS_COST
2649 struct table_elt *p;
2650 int found_better = 1;
2651 #endif
2652 int save_do_not_record = do_not_record;
2653 int save_hash_arg_in_memory = hash_arg_in_memory;
2654 int addr_volatile;
2655 int regno;
2656 unsigned hash;
2658 /* Do not try to replace constant addresses or addresses of local and
2659 argument slots. These MEM expressions are made only once and inserted
2660 in many instructions, as well as being used to control symbol table
2661 output. It is not safe to clobber them.
2663 There are some uncommon cases where the address is already in a register
2664 for some reason, but we cannot take advantage of that because we have
2665 no easy way to unshare the MEM. In addition, looking up all stack
2666 addresses is costly. */
2667 if ((GET_CODE (addr) == PLUS
2668 && GET_CODE (XEXP (addr, 0)) == REG
2669 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2670 && (regno = REGNO (XEXP (addr, 0)),
2671 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2672 || regno == ARG_POINTER_REGNUM))
2673 || (GET_CODE (addr) == REG
2674 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2675 || regno == HARD_FRAME_POINTER_REGNUM
2676 || regno == ARG_POINTER_REGNUM))
2677 || GET_CODE (addr) == ADDRESSOF
2678 || CONSTANT_ADDRESS_P (addr))
2679 return;
2681 /* If this address is not simply a register, try to fold it. This will
2682 sometimes simplify the expression. Many simplifications
2683 will not be valid, but some, usually applying the associative rule, will
2684 be valid and produce better code. */
2685 if (GET_CODE (addr) != REG)
2687 rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);
2689 if (1
2690 #ifdef ADDRESS_COST
2691 && (CSE_ADDRESS_COST (folded) < CSE_ADDRESS_COST (addr)
2692 || (CSE_ADDRESS_COST (folded) == CSE_ADDRESS_COST (addr)
2693 && rtx_cost (folded, MEM) > rtx_cost (addr, MEM)))
2694 #else
2695 && rtx_cost (folded, MEM) < rtx_cost (addr, MEM)
2696 #endif
2697 && validate_change (insn, loc, folded, 0))
2698 addr = folded;
2701 /* If this address is not in the hash table, we can't look for equivalences
2702 of the whole address. Also, ignore if volatile. */
2704 do_not_record = 0;
2705 hash = HASH (addr, Pmode);
2706 addr_volatile = do_not_record;
2707 do_not_record = save_do_not_record;
2708 hash_arg_in_memory = save_hash_arg_in_memory;
2710 if (addr_volatile)
2711 return;
2713 elt = lookup (addr, hash, Pmode);
2715 #ifndef ADDRESS_COST
2716 if (elt)
2718 int our_cost = elt->cost;
2720 /* Find the lowest cost below ours that works. */
2721 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
2722 if (elt->cost < our_cost
2723 && (GET_CODE (elt->exp) == REG
2724 || exp_equiv_p (elt->exp, elt->exp, 1, 0))
2725 && validate_change (insn, loc,
2726 canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
2727 return;
2729 #else
2731 if (elt)
2733 /* We need to find the best (under the criteria documented above) entry
2734 in the class that is valid. We use the `flag' field to indicate
2735 choices that were invalid and iterate until we can't find a better
2736 one that hasn't already been tried. */
2738 for (p = elt->first_same_value; p; p = p->next_same_value)
2739 p->flag = 0;
2741 while (found_better)
2743 int best_addr_cost = CSE_ADDRESS_COST (*loc);
2744 int best_rtx_cost = (elt->cost + 1) >> 1;
2745 struct table_elt *best_elt = elt;
2747 found_better = 0;
2748 for (p = elt->first_same_value; p; p = p->next_same_value)
2749 if (! p->flag)
2751 if ((GET_CODE (p->exp) == REG
2752 || exp_equiv_p (p->exp, p->exp, 1, 0))
2753 && (CSE_ADDRESS_COST (p->exp) < best_addr_cost
2754 || (CSE_ADDRESS_COST (p->exp) == best_addr_cost
2755 && (p->cost + 1) >> 1 > best_rtx_cost)))
2757 found_better = 1;
2758 best_addr_cost = CSE_ADDRESS_COST (p->exp);
2759 best_rtx_cost = (p->cost + 1) >> 1;
2760 best_elt = p;
2764 if (found_better)
2766 if (validate_change (insn, loc,
2767 canon_reg (copy_rtx (best_elt->exp),
2768 NULL_RTX), 0))
2769 return;
2770 else
2771 best_elt->flag = 1;
2776 /* If the address is a binary operation with the first operand a register
2777 and the second a constant, do the same as above, but looking for
2778 equivalences of the register. Then try to simplify before checking for
2779 the best address to use. This catches a few cases: First is when we
2780 have REG+const and the register is another REG+const. We can often merge
2781 the constants and eliminate one insn and one register. It may also be
2782 that a machine has a cheap REG+REG+const. Finally, this improves the
2783 code on the Alpha for unaligned byte stores. */
2785 if (flag_expensive_optimizations
2786 && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
2787 || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
2788 && GET_CODE (XEXP (*loc, 0)) == REG
2789 && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
2791 rtx c = XEXP (*loc, 1);
2793 do_not_record = 0;
2794 hash = HASH (XEXP (*loc, 0), Pmode);
2795 do_not_record = save_do_not_record;
2796 hash_arg_in_memory = save_hash_arg_in_memory;
2798 elt = lookup (XEXP (*loc, 0), hash, Pmode);
2799 if (elt == 0)
2800 return;
2802 /* We need to find the best (under the criteria documented above) entry
2803 in the class that is valid. We use the `flag' field to indicate
2804 choices that were invalid and iterate until we can't find a better
2805 one that hasn't already been tried. */
2807 for (p = elt->first_same_value; p; p = p->next_same_value)
2808 p->flag = 0;
2810 while (found_better)
2812 int best_addr_cost = CSE_ADDRESS_COST (*loc);
2813 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2814 struct table_elt *best_elt = elt;
2815 rtx best_rtx = *loc;
2816 int count;
2818 /* This is at worst case an O(n^2) algorithm, so limit our search
2819 to the first 32 elements on the list. This avoids trouble
2820 compiling code with very long basic blocks that can easily
2821 call simplify_gen_binary so many times that we run out of
2822 memory. */
2824 found_better = 0;
2825 for (p = elt->first_same_value, count = 0;
2826 p && count < 32;
2827 p = p->next_same_value, count++)
2828 if (! p->flag
2829 && (GET_CODE (p->exp) == REG
2830 || exp_equiv_p (p->exp, p->exp, 1, 0)))
2832 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
2833 p->exp, c);
2835 if ((CSE_ADDRESS_COST (new) < best_addr_cost
2836 || (CSE_ADDRESS_COST (new) == best_addr_cost
2837 && (COST (new) + 1) >> 1 > best_rtx_cost)))
2839 found_better = 1;
2840 best_addr_cost = CSE_ADDRESS_COST (new);
2841 best_rtx_cost = (COST (new) + 1) >> 1;
2842 best_elt = p;
2843 best_rtx = new;
2847 if (found_better)
2849 if (validate_change (insn, loc,
2850 canon_reg (copy_rtx (best_rtx),
2851 NULL_RTX), 0))
2852 return;
2853 else
2854 best_elt->flag = 1;
2858 #endif
2861 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2862 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2863 what values are being compared.
2865 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2866 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2867 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2868 compared to produce cc0.
2870 The return value is the comparison operator and is either the code of
2871 A or the code corresponding to the inverse of the comparison. */
2873 static enum rtx_code
2874 find_comparison_args (code, parg1, parg2, pmode1, pmode2)
2875 enum rtx_code code;
2876 rtx *parg1, *parg2;
2877 enum machine_mode *pmode1, *pmode2;
2879 rtx arg1, arg2;
2881 arg1 = *parg1, arg2 = *parg2;
2883 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2885 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2887 /* Set non-zero when we find something of interest. */
2888 rtx x = 0;
2889 int reverse_code = 0;
2890 struct table_elt *p = 0;
2892 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2893 On machines with CC0, this is the only case that can occur, since
2894 fold_rtx will return the COMPARE or item being compared with zero
2895 when given CC0. */
2897 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2898 x = arg1;
2900 /* If ARG1 is a comparison operator and CODE is testing for
2901 STORE_FLAG_VALUE, get the inner arguments. */
2903 else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
2905 if (code == NE
2906 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2907 && code == LT && STORE_FLAG_VALUE == -1)
2908 #ifdef FLOAT_STORE_FLAG_VALUE
2909 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
2910 && (REAL_VALUE_NEGATIVE
2911 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
2912 #endif
2914 x = arg1;
2915 else if (code == EQ
2916 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2917 && code == GE && STORE_FLAG_VALUE == -1)
2918 #ifdef FLOAT_STORE_FLAG_VALUE
2919 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
2920 && (REAL_VALUE_NEGATIVE
2921 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
2922 #endif
2924 x = arg1, reverse_code = 1;
2927 /* ??? We could also check for
2929 (ne (and (eq (...) (const_int 1))) (const_int 0))
2931 and related forms, but let's wait until we see them occurring. */
2933 if (x == 0)
2934 /* Look up ARG1 in the hash table and see if it has an equivalence
2935 that lets us see what is being compared. */
2936 p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) & HASH_MASK,
2937 GET_MODE (arg1));
2938 if (p) p = p->first_same_value;
2940 for (; p; p = p->next_same_value)
2942 enum machine_mode inner_mode = GET_MODE (p->exp);
2944 /* If the entry isn't valid, skip it. */
2945 if (! exp_equiv_p (p->exp, p->exp, 1, 0))
2946 continue;
2948 if (GET_CODE (p->exp) == COMPARE
2949 /* Another possibility is that this machine has a compare insn
2950 that includes the comparison code. In that case, ARG1 would
2951 be equivalent to a comparison operation that would set ARG1 to
2952 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2953 ORIG_CODE is the actual comparison being done; if it is an EQ,
2954 we must reverse ORIG_CODE. On machine with a negative value
2955 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2956 || ((code == NE
2957 || (code == LT
2958 && GET_MODE_CLASS (inner_mode) == MODE_INT
2959 && (GET_MODE_BITSIZE (inner_mode)
2960 <= HOST_BITS_PER_WIDE_INT)
2961 && (STORE_FLAG_VALUE
2962 & ((HOST_WIDE_INT) 1
2963 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2964 #ifdef FLOAT_STORE_FLAG_VALUE
2965 || (code == LT
2966 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
2967 && (REAL_VALUE_NEGATIVE
2968 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
2969 #endif
2971 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
2973 x = p->exp;
2974 break;
2976 else if ((code == EQ
2977 || (code == GE
2978 && GET_MODE_CLASS (inner_mode) == MODE_INT
2979 && (GET_MODE_BITSIZE (inner_mode)
2980 <= HOST_BITS_PER_WIDE_INT)
2981 && (STORE_FLAG_VALUE
2982 & ((HOST_WIDE_INT) 1
2983 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2984 #ifdef FLOAT_STORE_FLAG_VALUE
2985 || (code == GE
2986 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
2987 && (REAL_VALUE_NEGATIVE
2988 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
2989 #endif
2991 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
2993 reverse_code = 1;
2994 x = p->exp;
2995 break;
2998 /* If this is fp + constant, the equivalent is a better operand since
2999 it may let us predict the value of the comparison. */
3000 else if (NONZERO_BASE_PLUS_P (p->exp))
3002 arg1 = p->exp;
3003 continue;
3007 /* If we didn't find a useful equivalence for ARG1, we are done.
3008 Otherwise, set up for the next iteration. */
3009 if (x == 0)
3010 break;
3012 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3013 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3014 code = GET_CODE (x);
3016 if (reverse_code)
3017 code = reverse_condition (code);
3020 /* Return our results. Return the modes from before fold_rtx
3021 because fold_rtx might produce const_int, and then it's too late. */
3022 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3023 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3025 return code;
3028 /* If X is a nontrivial arithmetic operation on an argument
3029 for which a constant value can be determined, return
3030 the result of operating on that value, as a constant.
3031 Otherwise, return X, possibly with one or more operands
3032 modified by recursive calls to this function.
3034 If X is a register whose contents are known, we do NOT
3035 return those contents here. equiv_constant is called to
3036 perform that task.
3038 INSN is the insn that we may be modifying. If it is 0, make a copy
3039 of X before modifying it. */
3041 static rtx
3042 fold_rtx (x, insn)
3043 rtx x;
3044 rtx insn;
3046 register enum rtx_code code;
3047 register enum machine_mode mode;
3048 register const char *fmt;
3049 register int i;
3050 rtx new = 0;
3051 int copied = 0;
3052 int must_swap = 0;
3054 /* Folded equivalents of first two operands of X. */
3055 rtx folded_arg0;
3056 rtx folded_arg1;
3058 /* Constant equivalents of first three operands of X;
3059 0 when no such equivalent is known. */
3060 rtx const_arg0;
3061 rtx const_arg1;
3062 rtx const_arg2;
3064 /* The mode of the first operand of X. We need this for sign and zero
3065 extends. */
3066 enum machine_mode mode_arg0;
3068 if (x == 0)
3069 return x;
3071 mode = GET_MODE (x);
3072 code = GET_CODE (x);
3073 switch (code)
3075 case CONST:
3076 case CONST_INT:
3077 case CONST_DOUBLE:
3078 case SYMBOL_REF:
3079 case LABEL_REF:
3080 case REG:
3081 /* No use simplifying an EXPR_LIST
3082 since they are used only for lists of args
3083 in a function call's REG_EQUAL note. */
3084 case EXPR_LIST:
3085 /* Changing anything inside an ADDRESSOF is incorrect; we don't
3086 want to (e.g.,) make (addressof (const_int 0)) just because
3087 the location is known to be zero. */
3088 case ADDRESSOF:
3089 return x;
3091 #ifdef HAVE_cc0
3092 case CC0:
3093 return prev_insn_cc0;
3094 #endif
3096 case PC:
3097 /* If the next insn is a CODE_LABEL followed by a jump table,
3098 PC's value is a LABEL_REF pointing to that label. That
3099 lets us fold switch statements on the Vax. */
3100 if (insn && GET_CODE (insn) == JUMP_INSN)
3102 rtx next = next_nonnote_insn (insn);
3104 if (next && GET_CODE (next) == CODE_LABEL
3105 && NEXT_INSN (next) != 0
3106 && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
3107 && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
3108 || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
3109 return gen_rtx_LABEL_REF (Pmode, next);
3111 break;
3113 case SUBREG:
3114 /* See if we previously assigned a constant value to this SUBREG. */
3115 if ((new = lookup_as_function (x, CONST_INT)) != 0
3116 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3117 return new;
3119 /* If this is a paradoxical SUBREG, we have no idea what value the
3120 extra bits would have. However, if the operand is equivalent
3121 to a SUBREG whose operand is the same as our mode, and all the
3122 modes are within a word, we can just use the inner operand
3123 because these SUBREGs just say how to treat the register.
3125 Similarly if we find an integer constant. */
3127 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3129 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3130 struct table_elt *elt;
3132 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3133 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3134 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3135 imode)) != 0)
3136 for (elt = elt->first_same_value;
3137 elt; elt = elt->next_same_value)
3139 if (CONSTANT_P (elt->exp)
3140 && GET_MODE (elt->exp) == VOIDmode)
3141 return elt->exp;
3143 if (GET_CODE (elt->exp) == SUBREG
3144 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3145 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3146 return copy_rtx (SUBREG_REG (elt->exp));
3149 return x;
3152 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3153 We might be able to if the SUBREG is extracting a single word in an
3154 integral mode or extracting the low part. */
3156 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3157 const_arg0 = equiv_constant (folded_arg0);
3158 if (const_arg0)
3159 folded_arg0 = const_arg0;
3161 if (folded_arg0 != SUBREG_REG (x))
3163 new = 0;
3165 if (GET_MODE_CLASS (mode) == MODE_INT
3166 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3167 && GET_MODE (SUBREG_REG (x)) != VOIDmode)
3168 new = operand_subword (folded_arg0, SUBREG_WORD (x), 0,
3169 GET_MODE (SUBREG_REG (x)));
3170 if (new == 0 && subreg_lowpart_p (x))
3171 new = gen_lowpart_if_possible (mode, folded_arg0);
3172 if (new)
3173 return new;
3176 /* If this is a narrowing SUBREG and our operand is a REG, see if
3177 we can find an equivalence for REG that is an arithmetic operation
3178 in a wider mode where both operands are paradoxical SUBREGs
3179 from objects of our result mode. In that case, we couldn't report
3180 an equivalent value for that operation, since we don't know what the
3181 extra bits will be. But we can find an equivalence for this SUBREG
3182 by folding that operation is the narrow mode. This allows us to
3183 fold arithmetic in narrow modes when the machine only supports
3184 word-sized arithmetic.
3186 Also look for a case where we have a SUBREG whose operand is the
3187 same as our result. If both modes are smaller than a word, we
3188 are simply interpreting a register in different modes and we
3189 can use the inner value. */
3191 if (GET_CODE (folded_arg0) == REG
3192 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
3193 && subreg_lowpart_p (x))
3195 struct table_elt *elt;
3197 /* We can use HASH here since we know that canon_hash won't be
3198 called. */
3199 elt = lookup (folded_arg0,
3200 HASH (folded_arg0, GET_MODE (folded_arg0)),
3201 GET_MODE (folded_arg0));
3203 if (elt)
3204 elt = elt->first_same_value;
3206 for (; elt; elt = elt->next_same_value)
3208 enum rtx_code eltcode = GET_CODE (elt->exp);
3210 /* Just check for unary and binary operations. */
3211 if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
3212 && GET_CODE (elt->exp) != SIGN_EXTEND
3213 && GET_CODE (elt->exp) != ZERO_EXTEND
3214 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3215 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode)
3217 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3219 if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3220 op0 = fold_rtx (op0, NULL_RTX);
3222 op0 = equiv_constant (op0);
3223 if (op0)
3224 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3225 op0, mode);
3227 else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
3228 || GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
3229 && eltcode != DIV && eltcode != MOD
3230 && eltcode != UDIV && eltcode != UMOD
3231 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3232 && eltcode != ROTATE && eltcode != ROTATERT
3233 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3234 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3235 == mode))
3236 || CONSTANT_P (XEXP (elt->exp, 0)))
3237 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3238 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3239 == mode))
3240 || CONSTANT_P (XEXP (elt->exp, 1))))
3242 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3243 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3245 if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3246 op0 = fold_rtx (op0, NULL_RTX);
3248 if (op0)
3249 op0 = equiv_constant (op0);
3251 if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
3252 op1 = fold_rtx (op1, NULL_RTX);
3254 if (op1)
3255 op1 = equiv_constant (op1);
3257 /* If we are looking for the low SImode part of
3258 (ashift:DI c (const_int 32)), it doesn't work
3259 to compute that in SImode, because a 32-bit shift
3260 in SImode is unpredictable. We know the value is 0. */
3261 if (op0 && op1
3262 && GET_CODE (elt->exp) == ASHIFT
3263 && GET_CODE (op1) == CONST_INT
3264 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3266 if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3268 /* If the count fits in the inner mode's width,
3269 but exceeds the outer mode's width,
3270 the value will get truncated to 0
3271 by the subreg. */
3272 new = const0_rtx;
3273 else
3274 /* If the count exceeds even the inner mode's width,
3275 don't fold this expression. */
3276 new = 0;
3278 else if (op0 && op1)
3279 new = simplify_binary_operation (GET_CODE (elt->exp), mode,
3280 op0, op1);
3283 else if (GET_CODE (elt->exp) == SUBREG
3284 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3285 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3286 <= UNITS_PER_WORD)
3287 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3288 new = copy_rtx (SUBREG_REG (elt->exp));
3290 if (new)
3291 return new;
3295 return x;
3297 case NOT:
3298 case NEG:
3299 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3300 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3301 new = lookup_as_function (XEXP (x, 0), code);
3302 if (new)
3303 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3304 break;
3306 case MEM:
3307 /* If we are not actually processing an insn, don't try to find the
3308 best address. Not only don't we care, but we could modify the
3309 MEM in an invalid way since we have no insn to validate against. */
3310 if (insn != 0)
3311 find_best_addr (insn, &XEXP (x, 0));
3314 /* Even if we don't fold in the insn itself,
3315 we can safely do so here, in hopes of getting a constant. */
3316 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3317 rtx base = 0;
3318 HOST_WIDE_INT offset = 0;
3320 if (GET_CODE (addr) == REG
3321 && REGNO_QTY_VALID_P (REGNO (addr)))
3323 int addr_q = REG_QTY (REGNO (addr));
3324 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3326 if (GET_MODE (addr) == addr_ent->mode
3327 && addr_ent->const_rtx != NULL_RTX)
3328 addr = addr_ent->const_rtx;
3331 /* If address is constant, split it into a base and integer offset. */
3332 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3333 base = addr;
3334 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3335 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3337 base = XEXP (XEXP (addr, 0), 0);
3338 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3340 else if (GET_CODE (addr) == LO_SUM
3341 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3342 base = XEXP (addr, 1);
3343 else if (GET_CODE (addr) == ADDRESSOF)
3344 return change_address (x, VOIDmode, addr);
3346 /* If this is a constant pool reference, we can fold it into its
3347 constant to allow better value tracking. */
3348 if (base && GET_CODE (base) == SYMBOL_REF
3349 && CONSTANT_POOL_ADDRESS_P (base))
3351 rtx constant = get_pool_constant (base);
3352 enum machine_mode const_mode = get_pool_mode (base);
3353 rtx new;
3355 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3356 constant_pool_entries_cost = COST (constant);
3358 /* If we are loading the full constant, we have an equivalence. */
3359 if (offset == 0 && mode == const_mode)
3360 return constant;
3362 /* If this actually isn't a constant (weird!), we can't do
3363 anything. Otherwise, handle the two most common cases:
3364 extracting a word from a multi-word constant, and extracting
3365 the low-order bits. Other cases don't seem common enough to
3366 worry about. */
3367 if (! CONSTANT_P (constant))
3368 return x;
3370 if (GET_MODE_CLASS (mode) == MODE_INT
3371 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3372 && offset % UNITS_PER_WORD == 0
3373 && (new = operand_subword (constant,
3374 offset / UNITS_PER_WORD,
3375 0, const_mode)) != 0)
3376 return new;
3378 if (((BYTES_BIG_ENDIAN
3379 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3380 || (! BYTES_BIG_ENDIAN && offset == 0))
3381 && (new = gen_lowpart_if_possible (mode, constant)) != 0)
3382 return new;
3385 /* If this is a reference to a label at a known position in a jump
3386 table, we also know its value. */
3387 if (base && GET_CODE (base) == LABEL_REF)
3389 rtx label = XEXP (base, 0);
3390 rtx table_insn = NEXT_INSN (label);
3392 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
3393 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3395 rtx table = PATTERN (table_insn);
3397 if (offset >= 0
3398 && (offset / GET_MODE_SIZE (GET_MODE (table))
3399 < XVECLEN (table, 0)))
3400 return XVECEXP (table, 0,
3401 offset / GET_MODE_SIZE (GET_MODE (table)));
3403 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
3404 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3406 rtx table = PATTERN (table_insn);
3408 if (offset >= 0
3409 && (offset / GET_MODE_SIZE (GET_MODE (table))
3410 < XVECLEN (table, 1)))
3412 offset /= GET_MODE_SIZE (GET_MODE (table));
3413 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3414 XEXP (table, 0));
3416 if (GET_MODE (table) != Pmode)
3417 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3419 /* Indicate this is a constant. This isn't a
3420 valid form of CONST, but it will only be used
3421 to fold the next insns and then discarded, so
3422 it should be safe.
3424 Note this expression must be explicitly discarded,
3425 by cse_insn, else it may end up in a REG_EQUAL note
3426 and "escape" to cause problems elsewhere. */
3427 return gen_rtx_CONST (GET_MODE (new), new);
3432 return x;
3435 case ASM_OPERANDS:
3436 for (i = XVECLEN (x, 3) - 1; i >= 0; i--)
3437 validate_change (insn, &XVECEXP (x, 3, i),
3438 fold_rtx (XVECEXP (x, 3, i), insn), 0);
3439 break;
3441 default:
3442 break;
3445 const_arg0 = 0;
3446 const_arg1 = 0;
3447 const_arg2 = 0;
3448 mode_arg0 = VOIDmode;
3450 /* Try folding our operands.
3451 Then see which ones have constant values known. */
3453 fmt = GET_RTX_FORMAT (code);
3454 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3455 if (fmt[i] == 'e')
3457 rtx arg = XEXP (x, i);
3458 rtx folded_arg = arg, const_arg = 0;
3459 enum machine_mode mode_arg = GET_MODE (arg);
3460 rtx cheap_arg, expensive_arg;
3461 rtx replacements[2];
3462 int j;
3464 /* Most arguments are cheap, so handle them specially. */
3465 switch (GET_CODE (arg))
3467 case REG:
3468 /* This is the same as calling equiv_constant; it is duplicated
3469 here for speed. */
3470 if (REGNO_QTY_VALID_P (REGNO (arg)))
3472 int arg_q = REG_QTY (REGNO (arg));
3473 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3475 if (arg_ent->const_rtx != NULL_RTX
3476 && GET_CODE (arg_ent->const_rtx) != REG
3477 && GET_CODE (arg_ent->const_rtx) != PLUS)
3478 const_arg
3479 = gen_lowpart_if_possible (GET_MODE (arg),
3480 arg_ent->const_rtx);
3482 break;
3484 case CONST:
3485 case CONST_INT:
3486 case SYMBOL_REF:
3487 case LABEL_REF:
3488 case CONST_DOUBLE:
3489 const_arg = arg;
3490 break;
3492 #ifdef HAVE_cc0
3493 case CC0:
3494 folded_arg = prev_insn_cc0;
3495 mode_arg = prev_insn_cc0_mode;
3496 const_arg = equiv_constant (folded_arg);
3497 break;
3498 #endif
3500 default:
3501 folded_arg = fold_rtx (arg, insn);
3502 const_arg = equiv_constant (folded_arg);
3505 /* For the first three operands, see if the operand
3506 is constant or equivalent to a constant. */
3507 switch (i)
3509 case 0:
3510 folded_arg0 = folded_arg;
3511 const_arg0 = const_arg;
3512 mode_arg0 = mode_arg;
3513 break;
3514 case 1:
3515 folded_arg1 = folded_arg;
3516 const_arg1 = const_arg;
3517 break;
3518 case 2:
3519 const_arg2 = const_arg;
3520 break;
3523 /* Pick the least expensive of the folded argument and an
3524 equivalent constant argument. */
3525 if (const_arg == 0 || const_arg == folded_arg
3526 || COST (const_arg) > COST (folded_arg))
3527 cheap_arg = folded_arg, expensive_arg = const_arg;
3528 else
3529 cheap_arg = const_arg, expensive_arg = folded_arg;
3531 /* Try to replace the operand with the cheapest of the two
3532 possibilities. If it doesn't work and this is either of the first
3533 two operands of a commutative operation, try swapping them.
3534 If THAT fails, try the more expensive, provided it is cheaper
3535 than what is already there. */
3537 if (cheap_arg == XEXP (x, i))
3538 continue;
3540 if (insn == 0 && ! copied)
3542 x = copy_rtx (x);
3543 copied = 1;
3546 replacements[0] = cheap_arg, replacements[1] = expensive_arg;
3547 for (j = 0;
3548 j < 2 && replacements[j]
3549 && COST (replacements[j]) < COST (XEXP (x, i));
3550 j++)
3552 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3553 break;
3555 if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c')
3557 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3558 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3560 if (apply_change_group ())
3562 /* Swap them back to be invalid so that this loop can
3563 continue and flag them to be swapped back later. */
3564 rtx tem;
3566 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3567 XEXP (x, 1) = tem;
3568 must_swap = 1;
3569 break;
3575 else
3577 if (fmt[i] == 'E')
3578 /* Don't try to fold inside of a vector of expressions.
3579 Doing nothing is harmless. */
3580 {;}
3583 /* If a commutative operation, place a constant integer as the second
3584 operand unless the first operand is also a constant integer. Otherwise,
3585 place any constant second unless the first operand is also a constant. */
3587 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3589 if (must_swap || (const_arg0
3590 && (const_arg1 == 0
3591 || (GET_CODE (const_arg0) == CONST_INT
3592 && GET_CODE (const_arg1) != CONST_INT))))
3594 register rtx tem = XEXP (x, 0);
3596 if (insn == 0 && ! copied)
3598 x = copy_rtx (x);
3599 copied = 1;
3602 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3603 validate_change (insn, &XEXP (x, 1), tem, 1);
3604 if (apply_change_group ())
3606 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3607 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3612 /* If X is an arithmetic operation, see if we can simplify it. */
3614 switch (GET_RTX_CLASS (code))
3616 case '1':
3618 int is_const = 0;
3620 /* We can't simplify extension ops unless we know the
3621 original mode. */
3622 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3623 && mode_arg0 == VOIDmode)
3624 break;
3626 /* If we had a CONST, strip it off and put it back later if we
3627 fold. */
3628 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3629 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3631 new = simplify_unary_operation (code, mode,
3632 const_arg0 ? const_arg0 : folded_arg0,
3633 mode_arg0);
3634 if (new != 0 && is_const)
3635 new = gen_rtx_CONST (mode, new);
3637 break;
3639 case '<':
3640 /* See what items are actually being compared and set FOLDED_ARG[01]
3641 to those values and CODE to the actual comparison code. If any are
3642 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3643 do anything if both operands are already known to be constant. */
3645 if (const_arg0 == 0 || const_arg1 == 0)
3647 struct table_elt *p0, *p1;
3648 rtx true = const_true_rtx, false = const0_rtx;
3649 enum machine_mode mode_arg1;
3651 #ifdef FLOAT_STORE_FLAG_VALUE
3652 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3654 true = (CONST_DOUBLE_FROM_REAL_VALUE
3655 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3656 false = CONST0_RTX (mode);
3658 #endif
3660 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3661 &mode_arg0, &mode_arg1);
3662 const_arg0 = equiv_constant (folded_arg0);
3663 const_arg1 = equiv_constant (folded_arg1);
3665 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3666 what kinds of things are being compared, so we can't do
3667 anything with this comparison. */
3669 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3670 break;
3672 /* If we do not now have two constants being compared, see
3673 if we can nevertheless deduce some things about the
3674 comparison. */
3675 if (const_arg0 == 0 || const_arg1 == 0)
3677 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or
3678 non-explicit constant? These aren't zero, but we
3679 don't know their sign. */
3680 if (const_arg1 == const0_rtx
3681 && (NONZERO_BASE_PLUS_P (folded_arg0)
3682 #if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
3683 come out as 0. */
3684 || GET_CODE (folded_arg0) == SYMBOL_REF
3685 #endif
3686 || GET_CODE (folded_arg0) == LABEL_REF
3687 || GET_CODE (folded_arg0) == CONST))
3689 if (code == EQ)
3690 return false;
3691 else if (code == NE)
3692 return true;
3695 /* See if the two operands are the same. We don't do this
3696 for IEEE floating-point since we can't assume x == x
3697 since x might be a NaN. */
3699 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3700 || ! FLOAT_MODE_P (mode_arg0) || flag_fast_math)
3701 && (folded_arg0 == folded_arg1
3702 || (GET_CODE (folded_arg0) == REG
3703 && GET_CODE (folded_arg1) == REG
3704 && (REG_QTY (REGNO (folded_arg0))
3705 == REG_QTY (REGNO (folded_arg1))))
3706 || ((p0 = lookup (folded_arg0,
3707 (safe_hash (folded_arg0, mode_arg0)
3708 & HASH_MASK), mode_arg0))
3709 && (p1 = lookup (folded_arg1,
3710 (safe_hash (folded_arg1, mode_arg0)
3711 & HASH_MASK), mode_arg0))
3712 && p0->first_same_value == p1->first_same_value)))
3713 return ((code == EQ || code == LE || code == GE
3714 || code == LEU || code == GEU)
3715 ? true : false);
3717 /* If FOLDED_ARG0 is a register, see if the comparison we are
3718 doing now is either the same as we did before or the reverse
3719 (we only check the reverse if not floating-point). */
3720 else if (GET_CODE (folded_arg0) == REG)
3722 int qty = REG_QTY (REGNO (folded_arg0));
3724 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3726 struct qty_table_elem *ent = &qty_table[qty];
3728 if ((comparison_dominates_p (ent->comparison_code, code)
3729 || (! FLOAT_MODE_P (mode_arg0)
3730 && comparison_dominates_p (ent->comparison_code,
3731 reverse_condition (code))))
3732 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3733 || (const_arg1
3734 && rtx_equal_p (ent->comparison_const,
3735 const_arg1))
3736 || (GET_CODE (folded_arg1) == REG
3737 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3738 return (comparison_dominates_p (ent->comparison_code, code)
3739 ? true : false);
3745 /* If we are comparing against zero, see if the first operand is
3746 equivalent to an IOR with a constant. If so, we may be able to
3747 determine the result of this comparison. */
3749 if (const_arg1 == const0_rtx)
3751 rtx y = lookup_as_function (folded_arg0, IOR);
3752 rtx inner_const;
3754 if (y != 0
3755 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3756 && GET_CODE (inner_const) == CONST_INT
3757 && INTVAL (inner_const) != 0)
3759 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
3760 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3761 && (INTVAL (inner_const)
3762 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
3763 rtx true = const_true_rtx, false = const0_rtx;
3765 #ifdef FLOAT_STORE_FLAG_VALUE
3766 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3768 true = (CONST_DOUBLE_FROM_REAL_VALUE
3769 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3770 false = CONST0_RTX (mode);
3772 #endif
3774 switch (code)
3776 case EQ:
3777 return false;
3778 case NE:
3779 return true;
3780 case LT: case LE:
3781 if (has_sign)
3782 return true;
3783 break;
3784 case GT: case GE:
3785 if (has_sign)
3786 return false;
3787 break;
3788 default:
3789 break;
3794 new = simplify_relational_operation (code, mode_arg0,
3795 const_arg0 ? const_arg0 : folded_arg0,
3796 const_arg1 ? const_arg1 : folded_arg1);
3797 #ifdef FLOAT_STORE_FLAG_VALUE
3798 if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3800 if (new == const0_rtx)
3801 new = CONST0_RTX (mode);
3802 else
3803 new = (CONST_DOUBLE_FROM_REAL_VALUE
3804 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3806 #endif
3807 break;
3809 case '2':
3810 case 'c':
3811 switch (code)
3813 case PLUS:
3814 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3815 with that LABEL_REF as its second operand. If so, the result is
3816 the first operand of that MINUS. This handles switches with an
3817 ADDR_DIFF_VEC table. */
3818 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3820 rtx y
3821 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3822 : lookup_as_function (folded_arg0, MINUS);
3824 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3825 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3826 return XEXP (y, 0);
3828 /* Now try for a CONST of a MINUS like the above. */
3829 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3830 : lookup_as_function (folded_arg0, CONST))) != 0
3831 && GET_CODE (XEXP (y, 0)) == MINUS
3832 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3833 && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg1, 0))
3834 return XEXP (XEXP (y, 0), 0);
3837 /* Likewise if the operands are in the other order. */
3838 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3840 rtx y
3841 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3842 : lookup_as_function (folded_arg1, MINUS);
3844 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3845 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3846 return XEXP (y, 0);
3848 /* Now try for a CONST of a MINUS like the above. */
3849 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3850 : lookup_as_function (folded_arg1, CONST))) != 0
3851 && GET_CODE (XEXP (y, 0)) == MINUS
3852 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3853 && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg0, 0))
3854 return XEXP (XEXP (y, 0), 0);
3857 /* If second operand is a register equivalent to a negative
3858 CONST_INT, see if we can find a register equivalent to the
3859 positive constant. Make a MINUS if so. Don't do this for
3860 a non-negative constant since we might then alternate between
3861 chosing positive and negative constants. Having the positive
3862 constant previously-used is the more common case. Be sure
3863 the resulting constant is non-negative; if const_arg1 were
3864 the smallest negative number this would overflow: depending
3865 on the mode, this would either just be the same value (and
3866 hence not save anything) or be incorrect. */
3867 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3868 && INTVAL (const_arg1) < 0
3869 /* This used to test
3871 - INTVAL (const_arg1) >= 0
3873 But The Sun V5.0 compilers mis-compiled that test. So
3874 instead we test for the problematic value in a more direct
3875 manner and hope the Sun compilers get it correct. */
3876 && INTVAL (const_arg1) !=
3877 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3878 && GET_CODE (folded_arg1) == REG)
3880 rtx new_const = GEN_INT (- INTVAL (const_arg1));
3881 struct table_elt *p
3882 = lookup (new_const, safe_hash (new_const, mode) & HASH_MASK,
3883 mode);
3885 if (p)
3886 for (p = p->first_same_value; p; p = p->next_same_value)
3887 if (GET_CODE (p->exp) == REG)
3888 return simplify_gen_binary (MINUS, mode, folded_arg0,
3889 canon_reg (p->exp, NULL_RTX));
3891 goto from_plus;
3893 case MINUS:
3894 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3895 If so, produce (PLUS Z C2-C). */
3896 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3898 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3899 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3900 return fold_rtx (plus_constant (copy_rtx (y),
3901 -INTVAL (const_arg1)),
3902 NULL_RTX);
3905 /* ... fall through ... */
3907 from_plus:
3908 case SMIN: case SMAX: case UMIN: case UMAX:
3909 case IOR: case AND: case XOR:
3910 case MULT: case DIV: case UDIV:
3911 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3912 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3913 is known to be of similar form, we may be able to replace the
3914 operation with a combined operation. This may eliminate the
3915 intermediate operation if every use is simplified in this way.
3916 Note that the similar optimization done by combine.c only works
3917 if the intermediate operation's result has only one reference. */
3919 if (GET_CODE (folded_arg0) == REG
3920 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3922 int is_shift
3923 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3924 rtx y = lookup_as_function (folded_arg0, code);
3925 rtx inner_const;
3926 enum rtx_code associate_code;
3927 rtx new_const;
3929 if (y == 0
3930 || 0 == (inner_const
3931 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
3932 || GET_CODE (inner_const) != CONST_INT
3933 /* If we have compiled a statement like
3934 "if (x == (x & mask1))", and now are looking at
3935 "x & mask2", we will have a case where the first operand
3936 of Y is the same as our first operand. Unless we detect
3937 this case, an infinite loop will result. */
3938 || XEXP (y, 0) == folded_arg0)
3939 break;
3941 /* Don't associate these operations if they are a PLUS with the
3942 same constant and it is a power of two. These might be doable
3943 with a pre- or post-increment. Similarly for two subtracts of
3944 identical powers of two with post decrement. */
3946 if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
3947 && ((HAVE_PRE_INCREMENT
3948 && exact_log2 (INTVAL (const_arg1)) >= 0)
3949 || (HAVE_POST_INCREMENT
3950 && exact_log2 (INTVAL (const_arg1)) >= 0)
3951 || (HAVE_PRE_DECREMENT
3952 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3953 || (HAVE_POST_DECREMENT
3954 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3955 break;
3957 /* Compute the code used to compose the constants. For example,
3958 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
3960 associate_code
3961 = (code == MULT || code == DIV || code == UDIV ? MULT
3962 : is_shift || code == PLUS || code == MINUS ? PLUS : code);
3964 new_const = simplify_binary_operation (associate_code, mode,
3965 const_arg1, inner_const);
3967 if (new_const == 0)
3968 break;
3970 /* If we are associating shift operations, don't let this
3971 produce a shift of the size of the object or larger.
3972 This could occur when we follow a sign-extend by a right
3973 shift on a machine that does a sign-extend as a pair
3974 of shifts. */
3976 if (is_shift && GET_CODE (new_const) == CONST_INT
3977 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3979 /* As an exception, we can turn an ASHIFTRT of this
3980 form into a shift of the number of bits - 1. */
3981 if (code == ASHIFTRT)
3982 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3983 else
3984 break;
3987 y = copy_rtx (XEXP (y, 0));
3989 /* If Y contains our first operand (the most common way this
3990 can happen is if Y is a MEM), we would do into an infinite
3991 loop if we tried to fold it. So don't in that case. */
3993 if (! reg_mentioned_p (folded_arg0, y))
3994 y = fold_rtx (y, insn);
3996 return simplify_gen_binary (code, mode, y, new_const);
3998 break;
4000 default:
4001 break;
4004 new = simplify_binary_operation (code, mode,
4005 const_arg0 ? const_arg0 : folded_arg0,
4006 const_arg1 ? const_arg1 : folded_arg1);
4007 break;
4009 case 'o':
4010 /* (lo_sum (high X) X) is simply X. */
4011 if (code == LO_SUM && const_arg0 != 0
4012 && GET_CODE (const_arg0) == HIGH
4013 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4014 return const_arg1;
4015 break;
4017 case '3':
4018 case 'b':
4019 new = simplify_ternary_operation (code, mode, mode_arg0,
4020 const_arg0 ? const_arg0 : folded_arg0,
4021 const_arg1 ? const_arg1 : folded_arg1,
4022 const_arg2 ? const_arg2 : XEXP (x, 2));
4023 break;
4025 case 'x':
4026 /* Always eliminate CONSTANT_P_RTX at this stage. */
4027 if (code == CONSTANT_P_RTX)
4028 return (const_arg0 ? const1_rtx : const0_rtx);
4029 break;
4032 return new ? new : x;
4035 /* Return a constant value currently equivalent to X.
4036 Return 0 if we don't know one. */
4038 static rtx
4039 equiv_constant (x)
4040 rtx x;
4042 if (GET_CODE (x) == REG
4043 && REGNO_QTY_VALID_P (REGNO (x)))
4045 int x_q = REG_QTY (REGNO (x));
4046 struct qty_table_elem *x_ent = &qty_table[x_q];
4048 if (x_ent->const_rtx)
4049 x = gen_lowpart_if_possible (GET_MODE (x), x_ent->const_rtx);
4052 if (x == 0 || CONSTANT_P (x))
4053 return x;
4055 /* If X is a MEM, try to fold it outside the context of any insn to see if
4056 it might be equivalent to a constant. That handles the case where it
4057 is a constant-pool reference. Then try to look it up in the hash table
4058 in case it is something whose value we have seen before. */
4060 if (GET_CODE (x) == MEM)
4062 struct table_elt *elt;
4064 x = fold_rtx (x, NULL_RTX);
4065 if (CONSTANT_P (x))
4066 return x;
4068 elt = lookup (x, safe_hash (x, GET_MODE (x)) & HASH_MASK, GET_MODE (x));
4069 if (elt == 0)
4070 return 0;
4072 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4073 if (elt->is_const && CONSTANT_P (elt->exp))
4074 return elt->exp;
4077 return 0;
4080 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4081 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4082 least-significant part of X.
4083 MODE specifies how big a part of X to return.
4085 If the requested operation cannot be done, 0 is returned.
4087 This is similar to gen_lowpart in emit-rtl.c. */
4090 gen_lowpart_if_possible (mode, x)
4091 enum machine_mode mode;
4092 register rtx x;
4094 rtx result = gen_lowpart_common (mode, x);
4096 if (result)
4097 return result;
4098 else if (GET_CODE (x) == MEM)
4100 /* This is the only other case we handle. */
4101 register int offset = 0;
4102 rtx new;
4104 if (WORDS_BIG_ENDIAN)
4105 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
4106 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4107 if (BYTES_BIG_ENDIAN)
4108 /* Adjust the address so that the address-after-the-data is
4109 unchanged. */
4110 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
4111 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4112 new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
4113 if (! memory_address_p (mode, XEXP (new, 0)))
4114 return 0;
4115 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
4116 MEM_COPY_ATTRIBUTES (new, x);
4117 return new;
4119 else
4120 return 0;
4123 /* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
4124 branch. It will be zero if not.
4126 In certain cases, this can cause us to add an equivalence. For example,
4127 if we are following the taken case of
4128 if (i == 2)
4129 we can add the fact that `i' and '2' are now equivalent.
4131 In any case, we can record that this comparison was passed. If the same
4132 comparison is seen later, we will know its value. */
4134 static void
4135 record_jump_equiv (insn, taken)
4136 rtx insn;
4137 int taken;
4139 int cond_known_true;
4140 rtx op0, op1;
4141 enum machine_mode mode, mode0, mode1;
4142 int reversed_nonequality = 0;
4143 enum rtx_code code;
4145 /* Ensure this is the right kind of insn. */
4146 if (! condjump_p (insn) || simplejump_p (insn))
4147 return;
4149 /* See if this jump condition is known true or false. */
4150 if (taken)
4151 cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 2) == pc_rtx);
4152 else
4153 cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx);
4155 /* Get the type of comparison being done and the operands being compared.
4156 If we had to reverse a non-equality condition, record that fact so we
4157 know that it isn't valid for floating-point. */
4158 code = GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0));
4159 op0 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0), insn);
4160 op1 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1), insn);
4162 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4163 if (! cond_known_true)
4165 reversed_nonequality = (code != EQ && code != NE);
4166 code = reverse_condition (code);
4168 /* Don't remember if we can't find the inverse. */
4169 if (code == UNKNOWN)
4170 return;
4173 /* The mode is the mode of the non-constant. */
4174 mode = mode0;
4175 if (mode1 != VOIDmode)
4176 mode = mode1;
4178 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4181 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4182 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4183 Make any useful entries we can with that information. Called from
4184 above function and called recursively. */
4186 static void
4187 record_jump_cond (code, mode, op0, op1, reversed_nonequality)
4188 enum rtx_code code;
4189 enum machine_mode mode;
4190 rtx op0, op1;
4191 int reversed_nonequality;
4193 unsigned op0_hash, op1_hash;
4194 int op0_in_memory, op1_in_memory;
4195 struct table_elt *op0_elt, *op1_elt;
4197 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4198 we know that they are also equal in the smaller mode (this is also
4199 true for all smaller modes whether or not there is a SUBREG, but
4200 is not worth testing for with no SUBREG). */
4202 /* Note that GET_MODE (op0) may not equal MODE. */
4203 if (code == EQ && GET_CODE (op0) == SUBREG
4204 && (GET_MODE_SIZE (GET_MODE (op0))
4205 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4207 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4208 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
4210 record_jump_cond (code, mode, SUBREG_REG (op0),
4211 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
4212 reversed_nonequality);
4215 if (code == EQ && GET_CODE (op1) == SUBREG
4216 && (GET_MODE_SIZE (GET_MODE (op1))
4217 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4219 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4220 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
4222 record_jump_cond (code, mode, SUBREG_REG (op1),
4223 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
4224 reversed_nonequality);
4227 /* Similarly, if this is an NE comparison, and either is a SUBREG
4228 making a smaller mode, we know the whole thing is also NE. */
4230 /* Note that GET_MODE (op0) may not equal MODE;
4231 if we test MODE instead, we can get an infinite recursion
4232 alternating between two modes each wider than MODE. */
4234 if (code == NE && GET_CODE (op0) == SUBREG
4235 && subreg_lowpart_p (op0)
4236 && (GET_MODE_SIZE (GET_MODE (op0))
4237 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4239 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4240 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
4242 record_jump_cond (code, mode, SUBREG_REG (op0),
4243 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
4244 reversed_nonequality);
4247 if (code == NE && GET_CODE (op1) == SUBREG
4248 && subreg_lowpart_p (op1)
4249 && (GET_MODE_SIZE (GET_MODE (op1))
4250 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4252 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4253 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
4255 record_jump_cond (code, mode, SUBREG_REG (op1),
4256 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
4257 reversed_nonequality);
4260 /* Hash both operands. */
4262 do_not_record = 0;
4263 hash_arg_in_memory = 0;
4264 op0_hash = HASH (op0, mode);
4265 op0_in_memory = hash_arg_in_memory;
4267 if (do_not_record)
4268 return;
4270 do_not_record = 0;
4271 hash_arg_in_memory = 0;
4272 op1_hash = HASH (op1, mode);
4273 op1_in_memory = hash_arg_in_memory;
4275 if (do_not_record)
4276 return;
4278 /* Look up both operands. */
4279 op0_elt = lookup (op0, op0_hash, mode);
4280 op1_elt = lookup (op1, op1_hash, mode);
4282 /* If both operands are already equivalent or if they are not in the
4283 table but are identical, do nothing. */
4284 if ((op0_elt != 0 && op1_elt != 0
4285 && op0_elt->first_same_value == op1_elt->first_same_value)
4286 || op0 == op1 || rtx_equal_p (op0, op1))
4287 return;
4289 /* If we aren't setting two things equal all we can do is save this
4290 comparison. Similarly if this is floating-point. In the latter
4291 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4292 If we record the equality, we might inadvertently delete code
4293 whose intent was to change -0 to +0. */
4295 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4297 struct qty_table_elem *ent;
4298 int qty;
4300 /* If we reversed a floating-point comparison, if OP0 is not a
4301 register, or if OP1 is neither a register or constant, we can't
4302 do anything. */
4304 if (GET_CODE (op1) != REG)
4305 op1 = equiv_constant (op1);
4307 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4308 || GET_CODE (op0) != REG || op1 == 0)
4309 return;
4311 /* Put OP0 in the hash table if it isn't already. This gives it a
4312 new quantity number. */
4313 if (op0_elt == 0)
4315 if (insert_regs (op0, NULL_PTR, 0))
4317 rehash_using_reg (op0);
4318 op0_hash = HASH (op0, mode);
4320 /* If OP0 is contained in OP1, this changes its hash code
4321 as well. Faster to rehash than to check, except
4322 for the simple case of a constant. */
4323 if (! CONSTANT_P (op1))
4324 op1_hash = HASH (op1,mode);
4327 op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
4328 op0_elt->in_memory = op0_in_memory;
4331 qty = REG_QTY (REGNO (op0));
4332 ent = &qty_table[qty];
4334 ent->comparison_code = code;
4335 if (GET_CODE (op1) == REG)
4337 /* Look it up again--in case op0 and op1 are the same. */
4338 op1_elt = lookup (op1, op1_hash, mode);
4340 /* Put OP1 in the hash table so it gets a new quantity number. */
4341 if (op1_elt == 0)
4343 if (insert_regs (op1, NULL_PTR, 0))
4345 rehash_using_reg (op1);
4346 op1_hash = HASH (op1, mode);
4349 op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
4350 op1_elt->in_memory = op1_in_memory;
4353 ent->comparison_const = NULL_RTX;
4354 ent->comparison_qty = REG_QTY (REGNO (op1));
4356 else
4358 ent->comparison_const = op1;
4359 ent->comparison_qty = -1;
4362 return;
4365 /* If either side is still missing an equivalence, make it now,
4366 then merge the equivalences. */
4368 if (op0_elt == 0)
4370 if (insert_regs (op0, NULL_PTR, 0))
4372 rehash_using_reg (op0);
4373 op0_hash = HASH (op0, mode);
4376 op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
4377 op0_elt->in_memory = op0_in_memory;
4380 if (op1_elt == 0)
4382 if (insert_regs (op1, NULL_PTR, 0))
4384 rehash_using_reg (op1);
4385 op1_hash = HASH (op1, mode);
4388 op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
4389 op1_elt->in_memory = op1_in_memory;
4392 merge_equiv_classes (op0_elt, op1_elt);
4393 last_jump_equiv_class = op0_elt;
4396 /* CSE processing for one instruction.
4397 First simplify sources and addresses of all assignments
4398 in the instruction, using previously-computed equivalents values.
4399 Then install the new sources and destinations in the table
4400 of available values.
4402 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4403 the insn. It means that INSN is inside libcall block. In this
4404 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4406 /* Data on one SET contained in the instruction. */
4408 struct set
4410 /* The SET rtx itself. */
4411 rtx rtl;
4412 /* The SET_SRC of the rtx (the original value, if it is changing). */
4413 rtx src;
4414 /* The hash-table element for the SET_SRC of the SET. */
4415 struct table_elt *src_elt;
4416 /* Hash value for the SET_SRC. */
4417 unsigned src_hash;
4418 /* Hash value for the SET_DEST. */
4419 unsigned dest_hash;
4420 /* The SET_DEST, with SUBREG, etc., stripped. */
4421 rtx inner_dest;
4422 /* Nonzero if the SET_SRC is in memory. */
4423 char src_in_memory;
4424 /* Nonzero if the SET_SRC contains something
4425 whose value cannot be predicted and understood. */
4426 char src_volatile;
4427 /* Original machine mode, in case it becomes a CONST_INT. */
4428 enum machine_mode mode;
4429 /* A constant equivalent for SET_SRC, if any. */
4430 rtx src_const;
4431 /* Original SET_SRC value used for libcall notes. */
4432 rtx orig_src;
4433 /* Hash value of constant equivalent for SET_SRC. */
4434 unsigned src_const_hash;
4435 /* Table entry for constant equivalent for SET_SRC, if any. */
4436 struct table_elt *src_const_elt;
4439 static void
4440 cse_insn (insn, libcall_insn)
4441 rtx insn;
4442 rtx libcall_insn;
4444 register rtx x = PATTERN (insn);
4445 register int i;
4446 rtx tem;
4447 register int n_sets = 0;
4449 #ifdef HAVE_cc0
4450 /* Records what this insn does to set CC0. */
4451 rtx this_insn_cc0 = 0;
4452 enum machine_mode this_insn_cc0_mode = VOIDmode;
4453 #endif
4455 rtx src_eqv = 0;
4456 struct table_elt *src_eqv_elt = 0;
4457 int src_eqv_volatile = 0;
4458 int src_eqv_in_memory = 0;
4459 unsigned src_eqv_hash = 0;
4461 struct set *sets = (struct set *) NULL_PTR;
4463 this_insn = insn;
4465 /* Find all the SETs and CLOBBERs in this instruction.
4466 Record all the SETs in the array `set' and count them.
4467 Also determine whether there is a CLOBBER that invalidates
4468 all memory references, or all references at varying addresses. */
4470 if (GET_CODE (insn) == CALL_INSN)
4472 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4473 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4474 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4477 if (GET_CODE (x) == SET)
4479 sets = (struct set *) alloca (sizeof (struct set));
4480 sets[0].rtl = x;
4482 /* Ignore SETs that are unconditional jumps.
4483 They never need cse processing, so this does not hurt.
4484 The reason is not efficiency but rather
4485 so that we can test at the end for instructions
4486 that have been simplified to unconditional jumps
4487 and not be misled by unchanged instructions
4488 that were unconditional jumps to begin with. */
4489 if (SET_DEST (x) == pc_rtx
4490 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4493 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4494 The hard function value register is used only once, to copy to
4495 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4496 Ensure we invalidate the destination register. On the 80386 no
4497 other code would invalidate it since it is a fixed_reg.
4498 We need not check the return of apply_change_group; see canon_reg. */
4500 else if (GET_CODE (SET_SRC (x)) == CALL)
4502 canon_reg (SET_SRC (x), insn);
4503 apply_change_group ();
4504 fold_rtx (SET_SRC (x), insn);
4505 invalidate (SET_DEST (x), VOIDmode);
4507 else
4508 n_sets = 1;
4510 else if (GET_CODE (x) == PARALLEL)
4512 register int lim = XVECLEN (x, 0);
4514 sets = (struct set *) alloca (lim * sizeof (struct set));
4516 /* Find all regs explicitly clobbered in this insn,
4517 and ensure they are not replaced with any other regs
4518 elsewhere in this insn.
4519 When a reg that is clobbered is also used for input,
4520 we should presume that that is for a reason,
4521 and we should not substitute some other register
4522 which is not supposed to be clobbered.
4523 Therefore, this loop cannot be merged into the one below
4524 because a CALL may precede a CLOBBER and refer to the
4525 value clobbered. We must not let a canonicalization do
4526 anything in that case. */
4527 for (i = 0; i < lim; i++)
4529 register rtx y = XVECEXP (x, 0, i);
4530 if (GET_CODE (y) == CLOBBER)
4532 rtx clobbered = XEXP (y, 0);
4534 if (GET_CODE (clobbered) == REG
4535 || GET_CODE (clobbered) == SUBREG)
4536 invalidate (clobbered, VOIDmode);
4537 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4538 || GET_CODE (clobbered) == ZERO_EXTRACT)
4539 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4543 for (i = 0; i < lim; i++)
4545 register rtx y = XVECEXP (x, 0, i);
4546 if (GET_CODE (y) == SET)
4548 /* As above, we ignore unconditional jumps and call-insns and
4549 ignore the result of apply_change_group. */
4550 if (GET_CODE (SET_SRC (y)) == CALL)
4552 canon_reg (SET_SRC (y), insn);
4553 apply_change_group ();
4554 fold_rtx (SET_SRC (y), insn);
4555 invalidate (SET_DEST (y), VOIDmode);
4557 else if (SET_DEST (y) == pc_rtx
4558 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4560 else
4561 sets[n_sets++].rtl = y;
4563 else if (GET_CODE (y) == CLOBBER)
4565 /* If we clobber memory, canon the address.
4566 This does nothing when a register is clobbered
4567 because we have already invalidated the reg. */
4568 if (GET_CODE (XEXP (y, 0)) == MEM)
4569 canon_reg (XEXP (y, 0), NULL_RTX);
4571 else if (GET_CODE (y) == USE
4572 && ! (GET_CODE (XEXP (y, 0)) == REG
4573 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4574 canon_reg (y, NULL_RTX);
4575 else if (GET_CODE (y) == CALL)
4577 /* The result of apply_change_group can be ignored; see
4578 canon_reg. */
4579 canon_reg (y, insn);
4580 apply_change_group ();
4581 fold_rtx (y, insn);
4585 else if (GET_CODE (x) == CLOBBER)
4587 if (GET_CODE (XEXP (x, 0)) == MEM)
4588 canon_reg (XEXP (x, 0), NULL_RTX);
4591 /* Canonicalize a USE of a pseudo register or memory location. */
4592 else if (GET_CODE (x) == USE
4593 && ! (GET_CODE (XEXP (x, 0)) == REG
4594 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4595 canon_reg (XEXP (x, 0), NULL_RTX);
4596 else if (GET_CODE (x) == CALL)
4598 /* The result of apply_change_group can be ignored; see canon_reg. */
4599 canon_reg (x, insn);
4600 apply_change_group ();
4601 fold_rtx (x, insn);
4604 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4605 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4606 is handled specially for this case, and if it isn't set, then there will
4607 be no equivalence for the destination. */
4608 if (n_sets == 1 && REG_NOTES (insn) != 0
4609 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4610 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4611 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4612 src_eqv = canon_reg (XEXP (tem, 0), NULL_RTX);
4614 /* Canonicalize sources and addresses of destinations.
4615 We do this in a separate pass to avoid problems when a MATCH_DUP is
4616 present in the insn pattern. In that case, we want to ensure that
4617 we don't break the duplicate nature of the pattern. So we will replace
4618 both operands at the same time. Otherwise, we would fail to find an
4619 equivalent substitution in the loop calling validate_change below.
4621 We used to suppress canonicalization of DEST if it appears in SRC,
4622 but we don't do this any more. */
4624 for (i = 0; i < n_sets; i++)
4626 rtx dest = SET_DEST (sets[i].rtl);
4627 rtx src = SET_SRC (sets[i].rtl);
4628 rtx new = canon_reg (src, insn);
4629 int insn_code;
4631 sets[i].orig_src = src;
4632 if ((GET_CODE (new) == REG && GET_CODE (src) == REG
4633 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4634 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4635 || (insn_code = recog_memoized (insn)) < 0
4636 || insn_data[insn_code].n_dups > 0)
4637 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4638 else
4639 SET_SRC (sets[i].rtl) = new;
4641 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
4643 validate_change (insn, &XEXP (dest, 1),
4644 canon_reg (XEXP (dest, 1), insn), 1);
4645 validate_change (insn, &XEXP (dest, 2),
4646 canon_reg (XEXP (dest, 2), insn), 1);
4649 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
4650 || GET_CODE (dest) == ZERO_EXTRACT
4651 || GET_CODE (dest) == SIGN_EXTRACT)
4652 dest = XEXP (dest, 0);
4654 if (GET_CODE (dest) == MEM)
4655 canon_reg (dest, insn);
4658 /* Now that we have done all the replacements, we can apply the change
4659 group and see if they all work. Note that this will cause some
4660 canonicalizations that would have worked individually not to be applied
4661 because some other canonicalization didn't work, but this should not
4662 occur often.
4664 The result of apply_change_group can be ignored; see canon_reg. */
4666 apply_change_group ();
4668 /* Set sets[i].src_elt to the class each source belongs to.
4669 Detect assignments from or to volatile things
4670 and set set[i] to zero so they will be ignored
4671 in the rest of this function.
4673 Nothing in this loop changes the hash table or the register chains. */
4675 for (i = 0; i < n_sets; i++)
4677 register rtx src, dest;
4678 register rtx src_folded;
4679 register struct table_elt *elt = 0, *p;
4680 enum machine_mode mode;
4681 rtx src_eqv_here;
4682 rtx src_const = 0;
4683 rtx src_related = 0;
4684 struct table_elt *src_const_elt = 0;
4685 int src_cost = 10000, src_eqv_cost = 10000, src_folded_cost = 10000;
4686 int src_related_cost = 10000, src_elt_cost = 10000;
4687 /* Set non-zero if we need to call force_const_mem on with the
4688 contents of src_folded before using it. */
4689 int src_folded_force_flag = 0;
4691 dest = SET_DEST (sets[i].rtl);
4692 src = SET_SRC (sets[i].rtl);
4694 /* If SRC is a constant that has no machine mode,
4695 hash it with the destination's machine mode.
4696 This way we can keep different modes separate. */
4698 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4699 sets[i].mode = mode;
4701 if (src_eqv)
4703 enum machine_mode eqvmode = mode;
4704 if (GET_CODE (dest) == STRICT_LOW_PART)
4705 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4706 do_not_record = 0;
4707 hash_arg_in_memory = 0;
4708 src_eqv = fold_rtx (src_eqv, insn);
4709 src_eqv_hash = HASH (src_eqv, eqvmode);
4711 /* Find the equivalence class for the equivalent expression. */
4713 if (!do_not_record)
4714 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4716 src_eqv_volatile = do_not_record;
4717 src_eqv_in_memory = hash_arg_in_memory;
4720 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4721 value of the INNER register, not the destination. So it is not
4722 a valid substitution for the source. But save it for later. */
4723 if (GET_CODE (dest) == STRICT_LOW_PART)
4724 src_eqv_here = 0;
4725 else
4726 src_eqv_here = src_eqv;
4728 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4729 simplified result, which may not necessarily be valid. */
4730 src_folded = fold_rtx (src, insn);
4732 #if 0
4733 /* ??? This caused bad code to be generated for the m68k port with -O2.
4734 Suppose src is (CONST_INT -1), and that after truncation src_folded
4735 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4736 At the end we will add src and src_const to the same equivalence
4737 class. We now have 3 and -1 on the same equivalence class. This
4738 causes later instructions to be mis-optimized. */
4739 /* If storing a constant in a bitfield, pre-truncate the constant
4740 so we will be able to record it later. */
4741 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
4742 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
4744 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4746 if (GET_CODE (src) == CONST_INT
4747 && GET_CODE (width) == CONST_INT
4748 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4749 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4750 src_folded
4751 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4752 << INTVAL (width)) - 1));
4754 #endif
4756 /* Compute SRC's hash code, and also notice if it
4757 should not be recorded at all. In that case,
4758 prevent any further processing of this assignment. */
4759 do_not_record = 0;
4760 hash_arg_in_memory = 0;
4762 sets[i].src = src;
4763 sets[i].src_hash = HASH (src, mode);
4764 sets[i].src_volatile = do_not_record;
4765 sets[i].src_in_memory = hash_arg_in_memory;
4767 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4768 a pseudo that is set more than once, do not record SRC. Using
4769 SRC as a replacement for anything else will be incorrect in that
4770 situation. Note that this usually occurs only for stack slots,
4771 in which case all the RTL would be referring to SRC, so we don't
4772 lose any optimization opportunities by not having SRC in the
4773 hash table. */
4775 if (GET_CODE (src) == MEM
4776 && find_reg_note (insn, REG_EQUIV, src) != 0
4777 && GET_CODE (dest) == REG
4778 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
4779 && REG_N_SETS (REGNO (dest)) != 1)
4780 sets[i].src_volatile = 1;
4782 #if 0
4783 /* It is no longer clear why we used to do this, but it doesn't
4784 appear to still be needed. So let's try without it since this
4785 code hurts cse'ing widened ops. */
4786 /* If source is a perverse subreg (such as QI treated as an SI),
4787 treat it as volatile. It may do the work of an SI in one context
4788 where the extra bits are not being used, but cannot replace an SI
4789 in general. */
4790 if (GET_CODE (src) == SUBREG
4791 && (GET_MODE_SIZE (GET_MODE (src))
4792 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4793 sets[i].src_volatile = 1;
4794 #endif
4796 /* Locate all possible equivalent forms for SRC. Try to replace
4797 SRC in the insn with each cheaper equivalent.
4799 We have the following types of equivalents: SRC itself, a folded
4800 version, a value given in a REG_EQUAL note, or a value related
4801 to a constant.
4803 Each of these equivalents may be part of an additional class
4804 of equivalents (if more than one is in the table, they must be in
4805 the same class; we check for this).
4807 If the source is volatile, we don't do any table lookups.
4809 We note any constant equivalent for possible later use in a
4810 REG_NOTE. */
4812 if (!sets[i].src_volatile)
4813 elt = lookup (src, sets[i].src_hash, mode);
4815 sets[i].src_elt = elt;
4817 if (elt && src_eqv_here && src_eqv_elt)
4819 if (elt->first_same_value != src_eqv_elt->first_same_value)
4821 /* The REG_EQUAL is indicating that two formerly distinct
4822 classes are now equivalent. So merge them. */
4823 merge_equiv_classes (elt, src_eqv_elt);
4824 src_eqv_hash = HASH (src_eqv, elt->mode);
4825 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4828 src_eqv_here = 0;
4831 else if (src_eqv_elt)
4832 elt = src_eqv_elt;
4834 /* Try to find a constant somewhere and record it in `src_const'.
4835 Record its table element, if any, in `src_const_elt'. Look in
4836 any known equivalences first. (If the constant is not in the
4837 table, also set `sets[i].src_const_hash'). */
4838 if (elt)
4839 for (p = elt->first_same_value; p; p = p->next_same_value)
4840 if (p->is_const)
4842 src_const = p->exp;
4843 src_const_elt = elt;
4844 break;
4847 if (src_const == 0
4848 && (CONSTANT_P (src_folded)
4849 /* Consider (minus (label_ref L1) (label_ref L2)) as
4850 "constant" here so we will record it. This allows us
4851 to fold switch statements when an ADDR_DIFF_VEC is used. */
4852 || (GET_CODE (src_folded) == MINUS
4853 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4854 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4855 src_const = src_folded, src_const_elt = elt;
4856 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4857 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4859 /* If we don't know if the constant is in the table, get its
4860 hash code and look it up. */
4861 if (src_const && src_const_elt == 0)
4863 sets[i].src_const_hash = HASH (src_const, mode);
4864 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4867 sets[i].src_const = src_const;
4868 sets[i].src_const_elt = src_const_elt;
4870 /* If the constant and our source are both in the table, mark them as
4871 equivalent. Otherwise, if a constant is in the table but the source
4872 isn't, set ELT to it. */
4873 if (src_const_elt && elt
4874 && src_const_elt->first_same_value != elt->first_same_value)
4875 merge_equiv_classes (elt, src_const_elt);
4876 else if (src_const_elt && elt == 0)
4877 elt = src_const_elt;
4879 /* See if there is a register linearly related to a constant
4880 equivalent of SRC. */
4881 if (src_const
4882 && (GET_CODE (src_const) == CONST
4883 || (src_const_elt && src_const_elt->related_value != 0)))
4885 src_related = use_related_value (src_const, src_const_elt);
4886 if (src_related)
4888 struct table_elt *src_related_elt
4889 = lookup (src_related, HASH (src_related, mode), mode);
4890 if (src_related_elt && elt)
4892 if (elt->first_same_value
4893 != src_related_elt->first_same_value)
4894 /* This can occur when we previously saw a CONST
4895 involving a SYMBOL_REF and then see the SYMBOL_REF
4896 twice. Merge the involved classes. */
4897 merge_equiv_classes (elt, src_related_elt);
4899 src_related = 0;
4900 src_related_elt = 0;
4902 else if (src_related_elt && elt == 0)
4903 elt = src_related_elt;
4907 /* See if we have a CONST_INT that is already in a register in a
4908 wider mode. */
4910 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4911 && GET_MODE_CLASS (mode) == MODE_INT
4912 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4914 enum machine_mode wider_mode;
4916 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4917 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4918 && src_related == 0;
4919 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4921 struct table_elt *const_elt
4922 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4924 if (const_elt == 0)
4925 continue;
4927 for (const_elt = const_elt->first_same_value;
4928 const_elt; const_elt = const_elt->next_same_value)
4929 if (GET_CODE (const_elt->exp) == REG)
4931 src_related = gen_lowpart_if_possible (mode,
4932 const_elt->exp);
4933 break;
4938 /* Another possibility is that we have an AND with a constant in
4939 a mode narrower than a word. If so, it might have been generated
4940 as part of an "if" which would narrow the AND. If we already
4941 have done the AND in a wider mode, we can use a SUBREG of that
4942 value. */
4944 if (flag_expensive_optimizations && ! src_related
4945 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4946 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4948 enum machine_mode tmode;
4949 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4951 for (tmode = GET_MODE_WIDER_MODE (mode);
4952 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4953 tmode = GET_MODE_WIDER_MODE (tmode))
4955 rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
4956 struct table_elt *larger_elt;
4958 if (inner)
4960 PUT_MODE (new_and, tmode);
4961 XEXP (new_and, 0) = inner;
4962 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4963 if (larger_elt == 0)
4964 continue;
4966 for (larger_elt = larger_elt->first_same_value;
4967 larger_elt; larger_elt = larger_elt->next_same_value)
4968 if (GET_CODE (larger_elt->exp) == REG)
4970 src_related
4971 = gen_lowpart_if_possible (mode, larger_elt->exp);
4972 break;
4975 if (src_related)
4976 break;
4981 #ifdef LOAD_EXTEND_OP
4982 /* See if a MEM has already been loaded with a widening operation;
4983 if it has, we can use a subreg of that. Many CISC machines
4984 also have such operations, but this is only likely to be
4985 beneficial these machines. */
4987 if (flag_expensive_optimizations && src_related == 0
4988 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4989 && GET_MODE_CLASS (mode) == MODE_INT
4990 && GET_CODE (src) == MEM && ! do_not_record
4991 && LOAD_EXTEND_OP (mode) != NIL)
4993 enum machine_mode tmode;
4995 /* Set what we are trying to extend and the operation it might
4996 have been extended with. */
4997 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4998 XEXP (memory_extend_rtx, 0) = src;
5000 for (tmode = GET_MODE_WIDER_MODE (mode);
5001 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5002 tmode = GET_MODE_WIDER_MODE (tmode))
5004 struct table_elt *larger_elt;
5006 PUT_MODE (memory_extend_rtx, tmode);
5007 larger_elt = lookup (memory_extend_rtx,
5008 HASH (memory_extend_rtx, tmode), tmode);
5009 if (larger_elt == 0)
5010 continue;
5012 for (larger_elt = larger_elt->first_same_value;
5013 larger_elt; larger_elt = larger_elt->next_same_value)
5014 if (GET_CODE (larger_elt->exp) == REG)
5016 src_related = gen_lowpart_if_possible (mode,
5017 larger_elt->exp);
5018 break;
5021 if (src_related)
5022 break;
5025 #endif /* LOAD_EXTEND_OP */
5027 if (src == src_folded)
5028 src_folded = 0;
5030 /* At this point, ELT, if non-zero, points to a class of expressions
5031 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5032 and SRC_RELATED, if non-zero, each contain additional equivalent
5033 expressions. Prune these latter expressions by deleting expressions
5034 already in the equivalence class.
5036 Check for an equivalent identical to the destination. If found,
5037 this is the preferred equivalent since it will likely lead to
5038 elimination of the insn. Indicate this by placing it in
5039 `src_related'. */
5041 if (elt) elt = elt->first_same_value;
5042 for (p = elt; p; p = p->next_same_value)
5044 enum rtx_code code = GET_CODE (p->exp);
5046 /* If the expression is not valid, ignore it. Then we do not
5047 have to check for validity below. In most cases, we can use
5048 `rtx_equal_p', since canonicalization has already been done. */
5049 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
5050 continue;
5052 /* Also skip paradoxical subregs, unless that's what we're
5053 looking for. */
5054 if (code == SUBREG
5055 && (GET_MODE_SIZE (GET_MODE (p->exp))
5056 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5057 && ! (src != 0
5058 && GET_CODE (src) == SUBREG
5059 && GET_MODE (src) == GET_MODE (p->exp)
5060 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5061 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5062 continue;
5064 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5065 src = 0;
5066 else if (src_folded && GET_CODE (src_folded) == code
5067 && rtx_equal_p (src_folded, p->exp))
5068 src_folded = 0;
5069 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5070 && rtx_equal_p (src_eqv_here, p->exp))
5071 src_eqv_here = 0;
5072 else if (src_related && GET_CODE (src_related) == code
5073 && rtx_equal_p (src_related, p->exp))
5074 src_related = 0;
5076 /* This is the same as the destination of the insns, we want
5077 to prefer it. Copy it to src_related. The code below will
5078 then give it a negative cost. */
5079 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5080 src_related = dest;
5084 /* Find the cheapest valid equivalent, trying all the available
5085 possibilities. Prefer items not in the hash table to ones
5086 that are when they are equal cost. Note that we can never
5087 worsen an insn as the current contents will also succeed.
5088 If we find an equivalent identical to the destination, use it as best,
5089 since this insn will probably be eliminated in that case. */
5090 if (src)
5092 if (rtx_equal_p (src, dest))
5093 src_cost = -1;
5094 else
5095 src_cost = COST (src);
5098 if (src_eqv_here)
5100 if (rtx_equal_p (src_eqv_here, dest))
5101 src_eqv_cost = -1;
5102 else
5103 src_eqv_cost = COST (src_eqv_here);
5106 if (src_folded)
5108 if (rtx_equal_p (src_folded, dest))
5109 src_folded_cost = -1;
5110 else
5111 src_folded_cost = COST (src_folded);
5114 if (src_related)
5116 if (rtx_equal_p (src_related, dest))
5117 src_related_cost = -1;
5118 else
5119 src_related_cost = COST (src_related);
5122 /* If this was an indirect jump insn, a known label will really be
5123 cheaper even though it looks more expensive. */
5124 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5125 src_folded = src_const, src_folded_cost = -1;
5127 /* Terminate loop when replacement made. This must terminate since
5128 the current contents will be tested and will always be valid. */
5129 while (1)
5131 rtx trial;
5133 /* Skip invalid entries. */
5134 while (elt && GET_CODE (elt->exp) != REG
5135 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
5136 elt = elt->next_same_value;
5138 /* A paradoxical subreg would be bad here: it'll be the right
5139 size, but later may be adjusted so that the upper bits aren't
5140 what we want. So reject it. */
5141 if (elt != 0
5142 && GET_CODE (elt->exp) == SUBREG
5143 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5144 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5145 /* It is okay, though, if the rtx we're trying to match
5146 will ignore any of the bits we can't predict. */
5147 && ! (src != 0
5148 && GET_CODE (src) == SUBREG
5149 && GET_MODE (src) == GET_MODE (elt->exp)
5150 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5151 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5153 elt = elt->next_same_value;
5154 continue;
5157 if (elt) src_elt_cost = elt->cost;
5159 /* Find cheapest and skip it for the next time. For items
5160 of equal cost, use this order:
5161 src_folded, src, src_eqv, src_related and hash table entry. */
5162 if (src_folded_cost <= src_cost
5163 && src_folded_cost <= src_eqv_cost
5164 && src_folded_cost <= src_related_cost
5165 && src_folded_cost <= src_elt_cost)
5167 trial = src_folded, src_folded_cost = 10000;
5168 if (src_folded_force_flag)
5169 trial = force_const_mem (mode, trial);
5171 else if (src_cost <= src_eqv_cost
5172 && src_cost <= src_related_cost
5173 && src_cost <= src_elt_cost)
5174 trial = src, src_cost = 10000;
5175 else if (src_eqv_cost <= src_related_cost
5176 && src_eqv_cost <= src_elt_cost)
5177 trial = copy_rtx (src_eqv_here), src_eqv_cost = 10000;
5178 else if (src_related_cost <= src_elt_cost)
5179 trial = copy_rtx (src_related), src_related_cost = 10000;
5180 else
5182 trial = copy_rtx (elt->exp);
5183 elt = elt->next_same_value;
5184 src_elt_cost = 10000;
5187 /* We don't normally have an insn matching (set (pc) (pc)), so
5188 check for this separately here. We will delete such an
5189 insn below.
5191 Tablejump insns contain a USE of the table, so simply replacing
5192 the operand with the constant won't match. This is simply an
5193 unconditional branch, however, and is therefore valid. Just
5194 insert the substitution here and we will delete and re-emit
5195 the insn later. */
5197 if (n_sets == 1 && dest == pc_rtx
5198 && (trial == pc_rtx
5199 || (GET_CODE (trial) == LABEL_REF
5200 && ! condjump_p (insn))))
5202 if (trial == pc_rtx)
5204 SET_SRC (sets[i].rtl) = trial;
5205 cse_jumps_altered = 1;
5206 break;
5209 PATTERN (insn) = gen_jump (XEXP (trial, 0));
5210 INSN_CODE (insn) = -1;
5211 cse_jumps_altered = 1;
5212 break;
5215 /* Look for a substitution that makes a valid insn. */
5216 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5218 /* If we just made a substitution inside a libcall, then we
5219 need to make the same substitution in any notes attached
5220 to the RETVAL insn. */
5221 if (libcall_insn
5222 && (GET_CODE (sets[i].orig_src) == REG
5223 || GET_CODE (sets[i].orig_src) == SUBREG
5224 || GET_CODE (sets[i].orig_src) == MEM))
5225 replace_rtx (REG_NOTES (libcall_insn), sets[i].orig_src,
5226 canon_reg (SET_SRC (sets[i].rtl), insn));
5228 /* The result of apply_change_group can be ignored; see
5229 canon_reg. */
5231 validate_change (insn, &SET_SRC (sets[i].rtl),
5232 canon_reg (SET_SRC (sets[i].rtl), insn),
5234 apply_change_group ();
5235 break;
5238 /* If we previously found constant pool entries for
5239 constants and this is a constant, try making a
5240 pool entry. Put it in src_folded unless we already have done
5241 this since that is where it likely came from. */
5243 else if (constant_pool_entries_cost
5244 && CONSTANT_P (trial)
5245 && ! (GET_CODE (trial) == CONST
5246 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5247 && (src_folded == 0
5248 || (GET_CODE (src_folded) != MEM
5249 && ! src_folded_force_flag))
5250 && GET_MODE_CLASS (mode) != MODE_CC
5251 && mode != VOIDmode)
5253 src_folded_force_flag = 1;
5254 src_folded = trial;
5255 src_folded_cost = constant_pool_entries_cost;
5259 src = SET_SRC (sets[i].rtl);
5261 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5262 However, there is an important exception: If both are registers
5263 that are not the head of their equivalence class, replace SET_SRC
5264 with the head of the class. If we do not do this, we will have
5265 both registers live over a portion of the basic block. This way,
5266 their lifetimes will likely abut instead of overlapping. */
5267 if (GET_CODE (dest) == REG
5268 && REGNO_QTY_VALID_P (REGNO (dest)))
5270 int dest_q = REG_QTY (REGNO (dest));
5271 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5273 if (dest_ent->mode == GET_MODE (dest)
5274 && dest_ent->first_reg != REGNO (dest)
5275 && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
5276 /* Don't do this if the original insn had a hard reg as
5277 SET_SRC or SET_DEST. */
5278 && (GET_CODE (sets[i].src) != REG
5279 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5280 && (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5281 /* We can't call canon_reg here because it won't do anything if
5282 SRC is a hard register. */
5284 int src_q = REG_QTY (REGNO (src));
5285 struct qty_table_elem *src_ent = &qty_table[src_q];
5286 int first = src_ent->first_reg;
5287 rtx new_src
5288 = (first >= FIRST_PSEUDO_REGISTER
5289 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5291 /* We must use validate-change even for this, because this
5292 might be a special no-op instruction, suitable only to
5293 tag notes onto. */
5294 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5296 src = new_src;
5297 /* If we had a constant that is cheaper than what we are now
5298 setting SRC to, use that constant. We ignored it when we
5299 thought we could make this into a no-op. */
5300 if (src_const && COST (src_const) < COST (src)
5301 && validate_change (insn, &SET_SRC (sets[i].rtl), src_const,
5303 src = src_const;
5308 /* If we made a change, recompute SRC values. */
5309 if (src != sets[i].src)
5311 cse_altered = 1;
5312 do_not_record = 0;
5313 hash_arg_in_memory = 0;
5314 sets[i].src = src;
5315 sets[i].src_hash = HASH (src, mode);
5316 sets[i].src_volatile = do_not_record;
5317 sets[i].src_in_memory = hash_arg_in_memory;
5318 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5321 /* If this is a single SET, we are setting a register, and we have an
5322 equivalent constant, we want to add a REG_NOTE. We don't want
5323 to write a REG_EQUAL note for a constant pseudo since verifying that
5324 that pseudo hasn't been eliminated is a pain. Such a note also
5325 won't help anything.
5327 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5328 which can be created for a reference to a compile time computable
5329 entry in a jump table. */
5331 if (n_sets == 1 && src_const && GET_CODE (dest) == REG
5332 && GET_CODE (src_const) != REG
5333 && ! (GET_CODE (src_const) == CONST
5334 && GET_CODE (XEXP (src_const, 0)) == MINUS
5335 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5336 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5338 tem = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5340 /* Make sure that the rtx is not shared with any other insn. */
5341 src_const = copy_rtx (src_const);
5343 /* Record the actual constant value in a REG_EQUAL note, making
5344 a new one if one does not already exist. */
5345 if (tem)
5346 XEXP (tem, 0) = src_const;
5347 else
5348 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL,
5349 src_const, REG_NOTES (insn));
5351 /* If storing a constant value in a register that
5352 previously held the constant value 0,
5353 record this fact with a REG_WAS_0 note on this insn.
5355 Note that the *register* is required to have previously held 0,
5356 not just any register in the quantity and we must point to the
5357 insn that set that register to zero.
5359 Rather than track each register individually, we just see if
5360 the last set for this quantity was for this register. */
5362 if (REGNO_QTY_VALID_P (REGNO (dest)))
5364 int dest_q = REG_QTY (REGNO (dest));
5365 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5367 if (dest_ent->const_rtx == const0_rtx)
5369 /* See if we previously had a REG_WAS_0 note. */
5370 rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
5371 rtx const_insn = dest_ent->const_insn;
5373 if ((tem = single_set (const_insn)) != 0
5374 && rtx_equal_p (SET_DEST (tem), dest))
5376 if (note)
5377 XEXP (note, 0) = const_insn;
5378 else
5379 REG_NOTES (insn)
5380 = gen_rtx_INSN_LIST (REG_WAS_0, const_insn,
5381 REG_NOTES (insn));
5387 /* Now deal with the destination. */
5388 do_not_record = 0;
5390 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
5391 to the MEM or REG within it. */
5392 while (GET_CODE (dest) == SIGN_EXTRACT
5393 || GET_CODE (dest) == ZERO_EXTRACT
5394 || GET_CODE (dest) == SUBREG
5395 || GET_CODE (dest) == STRICT_LOW_PART)
5396 dest = XEXP (dest, 0);
5398 sets[i].inner_dest = dest;
5400 if (GET_CODE (dest) == MEM)
5402 #ifdef PUSH_ROUNDING
5403 /* Stack pushes invalidate the stack pointer. */
5404 rtx addr = XEXP (dest, 0);
5405 if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
5406 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
5407 && XEXP (addr, 0) == stack_pointer_rtx)
5408 invalidate (stack_pointer_rtx, Pmode);
5409 #endif
5410 dest = fold_rtx (dest, insn);
5413 /* Compute the hash code of the destination now,
5414 before the effects of this instruction are recorded,
5415 since the register values used in the address computation
5416 are those before this instruction. */
5417 sets[i].dest_hash = HASH (dest, mode);
5419 /* Don't enter a bit-field in the hash table
5420 because the value in it after the store
5421 may not equal what was stored, due to truncation. */
5423 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5424 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
5426 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5428 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5429 && GET_CODE (width) == CONST_INT
5430 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5431 && ! (INTVAL (src_const)
5432 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5433 /* Exception: if the value is constant,
5434 and it won't be truncated, record it. */
5436 else
5438 /* This is chosen so that the destination will be invalidated
5439 but no new value will be recorded.
5440 We must invalidate because sometimes constant
5441 values can be recorded for bitfields. */
5442 sets[i].src_elt = 0;
5443 sets[i].src_volatile = 1;
5444 src_eqv = 0;
5445 src_eqv_elt = 0;
5449 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5450 the insn. */
5451 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5453 /* One less use of the label this insn used to jump to. */
5454 if (JUMP_LABEL (insn) != 0)
5455 --LABEL_NUSES (JUMP_LABEL (insn));
5456 PUT_CODE (insn, NOTE);
5457 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
5458 NOTE_SOURCE_FILE (insn) = 0;
5459 cse_jumps_altered = 1;
5460 /* No more processing for this set. */
5461 sets[i].rtl = 0;
5464 /* If this SET is now setting PC to a label, we know it used to
5465 be a conditional or computed branch. So we see if we can follow
5466 it. If it was a computed branch, delete it and re-emit. */
5467 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
5469 /* If this is not in the format for a simple branch and
5470 we are the only SET in it, re-emit it. */
5471 if (! simplejump_p (insn) && n_sets == 1)
5473 rtx new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5474 JUMP_LABEL (new) = XEXP (src, 0);
5475 LABEL_NUSES (XEXP (src, 0))++;
5476 insn = new;
5478 else
5479 /* Otherwise, force rerecognition, since it probably had
5480 a different pattern before.
5481 This shouldn't really be necessary, since whatever
5482 changed the source value above should have done this.
5483 Until the right place is found, might as well do this here. */
5484 INSN_CODE (insn) = -1;
5486 never_reached_warning (insn);
5488 /* Now emit a BARRIER after the unconditional jump. Do not bother
5489 deleting any unreachable code, let jump/flow do that. */
5490 if (NEXT_INSN (insn) != 0
5491 && GET_CODE (NEXT_INSN (insn)) != BARRIER)
5492 emit_barrier_after (insn);
5494 cse_jumps_altered = 1;
5495 sets[i].rtl = 0;
5498 /* If destination is volatile, invalidate it and then do no further
5499 processing for this assignment. */
5501 else if (do_not_record)
5503 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
5504 || GET_CODE (dest) == MEM)
5505 invalidate (dest, VOIDmode);
5506 else if (GET_CODE (dest) == STRICT_LOW_PART
5507 || GET_CODE (dest) == ZERO_EXTRACT)
5508 invalidate (XEXP (dest, 0), GET_MODE (dest));
5509 sets[i].rtl = 0;
5512 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5513 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5515 #ifdef HAVE_cc0
5516 /* If setting CC0, record what it was set to, or a constant, if it
5517 is equivalent to a constant. If it is being set to a floating-point
5518 value, make a COMPARE with the appropriate constant of 0. If we
5519 don't do this, later code can interpret this as a test against
5520 const0_rtx, which can cause problems if we try to put it into an
5521 insn as a floating-point operand. */
5522 if (dest == cc0_rtx)
5524 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5525 this_insn_cc0_mode = mode;
5526 if (FLOAT_MODE_P (mode))
5527 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5528 CONST0_RTX (mode));
5530 #endif
5533 /* Now enter all non-volatile source expressions in the hash table
5534 if they are not already present.
5535 Record their equivalence classes in src_elt.
5536 This way we can insert the corresponding destinations into
5537 the same classes even if the actual sources are no longer in them
5538 (having been invalidated). */
5540 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5541 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5543 register struct table_elt *elt;
5544 register struct table_elt *classp = sets[0].src_elt;
5545 rtx dest = SET_DEST (sets[0].rtl);
5546 enum machine_mode eqvmode = GET_MODE (dest);
5548 if (GET_CODE (dest) == STRICT_LOW_PART)
5550 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5551 classp = 0;
5553 if (insert_regs (src_eqv, classp, 0))
5555 rehash_using_reg (src_eqv);
5556 src_eqv_hash = HASH (src_eqv, eqvmode);
5558 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5559 elt->in_memory = src_eqv_in_memory;
5560 src_eqv_elt = elt;
5562 /* Check to see if src_eqv_elt is the same as a set source which
5563 does not yet have an elt, and if so set the elt of the set source
5564 to src_eqv_elt. */
5565 for (i = 0; i < n_sets; i++)
5566 if (sets[i].rtl && sets[i].src_elt == 0
5567 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5568 sets[i].src_elt = src_eqv_elt;
5571 for (i = 0; i < n_sets; i++)
5572 if (sets[i].rtl && ! sets[i].src_volatile
5573 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5575 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5577 /* REG_EQUAL in setting a STRICT_LOW_PART
5578 gives an equivalent for the entire destination register,
5579 not just for the subreg being stored in now.
5580 This is a more interesting equivalence, so we arrange later
5581 to treat the entire reg as the destination. */
5582 sets[i].src_elt = src_eqv_elt;
5583 sets[i].src_hash = src_eqv_hash;
5585 else
5587 /* Insert source and constant equivalent into hash table, if not
5588 already present. */
5589 register struct table_elt *classp = src_eqv_elt;
5590 register rtx src = sets[i].src;
5591 register rtx dest = SET_DEST (sets[i].rtl);
5592 enum machine_mode mode
5593 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5595 if (sets[i].src_elt == 0)
5597 /* Don't put a hard register source into the table if this is
5598 the last insn of a libcall. In this case, we only need
5599 to put src_eqv_elt in src_elt. */
5600 if (GET_CODE (src) != REG
5601 || REGNO (src) >= FIRST_PSEUDO_REGISTER
5602 || ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5604 register struct table_elt *elt;
5606 /* Note that these insert_regs calls cannot remove
5607 any of the src_elt's, because they would have failed to
5608 match if not still valid. */
5609 if (insert_regs (src, classp, 0))
5611 rehash_using_reg (src);
5612 sets[i].src_hash = HASH (src, mode);
5614 elt = insert (src, classp, sets[i].src_hash, mode);
5615 elt->in_memory = sets[i].src_in_memory;
5616 sets[i].src_elt = classp = elt;
5618 else
5619 sets[i].src_elt = classp;
5621 if (sets[i].src_const && sets[i].src_const_elt == 0
5622 && src != sets[i].src_const
5623 && ! rtx_equal_p (sets[i].src_const, src))
5624 sets[i].src_elt = insert (sets[i].src_const, classp,
5625 sets[i].src_const_hash, mode);
5628 else if (sets[i].src_elt == 0)
5629 /* If we did not insert the source into the hash table (e.g., it was
5630 volatile), note the equivalence class for the REG_EQUAL value, if any,
5631 so that the destination goes into that class. */
5632 sets[i].src_elt = src_eqv_elt;
5634 invalidate_from_clobbers (x);
5636 /* Some registers are invalidated by subroutine calls. Memory is
5637 invalidated by non-constant calls. */
5639 if (GET_CODE (insn) == CALL_INSN)
5641 if (! CONST_CALL_P (insn))
5642 invalidate_memory ();
5643 invalidate_for_call ();
5646 /* Now invalidate everything set by this instruction.
5647 If a SUBREG or other funny destination is being set,
5648 sets[i].rtl is still nonzero, so here we invalidate the reg
5649 a part of which is being set. */
5651 for (i = 0; i < n_sets; i++)
5652 if (sets[i].rtl)
5654 /* We can't use the inner dest, because the mode associated with
5655 a ZERO_EXTRACT is significant. */
5656 register rtx dest = SET_DEST (sets[i].rtl);
5658 /* Needed for registers to remove the register from its
5659 previous quantity's chain.
5660 Needed for memory if this is a nonvarying address, unless
5661 we have just done an invalidate_memory that covers even those. */
5662 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
5663 || GET_CODE (dest) == MEM)
5664 invalidate (dest, VOIDmode);
5665 else if (GET_CODE (dest) == STRICT_LOW_PART
5666 || GET_CODE (dest) == ZERO_EXTRACT)
5667 invalidate (XEXP (dest, 0), GET_MODE (dest));
5670 /* A volatile ASM invalidates everything. */
5671 if (GET_CODE (insn) == INSN
5672 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5673 && MEM_VOLATILE_P (PATTERN (insn)))
5674 flush_hash_table ();
5676 /* Make sure registers mentioned in destinations
5677 are safe for use in an expression to be inserted.
5678 This removes from the hash table
5679 any invalid entry that refers to one of these registers.
5681 We don't care about the return value from mention_regs because
5682 we are going to hash the SET_DEST values unconditionally. */
5684 for (i = 0; i < n_sets; i++)
5686 if (sets[i].rtl)
5688 rtx x = SET_DEST (sets[i].rtl);
5690 if (GET_CODE (x) != REG)
5691 mention_regs (x);
5692 else
5694 /* We used to rely on all references to a register becoming
5695 inaccessible when a register changes to a new quantity,
5696 since that changes the hash code. However, that is not
5697 safe, since after HASH_SIZE new quantities we get a
5698 hash 'collision' of a register with its own invalid
5699 entries. And since SUBREGs have been changed not to
5700 change their hash code with the hash code of the register,
5701 it wouldn't work any longer at all. So we have to check
5702 for any invalid references lying around now.
5703 This code is similar to the REG case in mention_regs,
5704 but it knows that reg_tick has been incremented, and
5705 it leaves reg_in_table as -1 . */
5706 register int regno = REGNO (x);
5707 register int endregno
5708 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
5709 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
5710 int i;
5712 for (i = regno; i < endregno; i++)
5714 if (REG_IN_TABLE (i) >= 0)
5716 remove_invalid_refs (i);
5717 REG_IN_TABLE (i) = -1;
5724 /* We may have just removed some of the src_elt's from the hash table.
5725 So replace each one with the current head of the same class. */
5727 for (i = 0; i < n_sets; i++)
5728 if (sets[i].rtl)
5730 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5731 /* If elt was removed, find current head of same class,
5732 or 0 if nothing remains of that class. */
5734 register struct table_elt *elt = sets[i].src_elt;
5736 while (elt && elt->prev_same_value)
5737 elt = elt->prev_same_value;
5739 while (elt && elt->first_same_value == 0)
5740 elt = elt->next_same_value;
5741 sets[i].src_elt = elt ? elt->first_same_value : 0;
5745 /* Now insert the destinations into their equivalence classes. */
5747 for (i = 0; i < n_sets; i++)
5748 if (sets[i].rtl)
5750 register rtx dest = SET_DEST (sets[i].rtl);
5751 rtx inner_dest = sets[i].inner_dest;
5752 register struct table_elt *elt;
5754 /* Don't record value if we are not supposed to risk allocating
5755 floating-point values in registers that might be wider than
5756 memory. */
5757 if ((flag_float_store
5758 && GET_CODE (dest) == MEM
5759 && FLOAT_MODE_P (GET_MODE (dest)))
5760 /* Don't record BLKmode values, because we don't know the
5761 size of it, and can't be sure that other BLKmode values
5762 have the same or smaller size. */
5763 || GET_MODE (dest) == BLKmode
5764 /* Don't record values of destinations set inside a libcall block
5765 since we might delete the libcall. Things should have been set
5766 up so we won't want to reuse such a value, but we play it safe
5767 here. */
5768 || libcall_insn
5769 /* If we didn't put a REG_EQUAL value or a source into the hash
5770 table, there is no point is recording DEST. */
5771 || sets[i].src_elt == 0
5772 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5773 or SIGN_EXTEND, don't record DEST since it can cause
5774 some tracking to be wrong.
5776 ??? Think about this more later. */
5777 || (GET_CODE (dest) == SUBREG
5778 && (GET_MODE_SIZE (GET_MODE (dest))
5779 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5780 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5781 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5782 continue;
5784 /* STRICT_LOW_PART isn't part of the value BEING set,
5785 and neither is the SUBREG inside it.
5786 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5787 if (GET_CODE (dest) == STRICT_LOW_PART)
5788 dest = SUBREG_REG (XEXP (dest, 0));
5790 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
5791 /* Registers must also be inserted into chains for quantities. */
5792 if (insert_regs (dest, sets[i].src_elt, 1))
5794 /* If `insert_regs' changes something, the hash code must be
5795 recalculated. */
5796 rehash_using_reg (dest);
5797 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5800 if (GET_CODE (inner_dest) == MEM
5801 && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
5802 /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
5803 that (MEM (ADDRESSOF (X))) is equivalent to Y.
5804 Consider the case in which the address of the MEM is
5805 passed to a function, which alters the MEM. Then, if we
5806 later use Y instead of the MEM we'll miss the update. */
5807 elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
5808 else
5809 elt = insert (dest, sets[i].src_elt,
5810 sets[i].dest_hash, GET_MODE (dest));
5812 elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
5813 && (! RTX_UNCHANGING_P (sets[i].inner_dest)
5814 || FIXED_BASE_PLUS_P (XEXP (sets[i].inner_dest,
5815 0))));
5817 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5818 narrower than M2, and both M1 and M2 are the same number of words,
5819 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5820 make that equivalence as well.
5822 However, BAR may have equivalences for which gen_lowpart_if_possible
5823 will produce a simpler value than gen_lowpart_if_possible applied to
5824 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5825 BAR's equivalences. If we don't get a simplified form, make
5826 the SUBREG. It will not be used in an equivalence, but will
5827 cause two similar assignments to be detected.
5829 Note the loop below will find SUBREG_REG (DEST) since we have
5830 already entered SRC and DEST of the SET in the table. */
5832 if (GET_CODE (dest) == SUBREG
5833 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5834 / UNITS_PER_WORD)
5835 == (GET_MODE_SIZE (GET_MODE (dest)) - 1)/ UNITS_PER_WORD)
5836 && (GET_MODE_SIZE (GET_MODE (dest))
5837 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5838 && sets[i].src_elt != 0)
5840 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5841 struct table_elt *elt, *classp = 0;
5843 for (elt = sets[i].src_elt->first_same_value; elt;
5844 elt = elt->next_same_value)
5846 rtx new_src = 0;
5847 unsigned src_hash;
5848 struct table_elt *src_elt;
5850 /* Ignore invalid entries. */
5851 if (GET_CODE (elt->exp) != REG
5852 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
5853 continue;
5855 new_src = gen_lowpart_if_possible (new_mode, elt->exp);
5856 if (new_src == 0)
5857 new_src = gen_rtx_SUBREG (new_mode, elt->exp, 0);
5859 src_hash = HASH (new_src, new_mode);
5860 src_elt = lookup (new_src, src_hash, new_mode);
5862 /* Put the new source in the hash table is if isn't
5863 already. */
5864 if (src_elt == 0)
5866 if (insert_regs (new_src, classp, 0))
5868 rehash_using_reg (new_src);
5869 src_hash = HASH (new_src, new_mode);
5871 src_elt = insert (new_src, classp, src_hash, new_mode);
5872 src_elt->in_memory = elt->in_memory;
5874 else if (classp && classp != src_elt->first_same_value)
5875 /* Show that two things that we've seen before are
5876 actually the same. */
5877 merge_equiv_classes (src_elt, classp);
5879 classp = src_elt->first_same_value;
5880 /* Ignore invalid entries. */
5881 while (classp
5882 && GET_CODE (classp->exp) != REG
5883 && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
5884 classp = classp->next_same_value;
5889 /* Special handling for (set REG0 REG1)
5890 where REG0 is the "cheapest", cheaper than REG1.
5891 After cse, REG1 will probably not be used in the sequel,
5892 so (if easily done) change this insn to (set REG1 REG0) and
5893 replace REG1 with REG0 in the previous insn that computed their value.
5894 Then REG1 will become a dead store and won't cloud the situation
5895 for later optimizations.
5897 Do not make this change if REG1 is a hard register, because it will
5898 then be used in the sequel and we may be changing a two-operand insn
5899 into a three-operand insn.
5901 Also do not do this if we are operating on a copy of INSN.
5903 Also don't do this if INSN ends a libcall; this would cause an unrelated
5904 register to be set in the middle of a libcall, and we then get bad code
5905 if the libcall is deleted. */
5907 if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
5908 && NEXT_INSN (PREV_INSN (insn)) == insn
5909 && GET_CODE (SET_SRC (sets[0].rtl)) == REG
5910 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5911 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5913 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5914 struct qty_table_elem *src_ent = &qty_table[src_q];
5916 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5917 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5919 rtx prev = PREV_INSN (insn);
5920 while (prev && GET_CODE (prev) == NOTE)
5921 prev = PREV_INSN (prev);
5923 if (prev && GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SET
5924 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl))
5926 rtx dest = SET_DEST (sets[0].rtl);
5927 rtx note = find_reg_note (prev, REG_EQUIV, NULL_RTX);
5929 validate_change (prev, & SET_DEST (PATTERN (prev)), dest, 1);
5930 validate_change (insn, & SET_DEST (sets[0].rtl),
5931 SET_SRC (sets[0].rtl), 1);
5932 validate_change (insn, & SET_SRC (sets[0].rtl), dest, 1);
5933 apply_change_group ();
5935 /* If REG1 was equivalent to a constant, REG0 is not. */
5936 if (note)
5937 PUT_REG_NOTE_KIND (note, REG_EQUAL);
5939 /* If there was a REG_WAS_0 note on PREV, remove it. Move
5940 any REG_WAS_0 note on INSN to PREV. */
5941 note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
5942 if (note)
5943 remove_note (prev, note);
5945 note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
5946 if (note)
5948 remove_note (insn, note);
5949 XEXP (note, 1) = REG_NOTES (prev);
5950 REG_NOTES (prev) = note;
5953 /* If INSN has a REG_EQUAL note, and this note mentions REG0,
5954 then we must delete it, because the value in REG0 has changed. */
5955 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5956 if (note && reg_mentioned_p (dest, XEXP (note, 0)))
5957 remove_note (insn, note);
5962 /* If this is a conditional jump insn, record any known equivalences due to
5963 the condition being tested. */
5965 last_jump_equiv_class = 0;
5966 if (GET_CODE (insn) == JUMP_INSN
5967 && n_sets == 1 && GET_CODE (x) == SET
5968 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
5969 record_jump_equiv (insn, 0);
5971 #ifdef HAVE_cc0
5972 /* If the previous insn set CC0 and this insn no longer references CC0,
5973 delete the previous insn. Here we use the fact that nothing expects CC0
5974 to be valid over an insn, which is true until the final pass. */
5975 if (prev_insn && GET_CODE (prev_insn) == INSN
5976 && (tem = single_set (prev_insn)) != 0
5977 && SET_DEST (tem) == cc0_rtx
5978 && ! reg_mentioned_p (cc0_rtx, x))
5980 PUT_CODE (prev_insn, NOTE);
5981 NOTE_LINE_NUMBER (prev_insn) = NOTE_INSN_DELETED;
5982 NOTE_SOURCE_FILE (prev_insn) = 0;
5985 prev_insn_cc0 = this_insn_cc0;
5986 prev_insn_cc0_mode = this_insn_cc0_mode;
5987 #endif
5989 prev_insn = insn;
5992 /* Remove from the hash table all expressions that reference memory. */
5994 static void
5995 invalidate_memory ()
5997 register int i;
5998 register struct table_elt *p, *next;
6000 for (i = 0; i < HASH_SIZE; i++)
6001 for (p = table[i]; p; p = next)
6003 next = p->next_same_hash;
6004 if (p->in_memory)
6005 remove_from_table (p, i);
6009 /* If ADDR is an address that implicitly affects the stack pointer, return
6010 1 and update the register tables to show the effect. Else, return 0. */
6012 static int
6013 addr_affects_sp_p (addr)
6014 register rtx addr;
6016 if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
6017 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
6018 && GET_CODE (XEXP (addr, 0)) == REG
6019 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6021 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6022 REG_TICK (STACK_POINTER_REGNUM)++;
6024 /* This should be *very* rare. */
6025 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6026 invalidate (stack_pointer_rtx, VOIDmode);
6028 return 1;
6031 return 0;
6034 /* Perform invalidation on the basis of everything about an insn
6035 except for invalidating the actual places that are SET in it.
6036 This includes the places CLOBBERed, and anything that might
6037 alias with something that is SET or CLOBBERed.
6039 X is the pattern of the insn. */
6041 static void
6042 invalidate_from_clobbers (x)
6043 rtx x;
6045 if (GET_CODE (x) == CLOBBER)
6047 rtx ref = XEXP (x, 0);
6048 if (ref)
6050 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
6051 || GET_CODE (ref) == MEM)
6052 invalidate (ref, VOIDmode);
6053 else if (GET_CODE (ref) == STRICT_LOW_PART
6054 || GET_CODE (ref) == ZERO_EXTRACT)
6055 invalidate (XEXP (ref, 0), GET_MODE (ref));
6058 else if (GET_CODE (x) == PARALLEL)
6060 register int i;
6061 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6063 register rtx y = XVECEXP (x, 0, i);
6064 if (GET_CODE (y) == CLOBBER)
6066 rtx ref = XEXP (y, 0);
6067 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
6068 || GET_CODE (ref) == MEM)
6069 invalidate (ref, VOIDmode);
6070 else if (GET_CODE (ref) == STRICT_LOW_PART
6071 || GET_CODE (ref) == ZERO_EXTRACT)
6072 invalidate (XEXP (ref, 0), GET_MODE (ref));
6078 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6079 and replace any registers in them with either an equivalent constant
6080 or the canonical form of the register. If we are inside an address,
6081 only do this if the address remains valid.
6083 OBJECT is 0 except when within a MEM in which case it is the MEM.
6085 Return the replacement for X. */
6087 static rtx
6088 cse_process_notes (x, object)
6089 rtx x;
6090 rtx object;
6092 enum rtx_code code = GET_CODE (x);
6093 const char *fmt = GET_RTX_FORMAT (code);
6094 int i;
6096 switch (code)
6098 case CONST_INT:
6099 case CONST:
6100 case SYMBOL_REF:
6101 case LABEL_REF:
6102 case CONST_DOUBLE:
6103 case PC:
6104 case CC0:
6105 case LO_SUM:
6106 return x;
6108 case MEM:
6109 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), x);
6110 return x;
6112 case EXPR_LIST:
6113 case INSN_LIST:
6114 if (REG_NOTE_KIND (x) == REG_EQUAL)
6115 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6116 if (XEXP (x, 1))
6117 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6118 return x;
6120 case SIGN_EXTEND:
6121 case ZERO_EXTEND:
6122 case SUBREG:
6124 rtx new = cse_process_notes (XEXP (x, 0), object);
6125 /* We don't substitute VOIDmode constants into these rtx,
6126 since they would impede folding. */
6127 if (GET_MODE (new) != VOIDmode)
6128 validate_change (object, &XEXP (x, 0), new, 0);
6129 return x;
6132 case REG:
6133 i = REG_QTY (REGNO (x));
6135 /* Return a constant or a constant register. */
6136 if (REGNO_QTY_VALID_P (REGNO (x)))
6138 struct qty_table_elem *ent = &qty_table[i];
6140 if (ent->const_rtx != NULL_RTX
6141 && (CONSTANT_P (ent->const_rtx)
6142 || GET_CODE (ent->const_rtx) == REG))
6144 rtx new = gen_lowpart_if_possible (GET_MODE (x), ent->const_rtx);
6145 if (new)
6146 return new;
6150 /* Otherwise, canonicalize this register. */
6151 return canon_reg (x, NULL_RTX);
6153 default:
6154 break;
6157 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6158 if (fmt[i] == 'e')
6159 validate_change (object, &XEXP (x, i),
6160 cse_process_notes (XEXP (x, i), object), 0);
6162 return x;
6165 /* Find common subexpressions between the end test of a loop and the beginning
6166 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
6168 Often we have a loop where an expression in the exit test is used
6169 in the body of the loop. For example "while (*p) *q++ = *p++;".
6170 Because of the way we duplicate the loop exit test in front of the loop,
6171 however, we don't detect that common subexpression. This will be caught
6172 when global cse is implemented, but this is a quite common case.
6174 This function handles the most common cases of these common expressions.
6175 It is called after we have processed the basic block ending with the
6176 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
6177 jumps to a label used only once. */
6179 static void
6180 cse_around_loop (loop_start)
6181 rtx loop_start;
6183 rtx insn;
6184 int i;
6185 struct table_elt *p;
6187 /* If the jump at the end of the loop doesn't go to the start, we don't
6188 do anything. */
6189 for (insn = PREV_INSN (loop_start);
6190 insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
6191 insn = PREV_INSN (insn))
6194 if (insn == 0
6195 || GET_CODE (insn) != NOTE
6196 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
6197 return;
6199 /* If the last insn of the loop (the end test) was an NE comparison,
6200 we will interpret it as an EQ comparison, since we fell through
6201 the loop. Any equivalences resulting from that comparison are
6202 therefore not valid and must be invalidated. */
6203 if (last_jump_equiv_class)
6204 for (p = last_jump_equiv_class->first_same_value; p;
6205 p = p->next_same_value)
6207 if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
6208 || (GET_CODE (p->exp) == SUBREG
6209 && GET_CODE (SUBREG_REG (p->exp)) == REG))
6210 invalidate (p->exp, VOIDmode);
6211 else if (GET_CODE (p->exp) == STRICT_LOW_PART
6212 || GET_CODE (p->exp) == ZERO_EXTRACT)
6213 invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
6216 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
6217 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
6219 The only thing we do with SET_DEST is invalidate entries, so we
6220 can safely process each SET in order. It is slightly less efficient
6221 to do so, but we only want to handle the most common cases.
6223 The gen_move_insn call in cse_set_around_loop may create new pseudos.
6224 These pseudos won't have valid entries in any of the tables indexed
6225 by register number, such as reg_qty. We avoid out-of-range array
6226 accesses by not processing any instructions created after cse started. */
6228 for (insn = NEXT_INSN (loop_start);
6229 GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
6230 && INSN_UID (insn) < max_insn_uid
6231 && ! (GET_CODE (insn) == NOTE
6232 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
6233 insn = NEXT_INSN (insn))
6235 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
6236 && (GET_CODE (PATTERN (insn)) == SET
6237 || GET_CODE (PATTERN (insn)) == CLOBBER))
6238 cse_set_around_loop (PATTERN (insn), insn, loop_start);
6239 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
6240 && GET_CODE (PATTERN (insn)) == PARALLEL)
6241 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6242 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
6243 || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
6244 cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
6245 loop_start);
6249 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6250 since they are done elsewhere. This function is called via note_stores. */
6252 static void
6253 invalidate_skipped_set (dest, set, data)
6254 rtx set;
6255 rtx dest;
6256 void *data ATTRIBUTE_UNUSED;
6258 enum rtx_code code = GET_CODE (dest);
6260 if (code == MEM
6261 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6262 /* There are times when an address can appear varying and be a PLUS
6263 during this scan when it would be a fixed address were we to know
6264 the proper equivalences. So invalidate all memory if there is
6265 a BLKmode or nonscalar memory reference or a reference to a
6266 variable address. */
6267 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6268 || cse_rtx_varies_p (XEXP (dest, 0))))
6270 invalidate_memory ();
6271 return;
6274 if (GET_CODE (set) == CLOBBER
6275 #ifdef HAVE_cc0
6276 || dest == cc0_rtx
6277 #endif
6278 || dest == pc_rtx)
6279 return;
6281 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6282 invalidate (XEXP (dest, 0), GET_MODE (dest));
6283 else if (code == REG || code == SUBREG || code == MEM)
6284 invalidate (dest, VOIDmode);
6287 /* Invalidate all insns from START up to the end of the function or the
6288 next label. This called when we wish to CSE around a block that is
6289 conditionally executed. */
6291 static void
6292 invalidate_skipped_block (start)
6293 rtx start;
6295 rtx insn;
6297 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
6298 insn = NEXT_INSN (insn))
6300 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6301 continue;
6303 if (GET_CODE (insn) == CALL_INSN)
6305 if (! CONST_CALL_P (insn))
6306 invalidate_memory ();
6307 invalidate_for_call ();
6310 invalidate_from_clobbers (PATTERN (insn));
6311 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6315 /* If modifying X will modify the value in *DATA (which is really an
6316 `rtx *'), indicate that fact by setting the pointed to value to
6317 NULL_RTX. */
6319 static void
6320 cse_check_loop_start (x, set, data)
6321 rtx x;
6322 rtx set ATTRIBUTE_UNUSED;
6323 void *data;
6325 rtx *cse_check_loop_start_value = (rtx *) data;
6327 if (*cse_check_loop_start_value == NULL_RTX
6328 || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
6329 return;
6331 if ((GET_CODE (x) == MEM && GET_CODE (*cse_check_loop_start_value) == MEM)
6332 || reg_overlap_mentioned_p (x, *cse_check_loop_start_value))
6333 *cse_check_loop_start_value = NULL_RTX;
6336 /* X is a SET or CLOBBER contained in INSN that was found near the start of
6337 a loop that starts with the label at LOOP_START.
6339 If X is a SET, we see if its SET_SRC is currently in our hash table.
6340 If so, we see if it has a value equal to some register used only in the
6341 loop exit code (as marked by jump.c).
6343 If those two conditions are true, we search backwards from the start of
6344 the loop to see if that same value was loaded into a register that still
6345 retains its value at the start of the loop.
6347 If so, we insert an insn after the load to copy the destination of that
6348 load into the equivalent register and (try to) replace our SET_SRC with that
6349 register.
6351 In any event, we invalidate whatever this SET or CLOBBER modifies. */
6353 static void
6354 cse_set_around_loop (x, insn, loop_start)
6355 rtx x;
6356 rtx insn;
6357 rtx loop_start;
6359 struct table_elt *src_elt;
6361 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
6362 are setting PC or CC0 or whose SET_SRC is already a register. */
6363 if (GET_CODE (x) == SET
6364 && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
6365 && GET_CODE (SET_SRC (x)) != REG)
6367 src_elt = lookup (SET_SRC (x),
6368 HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
6369 GET_MODE (SET_DEST (x)));
6371 if (src_elt)
6372 for (src_elt = src_elt->first_same_value; src_elt;
6373 src_elt = src_elt->next_same_value)
6374 if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
6375 && COST (src_elt->exp) < COST (SET_SRC (x)))
6377 rtx p, set;
6379 /* Look for an insn in front of LOOP_START that sets
6380 something in the desired mode to SET_SRC (x) before we hit
6381 a label or CALL_INSN. */
6383 for (p = prev_nonnote_insn (loop_start);
6384 p && GET_CODE (p) != CALL_INSN
6385 && GET_CODE (p) != CODE_LABEL;
6386 p = prev_nonnote_insn (p))
6387 if ((set = single_set (p)) != 0
6388 && GET_CODE (SET_DEST (set)) == REG
6389 && GET_MODE (SET_DEST (set)) == src_elt->mode
6390 && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
6392 /* We now have to ensure that nothing between P
6393 and LOOP_START modified anything referenced in
6394 SET_SRC (x). We know that nothing within the loop
6395 can modify it, or we would have invalidated it in
6396 the hash table. */
6397 rtx q;
6398 rtx cse_check_loop_start_value = SET_SRC (x);
6399 for (q = p; q != loop_start; q = NEXT_INSN (q))
6400 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
6401 note_stores (PATTERN (q),
6402 cse_check_loop_start,
6403 &cse_check_loop_start_value);
6405 /* If nothing was changed and we can replace our
6406 SET_SRC, add an insn after P to copy its destination
6407 to what we will be replacing SET_SRC with. */
6408 if (cse_check_loop_start_value
6409 && validate_change (insn, &SET_SRC (x),
6410 src_elt->exp, 0))
6412 /* If this creates new pseudos, this is unsafe,
6413 because the regno of new pseudo is unsuitable
6414 to index into reg_qty when cse_insn processes
6415 the new insn. Therefore, if a new pseudo was
6416 created, discard this optimization. */
6417 int nregs = max_reg_num ();
6418 rtx move
6419 = gen_move_insn (src_elt->exp, SET_DEST (set));
6420 if (nregs != max_reg_num ())
6422 if (! validate_change (insn, &SET_SRC (x),
6423 SET_SRC (set), 0))
6424 abort ();
6426 else
6427 emit_insn_after (move, p);
6429 break;
6434 /* Deal with the destination of X affecting the stack pointer. */
6435 addr_affects_sp_p (SET_DEST (x));
6437 /* See comment on similar code in cse_insn for explanation of these
6438 tests. */
6439 if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
6440 || GET_CODE (SET_DEST (x)) == MEM)
6441 invalidate (SET_DEST (x), VOIDmode);
6442 else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6443 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
6444 invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
6447 /* Find the end of INSN's basic block and return its range,
6448 the total number of SETs in all the insns of the block, the last insn of the
6449 block, and the branch path.
6451 The branch path indicates which branches should be followed. If a non-zero
6452 path size is specified, the block should be rescanned and a different set
6453 of branches will be taken. The branch path is only used if
6454 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
6456 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6457 used to describe the block. It is filled in with the information about
6458 the current block. The incoming structure's branch path, if any, is used
6459 to construct the output branch path. */
6461 void
6462 cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
6463 rtx insn;
6464 struct cse_basic_block_data *data;
6465 int follow_jumps;
6466 int after_loop;
6467 int skip_blocks;
6469 rtx p = insn, q;
6470 int nsets = 0;
6471 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6472 rtx next = GET_RTX_CLASS (GET_CODE (insn)) == 'i' ? insn : next_real_insn (insn);
6473 int path_size = data->path_size;
6474 int path_entry = 0;
6475 int i;
6477 /* Update the previous branch path, if any. If the last branch was
6478 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
6479 shorten the path by one and look at the previous branch. We know that
6480 at least one branch must have been taken if PATH_SIZE is non-zero. */
6481 while (path_size > 0)
6483 if (data->path[path_size - 1].status != NOT_TAKEN)
6485 data->path[path_size - 1].status = NOT_TAKEN;
6486 break;
6488 else
6489 path_size--;
6492 /* If the first instruction is marked with QImode, that means we've
6493 already processed this block. Our caller will look at DATA->LAST
6494 to figure out where to go next. We want to return the next block
6495 in the instruction stream, not some branched-to block somewhere
6496 else. We accomplish this by pretending our called forbid us to
6497 follow jumps, or skip blocks. */
6498 if (GET_MODE (insn) == QImode)
6499 follow_jumps = skip_blocks = 0;
6501 /* Scan to end of this basic block. */
6502 while (p && GET_CODE (p) != CODE_LABEL)
6504 /* Don't cse out the end of a loop. This makes a difference
6505 only for the unusual loops that always execute at least once;
6506 all other loops have labels there so we will stop in any case.
6507 Cse'ing out the end of the loop is dangerous because it
6508 might cause an invariant expression inside the loop
6509 to be reused after the end of the loop. This would make it
6510 hard to move the expression out of the loop in loop.c,
6511 especially if it is one of several equivalent expressions
6512 and loop.c would like to eliminate it.
6514 If we are running after loop.c has finished, we can ignore
6515 the NOTE_INSN_LOOP_END. */
6517 if (! after_loop && GET_CODE (p) == NOTE
6518 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
6519 break;
6521 /* Don't cse over a call to setjmp; on some machines (eg vax)
6522 the regs restored by the longjmp come from
6523 a later time than the setjmp. */
6524 if (GET_CODE (p) == NOTE
6525 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
6526 break;
6528 /* A PARALLEL can have lots of SETs in it,
6529 especially if it is really an ASM_OPERANDS. */
6530 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
6531 && GET_CODE (PATTERN (p)) == PARALLEL)
6532 nsets += XVECLEN (PATTERN (p), 0);
6533 else if (GET_CODE (p) != NOTE)
6534 nsets += 1;
6536 /* Ignore insns made by CSE; they cannot affect the boundaries of
6537 the basic block. */
6539 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6540 high_cuid = INSN_CUID (p);
6541 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6542 low_cuid = INSN_CUID (p);
6544 /* See if this insn is in our branch path. If it is and we are to
6545 take it, do so. */
6546 if (path_entry < path_size && data->path[path_entry].branch == p)
6548 if (data->path[path_entry].status != NOT_TAKEN)
6549 p = JUMP_LABEL (p);
6551 /* Point to next entry in path, if any. */
6552 path_entry++;
6555 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6556 was specified, we haven't reached our maximum path length, there are
6557 insns following the target of the jump, this is the only use of the
6558 jump label, and the target label is preceded by a BARRIER.
6560 Alternatively, we can follow the jump if it branches around a
6561 block of code and there are no other branches into the block.
6562 In this case invalidate_skipped_block will be called to invalidate any
6563 registers set in the block when following the jump. */
6565 else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
6566 && GET_CODE (p) == JUMP_INSN
6567 && GET_CODE (PATTERN (p)) == SET
6568 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6569 && JUMP_LABEL (p) != 0
6570 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6571 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6573 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6574 if ((GET_CODE (q) != NOTE
6575 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6576 || NOTE_LINE_NUMBER (q) == NOTE_INSN_SETJMP)
6577 && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
6578 break;
6580 /* If we ran into a BARRIER, this code is an extension of the
6581 basic block when the branch is taken. */
6582 if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
6584 /* Don't allow ourself to keep walking around an
6585 always-executed loop. */
6586 if (next_real_insn (q) == next)
6588 p = NEXT_INSN (p);
6589 continue;
6592 /* Similarly, don't put a branch in our path more than once. */
6593 for (i = 0; i < path_entry; i++)
6594 if (data->path[i].branch == p)
6595 break;
6597 if (i != path_entry)
6598 break;
6600 data->path[path_entry].branch = p;
6601 data->path[path_entry++].status = TAKEN;
6603 /* This branch now ends our path. It was possible that we
6604 didn't see this branch the last time around (when the
6605 insn in front of the target was a JUMP_INSN that was
6606 turned into a no-op). */
6607 path_size = path_entry;
6609 p = JUMP_LABEL (p);
6610 /* Mark block so we won't scan it again later. */
6611 PUT_MODE (NEXT_INSN (p), QImode);
6613 /* Detect a branch around a block of code. */
6614 else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
6616 register rtx tmp;
6618 if (next_real_insn (q) == next)
6620 p = NEXT_INSN (p);
6621 continue;
6624 for (i = 0; i < path_entry; i++)
6625 if (data->path[i].branch == p)
6626 break;
6628 if (i != path_entry)
6629 break;
6631 /* This is no_labels_between_p (p, q) with an added check for
6632 reaching the end of a function (in case Q precedes P). */
6633 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6634 if (GET_CODE (tmp) == CODE_LABEL)
6635 break;
6637 if (tmp == q)
6639 data->path[path_entry].branch = p;
6640 data->path[path_entry++].status = AROUND;
6642 path_size = path_entry;
6644 p = JUMP_LABEL (p);
6645 /* Mark block so we won't scan it again later. */
6646 PUT_MODE (NEXT_INSN (p), QImode);
6650 p = NEXT_INSN (p);
6653 data->low_cuid = low_cuid;
6654 data->high_cuid = high_cuid;
6655 data->nsets = nsets;
6656 data->last = p;
6658 /* If all jumps in the path are not taken, set our path length to zero
6659 so a rescan won't be done. */
6660 for (i = path_size - 1; i >= 0; i--)
6661 if (data->path[i].status != NOT_TAKEN)
6662 break;
6664 if (i == -1)
6665 data->path_size = 0;
6666 else
6667 data->path_size = path_size;
6669 /* End the current branch path. */
6670 data->path[path_size].branch = 0;
6673 /* Perform cse on the instructions of a function.
6674 F is the first instruction.
6675 NREGS is one plus the highest pseudo-reg number used in the instruction.
6677 AFTER_LOOP is 1 if this is the cse call done after loop optimization
6678 (only if -frerun-cse-after-loop).
6680 Returns 1 if jump_optimize should be redone due to simplifications
6681 in conditional jump instructions. */
6684 cse_main (f, nregs, after_loop, file)
6685 rtx f;
6686 int nregs;
6687 int after_loop;
6688 FILE *file;
6690 struct cse_basic_block_data val;
6691 register rtx insn = f;
6692 register int i;
6694 cse_jumps_altered = 0;
6695 recorded_label_ref = 0;
6696 constant_pool_entries_cost = 0;
6697 val.path_size = 0;
6699 init_recog ();
6700 init_alias_analysis ();
6702 max_reg = nregs;
6704 max_insn_uid = get_max_uid ();
6706 reg_eqv_table = (struct reg_eqv_elem *)
6707 xmalloc (nregs * sizeof (struct reg_eqv_elem));
6709 #ifdef LOAD_EXTEND_OP
6711 /* Allocate scratch rtl here. cse_insn will fill in the memory reference
6712 and change the code and mode as appropriate. */
6713 memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
6714 #endif
6716 /* Discard all the free elements of the previous function
6717 since they are allocated in the temporarily obstack. */
6718 bzero ((char *) table, sizeof table);
6719 free_element_chain = 0;
6720 n_elements_made = 0;
6722 /* Find the largest uid. */
6724 max_uid = get_max_uid ();
6725 uid_cuid = (int *) xcalloc (max_uid + 1, sizeof (int));
6727 /* Compute the mapping from uids to cuids.
6728 CUIDs are numbers assigned to insns, like uids,
6729 except that cuids increase monotonically through the code.
6730 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6731 between two insns is not affected by -g. */
6733 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6735 if (GET_CODE (insn) != NOTE
6736 || NOTE_LINE_NUMBER (insn) < 0)
6737 INSN_CUID (insn) = ++i;
6738 else
6739 /* Give a line number note the same cuid as preceding insn. */
6740 INSN_CUID (insn) = i;
6743 /* Initialize which registers are clobbered by calls. */
6745 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
6747 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6748 if ((call_used_regs[i]
6749 /* Used to check !fixed_regs[i] here, but that isn't safe;
6750 fixed regs are still call-clobbered, and sched can get
6751 confused if they can "live across calls".
6753 The frame pointer is always preserved across calls. The arg
6754 pointer is if it is fixed. The stack pointer usually is, unless
6755 RETURN_POPS_ARGS, in which case an explicit CLOBBER
6756 will be present. If we are generating PIC code, the PIC offset
6757 table register is preserved across calls. */
6759 && i != STACK_POINTER_REGNUM
6760 && i != FRAME_POINTER_REGNUM
6761 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
6762 && i != HARD_FRAME_POINTER_REGNUM
6763 #endif
6764 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
6765 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
6766 #endif
6767 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
6768 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
6769 #endif
6771 || global_regs[i])
6772 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
6774 if (ggc_p)
6775 ggc_push_context ();
6777 /* Loop over basic blocks.
6778 Compute the maximum number of qty's needed for each basic block
6779 (which is 2 for each SET). */
6780 insn = f;
6781 while (insn)
6783 cse_altered = 0;
6784 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
6785 flag_cse_skip_blocks);
6787 /* If this basic block was already processed or has no sets, skip it. */
6788 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6790 PUT_MODE (insn, VOIDmode);
6791 insn = (val.last ? NEXT_INSN (val.last) : 0);
6792 val.path_size = 0;
6793 continue;
6796 cse_basic_block_start = val.low_cuid;
6797 cse_basic_block_end = val.high_cuid;
6798 max_qty = val.nsets * 2;
6800 if (file)
6801 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
6802 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6803 val.nsets);
6805 /* Make MAX_QTY bigger to give us room to optimize
6806 past the end of this basic block, if that should prove useful. */
6807 if (max_qty < 500)
6808 max_qty = 500;
6810 max_qty += max_reg;
6812 /* If this basic block is being extended by following certain jumps,
6813 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6814 Otherwise, we start after this basic block. */
6815 if (val.path_size > 0)
6816 cse_basic_block (insn, val.last, val.path, 0);
6817 else
6819 int old_cse_jumps_altered = cse_jumps_altered;
6820 rtx temp;
6822 /* When cse changes a conditional jump to an unconditional
6823 jump, we want to reprocess the block, since it will give
6824 us a new branch path to investigate. */
6825 cse_jumps_altered = 0;
6826 temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
6827 if (cse_jumps_altered == 0
6828 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
6829 insn = temp;
6831 cse_jumps_altered |= old_cse_jumps_altered;
6834 if (ggc_p && cse_altered)
6835 ggc_collect ();
6837 #ifdef USE_C_ALLOCA
6838 alloca (0);
6839 #endif
6842 if (ggc_p)
6843 ggc_pop_context ();
6845 if (max_elements_made < n_elements_made)
6846 max_elements_made = n_elements_made;
6848 /* Clean up. */
6849 end_alias_analysis ();
6850 free (uid_cuid);
6851 free (reg_eqv_table);
6853 return cse_jumps_altered || recorded_label_ref;
6856 /* Process a single basic block. FROM and TO and the limits of the basic
6857 block. NEXT_BRANCH points to the branch path when following jumps or
6858 a null path when not following jumps.
6860 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
6861 loop. This is true when we are being called for the last time on a
6862 block and this CSE pass is before loop.c. */
6864 static rtx
6865 cse_basic_block (from, to, next_branch, around_loop)
6866 register rtx from, to;
6867 struct branch_path *next_branch;
6868 int around_loop;
6870 register rtx insn;
6871 int to_usage = 0;
6872 rtx libcall_insn = NULL_RTX;
6873 int num_insns = 0;
6875 /* This array is undefined before max_reg, so only allocate
6876 the space actually needed and adjust the start. */
6878 qty_table
6879 = (struct qty_table_elem *) xmalloc ((max_qty - max_reg)
6880 * sizeof (struct qty_table_elem));
6881 qty_table -= max_reg;
6883 new_basic_block ();
6885 /* TO might be a label. If so, protect it from being deleted. */
6886 if (to != 0 && GET_CODE (to) == CODE_LABEL)
6887 ++LABEL_NUSES (to);
6889 for (insn = from; insn != to; insn = NEXT_INSN (insn))
6891 register enum rtx_code code = GET_CODE (insn);
6893 /* If we have processed 1,000 insns, flush the hash table to
6894 avoid extreme quadratic behavior. We must not include NOTEs
6895 in the count since there may be more or them when generating
6896 debugging information. If we clear the table at different
6897 times, code generated with -g -O might be different than code
6898 generated with -O but not -g.
6900 ??? This is a real kludge and needs to be done some other way.
6901 Perhaps for 2.9. */
6902 if (code != NOTE && num_insns++ > 1000)
6904 flush_hash_table ();
6905 num_insns = 0;
6908 /* See if this is a branch that is part of the path. If so, and it is
6909 to be taken, do so. */
6910 if (next_branch->branch == insn)
6912 enum taken status = next_branch++->status;
6913 if (status != NOT_TAKEN)
6915 if (status == TAKEN)
6916 record_jump_equiv (insn, 1);
6917 else
6918 invalidate_skipped_block (NEXT_INSN (insn));
6920 /* Set the last insn as the jump insn; it doesn't affect cc0.
6921 Then follow this branch. */
6922 #ifdef HAVE_cc0
6923 prev_insn_cc0 = 0;
6924 #endif
6925 prev_insn = insn;
6926 insn = JUMP_LABEL (insn);
6927 continue;
6931 if (GET_MODE (insn) == QImode)
6932 PUT_MODE (insn, VOIDmode);
6934 if (GET_RTX_CLASS (code) == 'i')
6936 rtx p;
6938 /* Process notes first so we have all notes in canonical forms when
6939 looking for duplicate operations. */
6941 if (REG_NOTES (insn))
6942 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
6944 /* Track when we are inside in LIBCALL block. Inside such a block,
6945 we do not want to record destinations. The last insn of a
6946 LIBCALL block is not considered to be part of the block, since
6947 its destination is the result of the block and hence should be
6948 recorded. */
6950 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6951 libcall_insn = XEXP (p, 0);
6952 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6953 libcall_insn = NULL_RTX;
6955 cse_insn (insn, libcall_insn);
6958 /* If INSN is now an unconditional jump, skip to the end of our
6959 basic block by pretending that we just did the last insn in the
6960 basic block. If we are jumping to the end of our block, show
6961 that we can have one usage of TO. */
6963 if (simplejump_p (insn))
6965 if (to == 0)
6967 free (qty_table + max_reg);
6968 return 0;
6971 if (JUMP_LABEL (insn) == to)
6972 to_usage = 1;
6974 /* Maybe TO was deleted because the jump is unconditional.
6975 If so, there is nothing left in this basic block. */
6976 /* ??? Perhaps it would be smarter to set TO
6977 to whatever follows this insn,
6978 and pretend the basic block had always ended here. */
6979 if (INSN_DELETED_P (to))
6980 break;
6982 insn = PREV_INSN (to);
6985 /* See if it is ok to keep on going past the label
6986 which used to end our basic block. Remember that we incremented
6987 the count of that label, so we decrement it here. If we made
6988 a jump unconditional, TO_USAGE will be one; in that case, we don't
6989 want to count the use in that jump. */
6991 if (to != 0 && NEXT_INSN (insn) == to
6992 && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
6994 struct cse_basic_block_data val;
6995 rtx prev;
6997 insn = NEXT_INSN (to);
6999 /* If TO was the last insn in the function, we are done. */
7000 if (insn == 0)
7002 free (qty_table + max_reg);
7003 return 0;
7006 /* If TO was preceded by a BARRIER we are done with this block
7007 because it has no continuation. */
7008 prev = prev_nonnote_insn (to);
7009 if (prev && GET_CODE (prev) == BARRIER)
7011 free (qty_table + max_reg);
7012 return insn;
7015 /* Find the end of the following block. Note that we won't be
7016 following branches in this case. */
7017 to_usage = 0;
7018 val.path_size = 0;
7019 cse_end_of_basic_block (insn, &val, 0, 0, 0);
7021 /* If the tables we allocated have enough space left
7022 to handle all the SETs in the next basic block,
7023 continue through it. Otherwise, return,
7024 and that block will be scanned individually. */
7025 if (val.nsets * 2 + next_qty > max_qty)
7026 break;
7028 cse_basic_block_start = val.low_cuid;
7029 cse_basic_block_end = val.high_cuid;
7030 to = val.last;
7032 /* Prevent TO from being deleted if it is a label. */
7033 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7034 ++LABEL_NUSES (to);
7036 /* Back up so we process the first insn in the extension. */
7037 insn = PREV_INSN (insn);
7041 if (next_qty > max_qty)
7042 abort ();
7044 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
7045 the previous insn is the only insn that branches to the head of a loop,
7046 we can cse into the loop. Don't do this if we changed the jump
7047 structure of a loop unless we aren't going to be following jumps. */
7049 if ((cse_jumps_altered == 0
7050 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7051 && around_loop && to != 0
7052 && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
7053 && GET_CODE (PREV_INSN (to)) == JUMP_INSN
7054 && JUMP_LABEL (PREV_INSN (to)) != 0
7055 && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to))) == 1)
7056 cse_around_loop (JUMP_LABEL (PREV_INSN (to)));
7058 free (qty_table + max_reg);
7060 return to ? NEXT_INSN (to) : 0;
7063 /* Count the number of times registers are used (not set) in X.
7064 COUNTS is an array in which we accumulate the count, INCR is how much
7065 we count each register usage.
7067 Don't count a usage of DEST, which is the SET_DEST of a SET which
7068 contains X in its SET_SRC. This is because such a SET does not
7069 modify the liveness of DEST. */
7071 static void
7072 count_reg_usage (x, counts, dest, incr)
7073 rtx x;
7074 int *counts;
7075 rtx dest;
7076 int incr;
7078 enum rtx_code code;
7079 const char *fmt;
7080 int i, j;
7082 if (x == 0)
7083 return;
7085 switch (code = GET_CODE (x))
7087 case REG:
7088 if (x != dest)
7089 counts[REGNO (x)] += incr;
7090 return;
7092 case PC:
7093 case CC0:
7094 case CONST:
7095 case CONST_INT:
7096 case CONST_DOUBLE:
7097 case SYMBOL_REF:
7098 case LABEL_REF:
7099 return;
7101 case CLOBBER:
7102 /* If we are clobbering a MEM, mark any registers inside the address
7103 as being used. */
7104 if (GET_CODE (XEXP (x, 0)) == MEM)
7105 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7106 return;
7108 case SET:
7109 /* Unless we are setting a REG, count everything in SET_DEST. */
7110 if (GET_CODE (SET_DEST (x)) != REG)
7111 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
7113 /* If SRC has side-effects, then we can't delete this insn, so the
7114 usage of SET_DEST inside SRC counts.
7116 ??? Strictly-speaking, we might be preserving this insn
7117 because some other SET has side-effects, but that's hard
7118 to do and can't happen now. */
7119 count_reg_usage (SET_SRC (x), counts,
7120 side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
7121 incr);
7122 return;
7124 case CALL_INSN:
7125 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);
7127 /* ... falls through ... */
7128 case INSN:
7129 case JUMP_INSN:
7130 count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
7132 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7133 use them. */
7135 count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
7136 return;
7138 case EXPR_LIST:
7139 case INSN_LIST:
7140 if (REG_NOTE_KIND (x) == REG_EQUAL
7141 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE))
7142 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
7143 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
7144 return;
7146 default:
7147 break;
7150 fmt = GET_RTX_FORMAT (code);
7151 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7153 if (fmt[i] == 'e')
7154 count_reg_usage (XEXP (x, i), counts, dest, incr);
7155 else if (fmt[i] == 'E')
7156 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7157 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7161 /* Scan all the insns and delete any that are dead; i.e., they store a register
7162 that is never used or they copy a register to itself.
7164 This is used to remove insns made obviously dead by cse, loop or other
7165 optimizations. It improves the heuristics in loop since it won't try to
7166 move dead invariants out of loops or make givs for dead quantities. The
7167 remaining passes of the compilation are also sped up. */
7169 void
7170 delete_trivially_dead_insns (insns, nreg)
7171 rtx insns;
7172 int nreg;
7174 int *counts;
7175 rtx insn, prev;
7176 #ifdef HAVE_cc0
7177 rtx tem;
7178 #endif
7179 int i;
7180 int in_libcall = 0, dead_libcall = 0;
7182 /* First count the number of times each register is used. */
7183 counts = (int *) xcalloc (nreg, sizeof (int));
7184 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
7185 count_reg_usage (insn, counts, NULL_RTX, 1);
7187 /* Go from the last insn to the first and delete insns that only set unused
7188 registers or copy a register to itself. As we delete an insn, remove
7189 usage counts for registers it uses.
7191 The first jump optimization pass may leave a real insn as the last
7192 insn in the function. We must not skip that insn or we may end
7193 up deleting code that is not really dead. */
7194 insn = get_last_insn ();
7195 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7196 insn = prev_real_insn (insn);
7198 for ( ; insn; insn = prev)
7200 int live_insn = 0;
7201 rtx note;
7203 prev = prev_real_insn (insn);
7205 /* Don't delete any insns that are part of a libcall block unless
7206 we can delete the whole libcall block.
7208 Flow or loop might get confused if we did that. Remember
7209 that we are scanning backwards. */
7210 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7212 in_libcall = 1;
7213 live_insn = 1;
7214 dead_libcall = 0;
7216 /* See if there's a REG_EQUAL note on this insn and try to
7217 replace the source with the REG_EQUAL expression.
7219 We assume that insns with REG_RETVALs can only be reg->reg
7220 copies at this point. */
7221 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7222 if (note)
7224 rtx set = single_set (insn);
7225 rtx new = simplify_rtx (XEXP (note, 0));
7227 if (!new)
7228 new = XEXP (note, 0);
7230 if (set && validate_change (insn, &SET_SRC (set), new, 0))
7232 remove_note (insn,
7233 find_reg_note (insn, REG_RETVAL, NULL_RTX));
7234 dead_libcall = 1;
7238 else if (in_libcall)
7239 live_insn = ! dead_libcall;
7240 else if (GET_CODE (PATTERN (insn)) == SET)
7242 if ((GET_CODE (SET_DEST (PATTERN (insn))) == REG
7243 || GET_CODE (SET_DEST (PATTERN (insn))) == SUBREG)
7244 && rtx_equal_p (SET_DEST (PATTERN (insn)),
7245 SET_SRC (PATTERN (insn))))
7248 #ifdef HAVE_cc0
7249 else if (GET_CODE (SET_DEST (PATTERN (insn))) == CC0
7250 && ! side_effects_p (SET_SRC (PATTERN (insn)))
7251 && ((tem = next_nonnote_insn (insn)) == 0
7252 || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
7253 || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
7255 #endif
7256 else if (GET_CODE (SET_DEST (PATTERN (insn))) != REG
7257 || REGNO (SET_DEST (PATTERN (insn))) < FIRST_PSEUDO_REGISTER
7258 || counts[REGNO (SET_DEST (PATTERN (insn)))] != 0
7259 || side_effects_p (SET_SRC (PATTERN (insn)))
7260 /* An ADDRESSOF expression can turn into a use of the
7261 internal arg pointer, so always consider the
7262 internal arg pointer live. If it is truly dead,
7263 flow will delete the initializing insn. */
7264 || (SET_DEST (PATTERN (insn))
7265 == current_function_internal_arg_pointer))
7266 live_insn = 1;
7268 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7269 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7271 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7273 if (GET_CODE (elt) == SET)
7275 if ((GET_CODE (SET_DEST (elt)) == REG
7276 || GET_CODE (SET_DEST (elt)) == SUBREG)
7277 && rtx_equal_p (SET_DEST (elt), SET_SRC (elt)))
7280 #ifdef HAVE_cc0
7281 else if (GET_CODE (SET_DEST (elt)) == CC0
7282 && ! side_effects_p (SET_SRC (elt))
7283 && ((tem = next_nonnote_insn (insn)) == 0
7284 || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
7285 || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
7287 #endif
7288 else if (GET_CODE (SET_DEST (elt)) != REG
7289 || REGNO (SET_DEST (elt)) < FIRST_PSEUDO_REGISTER
7290 || counts[REGNO (SET_DEST (elt))] != 0
7291 || side_effects_p (SET_SRC (elt))
7292 /* An ADDRESSOF expression can turn into a use of the
7293 internal arg pointer, so always consider the
7294 internal arg pointer live. If it is truly dead,
7295 flow will delete the initializing insn. */
7296 || (SET_DEST (elt)
7297 == current_function_internal_arg_pointer))
7298 live_insn = 1;
7300 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7301 live_insn = 1;
7303 else
7304 live_insn = 1;
7306 /* If this is a dead insn, delete it and show registers in it aren't
7307 being used. */
7309 if (! live_insn)
7311 count_reg_usage (insn, counts, NULL_RTX, -1);
7312 delete_insn (insn);
7315 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7317 in_libcall = 0;
7318 dead_libcall = 0;
7322 /* Clean up. */
7323 free (counts);