1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* High-level class interface. */
26 #include "coretypes.h"
29 #include "stringpool.h"
30 #include "stor-layout.h"
32 #include "pointer-set.h"
33 #include "hash-table.h"
41 #include "splay-tree.h"
44 /* The number of nested classes being processed. If we are not in the
45 scope of any class, this is zero. */
47 int current_class_depth
;
49 /* In order to deal with nested classes, we keep a stack of classes.
50 The topmost entry is the innermost class, and is the entry at index
51 CURRENT_CLASS_DEPTH */
53 typedef struct class_stack_node
{
54 /* The name of the class. */
57 /* The _TYPE node for the class. */
60 /* The access specifier pending for new declarations in the scope of
64 /* If were defining TYPE, the names used in this class. */
65 splay_tree names_used
;
67 /* Nonzero if this class is no longer open, because of a call to
70 }* class_stack_node_t
;
72 typedef struct vtbl_init_data_s
74 /* The base for which we're building initializers. */
76 /* The type of the most-derived type. */
78 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
79 unless ctor_vtbl_p is true. */
81 /* The negative-index vtable initializers built up so far. These
82 are in order from least negative index to most negative index. */
83 vec
<constructor_elt
, va_gc
> *inits
;
84 /* The binfo for the virtual base for which we're building
85 vcall offset initializers. */
87 /* The functions in vbase for which we have already provided vcall
89 vec
<tree
, va_gc
> *fns
;
90 /* The vtable index of the next vcall or vbase offset. */
92 /* Nonzero if we are building the initializer for the primary
95 /* Nonzero if we are building the initializer for a construction
98 /* True when adding vcall offset entries to the vtable. False when
99 merely computing the indices. */
100 bool generate_vcall_entries
;
103 /* The type of a function passed to walk_subobject_offsets. */
104 typedef int (*subobject_offset_fn
) (tree
, tree
, splay_tree
);
106 /* The stack itself. This is a dynamically resized array. The
107 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
108 static int current_class_stack_size
;
109 static class_stack_node_t current_class_stack
;
111 /* The size of the largest empty class seen in this translation unit. */
112 static GTY (()) tree sizeof_biggest_empty_class
;
114 /* An array of all local classes present in this translation unit, in
115 declaration order. */
116 vec
<tree
, va_gc
> *local_classes
;
118 static tree
get_vfield_name (tree
);
119 static void finish_struct_anon (tree
);
120 static tree
get_vtable_name (tree
);
121 static tree
get_basefndecls (tree
, tree
);
122 static int build_primary_vtable (tree
, tree
);
123 static int build_secondary_vtable (tree
);
124 static void finish_vtbls (tree
);
125 static void modify_vtable_entry (tree
, tree
, tree
, tree
, tree
*);
126 static void finish_struct_bits (tree
);
127 static int alter_access (tree
, tree
, tree
);
128 static void handle_using_decl (tree
, tree
);
129 static tree
dfs_modify_vtables (tree
, void *);
130 static tree
modify_all_vtables (tree
, tree
);
131 static void determine_primary_bases (tree
);
132 static void finish_struct_methods (tree
);
133 static void maybe_warn_about_overly_private_class (tree
);
134 static int method_name_cmp (const void *, const void *);
135 static int resort_method_name_cmp (const void *, const void *);
136 static void add_implicitly_declared_members (tree
, tree
*, int, int);
137 static tree
fixed_type_or_null (tree
, int *, int *);
138 static tree
build_simple_base_path (tree expr
, tree binfo
);
139 static tree
build_vtbl_ref_1 (tree
, tree
);
140 static void build_vtbl_initializer (tree
, tree
, tree
, tree
, int *,
141 vec
<constructor_elt
, va_gc
> **);
142 static int count_fields (tree
);
143 static int add_fields_to_record_type (tree
, struct sorted_fields_type
*, int);
144 static void insert_into_classtype_sorted_fields (tree
, tree
, int);
145 static bool check_bitfield_decl (tree
);
146 static void check_field_decl (tree
, tree
, int *, int *, int *);
147 static void check_field_decls (tree
, tree
*, int *, int *);
148 static tree
*build_base_field (record_layout_info
, tree
, splay_tree
, tree
*);
149 static void build_base_fields (record_layout_info
, splay_tree
, tree
*);
150 static void check_methods (tree
);
151 static void remove_zero_width_bit_fields (tree
);
152 static void check_bases (tree
, int *, int *);
153 static void check_bases_and_members (tree
);
154 static tree
create_vtable_ptr (tree
, tree
*);
155 static void include_empty_classes (record_layout_info
);
156 static void layout_class_type (tree
, tree
*);
157 static void propagate_binfo_offsets (tree
, tree
);
158 static void layout_virtual_bases (record_layout_info
, splay_tree
);
159 static void build_vbase_offset_vtbl_entries (tree
, vtbl_init_data
*);
160 static void add_vcall_offset_vtbl_entries_r (tree
, vtbl_init_data
*);
161 static void add_vcall_offset_vtbl_entries_1 (tree
, vtbl_init_data
*);
162 static void build_vcall_offset_vtbl_entries (tree
, vtbl_init_data
*);
163 static void add_vcall_offset (tree
, tree
, vtbl_init_data
*);
164 static void layout_vtable_decl (tree
, int);
165 static tree
dfs_find_final_overrider_pre (tree
, void *);
166 static tree
dfs_find_final_overrider_post (tree
, void *);
167 static tree
find_final_overrider (tree
, tree
, tree
);
168 static int make_new_vtable (tree
, tree
);
169 static tree
get_primary_binfo (tree
);
170 static int maybe_indent_hierarchy (FILE *, int, int);
171 static tree
dump_class_hierarchy_r (FILE *, int, tree
, tree
, int);
172 static void dump_class_hierarchy (tree
);
173 static void dump_class_hierarchy_1 (FILE *, int, tree
);
174 static void dump_array (FILE *, tree
);
175 static void dump_vtable (tree
, tree
, tree
);
176 static void dump_vtt (tree
, tree
);
177 static void dump_thunk (FILE *, int, tree
);
178 static tree
build_vtable (tree
, tree
, tree
);
179 static void initialize_vtable (tree
, vec
<constructor_elt
, va_gc
> *);
180 static void layout_nonempty_base_or_field (record_layout_info
,
181 tree
, tree
, splay_tree
);
182 static tree
end_of_class (tree
, int);
183 static bool layout_empty_base (record_layout_info
, tree
, tree
, splay_tree
);
184 static void accumulate_vtbl_inits (tree
, tree
, tree
, tree
, tree
,
185 vec
<constructor_elt
, va_gc
> **);
186 static void dfs_accumulate_vtbl_inits (tree
, tree
, tree
, tree
, tree
,
187 vec
<constructor_elt
, va_gc
> **);
188 static void build_rtti_vtbl_entries (tree
, vtbl_init_data
*);
189 static void build_vcall_and_vbase_vtbl_entries (tree
, vtbl_init_data
*);
190 static void clone_constructors_and_destructors (tree
);
191 static tree
build_clone (tree
, tree
);
192 static void update_vtable_entry_for_fn (tree
, tree
, tree
, tree
*, unsigned);
193 static void build_ctor_vtbl_group (tree
, tree
);
194 static void build_vtt (tree
);
195 static tree
binfo_ctor_vtable (tree
);
196 static void build_vtt_inits (tree
, tree
, vec
<constructor_elt
, va_gc
> **,
198 static tree
dfs_build_secondary_vptr_vtt_inits (tree
, void *);
199 static tree
dfs_fixup_binfo_vtbls (tree
, void *);
200 static int record_subobject_offset (tree
, tree
, splay_tree
);
201 static int check_subobject_offset (tree
, tree
, splay_tree
);
202 static int walk_subobject_offsets (tree
, subobject_offset_fn
,
203 tree
, splay_tree
, tree
, int);
204 static void record_subobject_offsets (tree
, tree
, splay_tree
, bool);
205 static int layout_conflict_p (tree
, tree
, splay_tree
, int);
206 static int splay_tree_compare_integer_csts (splay_tree_key k1
,
208 static void warn_about_ambiguous_bases (tree
);
209 static bool type_requires_array_cookie (tree
);
210 static bool contains_empty_class_p (tree
);
211 static bool base_derived_from (tree
, tree
);
212 static int empty_base_at_nonzero_offset_p (tree
, tree
, splay_tree
);
213 static tree
end_of_base (tree
);
214 static tree
get_vcall_index (tree
, tree
);
216 /* Variables shared between class.c and call.c. */
219 int n_vtable_entries
= 0;
220 int n_vtable_searches
= 0;
221 int n_vtable_elems
= 0;
222 int n_convert_harshness
= 0;
223 int n_compute_conversion_costs
= 0;
224 int n_inner_fields_searched
= 0;
226 /* Convert to or from a base subobject. EXPR is an expression of type
227 `A' or `A*', an expression of type `B' or `B*' is returned. To
228 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
229 the B base instance within A. To convert base A to derived B, CODE
230 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
231 In this latter case, A must not be a morally virtual base of B.
232 NONNULL is true if EXPR is known to be non-NULL (this is only
233 needed when EXPR is of pointer type). CV qualifiers are preserved
237 build_base_path (enum tree_code code
,
241 tsubst_flags_t complain
)
243 tree v_binfo
= NULL_TREE
;
244 tree d_binfo
= NULL_TREE
;
248 tree null_test
= NULL
;
249 tree ptr_target_type
;
251 int want_pointer
= TYPE_PTR_P (TREE_TYPE (expr
));
252 bool has_empty
= false;
255 if (expr
== error_mark_node
|| binfo
== error_mark_node
|| !binfo
)
256 return error_mark_node
;
258 for (probe
= binfo
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
261 if (is_empty_class (BINFO_TYPE (probe
)))
263 if (!v_binfo
&& BINFO_VIRTUAL_P (probe
))
267 probe
= TYPE_MAIN_VARIANT (TREE_TYPE (expr
));
269 probe
= TYPE_MAIN_VARIANT (TREE_TYPE (probe
));
271 if (code
== PLUS_EXPR
272 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo
), probe
))
274 /* This can happen when adjust_result_of_qualified_name_lookup can't
275 find a unique base binfo in a call to a member function. We
276 couldn't give the diagnostic then since we might have been calling
277 a static member function, so we do it now. */
278 if (complain
& tf_error
)
280 tree base
= lookup_base (probe
, BINFO_TYPE (d_binfo
),
281 ba_unique
, NULL
, complain
);
282 gcc_assert (base
== error_mark_node
);
284 return error_mark_node
;
287 gcc_assert ((code
== MINUS_EXPR
288 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), probe
))
289 || code
== PLUS_EXPR
);
291 if (binfo
== d_binfo
)
295 if (code
== MINUS_EXPR
&& v_binfo
)
297 if (complain
& tf_error
)
299 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), BINFO_TYPE (v_binfo
)))
302 error ("cannot convert from pointer to base class %qT to "
303 "pointer to derived class %qT because the base is "
304 "virtual", BINFO_TYPE (binfo
), BINFO_TYPE (d_binfo
));
306 error ("cannot convert from base class %qT to derived "
307 "class %qT because the base is virtual",
308 BINFO_TYPE (binfo
), BINFO_TYPE (d_binfo
));
313 error ("cannot convert from pointer to base class %qT to "
314 "pointer to derived class %qT via virtual base %qT",
315 BINFO_TYPE (binfo
), BINFO_TYPE (d_binfo
),
316 BINFO_TYPE (v_binfo
));
318 error ("cannot convert from base class %qT to derived "
319 "class %qT via virtual base %qT", BINFO_TYPE (binfo
),
320 BINFO_TYPE (d_binfo
), BINFO_TYPE (v_binfo
));
323 return error_mark_node
;
327 /* This must happen before the call to save_expr. */
328 expr
= cp_build_addr_expr (expr
, complain
);
330 expr
= mark_rvalue_use (expr
);
332 offset
= BINFO_OFFSET (binfo
);
333 fixed_type_p
= resolves_to_fixed_type_p (expr
, &nonnull
);
334 target_type
= code
== PLUS_EXPR
? BINFO_TYPE (binfo
) : BINFO_TYPE (d_binfo
);
335 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
336 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
337 expression returned matches the input. */
338 target_type
= cp_build_qualified_type
339 (target_type
, cp_type_quals (TREE_TYPE (TREE_TYPE (expr
))));
340 ptr_target_type
= build_pointer_type (target_type
);
342 /* Do we need to look in the vtable for the real offset? */
343 virtual_access
= (v_binfo
&& fixed_type_p
<= 0);
345 /* Don't bother with the calculations inside sizeof; they'll ICE if the
346 source type is incomplete and the pointer value doesn't matter. In a
347 template (even in fold_non_dependent_expr), we don't have vtables set
348 up properly yet, and the value doesn't matter there either; we're just
349 interested in the result of overload resolution. */
350 if (cp_unevaluated_operand
!= 0
351 || in_template_function ())
353 expr
= build_nop (ptr_target_type
, expr
);
355 expr
= build_indirect_ref (EXPR_LOCATION (expr
), expr
, RO_NULL
);
359 /* If we're in an NSDMI, we don't have the full constructor context yet
360 that we need for converting to a virtual base, so just build a stub
361 CONVERT_EXPR and expand it later in bot_replace. */
362 if (virtual_access
&& fixed_type_p
< 0
363 && current_scope () != current_function_decl
)
365 expr
= build1 (CONVERT_EXPR
, ptr_target_type
, expr
);
366 CONVERT_EXPR_VBASE_PATH (expr
) = true;
368 expr
= build_indirect_ref (EXPR_LOCATION (expr
), expr
, RO_NULL
);
372 /* Do we need to check for a null pointer? */
373 if (want_pointer
&& !nonnull
)
375 /* If we know the conversion will not actually change the value
376 of EXPR, then we can avoid testing the expression for NULL.
377 We have to avoid generating a COMPONENT_REF for a base class
378 field, because other parts of the compiler know that such
379 expressions are always non-NULL. */
380 if (!virtual_access
&& integer_zerop (offset
))
381 return build_nop (ptr_target_type
, expr
);
382 null_test
= error_mark_node
;
385 /* Protect against multiple evaluation if necessary. */
386 if (TREE_SIDE_EFFECTS (expr
) && (null_test
|| virtual_access
))
387 expr
= save_expr (expr
);
389 /* Now that we've saved expr, build the real null test. */
392 tree zero
= cp_convert (TREE_TYPE (expr
), nullptr_node
, complain
);
393 null_test
= fold_build2_loc (input_location
, NE_EXPR
, boolean_type_node
,
397 /* If this is a simple base reference, express it as a COMPONENT_REF. */
398 if (code
== PLUS_EXPR
&& !virtual_access
399 /* We don't build base fields for empty bases, and they aren't very
400 interesting to the optimizers anyway. */
403 expr
= cp_build_indirect_ref (expr
, RO_NULL
, complain
);
404 expr
= build_simple_base_path (expr
, binfo
);
406 expr
= build_address (expr
);
407 target_type
= TREE_TYPE (expr
);
413 /* Going via virtual base V_BINFO. We need the static offset
414 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
415 V_BINFO. That offset is an entry in D_BINFO's vtable. */
418 if (fixed_type_p
< 0 && in_base_initializer
)
420 /* In a base member initializer, we cannot rely on the
421 vtable being set up. We have to indirect via the
425 t
= TREE_TYPE (TYPE_VFIELD (current_class_type
));
426 t
= build_pointer_type (t
);
427 v_offset
= convert (t
, current_vtt_parm
);
428 v_offset
= cp_build_indirect_ref (v_offset
, RO_NULL
, complain
);
431 v_offset
= build_vfield_ref (cp_build_indirect_ref (expr
, RO_NULL
,
433 TREE_TYPE (TREE_TYPE (expr
)));
435 v_offset
= fold_build_pointer_plus (v_offset
, BINFO_VPTR_FIELD (v_binfo
));
436 v_offset
= build1 (NOP_EXPR
,
437 build_pointer_type (ptrdiff_type_node
),
439 v_offset
= cp_build_indirect_ref (v_offset
, RO_NULL
, complain
);
440 TREE_CONSTANT (v_offset
) = 1;
442 offset
= convert_to_integer (ptrdiff_type_node
,
443 size_diffop_loc (input_location
, offset
,
444 BINFO_OFFSET (v_binfo
)));
446 if (!integer_zerop (offset
))
447 v_offset
= build2 (code
, ptrdiff_type_node
, v_offset
, offset
);
449 if (fixed_type_p
< 0)
450 /* Negative fixed_type_p means this is a constructor or destructor;
451 virtual base layout is fixed in in-charge [cd]tors, but not in
453 offset
= build3 (COND_EXPR
, ptrdiff_type_node
,
454 build2 (EQ_EXPR
, boolean_type_node
,
455 current_in_charge_parm
, integer_zero_node
),
457 convert_to_integer (ptrdiff_type_node
,
458 BINFO_OFFSET (binfo
)));
464 target_type
= ptr_target_type
;
466 expr
= build1 (NOP_EXPR
, ptr_target_type
, expr
);
468 if (!integer_zerop (offset
))
470 offset
= fold_convert (sizetype
, offset
);
471 if (code
== MINUS_EXPR
)
472 offset
= fold_build1_loc (input_location
, NEGATE_EXPR
, sizetype
, offset
);
473 expr
= fold_build_pointer_plus (expr
, offset
);
479 expr
= cp_build_indirect_ref (expr
, RO_NULL
, complain
);
483 expr
= fold_build3_loc (input_location
, COND_EXPR
, target_type
, null_test
, expr
,
484 build_zero_cst (target_type
));
489 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
490 Perform a derived-to-base conversion by recursively building up a
491 sequence of COMPONENT_REFs to the appropriate base fields. */
494 build_simple_base_path (tree expr
, tree binfo
)
496 tree type
= BINFO_TYPE (binfo
);
497 tree d_binfo
= BINFO_INHERITANCE_CHAIN (binfo
);
500 if (d_binfo
== NULL_TREE
)
504 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr
)) == type
);
506 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
507 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
508 an lvalue in the front end; only _DECLs and _REFs are lvalues
510 temp
= unary_complex_lvalue (ADDR_EXPR
, expr
);
512 expr
= cp_build_indirect_ref (temp
, RO_NULL
, tf_warning_or_error
);
518 expr
= build_simple_base_path (expr
, d_binfo
);
520 for (field
= TYPE_FIELDS (BINFO_TYPE (d_binfo
));
521 field
; field
= DECL_CHAIN (field
))
522 /* Is this the base field created by build_base_field? */
523 if (TREE_CODE (field
) == FIELD_DECL
524 && DECL_FIELD_IS_BASE (field
)
525 && TREE_TYPE (field
) == type
526 /* If we're looking for a field in the most-derived class,
527 also check the field offset; we can have two base fields
528 of the same type if one is an indirect virtual base and one
529 is a direct non-virtual base. */
530 && (BINFO_INHERITANCE_CHAIN (d_binfo
)
531 || tree_int_cst_equal (byte_position (field
),
532 BINFO_OFFSET (binfo
))))
534 /* We don't use build_class_member_access_expr here, as that
535 has unnecessary checks, and more importantly results in
536 recursive calls to dfs_walk_once. */
537 int type_quals
= cp_type_quals (TREE_TYPE (expr
));
539 expr
= build3 (COMPONENT_REF
,
540 cp_build_qualified_type (type
, type_quals
),
541 expr
, field
, NULL_TREE
);
542 expr
= fold_if_not_in_template (expr
);
544 /* Mark the expression const or volatile, as appropriate.
545 Even though we've dealt with the type above, we still have
546 to mark the expression itself. */
547 if (type_quals
& TYPE_QUAL_CONST
)
548 TREE_READONLY (expr
) = 1;
549 if (type_quals
& TYPE_QUAL_VOLATILE
)
550 TREE_THIS_VOLATILE (expr
) = 1;
555 /* Didn't find the base field?!? */
559 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
560 type is a class type or a pointer to a class type. In the former
561 case, TYPE is also a class type; in the latter it is another
562 pointer type. If CHECK_ACCESS is true, an error message is emitted
563 if TYPE is inaccessible. If OBJECT has pointer type, the value is
564 assumed to be non-NULL. */
567 convert_to_base (tree object
, tree type
, bool check_access
, bool nonnull
,
568 tsubst_flags_t complain
)
573 if (TYPE_PTR_P (TREE_TYPE (object
)))
575 object_type
= TREE_TYPE (TREE_TYPE (object
));
576 type
= TREE_TYPE (type
);
579 object_type
= TREE_TYPE (object
);
581 binfo
= lookup_base (object_type
, type
, check_access
? ba_check
: ba_unique
,
583 if (!binfo
|| binfo
== error_mark_node
)
584 return error_mark_node
;
586 return build_base_path (PLUS_EXPR
, object
, binfo
, nonnull
, complain
);
589 /* EXPR is an expression with unqualified class type. BASE is a base
590 binfo of that class type. Returns EXPR, converted to the BASE
591 type. This function assumes that EXPR is the most derived class;
592 therefore virtual bases can be found at their static offsets. */
595 convert_to_base_statically (tree expr
, tree base
)
599 expr_type
= TREE_TYPE (expr
);
600 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base
), expr_type
))
602 /* If this is a non-empty base, use a COMPONENT_REF. */
603 if (!is_empty_class (BINFO_TYPE (base
)))
604 return build_simple_base_path (expr
, base
);
606 /* We use fold_build2 and fold_convert below to simplify the trees
607 provided to the optimizers. It is not safe to call these functions
608 when processing a template because they do not handle C++-specific
610 gcc_assert (!processing_template_decl
);
611 expr
= cp_build_addr_expr (expr
, tf_warning_or_error
);
612 if (!integer_zerop (BINFO_OFFSET (base
)))
613 expr
= fold_build_pointer_plus_loc (input_location
,
614 expr
, BINFO_OFFSET (base
));
615 expr
= fold_convert (build_pointer_type (BINFO_TYPE (base
)), expr
);
616 expr
= build_fold_indirect_ref_loc (input_location
, expr
);
624 build_vfield_ref (tree datum
, tree type
)
626 tree vfield
, vcontext
;
628 if (datum
== error_mark_node
)
629 return error_mark_node
;
631 /* First, convert to the requested type. */
632 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum
), type
))
633 datum
= convert_to_base (datum
, type
, /*check_access=*/false,
634 /*nonnull=*/true, tf_warning_or_error
);
636 /* Second, the requested type may not be the owner of its own vptr.
637 If not, convert to the base class that owns it. We cannot use
638 convert_to_base here, because VCONTEXT may appear more than once
639 in the inheritance hierarchy of TYPE, and thus direct conversion
640 between the types may be ambiguous. Following the path back up
641 one step at a time via primary bases avoids the problem. */
642 vfield
= TYPE_VFIELD (type
);
643 vcontext
= DECL_CONTEXT (vfield
);
644 while (!same_type_ignoring_top_level_qualifiers_p (vcontext
, type
))
646 datum
= build_simple_base_path (datum
, CLASSTYPE_PRIMARY_BINFO (type
));
647 type
= TREE_TYPE (datum
);
650 return build3 (COMPONENT_REF
, TREE_TYPE (vfield
), datum
, vfield
, NULL_TREE
);
653 /* Given an object INSTANCE, return an expression which yields the
654 vtable element corresponding to INDEX. There are many special
655 cases for INSTANCE which we take care of here, mainly to avoid
656 creating extra tree nodes when we don't have to. */
659 build_vtbl_ref_1 (tree instance
, tree idx
)
662 tree vtbl
= NULL_TREE
;
664 /* Try to figure out what a reference refers to, and
665 access its virtual function table directly. */
668 tree fixed_type
= fixed_type_or_null (instance
, NULL
, &cdtorp
);
670 tree basetype
= non_reference (TREE_TYPE (instance
));
672 if (fixed_type
&& !cdtorp
)
674 tree binfo
= lookup_base (fixed_type
, basetype
,
675 ba_unique
, NULL
, tf_none
);
676 if (binfo
&& binfo
!= error_mark_node
)
677 vtbl
= unshare_expr (BINFO_VTABLE (binfo
));
681 vtbl
= build_vfield_ref (instance
, basetype
);
683 aref
= build_array_ref (input_location
, vtbl
, idx
);
684 TREE_CONSTANT (aref
) |= TREE_CONSTANT (vtbl
) && TREE_CONSTANT (idx
);
690 build_vtbl_ref (tree instance
, tree idx
)
692 tree aref
= build_vtbl_ref_1 (instance
, idx
);
697 /* Given a stable object pointer INSTANCE_PTR, return an expression which
698 yields a function pointer corresponding to vtable element INDEX. */
701 build_vfn_ref (tree instance_ptr
, tree idx
)
705 aref
= build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr
, RO_NULL
,
706 tf_warning_or_error
),
709 /* When using function descriptors, the address of the
710 vtable entry is treated as a function pointer. */
711 if (TARGET_VTABLE_USES_DESCRIPTORS
)
712 aref
= build1 (NOP_EXPR
, TREE_TYPE (aref
),
713 cp_build_addr_expr (aref
, tf_warning_or_error
));
715 /* Remember this as a method reference, for later devirtualization. */
716 aref
= build3 (OBJ_TYPE_REF
, TREE_TYPE (aref
), aref
, instance_ptr
, idx
);
721 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
722 for the given TYPE. */
725 get_vtable_name (tree type
)
727 return mangle_vtbl_for_type (type
);
730 /* DECL is an entity associated with TYPE, like a virtual table or an
731 implicitly generated constructor. Determine whether or not DECL
732 should have external or internal linkage at the object file
733 level. This routine does not deal with COMDAT linkage and other
734 similar complexities; it simply sets TREE_PUBLIC if it possible for
735 entities in other translation units to contain copies of DECL, in
739 set_linkage_according_to_type (tree
/*type*/, tree decl
)
741 TREE_PUBLIC (decl
) = 1;
742 determine_visibility (decl
);
745 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
746 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
747 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
750 build_vtable (tree class_type
, tree name
, tree vtable_type
)
754 decl
= build_lang_decl (VAR_DECL
, name
, vtable_type
);
755 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
756 now to avoid confusion in mangle_decl. */
757 SET_DECL_ASSEMBLER_NAME (decl
, name
);
758 DECL_CONTEXT (decl
) = class_type
;
759 DECL_ARTIFICIAL (decl
) = 1;
760 TREE_STATIC (decl
) = 1;
761 TREE_READONLY (decl
) = 1;
762 DECL_VIRTUAL_P (decl
) = 1;
763 DECL_ALIGN (decl
) = TARGET_VTABLE_ENTRY_ALIGN
;
764 DECL_VTABLE_OR_VTT_P (decl
) = 1;
765 /* At one time the vtable info was grabbed 2 words at a time. This
766 fails on sparc unless you have 8-byte alignment. (tiemann) */
767 DECL_ALIGN (decl
) = MAX (TYPE_ALIGN (double_type_node
),
769 set_linkage_according_to_type (class_type
, decl
);
770 /* The vtable has not been defined -- yet. */
771 DECL_EXTERNAL (decl
) = 1;
772 DECL_NOT_REALLY_EXTERN (decl
) = 1;
774 /* Mark the VAR_DECL node representing the vtable itself as a
775 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
776 is rather important that such things be ignored because any
777 effort to actually generate DWARF for them will run into
778 trouble when/if we encounter code like:
781 struct S { virtual void member (); };
783 because the artificial declaration of the vtable itself (as
784 manufactured by the g++ front end) will say that the vtable is
785 a static member of `S' but only *after* the debug output for
786 the definition of `S' has already been output. This causes
787 grief because the DWARF entry for the definition of the vtable
788 will try to refer back to an earlier *declaration* of the
789 vtable as a static member of `S' and there won't be one. We
790 might be able to arrange to have the "vtable static member"
791 attached to the member list for `S' before the debug info for
792 `S' get written (which would solve the problem) but that would
793 require more intrusive changes to the g++ front end. */
794 DECL_IGNORED_P (decl
) = 1;
799 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
800 or even complete. If this does not exist, create it. If COMPLETE is
801 nonzero, then complete the definition of it -- that will render it
802 impossible to actually build the vtable, but is useful to get at those
803 which are known to exist in the runtime. */
806 get_vtable_decl (tree type
, int complete
)
810 if (CLASSTYPE_VTABLES (type
))
811 return CLASSTYPE_VTABLES (type
);
813 decl
= build_vtable (type
, get_vtable_name (type
), vtbl_type_node
);
814 CLASSTYPE_VTABLES (type
) = decl
;
818 DECL_EXTERNAL (decl
) = 1;
819 cp_finish_decl (decl
, NULL_TREE
, false, NULL_TREE
, 0);
825 /* Build the primary virtual function table for TYPE. If BINFO is
826 non-NULL, build the vtable starting with the initial approximation
827 that it is the same as the one which is the head of the association
828 list. Returns a nonzero value if a new vtable is actually
832 build_primary_vtable (tree binfo
, tree type
)
837 decl
= get_vtable_decl (type
, /*complete=*/0);
841 if (BINFO_NEW_VTABLE_MARKED (binfo
))
842 /* We have already created a vtable for this base, so there's
843 no need to do it again. */
846 virtuals
= copy_list (BINFO_VIRTUALS (binfo
));
847 TREE_TYPE (decl
) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo
));
848 DECL_SIZE (decl
) = TYPE_SIZE (TREE_TYPE (decl
));
849 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (TREE_TYPE (decl
));
853 gcc_assert (TREE_TYPE (decl
) == vtbl_type_node
);
854 virtuals
= NULL_TREE
;
857 if (GATHER_STATISTICS
)
860 n_vtable_elems
+= list_length (virtuals
);
863 /* Initialize the association list for this type, based
864 on our first approximation. */
865 BINFO_VTABLE (TYPE_BINFO (type
)) = decl
;
866 BINFO_VIRTUALS (TYPE_BINFO (type
)) = virtuals
;
867 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type
));
871 /* Give BINFO a new virtual function table which is initialized
872 with a skeleton-copy of its original initialization. The only
873 entry that changes is the `delta' entry, so we can really
874 share a lot of structure.
876 FOR_TYPE is the most derived type which caused this table to
879 Returns nonzero if we haven't met BINFO before.
881 The order in which vtables are built (by calling this function) for
882 an object must remain the same, otherwise a binary incompatibility
886 build_secondary_vtable (tree binfo
)
888 if (BINFO_NEW_VTABLE_MARKED (binfo
))
889 /* We already created a vtable for this base. There's no need to
893 /* Remember that we've created a vtable for this BINFO, so that we
894 don't try to do so again. */
895 SET_BINFO_NEW_VTABLE_MARKED (binfo
);
897 /* Make fresh virtual list, so we can smash it later. */
898 BINFO_VIRTUALS (binfo
) = copy_list (BINFO_VIRTUALS (binfo
));
900 /* Secondary vtables are laid out as part of the same structure as
901 the primary vtable. */
902 BINFO_VTABLE (binfo
) = NULL_TREE
;
906 /* Create a new vtable for BINFO which is the hierarchy dominated by
907 T. Return nonzero if we actually created a new vtable. */
910 make_new_vtable (tree t
, tree binfo
)
912 if (binfo
== TYPE_BINFO (t
))
913 /* In this case, it is *type*'s vtable we are modifying. We start
914 with the approximation that its vtable is that of the
915 immediate base class. */
916 return build_primary_vtable (binfo
, t
);
918 /* This is our very own copy of `basetype' to play with. Later,
919 we will fill in all the virtual functions that override the
920 virtual functions in these base classes which are not defined
921 by the current type. */
922 return build_secondary_vtable (binfo
);
925 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
926 (which is in the hierarchy dominated by T) list FNDECL as its
927 BV_FN. DELTA is the required constant adjustment from the `this'
928 pointer where the vtable entry appears to the `this' required when
929 the function is actually called. */
932 modify_vtable_entry (tree t
,
942 if (fndecl
!= BV_FN (v
)
943 || !tree_int_cst_equal (delta
, BV_DELTA (v
)))
945 /* We need a new vtable for BINFO. */
946 if (make_new_vtable (t
, binfo
))
948 /* If we really did make a new vtable, we also made a copy
949 of the BINFO_VIRTUALS list. Now, we have to find the
950 corresponding entry in that list. */
951 *virtuals
= BINFO_VIRTUALS (binfo
);
952 while (BV_FN (*virtuals
) != BV_FN (v
))
953 *virtuals
= TREE_CHAIN (*virtuals
);
957 BV_DELTA (v
) = delta
;
958 BV_VCALL_INDEX (v
) = NULL_TREE
;
964 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
965 the USING_DECL naming METHOD. Returns true if the method could be
966 added to the method vec. */
969 add_method (tree type
, tree method
, tree using_decl
)
973 bool template_conv_p
= false;
975 vec
<tree
, va_gc
> *method_vec
;
977 bool insert_p
= false;
981 if (method
== error_mark_node
)
984 complete_p
= COMPLETE_TYPE_P (type
);
985 conv_p
= DECL_CONV_FN_P (method
);
987 template_conv_p
= (TREE_CODE (method
) == TEMPLATE_DECL
988 && DECL_TEMPLATE_CONV_FN_P (method
));
990 method_vec
= CLASSTYPE_METHOD_VEC (type
);
993 /* Make a new method vector. We start with 8 entries. We must
994 allocate at least two (for constructors and destructors), and
995 we're going to end up with an assignment operator at some
997 vec_alloc (method_vec
, 8);
998 /* Create slots for constructors and destructors. */
999 method_vec
->quick_push (NULL_TREE
);
1000 method_vec
->quick_push (NULL_TREE
);
1001 CLASSTYPE_METHOD_VEC (type
) = method_vec
;
1004 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
1005 grok_special_member_properties (method
);
1007 /* Constructors and destructors go in special slots. */
1008 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method
))
1009 slot
= CLASSTYPE_CONSTRUCTOR_SLOT
;
1010 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method
))
1012 slot
= CLASSTYPE_DESTRUCTOR_SLOT
;
1014 if (TYPE_FOR_JAVA (type
))
1016 if (!DECL_ARTIFICIAL (method
))
1017 error ("Java class %qT cannot have a destructor", type
);
1018 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
1019 error ("Java class %qT cannot have an implicit non-trivial "
1029 /* See if we already have an entry with this name. */
1030 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1031 vec_safe_iterate (method_vec
, slot
, &m
);
1034 m
= OVL_CURRENT (m
);
1035 if (template_conv_p
)
1037 if (TREE_CODE (m
) == TEMPLATE_DECL
1038 && DECL_TEMPLATE_CONV_FN_P (m
))
1042 if (conv_p
&& !DECL_CONV_FN_P (m
))
1044 if (DECL_NAME (m
) == DECL_NAME (method
))
1050 && !DECL_CONV_FN_P (m
)
1051 && DECL_NAME (m
) > DECL_NAME (method
))
1055 current_fns
= insert_p
? NULL_TREE
: (*method_vec
)[slot
];
1057 /* Check to see if we've already got this method. */
1058 for (fns
= current_fns
; fns
; fns
= OVL_NEXT (fns
))
1060 tree fn
= OVL_CURRENT (fns
);
1066 if (TREE_CODE (fn
) != TREE_CODE (method
))
1069 /* [over.load] Member function declarations with the
1070 same name and the same parameter types cannot be
1071 overloaded if any of them is a static member
1072 function declaration.
1074 [over.load] Member function declarations with the same name and
1075 the same parameter-type-list as well as member function template
1076 declarations with the same name, the same parameter-type-list, and
1077 the same template parameter lists cannot be overloaded if any of
1078 them, but not all, have a ref-qualifier.
1080 [namespace.udecl] When a using-declaration brings names
1081 from a base class into a derived class scope, member
1082 functions in the derived class override and/or hide member
1083 functions with the same name and parameter types in a base
1084 class (rather than conflicting). */
1085 fn_type
= TREE_TYPE (fn
);
1086 method_type
= TREE_TYPE (method
);
1087 parms1
= TYPE_ARG_TYPES (fn_type
);
1088 parms2
= TYPE_ARG_TYPES (method_type
);
1090 /* Compare the quals on the 'this' parm. Don't compare
1091 the whole types, as used functions are treated as
1092 coming from the using class in overload resolution. */
1093 if (! DECL_STATIC_FUNCTION_P (fn
)
1094 && ! DECL_STATIC_FUNCTION_P (method
)
1095 /* Either both or neither need to be ref-qualified for
1096 differing quals to allow overloading. */
1097 && (FUNCTION_REF_QUALIFIED (fn_type
)
1098 == FUNCTION_REF_QUALIFIED (method_type
))
1099 && (type_memfn_quals (fn_type
) != type_memfn_quals (method_type
)
1100 || type_memfn_rqual (fn_type
) != type_memfn_rqual (method_type
)))
1103 /* For templates, the return type and template parameters
1104 must be identical. */
1105 if (TREE_CODE (fn
) == TEMPLATE_DECL
1106 && (!same_type_p (TREE_TYPE (fn_type
),
1107 TREE_TYPE (method_type
))
1108 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn
),
1109 DECL_TEMPLATE_PARMS (method
))))
1112 if (! DECL_STATIC_FUNCTION_P (fn
))
1113 parms1
= TREE_CHAIN (parms1
);
1114 if (! DECL_STATIC_FUNCTION_P (method
))
1115 parms2
= TREE_CHAIN (parms2
);
1117 if (compparms (parms1
, parms2
)
1118 && (!DECL_CONV_FN_P (fn
)
1119 || same_type_p (TREE_TYPE (fn_type
),
1120 TREE_TYPE (method_type
))))
1122 /* For function versions, their parms and types match
1123 but they are not duplicates. Record function versions
1124 as and when they are found. extern "C" functions are
1125 not treated as versions. */
1126 if (TREE_CODE (fn
) == FUNCTION_DECL
1127 && TREE_CODE (method
) == FUNCTION_DECL
1128 && !DECL_EXTERN_C_P (fn
)
1129 && !DECL_EXTERN_C_P (method
)
1130 && targetm
.target_option
.function_versions (fn
, method
))
1132 /* Mark functions as versions if necessary. Modify the mangled
1133 decl name if necessary. */
1134 if (!DECL_FUNCTION_VERSIONED (fn
))
1136 DECL_FUNCTION_VERSIONED (fn
) = 1;
1137 if (DECL_ASSEMBLER_NAME_SET_P (fn
))
1140 if (!DECL_FUNCTION_VERSIONED (method
))
1142 DECL_FUNCTION_VERSIONED (method
) = 1;
1143 if (DECL_ASSEMBLER_NAME_SET_P (method
))
1144 mangle_decl (method
);
1146 record_function_versions (fn
, method
);
1149 if (DECL_INHERITED_CTOR_BASE (method
))
1151 if (DECL_INHERITED_CTOR_BASE (fn
))
1153 error_at (DECL_SOURCE_LOCATION (method
),
1154 "%q#D inherited from %qT", method
,
1155 DECL_INHERITED_CTOR_BASE (method
));
1156 error_at (DECL_SOURCE_LOCATION (fn
),
1157 "conflicts with version inherited from %qT",
1158 DECL_INHERITED_CTOR_BASE (fn
));
1160 /* Otherwise defer to the other function. */
1165 if (DECL_CONTEXT (fn
) == type
)
1166 /* Defer to the local function. */
1171 error ("%q+#D cannot be overloaded", method
);
1172 error ("with %q+#D", fn
);
1175 /* We don't call duplicate_decls here to merge the
1176 declarations because that will confuse things if the
1177 methods have inline definitions. In particular, we
1178 will crash while processing the definitions. */
1183 /* A class should never have more than one destructor. */
1184 if (current_fns
&& DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method
))
1187 /* Add the new binding. */
1190 overload
= ovl_cons (method
, current_fns
);
1191 OVL_USED (overload
) = true;
1194 overload
= build_overload (method
, current_fns
);
1197 TYPE_HAS_CONVERSION (type
) = 1;
1198 else if (slot
>= CLASSTYPE_FIRST_CONVERSION_SLOT
&& !complete_p
)
1199 push_class_level_binding (DECL_NAME (method
), overload
);
1205 /* We only expect to add few methods in the COMPLETE_P case, so
1206 just make room for one more method in that case. */
1208 reallocated
= vec_safe_reserve_exact (method_vec
, 1);
1210 reallocated
= vec_safe_reserve (method_vec
, 1);
1212 CLASSTYPE_METHOD_VEC (type
) = method_vec
;
1213 if (slot
== method_vec
->length ())
1214 method_vec
->quick_push (overload
);
1216 method_vec
->quick_insert (slot
, overload
);
1219 /* Replace the current slot. */
1220 (*method_vec
)[slot
] = overload
;
1224 /* Subroutines of finish_struct. */
1226 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1227 legit, otherwise return 0. */
1230 alter_access (tree t
, tree fdecl
, tree access
)
1234 if (!DECL_LANG_SPECIFIC (fdecl
))
1235 retrofit_lang_decl (fdecl
);
1237 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl
));
1239 elem
= purpose_member (t
, DECL_ACCESS (fdecl
));
1242 if (TREE_VALUE (elem
) != access
)
1244 if (TREE_CODE (TREE_TYPE (fdecl
)) == FUNCTION_DECL
)
1245 error ("conflicting access specifications for method"
1246 " %q+D, ignored", TREE_TYPE (fdecl
));
1248 error ("conflicting access specifications for field %qE, ignored",
1253 /* They're changing the access to the same thing they changed
1254 it to before. That's OK. */
1260 perform_or_defer_access_check (TYPE_BINFO (t
), fdecl
, fdecl
,
1261 tf_warning_or_error
);
1262 DECL_ACCESS (fdecl
) = tree_cons (t
, access
, DECL_ACCESS (fdecl
));
1268 /* Process the USING_DECL, which is a member of T. */
1271 handle_using_decl (tree using_decl
, tree t
)
1273 tree decl
= USING_DECL_DECLS (using_decl
);
1274 tree name
= DECL_NAME (using_decl
);
1276 = TREE_PRIVATE (using_decl
) ? access_private_node
1277 : TREE_PROTECTED (using_decl
) ? access_protected_node
1278 : access_public_node
;
1279 tree flist
= NULL_TREE
;
1282 gcc_assert (!processing_template_decl
&& decl
);
1284 old_value
= lookup_member (t
, name
, /*protect=*/0, /*want_type=*/false,
1285 tf_warning_or_error
);
1288 if (is_overloaded_fn (old_value
))
1289 old_value
= OVL_CURRENT (old_value
);
1291 if (DECL_P (old_value
) && DECL_CONTEXT (old_value
) == t
)
1294 old_value
= NULL_TREE
;
1297 cp_emit_debug_info_for_using (decl
, USING_DECL_SCOPE (using_decl
));
1299 if (is_overloaded_fn (decl
))
1304 else if (is_overloaded_fn (old_value
))
1307 /* It's OK to use functions from a base when there are functions with
1308 the same name already present in the current class. */;
1311 error ("%q+D invalid in %q#T", using_decl
, t
);
1312 error (" because of local method %q+#D with same name",
1313 OVL_CURRENT (old_value
));
1317 else if (!DECL_ARTIFICIAL (old_value
))
1319 error ("%q+D invalid in %q#T", using_decl
, t
);
1320 error (" because of local member %q+#D with same name", old_value
);
1324 /* Make type T see field decl FDECL with access ACCESS. */
1326 for (; flist
; flist
= OVL_NEXT (flist
))
1328 add_method (t
, OVL_CURRENT (flist
), using_decl
);
1329 alter_access (t
, OVL_CURRENT (flist
), access
);
1332 alter_access (t
, decl
, access
);
1335 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1336 types with abi tags, add the corresponding identifiers to the VEC in
1337 *DATA and set IDENTIFIER_MARKED. */
1343 // error_mark_node to get diagnostics; otherwise collect missing tags here
1348 find_abi_tags_r (tree
*tp
, int *walk_subtrees
, void *data
)
1350 if (!OVERLOAD_TYPE_P (*tp
))
1353 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1354 anyway, but let's make sure of it. */
1355 *walk_subtrees
= false;
1357 if (tree attributes
= lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp
)))
1359 struct abi_tag_data
*p
= static_cast<struct abi_tag_data
*>(data
);
1360 for (tree list
= TREE_VALUE (attributes
); list
;
1361 list
= TREE_CHAIN (list
))
1363 tree tag
= TREE_VALUE (list
);
1364 tree id
= get_identifier (TREE_STRING_POINTER (tag
));
1365 if (!IDENTIFIER_MARKED (id
))
1367 if (p
->tags
!= error_mark_node
)
1369 /* We're collecting tags from template arguments. */
1370 tree str
= build_string (IDENTIFIER_LENGTH (id
),
1371 IDENTIFIER_POINTER (id
));
1372 p
->tags
= tree_cons (NULL_TREE
, str
, p
->tags
);
1373 ABI_TAG_IMPLICIT (p
->tags
) = true;
1375 /* Don't inherit this tag multiple times. */
1376 IDENTIFIER_MARKED (id
) = true;
1379 /* Otherwise we're diagnosing missing tags. */
1380 else if (TYPE_P (p
->subob
))
1382 warning (OPT_Wabi_tag
, "%qT does not have the %E abi tag "
1383 "that base %qT has", p
->t
, tag
, p
->subob
);
1384 inform (location_of (p
->subob
), "%qT declared here",
1389 warning (OPT_Wabi_tag
, "%qT does not have the %E abi tag "
1390 "that %qT (used in the type of %qD) has",
1391 p
->t
, tag
, *tp
, p
->subob
);
1392 inform (location_of (p
->subob
), "%qD declared here",
1394 inform (location_of (*tp
), "%qT declared here", *tp
);
1402 /* Set IDENTIFIER_MARKED on all the ABI tags on T and its (transitively
1403 complete) template arguments. */
1406 mark_type_abi_tags (tree t
, bool val
)
1408 tree attributes
= lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t
));
1411 for (tree list
= TREE_VALUE (attributes
); list
;
1412 list
= TREE_CHAIN (list
))
1414 tree tag
= TREE_VALUE (list
);
1415 tree id
= get_identifier (TREE_STRING_POINTER (tag
));
1416 IDENTIFIER_MARKED (id
) = val
;
1421 /* Check that class T has all the abi tags that subobject SUBOB has, or
1425 check_abi_tags (tree t
, tree subob
)
1427 mark_type_abi_tags (t
, true);
1429 tree subtype
= TYPE_P (subob
) ? subob
: TREE_TYPE (subob
);
1430 struct abi_tag_data data
= { t
, subob
, error_mark_node
};
1432 cp_walk_tree_without_duplicates (&subtype
, find_abi_tags_r
, &data
);
1434 mark_type_abi_tags (t
, false);
1438 inherit_targ_abi_tags (tree t
)
1440 if (CLASSTYPE_TEMPLATE_INFO (t
) == NULL_TREE
)
1443 mark_type_abi_tags (t
, true);
1445 tree args
= CLASSTYPE_TI_ARGS (t
);
1446 struct abi_tag_data data
= { t
, NULL_TREE
, NULL_TREE
};
1447 for (int i
= 0; i
< TMPL_ARGS_DEPTH (args
); ++i
)
1449 tree level
= TMPL_ARGS_LEVEL (args
, i
+1);
1450 for (int j
= 0; j
< TREE_VEC_LENGTH (level
); ++j
)
1452 tree arg
= TREE_VEC_ELT (level
, j
);
1454 cp_walk_tree_without_duplicates (&arg
, find_abi_tags_r
, &data
);
1458 // If we found some tags on our template arguments, add them to our
1459 // abi_tag attribute.
1462 tree attr
= lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t
));
1464 TREE_VALUE (attr
) = chainon (data
.tags
, TREE_VALUE (attr
));
1467 = tree_cons (get_identifier ("abi_tag"), data
.tags
,
1468 TYPE_ATTRIBUTES (t
));
1471 mark_type_abi_tags (t
, false);
1474 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1475 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1476 properties of the bases. */
1479 check_bases (tree t
,
1480 int* cant_have_const_ctor_p
,
1481 int* no_const_asn_ref_p
)
1484 bool seen_non_virtual_nearly_empty_base_p
= 0;
1485 int seen_tm_mask
= 0;
1488 tree field
= NULL_TREE
;
1490 if (!CLASSTYPE_NON_STD_LAYOUT (t
))
1491 for (field
= TYPE_FIELDS (t
); field
; field
= DECL_CHAIN (field
))
1492 if (TREE_CODE (field
) == FIELD_DECL
)
1495 for (binfo
= TYPE_BINFO (t
), i
= 0;
1496 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1498 tree basetype
= TREE_TYPE (base_binfo
);
1500 gcc_assert (COMPLETE_TYPE_P (basetype
));
1502 if (CLASSTYPE_FINAL (basetype
))
1503 error ("cannot derive from %<final%> base %qT in derived type %qT",
1506 /* If any base class is non-literal, so is the derived class. */
1507 if (!CLASSTYPE_LITERAL_P (basetype
))
1508 CLASSTYPE_LITERAL_P (t
) = false;
1510 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1511 here because the case of virtual functions but non-virtual
1512 dtor is handled in finish_struct_1. */
1513 if (!TYPE_POLYMORPHIC_P (basetype
))
1514 warning (OPT_Weffc__
,
1515 "base class %q#T has a non-virtual destructor", basetype
);
1517 /* If the base class doesn't have copy constructors or
1518 assignment operators that take const references, then the
1519 derived class cannot have such a member automatically
1521 if (TYPE_HAS_COPY_CTOR (basetype
)
1522 && ! TYPE_HAS_CONST_COPY_CTOR (basetype
))
1523 *cant_have_const_ctor_p
= 1;
1524 if (TYPE_HAS_COPY_ASSIGN (basetype
)
1525 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype
))
1526 *no_const_asn_ref_p
= 1;
1528 if (BINFO_VIRTUAL_P (base_binfo
))
1529 /* A virtual base does not effect nearly emptiness. */
1531 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype
))
1533 if (seen_non_virtual_nearly_empty_base_p
)
1534 /* And if there is more than one nearly empty base, then the
1535 derived class is not nearly empty either. */
1536 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
1538 /* Remember we've seen one. */
1539 seen_non_virtual_nearly_empty_base_p
= 1;
1541 else if (!is_empty_class (basetype
))
1542 /* If the base class is not empty or nearly empty, then this
1543 class cannot be nearly empty. */
1544 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
1546 /* A lot of properties from the bases also apply to the derived
1548 TYPE_NEEDS_CONSTRUCTING (t
) |= TYPE_NEEDS_CONSTRUCTING (basetype
);
1549 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
1550 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype
);
1551 TYPE_HAS_COMPLEX_COPY_ASSIGN (t
)
1552 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype
)
1553 || !TYPE_HAS_COPY_ASSIGN (basetype
));
1554 TYPE_HAS_COMPLEX_COPY_CTOR (t
) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype
)
1555 || !TYPE_HAS_COPY_CTOR (basetype
));
1556 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t
)
1557 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype
);
1558 TYPE_HAS_COMPLEX_MOVE_CTOR (t
) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype
);
1559 TYPE_POLYMORPHIC_P (t
) |= TYPE_POLYMORPHIC_P (basetype
);
1560 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
)
1561 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype
);
1562 TYPE_HAS_COMPLEX_DFLT (t
) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype
)
1563 || TYPE_HAS_COMPLEX_DFLT (basetype
));
1564 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
1565 (t
, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
)
1566 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype
));
1567 SET_CLASSTYPE_REF_FIELDS_NEED_INIT
1568 (t
, CLASSTYPE_REF_FIELDS_NEED_INIT (t
)
1569 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype
));
1571 /* A standard-layout class is a class that:
1573 * has no non-standard-layout base classes, */
1574 CLASSTYPE_NON_STD_LAYOUT (t
) |= CLASSTYPE_NON_STD_LAYOUT (basetype
);
1575 if (!CLASSTYPE_NON_STD_LAYOUT (t
))
1578 /* ...has no base classes of the same type as the first non-static
1580 if (field
&& DECL_CONTEXT (field
) == t
1581 && (same_type_ignoring_top_level_qualifiers_p
1582 (TREE_TYPE (field
), basetype
)))
1583 CLASSTYPE_NON_STD_LAYOUT (t
) = 1;
1585 /* ...either has no non-static data members in the most-derived
1586 class and at most one base class with non-static data
1587 members, or has no base classes with non-static data
1589 for (basefield
= TYPE_FIELDS (basetype
); basefield
;
1590 basefield
= DECL_CHAIN (basefield
))
1591 if (TREE_CODE (basefield
) == FIELD_DECL
)
1594 CLASSTYPE_NON_STD_LAYOUT (t
) = 1;
1601 /* Don't bother collecting tm attributes if transactional memory
1602 support is not enabled. */
1605 tree tm_attr
= find_tm_attribute (TYPE_ATTRIBUTES (basetype
));
1607 seen_tm_mask
|= tm_attr_to_mask (tm_attr
);
1610 check_abi_tags (t
, basetype
);
1613 /* If one of the base classes had TM attributes, and the current class
1614 doesn't define its own, then the current class inherits one. */
1615 if (seen_tm_mask
&& !find_tm_attribute (TYPE_ATTRIBUTES (t
)))
1617 tree tm_attr
= tm_mask_to_attr (seen_tm_mask
& -seen_tm_mask
);
1618 TYPE_ATTRIBUTES (t
) = tree_cons (tm_attr
, NULL
, TYPE_ATTRIBUTES (t
));
1622 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1623 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1624 that have had a nearly-empty virtual primary base stolen by some
1625 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1629 determine_primary_bases (tree t
)
1632 tree primary
= NULL_TREE
;
1633 tree type_binfo
= TYPE_BINFO (t
);
1636 /* Determine the primary bases of our bases. */
1637 for (base_binfo
= TREE_CHAIN (type_binfo
); base_binfo
;
1638 base_binfo
= TREE_CHAIN (base_binfo
))
1640 tree primary
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo
));
1642 /* See if we're the non-virtual primary of our inheritance
1644 if (!BINFO_VIRTUAL_P (base_binfo
))
1646 tree parent
= BINFO_INHERITANCE_CHAIN (base_binfo
);
1647 tree parent_primary
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent
));
1650 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
),
1651 BINFO_TYPE (parent_primary
)))
1652 /* We are the primary binfo. */
1653 BINFO_PRIMARY_P (base_binfo
) = 1;
1655 /* Determine if we have a virtual primary base, and mark it so.
1657 if (primary
&& BINFO_VIRTUAL_P (primary
))
1659 tree this_primary
= copied_binfo (primary
, base_binfo
);
1661 if (BINFO_PRIMARY_P (this_primary
))
1662 /* Someone already claimed this base. */
1663 BINFO_LOST_PRIMARY_P (base_binfo
) = 1;
1668 BINFO_PRIMARY_P (this_primary
) = 1;
1669 BINFO_INHERITANCE_CHAIN (this_primary
) = base_binfo
;
1671 /* A virtual binfo might have been copied from within
1672 another hierarchy. As we're about to use it as a
1673 primary base, make sure the offsets match. */
1674 delta
= size_diffop_loc (input_location
,
1676 BINFO_OFFSET (base_binfo
)),
1678 BINFO_OFFSET (this_primary
)));
1680 propagate_binfo_offsets (this_primary
, delta
);
1685 /* First look for a dynamic direct non-virtual base. */
1686 for (i
= 0; BINFO_BASE_ITERATE (type_binfo
, i
, base_binfo
); i
++)
1688 tree basetype
= BINFO_TYPE (base_binfo
);
1690 if (TYPE_CONTAINS_VPTR_P (basetype
) && !BINFO_VIRTUAL_P (base_binfo
))
1692 primary
= base_binfo
;
1697 /* A "nearly-empty" virtual base class can be the primary base
1698 class, if no non-virtual polymorphic base can be found. Look for
1699 a nearly-empty virtual dynamic base that is not already a primary
1700 base of something in the hierarchy. If there is no such base,
1701 just pick the first nearly-empty virtual base. */
1703 for (base_binfo
= TREE_CHAIN (type_binfo
); base_binfo
;
1704 base_binfo
= TREE_CHAIN (base_binfo
))
1705 if (BINFO_VIRTUAL_P (base_binfo
)
1706 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo
)))
1708 if (!BINFO_PRIMARY_P (base_binfo
))
1710 /* Found one that is not primary. */
1711 primary
= base_binfo
;
1715 /* Remember the first candidate. */
1716 primary
= base_binfo
;
1720 /* If we've got a primary base, use it. */
1723 tree basetype
= BINFO_TYPE (primary
);
1725 CLASSTYPE_PRIMARY_BINFO (t
) = primary
;
1726 if (BINFO_PRIMARY_P (primary
))
1727 /* We are stealing a primary base. */
1728 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary
)) = 1;
1729 BINFO_PRIMARY_P (primary
) = 1;
1730 if (BINFO_VIRTUAL_P (primary
))
1734 BINFO_INHERITANCE_CHAIN (primary
) = type_binfo
;
1735 /* A virtual binfo might have been copied from within
1736 another hierarchy. As we're about to use it as a primary
1737 base, make sure the offsets match. */
1738 delta
= size_diffop_loc (input_location
, ssize_int (0),
1739 convert (ssizetype
, BINFO_OFFSET (primary
)));
1741 propagate_binfo_offsets (primary
, delta
);
1744 primary
= TYPE_BINFO (basetype
);
1746 TYPE_VFIELD (t
) = TYPE_VFIELD (basetype
);
1747 BINFO_VTABLE (type_binfo
) = BINFO_VTABLE (primary
);
1748 BINFO_VIRTUALS (type_binfo
) = BINFO_VIRTUALS (primary
);
1752 /* Update the variant types of T. */
1755 fixup_type_variants (tree t
)
1762 for (variants
= TYPE_NEXT_VARIANT (t
);
1764 variants
= TYPE_NEXT_VARIANT (variants
))
1766 /* These fields are in the _TYPE part of the node, not in
1767 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1768 TYPE_HAS_USER_CONSTRUCTOR (variants
) = TYPE_HAS_USER_CONSTRUCTOR (t
);
1769 TYPE_NEEDS_CONSTRUCTING (variants
) = TYPE_NEEDS_CONSTRUCTING (t
);
1770 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants
)
1771 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
);
1773 TYPE_POLYMORPHIC_P (variants
) = TYPE_POLYMORPHIC_P (t
);
1775 TYPE_BINFO (variants
) = TYPE_BINFO (t
);
1777 /* Copy whatever these are holding today. */
1778 TYPE_VFIELD (variants
) = TYPE_VFIELD (t
);
1779 TYPE_METHODS (variants
) = TYPE_METHODS (t
);
1780 TYPE_FIELDS (variants
) = TYPE_FIELDS (t
);
1784 /* Early variant fixups: we apply attributes at the beginning of the class
1785 definition, and we need to fix up any variants that have already been
1786 made via elaborated-type-specifier so that check_qualified_type works. */
1789 fixup_attribute_variants (tree t
)
1796 for (variants
= TYPE_NEXT_VARIANT (t
);
1798 variants
= TYPE_NEXT_VARIANT (variants
))
1800 /* These are the two fields that check_qualified_type looks at and
1801 are affected by attributes. */
1802 TYPE_ATTRIBUTES (variants
) = TYPE_ATTRIBUTES (t
);
1803 TYPE_ALIGN (variants
) = TYPE_ALIGN (t
);
1807 /* Set memoizing fields and bits of T (and its variants) for later
1811 finish_struct_bits (tree t
)
1813 /* Fix up variants (if any). */
1814 fixup_type_variants (t
);
1816 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t
)) && TYPE_POLYMORPHIC_P (t
))
1817 /* For a class w/o baseclasses, 'finish_struct' has set
1818 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1819 Similarly for a class whose base classes do not have vtables.
1820 When neither of these is true, we might have removed abstract
1821 virtuals (by providing a definition), added some (by declaring
1822 new ones), or redeclared ones from a base class. We need to
1823 recalculate what's really an abstract virtual at this point (by
1824 looking in the vtables). */
1825 get_pure_virtuals (t
);
1827 /* If this type has a copy constructor or a destructor, force its
1828 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1829 nonzero. This will cause it to be passed by invisible reference
1830 and prevent it from being returned in a register. */
1831 if (type_has_nontrivial_copy_init (t
)
1832 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
1835 DECL_MODE (TYPE_MAIN_DECL (t
)) = BLKmode
;
1836 for (variants
= t
; variants
; variants
= TYPE_NEXT_VARIANT (variants
))
1838 SET_TYPE_MODE (variants
, BLKmode
);
1839 TREE_ADDRESSABLE (variants
) = 1;
1844 /* Issue warnings about T having private constructors, but no friends,
1847 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1848 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1849 non-private static member functions. */
1852 maybe_warn_about_overly_private_class (tree t
)
1854 int has_member_fn
= 0;
1855 int has_nonprivate_method
= 0;
1858 if (!warn_ctor_dtor_privacy
1859 /* If the class has friends, those entities might create and
1860 access instances, so we should not warn. */
1861 || (CLASSTYPE_FRIEND_CLASSES (t
)
1862 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t
)))
1863 /* We will have warned when the template was declared; there's
1864 no need to warn on every instantiation. */
1865 || CLASSTYPE_TEMPLATE_INSTANTIATION (t
))
1866 /* There's no reason to even consider warning about this
1870 /* We only issue one warning, if more than one applies, because
1871 otherwise, on code like:
1874 // Oops - forgot `public:'
1880 we warn several times about essentially the same problem. */
1882 /* Check to see if all (non-constructor, non-destructor) member
1883 functions are private. (Since there are no friends or
1884 non-private statics, we can't ever call any of the private member
1886 for (fn
= TYPE_METHODS (t
); fn
; fn
= DECL_CHAIN (fn
))
1887 /* We're not interested in compiler-generated methods; they don't
1888 provide any way to call private members. */
1889 if (!DECL_ARTIFICIAL (fn
))
1891 if (!TREE_PRIVATE (fn
))
1893 if (DECL_STATIC_FUNCTION_P (fn
))
1894 /* A non-private static member function is just like a
1895 friend; it can create and invoke private member
1896 functions, and be accessed without a class
1900 has_nonprivate_method
= 1;
1901 /* Keep searching for a static member function. */
1903 else if (!DECL_CONSTRUCTOR_P (fn
) && !DECL_DESTRUCTOR_P (fn
))
1907 if (!has_nonprivate_method
&& has_member_fn
)
1909 /* There are no non-private methods, and there's at least one
1910 private member function that isn't a constructor or
1911 destructor. (If all the private members are
1912 constructors/destructors we want to use the code below that
1913 issues error messages specifically referring to
1914 constructors/destructors.) */
1916 tree binfo
= TYPE_BINFO (t
);
1918 for (i
= 0; i
!= BINFO_N_BASE_BINFOS (binfo
); i
++)
1919 if (BINFO_BASE_ACCESS (binfo
, i
) != access_private_node
)
1921 has_nonprivate_method
= 1;
1924 if (!has_nonprivate_method
)
1926 warning (OPT_Wctor_dtor_privacy
,
1927 "all member functions in class %qT are private", t
);
1932 /* Even if some of the member functions are non-private, the class
1933 won't be useful for much if all the constructors or destructors
1934 are private: such an object can never be created or destroyed. */
1935 fn
= CLASSTYPE_DESTRUCTORS (t
);
1936 if (fn
&& TREE_PRIVATE (fn
))
1938 warning (OPT_Wctor_dtor_privacy
,
1939 "%q#T only defines a private destructor and has no friends",
1944 /* Warn about classes that have private constructors and no friends. */
1945 if (TYPE_HAS_USER_CONSTRUCTOR (t
)
1946 /* Implicitly generated constructors are always public. */
1947 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t
)
1948 || !CLASSTYPE_LAZY_COPY_CTOR (t
)))
1950 int nonprivate_ctor
= 0;
1952 /* If a non-template class does not define a copy
1953 constructor, one is defined for it, enabling it to avoid
1954 this warning. For a template class, this does not
1955 happen, and so we would normally get a warning on:
1957 template <class T> class C { private: C(); };
1959 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1960 complete non-template or fully instantiated classes have this
1962 if (!TYPE_HAS_COPY_CTOR (t
))
1963 nonprivate_ctor
= 1;
1965 for (fn
= CLASSTYPE_CONSTRUCTORS (t
); fn
; fn
= OVL_NEXT (fn
))
1967 tree ctor
= OVL_CURRENT (fn
);
1968 /* Ideally, we wouldn't count copy constructors (or, in
1969 fact, any constructor that takes an argument of the
1970 class type as a parameter) because such things cannot
1971 be used to construct an instance of the class unless
1972 you already have one. But, for now at least, we're
1974 if (! TREE_PRIVATE (ctor
))
1976 nonprivate_ctor
= 1;
1981 if (nonprivate_ctor
== 0)
1983 warning (OPT_Wctor_dtor_privacy
,
1984 "%q#T only defines private constructors and has no friends",
1992 gt_pointer_operator new_value
;
1996 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1999 method_name_cmp (const void* m1_p
, const void* m2_p
)
2001 const tree
*const m1
= (const tree
*) m1_p
;
2002 const tree
*const m2
= (const tree
*) m2_p
;
2004 if (*m1
== NULL_TREE
&& *m2
== NULL_TREE
)
2006 if (*m1
== NULL_TREE
)
2008 if (*m2
== NULL_TREE
)
2010 if (DECL_NAME (OVL_CURRENT (*m1
)) < DECL_NAME (OVL_CURRENT (*m2
)))
2015 /* This routine compares two fields like method_name_cmp but using the
2016 pointer operator in resort_field_decl_data. */
2019 resort_method_name_cmp (const void* m1_p
, const void* m2_p
)
2021 const tree
*const m1
= (const tree
*) m1_p
;
2022 const tree
*const m2
= (const tree
*) m2_p
;
2023 if (*m1
== NULL_TREE
&& *m2
== NULL_TREE
)
2025 if (*m1
== NULL_TREE
)
2027 if (*m2
== NULL_TREE
)
2030 tree d1
= DECL_NAME (OVL_CURRENT (*m1
));
2031 tree d2
= DECL_NAME (OVL_CURRENT (*m2
));
2032 resort_data
.new_value (&d1
, resort_data
.cookie
);
2033 resort_data
.new_value (&d2
, resort_data
.cookie
);
2040 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
2043 resort_type_method_vec (void* obj
,
2045 gt_pointer_operator new_value
,
2048 vec
<tree
, va_gc
> *method_vec
= (vec
<tree
, va_gc
> *) obj
;
2049 int len
= vec_safe_length (method_vec
);
2053 /* The type conversion ops have to live at the front of the vec, so we
2055 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2056 vec_safe_iterate (method_vec
, slot
, &fn
);
2058 if (!DECL_CONV_FN_P (OVL_CURRENT (fn
)))
2063 resort_data
.new_value
= new_value
;
2064 resort_data
.cookie
= cookie
;
2065 qsort (method_vec
->address () + slot
, len
- slot
, sizeof (tree
),
2066 resort_method_name_cmp
);
2070 /* Warn about duplicate methods in fn_fields.
2072 Sort methods that are not special (i.e., constructors, destructors,
2073 and type conversion operators) so that we can find them faster in
2077 finish_struct_methods (tree t
)
2080 vec
<tree
, va_gc
> *method_vec
;
2083 method_vec
= CLASSTYPE_METHOD_VEC (t
);
2087 len
= method_vec
->length ();
2089 /* Clear DECL_IN_AGGR_P for all functions. */
2090 for (fn_fields
= TYPE_METHODS (t
); fn_fields
;
2091 fn_fields
= DECL_CHAIN (fn_fields
))
2092 DECL_IN_AGGR_P (fn_fields
) = 0;
2094 /* Issue warnings about private constructors and such. If there are
2095 no methods, then some public defaults are generated. */
2096 maybe_warn_about_overly_private_class (t
);
2098 /* The type conversion ops have to live at the front of the vec, so we
2100 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2101 method_vec
->iterate (slot
, &fn_fields
);
2103 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields
)))
2106 qsort (method_vec
->address () + slot
,
2107 len
-slot
, sizeof (tree
), method_name_cmp
);
2110 /* Make BINFO's vtable have N entries, including RTTI entries,
2111 vbase and vcall offsets, etc. Set its type and call the back end
2115 layout_vtable_decl (tree binfo
, int n
)
2120 atype
= build_array_of_n_type (vtable_entry_type
, n
);
2121 layout_type (atype
);
2123 /* We may have to grow the vtable. */
2124 vtable
= get_vtbl_decl_for_binfo (binfo
);
2125 if (!same_type_p (TREE_TYPE (vtable
), atype
))
2127 TREE_TYPE (vtable
) = atype
;
2128 DECL_SIZE (vtable
) = DECL_SIZE_UNIT (vtable
) = NULL_TREE
;
2129 layout_decl (vtable
, 0);
2133 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2134 have the same signature. */
2137 same_signature_p (const_tree fndecl
, const_tree base_fndecl
)
2139 /* One destructor overrides another if they are the same kind of
2141 if (DECL_DESTRUCTOR_P (base_fndecl
) && DECL_DESTRUCTOR_P (fndecl
)
2142 && special_function_p (base_fndecl
) == special_function_p (fndecl
))
2144 /* But a non-destructor never overrides a destructor, nor vice
2145 versa, nor do different kinds of destructors override
2146 one-another. For example, a complete object destructor does not
2147 override a deleting destructor. */
2148 if (DECL_DESTRUCTOR_P (base_fndecl
) || DECL_DESTRUCTOR_P (fndecl
))
2151 if (DECL_NAME (fndecl
) == DECL_NAME (base_fndecl
)
2152 || (DECL_CONV_FN_P (fndecl
)
2153 && DECL_CONV_FN_P (base_fndecl
)
2154 && same_type_p (DECL_CONV_FN_TYPE (fndecl
),
2155 DECL_CONV_FN_TYPE (base_fndecl
))))
2157 tree fntype
= TREE_TYPE (fndecl
);
2158 tree base_fntype
= TREE_TYPE (base_fndecl
);
2159 if (type_memfn_quals (fntype
) == type_memfn_quals (base_fntype
)
2160 && type_memfn_rqual (fntype
) == type_memfn_rqual (base_fntype
)
2161 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl
),
2162 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl
)))
2168 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2172 base_derived_from (tree derived
, tree base
)
2176 for (probe
= base
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
2178 if (probe
== derived
)
2180 else if (BINFO_VIRTUAL_P (probe
))
2181 /* If we meet a virtual base, we can't follow the inheritance
2182 any more. See if the complete type of DERIVED contains
2183 such a virtual base. */
2184 return (binfo_for_vbase (BINFO_TYPE (probe
), BINFO_TYPE (derived
))
2190 typedef struct find_final_overrider_data_s
{
2191 /* The function for which we are trying to find a final overrider. */
2193 /* The base class in which the function was declared. */
2194 tree declaring_base
;
2195 /* The candidate overriders. */
2197 /* Path to most derived. */
2199 } find_final_overrider_data
;
2201 /* Add the overrider along the current path to FFOD->CANDIDATES.
2202 Returns true if an overrider was found; false otherwise. */
2205 dfs_find_final_overrider_1 (tree binfo
,
2206 find_final_overrider_data
*ffod
,
2211 /* If BINFO is not the most derived type, try a more derived class.
2212 A definition there will overrider a definition here. */
2216 if (dfs_find_final_overrider_1
2217 (ffod
->path
[depth
], ffod
, depth
))
2221 method
= look_for_overrides_here (BINFO_TYPE (binfo
), ffod
->fn
);
2224 tree
*candidate
= &ffod
->candidates
;
2226 /* Remove any candidates overridden by this new function. */
2229 /* If *CANDIDATE overrides METHOD, then METHOD
2230 cannot override anything else on the list. */
2231 if (base_derived_from (TREE_VALUE (*candidate
), binfo
))
2233 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2234 if (base_derived_from (binfo
, TREE_VALUE (*candidate
)))
2235 *candidate
= TREE_CHAIN (*candidate
);
2237 candidate
= &TREE_CHAIN (*candidate
);
2240 /* Add the new function. */
2241 ffod
->candidates
= tree_cons (method
, binfo
, ffod
->candidates
);
2248 /* Called from find_final_overrider via dfs_walk. */
2251 dfs_find_final_overrider_pre (tree binfo
, void *data
)
2253 find_final_overrider_data
*ffod
= (find_final_overrider_data
*) data
;
2255 if (binfo
== ffod
->declaring_base
)
2256 dfs_find_final_overrider_1 (binfo
, ffod
, ffod
->path
.length ());
2257 ffod
->path
.safe_push (binfo
);
2263 dfs_find_final_overrider_post (tree
/*binfo*/, void *data
)
2265 find_final_overrider_data
*ffod
= (find_final_overrider_data
*) data
;
2271 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2272 FN and whose TREE_VALUE is the binfo for the base where the
2273 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2274 DERIVED) is the base object in which FN is declared. */
2277 find_final_overrider (tree derived
, tree binfo
, tree fn
)
2279 find_final_overrider_data ffod
;
2281 /* Getting this right is a little tricky. This is valid:
2283 struct S { virtual void f (); };
2284 struct T { virtual void f (); };
2285 struct U : public S, public T { };
2287 even though calling `f' in `U' is ambiguous. But,
2289 struct R { virtual void f(); };
2290 struct S : virtual public R { virtual void f (); };
2291 struct T : virtual public R { virtual void f (); };
2292 struct U : public S, public T { };
2294 is not -- there's no way to decide whether to put `S::f' or
2295 `T::f' in the vtable for `R'.
2297 The solution is to look at all paths to BINFO. If we find
2298 different overriders along any two, then there is a problem. */
2299 if (DECL_THUNK_P (fn
))
2300 fn
= THUNK_TARGET (fn
);
2302 /* Determine the depth of the hierarchy. */
2304 ffod
.declaring_base
= binfo
;
2305 ffod
.candidates
= NULL_TREE
;
2306 ffod
.path
.create (30);
2308 dfs_walk_all (derived
, dfs_find_final_overrider_pre
,
2309 dfs_find_final_overrider_post
, &ffod
);
2311 ffod
.path
.release ();
2313 /* If there was no winner, issue an error message. */
2314 if (!ffod
.candidates
|| TREE_CHAIN (ffod
.candidates
))
2315 return error_mark_node
;
2317 return ffod
.candidates
;
2320 /* Return the index of the vcall offset for FN when TYPE is used as a
2324 get_vcall_index (tree fn
, tree type
)
2326 vec
<tree_pair_s
, va_gc
> *indices
= CLASSTYPE_VCALL_INDICES (type
);
2330 FOR_EACH_VEC_SAFE_ELT (indices
, ix
, p
)
2331 if ((DECL_DESTRUCTOR_P (fn
) && DECL_DESTRUCTOR_P (p
->purpose
))
2332 || same_signature_p (fn
, p
->purpose
))
2335 /* There should always be an appropriate index. */
2339 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2340 dominated by T. FN is the old function; VIRTUALS points to the
2341 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2342 of that entry in the list. */
2345 update_vtable_entry_for_fn (tree t
, tree binfo
, tree fn
, tree
* virtuals
,
2353 tree overrider_fn
, overrider_target
;
2354 tree target_fn
= DECL_THUNK_P (fn
) ? THUNK_TARGET (fn
) : fn
;
2355 tree over_return
, base_return
;
2358 /* Find the nearest primary base (possibly binfo itself) which defines
2359 this function; this is the class the caller will convert to when
2360 calling FN through BINFO. */
2361 for (b
= binfo
; ; b
= get_primary_binfo (b
))
2364 if (look_for_overrides_here (BINFO_TYPE (b
), target_fn
))
2367 /* The nearest definition is from a lost primary. */
2368 if (BINFO_LOST_PRIMARY_P (b
))
2373 /* Find the final overrider. */
2374 overrider
= find_final_overrider (TYPE_BINFO (t
), b
, target_fn
);
2375 if (overrider
== error_mark_node
)
2377 error ("no unique final overrider for %qD in %qT", target_fn
, t
);
2380 overrider_target
= overrider_fn
= TREE_PURPOSE (overrider
);
2382 /* Check for adjusting covariant return types. */
2383 over_return
= TREE_TYPE (TREE_TYPE (overrider_target
));
2384 base_return
= TREE_TYPE (TREE_TYPE (target_fn
));
2386 if (POINTER_TYPE_P (over_return
)
2387 && TREE_CODE (over_return
) == TREE_CODE (base_return
)
2388 && CLASS_TYPE_P (TREE_TYPE (over_return
))
2389 && CLASS_TYPE_P (TREE_TYPE (base_return
))
2390 /* If the overrider is invalid, don't even try. */
2391 && !DECL_INVALID_OVERRIDER_P (overrider_target
))
2393 /* If FN is a covariant thunk, we must figure out the adjustment
2394 to the final base FN was converting to. As OVERRIDER_TARGET might
2395 also be converting to the return type of FN, we have to
2396 combine the two conversions here. */
2397 tree fixed_offset
, virtual_offset
;
2399 over_return
= TREE_TYPE (over_return
);
2400 base_return
= TREE_TYPE (base_return
);
2402 if (DECL_THUNK_P (fn
))
2404 gcc_assert (DECL_RESULT_THUNK_P (fn
));
2405 fixed_offset
= ssize_int (THUNK_FIXED_OFFSET (fn
));
2406 virtual_offset
= THUNK_VIRTUAL_OFFSET (fn
);
2409 fixed_offset
= virtual_offset
= NULL_TREE
;
2412 /* Find the equivalent binfo within the return type of the
2413 overriding function. We will want the vbase offset from
2415 virtual_offset
= binfo_for_vbase (BINFO_TYPE (virtual_offset
),
2417 else if (!same_type_ignoring_top_level_qualifiers_p
2418 (over_return
, base_return
))
2420 /* There was no existing virtual thunk (which takes
2421 precedence). So find the binfo of the base function's
2422 return type within the overriding function's return type.
2423 We cannot call lookup base here, because we're inside a
2424 dfs_walk, and will therefore clobber the BINFO_MARKED
2425 flags. Fortunately we know the covariancy is valid (it
2426 has already been checked), so we can just iterate along
2427 the binfos, which have been chained in inheritance graph
2428 order. Of course it is lame that we have to repeat the
2429 search here anyway -- we should really be caching pieces
2430 of the vtable and avoiding this repeated work. */
2431 tree thunk_binfo
, base_binfo
;
2433 /* Find the base binfo within the overriding function's
2434 return type. We will always find a thunk_binfo, except
2435 when the covariancy is invalid (which we will have
2436 already diagnosed). */
2437 for (base_binfo
= TYPE_BINFO (base_return
),
2438 thunk_binfo
= TYPE_BINFO (over_return
);
2440 thunk_binfo
= TREE_CHAIN (thunk_binfo
))
2441 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo
),
2442 BINFO_TYPE (base_binfo
)))
2445 /* See if virtual inheritance is involved. */
2446 for (virtual_offset
= thunk_binfo
;
2448 virtual_offset
= BINFO_INHERITANCE_CHAIN (virtual_offset
))
2449 if (BINFO_VIRTUAL_P (virtual_offset
))
2453 || (thunk_binfo
&& !BINFO_OFFSET_ZEROP (thunk_binfo
)))
2455 tree offset
= convert (ssizetype
, BINFO_OFFSET (thunk_binfo
));
2459 /* We convert via virtual base. Adjust the fixed
2460 offset to be from there. */
2462 size_diffop (offset
,
2464 BINFO_OFFSET (virtual_offset
)));
2467 /* There was an existing fixed offset, this must be
2468 from the base just converted to, and the base the
2469 FN was thunking to. */
2470 fixed_offset
= size_binop (PLUS_EXPR
, fixed_offset
, offset
);
2472 fixed_offset
= offset
;
2476 if (fixed_offset
|| virtual_offset
)
2477 /* Replace the overriding function with a covariant thunk. We
2478 will emit the overriding function in its own slot as
2480 overrider_fn
= make_thunk (overrider_target
, /*this_adjusting=*/0,
2481 fixed_offset
, virtual_offset
);
2484 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target
) ||
2485 !DECL_THUNK_P (fn
));
2487 /* If we need a covariant thunk, then we may need to adjust first_defn.
2488 The ABI specifies that the thunks emitted with a function are
2489 determined by which bases the function overrides, so we need to be
2490 sure that we're using a thunk for some overridden base; even if we
2491 know that the necessary this adjustment is zero, there may not be an
2492 appropriate zero-this-adjusment thunk for us to use since thunks for
2493 overriding virtual bases always use the vcall offset.
2495 Furthermore, just choosing any base that overrides this function isn't
2496 quite right, as this slot won't be used for calls through a type that
2497 puts a covariant thunk here. Calling the function through such a type
2498 will use a different slot, and that slot is the one that determines
2499 the thunk emitted for that base.
2501 So, keep looking until we find the base that we're really overriding
2502 in this slot: the nearest primary base that doesn't use a covariant
2503 thunk in this slot. */
2504 if (overrider_target
!= overrider_fn
)
2506 if (BINFO_TYPE (b
) == DECL_CONTEXT (overrider_target
))
2507 /* We already know that the overrider needs a covariant thunk. */
2508 b
= get_primary_binfo (b
);
2509 for (; ; b
= get_primary_binfo (b
))
2511 tree main_binfo
= TYPE_BINFO (BINFO_TYPE (b
));
2512 tree bv
= chain_index (ix
, BINFO_VIRTUALS (main_binfo
));
2513 if (!DECL_THUNK_P (TREE_VALUE (bv
)))
2515 if (BINFO_LOST_PRIMARY_P (b
))
2521 /* Assume that we will produce a thunk that convert all the way to
2522 the final overrider, and not to an intermediate virtual base. */
2523 virtual_base
= NULL_TREE
;
2525 /* See if we can convert to an intermediate virtual base first, and then
2526 use the vcall offset located there to finish the conversion. */
2527 for (; b
; b
= BINFO_INHERITANCE_CHAIN (b
))
2529 /* If we find the final overrider, then we can stop
2531 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b
),
2532 BINFO_TYPE (TREE_VALUE (overrider
))))
2535 /* If we find a virtual base, and we haven't yet found the
2536 overrider, then there is a virtual base between the
2537 declaring base (first_defn) and the final overrider. */
2538 if (BINFO_VIRTUAL_P (b
))
2545 /* Compute the constant adjustment to the `this' pointer. The
2546 `this' pointer, when this function is called, will point at BINFO
2547 (or one of its primary bases, which are at the same offset). */
2549 /* The `this' pointer needs to be adjusted from the declaration to
2550 the nearest virtual base. */
2551 delta
= size_diffop_loc (input_location
,
2552 convert (ssizetype
, BINFO_OFFSET (virtual_base
)),
2553 convert (ssizetype
, BINFO_OFFSET (first_defn
)));
2555 /* If the nearest definition is in a lost primary, we don't need an
2556 entry in our vtable. Except possibly in a constructor vtable,
2557 if we happen to get our primary back. In that case, the offset
2558 will be zero, as it will be a primary base. */
2559 delta
= size_zero_node
;
2561 /* The `this' pointer needs to be adjusted from pointing to
2562 BINFO to pointing at the base where the final overrider
2564 delta
= size_diffop_loc (input_location
,
2566 BINFO_OFFSET (TREE_VALUE (overrider
))),
2567 convert (ssizetype
, BINFO_OFFSET (binfo
)));
2569 modify_vtable_entry (t
, binfo
, overrider_fn
, delta
, virtuals
);
2572 BV_VCALL_INDEX (*virtuals
)
2573 = get_vcall_index (overrider_target
, BINFO_TYPE (virtual_base
));
2575 BV_VCALL_INDEX (*virtuals
) = NULL_TREE
;
2577 BV_LOST_PRIMARY (*virtuals
) = lost
;
2580 /* Called from modify_all_vtables via dfs_walk. */
2583 dfs_modify_vtables (tree binfo
, void* data
)
2585 tree t
= (tree
) data
;
2590 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
2591 /* A base without a vtable needs no modification, and its bases
2592 are uninteresting. */
2593 return dfs_skip_bases
;
2595 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
)
2596 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
2597 /* Don't do the primary vtable, if it's new. */
2600 if (BINFO_PRIMARY_P (binfo
) && !BINFO_VIRTUAL_P (binfo
))
2601 /* There's no need to modify the vtable for a non-virtual primary
2602 base; we're not going to use that vtable anyhow. We do still
2603 need to do this for virtual primary bases, as they could become
2604 non-primary in a construction vtable. */
2607 make_new_vtable (t
, binfo
);
2609 /* Now, go through each of the virtual functions in the virtual
2610 function table for BINFO. Find the final overrider, and update
2611 the BINFO_VIRTUALS list appropriately. */
2612 for (ix
= 0, virtuals
= BINFO_VIRTUALS (binfo
),
2613 old_virtuals
= BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo
)));
2615 ix
++, virtuals
= TREE_CHAIN (virtuals
),
2616 old_virtuals
= TREE_CHAIN (old_virtuals
))
2617 update_vtable_entry_for_fn (t
,
2619 BV_FN (old_virtuals
),
2625 /* Update all of the primary and secondary vtables for T. Create new
2626 vtables as required, and initialize their RTTI information. Each
2627 of the functions in VIRTUALS is declared in T and may override a
2628 virtual function from a base class; find and modify the appropriate
2629 entries to point to the overriding functions. Returns a list, in
2630 declaration order, of the virtual functions that are declared in T,
2631 but do not appear in the primary base class vtable, and which
2632 should therefore be appended to the end of the vtable for T. */
2635 modify_all_vtables (tree t
, tree virtuals
)
2637 tree binfo
= TYPE_BINFO (t
);
2640 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2641 if (TYPE_CONTAINS_VPTR_P (t
))
2642 get_vtable_decl (t
, false);
2644 /* Update all of the vtables. */
2645 dfs_walk_once (binfo
, dfs_modify_vtables
, NULL
, t
);
2647 /* Add virtual functions not already in our primary vtable. These
2648 will be both those introduced by this class, and those overridden
2649 from secondary bases. It does not include virtuals merely
2650 inherited from secondary bases. */
2651 for (fnsp
= &virtuals
; *fnsp
; )
2653 tree fn
= TREE_VALUE (*fnsp
);
2655 if (!value_member (fn
, BINFO_VIRTUALS (binfo
))
2656 || DECL_VINDEX (fn
) == error_mark_node
)
2658 /* We don't need to adjust the `this' pointer when
2659 calling this function. */
2660 BV_DELTA (*fnsp
) = integer_zero_node
;
2661 BV_VCALL_INDEX (*fnsp
) = NULL_TREE
;
2663 /* This is a function not already in our vtable. Keep it. */
2664 fnsp
= &TREE_CHAIN (*fnsp
);
2667 /* We've already got an entry for this function. Skip it. */
2668 *fnsp
= TREE_CHAIN (*fnsp
);
2674 /* Get the base virtual function declarations in T that have the
2678 get_basefndecls (tree name
, tree t
)
2681 tree base_fndecls
= NULL_TREE
;
2682 int n_baseclasses
= BINFO_N_BASE_BINFOS (TYPE_BINFO (t
));
2685 /* Find virtual functions in T with the indicated NAME. */
2686 i
= lookup_fnfields_1 (t
, name
);
2688 for (methods
= (*CLASSTYPE_METHOD_VEC (t
))[i
];
2690 methods
= OVL_NEXT (methods
))
2692 tree method
= OVL_CURRENT (methods
);
2694 if (TREE_CODE (method
) == FUNCTION_DECL
2695 && DECL_VINDEX (method
))
2696 base_fndecls
= tree_cons (NULL_TREE
, method
, base_fndecls
);
2700 return base_fndecls
;
2702 for (i
= 0; i
< n_baseclasses
; i
++)
2704 tree basetype
= BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t
), i
));
2705 base_fndecls
= chainon (get_basefndecls (name
, basetype
),
2709 return base_fndecls
;
2712 /* If this declaration supersedes the declaration of
2713 a method declared virtual in the base class, then
2714 mark this field as being virtual as well. */
2717 check_for_override (tree decl
, tree ctype
)
2719 bool overrides_found
= false;
2720 if (TREE_CODE (decl
) == TEMPLATE_DECL
)
2721 /* In [temp.mem] we have:
2723 A specialization of a member function template does not
2724 override a virtual function from a base class. */
2726 if ((DECL_DESTRUCTOR_P (decl
)
2727 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl
))
2728 || DECL_CONV_FN_P (decl
))
2729 && look_for_overrides (ctype
, decl
)
2730 && !DECL_STATIC_FUNCTION_P (decl
))
2731 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2732 the error_mark_node so that we know it is an overriding
2735 DECL_VINDEX (decl
) = decl
;
2736 overrides_found
= true;
2739 if (DECL_VIRTUAL_P (decl
))
2741 if (!DECL_VINDEX (decl
))
2742 DECL_VINDEX (decl
) = error_mark_node
;
2743 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl
)) = 1;
2744 if (DECL_DESTRUCTOR_P (decl
))
2745 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype
) = true;
2747 else if (DECL_FINAL_P (decl
))
2748 error ("%q+#D marked final, but is not virtual", decl
);
2749 if (DECL_OVERRIDE_P (decl
) && !overrides_found
)
2750 error ("%q+#D marked override, but does not override", decl
);
2753 /* Warn about hidden virtual functions that are not overridden in t.
2754 We know that constructors and destructors don't apply. */
2757 warn_hidden (tree t
)
2759 vec
<tree
, va_gc
> *method_vec
= CLASSTYPE_METHOD_VEC (t
);
2763 /* We go through each separately named virtual function. */
2764 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2765 vec_safe_iterate (method_vec
, i
, &fns
);
2776 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2777 have the same name. Figure out what name that is. */
2778 name
= DECL_NAME (OVL_CURRENT (fns
));
2779 /* There are no possibly hidden functions yet. */
2780 base_fndecls
= NULL_TREE
;
2781 /* Iterate through all of the base classes looking for possibly
2782 hidden functions. */
2783 for (binfo
= TYPE_BINFO (t
), j
= 0;
2784 BINFO_BASE_ITERATE (binfo
, j
, base_binfo
); j
++)
2786 tree basetype
= BINFO_TYPE (base_binfo
);
2787 base_fndecls
= chainon (get_basefndecls (name
, basetype
),
2791 /* If there are no functions to hide, continue. */
2795 /* Remove any overridden functions. */
2796 for (fn
= fns
; fn
; fn
= OVL_NEXT (fn
))
2798 fndecl
= OVL_CURRENT (fn
);
2799 if (DECL_VINDEX (fndecl
))
2801 tree
*prev
= &base_fndecls
;
2804 /* If the method from the base class has the same
2805 signature as the method from the derived class, it
2806 has been overridden. */
2807 if (same_signature_p (fndecl
, TREE_VALUE (*prev
)))
2808 *prev
= TREE_CHAIN (*prev
);
2810 prev
= &TREE_CHAIN (*prev
);
2814 /* Now give a warning for all base functions without overriders,
2815 as they are hidden. */
2816 while (base_fndecls
)
2818 /* Here we know it is a hider, and no overrider exists. */
2819 warning (OPT_Woverloaded_virtual
, "%q+D was hidden", TREE_VALUE (base_fndecls
));
2820 warning (OPT_Woverloaded_virtual
, " by %q+D", fns
);
2821 base_fndecls
= TREE_CHAIN (base_fndecls
);
2826 /* Recursive helper for finish_struct_anon. */
2829 finish_struct_anon_r (tree field
, bool complain
)
2831 bool is_union
= TREE_CODE (TREE_TYPE (field
)) == UNION_TYPE
;
2832 tree elt
= TYPE_FIELDS (TREE_TYPE (field
));
2833 for (; elt
; elt
= DECL_CHAIN (elt
))
2835 /* We're generally only interested in entities the user
2836 declared, but we also find nested classes by noticing
2837 the TYPE_DECL that we create implicitly. You're
2838 allowed to put one anonymous union inside another,
2839 though, so we explicitly tolerate that. We use
2840 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2841 we also allow unnamed types used for defining fields. */
2842 if (DECL_ARTIFICIAL (elt
)
2843 && (!DECL_IMPLICIT_TYPEDEF_P (elt
)
2844 || TYPE_ANONYMOUS_P (TREE_TYPE (elt
))))
2847 if (TREE_CODE (elt
) != FIELD_DECL
)
2852 permerror (input_location
,
2853 "%q+#D invalid; an anonymous union can "
2854 "only have non-static data members", elt
);
2856 permerror (input_location
,
2857 "%q+#D invalid; an anonymous struct can "
2858 "only have non-static data members", elt
);
2865 if (TREE_PRIVATE (elt
))
2868 permerror (input_location
,
2869 "private member %q+#D in anonymous union", elt
);
2871 permerror (input_location
,
2872 "private member %q+#D in anonymous struct", elt
);
2874 else if (TREE_PROTECTED (elt
))
2877 permerror (input_location
,
2878 "protected member %q+#D in anonymous union", elt
);
2880 permerror (input_location
,
2881 "protected member %q+#D in anonymous struct", elt
);
2885 TREE_PRIVATE (elt
) = TREE_PRIVATE (field
);
2886 TREE_PROTECTED (elt
) = TREE_PROTECTED (field
);
2888 /* Recurse into the anonymous aggregates to handle correctly
2889 access control (c++/24926):
2900 if (DECL_NAME (elt
) == NULL_TREE
2901 && ANON_AGGR_TYPE_P (TREE_TYPE (elt
)))
2902 finish_struct_anon_r (elt
, /*complain=*/false);
2906 /* Check for things that are invalid. There are probably plenty of other
2907 things we should check for also. */
2910 finish_struct_anon (tree t
)
2912 for (tree field
= TYPE_FIELDS (t
); field
; field
= DECL_CHAIN (field
))
2914 if (TREE_STATIC (field
))
2916 if (TREE_CODE (field
) != FIELD_DECL
)
2919 if (DECL_NAME (field
) == NULL_TREE
2920 && ANON_AGGR_TYPE_P (TREE_TYPE (field
)))
2921 finish_struct_anon_r (field
, /*complain=*/true);
2925 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2926 will be used later during class template instantiation.
2927 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2928 a non-static member data (FIELD_DECL), a member function
2929 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2930 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2931 When FRIEND_P is nonzero, T is either a friend class
2932 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2933 (FUNCTION_DECL, TEMPLATE_DECL). */
2936 maybe_add_class_template_decl_list (tree type
, tree t
, int friend_p
)
2938 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2939 if (CLASSTYPE_TEMPLATE_INFO (type
))
2940 CLASSTYPE_DECL_LIST (type
)
2941 = tree_cons (friend_p
? NULL_TREE
: type
,
2942 t
, CLASSTYPE_DECL_LIST (type
));
2945 /* This function is called from declare_virt_assop_and_dtor via
2948 DATA is a type that direcly or indirectly inherits the base
2949 represented by BINFO. If BINFO contains a virtual assignment [copy
2950 assignment or move assigment] operator or a virtual constructor,
2951 declare that function in DATA if it hasn't been already declared. */
2954 dfs_declare_virt_assop_and_dtor (tree binfo
, void *data
)
2956 tree bv
, fn
, t
= (tree
)data
;
2957 tree opname
= ansi_assopname (NOP_EXPR
);
2959 gcc_assert (t
&& CLASS_TYPE_P (t
));
2960 gcc_assert (binfo
&& TREE_CODE (binfo
) == TREE_BINFO
);
2962 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
2963 /* A base without a vtable needs no modification, and its bases
2964 are uninteresting. */
2965 return dfs_skip_bases
;
2967 if (BINFO_PRIMARY_P (binfo
))
2968 /* If this is a primary base, then we have already looked at the
2969 virtual functions of its vtable. */
2972 for (bv
= BINFO_VIRTUALS (binfo
); bv
; bv
= TREE_CHAIN (bv
))
2976 if (DECL_NAME (fn
) == opname
)
2978 if (CLASSTYPE_LAZY_COPY_ASSIGN (t
))
2979 lazily_declare_fn (sfk_copy_assignment
, t
);
2980 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t
))
2981 lazily_declare_fn (sfk_move_assignment
, t
);
2983 else if (DECL_DESTRUCTOR_P (fn
)
2984 && CLASSTYPE_LAZY_DESTRUCTOR (t
))
2985 lazily_declare_fn (sfk_destructor
, t
);
2991 /* If the class type T has a direct or indirect base that contains a
2992 virtual assignment operator or a virtual destructor, declare that
2993 function in T if it hasn't been already declared. */
2996 declare_virt_assop_and_dtor (tree t
)
2998 if (!(TYPE_POLYMORPHIC_P (t
)
2999 && (CLASSTYPE_LAZY_COPY_ASSIGN (t
)
3000 || CLASSTYPE_LAZY_MOVE_ASSIGN (t
)
3001 || CLASSTYPE_LAZY_DESTRUCTOR (t
))))
3004 dfs_walk_all (TYPE_BINFO (t
),
3005 dfs_declare_virt_assop_and_dtor
,
3009 /* Declare the inheriting constructor for class T inherited from base
3010 constructor CTOR with the parameter array PARMS of size NPARMS. */
3013 one_inheriting_sig (tree t
, tree ctor
, tree
*parms
, int nparms
)
3015 /* We don't declare an inheriting ctor that would be a default,
3016 copy or move ctor for derived or base. */
3020 && TREE_CODE (parms
[0]) == REFERENCE_TYPE
)
3022 tree parm
= TYPE_MAIN_VARIANT (TREE_TYPE (parms
[0]));
3023 if (parm
== t
|| parm
== DECL_CONTEXT (ctor
))
3027 tree parmlist
= void_list_node
;
3028 for (int i
= nparms
- 1; i
>= 0; i
--)
3029 parmlist
= tree_cons (NULL_TREE
, parms
[i
], parmlist
);
3030 tree fn
= implicitly_declare_fn (sfk_inheriting_constructor
,
3031 t
, false, ctor
, parmlist
);
3032 if (add_method (t
, fn
, NULL_TREE
))
3034 DECL_CHAIN (fn
) = TYPE_METHODS (t
);
3035 TYPE_METHODS (t
) = fn
;
3039 /* Declare all the inheriting constructors for class T inherited from base
3040 constructor CTOR. */
3043 one_inherited_ctor (tree ctor
, tree t
)
3045 tree parms
= FUNCTION_FIRST_USER_PARMTYPE (ctor
);
3047 tree
*new_parms
= XALLOCAVEC (tree
, list_length (parms
));
3049 for (; parms
&& parms
!= void_list_node
; parms
= TREE_CHAIN (parms
))
3051 if (TREE_PURPOSE (parms
))
3052 one_inheriting_sig (t
, ctor
, new_parms
, i
);
3053 new_parms
[i
++] = TREE_VALUE (parms
);
3055 one_inheriting_sig (t
, ctor
, new_parms
, i
);
3056 if (parms
== NULL_TREE
)
3058 warning (OPT_Winherited_variadic_ctor
,
3059 "the ellipsis in %qD is not inherited", ctor
);
3060 inform (DECL_SOURCE_LOCATION (ctor
), "%qD declared here", ctor
);
3064 /* Create default constructors, assignment operators, and so forth for
3065 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
3066 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
3067 the class cannot have a default constructor, copy constructor
3068 taking a const reference argument, or an assignment operator taking
3069 a const reference, respectively. */
3072 add_implicitly_declared_members (tree t
, tree
* access_decls
,
3073 int cant_have_const_cctor
,
3074 int cant_have_const_assignment
)
3076 bool move_ok
= false;
3078 if (cxx_dialect
>= cxx11
&& !CLASSTYPE_DESTRUCTORS (t
)
3079 && !TYPE_HAS_COPY_CTOR (t
) && !TYPE_HAS_COPY_ASSIGN (t
)
3080 && !type_has_move_constructor (t
) && !type_has_move_assign (t
))
3084 if (!CLASSTYPE_DESTRUCTORS (t
))
3086 /* In general, we create destructors lazily. */
3087 CLASSTYPE_LAZY_DESTRUCTOR (t
) = 1;
3089 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
3090 && TYPE_FOR_JAVA (t
))
3091 /* But if this is a Java class, any non-trivial destructor is
3092 invalid, even if compiler-generated. Therefore, if the
3093 destructor is non-trivial we create it now. */
3094 lazily_declare_fn (sfk_destructor
, t
);
3099 If there is no user-declared constructor for a class, a default
3100 constructor is implicitly declared. */
3101 if (! TYPE_HAS_USER_CONSTRUCTOR (t
))
3103 TYPE_HAS_DEFAULT_CONSTRUCTOR (t
) = 1;
3104 CLASSTYPE_LAZY_DEFAULT_CTOR (t
) = 1;
3105 if (cxx_dialect
>= cxx11
)
3106 TYPE_HAS_CONSTEXPR_CTOR (t
)
3107 /* This might force the declaration. */
3108 = type_has_constexpr_default_constructor (t
);
3113 If a class definition does not explicitly declare a copy
3114 constructor, one is declared implicitly. */
3115 if (! TYPE_HAS_COPY_CTOR (t
) && ! TYPE_FOR_JAVA (t
))
3117 TYPE_HAS_COPY_CTOR (t
) = 1;
3118 TYPE_HAS_CONST_COPY_CTOR (t
) = !cant_have_const_cctor
;
3119 CLASSTYPE_LAZY_COPY_CTOR (t
) = 1;
3121 CLASSTYPE_LAZY_MOVE_CTOR (t
) = 1;
3124 /* If there is no assignment operator, one will be created if and
3125 when it is needed. For now, just record whether or not the type
3126 of the parameter to the assignment operator will be a const or
3127 non-const reference. */
3128 if (!TYPE_HAS_COPY_ASSIGN (t
) && !TYPE_FOR_JAVA (t
))
3130 TYPE_HAS_COPY_ASSIGN (t
) = 1;
3131 TYPE_HAS_CONST_COPY_ASSIGN (t
) = !cant_have_const_assignment
;
3132 CLASSTYPE_LAZY_COPY_ASSIGN (t
) = 1;
3134 CLASSTYPE_LAZY_MOVE_ASSIGN (t
) = 1;
3137 /* We can't be lazy about declaring functions that might override
3138 a virtual function from a base class. */
3139 declare_virt_assop_and_dtor (t
);
3141 while (*access_decls
)
3143 tree using_decl
= TREE_VALUE (*access_decls
);
3144 tree decl
= USING_DECL_DECLS (using_decl
);
3145 if (DECL_NAME (using_decl
) == ctor_identifier
)
3147 /* declare, then remove the decl */
3148 tree ctor_list
= decl
;
3149 location_t loc
= input_location
;
3150 input_location
= DECL_SOURCE_LOCATION (using_decl
);
3152 for (; ctor_list
; ctor_list
= OVL_NEXT (ctor_list
))
3153 one_inherited_ctor (OVL_CURRENT (ctor_list
), t
);
3154 *access_decls
= TREE_CHAIN (*access_decls
);
3155 input_location
= loc
;
3158 access_decls
= &TREE_CHAIN (*access_decls
);
3162 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3163 count the number of fields in TYPE, including anonymous union
3167 count_fields (tree fields
)
3171 for (x
= fields
; x
; x
= DECL_CHAIN (x
))
3173 if (TREE_CODE (x
) == FIELD_DECL
&& ANON_AGGR_TYPE_P (TREE_TYPE (x
)))
3174 n_fields
+= count_fields (TYPE_FIELDS (TREE_TYPE (x
)));
3181 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3182 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3183 elts, starting at offset IDX. */
3186 add_fields_to_record_type (tree fields
, struct sorted_fields_type
*field_vec
, int idx
)
3189 for (x
= fields
; x
; x
= DECL_CHAIN (x
))
3191 if (TREE_CODE (x
) == FIELD_DECL
&& ANON_AGGR_TYPE_P (TREE_TYPE (x
)))
3192 idx
= add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x
)), field_vec
, idx
);
3194 field_vec
->elts
[idx
++] = x
;
3199 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3200 starting at offset IDX. */
3203 add_enum_fields_to_record_type (tree enumtype
,
3204 struct sorted_fields_type
*field_vec
,
3208 for (values
= TYPE_VALUES (enumtype
); values
; values
= TREE_CHAIN (values
))
3209 field_vec
->elts
[idx
++] = TREE_VALUE (values
);
3213 /* FIELD is a bit-field. We are finishing the processing for its
3214 enclosing type. Issue any appropriate messages and set appropriate
3215 flags. Returns false if an error has been diagnosed. */
3218 check_bitfield_decl (tree field
)
3220 tree type
= TREE_TYPE (field
);
3223 /* Extract the declared width of the bitfield, which has been
3224 temporarily stashed in DECL_INITIAL. */
3225 w
= DECL_INITIAL (field
);
3226 gcc_assert (w
!= NULL_TREE
);
3227 /* Remove the bit-field width indicator so that the rest of the
3228 compiler does not treat that value as an initializer. */
3229 DECL_INITIAL (field
) = NULL_TREE
;
3231 /* Detect invalid bit-field type. */
3232 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type
))
3234 error ("bit-field %q+#D with non-integral type", field
);
3235 w
= error_mark_node
;
3239 location_t loc
= input_location
;
3240 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3243 /* detect invalid field size. */
3244 input_location
= DECL_SOURCE_LOCATION (field
);
3245 w
= cxx_constant_value (w
);
3246 input_location
= loc
;
3248 if (TREE_CODE (w
) != INTEGER_CST
)
3250 error ("bit-field %q+D width not an integer constant", field
);
3251 w
= error_mark_node
;
3253 else if (tree_int_cst_sgn (w
) < 0)
3255 error ("negative width in bit-field %q+D", field
);
3256 w
= error_mark_node
;
3258 else if (integer_zerop (w
) && DECL_NAME (field
) != 0)
3260 error ("zero width for bit-field %q+D", field
);
3261 w
= error_mark_node
;
3263 else if ((TREE_CODE (type
) != ENUMERAL_TYPE
3264 && TREE_CODE (type
) != BOOLEAN_TYPE
3265 && compare_tree_int (w
, TYPE_PRECISION (type
)) > 0)
3266 || ((TREE_CODE (type
) == ENUMERAL_TYPE
3267 || TREE_CODE (type
) == BOOLEAN_TYPE
)
3268 && tree_int_cst_lt (TYPE_SIZE (type
), w
)))
3269 warning (0, "width of %q+D exceeds its type", field
);
3270 else if (TREE_CODE (type
) == ENUMERAL_TYPE
3271 && (0 > (compare_tree_int
3272 (w
, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type
))))))
3273 warning (0, "%q+D is too small to hold all values of %q#T", field
, type
);
3276 if (w
!= error_mark_node
)
3278 DECL_SIZE (field
) = convert (bitsizetype
, w
);
3279 DECL_BIT_FIELD (field
) = 1;
3284 /* Non-bit-fields are aligned for their type. */
3285 DECL_BIT_FIELD (field
) = 0;
3286 CLEAR_DECL_C_BIT_FIELD (field
);
3291 /* FIELD is a non bit-field. We are finishing the processing for its
3292 enclosing type T. Issue any appropriate messages and set appropriate
3296 check_field_decl (tree field
,
3298 int* cant_have_const_ctor
,
3299 int* no_const_asn_ref
,
3300 int* any_default_members
)
3302 tree type
= strip_array_types (TREE_TYPE (field
));
3304 /* In C++98 an anonymous union cannot contain any fields which would change
3305 the settings of CANT_HAVE_CONST_CTOR and friends. */
3306 if (ANON_UNION_TYPE_P (type
) && cxx_dialect
< cxx11
)
3308 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3309 structs. So, we recurse through their fields here. */
3310 else if (ANON_AGGR_TYPE_P (type
))
3314 for (fields
= TYPE_FIELDS (type
); fields
; fields
= DECL_CHAIN (fields
))
3315 if (TREE_CODE (fields
) == FIELD_DECL
&& !DECL_C_BIT_FIELD (field
))
3316 check_field_decl (fields
, t
, cant_have_const_ctor
,
3317 no_const_asn_ref
, any_default_members
);
3319 /* Check members with class type for constructors, destructors,
3321 else if (CLASS_TYPE_P (type
))
3323 /* Never let anything with uninheritable virtuals
3324 make it through without complaint. */
3325 abstract_virtuals_error (field
, type
);
3327 if (TREE_CODE (t
) == UNION_TYPE
&& cxx_dialect
< cxx11
)
3330 int oldcount
= errorcount
;
3331 if (TYPE_NEEDS_CONSTRUCTING (type
))
3332 error ("member %q+#D with constructor not allowed in union",
3334 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
3335 error ("member %q+#D with destructor not allowed in union", field
);
3336 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type
))
3337 error ("member %q+#D with copy assignment operator not allowed in union",
3339 if (!warned
&& errorcount
> oldcount
)
3341 inform (DECL_SOURCE_LOCATION (field
), "unrestricted unions "
3342 "only available with -std=c++11 or -std=gnu++11");
3348 TYPE_NEEDS_CONSTRUCTING (t
) |= TYPE_NEEDS_CONSTRUCTING (type
);
3349 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
3350 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
);
3351 TYPE_HAS_COMPLEX_COPY_ASSIGN (t
)
3352 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type
)
3353 || !TYPE_HAS_COPY_ASSIGN (type
));
3354 TYPE_HAS_COMPLEX_COPY_CTOR (t
) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type
)
3355 || !TYPE_HAS_COPY_CTOR (type
));
3356 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t
) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type
);
3357 TYPE_HAS_COMPLEX_MOVE_CTOR (t
) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type
);
3358 TYPE_HAS_COMPLEX_DFLT (t
) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type
)
3359 || TYPE_HAS_COMPLEX_DFLT (type
));
3362 if (TYPE_HAS_COPY_CTOR (type
)
3363 && !TYPE_HAS_CONST_COPY_CTOR (type
))
3364 *cant_have_const_ctor
= 1;
3366 if (TYPE_HAS_COPY_ASSIGN (type
)
3367 && !TYPE_HAS_CONST_COPY_ASSIGN (type
))
3368 *no_const_asn_ref
= 1;
3371 check_abi_tags (t
, field
);
3373 if (DECL_INITIAL (field
) != NULL_TREE
)
3375 /* `build_class_init_list' does not recognize
3377 if (TREE_CODE (t
) == UNION_TYPE
&& *any_default_members
!= 0)
3378 error ("multiple fields in union %qT initialized", t
);
3379 *any_default_members
= 1;
3383 /* Check the data members (both static and non-static), class-scoped
3384 typedefs, etc., appearing in the declaration of T. Issue
3385 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3386 declaration order) of access declarations; each TREE_VALUE in this
3387 list is a USING_DECL.
3389 In addition, set the following flags:
3392 The class is empty, i.e., contains no non-static data members.
3394 CANT_HAVE_CONST_CTOR_P
3395 This class cannot have an implicitly generated copy constructor
3396 taking a const reference.
3398 CANT_HAVE_CONST_ASN_REF
3399 This class cannot have an implicitly generated assignment
3400 operator taking a const reference.
3402 All of these flags should be initialized before calling this
3405 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3406 fields can be added by adding to this chain. */
3409 check_field_decls (tree t
, tree
*access_decls
,
3410 int *cant_have_const_ctor_p
,
3411 int *no_const_asn_ref_p
)
3416 int any_default_members
;
3418 int field_access
= -1;
3420 /* Assume there are no access declarations. */
3421 *access_decls
= NULL_TREE
;
3422 /* Assume this class has no pointer members. */
3423 has_pointers
= false;
3424 /* Assume none of the members of this class have default
3426 any_default_members
= 0;
3428 for (field
= &TYPE_FIELDS (t
); *field
; field
= next
)
3431 tree type
= TREE_TYPE (x
);
3432 int this_field_access
;
3434 next
= &DECL_CHAIN (x
);
3436 if (TREE_CODE (x
) == USING_DECL
)
3438 /* Save the access declarations for our caller. */
3439 *access_decls
= tree_cons (NULL_TREE
, x
, *access_decls
);
3443 if (TREE_CODE (x
) == TYPE_DECL
3444 || TREE_CODE (x
) == TEMPLATE_DECL
)
3447 /* If we've gotten this far, it's a data member, possibly static,
3448 or an enumerator. */
3449 if (TREE_CODE (x
) != CONST_DECL
)
3450 DECL_CONTEXT (x
) = t
;
3452 /* When this goes into scope, it will be a non-local reference. */
3453 DECL_NONLOCAL (x
) = 1;
3455 if (TREE_CODE (t
) == UNION_TYPE
)
3459 If a union contains a static data member, or a member of
3460 reference type, the program is ill-formed. */
3463 error ("%q+D may not be static because it is a member of a union", x
);
3466 if (TREE_CODE (type
) == REFERENCE_TYPE
)
3468 error ("%q+D may not have reference type %qT because"
3469 " it is a member of a union",
3475 /* Perform error checking that did not get done in
3477 if (TREE_CODE (type
) == FUNCTION_TYPE
)
3479 error ("field %q+D invalidly declared function type", x
);
3480 type
= build_pointer_type (type
);
3481 TREE_TYPE (x
) = type
;
3483 else if (TREE_CODE (type
) == METHOD_TYPE
)
3485 error ("field %q+D invalidly declared method type", x
);
3486 type
= build_pointer_type (type
);
3487 TREE_TYPE (x
) = type
;
3490 if (type
== error_mark_node
)
3493 if (TREE_CODE (x
) == CONST_DECL
|| VAR_P (x
))
3496 /* Now it can only be a FIELD_DECL. */
3498 if (TREE_PRIVATE (x
) || TREE_PROTECTED (x
))
3499 CLASSTYPE_NON_AGGREGATE (t
) = 1;
3501 /* If at least one non-static data member is non-literal, the whole
3502 class becomes non-literal. Note: if the type is incomplete we
3503 will complain later on. */
3504 if (COMPLETE_TYPE_P (type
) && !literal_type_p (type
))
3505 CLASSTYPE_LITERAL_P (t
) = false;
3507 /* A standard-layout class is a class that:
3509 has the same access control (Clause 11) for all non-static data members,
3511 this_field_access
= TREE_PROTECTED (x
) ? 1 : TREE_PRIVATE (x
) ? 2 : 0;
3512 if (field_access
== -1)
3513 field_access
= this_field_access
;
3514 else if (this_field_access
!= field_access
)
3515 CLASSTYPE_NON_STD_LAYOUT (t
) = 1;
3517 /* If this is of reference type, check if it needs an init. */
3518 if (TREE_CODE (type
) == REFERENCE_TYPE
)
3520 CLASSTYPE_NON_LAYOUT_POD_P (t
) = 1;
3521 CLASSTYPE_NON_STD_LAYOUT (t
) = 1;
3522 if (DECL_INITIAL (x
) == NULL_TREE
)
3523 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t
, 1);
3525 /* ARM $12.6.2: [A member initializer list] (or, for an
3526 aggregate, initialization by a brace-enclosed list) is the
3527 only way to initialize nonstatic const and reference
3529 TYPE_HAS_COMPLEX_COPY_ASSIGN (t
) = 1;
3530 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t
) = 1;
3533 type
= strip_array_types (type
);
3535 if (TYPE_PACKED (t
))
3537 if (!layout_pod_type_p (type
) && !TYPE_PACKED (type
))
3541 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3545 else if (DECL_C_BIT_FIELD (x
)
3546 || TYPE_ALIGN (TREE_TYPE (x
)) > BITS_PER_UNIT
)
3547 DECL_PACKED (x
) = 1;
3550 if (DECL_C_BIT_FIELD (x
) && integer_zerop (DECL_INITIAL (x
)))
3551 /* We don't treat zero-width bitfields as making a class
3556 /* The class is non-empty. */
3557 CLASSTYPE_EMPTY_P (t
) = 0;
3558 /* The class is not even nearly empty. */
3559 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
3560 /* If one of the data members contains an empty class,
3562 if (CLASS_TYPE_P (type
)
3563 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type
))
3564 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 1;
3567 /* This is used by -Weffc++ (see below). Warn only for pointers
3568 to members which might hold dynamic memory. So do not warn
3569 for pointers to functions or pointers to members. */
3570 if (TYPE_PTR_P (type
)
3571 && !TYPE_PTRFN_P (type
))
3572 has_pointers
= true;
3574 if (CLASS_TYPE_P (type
))
3576 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type
))
3577 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t
, 1);
3578 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type
))
3579 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
, 1);
3582 if (DECL_MUTABLE_P (x
) || TYPE_HAS_MUTABLE_P (type
))
3583 CLASSTYPE_HAS_MUTABLE (t
) = 1;
3585 if (DECL_MUTABLE_P (x
))
3587 if (CP_TYPE_CONST_P (type
))
3589 error ("member %q+D cannot be declared both %<const%> "
3590 "and %<mutable%>", x
);
3593 if (TREE_CODE (type
) == REFERENCE_TYPE
)
3595 error ("member %q+D cannot be declared as a %<mutable%> "
3601 if (! layout_pod_type_p (type
))
3602 /* DR 148 now allows pointers to members (which are POD themselves),
3603 to be allowed in POD structs. */
3604 CLASSTYPE_NON_LAYOUT_POD_P (t
) = 1;
3606 if (!std_layout_type_p (type
))
3607 CLASSTYPE_NON_STD_LAYOUT (t
) = 1;
3609 if (! zero_init_p (type
))
3610 CLASSTYPE_NON_ZERO_INIT_P (t
) = 1;
3612 /* We set DECL_C_BIT_FIELD in grokbitfield.
3613 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3614 if (! DECL_C_BIT_FIELD (x
) || ! check_bitfield_decl (x
))
3615 check_field_decl (x
, t
,
3616 cant_have_const_ctor_p
,
3618 &any_default_members
);
3620 /* Now that we've removed bit-field widths from DECL_INITIAL,
3621 anything left in DECL_INITIAL is an NSDMI that makes the class
3623 if (DECL_INITIAL (x
))
3624 CLASSTYPE_NON_AGGREGATE (t
) = true;
3626 /* If any field is const, the structure type is pseudo-const. */
3627 if (CP_TYPE_CONST_P (type
))
3629 C_TYPE_FIELDS_READONLY (t
) = 1;
3630 if (DECL_INITIAL (x
) == NULL_TREE
)
3631 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
, 1);
3633 /* ARM $12.6.2: [A member initializer list] (or, for an
3634 aggregate, initialization by a brace-enclosed list) is the
3635 only way to initialize nonstatic const and reference
3637 TYPE_HAS_COMPLEX_COPY_ASSIGN (t
) = 1;
3638 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t
) = 1;
3640 /* A field that is pseudo-const makes the structure likewise. */
3641 else if (CLASS_TYPE_P (type
))
3643 C_TYPE_FIELDS_READONLY (t
) |= C_TYPE_FIELDS_READONLY (type
);
3644 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
,
3645 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
)
3646 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type
));
3649 /* Core issue 80: A nonstatic data member is required to have a
3650 different name from the class iff the class has a
3651 user-declared constructor. */
3652 if (constructor_name_p (DECL_NAME (x
), t
)
3653 && TYPE_HAS_USER_CONSTRUCTOR (t
))
3654 permerror (input_location
, "field %q+#D with same name as class", x
);
3657 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3658 it should also define a copy constructor and an assignment operator to
3659 implement the correct copy semantic (deep vs shallow, etc.). As it is
3660 not feasible to check whether the constructors do allocate dynamic memory
3661 and store it within members, we approximate the warning like this:
3663 -- Warn only if there are members which are pointers
3664 -- Warn only if there is a non-trivial constructor (otherwise,
3665 there cannot be memory allocated).
3666 -- Warn only if there is a non-trivial destructor. We assume that the
3667 user at least implemented the cleanup correctly, and a destructor
3668 is needed to free dynamic memory.
3670 This seems enough for practical purposes. */
3673 && TYPE_HAS_USER_CONSTRUCTOR (t
)
3674 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
3675 && !(TYPE_HAS_COPY_CTOR (t
) && TYPE_HAS_COPY_ASSIGN (t
)))
3677 warning (OPT_Weffc__
, "%q#T has pointer data members", t
);
3679 if (! TYPE_HAS_COPY_CTOR (t
))
3681 warning (OPT_Weffc__
,
3682 " but does not override %<%T(const %T&)%>", t
, t
);
3683 if (!TYPE_HAS_COPY_ASSIGN (t
))
3684 warning (OPT_Weffc__
, " or %<operator=(const %T&)%>", t
);
3686 else if (! TYPE_HAS_COPY_ASSIGN (t
))
3687 warning (OPT_Weffc__
,
3688 " but does not override %<operator=(const %T&)%>", t
);
3691 /* Non-static data member initializers make the default constructor
3693 if (any_default_members
)
3695 TYPE_NEEDS_CONSTRUCTING (t
) = true;
3696 TYPE_HAS_COMPLEX_DFLT (t
) = true;
3699 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3701 TYPE_PACKED (t
) = 0;
3703 /* Check anonymous struct/anonymous union fields. */
3704 finish_struct_anon (t
);
3706 /* We've built up the list of access declarations in reverse order.
3708 *access_decls
= nreverse (*access_decls
);
3711 /* If TYPE is an empty class type, records its OFFSET in the table of
3715 record_subobject_offset (tree type
, tree offset
, splay_tree offsets
)
3719 if (!is_empty_class (type
))
3722 /* Record the location of this empty object in OFFSETS. */
3723 n
= splay_tree_lookup (offsets
, (splay_tree_key
) offset
);
3725 n
= splay_tree_insert (offsets
,
3726 (splay_tree_key
) offset
,
3727 (splay_tree_value
) NULL_TREE
);
3728 n
->value
= ((splay_tree_value
)
3729 tree_cons (NULL_TREE
,
3736 /* Returns nonzero if TYPE is an empty class type and there is
3737 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3740 check_subobject_offset (tree type
, tree offset
, splay_tree offsets
)
3745 if (!is_empty_class (type
))
3748 /* Record the location of this empty object in OFFSETS. */
3749 n
= splay_tree_lookup (offsets
, (splay_tree_key
) offset
);
3753 for (t
= (tree
) n
->value
; t
; t
= TREE_CHAIN (t
))
3754 if (same_type_p (TREE_VALUE (t
), type
))
3760 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3761 F for every subobject, passing it the type, offset, and table of
3762 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3765 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3766 than MAX_OFFSET will not be walked.
3768 If F returns a nonzero value, the traversal ceases, and that value
3769 is returned. Otherwise, returns zero. */
3772 walk_subobject_offsets (tree type
,
3773 subobject_offset_fn f
,
3780 tree type_binfo
= NULL_TREE
;
3782 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3784 if (max_offset
&& INT_CST_LT (max_offset
, offset
))
3787 if (type
== error_mark_node
)
3792 if (abi_version_at_least (2))
3794 type
= BINFO_TYPE (type
);
3797 if (CLASS_TYPE_P (type
))
3803 /* Avoid recursing into objects that are not interesting. */
3804 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type
))
3807 /* Record the location of TYPE. */
3808 r
= (*f
) (type
, offset
, offsets
);
3812 /* Iterate through the direct base classes of TYPE. */
3814 type_binfo
= TYPE_BINFO (type
);
3815 for (i
= 0; BINFO_BASE_ITERATE (type_binfo
, i
, binfo
); i
++)
3819 if (abi_version_at_least (2)
3820 && BINFO_VIRTUAL_P (binfo
))
3824 && BINFO_VIRTUAL_P (binfo
)
3825 && !BINFO_PRIMARY_P (binfo
))
3828 if (!abi_version_at_least (2))
3829 binfo_offset
= size_binop (PLUS_EXPR
,
3831 BINFO_OFFSET (binfo
));
3835 /* We cannot rely on BINFO_OFFSET being set for the base
3836 class yet, but the offsets for direct non-virtual
3837 bases can be calculated by going back to the TYPE. */
3838 orig_binfo
= BINFO_BASE_BINFO (TYPE_BINFO (type
), i
);
3839 binfo_offset
= size_binop (PLUS_EXPR
,
3841 BINFO_OFFSET (orig_binfo
));
3844 r
= walk_subobject_offsets (binfo
,
3849 (abi_version_at_least (2)
3850 ? /*vbases_p=*/0 : vbases_p
));
3855 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type
))
3858 vec
<tree
, va_gc
> *vbases
;
3860 /* Iterate through the virtual base classes of TYPE. In G++
3861 3.2, we included virtual bases in the direct base class
3862 loop above, which results in incorrect results; the
3863 correct offsets for virtual bases are only known when
3864 working with the most derived type. */
3866 for (vbases
= CLASSTYPE_VBASECLASSES (type
), ix
= 0;
3867 vec_safe_iterate (vbases
, ix
, &binfo
); ix
++)
3869 r
= walk_subobject_offsets (binfo
,
3871 size_binop (PLUS_EXPR
,
3873 BINFO_OFFSET (binfo
)),
3882 /* We still have to walk the primary base, if it is
3883 virtual. (If it is non-virtual, then it was walked
3885 tree vbase
= get_primary_binfo (type_binfo
);
3887 if (vbase
&& BINFO_VIRTUAL_P (vbase
)
3888 && BINFO_PRIMARY_P (vbase
)
3889 && BINFO_INHERITANCE_CHAIN (vbase
) == type_binfo
)
3891 r
= (walk_subobject_offsets
3893 offsets
, max_offset
, /*vbases_p=*/0));
3900 /* Iterate through the fields of TYPE. */
3901 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
3902 if (TREE_CODE (field
) == FIELD_DECL
3903 && TREE_TYPE (field
) != error_mark_node
3904 && !DECL_ARTIFICIAL (field
))
3908 if (abi_version_at_least (2))
3909 field_offset
= byte_position (field
);
3911 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3912 field_offset
= DECL_FIELD_OFFSET (field
);
3914 r
= walk_subobject_offsets (TREE_TYPE (field
),
3916 size_binop (PLUS_EXPR
,
3926 else if (TREE_CODE (type
) == ARRAY_TYPE
)
3928 tree element_type
= strip_array_types (type
);
3929 tree domain
= TYPE_DOMAIN (type
);
3932 /* Avoid recursing into objects that are not interesting. */
3933 if (!CLASS_TYPE_P (element_type
)
3934 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type
))
3937 /* Step through each of the elements in the array. */
3938 for (index
= size_zero_node
;
3939 /* G++ 3.2 had an off-by-one error here. */
3940 (abi_version_at_least (2)
3941 ? !INT_CST_LT (TYPE_MAX_VALUE (domain
), index
)
3942 : INT_CST_LT (index
, TYPE_MAX_VALUE (domain
)));
3943 index
= size_binop (PLUS_EXPR
, index
, size_one_node
))
3945 r
= walk_subobject_offsets (TREE_TYPE (type
),
3953 offset
= size_binop (PLUS_EXPR
, offset
,
3954 TYPE_SIZE_UNIT (TREE_TYPE (type
)));
3955 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3956 there's no point in iterating through the remaining
3957 elements of the array. */
3958 if (max_offset
&& INT_CST_LT (max_offset
, offset
))
3966 /* Record all of the empty subobjects of TYPE (either a type or a
3967 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3968 is being placed at OFFSET; otherwise, it is a base class that is
3969 being placed at OFFSET. */
3972 record_subobject_offsets (tree type
,
3975 bool is_data_member
)
3978 /* If recording subobjects for a non-static data member or a
3979 non-empty base class , we do not need to record offsets beyond
3980 the size of the biggest empty class. Additional data members
3981 will go at the end of the class. Additional base classes will go
3982 either at offset zero (if empty, in which case they cannot
3983 overlap with offsets past the size of the biggest empty class) or
3984 at the end of the class.
3986 However, if we are placing an empty base class, then we must record
3987 all offsets, as either the empty class is at offset zero (where
3988 other empty classes might later be placed) or at the end of the
3989 class (where other objects might then be placed, so other empty
3990 subobjects might later overlap). */
3992 || !is_empty_class (BINFO_TYPE (type
)))
3993 max_offset
= sizeof_biggest_empty_class
;
3995 max_offset
= NULL_TREE
;
3996 walk_subobject_offsets (type
, record_subobject_offset
, offset
,
3997 offsets
, max_offset
, is_data_member
);
4000 /* Returns nonzero if any of the empty subobjects of TYPE (located at
4001 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
4002 virtual bases of TYPE are examined. */
4005 layout_conflict_p (tree type
,
4010 splay_tree_node max_node
;
4012 /* Get the node in OFFSETS that indicates the maximum offset where
4013 an empty subobject is located. */
4014 max_node
= splay_tree_max (offsets
);
4015 /* If there aren't any empty subobjects, then there's no point in
4016 performing this check. */
4020 return walk_subobject_offsets (type
, check_subobject_offset
, offset
,
4021 offsets
, (tree
) (max_node
->key
),
4025 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
4026 non-static data member of the type indicated by RLI. BINFO is the
4027 binfo corresponding to the base subobject, OFFSETS maps offsets to
4028 types already located at those offsets. This function determines
4029 the position of the DECL. */
4032 layout_nonempty_base_or_field (record_layout_info rli
,
4037 tree offset
= NULL_TREE
;
4043 /* For the purposes of determining layout conflicts, we want to
4044 use the class type of BINFO; TREE_TYPE (DECL) will be the
4045 CLASSTYPE_AS_BASE version, which does not contain entries for
4046 zero-sized bases. */
4047 type
= TREE_TYPE (binfo
);
4052 type
= TREE_TYPE (decl
);
4056 /* Try to place the field. It may take more than one try if we have
4057 a hard time placing the field without putting two objects of the
4058 same type at the same address. */
4061 struct record_layout_info_s old_rli
= *rli
;
4063 /* Place this field. */
4064 place_field (rli
, decl
);
4065 offset
= byte_position (decl
);
4067 /* We have to check to see whether or not there is already
4068 something of the same type at the offset we're about to use.
4069 For example, consider:
4072 struct T : public S { int i; };
4073 struct U : public S, public T {};
4075 Here, we put S at offset zero in U. Then, we can't put T at
4076 offset zero -- its S component would be at the same address
4077 as the S we already allocated. So, we have to skip ahead.
4078 Since all data members, including those whose type is an
4079 empty class, have nonzero size, any overlap can happen only
4080 with a direct or indirect base-class -- it can't happen with
4082 /* In a union, overlap is permitted; all members are placed at
4084 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
4086 /* G++ 3.2 did not check for overlaps when placing a non-empty
4088 if (!abi_version_at_least (2) && binfo
&& BINFO_VIRTUAL_P (binfo
))
4090 if (layout_conflict_p (field_p
? type
: binfo
, offset
,
4093 /* Strip off the size allocated to this field. That puts us
4094 at the first place we could have put the field with
4095 proper alignment. */
4098 /* Bump up by the alignment required for the type. */
4100 = size_binop (PLUS_EXPR
, rli
->bitpos
,
4102 ? CLASSTYPE_ALIGN (type
)
4103 : TYPE_ALIGN (type
)));
4104 normalize_rli (rli
);
4107 /* There was no conflict. We're done laying out this field. */
4111 /* Now that we know where it will be placed, update its
4113 if (binfo
&& CLASS_TYPE_P (BINFO_TYPE (binfo
)))
4114 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4115 this point because their BINFO_OFFSET is copied from another
4116 hierarchy. Therefore, we may not need to add the entire
4118 propagate_binfo_offsets (binfo
,
4119 size_diffop_loc (input_location
,
4120 convert (ssizetype
, offset
),
4122 BINFO_OFFSET (binfo
))));
4125 /* Returns true if TYPE is empty and OFFSET is nonzero. */
4128 empty_base_at_nonzero_offset_p (tree type
,
4130 splay_tree
/*offsets*/)
4132 return is_empty_class (type
) && !integer_zerop (offset
);
4135 /* Layout the empty base BINFO. EOC indicates the byte currently just
4136 past the end of the class, and should be correctly aligned for a
4137 class of the type indicated by BINFO; OFFSETS gives the offsets of
4138 the empty bases allocated so far. T is the most derived
4139 type. Return nonzero iff we added it at the end. */
4142 layout_empty_base (record_layout_info rli
, tree binfo
,
4143 tree eoc
, splay_tree offsets
)
4146 tree basetype
= BINFO_TYPE (binfo
);
4149 /* This routine should only be used for empty classes. */
4150 gcc_assert (is_empty_class (basetype
));
4151 alignment
= ssize_int (CLASSTYPE_ALIGN_UNIT (basetype
));
4153 if (!integer_zerop (BINFO_OFFSET (binfo
)))
4155 if (abi_version_at_least (2))
4156 propagate_binfo_offsets
4157 (binfo
, size_diffop_loc (input_location
,
4158 size_zero_node
, BINFO_OFFSET (binfo
)));
4161 "offset of empty base %qT may not be ABI-compliant and may"
4162 "change in a future version of GCC",
4163 BINFO_TYPE (binfo
));
4166 /* This is an empty base class. We first try to put it at offset
4168 if (layout_conflict_p (binfo
,
4169 BINFO_OFFSET (binfo
),
4173 /* That didn't work. Now, we move forward from the next
4174 available spot in the class. */
4176 propagate_binfo_offsets (binfo
, convert (ssizetype
, eoc
));
4179 if (!layout_conflict_p (binfo
,
4180 BINFO_OFFSET (binfo
),
4183 /* We finally found a spot where there's no overlap. */
4186 /* There's overlap here, too. Bump along to the next spot. */
4187 propagate_binfo_offsets (binfo
, alignment
);
4191 if (CLASSTYPE_USER_ALIGN (basetype
))
4193 rli
->record_align
= MAX (rli
->record_align
, CLASSTYPE_ALIGN (basetype
));
4195 rli
->unpacked_align
= MAX (rli
->unpacked_align
, CLASSTYPE_ALIGN (basetype
));
4196 TYPE_USER_ALIGN (rli
->t
) = 1;
4202 /* Layout the base given by BINFO in the class indicated by RLI.
4203 *BASE_ALIGN is a running maximum of the alignments of
4204 any base class. OFFSETS gives the location of empty base
4205 subobjects. T is the most derived type. Return nonzero if the new
4206 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4207 *NEXT_FIELD, unless BINFO is for an empty base class.
4209 Returns the location at which the next field should be inserted. */
4212 build_base_field (record_layout_info rli
, tree binfo
,
4213 splay_tree offsets
, tree
*next_field
)
4216 tree basetype
= BINFO_TYPE (binfo
);
4218 if (!COMPLETE_TYPE_P (basetype
))
4219 /* This error is now reported in xref_tag, thus giving better
4220 location information. */
4223 /* Place the base class. */
4224 if (!is_empty_class (basetype
))
4228 /* The containing class is non-empty because it has a non-empty
4230 CLASSTYPE_EMPTY_P (t
) = 0;
4232 /* Create the FIELD_DECL. */
4233 decl
= build_decl (input_location
,
4234 FIELD_DECL
, NULL_TREE
, CLASSTYPE_AS_BASE (basetype
));
4235 DECL_ARTIFICIAL (decl
) = 1;
4236 DECL_IGNORED_P (decl
) = 1;
4237 DECL_FIELD_CONTEXT (decl
) = t
;
4238 if (CLASSTYPE_AS_BASE (basetype
))
4240 DECL_SIZE (decl
) = CLASSTYPE_SIZE (basetype
);
4241 DECL_SIZE_UNIT (decl
) = CLASSTYPE_SIZE_UNIT (basetype
);
4242 DECL_ALIGN (decl
) = CLASSTYPE_ALIGN (basetype
);
4243 DECL_USER_ALIGN (decl
) = CLASSTYPE_USER_ALIGN (basetype
);
4244 DECL_MODE (decl
) = TYPE_MODE (basetype
);
4245 DECL_FIELD_IS_BASE (decl
) = 1;
4247 /* Try to place the field. It may take more than one try if we
4248 have a hard time placing the field without putting two
4249 objects of the same type at the same address. */
4250 layout_nonempty_base_or_field (rli
, decl
, binfo
, offsets
);
4251 /* Add the new FIELD_DECL to the list of fields for T. */
4252 DECL_CHAIN (decl
) = *next_field
;
4254 next_field
= &DECL_CHAIN (decl
);
4262 /* On some platforms (ARM), even empty classes will not be
4264 eoc
= round_up_loc (input_location
,
4265 rli_size_unit_so_far (rli
),
4266 CLASSTYPE_ALIGN_UNIT (basetype
));
4267 atend
= layout_empty_base (rli
, binfo
, eoc
, offsets
);
4268 /* A nearly-empty class "has no proper base class that is empty,
4269 not morally virtual, and at an offset other than zero." */
4270 if (!BINFO_VIRTUAL_P (binfo
) && CLASSTYPE_NEARLY_EMPTY_P (t
))
4273 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
4274 /* The check above (used in G++ 3.2) is insufficient because
4275 an empty class placed at offset zero might itself have an
4276 empty base at a nonzero offset. */
4277 else if (walk_subobject_offsets (basetype
,
4278 empty_base_at_nonzero_offset_p
,
4281 /*max_offset=*/NULL_TREE
,
4284 if (abi_version_at_least (2))
4285 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
4288 "class %qT will be considered nearly empty in a "
4289 "future version of GCC", t
);
4293 /* We do not create a FIELD_DECL for empty base classes because
4294 it might overlap some other field. We want to be able to
4295 create CONSTRUCTORs for the class by iterating over the
4296 FIELD_DECLs, and the back end does not handle overlapping
4299 /* An empty virtual base causes a class to be non-empty
4300 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4301 here because that was already done when the virtual table
4302 pointer was created. */
4305 /* Record the offsets of BINFO and its base subobjects. */
4306 record_subobject_offsets (binfo
,
4307 BINFO_OFFSET (binfo
),
4309 /*is_data_member=*/false);
4314 /* Layout all of the non-virtual base classes. Record empty
4315 subobjects in OFFSETS. T is the most derived type. Return nonzero
4316 if the type cannot be nearly empty. The fields created
4317 corresponding to the base classes will be inserted at
4321 build_base_fields (record_layout_info rli
,
4322 splay_tree offsets
, tree
*next_field
)
4324 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4327 int n_baseclasses
= BINFO_N_BASE_BINFOS (TYPE_BINFO (t
));
4330 /* The primary base class is always allocated first. */
4331 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
4332 next_field
= build_base_field (rli
, CLASSTYPE_PRIMARY_BINFO (t
),
4333 offsets
, next_field
);
4335 /* Now allocate the rest of the bases. */
4336 for (i
= 0; i
< n_baseclasses
; ++i
)
4340 base_binfo
= BINFO_BASE_BINFO (TYPE_BINFO (t
), i
);
4342 /* The primary base was already allocated above, so we don't
4343 need to allocate it again here. */
4344 if (base_binfo
== CLASSTYPE_PRIMARY_BINFO (t
))
4347 /* Virtual bases are added at the end (a primary virtual base
4348 will have already been added). */
4349 if (BINFO_VIRTUAL_P (base_binfo
))
4352 next_field
= build_base_field (rli
, base_binfo
,
4353 offsets
, next_field
);
4357 /* Go through the TYPE_METHODS of T issuing any appropriate
4358 diagnostics, figuring out which methods override which other
4359 methods, and so forth. */
4362 check_methods (tree t
)
4366 for (x
= TYPE_METHODS (t
); x
; x
= DECL_CHAIN (x
))
4368 check_for_override (x
, t
);
4369 if (DECL_PURE_VIRTUAL_P (x
) && ! DECL_VINDEX (x
))
4370 error ("initializer specified for non-virtual method %q+D", x
);
4371 /* The name of the field is the original field name
4372 Save this in auxiliary field for later overloading. */
4373 if (DECL_VINDEX (x
))
4375 TYPE_POLYMORPHIC_P (t
) = 1;
4376 if (DECL_PURE_VIRTUAL_P (x
))
4377 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t
), x
);
4379 /* All user-provided destructors are non-trivial.
4380 Constructors and assignment ops are handled in
4381 grok_special_member_properties. */
4382 if (DECL_DESTRUCTOR_P (x
) && user_provided_p (x
))
4383 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
) = 1;
4387 /* FN is a constructor or destructor. Clone the declaration to create
4388 a specialized in-charge or not-in-charge version, as indicated by
4392 build_clone (tree fn
, tree name
)
4397 /* Copy the function. */
4398 clone
= copy_decl (fn
);
4399 /* Reset the function name. */
4400 DECL_NAME (clone
) = name
;
4401 SET_DECL_ASSEMBLER_NAME (clone
, NULL_TREE
);
4402 /* Remember where this function came from. */
4403 DECL_ABSTRACT_ORIGIN (clone
) = fn
;
4404 /* Make it easy to find the CLONE given the FN. */
4405 DECL_CHAIN (clone
) = DECL_CHAIN (fn
);
4406 DECL_CHAIN (fn
) = clone
;
4408 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4409 if (TREE_CODE (clone
) == TEMPLATE_DECL
)
4411 tree result
= build_clone (DECL_TEMPLATE_RESULT (clone
), name
);
4412 DECL_TEMPLATE_RESULT (clone
) = result
;
4413 DECL_TEMPLATE_INFO (result
) = copy_node (DECL_TEMPLATE_INFO (result
));
4414 DECL_TI_TEMPLATE (result
) = clone
;
4415 TREE_TYPE (clone
) = TREE_TYPE (result
);
4419 DECL_CLONED_FUNCTION (clone
) = fn
;
4420 /* There's no pending inline data for this function. */
4421 DECL_PENDING_INLINE_INFO (clone
) = NULL
;
4422 DECL_PENDING_INLINE_P (clone
) = 0;
4424 /* The base-class destructor is not virtual. */
4425 if (name
== base_dtor_identifier
)
4427 DECL_VIRTUAL_P (clone
) = 0;
4428 if (TREE_CODE (clone
) != TEMPLATE_DECL
)
4429 DECL_VINDEX (clone
) = NULL_TREE
;
4432 /* If there was an in-charge parameter, drop it from the function
4434 if (DECL_HAS_IN_CHARGE_PARM_P (clone
))
4440 exceptions
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone
));
4441 basetype
= TYPE_METHOD_BASETYPE (TREE_TYPE (clone
));
4442 parmtypes
= TYPE_ARG_TYPES (TREE_TYPE (clone
));
4443 /* Skip the `this' parameter. */
4444 parmtypes
= TREE_CHAIN (parmtypes
);
4445 /* Skip the in-charge parameter. */
4446 parmtypes
= TREE_CHAIN (parmtypes
);
4447 /* And the VTT parm, in a complete [cd]tor. */
4448 if (DECL_HAS_VTT_PARM_P (fn
)
4449 && ! DECL_NEEDS_VTT_PARM_P (clone
))
4450 parmtypes
= TREE_CHAIN (parmtypes
);
4451 /* If this is subobject constructor or destructor, add the vtt
4454 = build_method_type_directly (basetype
,
4455 TREE_TYPE (TREE_TYPE (clone
)),
4458 TREE_TYPE (clone
) = build_exception_variant (TREE_TYPE (clone
),
4461 = cp_build_type_attribute_variant (TREE_TYPE (clone
),
4462 TYPE_ATTRIBUTES (TREE_TYPE (fn
)));
4465 /* Copy the function parameters. */
4466 DECL_ARGUMENTS (clone
) = copy_list (DECL_ARGUMENTS (clone
));
4467 /* Remove the in-charge parameter. */
4468 if (DECL_HAS_IN_CHARGE_PARM_P (clone
))
4470 DECL_CHAIN (DECL_ARGUMENTS (clone
))
4471 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone
)));
4472 DECL_HAS_IN_CHARGE_PARM_P (clone
) = 0;
4474 /* And the VTT parm, in a complete [cd]tor. */
4475 if (DECL_HAS_VTT_PARM_P (fn
))
4477 if (DECL_NEEDS_VTT_PARM_P (clone
))
4478 DECL_HAS_VTT_PARM_P (clone
) = 1;
4481 DECL_CHAIN (DECL_ARGUMENTS (clone
))
4482 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone
)));
4483 DECL_HAS_VTT_PARM_P (clone
) = 0;
4487 for (parms
= DECL_ARGUMENTS (clone
); parms
; parms
= DECL_CHAIN (parms
))
4489 DECL_CONTEXT (parms
) = clone
;
4490 cxx_dup_lang_specific_decl (parms
);
4493 /* Create the RTL for this function. */
4494 SET_DECL_RTL (clone
, NULL
);
4495 rest_of_decl_compilation (clone
, /*top_level=*/1, at_eof
);
4498 note_decl_for_pch (clone
);
4503 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4504 not invoke this function directly.
4506 For a non-thunk function, returns the address of the slot for storing
4507 the function it is a clone of. Otherwise returns NULL_TREE.
4509 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4510 cloned_function is unset. This is to support the separate
4511 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4512 on a template makes sense, but not the former. */
4515 decl_cloned_function_p (const_tree decl
, bool just_testing
)
4519 decl
= STRIP_TEMPLATE (decl
);
4521 if (TREE_CODE (decl
) != FUNCTION_DECL
4522 || !DECL_LANG_SPECIFIC (decl
)
4523 || DECL_LANG_SPECIFIC (decl
)->u
.fn
.thunk_p
)
4525 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4527 lang_check_failed (__FILE__
, __LINE__
, __FUNCTION__
);
4533 ptr
= &DECL_LANG_SPECIFIC (decl
)->u
.fn
.u5
.cloned_function
;
4534 if (just_testing
&& *ptr
== NULL_TREE
)
4540 /* Produce declarations for all appropriate clones of FN. If
4541 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4542 CLASTYPE_METHOD_VEC as well. */
4545 clone_function_decl (tree fn
, int update_method_vec_p
)
4549 /* Avoid inappropriate cloning. */
4551 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn
)))
4554 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn
))
4556 /* For each constructor, we need two variants: an in-charge version
4557 and a not-in-charge version. */
4558 clone
= build_clone (fn
, complete_ctor_identifier
);
4559 if (update_method_vec_p
)
4560 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
4561 clone
= build_clone (fn
, base_ctor_identifier
);
4562 if (update_method_vec_p
)
4563 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
4567 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn
));
4569 /* For each destructor, we need three variants: an in-charge
4570 version, a not-in-charge version, and an in-charge deleting
4571 version. We clone the deleting version first because that
4572 means it will go second on the TYPE_METHODS list -- and that
4573 corresponds to the correct layout order in the virtual
4576 For a non-virtual destructor, we do not build a deleting
4578 if (DECL_VIRTUAL_P (fn
))
4580 clone
= build_clone (fn
, deleting_dtor_identifier
);
4581 if (update_method_vec_p
)
4582 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
4584 clone
= build_clone (fn
, complete_dtor_identifier
);
4585 if (update_method_vec_p
)
4586 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
4587 clone
= build_clone (fn
, base_dtor_identifier
);
4588 if (update_method_vec_p
)
4589 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
4592 /* Note that this is an abstract function that is never emitted. */
4593 DECL_ABSTRACT (fn
) = 1;
4596 /* DECL is an in charge constructor, which is being defined. This will
4597 have had an in class declaration, from whence clones were
4598 declared. An out-of-class definition can specify additional default
4599 arguments. As it is the clones that are involved in overload
4600 resolution, we must propagate the information from the DECL to its
4604 adjust_clone_args (tree decl
)
4608 for (clone
= DECL_CHAIN (decl
); clone
&& DECL_CLONED_FUNCTION_P (clone
);
4609 clone
= DECL_CHAIN (clone
))
4611 tree orig_clone_parms
= TYPE_ARG_TYPES (TREE_TYPE (clone
));
4612 tree orig_decl_parms
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
4613 tree decl_parms
, clone_parms
;
4615 clone_parms
= orig_clone_parms
;
4617 /* Skip the 'this' parameter. */
4618 orig_clone_parms
= TREE_CHAIN (orig_clone_parms
);
4619 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
4621 if (DECL_HAS_IN_CHARGE_PARM_P (decl
))
4622 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
4623 if (DECL_HAS_VTT_PARM_P (decl
))
4624 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
4626 clone_parms
= orig_clone_parms
;
4627 if (DECL_HAS_VTT_PARM_P (clone
))
4628 clone_parms
= TREE_CHAIN (clone_parms
);
4630 for (decl_parms
= orig_decl_parms
; decl_parms
;
4631 decl_parms
= TREE_CHAIN (decl_parms
),
4632 clone_parms
= TREE_CHAIN (clone_parms
))
4634 gcc_assert (same_type_p (TREE_TYPE (decl_parms
),
4635 TREE_TYPE (clone_parms
)));
4637 if (TREE_PURPOSE (decl_parms
) && !TREE_PURPOSE (clone_parms
))
4639 /* A default parameter has been added. Adjust the
4640 clone's parameters. */
4641 tree exceptions
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone
));
4642 tree attrs
= TYPE_ATTRIBUTES (TREE_TYPE (clone
));
4643 tree basetype
= TYPE_METHOD_BASETYPE (TREE_TYPE (clone
));
4646 clone_parms
= orig_decl_parms
;
4648 if (DECL_HAS_VTT_PARM_P (clone
))
4650 clone_parms
= tree_cons (TREE_PURPOSE (orig_clone_parms
),
4651 TREE_VALUE (orig_clone_parms
),
4653 TREE_TYPE (clone_parms
) = TREE_TYPE (orig_clone_parms
);
4655 type
= build_method_type_directly (basetype
,
4656 TREE_TYPE (TREE_TYPE (clone
)),
4659 type
= build_exception_variant (type
, exceptions
);
4661 type
= cp_build_type_attribute_variant (type
, attrs
);
4662 TREE_TYPE (clone
) = type
;
4664 clone_parms
= NULL_TREE
;
4668 gcc_assert (!clone_parms
);
4672 /* For each of the constructors and destructors in T, create an
4673 in-charge and not-in-charge variant. */
4676 clone_constructors_and_destructors (tree t
)
4680 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4682 if (!CLASSTYPE_METHOD_VEC (t
))
4685 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
4686 clone_function_decl (OVL_CURRENT (fns
), /*update_method_vec_p=*/1);
4687 for (fns
= CLASSTYPE_DESTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
4688 clone_function_decl (OVL_CURRENT (fns
), /*update_method_vec_p=*/1);
4691 /* Deduce noexcept for a destructor DTOR. */
4694 deduce_noexcept_on_destructor (tree dtor
)
4696 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor
)))
4698 tree ctx
= DECL_CONTEXT (dtor
);
4699 tree implicit_fn
= implicitly_declare_fn (sfk_destructor
, ctx
,
4702 tree eh_spec
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (implicit_fn
));
4703 TREE_TYPE (dtor
) = build_exception_variant (TREE_TYPE (dtor
), eh_spec
);
4707 /* For each destructor in T, deduce noexcept:
4709 12.4/3: A declaration of a destructor that does not have an
4710 exception-specification is implicitly considered to have the
4711 same exception-specification as an implicit declaration (15.4). */
4714 deduce_noexcept_on_destructors (tree t
)
4716 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4718 if (!CLASSTYPE_METHOD_VEC (t
))
4721 for (tree fns
= CLASSTYPE_DESTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
4722 deduce_noexcept_on_destructor (OVL_CURRENT (fns
));
4725 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4726 of TYPE for virtual functions which FNDECL overrides. Return a
4727 mask of the tm attributes found therein. */
4730 look_for_tm_attr_overrides (tree type
, tree fndecl
)
4732 tree binfo
= TYPE_BINFO (type
);
4736 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ++ix
)
4738 tree o
, basetype
= BINFO_TYPE (base_binfo
);
4740 if (!TYPE_POLYMORPHIC_P (basetype
))
4743 o
= look_for_overrides_here (basetype
, fndecl
);
4745 found
|= tm_attr_to_mask (find_tm_attribute
4746 (TYPE_ATTRIBUTES (TREE_TYPE (o
))));
4748 found
|= look_for_tm_attr_overrides (basetype
, fndecl
);
4754 /* Subroutine of set_method_tm_attributes. Handle the checks and
4755 inheritance for one virtual method FNDECL. */
4758 set_one_vmethod_tm_attributes (tree type
, tree fndecl
)
4763 found
= look_for_tm_attr_overrides (type
, fndecl
);
4765 /* If FNDECL doesn't actually override anything (i.e. T is the
4766 class that first declares FNDECL virtual), then we're done. */
4770 tm_attr
= find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl
)));
4771 have
= tm_attr_to_mask (tm_attr
);
4773 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4774 tm_pure must match exactly, otherwise no weakening of
4775 tm_safe > tm_callable > nothing. */
4776 /* ??? The tm_pure attribute didn't make the transition to the
4777 multivendor language spec. */
4778 if (have
== TM_ATTR_PURE
)
4780 if (found
!= TM_ATTR_PURE
)
4786 /* If the overridden function is tm_pure, then FNDECL must be. */
4787 else if (found
== TM_ATTR_PURE
&& tm_attr
)
4789 /* Look for base class combinations that cannot be satisfied. */
4790 else if (found
!= TM_ATTR_PURE
&& (found
& TM_ATTR_PURE
))
4792 found
&= ~TM_ATTR_PURE
;
4794 error_at (DECL_SOURCE_LOCATION (fndecl
),
4795 "method overrides both %<transaction_pure%> and %qE methods",
4796 tm_mask_to_attr (found
));
4798 /* If FNDECL did not declare an attribute, then inherit the most
4800 else if (tm_attr
== NULL
)
4802 apply_tm_attr (fndecl
, tm_mask_to_attr (found
& -found
));
4804 /* Otherwise validate that we're not weaker than a function
4805 that is being overridden. */
4809 if (found
<= TM_ATTR_CALLABLE
&& have
> found
)
4815 error_at (DECL_SOURCE_LOCATION (fndecl
),
4816 "method declared %qE overriding %qE method",
4817 tm_attr
, tm_mask_to_attr (found
));
4820 /* For each of the methods in T, propagate a class-level tm attribute. */
4823 set_method_tm_attributes (tree t
)
4825 tree class_tm_attr
, fndecl
;
4827 /* Don't bother collecting tm attributes if transactional memory
4828 support is not enabled. */
4832 /* Process virtual methods first, as they inherit directly from the
4833 base virtual function and also require validation of new attributes. */
4834 if (TYPE_CONTAINS_VPTR_P (t
))
4837 for (vchain
= BINFO_VIRTUALS (TYPE_BINFO (t
)); vchain
;
4838 vchain
= TREE_CHAIN (vchain
))
4840 fndecl
= BV_FN (vchain
);
4841 if (DECL_THUNK_P (fndecl
))
4842 fndecl
= THUNK_TARGET (fndecl
);
4843 set_one_vmethod_tm_attributes (t
, fndecl
);
4847 /* If the class doesn't have an attribute, nothing more to do. */
4848 class_tm_attr
= find_tm_attribute (TYPE_ATTRIBUTES (t
));
4849 if (class_tm_attr
== NULL
)
4852 /* Any method that does not yet have a tm attribute inherits
4853 the one from the class. */
4854 for (fndecl
= TYPE_METHODS (t
); fndecl
; fndecl
= TREE_CHAIN (fndecl
))
4856 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
4857 apply_tm_attr (fndecl
, class_tm_attr
);
4861 /* Returns true iff class T has a user-defined constructor other than
4862 the default constructor. */
4865 type_has_user_nondefault_constructor (tree t
)
4869 if (!TYPE_HAS_USER_CONSTRUCTOR (t
))
4872 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
4874 tree fn
= OVL_CURRENT (fns
);
4875 if (!DECL_ARTIFICIAL (fn
)
4876 && (TREE_CODE (fn
) == TEMPLATE_DECL
4877 || (skip_artificial_parms_for (fn
, DECL_ARGUMENTS (fn
))
4885 /* Returns the defaulted constructor if T has one. Otherwise, returns
4889 in_class_defaulted_default_constructor (tree t
)
4893 if (!TYPE_HAS_USER_CONSTRUCTOR (t
))
4896 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
4898 tree fn
= OVL_CURRENT (fns
);
4900 if (DECL_DEFAULTED_IN_CLASS_P (fn
))
4902 args
= FUNCTION_FIRST_USER_PARMTYPE (fn
);
4903 while (args
&& TREE_PURPOSE (args
))
4904 args
= TREE_CHAIN (args
);
4905 if (!args
|| args
== void_list_node
)
4913 /* Returns true iff FN is a user-provided function, i.e. user-declared
4914 and not defaulted at its first declaration; or explicit, private,
4915 protected, or non-const. */
4918 user_provided_p (tree fn
)
4920 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
4923 return (!DECL_ARTIFICIAL (fn
)
4924 && !(DECL_INITIALIZED_IN_CLASS_P (fn
)
4925 && (DECL_DEFAULTED_FN (fn
) || DECL_DELETED_FN (fn
))));
4928 /* Returns true iff class T has a user-provided constructor. */
4931 type_has_user_provided_constructor (tree t
)
4935 if (!CLASS_TYPE_P (t
))
4938 if (!TYPE_HAS_USER_CONSTRUCTOR (t
))
4941 /* This can happen in error cases; avoid crashing. */
4942 if (!CLASSTYPE_METHOD_VEC (t
))
4945 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
4946 if (user_provided_p (OVL_CURRENT (fns
)))
4952 /* Returns true iff class T has a user-provided default constructor. */
4955 type_has_user_provided_default_constructor (tree t
)
4959 if (!TYPE_HAS_USER_CONSTRUCTOR (t
))
4962 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
4964 tree fn
= OVL_CURRENT (fns
);
4965 if (TREE_CODE (fn
) == FUNCTION_DECL
4966 && user_provided_p (fn
)
4967 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn
)))
4974 /* TYPE is being used as a virtual base, and has a non-trivial move
4975 assignment. Return true if this is due to there being a user-provided
4976 move assignment in TYPE or one of its subobjects; if there isn't, then
4977 multiple move assignment can't cause any harm. */
4980 vbase_has_user_provided_move_assign (tree type
)
4982 /* Does the type itself have a user-provided move assignment operator? */
4984 = lookup_fnfields_slot_nolazy (type
, ansi_assopname (NOP_EXPR
));
4985 fns
; fns
= OVL_NEXT (fns
))
4987 tree fn
= OVL_CURRENT (fns
);
4988 if (move_fn_p (fn
) && user_provided_p (fn
))
4992 /* Do any of its bases? */
4993 tree binfo
= TYPE_BINFO (type
);
4995 for (int i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
4996 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo
)))
4999 /* Or non-static data members? */
5000 for (tree field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
5002 if (TREE_CODE (field
) == FIELD_DECL
5003 && CLASS_TYPE_P (TREE_TYPE (field
))
5004 && vbase_has_user_provided_move_assign (TREE_TYPE (field
)))
5012 /* If default-initialization leaves part of TYPE uninitialized, returns
5013 a DECL for the field or TYPE itself (DR 253). */
5016 default_init_uninitialized_part (tree type
)
5021 type
= strip_array_types (type
);
5022 if (!CLASS_TYPE_P (type
))
5024 if (type_has_user_provided_default_constructor (type
))
5026 for (binfo
= TYPE_BINFO (type
), i
= 0;
5027 BINFO_BASE_ITERATE (binfo
, i
, t
); ++i
)
5029 r
= default_init_uninitialized_part (BINFO_TYPE (t
));
5033 for (t
= TYPE_FIELDS (type
); t
; t
= DECL_CHAIN (t
))
5034 if (TREE_CODE (t
) == FIELD_DECL
5035 && !DECL_ARTIFICIAL (t
)
5036 && !DECL_INITIAL (t
))
5038 r
= default_init_uninitialized_part (TREE_TYPE (t
));
5040 return DECL_P (r
) ? r
: t
;
5046 /* Returns true iff for class T, a trivial synthesized default constructor
5047 would be constexpr. */
5050 trivial_default_constructor_is_constexpr (tree t
)
5052 /* A defaulted trivial default constructor is constexpr
5053 if there is nothing to initialize. */
5054 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t
));
5055 return is_really_empty_class (t
);
5058 /* Returns true iff class T has a constexpr default constructor. */
5061 type_has_constexpr_default_constructor (tree t
)
5065 if (!CLASS_TYPE_P (t
))
5067 /* The caller should have stripped an enclosing array. */
5068 gcc_assert (TREE_CODE (t
) != ARRAY_TYPE
);
5071 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t
))
5073 if (!TYPE_HAS_COMPLEX_DFLT (t
))
5074 return trivial_default_constructor_is_constexpr (t
);
5075 /* Non-trivial, we need to check subobject constructors. */
5076 lazily_declare_fn (sfk_constructor
, t
);
5078 fns
= locate_ctor (t
);
5079 return (fns
&& DECL_DECLARED_CONSTEXPR_P (fns
));
5082 /* Returns true iff class TYPE has a virtual destructor. */
5085 type_has_virtual_destructor (tree type
)
5089 if (!CLASS_TYPE_P (type
))
5092 gcc_assert (COMPLETE_TYPE_P (type
));
5093 dtor
= CLASSTYPE_DESTRUCTORS (type
);
5094 return (dtor
&& DECL_VIRTUAL_P (dtor
));
5097 /* Returns true iff class T has a move constructor. */
5100 type_has_move_constructor (tree t
)
5104 if (CLASSTYPE_LAZY_MOVE_CTOR (t
))
5106 gcc_assert (COMPLETE_TYPE_P (t
));
5107 lazily_declare_fn (sfk_move_constructor
, t
);
5110 if (!CLASSTYPE_METHOD_VEC (t
))
5113 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
5114 if (move_fn_p (OVL_CURRENT (fns
)))
5120 /* Returns true iff class T has a move assignment operator. */
5123 type_has_move_assign (tree t
)
5127 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t
))
5129 gcc_assert (COMPLETE_TYPE_P (t
));
5130 lazily_declare_fn (sfk_move_assignment
, t
);
5133 for (fns
= lookup_fnfields_slot_nolazy (t
, ansi_assopname (NOP_EXPR
));
5134 fns
; fns
= OVL_NEXT (fns
))
5135 if (move_fn_p (OVL_CURRENT (fns
)))
5141 /* Returns true iff class T has a move constructor that was explicitly
5142 declared in the class body. Note that this is different from
5143 "user-provided", which doesn't include functions that are defaulted in
5147 type_has_user_declared_move_constructor (tree t
)
5151 if (CLASSTYPE_LAZY_MOVE_CTOR (t
))
5154 if (!CLASSTYPE_METHOD_VEC (t
))
5157 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
5159 tree fn
= OVL_CURRENT (fns
);
5160 if (move_fn_p (fn
) && !DECL_ARTIFICIAL (fn
))
5167 /* Returns true iff class T has a move assignment operator that was
5168 explicitly declared in the class body. */
5171 type_has_user_declared_move_assign (tree t
)
5175 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t
))
5178 for (fns
= lookup_fnfields_slot_nolazy (t
, ansi_assopname (NOP_EXPR
));
5179 fns
; fns
= OVL_NEXT (fns
))
5181 tree fn
= OVL_CURRENT (fns
);
5182 if (move_fn_p (fn
) && !DECL_ARTIFICIAL (fn
))
5189 /* Nonzero if we need to build up a constructor call when initializing an
5190 object of this class, either because it has a user-declared constructor
5191 or because it doesn't have a default constructor (so we need to give an
5192 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5193 what you care about is whether or not an object can be produced by a
5194 constructor (e.g. so we don't set TREE_READONLY on const variables of
5195 such type); use this function when what you care about is whether or not
5196 to try to call a constructor to create an object. The latter case is
5197 the former plus some cases of constructors that cannot be called. */
5200 type_build_ctor_call (tree t
)
5203 if (TYPE_NEEDS_CONSTRUCTING (t
))
5205 inner
= strip_array_types (t
);
5206 if (!CLASS_TYPE_P (inner
) || ANON_AGGR_TYPE_P (inner
))
5208 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner
))
5210 if (cxx_dialect
< cxx11
)
5212 /* A user-declared constructor might be private, and a constructor might
5213 be trivial but deleted. */
5214 for (tree fns
= lookup_fnfields_slot (inner
, complete_ctor_identifier
);
5215 fns
; fns
= OVL_NEXT (fns
))
5217 tree fn
= OVL_CURRENT (fns
);
5218 if (!DECL_ARTIFICIAL (fn
)
5219 || DECL_DELETED_FN (fn
))
5225 /* Like type_build_ctor_call, but for destructors. */
5228 type_build_dtor_call (tree t
)
5231 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
5233 inner
= strip_array_types (t
);
5234 if (!CLASS_TYPE_P (inner
) || ANON_AGGR_TYPE_P (inner
)
5235 || !COMPLETE_TYPE_P (inner
))
5237 if (cxx_dialect
< cxx11
)
5239 /* A user-declared destructor might be private, and a destructor might
5240 be trivial but deleted. */
5241 for (tree fns
= lookup_fnfields_slot (inner
, complete_dtor_identifier
);
5242 fns
; fns
= OVL_NEXT (fns
))
5244 tree fn
= OVL_CURRENT (fns
);
5245 if (!DECL_ARTIFICIAL (fn
)
5246 || DECL_DELETED_FN (fn
))
5252 /* Remove all zero-width bit-fields from T. */
5255 remove_zero_width_bit_fields (tree t
)
5259 fieldsp
= &TYPE_FIELDS (t
);
5262 if (TREE_CODE (*fieldsp
) == FIELD_DECL
5263 && DECL_C_BIT_FIELD (*fieldsp
)
5264 /* We should not be confused by the fact that grokbitfield
5265 temporarily sets the width of the bit field into
5266 DECL_INITIAL (*fieldsp).
5267 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5269 && integer_zerop (DECL_SIZE (*fieldsp
)))
5270 *fieldsp
= DECL_CHAIN (*fieldsp
);
5272 fieldsp
= &DECL_CHAIN (*fieldsp
);
5276 /* Returns TRUE iff we need a cookie when dynamically allocating an
5277 array whose elements have the indicated class TYPE. */
5280 type_requires_array_cookie (tree type
)
5283 bool has_two_argument_delete_p
= false;
5285 gcc_assert (CLASS_TYPE_P (type
));
5287 /* If there's a non-trivial destructor, we need a cookie. In order
5288 to iterate through the array calling the destructor for each
5289 element, we'll have to know how many elements there are. */
5290 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
5293 /* If the usual deallocation function is a two-argument whose second
5294 argument is of type `size_t', then we have to pass the size of
5295 the array to the deallocation function, so we will need to store
5297 fns
= lookup_fnfields (TYPE_BINFO (type
),
5298 ansi_opname (VEC_DELETE_EXPR
),
5300 /* If there are no `operator []' members, or the lookup is
5301 ambiguous, then we don't need a cookie. */
5302 if (!fns
|| fns
== error_mark_node
)
5304 /* Loop through all of the functions. */
5305 for (fns
= BASELINK_FUNCTIONS (fns
); fns
; fns
= OVL_NEXT (fns
))
5310 /* Select the current function. */
5311 fn
= OVL_CURRENT (fns
);
5312 /* See if this function is a one-argument delete function. If
5313 it is, then it will be the usual deallocation function. */
5314 second_parm
= TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn
)));
5315 if (second_parm
== void_list_node
)
5317 /* Do not consider this function if its second argument is an
5321 /* Otherwise, if we have a two-argument function and the second
5322 argument is `size_t', it will be the usual deallocation
5323 function -- unless there is one-argument function, too. */
5324 if (TREE_CHAIN (second_parm
) == void_list_node
5325 && same_type_p (TREE_VALUE (second_parm
), size_type_node
))
5326 has_two_argument_delete_p
= true;
5329 return has_two_argument_delete_p
;
5332 /* Finish computing the `literal type' property of class type T.
5334 At this point, we have already processed base classes and
5335 non-static data members. We need to check whether the copy
5336 constructor is trivial, the destructor is trivial, and there
5337 is a trivial default constructor or at least one constexpr
5338 constructor other than the copy constructor. */
5341 finalize_literal_type_property (tree t
)
5345 if (cxx_dialect
< cxx11
5346 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
5347 CLASSTYPE_LITERAL_P (t
) = false;
5348 else if (CLASSTYPE_LITERAL_P (t
) && !TYPE_HAS_TRIVIAL_DFLT (t
)
5349 && CLASSTYPE_NON_AGGREGATE (t
)
5350 && !TYPE_HAS_CONSTEXPR_CTOR (t
))
5351 CLASSTYPE_LITERAL_P (t
) = false;
5353 if (!CLASSTYPE_LITERAL_P (t
))
5354 for (fn
= TYPE_METHODS (t
); fn
; fn
= DECL_CHAIN (fn
))
5355 if (DECL_DECLARED_CONSTEXPR_P (fn
)
5356 && TREE_CODE (fn
) != TEMPLATE_DECL
5357 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
)
5358 && !DECL_CONSTRUCTOR_P (fn
))
5360 DECL_DECLARED_CONSTEXPR_P (fn
) = false;
5361 if (!DECL_GENERATED_P (fn
))
5363 error ("enclosing class of constexpr non-static member "
5364 "function %q+#D is not a literal type", fn
);
5365 explain_non_literal_class (t
);
5370 /* T is a non-literal type used in a context which requires a constant
5371 expression. Explain why it isn't literal. */
5374 explain_non_literal_class (tree t
)
5376 static struct pointer_set_t
*diagnosed
;
5378 if (!CLASS_TYPE_P (t
))
5380 t
= TYPE_MAIN_VARIANT (t
);
5382 if (diagnosed
== NULL
)
5383 diagnosed
= pointer_set_create ();
5384 if (pointer_set_insert (diagnosed
, t
) != 0)
5385 /* Already explained. */
5388 inform (0, "%q+T is not literal because:", t
);
5389 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
5390 inform (0, " %q+T has a non-trivial destructor", t
);
5391 else if (CLASSTYPE_NON_AGGREGATE (t
)
5392 && !TYPE_HAS_TRIVIAL_DFLT (t
)
5393 && !TYPE_HAS_CONSTEXPR_CTOR (t
))
5395 inform (0, " %q+T is not an aggregate, does not have a trivial "
5396 "default constructor, and has no constexpr constructor that "
5397 "is not a copy or move constructor", t
);
5398 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t
)
5399 && !type_has_user_provided_default_constructor (t
))
5401 /* Note that we can't simply call locate_ctor because when the
5402 constructor is deleted it just returns NULL_TREE. */
5404 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
5406 tree fn
= OVL_CURRENT (fns
);
5407 tree parms
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
5409 parms
= skip_artificial_parms_for (fn
, parms
);
5411 if (sufficient_parms_p (parms
))
5413 if (DECL_DELETED_FN (fn
))
5414 maybe_explain_implicit_delete (fn
);
5416 explain_invalid_constexpr_fn (fn
);
5424 tree binfo
, base_binfo
, field
; int i
;
5425 for (binfo
= TYPE_BINFO (t
), i
= 0;
5426 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
5428 tree basetype
= TREE_TYPE (base_binfo
);
5429 if (!CLASSTYPE_LITERAL_P (basetype
))
5431 inform (0, " base class %qT of %q+T is non-literal",
5433 explain_non_literal_class (basetype
);
5437 for (field
= TYPE_FIELDS (t
); field
; field
= TREE_CHAIN (field
))
5440 if (TREE_CODE (field
) != FIELD_DECL
)
5442 ftype
= TREE_TYPE (field
);
5443 if (!literal_type_p (ftype
))
5445 inform (0, " non-static data member %q+D has "
5446 "non-literal type", field
);
5447 if (CLASS_TYPE_P (ftype
))
5448 explain_non_literal_class (ftype
);
5454 /* Check the validity of the bases and members declared in T. Add any
5455 implicitly-generated functions (like copy-constructors and
5456 assignment operators). Compute various flag bits (like
5457 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5458 level: i.e., independently of the ABI in use. */
5461 check_bases_and_members (tree t
)
5463 /* Nonzero if the implicitly generated copy constructor should take
5464 a non-const reference argument. */
5465 int cant_have_const_ctor
;
5466 /* Nonzero if the implicitly generated assignment operator
5467 should take a non-const reference argument. */
5468 int no_const_asn_ref
;
5470 bool saved_complex_asn_ref
;
5471 bool saved_nontrivial_dtor
;
5474 /* Pick up any abi_tags from our template arguments before checking. */
5475 inherit_targ_abi_tags (t
);
5477 /* By default, we use const reference arguments and generate default
5479 cant_have_const_ctor
= 0;
5480 no_const_asn_ref
= 0;
5482 /* Check all the base-classes. */
5483 check_bases (t
, &cant_have_const_ctor
,
5486 /* Deduce noexcept on destructors. This needs to happen after we've set
5487 triviality flags appropriately for our bases. */
5488 if (cxx_dialect
>= cxx11
)
5489 deduce_noexcept_on_destructors (t
);
5491 /* Check all the method declarations. */
5494 /* Save the initial values of these flags which only indicate whether
5495 or not the class has user-provided functions. As we analyze the
5496 bases and members we can set these flags for other reasons. */
5497 saved_complex_asn_ref
= TYPE_HAS_COMPLEX_COPY_ASSIGN (t
);
5498 saved_nontrivial_dtor
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
);
5500 /* Check all the data member declarations. We cannot call
5501 check_field_decls until we have called check_bases check_methods,
5502 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5503 being set appropriately. */
5504 check_field_decls (t
, &access_decls
,
5505 &cant_have_const_ctor
,
5508 /* A nearly-empty class has to be vptr-containing; a nearly empty
5509 class contains just a vptr. */
5510 if (!TYPE_CONTAINS_VPTR_P (t
))
5511 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
5513 /* Do some bookkeeping that will guide the generation of implicitly
5514 declared member functions. */
5515 TYPE_HAS_COMPLEX_COPY_CTOR (t
) |= TYPE_CONTAINS_VPTR_P (t
);
5516 TYPE_HAS_COMPLEX_MOVE_CTOR (t
) |= TYPE_CONTAINS_VPTR_P (t
);
5517 /* We need to call a constructor for this class if it has a
5518 user-provided constructor, or if the default constructor is going
5519 to initialize the vptr. (This is not an if-and-only-if;
5520 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5521 themselves need constructing.) */
5522 TYPE_NEEDS_CONSTRUCTING (t
)
5523 |= (type_has_user_provided_constructor (t
) || TYPE_CONTAINS_VPTR_P (t
));
5526 An aggregate is an array or a class with no user-provided
5527 constructors ... and no virtual functions.
5529 Again, other conditions for being an aggregate are checked
5531 CLASSTYPE_NON_AGGREGATE (t
)
5532 |= (type_has_user_provided_constructor (t
) || TYPE_POLYMORPHIC_P (t
));
5533 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5534 retain the old definition internally for ABI reasons. */
5535 CLASSTYPE_NON_LAYOUT_POD_P (t
)
5536 |= (CLASSTYPE_NON_AGGREGATE (t
)
5537 || saved_nontrivial_dtor
|| saved_complex_asn_ref
);
5538 CLASSTYPE_NON_STD_LAYOUT (t
) |= TYPE_CONTAINS_VPTR_P (t
);
5539 TYPE_HAS_COMPLEX_COPY_ASSIGN (t
) |= TYPE_CONTAINS_VPTR_P (t
);
5540 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t
) |= TYPE_CONTAINS_VPTR_P (t
);
5541 TYPE_HAS_COMPLEX_DFLT (t
) |= TYPE_CONTAINS_VPTR_P (t
);
5543 /* If the class has no user-declared constructor, but does have
5544 non-static const or reference data members that can never be
5545 initialized, issue a warning. */
5546 if (warn_uninitialized
5547 /* Classes with user-declared constructors are presumed to
5548 initialize these members. */
5549 && !TYPE_HAS_USER_CONSTRUCTOR (t
)
5550 /* Aggregates can be initialized with brace-enclosed
5552 && CLASSTYPE_NON_AGGREGATE (t
))
5556 for (field
= TYPE_FIELDS (t
); field
; field
= DECL_CHAIN (field
))
5560 if (TREE_CODE (field
) != FIELD_DECL
5561 || DECL_INITIAL (field
) != NULL_TREE
)
5564 type
= TREE_TYPE (field
);
5565 if (TREE_CODE (type
) == REFERENCE_TYPE
)
5566 warning (OPT_Wuninitialized
, "non-static reference %q+#D "
5567 "in class without a constructor", field
);
5568 else if (CP_TYPE_CONST_P (type
)
5569 && (!CLASS_TYPE_P (type
)
5570 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type
)))
5571 warning (OPT_Wuninitialized
, "non-static const member %q+#D "
5572 "in class without a constructor", field
);
5576 /* Synthesize any needed methods. */
5577 add_implicitly_declared_members (t
, &access_decls
,
5578 cant_have_const_ctor
,
5581 /* Check defaulted declarations here so we have cant_have_const_ctor
5582 and don't need to worry about clones. */
5583 for (fn
= TYPE_METHODS (t
); fn
; fn
= DECL_CHAIN (fn
))
5584 if (!DECL_ARTIFICIAL (fn
) && DECL_DEFAULTED_IN_CLASS_P (fn
))
5586 int copy
= copy_fn_p (fn
);
5590 = (DECL_CONSTRUCTOR_P (fn
) ? !cant_have_const_ctor
5591 : !no_const_asn_ref
);
5592 bool fn_const_p
= (copy
== 2);
5594 if (fn_const_p
&& !imp_const_p
)
5595 /* If the function is defaulted outside the class, we just
5596 give the synthesis error. */
5597 error ("%q+D declared to take const reference, but implicit "
5598 "declaration would take non-const", fn
);
5600 defaulted_late_check (fn
);
5603 if (LAMBDA_TYPE_P (t
))
5605 /* "The closure type associated with a lambda-expression has a deleted
5606 default constructor and a deleted copy assignment operator." */
5607 TYPE_NEEDS_CONSTRUCTING (t
) = 1;
5608 TYPE_HAS_COMPLEX_DFLT (t
) = 1;
5609 TYPE_HAS_COMPLEX_COPY_ASSIGN (t
) = 1;
5610 CLASSTYPE_LAZY_MOVE_ASSIGN (t
) = 0;
5612 /* "This class type is not an aggregate." */
5613 CLASSTYPE_NON_AGGREGATE (t
) = 1;
5616 /* Compute the 'literal type' property before we
5617 do anything with non-static member functions. */
5618 finalize_literal_type_property (t
);
5620 /* Create the in-charge and not-in-charge variants of constructors
5622 clone_constructors_and_destructors (t
);
5624 /* Process the using-declarations. */
5625 for (; access_decls
; access_decls
= TREE_CHAIN (access_decls
))
5626 handle_using_decl (TREE_VALUE (access_decls
), t
);
5628 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5629 finish_struct_methods (t
);
5631 /* Figure out whether or not we will need a cookie when dynamically
5632 allocating an array of this type. */
5633 TYPE_LANG_SPECIFIC (t
)->u
.c
.vec_new_uses_cookie
5634 = type_requires_array_cookie (t
);
5637 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5638 accordingly. If a new vfield was created (because T doesn't have a
5639 primary base class), then the newly created field is returned. It
5640 is not added to the TYPE_FIELDS list; it is the caller's
5641 responsibility to do that. Accumulate declared virtual functions
5645 create_vtable_ptr (tree t
, tree
* virtuals_p
)
5649 /* Collect the virtual functions declared in T. */
5650 for (fn
= TYPE_METHODS (t
); fn
; fn
= DECL_CHAIN (fn
))
5651 if (DECL_VINDEX (fn
) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn
)
5652 && TREE_CODE (DECL_VINDEX (fn
)) != INTEGER_CST
)
5654 tree new_virtual
= make_node (TREE_LIST
);
5656 BV_FN (new_virtual
) = fn
;
5657 BV_DELTA (new_virtual
) = integer_zero_node
;
5658 BV_VCALL_INDEX (new_virtual
) = NULL_TREE
;
5660 TREE_CHAIN (new_virtual
) = *virtuals_p
;
5661 *virtuals_p
= new_virtual
;
5664 /* If we couldn't find an appropriate base class, create a new field
5665 here. Even if there weren't any new virtual functions, we might need a
5666 new virtual function table if we're supposed to include vptrs in
5667 all classes that need them. */
5668 if (!TYPE_VFIELD (t
) && (*virtuals_p
|| TYPE_CONTAINS_VPTR_P (t
)))
5670 /* We build this decl with vtbl_ptr_type_node, which is a
5671 `vtable_entry_type*'. It might seem more precise to use
5672 `vtable_entry_type (*)[N]' where N is the number of virtual
5673 functions. However, that would require the vtable pointer in
5674 base classes to have a different type than the vtable pointer
5675 in derived classes. We could make that happen, but that
5676 still wouldn't solve all the problems. In particular, the
5677 type-based alias analysis code would decide that assignments
5678 to the base class vtable pointer can't alias assignments to
5679 the derived class vtable pointer, since they have different
5680 types. Thus, in a derived class destructor, where the base
5681 class constructor was inlined, we could generate bad code for
5682 setting up the vtable pointer.
5684 Therefore, we use one type for all vtable pointers. We still
5685 use a type-correct type; it's just doesn't indicate the array
5686 bounds. That's better than using `void*' or some such; it's
5687 cleaner, and it let's the alias analysis code know that these
5688 stores cannot alias stores to void*! */
5691 field
= build_decl (input_location
,
5692 FIELD_DECL
, get_vfield_name (t
), vtbl_ptr_type_node
);
5693 DECL_VIRTUAL_P (field
) = 1;
5694 DECL_ARTIFICIAL (field
) = 1;
5695 DECL_FIELD_CONTEXT (field
) = t
;
5696 DECL_FCONTEXT (field
) = t
;
5697 if (TYPE_PACKED (t
))
5698 DECL_PACKED (field
) = 1;
5700 TYPE_VFIELD (t
) = field
;
5702 /* This class is non-empty. */
5703 CLASSTYPE_EMPTY_P (t
) = 0;
5711 /* Add OFFSET to all base types of BINFO which is a base in the
5712 hierarchy dominated by T.
5714 OFFSET, which is a type offset, is number of bytes. */
5717 propagate_binfo_offsets (tree binfo
, tree offset
)
5723 /* Update BINFO's offset. */
5724 BINFO_OFFSET (binfo
)
5725 = convert (sizetype
,
5726 size_binop (PLUS_EXPR
,
5727 convert (ssizetype
, BINFO_OFFSET (binfo
)),
5730 /* Find the primary base class. */
5731 primary_binfo
= get_primary_binfo (binfo
);
5733 if (primary_binfo
&& BINFO_INHERITANCE_CHAIN (primary_binfo
) == binfo
)
5734 propagate_binfo_offsets (primary_binfo
, offset
);
5736 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5738 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
5740 /* Don't do the primary base twice. */
5741 if (base_binfo
== primary_binfo
)
5744 if (BINFO_VIRTUAL_P (base_binfo
))
5747 propagate_binfo_offsets (base_binfo
, offset
);
5751 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5752 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5753 empty subobjects of T. */
5756 layout_virtual_bases (record_layout_info rli
, splay_tree offsets
)
5760 bool first_vbase
= true;
5763 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t
)) == 0)
5766 if (!abi_version_at_least(2))
5768 /* In G++ 3.2, we incorrectly rounded the size before laying out
5769 the virtual bases. */
5770 finish_record_layout (rli
, /*free_p=*/false);
5771 #ifdef STRUCTURE_SIZE_BOUNDARY
5772 /* Packed structures don't need to have minimum size. */
5773 if (! TYPE_PACKED (t
))
5774 TYPE_ALIGN (t
) = MAX (TYPE_ALIGN (t
), (unsigned) STRUCTURE_SIZE_BOUNDARY
);
5776 rli
->offset
= TYPE_SIZE_UNIT (t
);
5777 rli
->bitpos
= bitsize_zero_node
;
5778 rli
->record_align
= TYPE_ALIGN (t
);
5781 /* Find the last field. The artificial fields created for virtual
5782 bases will go after the last extant field to date. */
5783 next_field
= &TYPE_FIELDS (t
);
5785 next_field
= &DECL_CHAIN (*next_field
);
5787 /* Go through the virtual bases, allocating space for each virtual
5788 base that is not already a primary base class. These are
5789 allocated in inheritance graph order. */
5790 for (vbase
= TYPE_BINFO (t
); vbase
; vbase
= TREE_CHAIN (vbase
))
5792 if (!BINFO_VIRTUAL_P (vbase
))
5795 if (!BINFO_PRIMARY_P (vbase
))
5797 tree basetype
= TREE_TYPE (vbase
);
5799 /* This virtual base is not a primary base of any class in the
5800 hierarchy, so we have to add space for it. */
5801 next_field
= build_base_field (rli
, vbase
,
5802 offsets
, next_field
);
5804 /* If the first virtual base might have been placed at a
5805 lower address, had we started from CLASSTYPE_SIZE, rather
5806 than TYPE_SIZE, issue a warning. There can be both false
5807 positives and false negatives from this warning in rare
5808 cases; to deal with all the possibilities would probably
5809 require performing both layout algorithms and comparing
5810 the results which is not particularly tractable. */
5814 (size_binop (CEIL_DIV_EXPR
,
5815 round_up_loc (input_location
,
5817 CLASSTYPE_ALIGN (basetype
)),
5819 BINFO_OFFSET (vbase
))))
5821 "offset of virtual base %qT is not ABI-compliant and "
5822 "may change in a future version of GCC",
5825 first_vbase
= false;
5830 /* Returns the offset of the byte just past the end of the base class
5834 end_of_base (tree binfo
)
5838 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo
)))
5839 size
= TYPE_SIZE_UNIT (char_type_node
);
5840 else if (is_empty_class (BINFO_TYPE (binfo
)))
5841 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5842 allocate some space for it. It cannot have virtual bases, so
5843 TYPE_SIZE_UNIT is fine. */
5844 size
= TYPE_SIZE_UNIT (BINFO_TYPE (binfo
));
5846 size
= CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo
));
5848 return size_binop (PLUS_EXPR
, BINFO_OFFSET (binfo
), size
);
5851 /* Returns the offset of the byte just past the end of the base class
5852 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5853 only non-virtual bases are included. */
5856 end_of_class (tree t
, int include_virtuals_p
)
5858 tree result
= size_zero_node
;
5859 vec
<tree
, va_gc
> *vbases
;
5865 for (binfo
= TYPE_BINFO (t
), i
= 0;
5866 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
5868 if (!include_virtuals_p
5869 && BINFO_VIRTUAL_P (base_binfo
)
5870 && (!BINFO_PRIMARY_P (base_binfo
)
5871 || BINFO_INHERITANCE_CHAIN (base_binfo
) != TYPE_BINFO (t
)))
5874 offset
= end_of_base (base_binfo
);
5875 if (INT_CST_LT_UNSIGNED (result
, offset
))
5879 /* G++ 3.2 did not check indirect virtual bases. */
5880 if (abi_version_at_least (2) && include_virtuals_p
)
5881 for (vbases
= CLASSTYPE_VBASECLASSES (t
), i
= 0;
5882 vec_safe_iterate (vbases
, i
, &base_binfo
); i
++)
5884 offset
= end_of_base (base_binfo
);
5885 if (INT_CST_LT_UNSIGNED (result
, offset
))
5892 /* Warn about bases of T that are inaccessible because they are
5893 ambiguous. For example:
5896 struct T : public S {};
5897 struct U : public S, public T {};
5899 Here, `(S*) new U' is not allowed because there are two `S'
5903 warn_about_ambiguous_bases (tree t
)
5906 vec
<tree
, va_gc
> *vbases
;
5911 /* If there are no repeated bases, nothing can be ambiguous. */
5912 if (!CLASSTYPE_REPEATED_BASE_P (t
))
5915 /* Check direct bases. */
5916 for (binfo
= TYPE_BINFO (t
), i
= 0;
5917 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
5919 basetype
= BINFO_TYPE (base_binfo
);
5921 if (!uniquely_derived_from_p (basetype
, t
))
5922 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5926 /* Check for ambiguous virtual bases. */
5928 for (vbases
= CLASSTYPE_VBASECLASSES (t
), i
= 0;
5929 vec_safe_iterate (vbases
, i
, &binfo
); i
++)
5931 basetype
= BINFO_TYPE (binfo
);
5933 if (!uniquely_derived_from_p (basetype
, t
))
5934 warning (OPT_Wextra
, "virtual base %qT inaccessible in %qT due "
5935 "to ambiguity", basetype
, t
);
5939 /* Compare two INTEGER_CSTs K1 and K2. */
5942 splay_tree_compare_integer_csts (splay_tree_key k1
, splay_tree_key k2
)
5944 return tree_int_cst_compare ((tree
) k1
, (tree
) k2
);
5947 /* Increase the size indicated in RLI to account for empty classes
5948 that are "off the end" of the class. */
5951 include_empty_classes (record_layout_info rli
)
5956 /* It might be the case that we grew the class to allocate a
5957 zero-sized base class. That won't be reflected in RLI, yet,
5958 because we are willing to overlay multiple bases at the same
5959 offset. However, now we need to make sure that RLI is big enough
5960 to reflect the entire class. */
5961 eoc
= end_of_class (rli
->t
,
5962 CLASSTYPE_AS_BASE (rli
->t
) != NULL_TREE
);
5963 rli_size
= rli_size_unit_so_far (rli
);
5964 if (TREE_CODE (rli_size
) == INTEGER_CST
5965 && INT_CST_LT_UNSIGNED (rli_size
, eoc
))
5967 if (!abi_version_at_least (2))
5968 /* In version 1 of the ABI, the size of a class that ends with
5969 a bitfield was not rounded up to a whole multiple of a
5970 byte. Because rli_size_unit_so_far returns only the number
5971 of fully allocated bytes, any extra bits were not included
5973 rli
->bitpos
= round_down (rli
->bitpos
, BITS_PER_UNIT
);
5975 /* The size should have been rounded to a whole byte. */
5976 gcc_assert (tree_int_cst_equal
5977 (rli
->bitpos
, round_down (rli
->bitpos
, BITS_PER_UNIT
)));
5979 = size_binop (PLUS_EXPR
,
5981 size_binop (MULT_EXPR
,
5982 convert (bitsizetype
,
5983 size_binop (MINUS_EXPR
,
5985 bitsize_int (BITS_PER_UNIT
)));
5986 normalize_rli (rli
);
5990 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5991 BINFO_OFFSETs for all of the base-classes. Position the vtable
5992 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5995 layout_class_type (tree t
, tree
*virtuals_p
)
5997 tree non_static_data_members
;
6000 record_layout_info rli
;
6001 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
6002 types that appear at that offset. */
6003 splay_tree empty_base_offsets
;
6004 /* True if the last field laid out was a bit-field. */
6005 bool last_field_was_bitfield
= false;
6006 /* The location at which the next field should be inserted. */
6008 /* T, as a base class. */
6011 /* Keep track of the first non-static data member. */
6012 non_static_data_members
= TYPE_FIELDS (t
);
6014 /* Start laying out the record. */
6015 rli
= start_record_layout (t
);
6017 /* Mark all the primary bases in the hierarchy. */
6018 determine_primary_bases (t
);
6020 /* Create a pointer to our virtual function table. */
6021 vptr
= create_vtable_ptr (t
, virtuals_p
);
6023 /* The vptr is always the first thing in the class. */
6026 DECL_CHAIN (vptr
) = TYPE_FIELDS (t
);
6027 TYPE_FIELDS (t
) = vptr
;
6028 next_field
= &DECL_CHAIN (vptr
);
6029 place_field (rli
, vptr
);
6032 next_field
= &TYPE_FIELDS (t
);
6034 /* Build FIELD_DECLs for all of the non-virtual base-types. */
6035 empty_base_offsets
= splay_tree_new (splay_tree_compare_integer_csts
,
6037 build_base_fields (rli
, empty_base_offsets
, next_field
);
6039 /* Layout the non-static data members. */
6040 for (field
= non_static_data_members
; field
; field
= DECL_CHAIN (field
))
6045 /* We still pass things that aren't non-static data members to
6046 the back end, in case it wants to do something with them. */
6047 if (TREE_CODE (field
) != FIELD_DECL
)
6049 place_field (rli
, field
);
6050 /* If the static data member has incomplete type, keep track
6051 of it so that it can be completed later. (The handling
6052 of pending statics in finish_record_layout is
6053 insufficient; consider:
6056 struct S2 { static S1 s1; };
6058 At this point, finish_record_layout will be called, but
6059 S1 is still incomplete.) */
6062 maybe_register_incomplete_var (field
);
6063 /* The visibility of static data members is determined
6064 at their point of declaration, not their point of
6066 determine_visibility (field
);
6071 type
= TREE_TYPE (field
);
6072 if (type
== error_mark_node
)
6075 padding
= NULL_TREE
;
6077 /* If this field is a bit-field whose width is greater than its
6078 type, then there are some special rules for allocating
6080 if (DECL_C_BIT_FIELD (field
)
6081 && INT_CST_LT (TYPE_SIZE (type
), DECL_SIZE (field
)))
6085 bool was_unnamed_p
= false;
6086 /* We must allocate the bits as if suitably aligned for the
6087 longest integer type that fits in this many bits. type
6088 of the field. Then, we are supposed to use the left over
6089 bits as additional padding. */
6090 for (itk
= itk_char
; itk
!= itk_none
; ++itk
)
6091 if (integer_types
[itk
] != NULL_TREE
6092 && (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE
),
6093 TYPE_SIZE (integer_types
[itk
]))
6094 || INT_CST_LT (DECL_SIZE (field
),
6095 TYPE_SIZE (integer_types
[itk
]))))
6098 /* ITK now indicates a type that is too large for the
6099 field. We have to back up by one to find the largest
6104 integer_type
= integer_types
[itk
];
6105 } while (itk
> 0 && integer_type
== NULL_TREE
);
6107 /* Figure out how much additional padding is required. GCC
6108 3.2 always created a padding field, even if it had zero
6110 if (!abi_version_at_least (2)
6111 || INT_CST_LT (TYPE_SIZE (integer_type
), DECL_SIZE (field
)))
6113 if (abi_version_at_least (2) && TREE_CODE (t
) == UNION_TYPE
)
6114 /* In a union, the padding field must have the full width
6115 of the bit-field; all fields start at offset zero. */
6116 padding
= DECL_SIZE (field
);
6119 if (TREE_CODE (t
) == UNION_TYPE
)
6120 warning (OPT_Wabi
, "size assigned to %qT may not be "
6121 "ABI-compliant and may change in a future "
6124 padding
= size_binop (MINUS_EXPR
, DECL_SIZE (field
),
6125 TYPE_SIZE (integer_type
));
6128 #ifdef PCC_BITFIELD_TYPE_MATTERS
6129 /* An unnamed bitfield does not normally affect the
6130 alignment of the containing class on a target where
6131 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
6132 make any exceptions for unnamed bitfields when the
6133 bitfields are longer than their types. Therefore, we
6134 temporarily give the field a name. */
6135 if (PCC_BITFIELD_TYPE_MATTERS
&& !DECL_NAME (field
))
6137 was_unnamed_p
= true;
6138 DECL_NAME (field
) = make_anon_name ();
6141 DECL_SIZE (field
) = TYPE_SIZE (integer_type
);
6142 DECL_ALIGN (field
) = TYPE_ALIGN (integer_type
);
6143 DECL_USER_ALIGN (field
) = TYPE_USER_ALIGN (integer_type
);
6144 layout_nonempty_base_or_field (rli
, field
, NULL_TREE
,
6145 empty_base_offsets
);
6147 DECL_NAME (field
) = NULL_TREE
;
6148 /* Now that layout has been performed, set the size of the
6149 field to the size of its declared type; the rest of the
6150 field is effectively invisible. */
6151 DECL_SIZE (field
) = TYPE_SIZE (type
);
6152 /* We must also reset the DECL_MODE of the field. */
6153 if (abi_version_at_least (2))
6154 DECL_MODE (field
) = TYPE_MODE (type
);
6156 && DECL_MODE (field
) != TYPE_MODE (type
))
6157 /* Versions of G++ before G++ 3.4 did not reset the
6160 "the offset of %qD may not be ABI-compliant and may "
6161 "change in a future version of GCC", field
);
6164 layout_nonempty_base_or_field (rli
, field
, NULL_TREE
,
6165 empty_base_offsets
);
6167 /* Remember the location of any empty classes in FIELD. */
6168 if (abi_version_at_least (2))
6169 record_subobject_offsets (TREE_TYPE (field
),
6170 byte_position(field
),
6172 /*is_data_member=*/true);
6174 /* If a bit-field does not immediately follow another bit-field,
6175 and yet it starts in the middle of a byte, we have failed to
6176 comply with the ABI. */
6178 && DECL_C_BIT_FIELD (field
)
6179 /* The TREE_NO_WARNING flag gets set by Objective-C when
6180 laying out an Objective-C class. The ObjC ABI differs
6181 from the C++ ABI, and so we do not want a warning
6183 && !TREE_NO_WARNING (field
)
6184 && !last_field_was_bitfield
6185 && !integer_zerop (size_binop (TRUNC_MOD_EXPR
,
6186 DECL_FIELD_BIT_OFFSET (field
),
6187 bitsize_unit_node
)))
6188 warning (OPT_Wabi
, "offset of %q+D is not ABI-compliant and may "
6189 "change in a future version of GCC", field
);
6191 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
6192 offset of the field. */
6194 && !abi_version_at_least (2)
6195 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field
),
6196 byte_position (field
))
6197 && contains_empty_class_p (TREE_TYPE (field
)))
6198 warning (OPT_Wabi
, "%q+D contains empty classes which may cause base "
6199 "classes to be placed at different locations in a "
6200 "future version of GCC", field
);
6202 /* The middle end uses the type of expressions to determine the
6203 possible range of expression values. In order to optimize
6204 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6205 must be made aware of the width of "i", via its type.
6207 Because C++ does not have integer types of arbitrary width,
6208 we must (for the purposes of the front end) convert from the
6209 type assigned here to the declared type of the bitfield
6210 whenever a bitfield expression is used as an rvalue.
6211 Similarly, when assigning a value to a bitfield, the value
6212 must be converted to the type given the bitfield here. */
6213 if (DECL_C_BIT_FIELD (field
))
6215 unsigned HOST_WIDE_INT width
;
6216 tree ftype
= TREE_TYPE (field
);
6217 width
= tree_to_uhwi (DECL_SIZE (field
));
6218 if (width
!= TYPE_PRECISION (ftype
))
6221 = c_build_bitfield_integer_type (width
,
6222 TYPE_UNSIGNED (ftype
));
6224 = cp_build_qualified_type (TREE_TYPE (field
),
6225 cp_type_quals (ftype
));
6229 /* If we needed additional padding after this field, add it
6235 padding_field
= build_decl (input_location
,
6239 DECL_BIT_FIELD (padding_field
) = 1;
6240 DECL_SIZE (padding_field
) = padding
;
6241 DECL_CONTEXT (padding_field
) = t
;
6242 DECL_ARTIFICIAL (padding_field
) = 1;
6243 DECL_IGNORED_P (padding_field
) = 1;
6244 layout_nonempty_base_or_field (rli
, padding_field
,
6246 empty_base_offsets
);
6249 last_field_was_bitfield
= DECL_C_BIT_FIELD (field
);
6252 if (abi_version_at_least (2) && !integer_zerop (rli
->bitpos
))
6254 /* Make sure that we are on a byte boundary so that the size of
6255 the class without virtual bases will always be a round number
6257 rli
->bitpos
= round_up_loc (input_location
, rli
->bitpos
, BITS_PER_UNIT
);
6258 normalize_rli (rli
);
6261 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
6263 if (!abi_version_at_least (2))
6264 include_empty_classes(rli
);
6266 /* Delete all zero-width bit-fields from the list of fields. Now
6267 that the type is laid out they are no longer important. */
6268 remove_zero_width_bit_fields (t
);
6270 /* Create the version of T used for virtual bases. We do not use
6271 make_class_type for this version; this is an artificial type. For
6272 a POD type, we just reuse T. */
6273 if (CLASSTYPE_NON_LAYOUT_POD_P (t
) || CLASSTYPE_EMPTY_P (t
))
6275 base_t
= make_node (TREE_CODE (t
));
6277 /* Set the size and alignment for the new type. In G++ 3.2, all
6278 empty classes were considered to have size zero when used as
6280 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t
))
6282 TYPE_SIZE (base_t
) = bitsize_zero_node
;
6283 TYPE_SIZE_UNIT (base_t
) = size_zero_node
;
6284 if (warn_abi
&& !integer_zerop (rli_size_unit_so_far (rli
)))
6286 "layout of classes derived from empty class %qT "
6287 "may change in a future version of GCC",
6294 /* If the ABI version is not at least two, and the last
6295 field was a bit-field, RLI may not be on a byte
6296 boundary. In particular, rli_size_unit_so_far might
6297 indicate the last complete byte, while rli_size_so_far
6298 indicates the total number of bits used. Therefore,
6299 rli_size_so_far, rather than rli_size_unit_so_far, is
6300 used to compute TYPE_SIZE_UNIT. */
6301 eoc
= end_of_class (t
, /*include_virtuals_p=*/0);
6302 TYPE_SIZE_UNIT (base_t
)
6303 = size_binop (MAX_EXPR
,
6305 size_binop (CEIL_DIV_EXPR
,
6306 rli_size_so_far (rli
),
6307 bitsize_int (BITS_PER_UNIT
))),
6310 = size_binop (MAX_EXPR
,
6311 rli_size_so_far (rli
),
6312 size_binop (MULT_EXPR
,
6313 convert (bitsizetype
, eoc
),
6314 bitsize_int (BITS_PER_UNIT
)));
6316 TYPE_ALIGN (base_t
) = rli
->record_align
;
6317 TYPE_USER_ALIGN (base_t
) = TYPE_USER_ALIGN (t
);
6319 /* Copy the fields from T. */
6320 next_field
= &TYPE_FIELDS (base_t
);
6321 for (field
= TYPE_FIELDS (t
); field
; field
= DECL_CHAIN (field
))
6322 if (TREE_CODE (field
) == FIELD_DECL
)
6324 *next_field
= build_decl (input_location
,
6328 DECL_CONTEXT (*next_field
) = base_t
;
6329 DECL_FIELD_OFFSET (*next_field
) = DECL_FIELD_OFFSET (field
);
6330 DECL_FIELD_BIT_OFFSET (*next_field
)
6331 = DECL_FIELD_BIT_OFFSET (field
);
6332 DECL_SIZE (*next_field
) = DECL_SIZE (field
);
6333 DECL_MODE (*next_field
) = DECL_MODE (field
);
6334 next_field
= &DECL_CHAIN (*next_field
);
6337 /* Record the base version of the type. */
6338 CLASSTYPE_AS_BASE (t
) = base_t
;
6339 TYPE_CONTEXT (base_t
) = t
;
6342 CLASSTYPE_AS_BASE (t
) = t
;
6344 /* Every empty class contains an empty class. */
6345 if (CLASSTYPE_EMPTY_P (t
))
6346 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 1;
6348 /* Set the TYPE_DECL for this type to contain the right
6349 value for DECL_OFFSET, so that we can use it as part
6350 of a COMPONENT_REF for multiple inheritance. */
6351 layout_decl (TYPE_MAIN_DECL (t
), 0);
6353 /* Now fix up any virtual base class types that we left lying
6354 around. We must get these done before we try to lay out the
6355 virtual function table. As a side-effect, this will remove the
6356 base subobject fields. */
6357 layout_virtual_bases (rli
, empty_base_offsets
);
6359 /* Make sure that empty classes are reflected in RLI at this
6361 include_empty_classes(rli
);
6363 /* Make sure not to create any structures with zero size. */
6364 if (integer_zerop (rli_size_unit_so_far (rli
)) && CLASSTYPE_EMPTY_P (t
))
6366 build_decl (input_location
,
6367 FIELD_DECL
, NULL_TREE
, char_type_node
));
6369 /* If this is a non-POD, declaring it packed makes a difference to how it
6370 can be used as a field; don't let finalize_record_size undo it. */
6371 if (TYPE_PACKED (t
) && !layout_pod_type_p (t
))
6372 rli
->packed_maybe_necessary
= true;
6374 /* Let the back end lay out the type. */
6375 finish_record_layout (rli
, /*free_p=*/true);
6377 if (TYPE_SIZE_UNIT (t
)
6378 && TREE_CODE (TYPE_SIZE_UNIT (t
)) == INTEGER_CST
6379 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t
))
6380 && !valid_constant_size_p (TYPE_SIZE_UNIT (t
)))
6381 error ("type %qT is too large", t
);
6383 /* Warn about bases that can't be talked about due to ambiguity. */
6384 warn_about_ambiguous_bases (t
);
6386 /* Now that we're done with layout, give the base fields the real types. */
6387 for (field
= TYPE_FIELDS (t
); field
; field
= DECL_CHAIN (field
))
6388 if (DECL_ARTIFICIAL (field
) && IS_FAKE_BASE_TYPE (TREE_TYPE (field
)))
6389 TREE_TYPE (field
) = TYPE_CONTEXT (TREE_TYPE (field
));
6392 splay_tree_delete (empty_base_offsets
);
6394 if (CLASSTYPE_EMPTY_P (t
)
6395 && tree_int_cst_lt (sizeof_biggest_empty_class
,
6396 TYPE_SIZE_UNIT (t
)))
6397 sizeof_biggest_empty_class
= TYPE_SIZE_UNIT (t
);
6400 /* Determine the "key method" for the class type indicated by TYPE,
6401 and set CLASSTYPE_KEY_METHOD accordingly. */
6404 determine_key_method (tree type
)
6408 if (TYPE_FOR_JAVA (type
)
6409 || processing_template_decl
6410 || CLASSTYPE_TEMPLATE_INSTANTIATION (type
)
6411 || CLASSTYPE_INTERFACE_KNOWN (type
))
6414 /* The key method is the first non-pure virtual function that is not
6415 inline at the point of class definition. On some targets the
6416 key function may not be inline; those targets should not call
6417 this function until the end of the translation unit. */
6418 for (method
= TYPE_METHODS (type
); method
!= NULL_TREE
;
6419 method
= DECL_CHAIN (method
))
6420 if (DECL_VINDEX (method
) != NULL_TREE
6421 && ! DECL_DECLARED_INLINE_P (method
)
6422 && ! DECL_PURE_VIRTUAL_P (method
))
6424 CLASSTYPE_KEY_METHOD (type
) = method
;
6432 /* Allocate and return an instance of struct sorted_fields_type with
6435 static struct sorted_fields_type
*
6436 sorted_fields_type_new (int n
)
6438 struct sorted_fields_type
*sft
;
6439 sft
= ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type
)
6440 + n
* sizeof (tree
));
6447 /* Perform processing required when the definition of T (a class type)
6451 finish_struct_1 (tree t
)
6454 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6455 tree virtuals
= NULL_TREE
;
6457 if (COMPLETE_TYPE_P (t
))
6459 gcc_assert (MAYBE_CLASS_TYPE_P (t
));
6460 error ("redefinition of %q#T", t
);
6465 /* If this type was previously laid out as a forward reference,
6466 make sure we lay it out again. */
6467 TYPE_SIZE (t
) = NULL_TREE
;
6468 CLASSTYPE_PRIMARY_BINFO (t
) = NULL_TREE
;
6470 /* Make assumptions about the class; we'll reset the flags if
6472 CLASSTYPE_EMPTY_P (t
) = 1;
6473 CLASSTYPE_NEARLY_EMPTY_P (t
) = 1;
6474 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 0;
6475 CLASSTYPE_LITERAL_P (t
) = true;
6477 /* Do end-of-class semantic processing: checking the validity of the
6478 bases and members and add implicitly generated methods. */
6479 check_bases_and_members (t
);
6481 /* Find the key method. */
6482 if (TYPE_CONTAINS_VPTR_P (t
))
6484 /* The Itanium C++ ABI permits the key method to be chosen when
6485 the class is defined -- even though the key method so
6486 selected may later turn out to be an inline function. On
6487 some systems (such as ARM Symbian OS) the key method cannot
6488 be determined until the end of the translation unit. On such
6489 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6490 will cause the class to be added to KEYED_CLASSES. Then, in
6491 finish_file we will determine the key method. */
6492 if (targetm
.cxx
.key_method_may_be_inline ())
6493 determine_key_method (t
);
6495 /* If a polymorphic class has no key method, we may emit the vtable
6496 in every translation unit where the class definition appears. */
6497 if (CLASSTYPE_KEY_METHOD (t
) == NULL_TREE
)
6498 keyed_classes
= tree_cons (NULL_TREE
, t
, keyed_classes
);
6501 /* Layout the class itself. */
6502 layout_class_type (t
, &virtuals
);
6503 if (CLASSTYPE_AS_BASE (t
) != t
)
6504 /* We use the base type for trivial assignments, and hence it
6506 compute_record_mode (CLASSTYPE_AS_BASE (t
));
6508 virtuals
= modify_all_vtables (t
, nreverse (virtuals
));
6510 /* If necessary, create the primary vtable for this class. */
6511 if (virtuals
|| TYPE_CONTAINS_VPTR_P (t
))
6513 /* We must enter these virtuals into the table. */
6514 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
6515 build_primary_vtable (NULL_TREE
, t
);
6516 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t
)))
6517 /* Here we know enough to change the type of our virtual
6518 function table, but we will wait until later this function. */
6519 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t
), t
);
6521 /* If we're warning about ABI tags, check the types of the new
6522 virtual functions. */
6524 for (tree v
= virtuals
; v
; v
= TREE_CHAIN (v
))
6525 check_abi_tags (t
, TREE_VALUE (v
));
6528 if (TYPE_CONTAINS_VPTR_P (t
))
6533 if (BINFO_VTABLE (TYPE_BINFO (t
)))
6534 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t
))));
6535 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
6536 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t
)) == NULL_TREE
);
6538 /* Add entries for virtual functions introduced by this class. */
6539 BINFO_VIRTUALS (TYPE_BINFO (t
))
6540 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t
)), virtuals
);
6542 /* Set DECL_VINDEX for all functions declared in this class. */
6543 for (vindex
= 0, fn
= BINFO_VIRTUALS (TYPE_BINFO (t
));
6545 fn
= TREE_CHAIN (fn
),
6546 vindex
+= (TARGET_VTABLE_USES_DESCRIPTORS
6547 ? TARGET_VTABLE_USES_DESCRIPTORS
: 1))
6549 tree fndecl
= BV_FN (fn
);
6551 if (DECL_THUNK_P (fndecl
))
6552 /* A thunk. We should never be calling this entry directly
6553 from this vtable -- we'd use the entry for the non
6554 thunk base function. */
6555 DECL_VINDEX (fndecl
) = NULL_TREE
;
6556 else if (TREE_CODE (DECL_VINDEX (fndecl
)) != INTEGER_CST
)
6557 DECL_VINDEX (fndecl
) = build_int_cst (NULL_TREE
, vindex
);
6561 finish_struct_bits (t
);
6562 set_method_tm_attributes (t
);
6564 /* Complete the rtl for any static member objects of the type we're
6566 for (x
= TYPE_FIELDS (t
); x
; x
= DECL_CHAIN (x
))
6567 if (VAR_P (x
) && TREE_STATIC (x
)
6568 && TREE_TYPE (x
) != error_mark_node
6569 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x
)), t
))
6570 DECL_MODE (x
) = TYPE_MODE (t
);
6572 /* Done with FIELDS...now decide whether to sort these for
6573 faster lookups later.
6575 We use a small number because most searches fail (succeeding
6576 ultimately as the search bores through the inheritance
6577 hierarchy), and we want this failure to occur quickly. */
6579 insert_into_classtype_sorted_fields (TYPE_FIELDS (t
), t
, 8);
6581 /* Complain if one of the field types requires lower visibility. */
6582 constrain_class_visibility (t
);
6584 /* Make the rtl for any new vtables we have created, and unmark
6585 the base types we marked. */
6588 /* Build the VTT for T. */
6591 /* This warning does not make sense for Java classes, since they
6592 cannot have destructors. */
6593 if (!TYPE_FOR_JAVA (t
) && warn_nonvdtor
&& TYPE_POLYMORPHIC_P (t
))
6597 dtor
= CLASSTYPE_DESTRUCTORS (t
);
6598 if (/* An implicitly declared destructor is always public. And,
6599 if it were virtual, we would have created it by now. */
6601 || (!DECL_VINDEX (dtor
)
6602 && (/* public non-virtual */
6603 (!TREE_PRIVATE (dtor
) && !TREE_PROTECTED (dtor
))
6604 || (/* non-public non-virtual with friends */
6605 (TREE_PRIVATE (dtor
) || TREE_PROTECTED (dtor
))
6606 && (CLASSTYPE_FRIEND_CLASSES (t
)
6607 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t
)))))))
6608 warning (OPT_Wnon_virtual_dtor
,
6609 "%q#T has virtual functions and accessible"
6610 " non-virtual destructor", t
);
6615 if (warn_overloaded_virtual
)
6618 /* Class layout, assignment of virtual table slots, etc., is now
6619 complete. Give the back end a chance to tweak the visibility of
6620 the class or perform any other required target modifications. */
6621 targetm
.cxx
.adjust_class_at_definition (t
);
6623 maybe_suppress_debug_info (t
);
6625 if (flag_vtable_verify
)
6626 vtv_save_class_info (t
);
6628 dump_class_hierarchy (t
);
6630 /* Finish debugging output for this type. */
6631 rest_of_type_compilation (t
, ! LOCAL_CLASS_P (t
));
6633 if (TYPE_TRANSPARENT_AGGR (t
))
6635 tree field
= first_field (t
);
6636 if (field
== NULL_TREE
|| error_operand_p (field
))
6638 error ("type transparent %q#T does not have any fields", t
);
6639 TYPE_TRANSPARENT_AGGR (t
) = 0;
6641 else if (DECL_ARTIFICIAL (field
))
6643 if (DECL_FIELD_IS_BASE (field
))
6644 error ("type transparent class %qT has base classes", t
);
6647 gcc_checking_assert (DECL_VIRTUAL_P (field
));
6648 error ("type transparent class %qT has virtual functions", t
);
6650 TYPE_TRANSPARENT_AGGR (t
) = 0;
6652 else if (TYPE_MODE (t
) != DECL_MODE (field
))
6654 error ("type transparent %q#T cannot be made transparent because "
6655 "the type of the first field has a different ABI from the "
6656 "class overall", t
);
6657 TYPE_TRANSPARENT_AGGR (t
) = 0;
6662 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6663 equal to THRESHOLD or greater than THRESHOLD. */
6666 insert_into_classtype_sorted_fields (tree fields
, tree t
, int threshold
)
6668 int n_fields
= count_fields (fields
);
6669 if (n_fields
>= threshold
)
6671 struct sorted_fields_type
*field_vec
= sorted_fields_type_new (n_fields
);
6672 add_fields_to_record_type (fields
, field_vec
, 0);
6673 qsort (field_vec
->elts
, n_fields
, sizeof (tree
), field_decl_cmp
);
6674 CLASSTYPE_SORTED_FIELDS (t
) = field_vec
;
6678 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6681 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype
, tree t
)
6683 struct sorted_fields_type
*sorted_fields
= CLASSTYPE_SORTED_FIELDS (t
);
6688 = list_length (TYPE_VALUES (enumtype
)) + sorted_fields
->len
;
6689 struct sorted_fields_type
*field_vec
= sorted_fields_type_new (n_fields
);
6691 for (i
= 0; i
< sorted_fields
->len
; ++i
)
6692 field_vec
->elts
[i
] = sorted_fields
->elts
[i
];
6694 add_enum_fields_to_record_type (enumtype
, field_vec
,
6695 sorted_fields
->len
);
6696 qsort (field_vec
->elts
, n_fields
, sizeof (tree
), field_decl_cmp
);
6697 CLASSTYPE_SORTED_FIELDS (t
) = field_vec
;
6701 /* When T was built up, the member declarations were added in reverse
6702 order. Rearrange them to declaration order. */
6705 unreverse_member_declarations (tree t
)
6711 /* The following lists are all in reverse order. Put them in
6712 declaration order now. */
6713 TYPE_METHODS (t
) = nreverse (TYPE_METHODS (t
));
6714 CLASSTYPE_DECL_LIST (t
) = nreverse (CLASSTYPE_DECL_LIST (t
));
6716 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6717 reverse order, so we can't just use nreverse. */
6719 for (x
= TYPE_FIELDS (t
);
6720 x
&& TREE_CODE (x
) != TYPE_DECL
;
6723 next
= DECL_CHAIN (x
);
6724 DECL_CHAIN (x
) = prev
;
6729 DECL_CHAIN (TYPE_FIELDS (t
)) = x
;
6731 TYPE_FIELDS (t
) = prev
;
6736 finish_struct (tree t
, tree attributes
)
6738 location_t saved_loc
= input_location
;
6740 /* Now that we've got all the field declarations, reverse everything
6742 unreverse_member_declarations (t
);
6744 cplus_decl_attributes (&t
, attributes
, (int) ATTR_FLAG_TYPE_IN_PLACE
);
6746 /* Nadger the current location so that diagnostics point to the start of
6747 the struct, not the end. */
6748 input_location
= DECL_SOURCE_LOCATION (TYPE_NAME (t
));
6750 if (processing_template_decl
)
6754 finish_struct_methods (t
);
6755 TYPE_SIZE (t
) = bitsize_zero_node
;
6756 TYPE_SIZE_UNIT (t
) = size_zero_node
;
6758 /* We need to emit an error message if this type was used as a parameter
6759 and it is an abstract type, even if it is a template. We construct
6760 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6761 account and we call complete_vars with this type, which will check
6762 the PARM_DECLS. Note that while the type is being defined,
6763 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6764 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6765 CLASSTYPE_PURE_VIRTUALS (t
) = NULL
;
6766 for (x
= TYPE_METHODS (t
); x
; x
= DECL_CHAIN (x
))
6767 if (DECL_PURE_VIRTUAL_P (x
))
6768 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t
), x
);
6770 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6771 an enclosing scope is a template class, so that this function be
6772 found by lookup_fnfields_1 when the using declaration is not
6773 instantiated yet. */
6774 for (x
= TYPE_FIELDS (t
); x
; x
= DECL_CHAIN (x
))
6775 if (TREE_CODE (x
) == USING_DECL
)
6777 tree fn
= strip_using_decl (x
);
6778 if (is_overloaded_fn (fn
))
6779 for (; fn
; fn
= OVL_NEXT (fn
))
6780 add_method (t
, OVL_CURRENT (fn
), x
);
6783 /* Remember current #pragma pack value. */
6784 TYPE_PRECISION (t
) = maximum_field_alignment
;
6786 /* Fix up any variants we've already built. */
6787 for (x
= TYPE_NEXT_VARIANT (t
); x
; x
= TYPE_NEXT_VARIANT (x
))
6789 TYPE_SIZE (x
) = TYPE_SIZE (t
);
6790 TYPE_SIZE_UNIT (x
) = TYPE_SIZE_UNIT (t
);
6791 TYPE_FIELDS (x
) = TYPE_FIELDS (t
);
6792 TYPE_METHODS (x
) = TYPE_METHODS (t
);
6796 finish_struct_1 (t
);
6798 input_location
= saved_loc
;
6800 TYPE_BEING_DEFINED (t
) = 0;
6802 if (current_class_type
)
6805 error ("trying to finish struct, but kicked out due to previous parse errors");
6807 if (processing_template_decl
&& at_function_scope_p ()
6808 /* Lambdas are defined by the LAMBDA_EXPR. */
6809 && !LAMBDA_TYPE_P (t
))
6810 add_stmt (build_min (TAG_DEFN
, t
));
6815 /* Hash table to avoid endless recursion when handling references. */
6816 static hash_table
<pointer_hash
<tree_node
> > fixed_type_or_null_ref_ht
;
6818 /* Return the dynamic type of INSTANCE, if known.
6819 Used to determine whether the virtual function table is needed
6822 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6823 of our knowledge of its type. *NONNULL should be initialized
6824 before this function is called. */
6827 fixed_type_or_null (tree instance
, int *nonnull
, int *cdtorp
)
6829 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6831 switch (TREE_CODE (instance
))
6834 if (POINTER_TYPE_P (TREE_TYPE (instance
)))
6837 return RECUR (TREE_OPERAND (instance
, 0));
6840 /* This is a call to a constructor, hence it's never zero. */
6841 if (TREE_HAS_CONSTRUCTOR (instance
))
6845 return TREE_TYPE (instance
);
6850 /* This is a call to a constructor, hence it's never zero. */
6851 if (TREE_HAS_CONSTRUCTOR (instance
))
6855 return TREE_TYPE (instance
);
6857 return RECUR (TREE_OPERAND (instance
, 0));
6859 case POINTER_PLUS_EXPR
:
6862 if (TREE_CODE (TREE_OPERAND (instance
, 0)) == ADDR_EXPR
)
6863 return RECUR (TREE_OPERAND (instance
, 0));
6864 if (TREE_CODE (TREE_OPERAND (instance
, 1)) == INTEGER_CST
)
6865 /* Propagate nonnull. */
6866 return RECUR (TREE_OPERAND (instance
, 0));
6871 return RECUR (TREE_OPERAND (instance
, 0));
6874 instance
= TREE_OPERAND (instance
, 0);
6877 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6878 with a real object -- given &p->f, p can still be null. */
6879 tree t
= get_base_address (instance
);
6880 /* ??? Probably should check DECL_WEAK here. */
6881 if (t
&& DECL_P (t
))
6884 return RECUR (instance
);
6887 /* If this component is really a base class reference, then the field
6888 itself isn't definitive. */
6889 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance
, 1)))
6890 return RECUR (TREE_OPERAND (instance
, 0));
6891 return RECUR (TREE_OPERAND (instance
, 1));
6895 if (TREE_CODE (TREE_TYPE (instance
)) == ARRAY_TYPE
6896 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance
))))
6900 return TREE_TYPE (TREE_TYPE (instance
));
6902 /* fall through... */
6906 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance
)))
6910 return TREE_TYPE (instance
);
6912 else if (instance
== current_class_ptr
)
6917 /* if we're in a ctor or dtor, we know our type. If
6918 current_class_ptr is set but we aren't in a function, we're in
6919 an NSDMI (and therefore a constructor). */
6920 if (current_scope () != current_function_decl
6921 || (DECL_LANG_SPECIFIC (current_function_decl
)
6922 && (DECL_CONSTRUCTOR_P (current_function_decl
)
6923 || DECL_DESTRUCTOR_P (current_function_decl
))))
6927 return TREE_TYPE (TREE_TYPE (instance
));
6930 else if (TREE_CODE (TREE_TYPE (instance
)) == REFERENCE_TYPE
)
6932 /* We only need one hash table because it is always left empty. */
6933 if (!fixed_type_or_null_ref_ht
.is_created ())
6934 fixed_type_or_null_ref_ht
.create (37);
6936 /* Reference variables should be references to objects. */
6940 /* Enter the INSTANCE in a table to prevent recursion; a
6941 variable's initializer may refer to the variable
6943 if (VAR_P (instance
)
6944 && DECL_INITIAL (instance
)
6945 && !type_dependent_expression_p_push (DECL_INITIAL (instance
))
6946 && !fixed_type_or_null_ref_ht
.find (instance
))
6951 slot
= fixed_type_or_null_ref_ht
.find_slot (instance
, INSERT
);
6953 type
= RECUR (DECL_INITIAL (instance
));
6954 fixed_type_or_null_ref_ht
.remove_elt (instance
);
6967 /* Return nonzero if the dynamic type of INSTANCE is known, and
6968 equivalent to the static type. We also handle the case where
6969 INSTANCE is really a pointer. Return negative if this is a
6970 ctor/dtor. There the dynamic type is known, but this might not be
6971 the most derived base of the original object, and hence virtual
6972 bases may not be laid out according to this type.
6974 Used to determine whether the virtual function table is needed
6977 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6978 of our knowledge of its type. *NONNULL should be initialized
6979 before this function is called. */
6982 resolves_to_fixed_type_p (tree instance
, int* nonnull
)
6984 tree t
= TREE_TYPE (instance
);
6988 /* processing_template_decl can be false in a template if we're in
6989 fold_non_dependent_expr, but we still want to suppress this check. */
6990 if (in_template_function ())
6992 /* In a template we only care about the type of the result. */
6998 fixed
= fixed_type_or_null (instance
, nonnull
, &cdtorp
);
6999 if (fixed
== NULL_TREE
)
7001 if (POINTER_TYPE_P (t
))
7003 if (!same_type_ignoring_top_level_qualifiers_p (t
, fixed
))
7005 return cdtorp
? -1 : 1;
7010 init_class_processing (void)
7012 current_class_depth
= 0;
7013 current_class_stack_size
= 10;
7015 = XNEWVEC (struct class_stack_node
, current_class_stack_size
);
7016 vec_alloc (local_classes
, 8);
7017 sizeof_biggest_empty_class
= size_zero_node
;
7019 ridpointers
[(int) RID_PUBLIC
] = access_public_node
;
7020 ridpointers
[(int) RID_PRIVATE
] = access_private_node
;
7021 ridpointers
[(int) RID_PROTECTED
] = access_protected_node
;
7024 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
7027 restore_class_cache (void)
7031 /* We are re-entering the same class we just left, so we don't
7032 have to search the whole inheritance matrix to find all the
7033 decls to bind again. Instead, we install the cached
7034 class_shadowed list and walk through it binding names. */
7035 push_binding_level (previous_class_level
);
7036 class_binding_level
= previous_class_level
;
7037 /* Restore IDENTIFIER_TYPE_VALUE. */
7038 for (type
= class_binding_level
->type_shadowed
;
7040 type
= TREE_CHAIN (type
))
7041 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type
), TREE_TYPE (type
));
7044 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
7045 appropriate for TYPE.
7047 So that we may avoid calls to lookup_name, we cache the _TYPE
7048 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
7050 For multiple inheritance, we perform a two-pass depth-first search
7051 of the type lattice. */
7054 pushclass (tree type
)
7056 class_stack_node_t csn
;
7058 type
= TYPE_MAIN_VARIANT (type
);
7060 /* Make sure there is enough room for the new entry on the stack. */
7061 if (current_class_depth
+ 1 >= current_class_stack_size
)
7063 current_class_stack_size
*= 2;
7065 = XRESIZEVEC (struct class_stack_node
, current_class_stack
,
7066 current_class_stack_size
);
7069 /* Insert a new entry on the class stack. */
7070 csn
= current_class_stack
+ current_class_depth
;
7071 csn
->name
= current_class_name
;
7072 csn
->type
= current_class_type
;
7073 csn
->access
= current_access_specifier
;
7074 csn
->names_used
= 0;
7076 current_class_depth
++;
7078 /* Now set up the new type. */
7079 current_class_name
= TYPE_NAME (type
);
7080 if (TREE_CODE (current_class_name
) == TYPE_DECL
)
7081 current_class_name
= DECL_NAME (current_class_name
);
7082 current_class_type
= type
;
7084 /* By default, things in classes are private, while things in
7085 structures or unions are public. */
7086 current_access_specifier
= (CLASSTYPE_DECLARED_CLASS (type
)
7087 ? access_private_node
7088 : access_public_node
);
7090 if (previous_class_level
7091 && type
!= previous_class_level
->this_entity
7092 && current_class_depth
== 1)
7094 /* Forcibly remove any old class remnants. */
7095 invalidate_class_lookup_cache ();
7098 if (!previous_class_level
7099 || type
!= previous_class_level
->this_entity
7100 || current_class_depth
> 1)
7103 restore_class_cache ();
7106 /* When we exit a toplevel class scope, we save its binding level so
7107 that we can restore it quickly. Here, we've entered some other
7108 class, so we must invalidate our cache. */
7111 invalidate_class_lookup_cache (void)
7113 previous_class_level
= NULL
;
7116 /* Get out of the current class scope. If we were in a class scope
7117 previously, that is the one popped to. */
7124 current_class_depth
--;
7125 current_class_name
= current_class_stack
[current_class_depth
].name
;
7126 current_class_type
= current_class_stack
[current_class_depth
].type
;
7127 current_access_specifier
= current_class_stack
[current_class_depth
].access
;
7128 if (current_class_stack
[current_class_depth
].names_used
)
7129 splay_tree_delete (current_class_stack
[current_class_depth
].names_used
);
7132 /* Mark the top of the class stack as hidden. */
7135 push_class_stack (void)
7137 if (current_class_depth
)
7138 ++current_class_stack
[current_class_depth
- 1].hidden
;
7141 /* Mark the top of the class stack as un-hidden. */
7144 pop_class_stack (void)
7146 if (current_class_depth
)
7147 --current_class_stack
[current_class_depth
- 1].hidden
;
7150 /* Returns 1 if the class type currently being defined is either T or
7151 a nested type of T. */
7154 currently_open_class (tree t
)
7158 if (!CLASS_TYPE_P (t
))
7161 t
= TYPE_MAIN_VARIANT (t
);
7163 /* We start looking from 1 because entry 0 is from global scope,
7165 for (i
= current_class_depth
; i
> 0; --i
)
7168 if (i
== current_class_depth
)
7169 c
= current_class_type
;
7172 if (current_class_stack
[i
].hidden
)
7174 c
= current_class_stack
[i
].type
;
7178 if (same_type_p (c
, t
))
7184 /* If either current_class_type or one of its enclosing classes are derived
7185 from T, return the appropriate type. Used to determine how we found
7186 something via unqualified lookup. */
7189 currently_open_derived_class (tree t
)
7193 /* The bases of a dependent type are unknown. */
7194 if (dependent_type_p (t
))
7197 if (!current_class_type
)
7200 if (DERIVED_FROM_P (t
, current_class_type
))
7201 return current_class_type
;
7203 for (i
= current_class_depth
- 1; i
> 0; --i
)
7205 if (current_class_stack
[i
].hidden
)
7207 if (DERIVED_FROM_P (t
, current_class_stack
[i
].type
))
7208 return current_class_stack
[i
].type
;
7214 /* Returns the innermost class type which is not a lambda closure type. */
7217 current_nonlambda_class_type (void)
7221 /* We start looking from 1 because entry 0 is from global scope,
7223 for (i
= current_class_depth
; i
> 0; --i
)
7226 if (i
== current_class_depth
)
7227 c
= current_class_type
;
7230 if (current_class_stack
[i
].hidden
)
7232 c
= current_class_stack
[i
].type
;
7236 if (!LAMBDA_TYPE_P (c
))
7242 /* When entering a class scope, all enclosing class scopes' names with
7243 static meaning (static variables, static functions, types and
7244 enumerators) have to be visible. This recursive function calls
7245 pushclass for all enclosing class contexts until global or a local
7246 scope is reached. TYPE is the enclosed class. */
7249 push_nested_class (tree type
)
7251 /* A namespace might be passed in error cases, like A::B:C. */
7252 if (type
== NULL_TREE
7253 || !CLASS_TYPE_P (type
))
7256 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type
)));
7261 /* Undoes a push_nested_class call. */
7264 pop_nested_class (void)
7266 tree context
= DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type
));
7269 if (context
&& CLASS_TYPE_P (context
))
7270 pop_nested_class ();
7273 /* Returns the number of extern "LANG" blocks we are nested within. */
7276 current_lang_depth (void)
7278 return vec_safe_length (current_lang_base
);
7281 /* Set global variables CURRENT_LANG_NAME to appropriate value
7282 so that behavior of name-mangling machinery is correct. */
7285 push_lang_context (tree name
)
7287 vec_safe_push (current_lang_base
, current_lang_name
);
7289 if (name
== lang_name_cplusplus
)
7291 current_lang_name
= name
;
7293 else if (name
== lang_name_java
)
7295 current_lang_name
= name
;
7296 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7297 (See record_builtin_java_type in decl.c.) However, that causes
7298 incorrect debug entries if these types are actually used.
7299 So we re-enable debug output after extern "Java". */
7300 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node
)) = 0;
7301 DECL_IGNORED_P (TYPE_NAME (java_short_type_node
)) = 0;
7302 DECL_IGNORED_P (TYPE_NAME (java_int_type_node
)) = 0;
7303 DECL_IGNORED_P (TYPE_NAME (java_long_type_node
)) = 0;
7304 DECL_IGNORED_P (TYPE_NAME (java_float_type_node
)) = 0;
7305 DECL_IGNORED_P (TYPE_NAME (java_double_type_node
)) = 0;
7306 DECL_IGNORED_P (TYPE_NAME (java_char_type_node
)) = 0;
7307 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node
)) = 0;
7309 else if (name
== lang_name_c
)
7311 current_lang_name
= name
;
7314 error ("language string %<\"%E\"%> not recognized", name
);
7317 /* Get out of the current language scope. */
7320 pop_lang_context (void)
7322 current_lang_name
= current_lang_base
->pop ();
7325 /* Type instantiation routines. */
7327 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7328 matches the TARGET_TYPE. If there is no satisfactory match, return
7329 error_mark_node, and issue an error & warning messages under
7330 control of FLAGS. Permit pointers to member function if FLAGS
7331 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7332 a template-id, and EXPLICIT_TARGS are the explicitly provided
7335 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7336 is the base path used to reference those member functions. If
7337 the address is resolved to a member function, access checks will be
7338 performed and errors issued if appropriate. */
7341 resolve_address_of_overloaded_function (tree target_type
,
7343 tsubst_flags_t flags
,
7345 tree explicit_targs
,
7348 /* Here's what the standard says:
7352 If the name is a function template, template argument deduction
7353 is done, and if the argument deduction succeeds, the deduced
7354 arguments are used to generate a single template function, which
7355 is added to the set of overloaded functions considered.
7357 Non-member functions and static member functions match targets of
7358 type "pointer-to-function" or "reference-to-function." Nonstatic
7359 member functions match targets of type "pointer-to-member
7360 function;" the function type of the pointer to member is used to
7361 select the member function from the set of overloaded member
7362 functions. If a nonstatic member function is selected, the
7363 reference to the overloaded function name is required to have the
7364 form of a pointer to member as described in 5.3.1.
7366 If more than one function is selected, any template functions in
7367 the set are eliminated if the set also contains a non-template
7368 function, and any given template function is eliminated if the
7369 set contains a second template function that is more specialized
7370 than the first according to the partial ordering rules 14.5.5.2.
7371 After such eliminations, if any, there shall remain exactly one
7372 selected function. */
7375 /* We store the matches in a TREE_LIST rooted here. The functions
7376 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7377 interoperability with most_specialized_instantiation. */
7378 tree matches
= NULL_TREE
;
7380 tree target_fn_type
;
7382 /* By the time we get here, we should be seeing only real
7383 pointer-to-member types, not the internal POINTER_TYPE to
7384 METHOD_TYPE representation. */
7385 gcc_assert (!TYPE_PTR_P (target_type
)
7386 || TREE_CODE (TREE_TYPE (target_type
)) != METHOD_TYPE
);
7388 gcc_assert (is_overloaded_fn (overload
));
7390 /* Check that the TARGET_TYPE is reasonable. */
7391 if (TYPE_PTRFN_P (target_type
)
7392 || TYPE_REFFN_P (target_type
))
7394 else if (TYPE_PTRMEMFUNC_P (target_type
))
7395 /* This is OK, too. */
7397 else if (TREE_CODE (target_type
) == FUNCTION_TYPE
)
7398 /* This is OK, too. This comes from a conversion to reference
7400 target_type
= build_reference_type (target_type
);
7403 if (flags
& tf_error
)
7404 error ("cannot resolve overloaded function %qD based on"
7405 " conversion to type %qT",
7406 DECL_NAME (OVL_FUNCTION (overload
)), target_type
);
7407 return error_mark_node
;
7410 /* Non-member functions and static member functions match targets of type
7411 "pointer-to-function" or "reference-to-function." Nonstatic member
7412 functions match targets of type "pointer-to-member-function;" the
7413 function type of the pointer to member is used to select the member
7414 function from the set of overloaded member functions.
7416 So figure out the FUNCTION_TYPE that we want to match against. */
7417 target_fn_type
= static_fn_type (target_type
);
7419 /* If we can find a non-template function that matches, we can just
7420 use it. There's no point in generating template instantiations
7421 if we're just going to throw them out anyhow. But, of course, we
7422 can only do this when we don't *need* a template function. */
7427 for (fns
= overload
; fns
; fns
= OVL_NEXT (fns
))
7429 tree fn
= OVL_CURRENT (fns
);
7431 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
7432 /* We're not looking for templates just yet. */
7435 if ((TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
7437 /* We're looking for a non-static member, and this isn't
7438 one, or vice versa. */
7441 /* Ignore functions which haven't been explicitly
7443 if (DECL_ANTICIPATED (fn
))
7446 /* See if there's a match. */
7447 if (same_type_p (target_fn_type
, static_fn_type (fn
)))
7448 matches
= tree_cons (fn
, NULL_TREE
, matches
);
7452 /* Now, if we've already got a match (or matches), there's no need
7453 to proceed to the template functions. But, if we don't have a
7454 match we need to look at them, too. */
7457 tree target_arg_types
;
7458 tree target_ret_type
;
7461 unsigned int nargs
, ia
;
7464 target_arg_types
= TYPE_ARG_TYPES (target_fn_type
);
7465 target_ret_type
= TREE_TYPE (target_fn_type
);
7467 nargs
= list_length (target_arg_types
);
7468 args
= XALLOCAVEC (tree
, nargs
);
7469 for (arg
= target_arg_types
, ia
= 0;
7470 arg
!= NULL_TREE
&& arg
!= void_list_node
;
7471 arg
= TREE_CHAIN (arg
), ++ia
)
7472 args
[ia
] = TREE_VALUE (arg
);
7475 for (fns
= overload
; fns
; fns
= OVL_NEXT (fns
))
7477 tree fn
= OVL_CURRENT (fns
);
7481 if (TREE_CODE (fn
) != TEMPLATE_DECL
)
7482 /* We're only looking for templates. */
7485 if ((TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
7487 /* We're not looking for a non-static member, and this is
7488 one, or vice versa. */
7491 tree ret
= target_ret_type
;
7493 /* If the template has a deduced return type, don't expose it to
7494 template argument deduction. */
7495 if (undeduced_auto_decl (fn
))
7498 /* Try to do argument deduction. */
7499 targs
= make_tree_vec (DECL_NTPARMS (fn
));
7500 instantiation
= fn_type_unification (fn
, explicit_targs
, targs
, args
,
7502 DEDUCE_EXACT
, LOOKUP_NORMAL
,
7504 if (instantiation
== error_mark_node
)
7505 /* Instantiation failed. */
7508 /* And now force instantiation to do return type deduction. */
7509 if (undeduced_auto_decl (instantiation
))
7512 instantiate_decl (instantiation
, /*defer*/false, /*class*/false);
7515 require_deduced_type (instantiation
);
7518 /* See if there's a match. */
7519 if (same_type_p (target_fn_type
, static_fn_type (instantiation
)))
7520 matches
= tree_cons (instantiation
, fn
, matches
);
7523 /* Now, remove all but the most specialized of the matches. */
7526 tree match
= most_specialized_instantiation (matches
);
7528 if (match
!= error_mark_node
)
7529 matches
= tree_cons (TREE_PURPOSE (match
),
7535 /* Now we should have exactly one function in MATCHES. */
7536 if (matches
== NULL_TREE
)
7538 /* There were *no* matches. */
7539 if (flags
& tf_error
)
7541 error ("no matches converting function %qD to type %q#T",
7542 DECL_NAME (OVL_CURRENT (overload
)),
7545 print_candidates (overload
);
7547 return error_mark_node
;
7549 else if (TREE_CHAIN (matches
))
7551 /* There were too many matches. First check if they're all
7552 the same function. */
7553 tree match
= NULL_TREE
;
7555 fn
= TREE_PURPOSE (matches
);
7557 /* For multi-versioned functions, more than one match is just fine and
7558 decls_match will return false as they are different. */
7559 for (match
= TREE_CHAIN (matches
); match
; match
= TREE_CHAIN (match
))
7560 if (!decls_match (fn
, TREE_PURPOSE (match
))
7561 && !targetm
.target_option
.function_versions
7562 (fn
, TREE_PURPOSE (match
)))
7567 if (flags
& tf_error
)
7569 error ("converting overloaded function %qD to type %q#T is ambiguous",
7570 DECL_NAME (OVL_FUNCTION (overload
)),
7573 /* Since print_candidates expects the functions in the
7574 TREE_VALUE slot, we flip them here. */
7575 for (match
= matches
; match
; match
= TREE_CHAIN (match
))
7576 TREE_VALUE (match
) = TREE_PURPOSE (match
);
7578 print_candidates (matches
);
7581 return error_mark_node
;
7585 /* Good, exactly one match. Now, convert it to the correct type. */
7586 fn
= TREE_PURPOSE (matches
);
7588 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
)
7589 && !(flags
& tf_ptrmem_ok
) && !flag_ms_extensions
)
7591 static int explained
;
7593 if (!(flags
& tf_error
))
7594 return error_mark_node
;
7596 permerror (input_location
, "assuming pointer to member %qD", fn
);
7599 inform (input_location
, "(a pointer to member can only be formed with %<&%E%>)", fn
);
7604 /* If a pointer to a function that is multi-versioned is requested, the
7605 pointer to the dispatcher function is returned instead. This works
7606 well because indirectly calling the function will dispatch the right
7607 function version at run-time. */
7608 if (DECL_FUNCTION_VERSIONED (fn
))
7610 fn
= get_function_version_dispatcher (fn
);
7612 return error_mark_node
;
7613 /* Mark all the versions corresponding to the dispatcher as used. */
7614 if (!(flags
& tf_conv
))
7615 mark_versions_used (fn
);
7618 /* If we're doing overload resolution purely for the purpose of
7619 determining conversion sequences, we should not consider the
7620 function used. If this conversion sequence is selected, the
7621 function will be marked as used at this point. */
7622 if (!(flags
& tf_conv
))
7624 /* Make =delete work with SFINAE. */
7625 if (DECL_DELETED_FN (fn
) && !(flags
& tf_error
))
7626 return error_mark_node
;
7631 /* We could not check access to member functions when this
7632 expression was originally created since we did not know at that
7633 time to which function the expression referred. */
7634 if (DECL_FUNCTION_MEMBER_P (fn
))
7636 gcc_assert (access_path
);
7637 perform_or_defer_access_check (access_path
, fn
, fn
, flags
);
7640 if (TYPE_PTRFN_P (target_type
) || TYPE_PTRMEMFUNC_P (target_type
))
7641 return cp_build_addr_expr (fn
, flags
);
7644 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7645 will mark the function as addressed, but here we must do it
7647 cxx_mark_addressable (fn
);
7653 /* This function will instantiate the type of the expression given in
7654 RHS to match the type of LHSTYPE. If errors exist, then return
7655 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7656 we complain on errors. If we are not complaining, never modify rhs,
7657 as overload resolution wants to try many possible instantiations, in
7658 the hope that at least one will work.
7660 For non-recursive calls, LHSTYPE should be a function, pointer to
7661 function, or a pointer to member function. */
7664 instantiate_type (tree lhstype
, tree rhs
, tsubst_flags_t flags
)
7666 tsubst_flags_t flags_in
= flags
;
7667 tree access_path
= NULL_TREE
;
7669 flags
&= ~tf_ptrmem_ok
;
7671 if (lhstype
== unknown_type_node
)
7673 if (flags
& tf_error
)
7674 error ("not enough type information");
7675 return error_mark_node
;
7678 if (TREE_TYPE (rhs
) != NULL_TREE
&& ! (type_unknown_p (rhs
)))
7680 tree fntype
= non_reference (lhstype
);
7681 if (same_type_p (fntype
, TREE_TYPE (rhs
)))
7683 if (flag_ms_extensions
7684 && TYPE_PTRMEMFUNC_P (fntype
)
7685 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs
)))
7686 /* Microsoft allows `A::f' to be resolved to a
7687 pointer-to-member. */
7691 if (flags
& tf_error
)
7692 error ("cannot convert %qE from type %qT to type %qT",
7693 rhs
, TREE_TYPE (rhs
), fntype
);
7694 return error_mark_node
;
7698 if (BASELINK_P (rhs
))
7700 access_path
= BASELINK_ACCESS_BINFO (rhs
);
7701 rhs
= BASELINK_FUNCTIONS (rhs
);
7704 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7705 deduce any type information. */
7706 if (TREE_CODE (rhs
) == NON_DEPENDENT_EXPR
)
7708 if (flags
& tf_error
)
7709 error ("not enough type information");
7710 return error_mark_node
;
7713 /* There only a few kinds of expressions that may have a type
7714 dependent on overload resolution. */
7715 gcc_assert (TREE_CODE (rhs
) == ADDR_EXPR
7716 || TREE_CODE (rhs
) == COMPONENT_REF
7717 || is_overloaded_fn (rhs
)
7718 || (flag_ms_extensions
&& TREE_CODE (rhs
) == FUNCTION_DECL
));
7720 /* This should really only be used when attempting to distinguish
7721 what sort of a pointer to function we have. For now, any
7722 arithmetic operation which is not supported on pointers
7723 is rejected as an error. */
7725 switch (TREE_CODE (rhs
))
7729 tree member
= TREE_OPERAND (rhs
, 1);
7731 member
= instantiate_type (lhstype
, member
, flags
);
7732 if (member
!= error_mark_node
7733 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs
, 0)))
7734 /* Do not lose object's side effects. */
7735 return build2 (COMPOUND_EXPR
, TREE_TYPE (member
),
7736 TREE_OPERAND (rhs
, 0), member
);
7741 rhs
= TREE_OPERAND (rhs
, 1);
7742 if (BASELINK_P (rhs
))
7743 return instantiate_type (lhstype
, rhs
, flags_in
);
7745 /* This can happen if we are forming a pointer-to-member for a
7747 gcc_assert (TREE_CODE (rhs
) == TEMPLATE_ID_EXPR
);
7751 case TEMPLATE_ID_EXPR
:
7753 tree fns
= TREE_OPERAND (rhs
, 0);
7754 tree args
= TREE_OPERAND (rhs
, 1);
7757 resolve_address_of_overloaded_function (lhstype
, fns
, flags_in
,
7758 /*template_only=*/true,
7765 resolve_address_of_overloaded_function (lhstype
, rhs
, flags_in
,
7766 /*template_only=*/false,
7767 /*explicit_targs=*/NULL_TREE
,
7772 if (PTRMEM_OK_P (rhs
))
7773 flags
|= tf_ptrmem_ok
;
7775 return instantiate_type (lhstype
, TREE_OPERAND (rhs
, 0), flags
);
7779 return error_mark_node
;
7784 return error_mark_node
;
7787 /* Return the name of the virtual function pointer field
7788 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7789 this may have to look back through base types to find the
7790 ultimate field name. (For single inheritance, these could
7791 all be the same name. Who knows for multiple inheritance). */
7794 get_vfield_name (tree type
)
7796 tree binfo
, base_binfo
;
7799 for (binfo
= TYPE_BINFO (type
);
7800 BINFO_N_BASE_BINFOS (binfo
);
7803 base_binfo
= BINFO_BASE_BINFO (binfo
, 0);
7805 if (BINFO_VIRTUAL_P (base_binfo
)
7806 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo
)))
7810 type
= BINFO_TYPE (binfo
);
7811 buf
= (char *) alloca (sizeof (VFIELD_NAME_FORMAT
)
7812 + TYPE_NAME_LENGTH (type
) + 2);
7813 sprintf (buf
, VFIELD_NAME_FORMAT
,
7814 IDENTIFIER_POINTER (constructor_name (type
)));
7815 return get_identifier (buf
);
7819 print_class_statistics (void)
7821 if (! GATHER_STATISTICS
)
7824 fprintf (stderr
, "convert_harshness = %d\n", n_convert_harshness
);
7825 fprintf (stderr
, "compute_conversion_costs = %d\n", n_compute_conversion_costs
);
7828 fprintf (stderr
, "vtables = %d; vtable searches = %d\n",
7829 n_vtables
, n_vtable_searches
);
7830 fprintf (stderr
, "vtable entries = %d; vtable elems = %d\n",
7831 n_vtable_entries
, n_vtable_elems
);
7835 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7836 according to [class]:
7837 The class-name is also inserted
7838 into the scope of the class itself. For purposes of access checking,
7839 the inserted class name is treated as if it were a public member name. */
7842 build_self_reference (void)
7844 tree name
= constructor_name (current_class_type
);
7845 tree value
= build_lang_decl (TYPE_DECL
, name
, current_class_type
);
7848 DECL_NONLOCAL (value
) = 1;
7849 DECL_CONTEXT (value
) = current_class_type
;
7850 DECL_ARTIFICIAL (value
) = 1;
7851 SET_DECL_SELF_REFERENCE_P (value
);
7852 set_underlying_type (value
);
7854 if (processing_template_decl
)
7855 value
= push_template_decl (value
);
7857 saved_cas
= current_access_specifier
;
7858 current_access_specifier
= access_public_node
;
7859 finish_member_declaration (value
);
7860 current_access_specifier
= saved_cas
;
7863 /* Returns 1 if TYPE contains only padding bytes. */
7866 is_empty_class (tree type
)
7868 if (type
== error_mark_node
)
7871 if (! CLASS_TYPE_P (type
))
7874 /* In G++ 3.2, whether or not a class was empty was determined by
7875 looking at its size. */
7876 if (abi_version_at_least (2))
7877 return CLASSTYPE_EMPTY_P (type
);
7879 return integer_zerop (CLASSTYPE_SIZE (type
));
7882 /* Returns true if TYPE contains an empty class. */
7885 contains_empty_class_p (tree type
)
7887 if (is_empty_class (type
))
7889 if (CLASS_TYPE_P (type
))
7896 for (binfo
= TYPE_BINFO (type
), i
= 0;
7897 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
7898 if (contains_empty_class_p (BINFO_TYPE (base_binfo
)))
7900 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
7901 if (TREE_CODE (field
) == FIELD_DECL
7902 && !DECL_ARTIFICIAL (field
)
7903 && is_empty_class (TREE_TYPE (field
)))
7906 else if (TREE_CODE (type
) == ARRAY_TYPE
)
7907 return contains_empty_class_p (TREE_TYPE (type
));
7911 /* Returns true if TYPE contains no actual data, just various
7912 possible combinations of empty classes and possibly a vptr. */
7915 is_really_empty_class (tree type
)
7917 if (CLASS_TYPE_P (type
))
7924 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7925 out, but we'd like to be able to check this before then. */
7926 if (COMPLETE_TYPE_P (type
) && is_empty_class (type
))
7929 for (binfo
= TYPE_BINFO (type
), i
= 0;
7930 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
7931 if (!is_really_empty_class (BINFO_TYPE (base_binfo
)))
7933 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
7934 if (TREE_CODE (field
) == FIELD_DECL
7935 && !DECL_ARTIFICIAL (field
)
7936 && !is_really_empty_class (TREE_TYPE (field
)))
7940 else if (TREE_CODE (type
) == ARRAY_TYPE
)
7941 return is_really_empty_class (TREE_TYPE (type
));
7945 /* Note that NAME was looked up while the current class was being
7946 defined and that the result of that lookup was DECL. */
7949 maybe_note_name_used_in_class (tree name
, tree decl
)
7951 splay_tree names_used
;
7953 /* If we're not defining a class, there's nothing to do. */
7954 if (!(innermost_scope_kind() == sk_class
7955 && TYPE_BEING_DEFINED (current_class_type
)
7956 && !LAMBDA_TYPE_P (current_class_type
)))
7959 /* If there's already a binding for this NAME, then we don't have
7960 anything to worry about. */
7961 if (lookup_member (current_class_type
, name
,
7962 /*protect=*/0, /*want_type=*/false, tf_warning_or_error
))
7965 if (!current_class_stack
[current_class_depth
- 1].names_used
)
7966 current_class_stack
[current_class_depth
- 1].names_used
7967 = splay_tree_new (splay_tree_compare_pointers
, 0, 0);
7968 names_used
= current_class_stack
[current_class_depth
- 1].names_used
;
7970 splay_tree_insert (names_used
,
7971 (splay_tree_key
) name
,
7972 (splay_tree_value
) decl
);
7975 /* Note that NAME was declared (as DECL) in the current class. Check
7976 to see that the declaration is valid. */
7979 note_name_declared_in_class (tree name
, tree decl
)
7981 splay_tree names_used
;
7984 /* Look to see if we ever used this name. */
7986 = current_class_stack
[current_class_depth
- 1].names_used
;
7989 /* The C language allows members to be declared with a type of the same
7990 name, and the C++ standard says this diagnostic is not required. So
7991 allow it in extern "C" blocks unless predantic is specified.
7992 Allow it in all cases if -ms-extensions is specified. */
7993 if ((!pedantic
&& current_lang_name
== lang_name_c
)
7994 || flag_ms_extensions
)
7996 n
= splay_tree_lookup (names_used
, (splay_tree_key
) name
);
7999 /* [basic.scope.class]
8001 A name N used in a class S shall refer to the same declaration
8002 in its context and when re-evaluated in the completed scope of
8004 permerror (input_location
, "declaration of %q#D", decl
);
8005 permerror (input_location
, "changes meaning of %qD from %q+#D",
8006 DECL_NAME (OVL_CURRENT (decl
)), (tree
) n
->value
);
8010 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
8011 Secondary vtables are merged with primary vtables; this function
8012 will return the VAR_DECL for the primary vtable. */
8015 get_vtbl_decl_for_binfo (tree binfo
)
8019 decl
= BINFO_VTABLE (binfo
);
8020 if (decl
&& TREE_CODE (decl
) == POINTER_PLUS_EXPR
)
8022 gcc_assert (TREE_CODE (TREE_OPERAND (decl
, 0)) == ADDR_EXPR
);
8023 decl
= TREE_OPERAND (TREE_OPERAND (decl
, 0), 0);
8026 gcc_assert (VAR_P (decl
));
8031 /* Returns the binfo for the primary base of BINFO. If the resulting
8032 BINFO is a virtual base, and it is inherited elsewhere in the
8033 hierarchy, then the returned binfo might not be the primary base of
8034 BINFO in the complete object. Check BINFO_PRIMARY_P or
8035 BINFO_LOST_PRIMARY_P to be sure. */
8038 get_primary_binfo (tree binfo
)
8042 primary_base
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo
));
8046 return copied_binfo (primary_base
, binfo
);
8049 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
8052 maybe_indent_hierarchy (FILE * stream
, int indent
, int indented_p
)
8055 fprintf (stream
, "%*s", indent
, "");
8059 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
8060 INDENT should be zero when called from the top level; it is
8061 incremented recursively. IGO indicates the next expected BINFO in
8062 inheritance graph ordering. */
8065 dump_class_hierarchy_r (FILE *stream
,
8075 indented
= maybe_indent_hierarchy (stream
, indent
, 0);
8076 fprintf (stream
, "%s (0x" HOST_WIDE_INT_PRINT_HEX
") ",
8077 type_as_string (BINFO_TYPE (binfo
), TFF_PLAIN_IDENTIFIER
),
8078 (HOST_WIDE_INT
) (uintptr_t) binfo
);
8081 fprintf (stream
, "alternative-path\n");
8084 igo
= TREE_CHAIN (binfo
);
8086 fprintf (stream
, HOST_WIDE_INT_PRINT_DEC
,
8087 tree_to_shwi (BINFO_OFFSET (binfo
)));
8088 if (is_empty_class (BINFO_TYPE (binfo
)))
8089 fprintf (stream
, " empty");
8090 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo
)))
8091 fprintf (stream
, " nearly-empty");
8092 if (BINFO_VIRTUAL_P (binfo
))
8093 fprintf (stream
, " virtual");
8094 fprintf (stream
, "\n");
8097 if (BINFO_PRIMARY_P (binfo
))
8099 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
8100 fprintf (stream
, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX
")",
8101 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo
)),
8102 TFF_PLAIN_IDENTIFIER
),
8103 (HOST_WIDE_INT
) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo
));
8105 if (BINFO_LOST_PRIMARY_P (binfo
))
8107 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
8108 fprintf (stream
, " lost-primary");
8111 fprintf (stream
, "\n");
8113 if (!(flags
& TDF_SLIM
))
8117 if (BINFO_SUBVTT_INDEX (binfo
))
8119 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
8120 fprintf (stream
, " subvttidx=%s",
8121 expr_as_string (BINFO_SUBVTT_INDEX (binfo
),
8122 TFF_PLAIN_IDENTIFIER
));
8124 if (BINFO_VPTR_INDEX (binfo
))
8126 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
8127 fprintf (stream
, " vptridx=%s",
8128 expr_as_string (BINFO_VPTR_INDEX (binfo
),
8129 TFF_PLAIN_IDENTIFIER
));
8131 if (BINFO_VPTR_FIELD (binfo
))
8133 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
8134 fprintf (stream
, " vbaseoffset=%s",
8135 expr_as_string (BINFO_VPTR_FIELD (binfo
),
8136 TFF_PLAIN_IDENTIFIER
));
8138 if (BINFO_VTABLE (binfo
))
8140 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
8141 fprintf (stream
, " vptr=%s",
8142 expr_as_string (BINFO_VTABLE (binfo
),
8143 TFF_PLAIN_IDENTIFIER
));
8147 fprintf (stream
, "\n");
8150 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
8151 igo
= dump_class_hierarchy_r (stream
, flags
, base_binfo
, igo
, indent
+ 2);
8156 /* Dump the BINFO hierarchy for T. */
8159 dump_class_hierarchy_1 (FILE *stream
, int flags
, tree t
)
8161 fprintf (stream
, "Class %s\n", type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
8162 fprintf (stream
, " size=%lu align=%lu\n",
8163 (unsigned long)(tree_to_shwi (TYPE_SIZE (t
)) / BITS_PER_UNIT
),
8164 (unsigned long)(TYPE_ALIGN (t
) / BITS_PER_UNIT
));
8165 fprintf (stream
, " base size=%lu base align=%lu\n",
8166 (unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t
)))
8168 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t
))
8170 dump_class_hierarchy_r (stream
, flags
, TYPE_BINFO (t
), TYPE_BINFO (t
), 0);
8171 fprintf (stream
, "\n");
8174 /* Debug interface to hierarchy dumping. */
8177 debug_class (tree t
)
8179 dump_class_hierarchy_1 (stderr
, TDF_SLIM
, t
);
8183 dump_class_hierarchy (tree t
)
8186 FILE *stream
= dump_begin (TDI_class
, &flags
);
8190 dump_class_hierarchy_1 (stream
, flags
, t
);
8191 dump_end (TDI_class
, stream
);
8196 dump_array (FILE * stream
, tree decl
)
8199 unsigned HOST_WIDE_INT ix
;
8201 tree size
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl
)));
8203 elt
= (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl
))))
8205 fprintf (stream
, "%s:", decl_as_string (decl
, TFF_PLAIN_IDENTIFIER
));
8206 fprintf (stream
, " %s entries",
8207 expr_as_string (size_binop (PLUS_EXPR
, size
, size_one_node
),
8208 TFF_PLAIN_IDENTIFIER
));
8209 fprintf (stream
, "\n");
8211 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl
)),
8213 fprintf (stream
, "%-4ld %s\n", (long)(ix
* elt
),
8214 expr_as_string (value
, TFF_PLAIN_IDENTIFIER
));
8218 dump_vtable (tree t
, tree binfo
, tree vtable
)
8221 FILE *stream
= dump_begin (TDI_class
, &flags
);
8226 if (!(flags
& TDF_SLIM
))
8228 int ctor_vtbl_p
= TYPE_BINFO (t
) != binfo
;
8230 fprintf (stream
, "%s for %s",
8231 ctor_vtbl_p
? "Construction vtable" : "Vtable",
8232 type_as_string (BINFO_TYPE (binfo
), TFF_PLAIN_IDENTIFIER
));
8235 if (!BINFO_VIRTUAL_P (binfo
))
8236 fprintf (stream
, " (0x" HOST_WIDE_INT_PRINT_HEX
" instance)",
8237 (HOST_WIDE_INT
) (uintptr_t) binfo
);
8238 fprintf (stream
, " in %s", type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
8240 fprintf (stream
, "\n");
8241 dump_array (stream
, vtable
);
8242 fprintf (stream
, "\n");
8245 dump_end (TDI_class
, stream
);
8249 dump_vtt (tree t
, tree vtt
)
8252 FILE *stream
= dump_begin (TDI_class
, &flags
);
8257 if (!(flags
& TDF_SLIM
))
8259 fprintf (stream
, "VTT for %s\n",
8260 type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
8261 dump_array (stream
, vtt
);
8262 fprintf (stream
, "\n");
8265 dump_end (TDI_class
, stream
);
8268 /* Dump a function or thunk and its thunkees. */
8271 dump_thunk (FILE *stream
, int indent
, tree thunk
)
8273 static const char spaces
[] = " ";
8274 tree name
= DECL_NAME (thunk
);
8277 fprintf (stream
, "%.*s%p %s %s", indent
, spaces
,
8279 !DECL_THUNK_P (thunk
) ? "function"
8280 : DECL_THIS_THUNK_P (thunk
) ? "this-thunk" : "covariant-thunk",
8281 name
? IDENTIFIER_POINTER (name
) : "<unset>");
8282 if (DECL_THUNK_P (thunk
))
8284 HOST_WIDE_INT fixed_adjust
= THUNK_FIXED_OFFSET (thunk
);
8285 tree virtual_adjust
= THUNK_VIRTUAL_OFFSET (thunk
);
8287 fprintf (stream
, " fixed=" HOST_WIDE_INT_PRINT_DEC
, fixed_adjust
);
8288 if (!virtual_adjust
)
8290 else if (DECL_THIS_THUNK_P (thunk
))
8291 fprintf (stream
, " vcall=" HOST_WIDE_INT_PRINT_DEC
,
8292 tree_to_shwi (virtual_adjust
));
8294 fprintf (stream
, " vbase=" HOST_WIDE_INT_PRINT_DEC
"(%s)",
8295 tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust
)),
8296 type_as_string (BINFO_TYPE (virtual_adjust
), TFF_SCOPE
));
8297 if (THUNK_ALIAS (thunk
))
8298 fprintf (stream
, " alias to %p", (void *)THUNK_ALIAS (thunk
));
8300 fprintf (stream
, "\n");
8301 for (thunks
= DECL_THUNKS (thunk
); thunks
; thunks
= TREE_CHAIN (thunks
))
8302 dump_thunk (stream
, indent
+ 2, thunks
);
8305 /* Dump the thunks for FN. */
8308 debug_thunks (tree fn
)
8310 dump_thunk (stderr
, 0, fn
);
8313 /* Virtual function table initialization. */
8315 /* Create all the necessary vtables for T and its base classes. */
8318 finish_vtbls (tree t
)
8321 vec
<constructor_elt
, va_gc
> *v
= NULL
;
8322 tree vtable
= BINFO_VTABLE (TYPE_BINFO (t
));
8324 /* We lay out the primary and secondary vtables in one contiguous
8325 vtable. The primary vtable is first, followed by the non-virtual
8326 secondary vtables in inheritance graph order. */
8327 accumulate_vtbl_inits (TYPE_BINFO (t
), TYPE_BINFO (t
), TYPE_BINFO (t
),
8330 /* Then come the virtual bases, also in inheritance graph order. */
8331 for (vbase
= TYPE_BINFO (t
); vbase
; vbase
= TREE_CHAIN (vbase
))
8333 if (!BINFO_VIRTUAL_P (vbase
))
8335 accumulate_vtbl_inits (vbase
, vbase
, TYPE_BINFO (t
), vtable
, t
, &v
);
8338 if (BINFO_VTABLE (TYPE_BINFO (t
)))
8339 initialize_vtable (TYPE_BINFO (t
), v
);
8342 /* Initialize the vtable for BINFO with the INITS. */
8345 initialize_vtable (tree binfo
, vec
<constructor_elt
, va_gc
> *inits
)
8349 layout_vtable_decl (binfo
, vec_safe_length (inits
));
8350 decl
= get_vtbl_decl_for_binfo (binfo
);
8351 initialize_artificial_var (decl
, inits
);
8352 dump_vtable (BINFO_TYPE (binfo
), binfo
, decl
);
8355 /* Build the VTT (virtual table table) for T.
8356 A class requires a VTT if it has virtual bases.
8359 1 - primary virtual pointer for complete object T
8360 2 - secondary VTTs for each direct non-virtual base of T which requires a
8362 3 - secondary virtual pointers for each direct or indirect base of T which
8363 has virtual bases or is reachable via a virtual path from T.
8364 4 - secondary VTTs for each direct or indirect virtual base of T.
8366 Secondary VTTs look like complete object VTTs without part 4. */
8374 vec
<constructor_elt
, va_gc
> *inits
;
8376 /* Build up the initializers for the VTT. */
8378 index
= size_zero_node
;
8379 build_vtt_inits (TYPE_BINFO (t
), t
, &inits
, &index
);
8381 /* If we didn't need a VTT, we're done. */
8385 /* Figure out the type of the VTT. */
8386 type
= build_array_of_n_type (const_ptr_type_node
,
8389 /* Now, build the VTT object itself. */
8390 vtt
= build_vtable (t
, mangle_vtt_for_type (t
), type
);
8391 initialize_artificial_var (vtt
, inits
);
8392 /* Add the VTT to the vtables list. */
8393 DECL_CHAIN (vtt
) = DECL_CHAIN (CLASSTYPE_VTABLES (t
));
8394 DECL_CHAIN (CLASSTYPE_VTABLES (t
)) = vtt
;
8399 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8400 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8401 and CHAIN the vtable pointer for this binfo after construction is
8402 complete. VALUE can also be another BINFO, in which case we recurse. */
8405 binfo_ctor_vtable (tree binfo
)
8411 vt
= BINFO_VTABLE (binfo
);
8412 if (TREE_CODE (vt
) == TREE_LIST
)
8413 vt
= TREE_VALUE (vt
);
8414 if (TREE_CODE (vt
) == TREE_BINFO
)
8423 /* Data for secondary VTT initialization. */
8424 typedef struct secondary_vptr_vtt_init_data_s
8426 /* Is this the primary VTT? */
8429 /* Current index into the VTT. */
8432 /* Vector of initializers built up. */
8433 vec
<constructor_elt
, va_gc
> *inits
;
8435 /* The type being constructed by this secondary VTT. */
8436 tree type_being_constructed
;
8437 } secondary_vptr_vtt_init_data
;
8439 /* Recursively build the VTT-initializer for BINFO (which is in the
8440 hierarchy dominated by T). INITS points to the end of the initializer
8441 list to date. INDEX is the VTT index where the next element will be
8442 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8443 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8444 for virtual bases of T. When it is not so, we build the constructor
8445 vtables for the BINFO-in-T variant. */
8448 build_vtt_inits (tree binfo
, tree t
, vec
<constructor_elt
, va_gc
> **inits
,
8454 secondary_vptr_vtt_init_data data
;
8455 int top_level_p
= SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
);
8457 /* We only need VTTs for subobjects with virtual bases. */
8458 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)))
8461 /* We need to use a construction vtable if this is not the primary
8465 build_ctor_vtbl_group (binfo
, t
);
8467 /* Record the offset in the VTT where this sub-VTT can be found. */
8468 BINFO_SUBVTT_INDEX (binfo
) = *index
;
8471 /* Add the address of the primary vtable for the complete object. */
8472 init
= binfo_ctor_vtable (binfo
);
8473 CONSTRUCTOR_APPEND_ELT (*inits
, NULL_TREE
, init
);
8476 gcc_assert (!BINFO_VPTR_INDEX (binfo
));
8477 BINFO_VPTR_INDEX (binfo
) = *index
;
8479 *index
= size_binop (PLUS_EXPR
, *index
, TYPE_SIZE_UNIT (ptr_type_node
));
8481 /* Recursively add the secondary VTTs for non-virtual bases. */
8482 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, b
); ++i
)
8483 if (!BINFO_VIRTUAL_P (b
))
8484 build_vtt_inits (b
, t
, inits
, index
);
8486 /* Add secondary virtual pointers for all subobjects of BINFO with
8487 either virtual bases or reachable along a virtual path, except
8488 subobjects that are non-virtual primary bases. */
8489 data
.top_level_p
= top_level_p
;
8490 data
.index
= *index
;
8491 data
.inits
= *inits
;
8492 data
.type_being_constructed
= BINFO_TYPE (binfo
);
8494 dfs_walk_once (binfo
, dfs_build_secondary_vptr_vtt_inits
, NULL
, &data
);
8496 *index
= data
.index
;
8498 /* data.inits might have grown as we added secondary virtual pointers.
8499 Make sure our caller knows about the new vector. */
8500 *inits
= data
.inits
;
8503 /* Add the secondary VTTs for virtual bases in inheritance graph
8505 for (b
= TYPE_BINFO (BINFO_TYPE (binfo
)); b
; b
= TREE_CHAIN (b
))
8507 if (!BINFO_VIRTUAL_P (b
))
8510 build_vtt_inits (b
, t
, inits
, index
);
8513 /* Remove the ctor vtables we created. */
8514 dfs_walk_all (binfo
, dfs_fixup_binfo_vtbls
, NULL
, binfo
);
8517 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8518 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8521 dfs_build_secondary_vptr_vtt_inits (tree binfo
, void *data_
)
8523 secondary_vptr_vtt_init_data
*data
= (secondary_vptr_vtt_init_data
*)data_
;
8525 /* We don't care about bases that don't have vtables. */
8526 if (!TYPE_VFIELD (BINFO_TYPE (binfo
)))
8527 return dfs_skip_bases
;
8529 /* We're only interested in proper subobjects of the type being
8531 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->type_being_constructed
))
8534 /* We're only interested in bases with virtual bases or reachable
8535 via a virtual path from the type being constructed. */
8536 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
))
8537 || binfo_via_virtual (binfo
, data
->type_being_constructed
)))
8538 return dfs_skip_bases
;
8540 /* We're not interested in non-virtual primary bases. */
8541 if (!BINFO_VIRTUAL_P (binfo
) && BINFO_PRIMARY_P (binfo
))
8544 /* Record the index where this secondary vptr can be found. */
8545 if (data
->top_level_p
)
8547 gcc_assert (!BINFO_VPTR_INDEX (binfo
));
8548 BINFO_VPTR_INDEX (binfo
) = data
->index
;
8550 if (BINFO_VIRTUAL_P (binfo
))
8552 /* It's a primary virtual base, and this is not a
8553 construction vtable. Find the base this is primary of in
8554 the inheritance graph, and use that base's vtable
8556 while (BINFO_PRIMARY_P (binfo
))
8557 binfo
= BINFO_INHERITANCE_CHAIN (binfo
);
8561 /* Add the initializer for the secondary vptr itself. */
8562 CONSTRUCTOR_APPEND_ELT (data
->inits
, NULL_TREE
, binfo_ctor_vtable (binfo
));
8564 /* Advance the vtt index. */
8565 data
->index
= size_binop (PLUS_EXPR
, data
->index
,
8566 TYPE_SIZE_UNIT (ptr_type_node
));
8571 /* Called from build_vtt_inits via dfs_walk. After building
8572 constructor vtables and generating the sub-vtt from them, we need
8573 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8574 binfo of the base whose sub vtt was generated. */
8577 dfs_fixup_binfo_vtbls (tree binfo
, void* data
)
8579 tree vtable
= BINFO_VTABLE (binfo
);
8581 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
8582 /* If this class has no vtable, none of its bases do. */
8583 return dfs_skip_bases
;
8586 /* This might be a primary base, so have no vtable in this
8590 /* If we scribbled the construction vtable vptr into BINFO, clear it
8592 if (TREE_CODE (vtable
) == TREE_LIST
8593 && (TREE_PURPOSE (vtable
) == (tree
) data
))
8594 BINFO_VTABLE (binfo
) = TREE_CHAIN (vtable
);
8599 /* Build the construction vtable group for BINFO which is in the
8600 hierarchy dominated by T. */
8603 build_ctor_vtbl_group (tree binfo
, tree t
)
8609 vec
<constructor_elt
, va_gc
> *v
;
8611 /* See if we've already created this construction vtable group. */
8612 id
= mangle_ctor_vtbl_for_type (t
, binfo
);
8613 if (IDENTIFIER_GLOBAL_VALUE (id
))
8616 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
));
8617 /* Build a version of VTBL (with the wrong type) for use in
8618 constructing the addresses of secondary vtables in the
8619 construction vtable group. */
8620 vtbl
= build_vtable (t
, id
, ptr_type_node
);
8621 DECL_CONSTRUCTION_VTABLE_P (vtbl
) = 1;
8622 /* Don't export construction vtables from shared libraries. Even on
8623 targets that don't support hidden visibility, this tells
8624 can_refer_decl_in_current_unit_p not to assume that it's safe to
8625 access from a different compilation unit (bz 54314). */
8626 DECL_VISIBILITY (vtbl
) = VISIBILITY_HIDDEN
;
8627 DECL_VISIBILITY_SPECIFIED (vtbl
) = true;
8630 accumulate_vtbl_inits (binfo
, TYPE_BINFO (TREE_TYPE (binfo
)),
8631 binfo
, vtbl
, t
, &v
);
8633 /* Add the vtables for each of our virtual bases using the vbase in T
8635 for (vbase
= TYPE_BINFO (BINFO_TYPE (binfo
));
8637 vbase
= TREE_CHAIN (vbase
))
8641 if (!BINFO_VIRTUAL_P (vbase
))
8643 b
= copied_binfo (vbase
, binfo
);
8645 accumulate_vtbl_inits (b
, vbase
, binfo
, vtbl
, t
, &v
);
8648 /* Figure out the type of the construction vtable. */
8649 type
= build_array_of_n_type (vtable_entry_type
, v
->length ());
8651 TREE_TYPE (vtbl
) = type
;
8652 DECL_SIZE (vtbl
) = DECL_SIZE_UNIT (vtbl
) = NULL_TREE
;
8653 layout_decl (vtbl
, 0);
8655 /* Initialize the construction vtable. */
8656 CLASSTYPE_VTABLES (t
) = chainon (CLASSTYPE_VTABLES (t
), vtbl
);
8657 initialize_artificial_var (vtbl
, v
);
8658 dump_vtable (t
, binfo
, vtbl
);
8661 /* Add the vtbl initializers for BINFO (and its bases other than
8662 non-virtual primaries) to the list of INITS. BINFO is in the
8663 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8664 the constructor the vtbl inits should be accumulated for. (If this
8665 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8666 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8667 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8668 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8669 but are not necessarily the same in terms of layout. */
8672 accumulate_vtbl_inits (tree binfo
,
8677 vec
<constructor_elt
, va_gc
> **inits
)
8681 int ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
8683 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), BINFO_TYPE (orig_binfo
)));
8685 /* If it doesn't have a vptr, we don't do anything. */
8686 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
8689 /* If we're building a construction vtable, we're not interested in
8690 subobjects that don't require construction vtables. */
8692 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
))
8693 && !binfo_via_virtual (orig_binfo
, BINFO_TYPE (rtti_binfo
)))
8696 /* Build the initializers for the BINFO-in-T vtable. */
8697 dfs_accumulate_vtbl_inits (binfo
, orig_binfo
, rtti_binfo
, vtbl
, t
, inits
);
8699 /* Walk the BINFO and its bases. We walk in preorder so that as we
8700 initialize each vtable we can figure out at what offset the
8701 secondary vtable lies from the primary vtable. We can't use
8702 dfs_walk here because we need to iterate through bases of BINFO
8703 and RTTI_BINFO simultaneously. */
8704 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
8706 /* Skip virtual bases. */
8707 if (BINFO_VIRTUAL_P (base_binfo
))
8709 accumulate_vtbl_inits (base_binfo
,
8710 BINFO_BASE_BINFO (orig_binfo
, i
),
8711 rtti_binfo
, vtbl
, t
,
8716 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8717 BINFO vtable to L. */
8720 dfs_accumulate_vtbl_inits (tree binfo
,
8725 vec
<constructor_elt
, va_gc
> **l
)
8727 tree vtbl
= NULL_TREE
;
8728 int ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
8732 && BINFO_VIRTUAL_P (orig_binfo
) && BINFO_PRIMARY_P (orig_binfo
))
8734 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8735 primary virtual base. If it is not the same primary in
8736 the hierarchy of T, we'll need to generate a ctor vtable
8737 for it, to place at its location in T. If it is the same
8738 primary, we still need a VTT entry for the vtable, but it
8739 should point to the ctor vtable for the base it is a
8740 primary for within the sub-hierarchy of RTTI_BINFO.
8742 There are three possible cases:
8744 1) We are in the same place.
8745 2) We are a primary base within a lost primary virtual base of
8747 3) We are primary to something not a base of RTTI_BINFO. */
8750 tree last
= NULL_TREE
;
8752 /* First, look through the bases we are primary to for RTTI_BINFO
8753 or a virtual base. */
8755 while (BINFO_PRIMARY_P (b
))
8757 b
= BINFO_INHERITANCE_CHAIN (b
);
8759 if (BINFO_VIRTUAL_P (b
) || b
== rtti_binfo
)
8762 /* If we run out of primary links, keep looking down our
8763 inheritance chain; we might be an indirect primary. */
8764 for (b
= last
; b
; b
= BINFO_INHERITANCE_CHAIN (b
))
8765 if (BINFO_VIRTUAL_P (b
) || b
== rtti_binfo
)
8769 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8770 base B and it is a base of RTTI_BINFO, this is case 2. In
8771 either case, we share our vtable with LAST, i.e. the
8772 derived-most base within B of which we are a primary. */
8774 || (b
&& binfo_for_vbase (BINFO_TYPE (b
), BINFO_TYPE (rtti_binfo
))))
8775 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8776 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8777 binfo_ctor_vtable after everything's been set up. */
8780 /* Otherwise, this is case 3 and we get our own. */
8782 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo
))
8785 n_inits
= vec_safe_length (*l
);
8792 /* Add the initializer for this vtable. */
8793 build_vtbl_initializer (binfo
, orig_binfo
, t
, rtti_binfo
,
8794 &non_fn_entries
, l
);
8796 /* Figure out the position to which the VPTR should point. */
8797 vtbl
= build1 (ADDR_EXPR
, vtbl_ptr_type_node
, orig_vtbl
);
8798 index
= size_binop (MULT_EXPR
,
8799 TYPE_SIZE_UNIT (vtable_entry_type
),
8800 size_int (non_fn_entries
+ n_inits
));
8801 vtbl
= fold_build_pointer_plus (vtbl
, index
);
8805 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8806 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8807 straighten this out. */
8808 BINFO_VTABLE (binfo
) = tree_cons (rtti_binfo
, vtbl
, BINFO_VTABLE (binfo
));
8809 else if (BINFO_PRIMARY_P (binfo
) && BINFO_VIRTUAL_P (binfo
))
8810 /* Throw away any unneeded intializers. */
8811 (*l
)->truncate (n_inits
);
8813 /* For an ordinary vtable, set BINFO_VTABLE. */
8814 BINFO_VTABLE (binfo
) = vtbl
;
8817 static GTY(()) tree abort_fndecl_addr
;
8819 /* Construct the initializer for BINFO's virtual function table. BINFO
8820 is part of the hierarchy dominated by T. If we're building a
8821 construction vtable, the ORIG_BINFO is the binfo we should use to
8822 find the actual function pointers to put in the vtable - but they
8823 can be overridden on the path to most-derived in the graph that
8824 ORIG_BINFO belongs. Otherwise,
8825 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8826 BINFO that should be indicated by the RTTI information in the
8827 vtable; it will be a base class of T, rather than T itself, if we
8828 are building a construction vtable.
8830 The value returned is a TREE_LIST suitable for wrapping in a
8831 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8832 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8833 number of non-function entries in the vtable.
8835 It might seem that this function should never be called with a
8836 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8837 base is always subsumed by a derived class vtable. However, when
8838 we are building construction vtables, we do build vtables for
8839 primary bases; we need these while the primary base is being
8843 build_vtbl_initializer (tree binfo
,
8847 int* non_fn_entries_p
,
8848 vec
<constructor_elt
, va_gc
> **inits
)
8854 vec
<tree
, va_gc
> *vbases
;
8857 /* Initialize VID. */
8858 memset (&vid
, 0, sizeof (vid
));
8861 vid
.rtti_binfo
= rtti_binfo
;
8862 vid
.primary_vtbl_p
= SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
);
8863 vid
.ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
8864 vid
.generate_vcall_entries
= true;
8865 /* The first vbase or vcall offset is at index -3 in the vtable. */
8866 vid
.index
= ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE
);
8868 /* Add entries to the vtable for RTTI. */
8869 build_rtti_vtbl_entries (binfo
, &vid
);
8871 /* Create an array for keeping track of the functions we've
8872 processed. When we see multiple functions with the same
8873 signature, we share the vcall offsets. */
8874 vec_alloc (vid
.fns
, 32);
8875 /* Add the vcall and vbase offset entries. */
8876 build_vcall_and_vbase_vtbl_entries (binfo
, &vid
);
8878 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8879 build_vbase_offset_vtbl_entries. */
8880 for (vbases
= CLASSTYPE_VBASECLASSES (t
), ix
= 0;
8881 vec_safe_iterate (vbases
, ix
, &vbinfo
); ix
++)
8882 BINFO_VTABLE_PATH_MARKED (vbinfo
) = 0;
8884 /* If the target requires padding between data entries, add that now. */
8885 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE
> 1)
8887 int n_entries
= vec_safe_length (vid
.inits
);
8889 vec_safe_grow (vid
.inits
, TARGET_VTABLE_DATA_ENTRY_DISTANCE
* n_entries
);
8891 /* Move data entries into their new positions and add padding
8892 after the new positions. Iterate backwards so we don't
8893 overwrite entries that we would need to process later. */
8894 for (ix
= n_entries
- 1;
8895 vid
.inits
->iterate (ix
, &e
);
8899 int new_position
= (TARGET_VTABLE_DATA_ENTRY_DISTANCE
* ix
8900 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE
- 1));
8902 (*vid
.inits
)[new_position
] = *e
;
8904 for (j
= 1; j
< TARGET_VTABLE_DATA_ENTRY_DISTANCE
; ++j
)
8906 constructor_elt
*f
= &(*vid
.inits
)[new_position
- j
];
8907 f
->index
= NULL_TREE
;
8908 f
->value
= build1 (NOP_EXPR
, vtable_entry_type
,
8914 if (non_fn_entries_p
)
8915 *non_fn_entries_p
= vec_safe_length (vid
.inits
);
8917 /* The initializers for virtual functions were built up in reverse
8918 order. Straighten them out and add them to the running list in one
8920 jx
= vec_safe_length (*inits
);
8921 vec_safe_grow (*inits
, jx
+ vid
.inits
->length ());
8923 for (ix
= vid
.inits
->length () - 1;
8924 vid
.inits
->iterate (ix
, &e
);
8928 /* Go through all the ordinary virtual functions, building up
8930 for (v
= BINFO_VIRTUALS (orig_binfo
); v
; v
= TREE_CHAIN (v
))
8934 tree fn
, fn_original
;
8935 tree init
= NULL_TREE
;
8939 if (DECL_THUNK_P (fn
))
8941 if (!DECL_NAME (fn
))
8943 if (THUNK_ALIAS (fn
))
8945 fn
= THUNK_ALIAS (fn
);
8948 fn_original
= THUNK_TARGET (fn
);
8951 /* If the only definition of this function signature along our
8952 primary base chain is from a lost primary, this vtable slot will
8953 never be used, so just zero it out. This is important to avoid
8954 requiring extra thunks which cannot be generated with the function.
8956 We first check this in update_vtable_entry_for_fn, so we handle
8957 restored primary bases properly; we also need to do it here so we
8958 zero out unused slots in ctor vtables, rather than filling them
8959 with erroneous values (though harmless, apart from relocation
8961 if (BV_LOST_PRIMARY (v
))
8962 init
= size_zero_node
;
8966 /* Pull the offset for `this', and the function to call, out of
8968 delta
= BV_DELTA (v
);
8969 vcall_index
= BV_VCALL_INDEX (v
);
8971 gcc_assert (TREE_CODE (delta
) == INTEGER_CST
);
8972 gcc_assert (TREE_CODE (fn
) == FUNCTION_DECL
);
8974 /* You can't call an abstract virtual function; it's abstract.
8975 So, we replace these functions with __pure_virtual. */
8976 if (DECL_PURE_VIRTUAL_P (fn_original
))
8979 if (!TARGET_VTABLE_USES_DESCRIPTORS
)
8981 if (abort_fndecl_addr
== NULL
)
8983 = fold_convert (vfunc_ptr_type_node
,
8984 build_fold_addr_expr (fn
));
8985 init
= abort_fndecl_addr
;
8988 /* Likewise for deleted virtuals. */
8989 else if (DECL_DELETED_FN (fn_original
))
8991 fn
= get_identifier ("__cxa_deleted_virtual");
8992 if (!get_global_value_if_present (fn
, &fn
))
8993 fn
= push_library_fn (fn
, (build_function_type_list
8994 (void_type_node
, NULL_TREE
)),
8995 NULL_TREE
, ECF_NORETURN
);
8996 if (!TARGET_VTABLE_USES_DESCRIPTORS
)
8997 init
= fold_convert (vfunc_ptr_type_node
,
8998 build_fold_addr_expr (fn
));
9002 if (!integer_zerop (delta
) || vcall_index
)
9004 fn
= make_thunk (fn
, /*this_adjusting=*/1, delta
, vcall_index
);
9005 if (!DECL_NAME (fn
))
9008 /* Take the address of the function, considering it to be of an
9009 appropriate generic type. */
9010 if (!TARGET_VTABLE_USES_DESCRIPTORS
)
9011 init
= fold_convert (vfunc_ptr_type_node
,
9012 build_fold_addr_expr (fn
));
9016 /* And add it to the chain of initializers. */
9017 if (TARGET_VTABLE_USES_DESCRIPTORS
)
9020 if (init
== size_zero_node
)
9021 for (i
= 0; i
< TARGET_VTABLE_USES_DESCRIPTORS
; ++i
)
9022 CONSTRUCTOR_APPEND_ELT (*inits
, NULL_TREE
, init
);
9024 for (i
= 0; i
< TARGET_VTABLE_USES_DESCRIPTORS
; ++i
)
9026 tree fdesc
= build2 (FDESC_EXPR
, vfunc_ptr_type_node
,
9027 fn
, build_int_cst (NULL_TREE
, i
));
9028 TREE_CONSTANT (fdesc
) = 1;
9030 CONSTRUCTOR_APPEND_ELT (*inits
, NULL_TREE
, fdesc
);
9034 CONSTRUCTOR_APPEND_ELT (*inits
, NULL_TREE
, init
);
9038 /* Adds to vid->inits the initializers for the vbase and vcall
9039 offsets in BINFO, which is in the hierarchy dominated by T. */
9042 build_vcall_and_vbase_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
9046 /* If this is a derived class, we must first create entries
9047 corresponding to the primary base class. */
9048 b
= get_primary_binfo (binfo
);
9050 build_vcall_and_vbase_vtbl_entries (b
, vid
);
9052 /* Add the vbase entries for this base. */
9053 build_vbase_offset_vtbl_entries (binfo
, vid
);
9054 /* Add the vcall entries for this base. */
9055 build_vcall_offset_vtbl_entries (binfo
, vid
);
9058 /* Returns the initializers for the vbase offset entries in the vtable
9059 for BINFO (which is part of the class hierarchy dominated by T), in
9060 reverse order. VBASE_OFFSET_INDEX gives the vtable index
9061 where the next vbase offset will go. */
9064 build_vbase_offset_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
9068 tree non_primary_binfo
;
9070 /* If there are no virtual baseclasses, then there is nothing to
9072 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)))
9077 /* We might be a primary base class. Go up the inheritance hierarchy
9078 until we find the most derived class of which we are a primary base:
9079 it is the offset of that which we need to use. */
9080 non_primary_binfo
= binfo
;
9081 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo
))
9085 /* If we have reached a virtual base, then it must be a primary
9086 base (possibly multi-level) of vid->binfo, or we wouldn't
9087 have called build_vcall_and_vbase_vtbl_entries for it. But it
9088 might be a lost primary, so just skip down to vid->binfo. */
9089 if (BINFO_VIRTUAL_P (non_primary_binfo
))
9091 non_primary_binfo
= vid
->binfo
;
9095 b
= BINFO_INHERITANCE_CHAIN (non_primary_binfo
);
9096 if (get_primary_binfo (b
) != non_primary_binfo
)
9098 non_primary_binfo
= b
;
9101 /* Go through the virtual bases, adding the offsets. */
9102 for (vbase
= TYPE_BINFO (BINFO_TYPE (binfo
));
9104 vbase
= TREE_CHAIN (vbase
))
9109 if (!BINFO_VIRTUAL_P (vbase
))
9112 /* Find the instance of this virtual base in the complete
9114 b
= copied_binfo (vbase
, binfo
);
9116 /* If we've already got an offset for this virtual base, we
9117 don't need another one. */
9118 if (BINFO_VTABLE_PATH_MARKED (b
))
9120 BINFO_VTABLE_PATH_MARKED (b
) = 1;
9122 /* Figure out where we can find this vbase offset. */
9123 delta
= size_binop (MULT_EXPR
,
9126 TYPE_SIZE_UNIT (vtable_entry_type
)));
9127 if (vid
->primary_vtbl_p
)
9128 BINFO_VPTR_FIELD (b
) = delta
;
9130 if (binfo
!= TYPE_BINFO (t
))
9131 /* The vbase offset had better be the same. */
9132 gcc_assert (tree_int_cst_equal (delta
, BINFO_VPTR_FIELD (vbase
)));
9134 /* The next vbase will come at a more negative offset. */
9135 vid
->index
= size_binop (MINUS_EXPR
, vid
->index
,
9136 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE
));
9138 /* The initializer is the delta from BINFO to this virtual base.
9139 The vbase offsets go in reverse inheritance-graph order, and
9140 we are walking in inheritance graph order so these end up in
9142 delta
= size_diffop_loc (input_location
,
9143 BINFO_OFFSET (b
), BINFO_OFFSET (non_primary_binfo
));
9145 CONSTRUCTOR_APPEND_ELT (vid
->inits
, NULL_TREE
,
9146 fold_build1_loc (input_location
, NOP_EXPR
,
9147 vtable_entry_type
, delta
));
9151 /* Adds the initializers for the vcall offset entries in the vtable
9152 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9156 build_vcall_offset_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
9158 /* We only need these entries if this base is a virtual base. We
9159 compute the indices -- but do not add to the vtable -- when
9160 building the main vtable for a class. */
9161 if (binfo
== TYPE_BINFO (vid
->derived
)
9162 || (BINFO_VIRTUAL_P (binfo
)
9163 /* If BINFO is RTTI_BINFO, then (since BINFO does not
9164 correspond to VID->DERIVED), we are building a primary
9165 construction virtual table. Since this is a primary
9166 virtual table, we do not need the vcall offsets for
9168 && binfo
!= vid
->rtti_binfo
))
9170 /* We need a vcall offset for each of the virtual functions in this
9171 vtable. For example:
9173 class A { virtual void f (); };
9174 class B1 : virtual public A { virtual void f (); };
9175 class B2 : virtual public A { virtual void f (); };
9176 class C: public B1, public B2 { virtual void f (); };
9178 A C object has a primary base of B1, which has a primary base of A. A
9179 C also has a secondary base of B2, which no longer has a primary base
9180 of A. So the B2-in-C construction vtable needs a secondary vtable for
9181 A, which will adjust the A* to a B2* to call f. We have no way of
9182 knowing what (or even whether) this offset will be when we define B2,
9183 so we store this "vcall offset" in the A sub-vtable and look it up in
9184 a "virtual thunk" for B2::f.
9186 We need entries for all the functions in our primary vtable and
9187 in our non-virtual bases' secondary vtables. */
9189 /* If we are just computing the vcall indices -- but do not need
9190 the actual entries -- not that. */
9191 if (!BINFO_VIRTUAL_P (binfo
))
9192 vid
->generate_vcall_entries
= false;
9193 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9194 add_vcall_offset_vtbl_entries_r (binfo
, vid
);
9198 /* Build vcall offsets, starting with those for BINFO. */
9201 add_vcall_offset_vtbl_entries_r (tree binfo
, vtbl_init_data
* vid
)
9207 /* Don't walk into virtual bases -- except, of course, for the
9208 virtual base for which we are building vcall offsets. Any
9209 primary virtual base will have already had its offsets generated
9210 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9211 if (BINFO_VIRTUAL_P (binfo
) && vid
->vbase
!= binfo
)
9214 /* If BINFO has a primary base, process it first. */
9215 primary_binfo
= get_primary_binfo (binfo
);
9217 add_vcall_offset_vtbl_entries_r (primary_binfo
, vid
);
9219 /* Add BINFO itself to the list. */
9220 add_vcall_offset_vtbl_entries_1 (binfo
, vid
);
9222 /* Scan the non-primary bases of BINFO. */
9223 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
9224 if (base_binfo
!= primary_binfo
)
9225 add_vcall_offset_vtbl_entries_r (base_binfo
, vid
);
9228 /* Called from build_vcall_offset_vtbl_entries_r. */
9231 add_vcall_offset_vtbl_entries_1 (tree binfo
, vtbl_init_data
* vid
)
9233 /* Make entries for the rest of the virtuals. */
9234 if (abi_version_at_least (2))
9238 /* The ABI requires that the methods be processed in declaration
9239 order. G++ 3.2 used the order in the vtable. */
9240 for (orig_fn
= TYPE_METHODS (BINFO_TYPE (binfo
));
9242 orig_fn
= DECL_CHAIN (orig_fn
))
9243 if (DECL_VINDEX (orig_fn
))
9244 add_vcall_offset (orig_fn
, binfo
, vid
);
9248 tree derived_virtuals
;
9251 /* If BINFO is a primary base, the most derived class which has
9252 BINFO as a primary base; otherwise, just BINFO. */
9253 tree non_primary_binfo
;
9255 /* We might be a primary base class. Go up the inheritance hierarchy
9256 until we find the most derived class of which we are a primary base:
9257 it is the BINFO_VIRTUALS there that we need to consider. */
9258 non_primary_binfo
= binfo
;
9259 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo
))
9263 /* If we have reached a virtual base, then it must be vid->vbase,
9264 because we ignore other virtual bases in
9265 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
9266 base (possibly multi-level) of vid->binfo, or we wouldn't
9267 have called build_vcall_and_vbase_vtbl_entries for it. But it
9268 might be a lost primary, so just skip down to vid->binfo. */
9269 if (BINFO_VIRTUAL_P (non_primary_binfo
))
9271 gcc_assert (non_primary_binfo
== vid
->vbase
);
9272 non_primary_binfo
= vid
->binfo
;
9276 b
= BINFO_INHERITANCE_CHAIN (non_primary_binfo
);
9277 if (get_primary_binfo (b
) != non_primary_binfo
)
9279 non_primary_binfo
= b
;
9282 if (vid
->ctor_vtbl_p
)
9283 /* For a ctor vtable we need the equivalent binfo within the hierarchy
9284 where rtti_binfo is the most derived type. */
9286 = original_binfo (non_primary_binfo
, vid
->rtti_binfo
);
9288 for (base_virtuals
= BINFO_VIRTUALS (binfo
),
9289 derived_virtuals
= BINFO_VIRTUALS (non_primary_binfo
),
9290 orig_virtuals
= BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo
)));
9292 base_virtuals
= TREE_CHAIN (base_virtuals
),
9293 derived_virtuals
= TREE_CHAIN (derived_virtuals
),
9294 orig_virtuals
= TREE_CHAIN (orig_virtuals
))
9298 /* Find the declaration that originally caused this function to
9299 be present in BINFO_TYPE (binfo). */
9300 orig_fn
= BV_FN (orig_virtuals
);
9302 /* When processing BINFO, we only want to generate vcall slots for
9303 function slots introduced in BINFO. So don't try to generate
9304 one if the function isn't even defined in BINFO. */
9305 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), DECL_CONTEXT (orig_fn
)))
9308 add_vcall_offset (orig_fn
, binfo
, vid
);
9313 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9316 add_vcall_offset (tree orig_fn
, tree binfo
, vtbl_init_data
*vid
)
9322 /* If there is already an entry for a function with the same
9323 signature as FN, then we do not need a second vcall offset.
9324 Check the list of functions already present in the derived
9326 FOR_EACH_VEC_SAFE_ELT (vid
->fns
, i
, derived_entry
)
9328 if (same_signature_p (derived_entry
, orig_fn
)
9329 /* We only use one vcall offset for virtual destructors,
9330 even though there are two virtual table entries. */
9331 || (DECL_DESTRUCTOR_P (derived_entry
)
9332 && DECL_DESTRUCTOR_P (orig_fn
)))
9336 /* If we are building these vcall offsets as part of building
9337 the vtable for the most derived class, remember the vcall
9339 if (vid
->binfo
== TYPE_BINFO (vid
->derived
))
9341 tree_pair_s elt
= {orig_fn
, vid
->index
};
9342 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid
->derived
), elt
);
9345 /* The next vcall offset will be found at a more negative
9347 vid
->index
= size_binop (MINUS_EXPR
, vid
->index
,
9348 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE
));
9350 /* Keep track of this function. */
9351 vec_safe_push (vid
->fns
, orig_fn
);
9353 if (vid
->generate_vcall_entries
)
9358 /* Find the overriding function. */
9359 fn
= find_final_overrider (vid
->rtti_binfo
, binfo
, orig_fn
);
9360 if (fn
== error_mark_node
)
9361 vcall_offset
= build_zero_cst (vtable_entry_type
);
9364 base
= TREE_VALUE (fn
);
9366 /* The vbase we're working on is a primary base of
9367 vid->binfo. But it might be a lost primary, so its
9368 BINFO_OFFSET might be wrong, so we just use the
9369 BINFO_OFFSET from vid->binfo. */
9370 vcall_offset
= size_diffop_loc (input_location
,
9371 BINFO_OFFSET (base
),
9372 BINFO_OFFSET (vid
->binfo
));
9373 vcall_offset
= fold_build1_loc (input_location
,
9374 NOP_EXPR
, vtable_entry_type
,
9377 /* Add the initializer to the vtable. */
9378 CONSTRUCTOR_APPEND_ELT (vid
->inits
, NULL_TREE
, vcall_offset
);
9382 /* Return vtbl initializers for the RTTI entries corresponding to the
9383 BINFO's vtable. The RTTI entries should indicate the object given
9384 by VID->rtti_binfo. */
9387 build_rtti_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
9395 t
= BINFO_TYPE (vid
->rtti_binfo
);
9397 /* To find the complete object, we will first convert to our most
9398 primary base, and then add the offset in the vtbl to that value. */
9400 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b
))
9401 && !BINFO_LOST_PRIMARY_P (b
))
9405 primary_base
= get_primary_binfo (b
);
9406 gcc_assert (BINFO_PRIMARY_P (primary_base
)
9407 && BINFO_INHERITANCE_CHAIN (primary_base
) == b
);
9410 offset
= size_diffop_loc (input_location
,
9411 BINFO_OFFSET (vid
->rtti_binfo
), BINFO_OFFSET (b
));
9413 /* The second entry is the address of the typeinfo object. */
9415 decl
= build_address (get_tinfo_decl (t
));
9417 decl
= integer_zero_node
;
9419 /* Convert the declaration to a type that can be stored in the
9421 init
= build_nop (vfunc_ptr_type_node
, decl
);
9422 CONSTRUCTOR_APPEND_ELT (vid
->inits
, NULL_TREE
, init
);
9424 /* Add the offset-to-top entry. It comes earlier in the vtable than
9425 the typeinfo entry. Convert the offset to look like a
9426 function pointer, so that we can put it in the vtable. */
9427 init
= build_nop (vfunc_ptr_type_node
, offset
);
9428 CONSTRUCTOR_APPEND_ELT (vid
->inits
, NULL_TREE
, init
);
9431 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9435 uniquely_derived_from_p (tree parent
, tree type
)
9437 tree base
= lookup_base (type
, parent
, ba_unique
, NULL
, tf_none
);
9438 return base
&& base
!= error_mark_node
;
9441 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9444 publicly_uniquely_derived_p (tree parent
, tree type
)
9446 tree base
= lookup_base (type
, parent
, ba_ignore_scope
| ba_check
,
9448 return base
&& base
!= error_mark_node
;
9451 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9452 class between them, if any. */
9455 common_enclosing_class (tree ctx1
, tree ctx2
)
9457 if (!TYPE_P (ctx1
) || !TYPE_P (ctx2
))
9459 gcc_assert (ctx1
== TYPE_MAIN_VARIANT (ctx1
)
9460 && ctx2
== TYPE_MAIN_VARIANT (ctx2
));
9463 for (tree t
= ctx1
; TYPE_P (t
); t
= TYPE_CONTEXT (t
))
9464 TYPE_MARKED_P (t
) = true;
9465 tree found
= NULL_TREE
;
9466 for (tree t
= ctx2
; TYPE_P (t
); t
= TYPE_CONTEXT (t
))
9467 if (TYPE_MARKED_P (t
))
9472 for (tree t
= ctx1
; TYPE_P (t
); t
= TYPE_CONTEXT (t
))
9473 TYPE_MARKED_P (t
) = false;
9477 #include "gt-cp-class.h"