1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the datastructure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
47 #include "hard-reg-set.h"
48 #include "basic-block.h"
58 /* The obstack on which the flow graph components are allocated. */
60 struct obstack flow_obstack
;
61 static char *flow_firstobj
;
63 /* Number of basic blocks in the current function. */
67 /* Number of edges in the current function. */
71 /* First edge in the deleted edges chain. */
73 edge first_deleted_edge
;
74 static basic_block first_deleted_block
;
76 /* The basic block array. */
78 varray_type basic_block_info
;
80 /* The special entry and exit blocks. */
82 struct basic_block_def entry_exit_blocks
[2]
90 NULL
, /* cond_local_set */
91 NULL
, /* global_live_at_start */
92 NULL
, /* global_live_at_end */
94 ENTRY_BLOCK
, /* index */
103 NULL
, /* head_tree */
107 NULL
, /* local_set */
108 NULL
, /* cond_local_set */
109 NULL
, /* global_live_at_start */
110 NULL
, /* global_live_at_end */
112 EXIT_BLOCK
, /* index */
120 void debug_flow_info
PARAMS ((void));
121 static void free_edge
PARAMS ((edge
));
123 /* Called once at initialization time. */
128 static int initialized
;
130 first_deleted_edge
= 0;
131 first_deleted_block
= 0;
136 gcc_obstack_init (&flow_obstack
);
137 flow_firstobj
= (char *) obstack_alloc (&flow_obstack
, 0);
142 obstack_free (&flow_obstack
, flow_firstobj
);
143 flow_firstobj
= (char *) obstack_alloc (&flow_obstack
, 0);
147 /* Helper function for remove_edge and clear_edges. Frees edge structure
148 without actually unlinking it from the pred/succ lists. */
155 memset (e
, 0, sizeof (*e
));
156 e
->succ_next
= first_deleted_edge
;
157 first_deleted_edge
= e
;
160 /* Free the memory associated with the edge structures. */
168 for (i
= 0; i
< n_basic_blocks
; ++i
)
170 basic_block bb
= BASIC_BLOCK (i
);
175 edge next
= e
->succ_next
;
184 e
= ENTRY_BLOCK_PTR
->succ
;
187 edge next
= e
->succ_next
;
192 EXIT_BLOCK_PTR
->pred
= NULL
;
193 ENTRY_BLOCK_PTR
->succ
= NULL
;
199 /* Allocate memory for basic_block. */
206 if (first_deleted_block
)
208 bb
= first_deleted_block
;
209 first_deleted_block
= (basic_block
) bb
->succ
;
214 bb
= (basic_block
) obstack_alloc (&flow_obstack
, sizeof (*bb
));
215 memset (bb
, 0, sizeof (*bb
));
220 /* Remove block B from the basic block array and compact behind it. */
226 int i
, n
= n_basic_blocks
;
228 for (i
= b
->index
; i
+ 1 < n
; ++i
)
230 basic_block x
= BASIC_BLOCK (i
+ 1);
235 /* Invalidate data to make bughunting easier. */
236 memset (b
, 0, sizeof (*b
));
238 basic_block_info
->num_elements
--;
240 b
->succ
= (edge
) first_deleted_block
;
241 first_deleted_block
= (basic_block
) b
;
244 /* Create an edge connecting SRC and DST with FLAGS optionally using
245 edge cache CACHE. Return the new edge, NULL if already exist. */
248 cached_make_edge (edge_cache
, src
, dst
, flags
)
250 basic_block src
, dst
;
256 /* Don't bother with edge cache for ENTRY or EXIT; there aren't that
257 many edges to them, and we didn't allocate memory for it. */
258 use_edge_cache
= (edge_cache
259 && src
!= ENTRY_BLOCK_PTR
260 && dst
!= EXIT_BLOCK_PTR
);
262 /* Make sure we don't add duplicate edges. */
263 switch (use_edge_cache
)
266 /* Quick test for non-existence of the edge. */
267 if (! TEST_BIT (edge_cache
[src
->index
], dst
->index
))
270 /* The edge exists; early exit if no work to do. */
276 for (e
= src
->succ
; e
; e
= e
->succ_next
)
285 if (first_deleted_edge
)
287 e
= first_deleted_edge
;
288 first_deleted_edge
= e
->succ_next
;
292 e
= (edge
) obstack_alloc (&flow_obstack
, sizeof (*e
));
293 memset (e
, 0, sizeof (*e
));
297 e
->succ_next
= src
->succ
;
298 e
->pred_next
= dst
->pred
;
307 SET_BIT (edge_cache
[src
->index
], dst
->index
);
312 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
313 created edge or NULL if already exist. */
316 make_edge (src
, dest
, flags
)
317 basic_block src
, dest
;
320 return cached_make_edge (NULL
, src
, dest
, flags
);
323 /* Create an edge connecting SRC to DEST and set probability by knowing
324 that it is the single edge leaving SRC. */
327 make_single_succ_edge (src
, dest
, flags
)
328 basic_block src
, dest
;
331 edge e
= make_edge (src
, dest
, flags
);
333 e
->probability
= REG_BR_PROB_BASE
;
334 e
->count
= src
->count
;
338 /* This function will remove an edge from the flow graph. */
344 edge last_pred
= NULL
;
345 edge last_succ
= NULL
;
347 basic_block src
, dest
;
350 for (tmp
= src
->succ
; tmp
&& tmp
!= e
; tmp
= tmp
->succ_next
)
356 last_succ
->succ_next
= e
->succ_next
;
358 src
->succ
= e
->succ_next
;
360 for (tmp
= dest
->pred
; tmp
&& tmp
!= e
; tmp
= tmp
->pred_next
)
366 last_pred
->pred_next
= e
->pred_next
;
368 dest
->pred
= e
->pred_next
;
373 /* Redirect an edge's successor from one block to another. */
376 redirect_edge_succ (e
, new_succ
)
378 basic_block new_succ
;
382 /* Disconnect the edge from the old successor block. */
383 for (pe
= &e
->dest
->pred
; *pe
!= e
; pe
= &(*pe
)->pred_next
)
385 *pe
= (*pe
)->pred_next
;
387 /* Reconnect the edge to the new successor block. */
388 e
->pred_next
= new_succ
->pred
;
393 /* Like previous but avoid possible duplicate edge. */
396 redirect_edge_succ_nodup (e
, new_succ
)
398 basic_block new_succ
;
401 /* Check whether the edge is already present. */
402 for (s
= e
->src
->succ
; s
; s
= s
->succ_next
)
403 if (s
->dest
== new_succ
&& s
!= e
)
407 s
->flags
|= e
->flags
;
408 s
->probability
+= e
->probability
;
409 s
->count
+= e
->count
;
414 redirect_edge_succ (e
, new_succ
);
418 /* Redirect an edge's predecessor from one block to another. */
421 redirect_edge_pred (e
, new_pred
)
423 basic_block new_pred
;
427 /* Disconnect the edge from the old predecessor block. */
428 for (pe
= &e
->src
->succ
; *pe
!= e
; pe
= &(*pe
)->succ_next
)
430 *pe
= (*pe
)->succ_next
;
432 /* Reconnect the edge to the new predecessor block. */
433 e
->succ_next
= new_pred
->succ
;
439 dump_flow_info (file
)
443 static const char * const reg_class_names
[] = REG_CLASS_NAMES
;
445 fprintf (file
, "%d registers.\n", max_regno
);
446 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
449 enum reg_class
class, altclass
;
450 fprintf (file
, "\nRegister %d used %d times across %d insns",
451 i
, REG_N_REFS (i
), REG_LIVE_LENGTH (i
));
452 if (REG_BASIC_BLOCK (i
) >= 0)
453 fprintf (file
, " in block %d", REG_BASIC_BLOCK (i
));
455 fprintf (file
, "; set %d time%s", REG_N_SETS (i
),
456 (REG_N_SETS (i
) == 1) ? "" : "s");
457 if (REG_USERVAR_P (regno_reg_rtx
[i
]))
458 fprintf (file
, "; user var");
459 if (REG_N_DEATHS (i
) != 1)
460 fprintf (file
, "; dies in %d places", REG_N_DEATHS (i
));
461 if (REG_N_CALLS_CROSSED (i
) == 1)
462 fprintf (file
, "; crosses 1 call");
463 else if (REG_N_CALLS_CROSSED (i
))
464 fprintf (file
, "; crosses %d calls", REG_N_CALLS_CROSSED (i
));
465 if (PSEUDO_REGNO_BYTES (i
) != UNITS_PER_WORD
)
466 fprintf (file
, "; %d bytes", PSEUDO_REGNO_BYTES (i
));
467 class = reg_preferred_class (i
);
468 altclass
= reg_alternate_class (i
);
469 if (class != GENERAL_REGS
|| altclass
!= ALL_REGS
)
471 if (altclass
== ALL_REGS
|| class == ALL_REGS
)
472 fprintf (file
, "; pref %s", reg_class_names
[(int) class]);
473 else if (altclass
== NO_REGS
)
474 fprintf (file
, "; %s or none", reg_class_names
[(int) class]);
476 fprintf (file
, "; pref %s, else %s",
477 reg_class_names
[(int) class],
478 reg_class_names
[(int) altclass
]);
480 if (REG_POINTER (regno_reg_rtx
[i
]))
481 fprintf (file
, "; pointer");
482 fprintf (file
, ".\n");
485 fprintf (file
, "\n%d basic blocks, %d edges.\n", n_basic_blocks
, n_edges
);
486 for (i
= 0; i
< n_basic_blocks
; i
++)
488 basic_block bb
= BASIC_BLOCK (i
);
491 fprintf (file
, "\nBasic block %d: first insn %d, last %d, loop_depth %d, count ",
492 i
, INSN_UID (bb
->head
), INSN_UID (bb
->end
), bb
->loop_depth
);
493 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, (HOST_WIDEST_INT
) bb
->count
);
494 fprintf (file
, ", freq %i.\n", bb
->frequency
);
496 fprintf (file
, "Predecessors: ");
497 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
498 dump_edge_info (file
, e
, 0);
500 fprintf (file
, "\nSuccessors: ");
501 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
502 dump_edge_info (file
, e
, 1);
504 fprintf (file
, "\nRegisters live at start:");
505 dump_regset (bb
->global_live_at_start
, file
);
507 fprintf (file
, "\nRegisters live at end:");
508 dump_regset (bb
->global_live_at_end
, file
);
519 dump_flow_info (stderr
);
523 dump_edge_info (file
, e
, do_succ
)
528 basic_block side
= (do_succ
? e
->dest
: e
->src
);
530 if (side
== ENTRY_BLOCK_PTR
)
531 fputs (" ENTRY", file
);
532 else if (side
== EXIT_BLOCK_PTR
)
533 fputs (" EXIT", file
);
535 fprintf (file
, " %d", side
->index
);
538 fprintf (file
, " [%.1f%%] ", e
->probability
* 100.0 / REG_BR_PROB_BASE
);
542 fprintf (file
, " count:");
543 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, (HOST_WIDEST_INT
) e
->count
);
548 static const char * const bitnames
[] = {
549 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back"
552 int i
, flags
= e
->flags
;
556 for (i
= 0; flags
; i
++)
557 if (flags
& (1 << i
))
563 if (i
< (int) ARRAY_SIZE (bitnames
))
564 fputs (bitnames
[i
], file
);
566 fprintf (file
, "%d", i
);
573 /* Simple routines to easily allocate AUX fields of basic blocks. */
574 static struct obstack block_aux_obstack
;
575 static void *first_block_aux_obj
= 0;
576 static struct obstack edge_aux_obstack
;
577 static void *first_edge_aux_obj
= 0;
579 /* Allocate an memory block of SIZE as BB->aux. The obstack must
580 be first initialized by alloc_aux_for_blocks. */
583 alloc_aux_for_block (bb
, size
)
587 /* Verify that aux field is clear. */
588 if (bb
->aux
|| !first_block_aux_obj
)
590 bb
->aux
= obstack_alloc (&block_aux_obstack
, size
);
591 memset (bb
->aux
, 0, size
);
594 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
595 alloc_aux_for_block for each basic block. */
598 alloc_aux_for_blocks (size
)
601 static int initialized
;
605 gcc_obstack_init (&block_aux_obstack
);
608 /* Check whether AUX data are still allocated. */
609 else if (first_block_aux_obj
)
611 first_block_aux_obj
= (char *) obstack_alloc (&block_aux_obstack
, 0);
615 for (i
= 0; i
< n_basic_blocks
; i
++)
616 alloc_aux_for_block (BASIC_BLOCK (i
), size
);
617 alloc_aux_for_block (ENTRY_BLOCK_PTR
, size
);
618 alloc_aux_for_block (EXIT_BLOCK_PTR
, size
);
622 /* Clear AUX pointers of all blocks. */
625 clear_aux_for_blocks ()
629 for (i
= 0; i
< n_basic_blocks
; i
++)
630 BASIC_BLOCK (i
)->aux
= NULL
;
631 ENTRY_BLOCK_PTR
->aux
= NULL
;
632 EXIT_BLOCK_PTR
->aux
= NULL
;
635 /* Free data allocated in block_aux_obstack and clear AUX pointers
639 free_aux_for_blocks ()
641 if (!first_block_aux_obj
)
643 obstack_free (&block_aux_obstack
, first_block_aux_obj
);
644 first_block_aux_obj
= NULL
;
646 clear_aux_for_blocks ();
649 /* Allocate an memory edge of SIZE as BB->aux. The obstack must
650 be first initialized by alloc_aux_for_edges. */
653 alloc_aux_for_edge (e
, size
)
657 /* Verify that aux field is clear. */
658 if (e
->aux
|| !first_edge_aux_obj
)
660 e
->aux
= obstack_alloc (&edge_aux_obstack
, size
);
661 memset (e
->aux
, 0, size
);
664 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
665 alloc_aux_for_edge for each basic edge. */
668 alloc_aux_for_edges (size
)
671 static int initialized
;
675 gcc_obstack_init (&edge_aux_obstack
);
678 /* Check whether AUX data are still allocated. */
679 else if (first_edge_aux_obj
)
681 first_edge_aux_obj
= (char *) obstack_alloc (&edge_aux_obstack
, 0);
685 for (i
= -1; i
< n_basic_blocks
; i
++)
691 bb
= BASIC_BLOCK (i
);
693 bb
= ENTRY_BLOCK_PTR
;
694 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
695 alloc_aux_for_edge (e
, size
);
700 /* Clear AUX pointers of all edges. */
703 clear_aux_for_edges ()
707 for (i
= -1; i
< n_basic_blocks
; i
++)
713 bb
= BASIC_BLOCK (i
);
715 bb
= ENTRY_BLOCK_PTR
;
716 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
721 /* Free data allocated in edge_aux_obstack and clear AUX pointers
725 free_aux_for_edges ()
727 if (!first_edge_aux_obj
)
729 obstack_free (&edge_aux_obstack
, first_edge_aux_obj
);
730 first_edge_aux_obj
= NULL
;
732 clear_aux_for_edges ();