1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
44 CONSTANT -> V_i has been found to hold a constant
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
81 a_11 = PHI (a_9, a_10)
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
115 #include "coretypes.h"
120 #include "basic-block.h"
121 #include "function.h"
122 #include "gimple-pretty-print.h"
123 #include "tree-flow.h"
124 #include "tree-pass.h"
125 #include "tree-ssa-propagate.h"
126 #include "value-prof.h"
127 #include "langhooks.h"
129 #include "diagnostic-core.h"
131 #include "gimple-fold.h"
133 #include "hash-table.h"
136 /* Possible lattice values. */
145 struct prop_value_d
{
147 ccp_lattice_t lattice_val
;
149 /* Propagated value. */
152 /* Mask that applies to the propagated value during CCP. For
153 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
157 typedef struct prop_value_d prop_value_t
;
159 /* Array of propagated constant values. After propagation,
160 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
161 the constant is held in an SSA name representing a memory store
162 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
163 memory reference used to store (i.e., the LHS of the assignment
165 static prop_value_t
*const_val
;
167 static void canonicalize_float_value (prop_value_t
*);
168 static bool ccp_fold_stmt (gimple_stmt_iterator
*);
170 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
173 dump_lattice_value (FILE *outf
, const char *prefix
, prop_value_t val
)
175 switch (val
.lattice_val
)
178 fprintf (outf
, "%sUNINITIALIZED", prefix
);
181 fprintf (outf
, "%sUNDEFINED", prefix
);
184 fprintf (outf
, "%sVARYING", prefix
);
187 fprintf (outf
, "%sCONSTANT ", prefix
);
188 if (TREE_CODE (val
.value
) != INTEGER_CST
189 || val
.mask
.is_zero ())
190 print_generic_expr (outf
, val
.value
, dump_flags
);
193 double_int cval
= tree_to_double_int (val
.value
).and_not (val
.mask
);
194 fprintf (outf
, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
195 prefix
, cval
.high
, cval
.low
);
196 fprintf (outf
, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX
")",
197 val
.mask
.high
, val
.mask
.low
);
206 /* Print lattice value VAL to stderr. */
208 void debug_lattice_value (prop_value_t val
);
211 debug_lattice_value (prop_value_t val
)
213 dump_lattice_value (stderr
, "", val
);
214 fprintf (stderr
, "\n");
218 /* Compute a default value for variable VAR and store it in the
219 CONST_VAL array. The following rules are used to get default
222 1- Global and static variables that are declared constant are
225 2- Any other value is considered UNDEFINED. This is useful when
226 considering PHI nodes. PHI arguments that are undefined do not
227 change the constant value of the PHI node, which allows for more
228 constants to be propagated.
230 3- Variables defined by statements other than assignments and PHI
231 nodes are considered VARYING.
233 4- Initial values of variables that are not GIMPLE registers are
234 considered VARYING. */
237 get_default_value (tree var
)
239 prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, { 0, 0 } };
242 stmt
= SSA_NAME_DEF_STMT (var
);
244 if (gimple_nop_p (stmt
))
246 /* Variables defined by an empty statement are those used
247 before being initialized. If VAR is a local variable, we
248 can assume initially that it is UNDEFINED, otherwise we must
249 consider it VARYING. */
250 if (!virtual_operand_p (var
)
251 && TREE_CODE (SSA_NAME_VAR (var
)) == VAR_DECL
)
252 val
.lattice_val
= UNDEFINED
;
255 val
.lattice_val
= VARYING
;
256 val
.mask
= double_int_minus_one
;
259 else if (is_gimple_assign (stmt
)
260 /* Value-returning GIMPLE_CALL statements assign to
261 a variable, and are treated similarly to GIMPLE_ASSIGN. */
262 || (is_gimple_call (stmt
)
263 && gimple_call_lhs (stmt
) != NULL_TREE
)
264 || gimple_code (stmt
) == GIMPLE_PHI
)
267 if (gimple_assign_single_p (stmt
)
268 && DECL_P (gimple_assign_rhs1 (stmt
))
269 && (cst
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
))))
271 val
.lattice_val
= CONSTANT
;
275 /* Any other variable defined by an assignment or a PHI node
276 is considered UNDEFINED. */
277 val
.lattice_val
= UNDEFINED
;
281 /* Otherwise, VAR will never take on a constant value. */
282 val
.lattice_val
= VARYING
;
283 val
.mask
= double_int_minus_one
;
290 /* Get the constant value associated with variable VAR. */
292 static inline prop_value_t
*
297 if (const_val
== NULL
)
300 val
= &const_val
[SSA_NAME_VERSION (var
)];
301 if (val
->lattice_val
== UNINITIALIZED
)
302 *val
= get_default_value (var
);
304 canonicalize_float_value (val
);
309 /* Return the constant tree value associated with VAR. */
312 get_constant_value (tree var
)
315 if (TREE_CODE (var
) != SSA_NAME
)
317 if (is_gimple_min_invariant (var
))
321 val
= get_value (var
);
323 && val
->lattice_val
== CONSTANT
324 && (TREE_CODE (val
->value
) != INTEGER_CST
325 || val
->mask
.is_zero ()))
330 /* Sets the value associated with VAR to VARYING. */
333 set_value_varying (tree var
)
335 prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
337 val
->lattice_val
= VARYING
;
338 val
->value
= NULL_TREE
;
339 val
->mask
= double_int_minus_one
;
342 /* For float types, modify the value of VAL to make ccp work correctly
343 for non-standard values (-0, NaN):
345 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
346 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
347 This is to fix the following problem (see PR 29921): Suppose we have
351 and we set value of y to NaN. This causes value of x to be set to NaN.
352 When we later determine that y is in fact VARYING, fold uses the fact
353 that HONOR_NANS is false, and we try to change the value of x to 0,
354 causing an ICE. With HONOR_NANS being false, the real appearance of
355 NaN would cause undefined behavior, though, so claiming that y (and x)
356 are UNDEFINED initially is correct. */
359 canonicalize_float_value (prop_value_t
*val
)
361 enum machine_mode mode
;
365 if (val
->lattice_val
!= CONSTANT
366 || TREE_CODE (val
->value
) != REAL_CST
)
369 d
= TREE_REAL_CST (val
->value
);
370 type
= TREE_TYPE (val
->value
);
371 mode
= TYPE_MODE (type
);
373 if (!HONOR_SIGNED_ZEROS (mode
)
374 && REAL_VALUE_MINUS_ZERO (d
))
376 val
->value
= build_real (type
, dconst0
);
380 if (!HONOR_NANS (mode
)
381 && REAL_VALUE_ISNAN (d
))
383 val
->lattice_val
= UNDEFINED
;
389 /* Return whether the lattice transition is valid. */
392 valid_lattice_transition (prop_value_t old_val
, prop_value_t new_val
)
394 /* Lattice transitions must always be monotonically increasing in
396 if (old_val
.lattice_val
< new_val
.lattice_val
)
399 if (old_val
.lattice_val
!= new_val
.lattice_val
)
402 if (!old_val
.value
&& !new_val
.value
)
405 /* Now both lattice values are CONSTANT. */
407 /* Allow transitioning from PHI <&x, not executable> == &x
408 to PHI <&x, &y> == common alignment. */
409 if (TREE_CODE (old_val
.value
) != INTEGER_CST
410 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
413 /* Bit-lattices have to agree in the still valid bits. */
414 if (TREE_CODE (old_val
.value
) == INTEGER_CST
415 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
416 return tree_to_double_int (old_val
.value
).and_not (new_val
.mask
)
417 == tree_to_double_int (new_val
.value
).and_not (new_val
.mask
);
419 /* Otherwise constant values have to agree. */
420 return operand_equal_p (old_val
.value
, new_val
.value
, 0);
423 /* Set the value for variable VAR to NEW_VAL. Return true if the new
424 value is different from VAR's previous value. */
427 set_lattice_value (tree var
, prop_value_t new_val
)
429 /* We can deal with old UNINITIALIZED values just fine here. */
430 prop_value_t
*old_val
= &const_val
[SSA_NAME_VERSION (var
)];
432 canonicalize_float_value (&new_val
);
434 /* We have to be careful to not go up the bitwise lattice
435 represented by the mask.
436 ??? This doesn't seem to be the best place to enforce this. */
437 if (new_val
.lattice_val
== CONSTANT
438 && old_val
->lattice_val
== CONSTANT
439 && TREE_CODE (new_val
.value
) == INTEGER_CST
440 && TREE_CODE (old_val
->value
) == INTEGER_CST
)
443 diff
= tree_to_double_int (new_val
.value
)
444 ^ tree_to_double_int (old_val
->value
);
445 new_val
.mask
= new_val
.mask
| old_val
->mask
| diff
;
448 gcc_assert (valid_lattice_transition (*old_val
, new_val
));
450 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
451 caller that this was a non-transition. */
452 if (old_val
->lattice_val
!= new_val
.lattice_val
453 || (new_val
.lattice_val
== CONSTANT
454 && TREE_CODE (new_val
.value
) == INTEGER_CST
455 && (TREE_CODE (old_val
->value
) != INTEGER_CST
456 || new_val
.mask
!= old_val
->mask
)))
458 /* ??? We would like to delay creation of INTEGER_CSTs from
459 partially constants here. */
461 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
463 dump_lattice_value (dump_file
, "Lattice value changed to ", new_val
);
464 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
469 gcc_assert (new_val
.lattice_val
!= UNINITIALIZED
);
476 static prop_value_t
get_value_for_expr (tree
, bool);
477 static prop_value_t
bit_value_binop (enum tree_code
, tree
, tree
, tree
);
478 static void bit_value_binop_1 (enum tree_code
, tree
, double_int
*, double_int
*,
479 tree
, double_int
, double_int
,
480 tree
, double_int
, double_int
);
482 /* Return a double_int that can be used for bitwise simplifications
486 value_to_double_int (prop_value_t val
)
489 && TREE_CODE (val
.value
) == INTEGER_CST
)
490 return tree_to_double_int (val
.value
);
492 return double_int_zero
;
495 /* Return the value for the address expression EXPR based on alignment
499 get_value_from_alignment (tree expr
)
501 tree type
= TREE_TYPE (expr
);
503 unsigned HOST_WIDE_INT bitpos
;
506 gcc_assert (TREE_CODE (expr
) == ADDR_EXPR
);
508 get_pointer_alignment_1 (expr
, &align
, &bitpos
);
509 val
.mask
= (POINTER_TYPE_P (type
) || TYPE_UNSIGNED (type
)
510 ? double_int::mask (TYPE_PRECISION (type
))
511 : double_int_minus_one
)
512 .and_not (double_int::from_uhwi (align
/ BITS_PER_UNIT
- 1));
513 val
.lattice_val
= val
.mask
.is_minus_one () ? VARYING
: CONSTANT
;
514 if (val
.lattice_val
== CONSTANT
)
516 = double_int_to_tree (type
,
517 double_int::from_uhwi (bitpos
/ BITS_PER_UNIT
));
519 val
.value
= NULL_TREE
;
524 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
525 return constant bits extracted from alignment information for
526 invariant addresses. */
529 get_value_for_expr (tree expr
, bool for_bits_p
)
533 if (TREE_CODE (expr
) == SSA_NAME
)
535 val
= *get_value (expr
);
537 && val
.lattice_val
== CONSTANT
538 && TREE_CODE (val
.value
) == ADDR_EXPR
)
539 val
= get_value_from_alignment (val
.value
);
541 else if (is_gimple_min_invariant (expr
)
542 && (!for_bits_p
|| TREE_CODE (expr
) != ADDR_EXPR
))
544 val
.lattice_val
= CONSTANT
;
546 val
.mask
= double_int_zero
;
547 canonicalize_float_value (&val
);
549 else if (TREE_CODE (expr
) == ADDR_EXPR
)
550 val
= get_value_from_alignment (expr
);
553 val
.lattice_val
= VARYING
;
554 val
.mask
= double_int_minus_one
;
555 val
.value
= NULL_TREE
;
560 /* Return the likely CCP lattice value for STMT.
562 If STMT has no operands, then return CONSTANT.
564 Else if undefinedness of operands of STMT cause its value to be
565 undefined, then return UNDEFINED.
567 Else if any operands of STMT are constants, then return CONSTANT.
569 Else return VARYING. */
572 likely_value (gimple stmt
)
574 bool has_constant_operand
, has_undefined_operand
, all_undefined_operands
;
579 enum gimple_code code
= gimple_code (stmt
);
581 /* This function appears to be called only for assignments, calls,
582 conditionals, and switches, due to the logic in visit_stmt. */
583 gcc_assert (code
== GIMPLE_ASSIGN
584 || code
== GIMPLE_CALL
585 || code
== GIMPLE_COND
586 || code
== GIMPLE_SWITCH
);
588 /* If the statement has volatile operands, it won't fold to a
590 if (gimple_has_volatile_ops (stmt
))
593 /* Arrive here for more complex cases. */
594 has_constant_operand
= false;
595 has_undefined_operand
= false;
596 all_undefined_operands
= true;
597 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
599 prop_value_t
*val
= get_value (use
);
601 if (val
->lattice_val
== UNDEFINED
)
602 has_undefined_operand
= true;
604 all_undefined_operands
= false;
606 if (val
->lattice_val
== CONSTANT
)
607 has_constant_operand
= true;
610 /* There may be constants in regular rhs operands. For calls we
611 have to ignore lhs, fndecl and static chain, otherwise only
613 for (i
= (is_gimple_call (stmt
) ? 2 : 0) + gimple_has_lhs (stmt
);
614 i
< gimple_num_ops (stmt
); ++i
)
616 tree op
= gimple_op (stmt
, i
);
617 if (!op
|| TREE_CODE (op
) == SSA_NAME
)
619 if (is_gimple_min_invariant (op
))
620 has_constant_operand
= true;
623 if (has_constant_operand
)
624 all_undefined_operands
= false;
626 /* If the operation combines operands like COMPLEX_EXPR make sure to
627 not mark the result UNDEFINED if only one part of the result is
629 if (has_undefined_operand
&& all_undefined_operands
)
631 else if (code
== GIMPLE_ASSIGN
&& has_undefined_operand
)
633 switch (gimple_assign_rhs_code (stmt
))
635 /* Unary operators are handled with all_undefined_operands. */
638 case POINTER_PLUS_EXPR
:
639 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
640 Not bitwise operators, one VARYING operand may specify the
641 result completely. Not logical operators for the same reason.
642 Not COMPLEX_EXPR as one VARYING operand makes the result partly
643 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
644 the undefined operand may be promoted. */
648 /* If any part of an address is UNDEFINED, like the index
649 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
656 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
657 fall back to CONSTANT. During iteration UNDEFINED may still drop
659 if (has_undefined_operand
)
662 /* We do not consider virtual operands here -- load from read-only
663 memory may have only VARYING virtual operands, but still be
665 if (has_constant_operand
666 || gimple_references_memory_p (stmt
))
672 /* Returns true if STMT cannot be constant. */
675 surely_varying_stmt_p (gimple stmt
)
677 /* If the statement has operands that we cannot handle, it cannot be
679 if (gimple_has_volatile_ops (stmt
))
682 /* If it is a call and does not return a value or is not a
683 builtin and not an indirect call, it is varying. */
684 if (is_gimple_call (stmt
))
687 if (!gimple_call_lhs (stmt
)
688 || ((fndecl
= gimple_call_fndecl (stmt
)) != NULL_TREE
689 && !DECL_BUILT_IN (fndecl
)))
693 /* Any other store operation is not interesting. */
694 else if (gimple_vdef (stmt
))
697 /* Anything other than assignments and conditional jumps are not
698 interesting for CCP. */
699 if (gimple_code (stmt
) != GIMPLE_ASSIGN
700 && gimple_code (stmt
) != GIMPLE_COND
701 && gimple_code (stmt
) != GIMPLE_SWITCH
702 && gimple_code (stmt
) != GIMPLE_CALL
)
708 /* Initialize local data structures for CCP. */
711 ccp_initialize (void)
715 const_val
= XCNEWVEC (prop_value_t
, num_ssa_names
);
717 /* Initialize simulation flags for PHI nodes and statements. */
720 gimple_stmt_iterator i
;
722 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
724 gimple stmt
= gsi_stmt (i
);
727 /* If the statement is a control insn, then we do not
728 want to avoid simulating the statement once. Failure
729 to do so means that those edges will never get added. */
730 if (stmt_ends_bb_p (stmt
))
733 is_varying
= surely_varying_stmt_p (stmt
);
740 /* If the statement will not produce a constant, mark
741 all its outputs VARYING. */
742 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
743 set_value_varying (def
);
745 prop_set_simulate_again (stmt
, !is_varying
);
749 /* Now process PHI nodes. We never clear the simulate_again flag on
750 phi nodes, since we do not know which edges are executable yet,
751 except for phi nodes for virtual operands when we do not do store ccp. */
754 gimple_stmt_iterator i
;
756 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
758 gimple phi
= gsi_stmt (i
);
760 if (virtual_operand_p (gimple_phi_result (phi
)))
761 prop_set_simulate_again (phi
, false);
763 prop_set_simulate_again (phi
, true);
768 /* Debug count support. Reset the values of ssa names
769 VARYING when the total number ssa names analyzed is
770 beyond the debug count specified. */
776 for (i
= 0; i
< num_ssa_names
; i
++)
780 const_val
[i
].lattice_val
= VARYING
;
781 const_val
[i
].mask
= double_int_minus_one
;
782 const_val
[i
].value
= NULL_TREE
;
788 /* Do final substitution of propagated values, cleanup the flowgraph and
789 free allocated storage.
791 Return TRUE when something was optimized. */
796 bool something_changed
;
801 /* Derive alignment and misalignment information from partially
802 constant pointers in the lattice. */
803 for (i
= 1; i
< num_ssa_names
; ++i
)
805 tree name
= ssa_name (i
);
807 unsigned int tem
, align
;
810 || !POINTER_TYPE_P (TREE_TYPE (name
)))
813 val
= get_value (name
);
814 if (val
->lattice_val
!= CONSTANT
815 || TREE_CODE (val
->value
) != INTEGER_CST
)
818 /* Trailing constant bits specify the alignment, trailing value
819 bits the misalignment. */
821 align
= (tem
& -tem
);
823 set_ptr_info_alignment (get_ptr_info (name
), align
,
824 TREE_INT_CST_LOW (val
->value
) & (align
- 1));
827 /* Perform substitutions based on the known constant values. */
828 something_changed
= substitute_and_fold (get_constant_value
,
829 ccp_fold_stmt
, true);
833 return something_changed
;;
837 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
840 any M UNDEFINED = any
841 any M VARYING = VARYING
842 Ci M Cj = Ci if (i == j)
843 Ci M Cj = VARYING if (i != j)
847 ccp_lattice_meet (prop_value_t
*val1
, prop_value_t
*val2
)
849 if (val1
->lattice_val
== UNDEFINED
)
851 /* UNDEFINED M any = any */
854 else if (val2
->lattice_val
== UNDEFINED
)
856 /* any M UNDEFINED = any
857 Nothing to do. VAL1 already contains the value we want. */
860 else if (val1
->lattice_val
== VARYING
861 || val2
->lattice_val
== VARYING
)
863 /* any M VARYING = VARYING. */
864 val1
->lattice_val
= VARYING
;
865 val1
->mask
= double_int_minus_one
;
866 val1
->value
= NULL_TREE
;
868 else if (val1
->lattice_val
== CONSTANT
869 && val2
->lattice_val
== CONSTANT
870 && TREE_CODE (val1
->value
) == INTEGER_CST
871 && TREE_CODE (val2
->value
) == INTEGER_CST
)
873 /* Ci M Cj = Ci if (i == j)
874 Ci M Cj = VARYING if (i != j)
876 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
878 val1
->mask
= val1
->mask
| val2
->mask
879 | (tree_to_double_int (val1
->value
)
880 ^ tree_to_double_int (val2
->value
));
881 if (val1
->mask
.is_minus_one ())
883 val1
->lattice_val
= VARYING
;
884 val1
->value
= NULL_TREE
;
887 else if (val1
->lattice_val
== CONSTANT
888 && val2
->lattice_val
== CONSTANT
889 && simple_cst_equal (val1
->value
, val2
->value
) == 1)
891 /* Ci M Cj = Ci if (i == j)
892 Ci M Cj = VARYING if (i != j)
894 VAL1 already contains the value we want for equivalent values. */
896 else if (val1
->lattice_val
== CONSTANT
897 && val2
->lattice_val
== CONSTANT
898 && (TREE_CODE (val1
->value
) == ADDR_EXPR
899 || TREE_CODE (val2
->value
) == ADDR_EXPR
))
901 /* When not equal addresses are involved try meeting for
903 prop_value_t tem
= *val2
;
904 if (TREE_CODE (val1
->value
) == ADDR_EXPR
)
905 *val1
= get_value_for_expr (val1
->value
, true);
906 if (TREE_CODE (val2
->value
) == ADDR_EXPR
)
907 tem
= get_value_for_expr (val2
->value
, true);
908 ccp_lattice_meet (val1
, &tem
);
912 /* Any other combination is VARYING. */
913 val1
->lattice_val
= VARYING
;
914 val1
->mask
= double_int_minus_one
;
915 val1
->value
= NULL_TREE
;
920 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
921 lattice values to determine PHI_NODE's lattice value. The value of a
922 PHI node is determined calling ccp_lattice_meet with all the arguments
923 of the PHI node that are incoming via executable edges. */
925 static enum ssa_prop_result
926 ccp_visit_phi_node (gimple phi
)
929 prop_value_t
*old_val
, new_val
;
931 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
933 fprintf (dump_file
, "\nVisiting PHI node: ");
934 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
937 old_val
= get_value (gimple_phi_result (phi
));
938 switch (old_val
->lattice_val
)
941 return SSA_PROP_VARYING
;
948 new_val
.lattice_val
= UNDEFINED
;
949 new_val
.value
= NULL_TREE
;
956 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
958 /* Compute the meet operator over all the PHI arguments flowing
959 through executable edges. */
960 edge e
= gimple_phi_arg_edge (phi
, i
);
962 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
965 "\n Argument #%d (%d -> %d %sexecutable)\n",
966 i
, e
->src
->index
, e
->dest
->index
,
967 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
970 /* If the incoming edge is executable, Compute the meet operator for
971 the existing value of the PHI node and the current PHI argument. */
972 if (e
->flags
& EDGE_EXECUTABLE
)
974 tree arg
= gimple_phi_arg (phi
, i
)->def
;
975 prop_value_t arg_val
= get_value_for_expr (arg
, false);
977 ccp_lattice_meet (&new_val
, &arg_val
);
979 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
981 fprintf (dump_file
, "\t");
982 print_generic_expr (dump_file
, arg
, dump_flags
);
983 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
984 fprintf (dump_file
, "\n");
987 if (new_val
.lattice_val
== VARYING
)
992 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
994 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
995 fprintf (dump_file
, "\n\n");
998 /* Make the transition to the new value. */
999 if (set_lattice_value (gimple_phi_result (phi
), new_val
))
1001 if (new_val
.lattice_val
== VARYING
)
1002 return SSA_PROP_VARYING
;
1004 return SSA_PROP_INTERESTING
;
1007 return SSA_PROP_NOT_INTERESTING
;
1010 /* Return the constant value for OP or OP otherwise. */
1013 valueize_op (tree op
)
1015 if (TREE_CODE (op
) == SSA_NAME
)
1017 tree tem
= get_constant_value (op
);
1024 /* CCP specific front-end to the non-destructive constant folding
1027 Attempt to simplify the RHS of STMT knowing that one or more
1028 operands are constants.
1030 If simplification is possible, return the simplified RHS,
1031 otherwise return the original RHS or NULL_TREE. */
1034 ccp_fold (gimple stmt
)
1036 location_t loc
= gimple_location (stmt
);
1037 switch (gimple_code (stmt
))
1041 /* Handle comparison operators that can appear in GIMPLE form. */
1042 tree op0
= valueize_op (gimple_cond_lhs (stmt
));
1043 tree op1
= valueize_op (gimple_cond_rhs (stmt
));
1044 enum tree_code code
= gimple_cond_code (stmt
);
1045 return fold_binary_loc (loc
, code
, boolean_type_node
, op0
, op1
);
1050 /* Return the constant switch index. */
1051 return valueize_op (gimple_switch_index (stmt
));
1056 return gimple_fold_stmt_to_constant_1 (stmt
, valueize_op
);
1063 /* Apply the operation CODE in type TYPE to the value, mask pair
1064 RVAL and RMASK representing a value of type RTYPE and set
1065 the value, mask pair *VAL and *MASK to the result. */
1068 bit_value_unop_1 (enum tree_code code
, tree type
,
1069 double_int
*val
, double_int
*mask
,
1070 tree rtype
, double_int rval
, double_int rmask
)
1081 double_int temv
, temm
;
1082 /* Return ~rval + 1. */
1083 bit_value_unop_1 (BIT_NOT_EXPR
, type
, &temv
, &temm
, type
, rval
, rmask
);
1084 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1086 type
, double_int_one
, double_int_zero
);
1094 /* First extend mask and value according to the original type. */
1095 uns
= TYPE_UNSIGNED (rtype
);
1096 *mask
= rmask
.ext (TYPE_PRECISION (rtype
), uns
);
1097 *val
= rval
.ext (TYPE_PRECISION (rtype
), uns
);
1099 /* Then extend mask and value according to the target type. */
1100 uns
= TYPE_UNSIGNED (type
);
1101 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1102 *val
= (*val
).ext (TYPE_PRECISION (type
), uns
);
1107 *mask
= double_int_minus_one
;
1112 /* Apply the operation CODE in type TYPE to the value, mask pairs
1113 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1114 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1117 bit_value_binop_1 (enum tree_code code
, tree type
,
1118 double_int
*val
, double_int
*mask
,
1119 tree r1type
, double_int r1val
, double_int r1mask
,
1120 tree r2type
, double_int r2val
, double_int r2mask
)
1122 bool uns
= TYPE_UNSIGNED (type
);
1123 /* Assume we'll get a constant result. Use an initial varying value,
1124 we fall back to varying in the end if necessary. */
1125 *mask
= double_int_minus_one
;
1129 /* The mask is constant where there is a known not
1130 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1131 *mask
= (r1mask
| r2mask
) & (r1val
| r1mask
) & (r2val
| r2mask
);
1132 *val
= r1val
& r2val
;
1136 /* The mask is constant where there is a known
1137 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1138 *mask
= (r1mask
| r2mask
)
1139 .and_not (r1val
.and_not (r1mask
) | r2val
.and_not (r2mask
));
1140 *val
= r1val
| r2val
;
1145 *mask
= r1mask
| r2mask
;
1146 *val
= r1val
^ r2val
;
1151 if (r2mask
.is_zero ())
1153 HOST_WIDE_INT shift
= r2val
.low
;
1154 if (code
== RROTATE_EXPR
)
1156 *mask
= r1mask
.lrotate (shift
, TYPE_PRECISION (type
));
1157 *val
= r1val
.lrotate (shift
, TYPE_PRECISION (type
));
1163 /* ??? We can handle partially known shift counts if we know
1164 its sign. That way we can tell that (x << (y | 8)) & 255
1166 if (r2mask
.is_zero ())
1168 HOST_WIDE_INT shift
= r2val
.low
;
1169 if (code
== RSHIFT_EXPR
)
1171 /* We need to know if we are doing a left or a right shift
1172 to properly shift in zeros for left shift and unsigned
1173 right shifts and the sign bit for signed right shifts.
1174 For signed right shifts we shift in varying in case
1175 the sign bit was varying. */
1178 *mask
= r1mask
.llshift (shift
, TYPE_PRECISION (type
));
1179 *val
= r1val
.llshift (shift
, TYPE_PRECISION (type
));
1184 *mask
= r1mask
.rshift (shift
, TYPE_PRECISION (type
), !uns
);
1185 *val
= r1val
.rshift (shift
, TYPE_PRECISION (type
), !uns
);
1196 case POINTER_PLUS_EXPR
:
1199 /* Do the addition with unknown bits set to zero, to give carry-ins of
1200 zero wherever possible. */
1201 lo
= r1val
.and_not (r1mask
) + r2val
.and_not (r2mask
);
1202 lo
= lo
.ext (TYPE_PRECISION (type
), uns
);
1203 /* Do the addition with unknown bits set to one, to give carry-ins of
1204 one wherever possible. */
1205 hi
= (r1val
| r1mask
) + (r2val
| r2mask
);
1206 hi
= hi
.ext (TYPE_PRECISION (type
), uns
);
1207 /* Each bit in the result is known if (a) the corresponding bits in
1208 both inputs are known, and (b) the carry-in to that bit position
1209 is known. We can check condition (b) by seeing if we got the same
1210 result with minimised carries as with maximised carries. */
1211 *mask
= r1mask
| r2mask
| (lo
^ hi
);
1212 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1213 /* It shouldn't matter whether we choose lo or hi here. */
1220 double_int temv
, temm
;
1221 bit_value_unop_1 (NEGATE_EXPR
, r2type
, &temv
, &temm
,
1222 r2type
, r2val
, r2mask
);
1223 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1224 r1type
, r1val
, r1mask
,
1225 r2type
, temv
, temm
);
1231 /* Just track trailing zeros in both operands and transfer
1232 them to the other. */
1233 int r1tz
= (r1val
| r1mask
).trailing_zeros ();
1234 int r2tz
= (r2val
| r2mask
).trailing_zeros ();
1235 if (r1tz
+ r2tz
>= HOST_BITS_PER_DOUBLE_INT
)
1237 *mask
= double_int_zero
;
1238 *val
= double_int_zero
;
1240 else if (r1tz
+ r2tz
> 0)
1242 *mask
= ~double_int::mask (r1tz
+ r2tz
);
1243 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1244 *val
= double_int_zero
;
1252 double_int m
= r1mask
| r2mask
;
1253 if (r1val
.and_not (m
) != r2val
.and_not (m
))
1255 *mask
= double_int_zero
;
1256 *val
= ((code
== EQ_EXPR
) ? double_int_zero
: double_int_one
);
1260 /* We know the result of a comparison is always one or zero. */
1261 *mask
= double_int_one
;
1262 *val
= double_int_zero
;
1270 double_int tem
= r1val
;
1276 code
= swap_tree_comparison (code
);
1283 /* If the most significant bits are not known we know nothing. */
1284 if (r1mask
.is_negative () || r2mask
.is_negative ())
1287 /* For comparisons the signedness is in the comparison operands. */
1288 uns
= TYPE_UNSIGNED (r1type
);
1290 /* If we know the most significant bits we know the values
1291 value ranges by means of treating varying bits as zero
1292 or one. Do a cross comparison of the max/min pairs. */
1293 maxmin
= (r1val
| r1mask
).cmp (r2val
.and_not (r2mask
), uns
);
1294 minmax
= r1val
.and_not (r1mask
).cmp (r2val
| r2mask
, uns
);
1295 if (maxmin
< 0) /* r1 is less than r2. */
1297 *mask
= double_int_zero
;
1298 *val
= double_int_one
;
1300 else if (minmax
> 0) /* r1 is not less or equal to r2. */
1302 *mask
= double_int_zero
;
1303 *val
= double_int_zero
;
1305 else if (maxmin
== minmax
) /* r1 and r2 are equal. */
1307 /* This probably should never happen as we'd have
1308 folded the thing during fully constant value folding. */
1309 *mask
= double_int_zero
;
1310 *val
= (code
== LE_EXPR
? double_int_one
: double_int_zero
);
1314 /* We know the result of a comparison is always one or zero. */
1315 *mask
= double_int_one
;
1316 *val
= double_int_zero
;
1325 /* Return the propagation value when applying the operation CODE to
1326 the value RHS yielding type TYPE. */
1329 bit_value_unop (enum tree_code code
, tree type
, tree rhs
)
1331 prop_value_t rval
= get_value_for_expr (rhs
, true);
1332 double_int value
, mask
;
1335 if (rval
.lattice_val
== UNDEFINED
)
1338 gcc_assert ((rval
.lattice_val
== CONSTANT
1339 && TREE_CODE (rval
.value
) == INTEGER_CST
)
1340 || rval
.mask
.is_minus_one ());
1341 bit_value_unop_1 (code
, type
, &value
, &mask
,
1342 TREE_TYPE (rhs
), value_to_double_int (rval
), rval
.mask
);
1343 if (!mask
.is_minus_one ())
1345 val
.lattice_val
= CONSTANT
;
1347 /* ??? Delay building trees here. */
1348 val
.value
= double_int_to_tree (type
, value
);
1352 val
.lattice_val
= VARYING
;
1353 val
.value
= NULL_TREE
;
1354 val
.mask
= double_int_minus_one
;
1359 /* Return the propagation value when applying the operation CODE to
1360 the values RHS1 and RHS2 yielding type TYPE. */
1363 bit_value_binop (enum tree_code code
, tree type
, tree rhs1
, tree rhs2
)
1365 prop_value_t r1val
= get_value_for_expr (rhs1
, true);
1366 prop_value_t r2val
= get_value_for_expr (rhs2
, true);
1367 double_int value
, mask
;
1370 if (r1val
.lattice_val
== UNDEFINED
1371 || r2val
.lattice_val
== UNDEFINED
)
1373 val
.lattice_val
= VARYING
;
1374 val
.value
= NULL_TREE
;
1375 val
.mask
= double_int_minus_one
;
1379 gcc_assert ((r1val
.lattice_val
== CONSTANT
1380 && TREE_CODE (r1val
.value
) == INTEGER_CST
)
1381 || r1val
.mask
.is_minus_one ());
1382 gcc_assert ((r2val
.lattice_val
== CONSTANT
1383 && TREE_CODE (r2val
.value
) == INTEGER_CST
)
1384 || r2val
.mask
.is_minus_one ());
1385 bit_value_binop_1 (code
, type
, &value
, &mask
,
1386 TREE_TYPE (rhs1
), value_to_double_int (r1val
), r1val
.mask
,
1387 TREE_TYPE (rhs2
), value_to_double_int (r2val
), r2val
.mask
);
1388 if (!mask
.is_minus_one ())
1390 val
.lattice_val
= CONSTANT
;
1392 /* ??? Delay building trees here. */
1393 val
.value
= double_int_to_tree (type
, value
);
1397 val
.lattice_val
= VARYING
;
1398 val
.value
= NULL_TREE
;
1399 val
.mask
= double_int_minus_one
;
1404 /* Return the propagation value when applying __builtin_assume_aligned to
1408 bit_value_assume_aligned (gimple stmt
)
1410 tree ptr
= gimple_call_arg (stmt
, 0), align
, misalign
= NULL_TREE
;
1411 tree type
= TREE_TYPE (ptr
);
1412 unsigned HOST_WIDE_INT aligni
, misaligni
= 0;
1413 prop_value_t ptrval
= get_value_for_expr (ptr
, true);
1414 prop_value_t alignval
;
1415 double_int value
, mask
;
1417 if (ptrval
.lattice_val
== UNDEFINED
)
1419 gcc_assert ((ptrval
.lattice_val
== CONSTANT
1420 && TREE_CODE (ptrval
.value
) == INTEGER_CST
)
1421 || ptrval
.mask
.is_minus_one ());
1422 align
= gimple_call_arg (stmt
, 1);
1423 if (!host_integerp (align
, 1))
1425 aligni
= tree_low_cst (align
, 1);
1427 || (aligni
& (aligni
- 1)) != 0)
1429 if (gimple_call_num_args (stmt
) > 2)
1431 misalign
= gimple_call_arg (stmt
, 2);
1432 if (!host_integerp (misalign
, 1))
1434 misaligni
= tree_low_cst (misalign
, 1);
1435 if (misaligni
>= aligni
)
1438 align
= build_int_cst_type (type
, -aligni
);
1439 alignval
= get_value_for_expr (align
, true);
1440 bit_value_binop_1 (BIT_AND_EXPR
, type
, &value
, &mask
,
1441 type
, value_to_double_int (ptrval
), ptrval
.mask
,
1442 type
, value_to_double_int (alignval
), alignval
.mask
);
1443 if (!mask
.is_minus_one ())
1445 val
.lattice_val
= CONSTANT
;
1447 gcc_assert ((mask
.low
& (aligni
- 1)) == 0);
1448 gcc_assert ((value
.low
& (aligni
- 1)) == 0);
1449 value
.low
|= misaligni
;
1450 /* ??? Delay building trees here. */
1451 val
.value
= double_int_to_tree (type
, value
);
1455 val
.lattice_val
= VARYING
;
1456 val
.value
= NULL_TREE
;
1457 val
.mask
= double_int_minus_one
;
1462 /* Evaluate statement STMT.
1463 Valid only for assignments, calls, conditionals, and switches. */
1466 evaluate_stmt (gimple stmt
)
1469 tree simplified
= NULL_TREE
;
1470 ccp_lattice_t likelyvalue
= likely_value (stmt
);
1471 bool is_constant
= false;
1474 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1476 fprintf (dump_file
, "which is likely ");
1477 switch (likelyvalue
)
1480 fprintf (dump_file
, "CONSTANT");
1483 fprintf (dump_file
, "UNDEFINED");
1486 fprintf (dump_file
, "VARYING");
1490 fprintf (dump_file
, "\n");
1493 /* If the statement is likely to have a CONSTANT result, then try
1494 to fold the statement to determine the constant value. */
1495 /* FIXME. This is the only place that we call ccp_fold.
1496 Since likely_value never returns CONSTANT for calls, we will
1497 not attempt to fold them, including builtins that may profit. */
1498 if (likelyvalue
== CONSTANT
)
1500 fold_defer_overflow_warnings ();
1501 simplified
= ccp_fold (stmt
);
1502 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1503 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
1506 /* The statement produced a constant value. */
1507 val
.lattice_val
= CONSTANT
;
1508 val
.value
= simplified
;
1509 val
.mask
= double_int_zero
;
1512 /* If the statement is likely to have a VARYING result, then do not
1513 bother folding the statement. */
1514 else if (likelyvalue
== VARYING
)
1516 enum gimple_code code
= gimple_code (stmt
);
1517 if (code
== GIMPLE_ASSIGN
)
1519 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1521 /* Other cases cannot satisfy is_gimple_min_invariant
1523 if (get_gimple_rhs_class (subcode
) == GIMPLE_SINGLE_RHS
)
1524 simplified
= gimple_assign_rhs1 (stmt
);
1526 else if (code
== GIMPLE_SWITCH
)
1527 simplified
= gimple_switch_index (stmt
);
1529 /* These cannot satisfy is_gimple_min_invariant without folding. */
1530 gcc_assert (code
== GIMPLE_CALL
|| code
== GIMPLE_COND
);
1531 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1534 /* The statement produced a constant value. */
1535 val
.lattice_val
= CONSTANT
;
1536 val
.value
= simplified
;
1537 val
.mask
= double_int_zero
;
1541 /* Resort to simplification for bitwise tracking. */
1542 if (flag_tree_bit_ccp
1543 && (likelyvalue
== CONSTANT
|| is_gimple_call (stmt
))
1546 enum gimple_code code
= gimple_code (stmt
);
1548 val
.lattice_val
= VARYING
;
1549 val
.value
= NULL_TREE
;
1550 val
.mask
= double_int_minus_one
;
1551 if (code
== GIMPLE_ASSIGN
)
1553 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1554 tree rhs1
= gimple_assign_rhs1 (stmt
);
1555 switch (get_gimple_rhs_class (subcode
))
1557 case GIMPLE_SINGLE_RHS
:
1558 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1559 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1560 val
= get_value_for_expr (rhs1
, true);
1563 case GIMPLE_UNARY_RHS
:
1564 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1565 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1566 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt
))
1567 || POINTER_TYPE_P (gimple_expr_type (stmt
))))
1568 val
= bit_value_unop (subcode
, gimple_expr_type (stmt
), rhs1
);
1571 case GIMPLE_BINARY_RHS
:
1572 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1573 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1575 tree lhs
= gimple_assign_lhs (stmt
);
1576 tree rhs2
= gimple_assign_rhs2 (stmt
);
1577 val
= bit_value_binop (subcode
,
1578 TREE_TYPE (lhs
), rhs1
, rhs2
);
1585 else if (code
== GIMPLE_COND
)
1587 enum tree_code code
= gimple_cond_code (stmt
);
1588 tree rhs1
= gimple_cond_lhs (stmt
);
1589 tree rhs2
= gimple_cond_rhs (stmt
);
1590 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1591 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1592 val
= bit_value_binop (code
, TREE_TYPE (rhs1
), rhs1
, rhs2
);
1594 else if (code
== GIMPLE_CALL
1595 && (fndecl
= gimple_call_fndecl (stmt
))
1596 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1598 switch (DECL_FUNCTION_CODE (fndecl
))
1600 case BUILT_IN_MALLOC
:
1601 case BUILT_IN_REALLOC
:
1602 case BUILT_IN_CALLOC
:
1603 case BUILT_IN_STRDUP
:
1604 case BUILT_IN_STRNDUP
:
1605 val
.lattice_val
= CONSTANT
;
1606 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1607 val
.mask
= double_int::from_shwi
1608 (~(((HOST_WIDE_INT
) MALLOC_ABI_ALIGNMENT
)
1609 / BITS_PER_UNIT
- 1));
1612 case BUILT_IN_ALLOCA
:
1613 case BUILT_IN_ALLOCA_WITH_ALIGN
:
1614 align
= (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA_WITH_ALIGN
1615 ? TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1))
1616 : BIGGEST_ALIGNMENT
);
1617 val
.lattice_val
= CONSTANT
;
1618 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1619 val
.mask
= double_int::from_shwi (~(((HOST_WIDE_INT
) align
)
1620 / BITS_PER_UNIT
- 1));
1623 /* These builtins return their first argument, unmodified. */
1624 case BUILT_IN_MEMCPY
:
1625 case BUILT_IN_MEMMOVE
:
1626 case BUILT_IN_MEMSET
:
1627 case BUILT_IN_STRCPY
:
1628 case BUILT_IN_STRNCPY
:
1629 case BUILT_IN_MEMCPY_CHK
:
1630 case BUILT_IN_MEMMOVE_CHK
:
1631 case BUILT_IN_MEMSET_CHK
:
1632 case BUILT_IN_STRCPY_CHK
:
1633 case BUILT_IN_STRNCPY_CHK
:
1634 val
= get_value_for_expr (gimple_call_arg (stmt
, 0), true);
1637 case BUILT_IN_ASSUME_ALIGNED
:
1638 val
= bit_value_assume_aligned (stmt
);
1644 is_constant
= (val
.lattice_val
== CONSTANT
);
1649 /* The statement produced a nonconstant value. If the statement
1650 had UNDEFINED operands, then the result of the statement
1651 should be UNDEFINED. Otherwise, the statement is VARYING. */
1652 if (likelyvalue
== UNDEFINED
)
1654 val
.lattice_val
= likelyvalue
;
1655 val
.mask
= double_int_zero
;
1659 val
.lattice_val
= VARYING
;
1660 val
.mask
= double_int_minus_one
;
1663 val
.value
= NULL_TREE
;
1669 typedef hash_table
<pointer_hash
<gimple_statement_d
> > gimple_htab
;
1671 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1672 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1675 insert_clobber_before_stack_restore (tree saved_val
, tree var
,
1676 gimple_htab
*visited
)
1678 gimple stmt
, clobber_stmt
;
1680 imm_use_iterator iter
;
1681 gimple_stmt_iterator i
;
1684 FOR_EACH_IMM_USE_STMT (stmt
, iter
, saved_val
)
1685 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
1687 clobber
= build_constructor (TREE_TYPE (var
), NULL
);
1688 TREE_THIS_VOLATILE (clobber
) = 1;
1689 clobber_stmt
= gimple_build_assign (var
, clobber
);
1691 i
= gsi_for_stmt (stmt
);
1692 gsi_insert_before (&i
, clobber_stmt
, GSI_SAME_STMT
);
1694 else if (gimple_code (stmt
) == GIMPLE_PHI
)
1696 if (!visited
->is_created ())
1697 visited
->create (10);
1699 slot
= visited
->find_slot (stmt
, INSERT
);
1704 insert_clobber_before_stack_restore (gimple_phi_result (stmt
), var
,
1708 gcc_assert (is_gimple_debug (stmt
));
1711 /* Advance the iterator to the previous non-debug gimple statement in the same
1712 or dominating basic block. */
1715 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator
*i
)
1719 gsi_prev_nondebug (i
);
1720 while (gsi_end_p (*i
))
1722 dom
= get_immediate_dominator (CDI_DOMINATORS
, i
->bb
);
1723 if (dom
== NULL
|| dom
== ENTRY_BLOCK_PTR
)
1726 *i
= gsi_last_bb (dom
);
1730 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1731 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1733 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1734 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1735 that case the function gives up without inserting the clobbers. */
1738 insert_clobbers_for_var (gimple_stmt_iterator i
, tree var
)
1742 gimple_htab visited
;
1744 for (; !gsi_end_p (i
); gsi_prev_dom_bb_nondebug (&i
))
1746 stmt
= gsi_stmt (i
);
1748 if (!gimple_call_builtin_p (stmt
, BUILT_IN_STACK_SAVE
))
1751 saved_val
= gimple_call_lhs (stmt
);
1752 if (saved_val
== NULL_TREE
)
1755 insert_clobber_before_stack_restore (saved_val
, var
, &visited
);
1759 if (visited
.is_created ())
1763 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1764 fixed-size array and returns the address, if found, otherwise returns
1768 fold_builtin_alloca_with_align (gimple stmt
)
1770 unsigned HOST_WIDE_INT size
, threshold
, n_elem
;
1771 tree lhs
, arg
, block
, var
, elem_type
, array_type
;
1774 lhs
= gimple_call_lhs (stmt
);
1775 if (lhs
== NULL_TREE
)
1778 /* Detect constant argument. */
1779 arg
= get_constant_value (gimple_call_arg (stmt
, 0));
1780 if (arg
== NULL_TREE
1781 || TREE_CODE (arg
) != INTEGER_CST
1782 || !host_integerp (arg
, 1))
1785 size
= TREE_INT_CST_LOW (arg
);
1787 /* Heuristic: don't fold large allocas. */
1788 threshold
= (unsigned HOST_WIDE_INT
)PARAM_VALUE (PARAM_LARGE_STACK_FRAME
);
1789 /* In case the alloca is located at function entry, it has the same lifetime
1790 as a declared array, so we allow a larger size. */
1791 block
= gimple_block (stmt
);
1792 if (!(cfun
->after_inlining
1793 && TREE_CODE (BLOCK_SUPERCONTEXT (block
)) == FUNCTION_DECL
))
1795 if (size
> threshold
)
1798 /* Declare array. */
1799 elem_type
= build_nonstandard_integer_type (BITS_PER_UNIT
, 1);
1800 n_elem
= size
* 8 / BITS_PER_UNIT
;
1801 array_type
= build_array_type_nelts (elem_type
, n_elem
);
1802 var
= create_tmp_var (array_type
, NULL
);
1803 DECL_ALIGN (var
) = TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1));
1805 struct ptr_info_def
*pi
= SSA_NAME_PTR_INFO (lhs
);
1806 if (pi
!= NULL
&& !pi
->pt
.anything
)
1810 singleton_p
= pt_solution_singleton_p (&pi
->pt
, &uid
);
1811 gcc_assert (singleton_p
);
1812 SET_DECL_PT_UID (var
, uid
);
1816 /* Fold alloca to the address of the array. */
1817 return fold_convert (TREE_TYPE (lhs
), build_fold_addr_expr (var
));
1820 /* Fold the stmt at *GSI with CCP specific information that propagating
1821 and regular folding does not catch. */
1824 ccp_fold_stmt (gimple_stmt_iterator
*gsi
)
1826 gimple stmt
= gsi_stmt (*gsi
);
1828 switch (gimple_code (stmt
))
1833 /* Statement evaluation will handle type mismatches in constants
1834 more gracefully than the final propagation. This allows us to
1835 fold more conditionals here. */
1836 val
= evaluate_stmt (stmt
);
1837 if (val
.lattice_val
!= CONSTANT
1838 || !val
.mask
.is_zero ())
1843 fprintf (dump_file
, "Folding predicate ");
1844 print_gimple_expr (dump_file
, stmt
, 0, 0);
1845 fprintf (dump_file
, " to ");
1846 print_generic_expr (dump_file
, val
.value
, 0);
1847 fprintf (dump_file
, "\n");
1850 if (integer_zerop (val
.value
))
1851 gimple_cond_make_false (stmt
);
1853 gimple_cond_make_true (stmt
);
1860 tree lhs
= gimple_call_lhs (stmt
);
1861 int flags
= gimple_call_flags (stmt
);
1864 bool changed
= false;
1867 /* If the call was folded into a constant make sure it goes
1868 away even if we cannot propagate into all uses because of
1871 && TREE_CODE (lhs
) == SSA_NAME
1872 && (val
= get_constant_value (lhs
))
1873 /* Don't optimize away calls that have side-effects. */
1874 && (flags
& (ECF_CONST
|ECF_PURE
)) != 0
1875 && (flags
& ECF_LOOPING_CONST_OR_PURE
) == 0)
1877 tree new_rhs
= unshare_expr (val
);
1879 if (!useless_type_conversion_p (TREE_TYPE (lhs
),
1880 TREE_TYPE (new_rhs
)))
1881 new_rhs
= fold_convert (TREE_TYPE (lhs
), new_rhs
);
1882 res
= update_call_from_tree (gsi
, new_rhs
);
1887 /* Internal calls provide no argument types, so the extra laxity
1888 for normal calls does not apply. */
1889 if (gimple_call_internal_p (stmt
))
1892 /* The heuristic of fold_builtin_alloca_with_align differs before and
1893 after inlining, so we don't require the arg to be changed into a
1894 constant for folding, but just to be constant. */
1895 if (gimple_call_builtin_p (stmt
, BUILT_IN_ALLOCA_WITH_ALIGN
))
1897 tree new_rhs
= fold_builtin_alloca_with_align (stmt
);
1900 bool res
= update_call_from_tree (gsi
, new_rhs
);
1901 tree var
= TREE_OPERAND (TREE_OPERAND (new_rhs
, 0),0);
1903 insert_clobbers_for_var (*gsi
, var
);
1908 /* Propagate into the call arguments. Compared to replace_uses_in
1909 this can use the argument slot types for type verification
1910 instead of the current argument type. We also can safely
1911 drop qualifiers here as we are dealing with constants anyway. */
1912 argt
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
1913 for (i
= 0; i
< gimple_call_num_args (stmt
) && argt
;
1914 ++i
, argt
= TREE_CHAIN (argt
))
1916 tree arg
= gimple_call_arg (stmt
, i
);
1917 if (TREE_CODE (arg
) == SSA_NAME
1918 && (val
= get_constant_value (arg
))
1919 && useless_type_conversion_p
1920 (TYPE_MAIN_VARIANT (TREE_VALUE (argt
)),
1921 TYPE_MAIN_VARIANT (TREE_TYPE (val
))))
1923 gimple_call_set_arg (stmt
, i
, unshare_expr (val
));
1933 tree lhs
= gimple_assign_lhs (stmt
);
1936 /* If we have a load that turned out to be constant replace it
1937 as we cannot propagate into all uses in all cases. */
1938 if (gimple_assign_single_p (stmt
)
1939 && TREE_CODE (lhs
) == SSA_NAME
1940 && (val
= get_constant_value (lhs
)))
1942 tree rhs
= unshare_expr (val
);
1943 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
1944 rhs
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
), rhs
);
1945 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1957 /* Visit the assignment statement STMT. Set the value of its LHS to the
1958 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1959 creates virtual definitions, set the value of each new name to that
1960 of the RHS (if we can derive a constant out of the RHS).
1961 Value-returning call statements also perform an assignment, and
1962 are handled here. */
1964 static enum ssa_prop_result
1965 visit_assignment (gimple stmt
, tree
*output_p
)
1968 enum ssa_prop_result retval
;
1970 tree lhs
= gimple_get_lhs (stmt
);
1972 gcc_assert (gimple_code (stmt
) != GIMPLE_CALL
1973 || gimple_call_lhs (stmt
) != NULL_TREE
);
1975 if (gimple_assign_single_p (stmt
)
1976 && gimple_assign_rhs_code (stmt
) == SSA_NAME
)
1977 /* For a simple copy operation, we copy the lattice values. */
1978 val
= *get_value (gimple_assign_rhs1 (stmt
));
1980 /* Evaluate the statement, which could be
1981 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1982 val
= evaluate_stmt (stmt
);
1984 retval
= SSA_PROP_NOT_INTERESTING
;
1986 /* Set the lattice value of the statement's output. */
1987 if (TREE_CODE (lhs
) == SSA_NAME
)
1989 /* If STMT is an assignment to an SSA_NAME, we only have one
1991 if (set_lattice_value (lhs
, val
))
1994 if (val
.lattice_val
== VARYING
)
1995 retval
= SSA_PROP_VARYING
;
1997 retval
= SSA_PROP_INTERESTING
;
2005 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2006 if it can determine which edge will be taken. Otherwise, return
2007 SSA_PROP_VARYING. */
2009 static enum ssa_prop_result
2010 visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
2015 block
= gimple_bb (stmt
);
2016 val
= evaluate_stmt (stmt
);
2017 if (val
.lattice_val
!= CONSTANT
2018 || !val
.mask
.is_zero ())
2019 return SSA_PROP_VARYING
;
2021 /* Find which edge out of the conditional block will be taken and add it
2022 to the worklist. If no single edge can be determined statically,
2023 return SSA_PROP_VARYING to feed all the outgoing edges to the
2024 propagation engine. */
2025 *taken_edge_p
= find_taken_edge (block
, val
.value
);
2027 return SSA_PROP_INTERESTING
;
2029 return SSA_PROP_VARYING
;
2033 /* Evaluate statement STMT. If the statement produces an output value and
2034 its evaluation changes the lattice value of its output, return
2035 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2038 If STMT is a conditional branch and we can determine its truth
2039 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2040 value, return SSA_PROP_VARYING. */
2042 static enum ssa_prop_result
2043 ccp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
2048 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2050 fprintf (dump_file
, "\nVisiting statement:\n");
2051 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2054 switch (gimple_code (stmt
))
2057 /* If the statement is an assignment that produces a single
2058 output value, evaluate its RHS to see if the lattice value of
2059 its output has changed. */
2060 return visit_assignment (stmt
, output_p
);
2063 /* A value-returning call also performs an assignment. */
2064 if (gimple_call_lhs (stmt
) != NULL_TREE
)
2065 return visit_assignment (stmt
, output_p
);
2070 /* If STMT is a conditional branch, see if we can determine
2071 which branch will be taken. */
2072 /* FIXME. It appears that we should be able to optimize
2073 computed GOTOs here as well. */
2074 return visit_cond_stmt (stmt
, taken_edge_p
);
2080 /* Any other kind of statement is not interesting for constant
2081 propagation and, therefore, not worth simulating. */
2082 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2083 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
2085 /* Definitions made by statements other than assignments to
2086 SSA_NAMEs represent unknown modifications to their outputs.
2087 Mark them VARYING. */
2088 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
2090 prop_value_t v
= { VARYING
, NULL_TREE
, { -1, (HOST_WIDE_INT
) -1 } };
2091 set_lattice_value (def
, v
);
2094 return SSA_PROP_VARYING
;
2098 /* Main entry point for SSA Conditional Constant Propagation. */
2103 unsigned int todo
= 0;
2104 calculate_dominance_info (CDI_DOMINATORS
);
2106 ssa_propagate (ccp_visit_stmt
, ccp_visit_phi_node
);
2107 if (ccp_finalize ())
2108 todo
= (TODO_cleanup_cfg
| TODO_update_ssa
| TODO_remove_unused_locals
);
2109 free_dominance_info (CDI_DOMINATORS
);
2117 return flag_tree_ccp
!= 0;
2121 struct gimple_opt_pass pass_ccp
=
2126 gate_ccp
, /* gate */
2127 do_ssa_ccp
, /* execute */
2130 0, /* static_pass_number */
2131 TV_TREE_CCP
, /* tv_id */
2132 PROP_cfg
| PROP_ssa
, /* properties_required */
2133 0, /* properties_provided */
2134 0, /* properties_destroyed */
2135 0, /* todo_flags_start */
2137 | TODO_update_address_taken
2138 | TODO_verify_stmts
| TODO_ggc_collect
/* todo_flags_finish */
2144 /* Try to optimize out __builtin_stack_restore. Optimize it out
2145 if there is another __builtin_stack_restore in the same basic
2146 block and no calls or ASM_EXPRs are in between, or if this block's
2147 only outgoing edge is to EXIT_BLOCK and there are no calls or
2148 ASM_EXPRs after this __builtin_stack_restore. */
2151 optimize_stack_restore (gimple_stmt_iterator i
)
2156 basic_block bb
= gsi_bb (i
);
2157 gimple call
= gsi_stmt (i
);
2159 if (gimple_code (call
) != GIMPLE_CALL
2160 || gimple_call_num_args (call
) != 1
2161 || TREE_CODE (gimple_call_arg (call
, 0)) != SSA_NAME
2162 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, 0))))
2165 for (gsi_next (&i
); !gsi_end_p (i
); gsi_next (&i
))
2167 stmt
= gsi_stmt (i
);
2168 if (gimple_code (stmt
) == GIMPLE_ASM
)
2170 if (gimple_code (stmt
) != GIMPLE_CALL
)
2173 callee
= gimple_call_fndecl (stmt
);
2175 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2176 /* All regular builtins are ok, just obviously not alloca. */
2177 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
2178 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA_WITH_ALIGN
)
2181 if (DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_RESTORE
)
2182 goto second_stack_restore
;
2188 /* Allow one successor of the exit block, or zero successors. */
2189 switch (EDGE_COUNT (bb
->succs
))
2194 if (single_succ_edge (bb
)->dest
!= EXIT_BLOCK_PTR
)
2200 second_stack_restore
:
2202 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2203 If there are multiple uses, then the last one should remove the call.
2204 In any case, whether the call to __builtin_stack_save can be removed
2205 or not is irrelevant to removing the call to __builtin_stack_restore. */
2206 if (has_single_use (gimple_call_arg (call
, 0)))
2208 gimple stack_save
= SSA_NAME_DEF_STMT (gimple_call_arg (call
, 0));
2209 if (is_gimple_call (stack_save
))
2211 callee
= gimple_call_fndecl (stack_save
);
2213 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2214 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_SAVE
)
2216 gimple_stmt_iterator stack_save_gsi
;
2219 stack_save_gsi
= gsi_for_stmt (stack_save
);
2220 rhs
= build_int_cst (TREE_TYPE (gimple_call_arg (call
, 0)), 0);
2221 update_call_from_tree (&stack_save_gsi
, rhs
);
2226 /* No effect, so the statement will be deleted. */
2227 return integer_zero_node
;
2230 /* If va_list type is a simple pointer and nothing special is needed,
2231 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2232 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2233 pointer assignment. */
2236 optimize_stdarg_builtin (gimple call
)
2238 tree callee
, lhs
, rhs
, cfun_va_list
;
2239 bool va_list_simple_ptr
;
2240 location_t loc
= gimple_location (call
);
2242 if (gimple_code (call
) != GIMPLE_CALL
)
2245 callee
= gimple_call_fndecl (call
);
2247 cfun_va_list
= targetm
.fn_abi_va_list (callee
);
2248 va_list_simple_ptr
= POINTER_TYPE_P (cfun_va_list
)
2249 && (TREE_TYPE (cfun_va_list
) == void_type_node
2250 || TREE_TYPE (cfun_va_list
) == char_type_node
);
2252 switch (DECL_FUNCTION_CODE (callee
))
2254 case BUILT_IN_VA_START
:
2255 if (!va_list_simple_ptr
2256 || targetm
.expand_builtin_va_start
!= NULL
2257 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG
))
2260 if (gimple_call_num_args (call
) != 2)
2263 lhs
= gimple_call_arg (call
, 0);
2264 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2265 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2266 != TYPE_MAIN_VARIANT (cfun_va_list
))
2269 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2270 rhs
= build_call_expr_loc (loc
, builtin_decl_explicit (BUILT_IN_NEXT_ARG
),
2271 1, integer_zero_node
);
2272 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2273 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2275 case BUILT_IN_VA_COPY
:
2276 if (!va_list_simple_ptr
)
2279 if (gimple_call_num_args (call
) != 2)
2282 lhs
= gimple_call_arg (call
, 0);
2283 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2284 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2285 != TYPE_MAIN_VARIANT (cfun_va_list
))
2288 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2289 rhs
= gimple_call_arg (call
, 1);
2290 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs
))
2291 != TYPE_MAIN_VARIANT (cfun_va_list
))
2294 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2295 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2297 case BUILT_IN_VA_END
:
2298 /* No effect, so the statement will be deleted. */
2299 return integer_zero_node
;
2306 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2307 the incoming jumps. Return true if at least one jump was changed. */
2310 optimize_unreachable (gimple_stmt_iterator i
)
2312 basic_block bb
= gsi_bb (i
);
2313 gimple_stmt_iterator gsi
;
2319 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2321 stmt
= gsi_stmt (gsi
);
2323 if (is_gimple_debug (stmt
))
2326 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2328 /* Verify we do not need to preserve the label. */
2329 if (FORCED_LABEL (gimple_label_label (stmt
)))
2335 /* Only handle the case that __builtin_unreachable is the first statement
2336 in the block. We rely on DCE to remove stmts without side-effects
2337 before __builtin_unreachable. */
2338 if (gsi_stmt (gsi
) != gsi_stmt (i
))
2343 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2345 gsi
= gsi_last_bb (e
->src
);
2346 if (gsi_end_p (gsi
))
2349 stmt
= gsi_stmt (gsi
);
2350 if (gimple_code (stmt
) == GIMPLE_COND
)
2352 if (e
->flags
& EDGE_TRUE_VALUE
)
2353 gimple_cond_make_false (stmt
);
2354 else if (e
->flags
& EDGE_FALSE_VALUE
)
2355 gimple_cond_make_true (stmt
);
2362 /* Todo: handle other cases, f.i. switch statement. */
2372 /* A simple pass that attempts to fold all builtin functions. This pass
2373 is run after we've propagated as many constants as we can. */
2376 execute_fold_all_builtins (void)
2378 bool cfg_changed
= false;
2380 unsigned int todoflags
= 0;
2384 gimple_stmt_iterator i
;
2385 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
2387 gimple stmt
, old_stmt
;
2388 tree callee
, result
;
2389 enum built_in_function fcode
;
2391 stmt
= gsi_stmt (i
);
2393 if (gimple_code (stmt
) != GIMPLE_CALL
)
2398 callee
= gimple_call_fndecl (stmt
);
2399 if (!callee
|| DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
)
2404 fcode
= DECL_FUNCTION_CODE (callee
);
2406 result
= gimple_fold_builtin (stmt
);
2409 gimple_remove_stmt_histograms (cfun
, stmt
);
2412 switch (DECL_FUNCTION_CODE (callee
))
2414 case BUILT_IN_CONSTANT_P
:
2415 /* Resolve __builtin_constant_p. If it hasn't been
2416 folded to integer_one_node by now, it's fairly
2417 certain that the value simply isn't constant. */
2418 result
= integer_zero_node
;
2421 case BUILT_IN_ASSUME_ALIGNED
:
2422 /* Remove __builtin_assume_aligned. */
2423 result
= gimple_call_arg (stmt
, 0);
2426 case BUILT_IN_STACK_RESTORE
:
2427 result
= optimize_stack_restore (i
);
2433 case BUILT_IN_UNREACHABLE
:
2434 if (optimize_unreachable (i
))
2438 case BUILT_IN_VA_START
:
2439 case BUILT_IN_VA_END
:
2440 case BUILT_IN_VA_COPY
:
2441 /* These shouldn't be folded before pass_stdarg. */
2442 result
= optimize_stdarg_builtin (stmt
);
2452 if (result
== NULL_TREE
)
2455 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2457 fprintf (dump_file
, "Simplified\n ");
2458 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2462 if (!update_call_from_tree (&i
, result
))
2464 gimplify_and_update_call_from_tree (&i
, result
);
2465 todoflags
|= TODO_update_address_taken
;
2468 stmt
= gsi_stmt (i
);
2471 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
)
2472 && gimple_purge_dead_eh_edges (bb
))
2475 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2477 fprintf (dump_file
, "to\n ");
2478 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2479 fprintf (dump_file
, "\n");
2482 /* Retry the same statement if it changed into another
2483 builtin, there might be new opportunities now. */
2484 if (gimple_code (stmt
) != GIMPLE_CALL
)
2489 callee
= gimple_call_fndecl (stmt
);
2491 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2492 || DECL_FUNCTION_CODE (callee
) == fcode
)
2497 /* Delete unreachable blocks. */
2499 todoflags
|= TODO_cleanup_cfg
;
2505 struct gimple_opt_pass pass_fold_builtins
=
2511 execute_fold_all_builtins
, /* execute */
2514 0, /* static_pass_number */
2515 TV_NONE
, /* tv_id */
2516 PROP_cfg
| PROP_ssa
, /* properties_required */
2517 0, /* properties_provided */
2518 0, /* properties_destroyed */
2519 0, /* todo_flags_start */
2521 | TODO_update_ssa
/* todo_flags_finish */