re PR target/8343 ([m68k] [3.2 regression] m68k-elf/rtems ICE at instantiate_virtual_...
[official-gcc.git] / gcc / recog.c
blob340b2ee8b8260529a5fb15e6fd7e218ae52b8ce6
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "toplev.h"
39 #include "basic-block.h"
40 #include "output.h"
41 #include "reload.h"
43 #ifndef STACK_PUSH_CODE
44 #ifdef STACK_GROWS_DOWNWARD
45 #define STACK_PUSH_CODE PRE_DEC
46 #else
47 #define STACK_PUSH_CODE PRE_INC
48 #endif
49 #endif
51 #ifndef STACK_POP_CODE
52 #ifdef STACK_GROWS_DOWNWARD
53 #define STACK_POP_CODE POST_INC
54 #else
55 #define STACK_POP_CODE POST_DEC
56 #endif
57 #endif
59 static void validate_replace_rtx_1 PARAMS ((rtx *, rtx, rtx, rtx));
60 static rtx *find_single_use_1 PARAMS ((rtx, rtx *));
61 static void validate_replace_src_1 PARAMS ((rtx *, void *));
62 static rtx split_insn PARAMS ((rtx));
64 /* Nonzero means allow operands to be volatile.
65 This should be 0 if you are generating rtl, such as if you are calling
66 the functions in optabs.c and expmed.c (most of the time).
67 This should be 1 if all valid insns need to be recognized,
68 such as in regclass.c and final.c and reload.c.
70 init_recog and init_recog_no_volatile are responsible for setting this. */
72 int volatile_ok;
74 struct recog_data recog_data;
76 /* Contains a vector of operand_alternative structures for every operand.
77 Set up by preprocess_constraints. */
78 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
80 /* On return from `constrain_operands', indicate which alternative
81 was satisfied. */
83 int which_alternative;
85 /* Nonzero after end of reload pass.
86 Set to 1 or 0 by toplev.c.
87 Controls the significance of (SUBREG (MEM)). */
89 int reload_completed;
91 /* Initialize data used by the function `recog'.
92 This must be called once in the compilation of a function
93 before any insn recognition may be done in the function. */
95 void
96 init_recog_no_volatile ()
98 volatile_ok = 0;
101 void
102 init_recog ()
104 volatile_ok = 1;
107 /* Try recognizing the instruction INSN,
108 and return the code number that results.
109 Remember the code so that repeated calls do not
110 need to spend the time for actual rerecognition.
112 This function is the normal interface to instruction recognition.
113 The automatically-generated function `recog' is normally called
114 through this one. (The only exception is in combine.c.) */
117 recog_memoized_1 (insn)
118 rtx insn;
120 if (INSN_CODE (insn) < 0)
121 INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
122 return INSN_CODE (insn);
125 /* Check that X is an insn-body for an `asm' with operands
126 and that the operands mentioned in it are legitimate. */
129 check_asm_operands (x)
130 rtx x;
132 int noperands;
133 rtx *operands;
134 const char **constraints;
135 int i;
137 /* Post-reload, be more strict with things. */
138 if (reload_completed)
140 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
141 extract_insn (make_insn_raw (x));
142 constrain_operands (1);
143 return which_alternative >= 0;
146 noperands = asm_noperands (x);
147 if (noperands < 0)
148 return 0;
149 if (noperands == 0)
150 return 1;
152 operands = (rtx *) alloca (noperands * sizeof (rtx));
153 constraints = (const char **) alloca (noperands * sizeof (char *));
155 decode_asm_operands (x, operands, NULL, constraints, NULL);
157 for (i = 0; i < noperands; i++)
159 const char *c = constraints[i];
160 if (c[0] == '%')
161 c++;
162 if (ISDIGIT ((unsigned char) c[0]) && c[1] == '\0')
163 c = constraints[c[0] - '0'];
165 if (! asm_operand_ok (operands[i], c))
166 return 0;
169 return 1;
172 /* Static data for the next two routines. */
174 typedef struct change_t
176 rtx object;
177 int old_code;
178 rtx *loc;
179 rtx old;
180 } change_t;
182 static change_t *changes;
183 static int changes_allocated;
185 static int num_changes = 0;
187 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
188 at which NEW will be placed. If OBJECT is zero, no validation is done,
189 the change is simply made.
191 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
192 will be called with the address and mode as parameters. If OBJECT is
193 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
194 the change in place.
196 IN_GROUP is nonzero if this is part of a group of changes that must be
197 performed as a group. In that case, the changes will be stored. The
198 function `apply_change_group' will validate and apply the changes.
200 If IN_GROUP is zero, this is a single change. Try to recognize the insn
201 or validate the memory reference with the change applied. If the result
202 is not valid for the machine, suppress the change and return zero.
203 Otherwise, perform the change and return 1. */
206 validate_change (object, loc, new, in_group)
207 rtx object;
208 rtx *loc;
209 rtx new;
210 int in_group;
212 rtx old = *loc;
214 if (old == new || rtx_equal_p (old, new))
215 return 1;
217 if (in_group == 0 && num_changes != 0)
218 abort ();
220 *loc = new;
222 /* Save the information describing this change. */
223 if (num_changes >= changes_allocated)
225 if (changes_allocated == 0)
226 /* This value allows for repeated substitutions inside complex
227 indexed addresses, or changes in up to 5 insns. */
228 changes_allocated = MAX_RECOG_OPERANDS * 5;
229 else
230 changes_allocated *= 2;
232 changes =
233 (change_t*) xrealloc (changes,
234 sizeof (change_t) * changes_allocated);
237 changes[num_changes].object = object;
238 changes[num_changes].loc = loc;
239 changes[num_changes].old = old;
241 if (object && GET_CODE (object) != MEM)
243 /* Set INSN_CODE to force rerecognition of insn. Save old code in
244 case invalid. */
245 changes[num_changes].old_code = INSN_CODE (object);
246 INSN_CODE (object) = -1;
249 num_changes++;
251 /* If we are making a group of changes, return 1. Otherwise, validate the
252 change group we made. */
254 if (in_group)
255 return 1;
256 else
257 return apply_change_group ();
260 /* This subroutine of apply_change_group verifies whether the changes to INSN
261 were valid; i.e. whether INSN can still be recognized. */
264 insn_invalid_p (insn)
265 rtx insn;
267 rtx pat = PATTERN (insn);
268 int num_clobbers = 0;
269 /* If we are before reload and the pattern is a SET, see if we can add
270 clobbers. */
271 int icode = recog (pat, insn,
272 (GET_CODE (pat) == SET
273 && ! reload_completed && ! reload_in_progress)
274 ? &num_clobbers : 0);
275 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
278 /* If this is an asm and the operand aren't legal, then fail. Likewise if
279 this is not an asm and the insn wasn't recognized. */
280 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
281 || (!is_asm && icode < 0))
282 return 1;
284 /* If we have to add CLOBBERs, fail if we have to add ones that reference
285 hard registers since our callers can't know if they are live or not.
286 Otherwise, add them. */
287 if (num_clobbers > 0)
289 rtx newpat;
291 if (added_clobbers_hard_reg_p (icode))
292 return 1;
294 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
295 XVECEXP (newpat, 0, 0) = pat;
296 add_clobbers (newpat, icode);
297 PATTERN (insn) = pat = newpat;
300 /* After reload, verify that all constraints are satisfied. */
301 if (reload_completed)
303 extract_insn (insn);
305 if (! constrain_operands (1))
306 return 1;
309 INSN_CODE (insn) = icode;
310 return 0;
313 /* Return number of changes made and not validated yet. */
315 num_changes_pending ()
317 return num_changes;
320 /* Apply a group of changes previously issued with `validate_change'.
321 Return 1 if all changes are valid, zero otherwise. */
324 apply_change_group ()
326 int i;
327 rtx last_validated = NULL_RTX;
329 /* The changes have been applied and all INSN_CODEs have been reset to force
330 rerecognition.
332 The changes are valid if we aren't given an object, or if we are
333 given a MEM and it still is a valid address, or if this is in insn
334 and it is recognized. In the latter case, if reload has completed,
335 we also require that the operands meet the constraints for
336 the insn. */
338 for (i = 0; i < num_changes; i++)
340 rtx object = changes[i].object;
342 /* if there is no object to test or if it is the same as the one we
343 already tested, ignore it. */
344 if (object == 0 || object == last_validated)
345 continue;
347 if (GET_CODE (object) == MEM)
349 if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
350 break;
352 else if (insn_invalid_p (object))
354 rtx pat = PATTERN (object);
356 /* Perhaps we couldn't recognize the insn because there were
357 extra CLOBBERs at the end. If so, try to re-recognize
358 without the last CLOBBER (later iterations will cause each of
359 them to be eliminated, in turn). But don't do this if we
360 have an ASM_OPERAND. */
361 if (GET_CODE (pat) == PARALLEL
362 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
363 && asm_noperands (PATTERN (object)) < 0)
365 rtx newpat;
367 if (XVECLEN (pat, 0) == 2)
368 newpat = XVECEXP (pat, 0, 0);
369 else
371 int j;
373 newpat
374 = gen_rtx_PARALLEL (VOIDmode,
375 rtvec_alloc (XVECLEN (pat, 0) - 1));
376 for (j = 0; j < XVECLEN (newpat, 0); j++)
377 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
380 /* Add a new change to this group to replace the pattern
381 with this new pattern. Then consider this change
382 as having succeeded. The change we added will
383 cause the entire call to fail if things remain invalid.
385 Note that this can lose if a later change than the one
386 we are processing specified &XVECEXP (PATTERN (object), 0, X)
387 but this shouldn't occur. */
389 validate_change (object, &PATTERN (object), newpat, 1);
390 continue;
392 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
393 /* If this insn is a CLOBBER or USE, it is always valid, but is
394 never recognized. */
395 continue;
396 else
397 break;
399 last_validated = object;
402 if (i == num_changes)
404 basic_block bb;
406 for (i = 0; i < num_changes; i++)
407 if (changes[i].object
408 && INSN_P (changes[i].object)
409 && (bb = BLOCK_FOR_INSN (changes[i].object)))
410 bb->flags |= BB_DIRTY;
412 num_changes = 0;
413 return 1;
415 else
417 cancel_changes (0);
418 return 0;
422 /* Return the number of changes so far in the current group. */
425 num_validated_changes ()
427 return num_changes;
430 /* Retract the changes numbered NUM and up. */
432 void
433 cancel_changes (num)
434 int num;
436 int i;
438 /* Back out all the changes. Do this in the opposite order in which
439 they were made. */
440 for (i = num_changes - 1; i >= num; i--)
442 *changes[i].loc = changes[i].old;
443 if (changes[i].object && GET_CODE (changes[i].object) != MEM)
444 INSN_CODE (changes[i].object) = changes[i].old_code;
446 num_changes = num;
449 /* Replace every occurrence of FROM in X with TO. Mark each change with
450 validate_change passing OBJECT. */
452 static void
453 validate_replace_rtx_1 (loc, from, to, object)
454 rtx *loc;
455 rtx from, to, object;
457 int i, j;
458 const char *fmt;
459 rtx x = *loc;
460 enum rtx_code code;
461 enum machine_mode op0_mode = VOIDmode;
462 int prev_changes = num_changes;
463 rtx new;
465 if (!x)
466 return;
468 code = GET_CODE (x);
469 fmt = GET_RTX_FORMAT (code);
470 if (fmt[0] == 'e')
471 op0_mode = GET_MODE (XEXP (x, 0));
473 /* X matches FROM if it is the same rtx or they are both referring to the
474 same register in the same mode. Avoid calling rtx_equal_p unless the
475 operands look similar. */
477 if (x == from
478 || (GET_CODE (x) == REG && GET_CODE (from) == REG
479 && GET_MODE (x) == GET_MODE (from)
480 && REGNO (x) == REGNO (from))
481 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
482 && rtx_equal_p (x, from)))
484 validate_change (object, loc, to, 1);
485 return;
488 /* Call ourself recursively to perform the replacements. */
490 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
492 if (fmt[i] == 'e')
493 validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
494 else if (fmt[i] == 'E')
495 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
496 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
499 /* If we didn't substitute, there is nothing more to do. */
500 if (num_changes == prev_changes)
501 return;
503 /* Allow substituted expression to have different mode. This is used by
504 regmove to change mode of pseudo register. */
505 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
506 op0_mode = GET_MODE (XEXP (x, 0));
508 /* Do changes needed to keep rtx consistent. Don't do any other
509 simplifications, as it is not our job. */
511 if ((GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
512 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
514 validate_change (object, loc,
515 gen_rtx_fmt_ee (GET_RTX_CLASS (code) == 'c' ? code
516 : swap_condition (code),
517 GET_MODE (x), XEXP (x, 1),
518 XEXP (x, 0)), 1);
519 x = *loc;
520 code = GET_CODE (x);
523 switch (code)
525 case PLUS:
526 /* If we have a PLUS whose second operand is now a CONST_INT, use
527 simplify_gen_binary to try to simplify it.
528 ??? We may want later to remove this, once simplification is
529 separated from this function. */
530 if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
531 validate_change (object, loc,
532 simplify_gen_binary
533 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
534 break;
535 case MINUS:
536 if (GET_CODE (XEXP (x, 1)) == CONST_INT
537 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
538 validate_change (object, loc,
539 simplify_gen_binary
540 (PLUS, GET_MODE (x), XEXP (x, 0),
541 simplify_gen_unary (NEG,
542 GET_MODE (x), XEXP (x, 1),
543 GET_MODE (x))), 1);
544 break;
545 case ZERO_EXTEND:
546 case SIGN_EXTEND:
547 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
549 new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
550 op0_mode);
551 /* If any of the above failed, substitute in something that
552 we know won't be recognized. */
553 if (!new)
554 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
555 validate_change (object, loc, new, 1);
557 break;
558 case SUBREG:
559 /* All subregs possible to simplify should be simplified. */
560 new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
561 SUBREG_BYTE (x));
563 /* Subregs of VOIDmode operands are incorrect. */
564 if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
565 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
566 if (new)
567 validate_change (object, loc, new, 1);
568 break;
569 case ZERO_EXTRACT:
570 case SIGN_EXTRACT:
571 /* If we are replacing a register with memory, try to change the memory
572 to be the mode required for memory in extract operations (this isn't
573 likely to be an insertion operation; if it was, nothing bad will
574 happen, we might just fail in some cases). */
576 if (GET_CODE (XEXP (x, 0)) == MEM
577 && GET_CODE (XEXP (x, 1)) == CONST_INT
578 && GET_CODE (XEXP (x, 2)) == CONST_INT
579 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
580 && !MEM_VOLATILE_P (XEXP (x, 0)))
582 enum machine_mode wanted_mode = VOIDmode;
583 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
584 int pos = INTVAL (XEXP (x, 2));
586 if (GET_CODE (x) == ZERO_EXTRACT)
588 enum machine_mode new_mode
589 = mode_for_extraction (EP_extzv, 1);
590 if (new_mode != MAX_MACHINE_MODE)
591 wanted_mode = new_mode;
593 else if (GET_CODE (x) == SIGN_EXTRACT)
595 enum machine_mode new_mode
596 = mode_for_extraction (EP_extv, 1);
597 if (new_mode != MAX_MACHINE_MODE)
598 wanted_mode = new_mode;
601 /* If we have a narrower mode, we can do something. */
602 if (wanted_mode != VOIDmode
603 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
605 int offset = pos / BITS_PER_UNIT;
606 rtx newmem;
608 /* If the bytes and bits are counted differently, we
609 must adjust the offset. */
610 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
611 offset =
612 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
613 offset);
615 pos %= GET_MODE_BITSIZE (wanted_mode);
617 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
619 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
620 validate_change (object, &XEXP (x, 0), newmem, 1);
624 break;
626 default:
627 break;
631 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
632 with TO. After all changes have been made, validate by seeing
633 if INSN is still valid. */
636 validate_replace_rtx_subexp (from, to, insn, loc)
637 rtx from, to, insn, *loc;
639 validate_replace_rtx_1 (loc, from, to, insn);
640 return apply_change_group ();
643 /* Try replacing every occurrence of FROM in INSN with TO. After all
644 changes have been made, validate by seeing if INSN is still valid. */
647 validate_replace_rtx (from, to, insn)
648 rtx from, to, insn;
650 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
651 return apply_change_group ();
654 /* Try replacing every occurrence of FROM in INSN with TO. */
656 void
657 validate_replace_rtx_group (from, to, insn)
658 rtx from, to, insn;
660 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
663 /* Function called by note_uses to replace used subexpressions. */
664 struct validate_replace_src_data
666 rtx from; /* Old RTX */
667 rtx to; /* New RTX */
668 rtx insn; /* Insn in which substitution is occurring. */
671 static void
672 validate_replace_src_1 (x, data)
673 rtx *x;
674 void *data;
676 struct validate_replace_src_data *d
677 = (struct validate_replace_src_data *) data;
679 validate_replace_rtx_1 (x, d->from, d->to, d->insn);
682 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
683 SET_DESTs. */
685 void
686 validate_replace_src_group (from, to, insn)
687 rtx from, to, insn;
689 struct validate_replace_src_data d;
691 d.from = from;
692 d.to = to;
693 d.insn = insn;
694 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
697 /* Same as validate_replace_src_group, but validate by seeing if
698 INSN is still valid. */
700 validate_replace_src (from, to, insn)
701 rtx from, to, insn;
703 validate_replace_src_group (from, to, insn);
704 return apply_change_group ();
707 #ifdef HAVE_cc0
708 /* Return 1 if the insn using CC0 set by INSN does not contain
709 any ordered tests applied to the condition codes.
710 EQ and NE tests do not count. */
713 next_insn_tests_no_inequality (insn)
714 rtx insn;
716 rtx next = next_cc0_user (insn);
718 /* If there is no next insn, we have to take the conservative choice. */
719 if (next == 0)
720 return 0;
722 return ((GET_CODE (next) == JUMP_INSN
723 || GET_CODE (next) == INSN
724 || GET_CODE (next) == CALL_INSN)
725 && ! inequality_comparisons_p (PATTERN (next)));
728 #if 0 /* This is useless since the insn that sets the cc's
729 must be followed immediately by the use of them. */
730 /* Return 1 if the CC value set up by INSN is not used. */
733 next_insns_test_no_inequality (insn)
734 rtx insn;
736 rtx next = NEXT_INSN (insn);
738 for (; next != 0; next = NEXT_INSN (next))
740 if (GET_CODE (next) == CODE_LABEL
741 || GET_CODE (next) == BARRIER)
742 return 1;
743 if (GET_CODE (next) == NOTE)
744 continue;
745 if (inequality_comparisons_p (PATTERN (next)))
746 return 0;
747 if (sets_cc0_p (PATTERN (next)) == 1)
748 return 1;
749 if (! reg_mentioned_p (cc0_rtx, PATTERN (next)))
750 return 1;
752 return 1;
754 #endif
755 #endif
757 /* This is used by find_single_use to locate an rtx that contains exactly one
758 use of DEST, which is typically either a REG or CC0. It returns a
759 pointer to the innermost rtx expression containing DEST. Appearances of
760 DEST that are being used to totally replace it are not counted. */
762 static rtx *
763 find_single_use_1 (dest, loc)
764 rtx dest;
765 rtx *loc;
767 rtx x = *loc;
768 enum rtx_code code = GET_CODE (x);
769 rtx *result = 0;
770 rtx *this_result;
771 int i;
772 const char *fmt;
774 switch (code)
776 case CONST_INT:
777 case CONST:
778 case LABEL_REF:
779 case SYMBOL_REF:
780 case CONST_DOUBLE:
781 case CONST_VECTOR:
782 case CLOBBER:
783 return 0;
785 case SET:
786 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
787 of a REG that occupies all of the REG, the insn uses DEST if
788 it is mentioned in the destination or the source. Otherwise, we
789 need just check the source. */
790 if (GET_CODE (SET_DEST (x)) != CC0
791 && GET_CODE (SET_DEST (x)) != PC
792 && GET_CODE (SET_DEST (x)) != REG
793 && ! (GET_CODE (SET_DEST (x)) == SUBREG
794 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
795 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
796 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
797 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
798 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
799 break;
801 return find_single_use_1 (dest, &SET_SRC (x));
803 case MEM:
804 case SUBREG:
805 return find_single_use_1 (dest, &XEXP (x, 0));
807 default:
808 break;
811 /* If it wasn't one of the common cases above, check each expression and
812 vector of this code. Look for a unique usage of DEST. */
814 fmt = GET_RTX_FORMAT (code);
815 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
817 if (fmt[i] == 'e')
819 if (dest == XEXP (x, i)
820 || (GET_CODE (dest) == REG && GET_CODE (XEXP (x, i)) == REG
821 && REGNO (dest) == REGNO (XEXP (x, i))))
822 this_result = loc;
823 else
824 this_result = find_single_use_1 (dest, &XEXP (x, i));
826 if (result == 0)
827 result = this_result;
828 else if (this_result)
829 /* Duplicate usage. */
830 return 0;
832 else if (fmt[i] == 'E')
834 int j;
836 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
838 if (XVECEXP (x, i, j) == dest
839 || (GET_CODE (dest) == REG
840 && GET_CODE (XVECEXP (x, i, j)) == REG
841 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
842 this_result = loc;
843 else
844 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
846 if (result == 0)
847 result = this_result;
848 else if (this_result)
849 return 0;
854 return result;
857 /* See if DEST, produced in INSN, is used only a single time in the
858 sequel. If so, return a pointer to the innermost rtx expression in which
859 it is used.
861 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
863 This routine will return usually zero either before flow is called (because
864 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
865 note can't be trusted).
867 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
868 care about REG_DEAD notes or LOG_LINKS.
870 Otherwise, we find the single use by finding an insn that has a
871 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
872 only referenced once in that insn, we know that it must be the first
873 and last insn referencing DEST. */
875 rtx *
876 find_single_use (dest, insn, ploc)
877 rtx dest;
878 rtx insn;
879 rtx *ploc;
881 rtx next;
882 rtx *result;
883 rtx link;
885 #ifdef HAVE_cc0
886 if (dest == cc0_rtx)
888 next = NEXT_INSN (insn);
889 if (next == 0
890 || (GET_CODE (next) != INSN && GET_CODE (next) != JUMP_INSN))
891 return 0;
893 result = find_single_use_1 (dest, &PATTERN (next));
894 if (result && ploc)
895 *ploc = next;
896 return result;
898 #endif
900 if (reload_completed || reload_in_progress || GET_CODE (dest) != REG)
901 return 0;
903 for (next = next_nonnote_insn (insn);
904 next != 0 && GET_CODE (next) != CODE_LABEL;
905 next = next_nonnote_insn (next))
906 if (INSN_P (next) && dead_or_set_p (next, dest))
908 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
909 if (XEXP (link, 0) == insn)
910 break;
912 if (link)
914 result = find_single_use_1 (dest, &PATTERN (next));
915 if (ploc)
916 *ploc = next;
917 return result;
921 return 0;
924 /* Return 1 if OP is a valid general operand for machine mode MODE.
925 This is either a register reference, a memory reference,
926 or a constant. In the case of a memory reference, the address
927 is checked for general validity for the target machine.
929 Register and memory references must have mode MODE in order to be valid,
930 but some constants have no machine mode and are valid for any mode.
932 If MODE is VOIDmode, OP is checked for validity for whatever mode
933 it has.
935 The main use of this function is as a predicate in match_operand
936 expressions in the machine description.
938 For an explanation of this function's behavior for registers of
939 class NO_REGS, see the comment for `register_operand'. */
942 general_operand (op, mode)
943 rtx op;
944 enum machine_mode mode;
946 enum rtx_code code = GET_CODE (op);
948 if (mode == VOIDmode)
949 mode = GET_MODE (op);
951 /* Don't accept CONST_INT or anything similar
952 if the caller wants something floating. */
953 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
954 && GET_MODE_CLASS (mode) != MODE_INT
955 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
956 return 0;
958 if (GET_CODE (op) == CONST_INT
959 && mode != VOIDmode
960 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
961 return 0;
963 if (CONSTANT_P (op))
964 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
965 || mode == VOIDmode)
966 #ifdef LEGITIMATE_PIC_OPERAND_P
967 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
968 #endif
969 && LEGITIMATE_CONSTANT_P (op));
971 /* Except for certain constants with VOIDmode, already checked for,
972 OP's mode must match MODE if MODE specifies a mode. */
974 if (GET_MODE (op) != mode)
975 return 0;
977 if (code == SUBREG)
979 rtx sub = SUBREG_REG (op);
981 #ifdef INSN_SCHEDULING
982 /* On machines that have insn scheduling, we want all memory
983 reference to be explicit, so outlaw paradoxical SUBREGs. */
984 if (GET_CODE (sub) == MEM
985 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
986 return 0;
987 #endif
988 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
989 may result in incorrect reference. We should simplify all valid
990 subregs of MEM anyway. But allow this after reload because we
991 might be called from cleanup_subreg_operands.
993 ??? This is a kludge. */
994 if (!reload_completed && SUBREG_BYTE (op) != 0
995 && GET_CODE (sub) == MEM)
996 return 0;
998 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
999 create such rtl, and we must reject it. */
1000 if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
1001 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1002 return 0;
1004 op = sub;
1005 code = GET_CODE (op);
1008 if (code == REG)
1009 /* A register whose class is NO_REGS is not a general operand. */
1010 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1011 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
1013 if (code == MEM)
1015 rtx y = XEXP (op, 0);
1017 if (! volatile_ok && MEM_VOLATILE_P (op))
1018 return 0;
1020 if (GET_CODE (y) == ADDRESSOF)
1021 return 1;
1023 /* Use the mem's mode, since it will be reloaded thus. */
1024 mode = GET_MODE (op);
1025 GO_IF_LEGITIMATE_ADDRESS (mode, y, win);
1028 /* Pretend this is an operand for now; we'll run force_operand
1029 on its replacement in fixup_var_refs_1. */
1030 if (code == ADDRESSOF)
1031 return 1;
1033 return 0;
1035 win:
1036 return 1;
1039 /* Return 1 if OP is a valid memory address for a memory reference
1040 of mode MODE.
1042 The main use of this function is as a predicate in match_operand
1043 expressions in the machine description. */
1046 address_operand (op, mode)
1047 rtx op;
1048 enum machine_mode mode;
1050 return memory_address_p (mode, op);
1053 /* Return 1 if OP is a register reference of mode MODE.
1054 If MODE is VOIDmode, accept a register in any mode.
1056 The main use of this function is as a predicate in match_operand
1057 expressions in the machine description.
1059 As a special exception, registers whose class is NO_REGS are
1060 not accepted by `register_operand'. The reason for this change
1061 is to allow the representation of special architecture artifacts
1062 (such as a condition code register) without extending the rtl
1063 definitions. Since registers of class NO_REGS cannot be used
1064 as registers in any case where register classes are examined,
1065 it is most consistent to keep this function from accepting them. */
1068 register_operand (op, mode)
1069 rtx op;
1070 enum machine_mode mode;
1072 if (GET_MODE (op) != mode && mode != VOIDmode)
1073 return 0;
1075 if (GET_CODE (op) == SUBREG)
1077 rtx sub = SUBREG_REG (op);
1079 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1080 because it is guaranteed to be reloaded into one.
1081 Just make sure the MEM is valid in itself.
1082 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1083 but currently it does result from (SUBREG (REG)...) where the
1084 reg went on the stack.) */
1085 if (! reload_completed && GET_CODE (sub) == MEM)
1086 return general_operand (op, mode);
1088 #ifdef CANNOT_CHANGE_MODE_CLASS
1089 if (GET_CODE (sub) == REG
1090 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1091 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), mode, GET_MODE (sub))
1092 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1093 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1094 return 0;
1095 #endif
1097 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1098 create such rtl, and we must reject it. */
1099 if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
1100 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1101 return 0;
1103 op = sub;
1106 /* If we have an ADDRESSOF, consider it valid since it will be
1107 converted into something that will not be a MEM. */
1108 if (GET_CODE (op) == ADDRESSOF)
1109 return 1;
1111 /* We don't consider registers whose class is NO_REGS
1112 to be a register operand. */
1113 return (GET_CODE (op) == REG
1114 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1115 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1118 /* Return 1 for a register in Pmode; ignore the tested mode. */
1121 pmode_register_operand (op, mode)
1122 rtx op;
1123 enum machine_mode mode ATTRIBUTE_UNUSED;
1125 return register_operand (op, Pmode);
1128 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1129 or a hard register. */
1132 scratch_operand (op, mode)
1133 rtx op;
1134 enum machine_mode mode;
1136 if (GET_MODE (op) != mode && mode != VOIDmode)
1137 return 0;
1139 return (GET_CODE (op) == SCRATCH
1140 || (GET_CODE (op) == REG
1141 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1144 /* Return 1 if OP is a valid immediate operand for mode MODE.
1146 The main use of this function is as a predicate in match_operand
1147 expressions in the machine description. */
1150 immediate_operand (op, mode)
1151 rtx op;
1152 enum machine_mode mode;
1154 /* Don't accept CONST_INT or anything similar
1155 if the caller wants something floating. */
1156 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1157 && GET_MODE_CLASS (mode) != MODE_INT
1158 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1159 return 0;
1161 if (GET_CODE (op) == CONST_INT
1162 && mode != VOIDmode
1163 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1164 return 0;
1166 /* Accept CONSTANT_P_RTX, since it will be gone by CSE1 and
1167 result in 0/1. It seems a safe assumption that this is
1168 in range for everyone. */
1169 if (GET_CODE (op) == CONSTANT_P_RTX)
1170 return 1;
1172 return (CONSTANT_P (op)
1173 && (GET_MODE (op) == mode || mode == VOIDmode
1174 || GET_MODE (op) == VOIDmode)
1175 #ifdef LEGITIMATE_PIC_OPERAND_P
1176 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1177 #endif
1178 && LEGITIMATE_CONSTANT_P (op));
1181 /* Returns 1 if OP is an operand that is a CONST_INT. */
1184 const_int_operand (op, mode)
1185 rtx op;
1186 enum machine_mode mode;
1188 if (GET_CODE (op) != CONST_INT)
1189 return 0;
1191 if (mode != VOIDmode
1192 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1193 return 0;
1195 return 1;
1198 /* Returns 1 if OP is an operand that is a constant integer or constant
1199 floating-point number. */
1202 const_double_operand (op, mode)
1203 rtx op;
1204 enum machine_mode mode;
1206 /* Don't accept CONST_INT or anything similar
1207 if the caller wants something floating. */
1208 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1209 && GET_MODE_CLASS (mode) != MODE_INT
1210 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1211 return 0;
1213 return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
1214 && (mode == VOIDmode || GET_MODE (op) == mode
1215 || GET_MODE (op) == VOIDmode));
1218 /* Return 1 if OP is a general operand that is not an immediate operand. */
1221 nonimmediate_operand (op, mode)
1222 rtx op;
1223 enum machine_mode mode;
1225 return (general_operand (op, mode) && ! CONSTANT_P (op));
1228 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1231 nonmemory_operand (op, mode)
1232 rtx op;
1233 enum machine_mode mode;
1235 if (CONSTANT_P (op))
1237 /* Don't accept CONST_INT or anything similar
1238 if the caller wants something floating. */
1239 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1240 && GET_MODE_CLASS (mode) != MODE_INT
1241 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1242 return 0;
1244 if (GET_CODE (op) == CONST_INT
1245 && mode != VOIDmode
1246 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1247 return 0;
1249 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1250 || mode == VOIDmode)
1251 #ifdef LEGITIMATE_PIC_OPERAND_P
1252 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1253 #endif
1254 && LEGITIMATE_CONSTANT_P (op));
1257 if (GET_MODE (op) != mode && mode != VOIDmode)
1258 return 0;
1260 if (GET_CODE (op) == SUBREG)
1262 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1263 because it is guaranteed to be reloaded into one.
1264 Just make sure the MEM is valid in itself.
1265 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1266 but currently it does result from (SUBREG (REG)...) where the
1267 reg went on the stack.) */
1268 if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
1269 return general_operand (op, mode);
1270 op = SUBREG_REG (op);
1273 /* We don't consider registers whose class is NO_REGS
1274 to be a register operand. */
1275 return (GET_CODE (op) == REG
1276 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1277 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1280 /* Return 1 if OP is a valid operand that stands for pushing a
1281 value of mode MODE onto the stack.
1283 The main use of this function is as a predicate in match_operand
1284 expressions in the machine description. */
1287 push_operand (op, mode)
1288 rtx op;
1289 enum machine_mode mode;
1291 unsigned int rounded_size = GET_MODE_SIZE (mode);
1293 #ifdef PUSH_ROUNDING
1294 rounded_size = PUSH_ROUNDING (rounded_size);
1295 #endif
1297 if (GET_CODE (op) != MEM)
1298 return 0;
1300 if (mode != VOIDmode && GET_MODE (op) != mode)
1301 return 0;
1303 op = XEXP (op, 0);
1305 if (rounded_size == GET_MODE_SIZE (mode))
1307 if (GET_CODE (op) != STACK_PUSH_CODE)
1308 return 0;
1310 else
1312 if (GET_CODE (op) != PRE_MODIFY
1313 || GET_CODE (XEXP (op, 1)) != PLUS
1314 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1315 || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
1316 #ifdef STACK_GROWS_DOWNWARD
1317 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1318 #else
1319 || INTVAL (XEXP (XEXP (op, 1), 1)) != rounded_size
1320 #endif
1322 return 0;
1325 return XEXP (op, 0) == stack_pointer_rtx;
1328 /* Return 1 if OP is a valid operand that stands for popping a
1329 value of mode MODE off the stack.
1331 The main use of this function is as a predicate in match_operand
1332 expressions in the machine description. */
1335 pop_operand (op, mode)
1336 rtx op;
1337 enum machine_mode mode;
1339 if (GET_CODE (op) != MEM)
1340 return 0;
1342 if (mode != VOIDmode && GET_MODE (op) != mode)
1343 return 0;
1345 op = XEXP (op, 0);
1347 if (GET_CODE (op) != STACK_POP_CODE)
1348 return 0;
1350 return XEXP (op, 0) == stack_pointer_rtx;
1353 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1356 memory_address_p (mode, addr)
1357 enum machine_mode mode ATTRIBUTE_UNUSED;
1358 rtx addr;
1360 if (GET_CODE (addr) == ADDRESSOF)
1361 return 1;
1363 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1364 return 0;
1366 win:
1367 return 1;
1370 /* Return 1 if OP is a valid memory reference with mode MODE,
1371 including a valid address.
1373 The main use of this function is as a predicate in match_operand
1374 expressions in the machine description. */
1377 memory_operand (op, mode)
1378 rtx op;
1379 enum machine_mode mode;
1381 rtx inner;
1383 if (! reload_completed)
1384 /* Note that no SUBREG is a memory operand before end of reload pass,
1385 because (SUBREG (MEM...)) forces reloading into a register. */
1386 return GET_CODE (op) == MEM && general_operand (op, mode);
1388 if (mode != VOIDmode && GET_MODE (op) != mode)
1389 return 0;
1391 inner = op;
1392 if (GET_CODE (inner) == SUBREG)
1393 inner = SUBREG_REG (inner);
1395 return (GET_CODE (inner) == MEM && general_operand (op, mode));
1398 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1399 that is, a memory reference whose address is a general_operand. */
1402 indirect_operand (op, mode)
1403 rtx op;
1404 enum machine_mode mode;
1406 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1407 if (! reload_completed
1408 && GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == MEM)
1410 int offset = SUBREG_BYTE (op);
1411 rtx inner = SUBREG_REG (op);
1413 if (mode != VOIDmode && GET_MODE (op) != mode)
1414 return 0;
1416 /* The only way that we can have a general_operand as the resulting
1417 address is if OFFSET is zero and the address already is an operand
1418 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1419 operand. */
1421 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1422 || (GET_CODE (XEXP (inner, 0)) == PLUS
1423 && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
1424 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1425 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1428 return (GET_CODE (op) == MEM
1429 && memory_operand (op, mode)
1430 && general_operand (XEXP (op, 0), Pmode));
1433 /* Return 1 if this is a comparison operator. This allows the use of
1434 MATCH_OPERATOR to recognize all the branch insns. */
1437 comparison_operator (op, mode)
1438 rtx op;
1439 enum machine_mode mode;
1441 return ((mode == VOIDmode || GET_MODE (op) == mode)
1442 && GET_RTX_CLASS (GET_CODE (op)) == '<');
1445 /* If BODY is an insn body that uses ASM_OPERANDS,
1446 return the number of operands (both input and output) in the insn.
1447 Otherwise return -1. */
1450 asm_noperands (body)
1451 rtx body;
1453 switch (GET_CODE (body))
1455 case ASM_OPERANDS:
1456 /* No output operands: return number of input operands. */
1457 return ASM_OPERANDS_INPUT_LENGTH (body);
1458 case SET:
1459 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1460 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1461 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
1462 else
1463 return -1;
1464 case PARALLEL:
1465 if (GET_CODE (XVECEXP (body, 0, 0)) == SET
1466 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1468 /* Multiple output operands, or 1 output plus some clobbers:
1469 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1470 int i;
1471 int n_sets;
1473 /* Count backwards through CLOBBERs to determine number of SETs. */
1474 for (i = XVECLEN (body, 0); i > 0; i--)
1476 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1477 break;
1478 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1479 return -1;
1482 /* N_SETS is now number of output operands. */
1483 n_sets = i;
1485 /* Verify that all the SETs we have
1486 came from a single original asm_operands insn
1487 (so that invalid combinations are blocked). */
1488 for (i = 0; i < n_sets; i++)
1490 rtx elt = XVECEXP (body, 0, i);
1491 if (GET_CODE (elt) != SET)
1492 return -1;
1493 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1494 return -1;
1495 /* If these ASM_OPERANDS rtx's came from different original insns
1496 then they aren't allowed together. */
1497 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1498 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
1499 return -1;
1501 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
1502 + n_sets);
1504 else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1506 /* 0 outputs, but some clobbers:
1507 body is [(asm_operands ...) (clobber (reg ...))...]. */
1508 int i;
1510 /* Make sure all the other parallel things really are clobbers. */
1511 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1512 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1513 return -1;
1515 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
1517 else
1518 return -1;
1519 default:
1520 return -1;
1524 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1525 copy its operands (both input and output) into the vector OPERANDS,
1526 the locations of the operands within the insn into the vector OPERAND_LOCS,
1527 and the constraints for the operands into CONSTRAINTS.
1528 Write the modes of the operands into MODES.
1529 Return the assembler-template.
1531 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1532 we don't store that info. */
1534 const char *
1535 decode_asm_operands (body, operands, operand_locs, constraints, modes)
1536 rtx body;
1537 rtx *operands;
1538 rtx **operand_locs;
1539 const char **constraints;
1540 enum machine_mode *modes;
1542 int i;
1543 int noperands;
1544 const char *template = 0;
1546 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1548 rtx asmop = SET_SRC (body);
1549 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1551 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
1553 for (i = 1; i < noperands; i++)
1555 if (operand_locs)
1556 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
1557 if (operands)
1558 operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
1559 if (constraints)
1560 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
1561 if (modes)
1562 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
1565 /* The output is in the SET.
1566 Its constraint is in the ASM_OPERANDS itself. */
1567 if (operands)
1568 operands[0] = SET_DEST (body);
1569 if (operand_locs)
1570 operand_locs[0] = &SET_DEST (body);
1571 if (constraints)
1572 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1573 if (modes)
1574 modes[0] = GET_MODE (SET_DEST (body));
1575 template = ASM_OPERANDS_TEMPLATE (asmop);
1577 else if (GET_CODE (body) == ASM_OPERANDS)
1579 rtx asmop = body;
1580 /* No output operands: BODY is (asm_operands ....). */
1582 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
1584 /* The input operands are found in the 1st element vector. */
1585 /* Constraints for inputs are in the 2nd element vector. */
1586 for (i = 0; i < noperands; i++)
1588 if (operand_locs)
1589 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1590 if (operands)
1591 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1592 if (constraints)
1593 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1594 if (modes)
1595 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1597 template = ASM_OPERANDS_TEMPLATE (asmop);
1599 else if (GET_CODE (body) == PARALLEL
1600 && GET_CODE (XVECEXP (body, 0, 0)) == SET
1601 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1603 rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
1604 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1605 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1606 int nout = 0; /* Does not include CLOBBERs. */
1608 /* At least one output, plus some CLOBBERs. */
1610 /* The outputs are in the SETs.
1611 Their constraints are in the ASM_OPERANDS itself. */
1612 for (i = 0; i < nparallel; i++)
1614 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1615 break; /* Past last SET */
1617 if (operands)
1618 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1619 if (operand_locs)
1620 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1621 if (constraints)
1622 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1623 if (modes)
1624 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1625 nout++;
1628 for (i = 0; i < nin; i++)
1630 if (operand_locs)
1631 operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
1632 if (operands)
1633 operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
1634 if (constraints)
1635 constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1636 if (modes)
1637 modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1640 template = ASM_OPERANDS_TEMPLATE (asmop);
1642 else if (GET_CODE (body) == PARALLEL
1643 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1645 /* No outputs, but some CLOBBERs. */
1647 rtx asmop = XVECEXP (body, 0, 0);
1648 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1650 for (i = 0; i < nin; i++)
1652 if (operand_locs)
1653 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1654 if (operands)
1655 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1656 if (constraints)
1657 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1658 if (modes)
1659 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1662 template = ASM_OPERANDS_TEMPLATE (asmop);
1665 return template;
1668 /* Check if an asm_operand matches it's constraints.
1669 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1672 asm_operand_ok (op, constraint)
1673 rtx op;
1674 const char *constraint;
1676 int result = 0;
1678 /* Use constrain_operands after reload. */
1679 if (reload_completed)
1680 abort ();
1682 while (*constraint)
1684 char c = *constraint++;
1685 switch (c)
1687 case '=':
1688 case '+':
1689 case '*':
1690 case '%':
1691 case '?':
1692 case '!':
1693 case '#':
1694 case '&':
1695 case ',':
1696 break;
1698 case '0': case '1': case '2': case '3': case '4':
1699 case '5': case '6': case '7': case '8': case '9':
1700 /* For best results, our caller should have given us the
1701 proper matching constraint, but we can't actually fail
1702 the check if they didn't. Indicate that results are
1703 inconclusive. */
1704 while (ISDIGIT (*constraint))
1705 constraint++;
1706 result = -1;
1707 break;
1709 case 'p':
1710 if (address_operand (op, VOIDmode))
1711 return 1;
1712 break;
1714 case 'm':
1715 case 'V': /* non-offsettable */
1716 if (memory_operand (op, VOIDmode))
1717 return 1;
1718 break;
1720 case 'o': /* offsettable */
1721 if (offsettable_nonstrict_memref_p (op))
1722 return 1;
1723 break;
1725 case '<':
1726 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1727 excepting those that expand_call created. Further, on some
1728 machines which do not have generalized auto inc/dec, an inc/dec
1729 is not a memory_operand.
1731 Match any memory and hope things are resolved after reload. */
1733 if (GET_CODE (op) == MEM
1734 && (1
1735 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1736 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1737 return 1;
1738 break;
1740 case '>':
1741 if (GET_CODE (op) == MEM
1742 && (1
1743 || GET_CODE (XEXP (op, 0)) == PRE_INC
1744 || GET_CODE (XEXP (op, 0)) == POST_INC))
1745 return 1;
1746 break;
1748 case 'E':
1749 case 'F':
1750 if (GET_CODE (op) == CONST_DOUBLE
1751 || (GET_CODE (op) == CONST_VECTOR
1752 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1753 return 1;
1754 break;
1756 case 'G':
1757 if (GET_CODE (op) == CONST_DOUBLE
1758 && CONST_DOUBLE_OK_FOR_LETTER_P (op, 'G'))
1759 return 1;
1760 break;
1761 case 'H':
1762 if (GET_CODE (op) == CONST_DOUBLE
1763 && CONST_DOUBLE_OK_FOR_LETTER_P (op, 'H'))
1764 return 1;
1765 break;
1767 case 's':
1768 if (GET_CODE (op) == CONST_INT
1769 || (GET_CODE (op) == CONST_DOUBLE
1770 && GET_MODE (op) == VOIDmode))
1771 break;
1772 /* FALLTHRU */
1774 case 'i':
1775 if (CONSTANT_P (op)
1776 #ifdef LEGITIMATE_PIC_OPERAND_P
1777 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1778 #endif
1780 return 1;
1781 break;
1783 case 'n':
1784 if (GET_CODE (op) == CONST_INT
1785 || (GET_CODE (op) == CONST_DOUBLE
1786 && GET_MODE (op) == VOIDmode))
1787 return 1;
1788 break;
1790 case 'I':
1791 if (GET_CODE (op) == CONST_INT
1792 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'I'))
1793 return 1;
1794 break;
1795 case 'J':
1796 if (GET_CODE (op) == CONST_INT
1797 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'J'))
1798 return 1;
1799 break;
1800 case 'K':
1801 if (GET_CODE (op) == CONST_INT
1802 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'K'))
1803 return 1;
1804 break;
1805 case 'L':
1806 if (GET_CODE (op) == CONST_INT
1807 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'L'))
1808 return 1;
1809 break;
1810 case 'M':
1811 if (GET_CODE (op) == CONST_INT
1812 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'M'))
1813 return 1;
1814 break;
1815 case 'N':
1816 if (GET_CODE (op) == CONST_INT
1817 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'N'))
1818 return 1;
1819 break;
1820 case 'O':
1821 if (GET_CODE (op) == CONST_INT
1822 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'O'))
1823 return 1;
1824 break;
1825 case 'P':
1826 if (GET_CODE (op) == CONST_INT
1827 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'P'))
1828 return 1;
1829 break;
1831 case 'X':
1832 return 1;
1834 case 'g':
1835 if (general_operand (op, VOIDmode))
1836 return 1;
1837 break;
1839 default:
1840 /* For all other letters, we first check for a register class,
1841 otherwise it is an EXTRA_CONSTRAINT. */
1842 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1844 case 'r':
1845 if (GET_MODE (op) == BLKmode)
1846 break;
1847 if (register_operand (op, VOIDmode))
1848 return 1;
1850 #ifdef EXTRA_CONSTRAINT
1851 if (EXTRA_CONSTRAINT (op, c))
1852 return 1;
1853 if (EXTRA_MEMORY_CONSTRAINT (c))
1855 /* Every memory operand can be reloaded to fit. */
1856 if (memory_operand (op, VOIDmode))
1857 return 1;
1859 if (EXTRA_ADDRESS_CONSTRAINT (c))
1861 /* Every address operand can be reloaded to fit. */
1862 if (address_operand (op, VOIDmode))
1863 return 1;
1865 #endif
1866 break;
1870 return result;
1873 /* Given an rtx *P, if it is a sum containing an integer constant term,
1874 return the location (type rtx *) of the pointer to that constant term.
1875 Otherwise, return a null pointer. */
1877 rtx *
1878 find_constant_term_loc (p)
1879 rtx *p;
1881 rtx *tem;
1882 enum rtx_code code = GET_CODE (*p);
1884 /* If *P IS such a constant term, P is its location. */
1886 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1887 || code == CONST)
1888 return p;
1890 /* Otherwise, if not a sum, it has no constant term. */
1892 if (GET_CODE (*p) != PLUS)
1893 return 0;
1895 /* If one of the summands is constant, return its location. */
1897 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1898 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1899 return p;
1901 /* Otherwise, check each summand for containing a constant term. */
1903 if (XEXP (*p, 0) != 0)
1905 tem = find_constant_term_loc (&XEXP (*p, 0));
1906 if (tem != 0)
1907 return tem;
1910 if (XEXP (*p, 1) != 0)
1912 tem = find_constant_term_loc (&XEXP (*p, 1));
1913 if (tem != 0)
1914 return tem;
1917 return 0;
1920 /* Return 1 if OP is a memory reference
1921 whose address contains no side effects
1922 and remains valid after the addition
1923 of a positive integer less than the
1924 size of the object being referenced.
1926 We assume that the original address is valid and do not check it.
1928 This uses strict_memory_address_p as a subroutine, so
1929 don't use it before reload. */
1932 offsettable_memref_p (op)
1933 rtx op;
1935 return ((GET_CODE (op) == MEM)
1936 && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
1939 /* Similar, but don't require a strictly valid mem ref:
1940 consider pseudo-regs valid as index or base regs. */
1943 offsettable_nonstrict_memref_p (op)
1944 rtx op;
1946 return ((GET_CODE (op) == MEM)
1947 && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
1950 /* Return 1 if Y is a memory address which contains no side effects
1951 and would remain valid after the addition of a positive integer
1952 less than the size of that mode.
1954 We assume that the original address is valid and do not check it.
1955 We do check that it is valid for narrower modes.
1957 If STRICTP is nonzero, we require a strictly valid address,
1958 for the sake of use in reload.c. */
1961 offsettable_address_p (strictp, mode, y)
1962 int strictp;
1963 enum machine_mode mode;
1964 rtx y;
1966 enum rtx_code ycode = GET_CODE (y);
1967 rtx z;
1968 rtx y1 = y;
1969 rtx *y2;
1970 int (*addressp) PARAMS ((enum machine_mode, rtx)) =
1971 (strictp ? strict_memory_address_p : memory_address_p);
1972 unsigned int mode_sz = GET_MODE_SIZE (mode);
1974 if (CONSTANT_ADDRESS_P (y))
1975 return 1;
1977 /* Adjusting an offsettable address involves changing to a narrower mode.
1978 Make sure that's OK. */
1980 if (mode_dependent_address_p (y))
1981 return 0;
1983 /* ??? How much offset does an offsettable BLKmode reference need?
1984 Clearly that depends on the situation in which it's being used.
1985 However, the current situation in which we test 0xffffffff is
1986 less than ideal. Caveat user. */
1987 if (mode_sz == 0)
1988 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1990 /* If the expression contains a constant term,
1991 see if it remains valid when max possible offset is added. */
1993 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1995 int good;
1997 y1 = *y2;
1998 *y2 = plus_constant (*y2, mode_sz - 1);
1999 /* Use QImode because an odd displacement may be automatically invalid
2000 for any wider mode. But it should be valid for a single byte. */
2001 good = (*addressp) (QImode, y);
2003 /* In any case, restore old contents of memory. */
2004 *y2 = y1;
2005 return good;
2008 if (GET_RTX_CLASS (ycode) == 'a')
2009 return 0;
2011 /* The offset added here is chosen as the maximum offset that
2012 any instruction could need to add when operating on something
2013 of the specified mode. We assume that if Y and Y+c are
2014 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2015 go inside a LO_SUM here, so we do so as well. */
2016 if (GET_CODE (y) == LO_SUM
2017 && mode != BLKmode
2018 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2019 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
2020 plus_constant (XEXP (y, 1), mode_sz - 1));
2021 else
2022 z = plus_constant (y, mode_sz - 1);
2024 /* Use QImode because an odd displacement may be automatically invalid
2025 for any wider mode. But it should be valid for a single byte. */
2026 return (*addressp) (QImode, z);
2029 /* Return 1 if ADDR is an address-expression whose effect depends
2030 on the mode of the memory reference it is used in.
2032 Autoincrement addressing is a typical example of mode-dependence
2033 because the amount of the increment depends on the mode. */
2036 mode_dependent_address_p (addr)
2037 rtx addr ATTRIBUTE_UNUSED; /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */
2039 GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
2040 return 0;
2041 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
2042 win: ATTRIBUTE_UNUSED_LABEL
2043 return 1;
2046 /* Return 1 if OP is a general operand
2047 other than a memory ref with a mode dependent address. */
2050 mode_independent_operand (op, mode)
2051 enum machine_mode mode;
2052 rtx op;
2054 rtx addr;
2056 if (! general_operand (op, mode))
2057 return 0;
2059 if (GET_CODE (op) != MEM)
2060 return 1;
2062 addr = XEXP (op, 0);
2063 GO_IF_MODE_DEPENDENT_ADDRESS (addr, lose);
2064 return 1;
2065 /* Label `lose' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
2066 lose: ATTRIBUTE_UNUSED_LABEL
2067 return 0;
2070 /* Like extract_insn, but save insn extracted and don't extract again, when
2071 called again for the same insn expecting that recog_data still contain the
2072 valid information. This is used primary by gen_attr infrastructure that
2073 often does extract insn again and again. */
2074 void
2075 extract_insn_cached (insn)
2076 rtx insn;
2078 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2079 return;
2080 extract_insn (insn);
2081 recog_data.insn = insn;
2083 /* Do cached extract_insn, constrain_operand and complain about failures.
2084 Used by insn_attrtab. */
2085 void
2086 extract_constrain_insn_cached (insn)
2087 rtx insn;
2089 extract_insn_cached (insn);
2090 if (which_alternative == -1
2091 && !constrain_operands (reload_completed))
2092 fatal_insn_not_found (insn);
2094 /* Do cached constrain_operand and complain about failures. */
2096 constrain_operands_cached (strict)
2097 int strict;
2099 if (which_alternative == -1)
2100 return constrain_operands (strict);
2101 else
2102 return 1;
2105 /* Analyze INSN and fill in recog_data. */
2107 void
2108 extract_insn (insn)
2109 rtx insn;
2111 int i;
2112 int icode;
2113 int noperands;
2114 rtx body = PATTERN (insn);
2116 recog_data.insn = NULL;
2117 recog_data.n_operands = 0;
2118 recog_data.n_alternatives = 0;
2119 recog_data.n_dups = 0;
2120 which_alternative = -1;
2122 switch (GET_CODE (body))
2124 case USE:
2125 case CLOBBER:
2126 case ASM_INPUT:
2127 case ADDR_VEC:
2128 case ADDR_DIFF_VEC:
2129 return;
2131 case SET:
2132 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2133 goto asm_insn;
2134 else
2135 goto normal_insn;
2136 case PARALLEL:
2137 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2138 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2139 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2140 goto asm_insn;
2141 else
2142 goto normal_insn;
2143 case ASM_OPERANDS:
2144 asm_insn:
2145 recog_data.n_operands = noperands = asm_noperands (body);
2146 if (noperands >= 0)
2148 /* This insn is an `asm' with operands. */
2150 /* expand_asm_operands makes sure there aren't too many operands. */
2151 if (noperands > MAX_RECOG_OPERANDS)
2152 abort ();
2154 /* Now get the operand values and constraints out of the insn. */
2155 decode_asm_operands (body, recog_data.operand,
2156 recog_data.operand_loc,
2157 recog_data.constraints,
2158 recog_data.operand_mode);
2159 if (noperands > 0)
2161 const char *p = recog_data.constraints[0];
2162 recog_data.n_alternatives = 1;
2163 while (*p)
2164 recog_data.n_alternatives += (*p++ == ',');
2166 break;
2168 fatal_insn_not_found (insn);
2170 default:
2171 normal_insn:
2172 /* Ordinary insn: recognize it, get the operands via insn_extract
2173 and get the constraints. */
2175 icode = recog_memoized (insn);
2176 if (icode < 0)
2177 fatal_insn_not_found (insn);
2179 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2180 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2181 recog_data.n_dups = insn_data[icode].n_dups;
2183 insn_extract (insn);
2185 for (i = 0; i < noperands; i++)
2187 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2188 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2189 /* VOIDmode match_operands gets mode from their real operand. */
2190 if (recog_data.operand_mode[i] == VOIDmode)
2191 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2194 for (i = 0; i < noperands; i++)
2195 recog_data.operand_type[i]
2196 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2197 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2198 : OP_IN);
2200 if (recog_data.n_alternatives > MAX_RECOG_ALTERNATIVES)
2201 abort ();
2204 /* After calling extract_insn, you can use this function to extract some
2205 information from the constraint strings into a more usable form.
2206 The collected data is stored in recog_op_alt. */
2207 void
2208 preprocess_constraints ()
2210 int i;
2212 memset (recog_op_alt, 0, sizeof recog_op_alt);
2213 for (i = 0; i < recog_data.n_operands; i++)
2215 int j;
2216 struct operand_alternative *op_alt;
2217 const char *p = recog_data.constraints[i];
2219 op_alt = recog_op_alt[i];
2221 for (j = 0; j < recog_data.n_alternatives; j++)
2223 op_alt[j].class = NO_REGS;
2224 op_alt[j].constraint = p;
2225 op_alt[j].matches = -1;
2226 op_alt[j].matched = -1;
2228 if (*p == '\0' || *p == ',')
2230 op_alt[j].anything_ok = 1;
2231 continue;
2234 for (;;)
2236 char c = *p++;
2237 if (c == '#')
2239 c = *p++;
2240 while (c != ',' && c != '\0');
2241 if (c == ',' || c == '\0')
2242 break;
2244 switch (c)
2246 case '=': case '+': case '*': case '%':
2247 case 'E': case 'F': case 'G': case 'H':
2248 case 's': case 'i': case 'n':
2249 case 'I': case 'J': case 'K': case 'L':
2250 case 'M': case 'N': case 'O': case 'P':
2251 /* These don't say anything we care about. */
2252 break;
2254 case '?':
2255 op_alt[j].reject += 6;
2256 break;
2257 case '!':
2258 op_alt[j].reject += 600;
2259 break;
2260 case '&':
2261 op_alt[j].earlyclobber = 1;
2262 break;
2264 case '0': case '1': case '2': case '3': case '4':
2265 case '5': case '6': case '7': case '8': case '9':
2267 char *end;
2268 op_alt[j].matches = strtoul (p - 1, &end, 10);
2269 recog_op_alt[op_alt[j].matches][j].matched = i;
2270 p = end;
2272 break;
2274 case 'm':
2275 op_alt[j].memory_ok = 1;
2276 break;
2277 case '<':
2278 op_alt[j].decmem_ok = 1;
2279 break;
2280 case '>':
2281 op_alt[j].incmem_ok = 1;
2282 break;
2283 case 'V':
2284 op_alt[j].nonoffmem_ok = 1;
2285 break;
2286 case 'o':
2287 op_alt[j].offmem_ok = 1;
2288 break;
2289 case 'X':
2290 op_alt[j].anything_ok = 1;
2291 break;
2293 case 'p':
2294 op_alt[j].is_address = 1;
2295 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class]
2296 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
2297 break;
2299 case 'g': case 'r':
2300 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) GENERAL_REGS];
2301 break;
2303 default:
2304 if (EXTRA_MEMORY_CONSTRAINT (c))
2306 op_alt[j].memory_ok = 1;
2307 break;
2309 if (EXTRA_ADDRESS_CONSTRAINT (c))
2311 op_alt[j].is_address = 1;
2312 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class]
2313 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
2314 break;
2317 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) REG_CLASS_FROM_LETTER ((unsigned char) c)];
2318 break;
2325 /* Check the operands of an insn against the insn's operand constraints
2326 and return 1 if they are valid.
2327 The information about the insn's operands, constraints, operand modes
2328 etc. is obtained from the global variables set up by extract_insn.
2330 WHICH_ALTERNATIVE is set to a number which indicates which
2331 alternative of constraints was matched: 0 for the first alternative,
2332 1 for the next, etc.
2334 In addition, when two operands are match
2335 and it happens that the output operand is (reg) while the
2336 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2337 make the output operand look like the input.
2338 This is because the output operand is the one the template will print.
2340 This is used in final, just before printing the assembler code and by
2341 the routines that determine an insn's attribute.
2343 If STRICT is a positive nonzero value, it means that we have been
2344 called after reload has been completed. In that case, we must
2345 do all checks strictly. If it is zero, it means that we have been called
2346 before reload has completed. In that case, we first try to see if we can
2347 find an alternative that matches strictly. If not, we try again, this
2348 time assuming that reload will fix up the insn. This provides a "best
2349 guess" for the alternative and is used to compute attributes of insns prior
2350 to reload. A negative value of STRICT is used for this internal call. */
2352 struct funny_match
2354 int this, other;
2358 constrain_operands (strict)
2359 int strict;
2361 const char *constraints[MAX_RECOG_OPERANDS];
2362 int matching_operands[MAX_RECOG_OPERANDS];
2363 int earlyclobber[MAX_RECOG_OPERANDS];
2364 int c;
2366 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2367 int funny_match_index;
2369 which_alternative = 0;
2370 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2371 return 1;
2373 for (c = 0; c < recog_data.n_operands; c++)
2375 constraints[c] = recog_data.constraints[c];
2376 matching_operands[c] = -1;
2381 int opno;
2382 int lose = 0;
2383 funny_match_index = 0;
2385 for (opno = 0; opno < recog_data.n_operands; opno++)
2387 rtx op = recog_data.operand[opno];
2388 enum machine_mode mode = GET_MODE (op);
2389 const char *p = constraints[opno];
2390 int offset = 0;
2391 int win = 0;
2392 int val;
2394 earlyclobber[opno] = 0;
2396 /* A unary operator may be accepted by the predicate, but it
2397 is irrelevant for matching constraints. */
2398 if (GET_RTX_CLASS (GET_CODE (op)) == '1')
2399 op = XEXP (op, 0);
2401 if (GET_CODE (op) == SUBREG)
2403 if (GET_CODE (SUBREG_REG (op)) == REG
2404 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2405 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2406 GET_MODE (SUBREG_REG (op)),
2407 SUBREG_BYTE (op),
2408 GET_MODE (op));
2409 op = SUBREG_REG (op);
2412 /* An empty constraint or empty alternative
2413 allows anything which matched the pattern. */
2414 if (*p == 0 || *p == ',')
2415 win = 1;
2417 while (*p && (c = *p++) != ',')
2418 switch (c)
2420 case '?': case '!': case '*': case '%':
2421 case '=': case '+':
2422 break;
2424 case '#':
2425 /* Ignore rest of this alternative as far as
2426 constraint checking is concerned. */
2427 while (*p && *p != ',')
2428 p++;
2429 break;
2431 case '&':
2432 earlyclobber[opno] = 1;
2433 break;
2435 case '0': case '1': case '2': case '3': case '4':
2436 case '5': case '6': case '7': case '8': case '9':
2438 /* This operand must be the same as a previous one.
2439 This kind of constraint is used for instructions such
2440 as add when they take only two operands.
2442 Note that the lower-numbered operand is passed first.
2444 If we are not testing strictly, assume that this
2445 constraint will be satisfied. */
2447 char *end;
2448 int match;
2450 match = strtoul (p - 1, &end, 10);
2451 p = end;
2453 if (strict < 0)
2454 val = 1;
2455 else
2457 rtx op1 = recog_data.operand[match];
2458 rtx op2 = recog_data.operand[opno];
2460 /* A unary operator may be accepted by the predicate,
2461 but it is irrelevant for matching constraints. */
2462 if (GET_RTX_CLASS (GET_CODE (op1)) == '1')
2463 op1 = XEXP (op1, 0);
2464 if (GET_RTX_CLASS (GET_CODE (op2)) == '1')
2465 op2 = XEXP (op2, 0);
2467 val = operands_match_p (op1, op2);
2470 matching_operands[opno] = match;
2471 matching_operands[match] = opno;
2473 if (val != 0)
2474 win = 1;
2476 /* If output is *x and input is *--x, arrange later
2477 to change the output to *--x as well, since the
2478 output op is the one that will be printed. */
2479 if (val == 2 && strict > 0)
2481 funny_match[funny_match_index].this = opno;
2482 funny_match[funny_match_index++].other = match;
2485 break;
2487 case 'p':
2488 /* p is used for address_operands. When we are called by
2489 gen_reload, no one will have checked that the address is
2490 strictly valid, i.e., that all pseudos requiring hard regs
2491 have gotten them. */
2492 if (strict <= 0
2493 || (strict_memory_address_p (recog_data.operand_mode[opno],
2494 op)))
2495 win = 1;
2496 break;
2498 /* No need to check general_operand again;
2499 it was done in insn-recog.c. */
2500 case 'g':
2501 /* Anything goes unless it is a REG and really has a hard reg
2502 but the hard reg is not in the class GENERAL_REGS. */
2503 if (strict < 0
2504 || GENERAL_REGS == ALL_REGS
2505 || GET_CODE (op) != REG
2506 || (reload_in_progress
2507 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2508 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2509 win = 1;
2510 break;
2512 case 'X':
2513 /* This is used for a MATCH_SCRATCH in the cases when
2514 we don't actually need anything. So anything goes
2515 any time. */
2516 win = 1;
2517 break;
2519 case 'm':
2520 if (GET_CODE (op) == MEM
2521 /* Before reload, accept what reload can turn into mem. */
2522 || (strict < 0 && CONSTANT_P (op))
2523 /* During reload, accept a pseudo */
2524 || (reload_in_progress && GET_CODE (op) == REG
2525 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2526 win = 1;
2527 break;
2529 case '<':
2530 if (GET_CODE (op) == MEM
2531 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2532 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2533 win = 1;
2534 break;
2536 case '>':
2537 if (GET_CODE (op) == MEM
2538 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2539 || GET_CODE (XEXP (op, 0)) == POST_INC))
2540 win = 1;
2541 break;
2543 case 'E':
2544 case 'F':
2545 if (GET_CODE (op) == CONST_DOUBLE
2546 || (GET_CODE (op) == CONST_VECTOR
2547 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2548 win = 1;
2549 break;
2551 case 'G':
2552 case 'H':
2553 if (GET_CODE (op) == CONST_DOUBLE
2554 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
2555 win = 1;
2556 break;
2558 case 's':
2559 if (GET_CODE (op) == CONST_INT
2560 || (GET_CODE (op) == CONST_DOUBLE
2561 && GET_MODE (op) == VOIDmode))
2562 break;
2563 case 'i':
2564 if (CONSTANT_P (op))
2565 win = 1;
2566 break;
2568 case 'n':
2569 if (GET_CODE (op) == CONST_INT
2570 || (GET_CODE (op) == CONST_DOUBLE
2571 && GET_MODE (op) == VOIDmode))
2572 win = 1;
2573 break;
2575 case 'I':
2576 case 'J':
2577 case 'K':
2578 case 'L':
2579 case 'M':
2580 case 'N':
2581 case 'O':
2582 case 'P':
2583 if (GET_CODE (op) == CONST_INT
2584 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
2585 win = 1;
2586 break;
2588 case 'V':
2589 if (GET_CODE (op) == MEM
2590 && ((strict > 0 && ! offsettable_memref_p (op))
2591 || (strict < 0
2592 && !(CONSTANT_P (op) || GET_CODE (op) == MEM))
2593 || (reload_in_progress
2594 && !(GET_CODE (op) == REG
2595 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2596 win = 1;
2597 break;
2599 case 'o':
2600 if ((strict > 0 && offsettable_memref_p (op))
2601 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2602 /* Before reload, accept what reload can handle. */
2603 || (strict < 0
2604 && (CONSTANT_P (op) || GET_CODE (op) == MEM))
2605 /* During reload, accept a pseudo */
2606 || (reload_in_progress && GET_CODE (op) == REG
2607 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2608 win = 1;
2609 break;
2611 default:
2613 enum reg_class class;
2615 class = (c == 'r' ? GENERAL_REGS : REG_CLASS_FROM_LETTER (c));
2616 if (class != NO_REGS)
2618 if (strict < 0
2619 || (strict == 0
2620 && GET_CODE (op) == REG
2621 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2622 || (strict == 0 && GET_CODE (op) == SCRATCH)
2623 || (GET_CODE (op) == REG
2624 && reg_fits_class_p (op, class, offset, mode)))
2625 win = 1;
2627 #ifdef EXTRA_CONSTRAINT
2628 else if (EXTRA_CONSTRAINT (op, c))
2629 win = 1;
2631 if (EXTRA_MEMORY_CONSTRAINT (c))
2633 /* Every memory operand can be reloaded to fit. */
2634 if (strict < 0 && GET_CODE (op) == MEM)
2635 win = 1;
2637 /* Before reload, accept what reload can turn into mem. */
2638 if (strict < 0 && CONSTANT_P (op))
2639 win = 1;
2641 /* During reload, accept a pseudo */
2642 if (reload_in_progress && GET_CODE (op) == REG
2643 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2644 win = 1;
2646 if (EXTRA_ADDRESS_CONSTRAINT (c))
2648 /* Every address operand can be reloaded to fit. */
2649 if (strict < 0)
2650 win = 1;
2652 #endif
2653 break;
2657 constraints[opno] = p;
2658 /* If this operand did not win somehow,
2659 this alternative loses. */
2660 if (! win)
2661 lose = 1;
2663 /* This alternative won; the operands are ok.
2664 Change whichever operands this alternative says to change. */
2665 if (! lose)
2667 int opno, eopno;
2669 /* See if any earlyclobber operand conflicts with some other
2670 operand. */
2672 if (strict > 0)
2673 for (eopno = 0; eopno < recog_data.n_operands; eopno++)
2674 /* Ignore earlyclobber operands now in memory,
2675 because we would often report failure when we have
2676 two memory operands, one of which was formerly a REG. */
2677 if (earlyclobber[eopno]
2678 && GET_CODE (recog_data.operand[eopno]) == REG)
2679 for (opno = 0; opno < recog_data.n_operands; opno++)
2680 if ((GET_CODE (recog_data.operand[opno]) == MEM
2681 || recog_data.operand_type[opno] != OP_OUT)
2682 && opno != eopno
2683 /* Ignore things like match_operator operands. */
2684 && *recog_data.constraints[opno] != 0
2685 && ! (matching_operands[opno] == eopno
2686 && operands_match_p (recog_data.operand[opno],
2687 recog_data.operand[eopno]))
2688 && ! safe_from_earlyclobber (recog_data.operand[opno],
2689 recog_data.operand[eopno]))
2690 lose = 1;
2692 if (! lose)
2694 while (--funny_match_index >= 0)
2696 recog_data.operand[funny_match[funny_match_index].other]
2697 = recog_data.operand[funny_match[funny_match_index].this];
2700 return 1;
2704 which_alternative++;
2706 while (which_alternative < recog_data.n_alternatives);
2708 which_alternative = -1;
2709 /* If we are about to reject this, but we are not to test strictly,
2710 try a very loose test. Only return failure if it fails also. */
2711 if (strict == 0)
2712 return constrain_operands (-1);
2713 else
2714 return 0;
2717 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2718 is a hard reg in class CLASS when its regno is offset by OFFSET
2719 and changed to mode MODE.
2720 If REG occupies multiple hard regs, all of them must be in CLASS. */
2723 reg_fits_class_p (operand, class, offset, mode)
2724 rtx operand;
2725 enum reg_class class;
2726 int offset;
2727 enum machine_mode mode;
2729 int regno = REGNO (operand);
2730 if (regno < FIRST_PSEUDO_REGISTER
2731 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2732 regno + offset))
2734 int sr;
2735 regno += offset;
2736 for (sr = HARD_REGNO_NREGS (regno, mode) - 1;
2737 sr > 0; sr--)
2738 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2739 regno + sr))
2740 break;
2741 return sr == 0;
2744 return 0;
2747 /* Split single instruction. Helper function for split_all_insns.
2748 Return last insn in the sequence if successful, or NULL if unsuccessful. */
2749 static rtx
2750 split_insn (insn)
2751 rtx insn;
2753 rtx set;
2754 if (!INSN_P (insn))
2756 /* Don't split no-op move insns. These should silently
2757 disappear later in final. Splitting such insns would
2758 break the code that handles REG_NO_CONFLICT blocks. */
2760 else if ((set = single_set (insn)) != NULL && set_noop_p (set))
2762 /* Nops get in the way while scheduling, so delete them
2763 now if register allocation has already been done. It
2764 is too risky to try to do this before register
2765 allocation, and there are unlikely to be very many
2766 nops then anyways. */
2767 if (reload_completed)
2768 delete_insn_and_edges (insn);
2770 else
2772 /* Split insns here to get max fine-grain parallelism. */
2773 rtx first = PREV_INSN (insn);
2774 rtx last = try_split (PATTERN (insn), insn, 1);
2776 if (last != insn)
2778 /* try_split returns the NOTE that INSN became. */
2779 PUT_CODE (insn, NOTE);
2780 NOTE_SOURCE_FILE (insn) = 0;
2781 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2783 /* ??? Coddle to md files that generate subregs in post-
2784 reload splitters instead of computing the proper
2785 hard register. */
2786 if (reload_completed && first != last)
2788 first = NEXT_INSN (first);
2789 while (1)
2791 if (INSN_P (first))
2792 cleanup_subreg_operands (first);
2793 if (first == last)
2794 break;
2795 first = NEXT_INSN (first);
2798 return last;
2801 return NULL_RTX;
2803 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2805 void
2806 split_all_insns (upd_life)
2807 int upd_life;
2809 sbitmap blocks;
2810 int changed;
2811 basic_block bb;
2813 blocks = sbitmap_alloc (last_basic_block);
2814 sbitmap_zero (blocks);
2815 changed = 0;
2817 FOR_EACH_BB_REVERSE (bb)
2819 rtx insn, next;
2820 bool finish = false;
2822 for (insn = bb->head; !finish ; insn = next)
2824 rtx last;
2826 /* Can't use `next_real_insn' because that might go across
2827 CODE_LABELS and short-out basic blocks. */
2828 next = NEXT_INSN (insn);
2829 finish = (insn == bb->end);
2830 last = split_insn (insn);
2831 if (last)
2833 /* The split sequence may include barrier, but the
2834 BB boundary we are interested in will be set to previous
2835 one. */
2837 while (GET_CODE (last) == BARRIER)
2838 last = PREV_INSN (last);
2839 SET_BIT (blocks, bb->index);
2840 changed = 1;
2841 insn = last;
2846 if (changed)
2848 find_many_sub_basic_blocks (blocks);
2851 if (changed && upd_life)
2853 count_or_remove_death_notes (blocks, 1);
2854 update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
2856 #ifdef ENABLE_CHECKING
2857 verify_flow_info ();
2858 #endif
2860 sbitmap_free (blocks);
2863 /* Same as split_all_insns, but do not expect CFG to be available.
2864 Used by machine dependent reorg passes. */
2866 void
2867 split_all_insns_noflow ()
2869 rtx next, insn;
2871 for (insn = get_insns (); insn; insn = next)
2873 next = NEXT_INSN (insn);
2874 split_insn (insn);
2876 return;
2879 #ifdef HAVE_peephole2
2880 struct peep2_insn_data
2882 rtx insn;
2883 regset live_before;
2886 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2887 static int peep2_current;
2889 /* A non-insn marker indicating the last insn of the block.
2890 The live_before regset for this element is correct, indicating
2891 global_live_at_end for the block. */
2892 #define PEEP2_EOB pc_rtx
2894 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2895 does not exist. Used by the recognizer to find the next insn to match
2896 in a multi-insn pattern. */
2899 peep2_next_insn (n)
2900 int n;
2902 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2903 abort ();
2905 n += peep2_current;
2906 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2907 n -= MAX_INSNS_PER_PEEP2 + 1;
2909 if (peep2_insn_data[n].insn == PEEP2_EOB)
2910 return NULL_RTX;
2911 return peep2_insn_data[n].insn;
2914 /* Return true if REGNO is dead before the Nth non-note insn
2915 after `current'. */
2918 peep2_regno_dead_p (ofs, regno)
2919 int ofs;
2920 int regno;
2922 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2923 abort ();
2925 ofs += peep2_current;
2926 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2927 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2929 if (peep2_insn_data[ofs].insn == NULL_RTX)
2930 abort ();
2932 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2935 /* Similarly for a REG. */
2938 peep2_reg_dead_p (ofs, reg)
2939 int ofs;
2940 rtx reg;
2942 int regno, n;
2944 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2945 abort ();
2947 ofs += peep2_current;
2948 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2949 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2951 if (peep2_insn_data[ofs].insn == NULL_RTX)
2952 abort ();
2954 regno = REGNO (reg);
2955 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2956 while (--n >= 0)
2957 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2958 return 0;
2959 return 1;
2962 /* Try to find a hard register of mode MODE, matching the register class in
2963 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2964 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2965 in which case the only condition is that the register must be available
2966 before CURRENT_INSN.
2967 Registers that already have bits set in REG_SET will not be considered.
2969 If an appropriate register is available, it will be returned and the
2970 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2971 returned. */
2974 peep2_find_free_register (from, to, class_str, mode, reg_set)
2975 int from, to;
2976 const char *class_str;
2977 enum machine_mode mode;
2978 HARD_REG_SET *reg_set;
2980 static int search_ofs;
2981 enum reg_class class;
2982 HARD_REG_SET live;
2983 int i;
2985 if (from >= MAX_INSNS_PER_PEEP2 + 1 || to >= MAX_INSNS_PER_PEEP2 + 1)
2986 abort ();
2988 from += peep2_current;
2989 if (from >= MAX_INSNS_PER_PEEP2 + 1)
2990 from -= MAX_INSNS_PER_PEEP2 + 1;
2991 to += peep2_current;
2992 if (to >= MAX_INSNS_PER_PEEP2 + 1)
2993 to -= MAX_INSNS_PER_PEEP2 + 1;
2995 if (peep2_insn_data[from].insn == NULL_RTX)
2996 abort ();
2997 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
2999 while (from != to)
3001 HARD_REG_SET this_live;
3003 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
3004 from = 0;
3005 if (peep2_insn_data[from].insn == NULL_RTX)
3006 abort ();
3007 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
3008 IOR_HARD_REG_SET (live, this_live);
3011 class = (class_str[0] == 'r' ? GENERAL_REGS
3012 : REG_CLASS_FROM_LETTER (class_str[0]));
3014 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3016 int raw_regno, regno, success, j;
3018 /* Distribute the free registers as much as possible. */
3019 raw_regno = search_ofs + i;
3020 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3021 raw_regno -= FIRST_PSEUDO_REGISTER;
3022 #ifdef REG_ALLOC_ORDER
3023 regno = reg_alloc_order[raw_regno];
3024 #else
3025 regno = raw_regno;
3026 #endif
3028 /* Don't allocate fixed registers. */
3029 if (fixed_regs[regno])
3030 continue;
3031 /* Make sure the register is of the right class. */
3032 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno))
3033 continue;
3034 /* And can support the mode we need. */
3035 if (! HARD_REGNO_MODE_OK (regno, mode))
3036 continue;
3037 /* And that we don't create an extra save/restore. */
3038 if (! call_used_regs[regno] && ! regs_ever_live[regno])
3039 continue;
3040 /* And we don't clobber traceback for noreturn functions. */
3041 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3042 && (! reload_completed || frame_pointer_needed))
3043 continue;
3045 success = 1;
3046 for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
3048 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3049 || TEST_HARD_REG_BIT (live, regno + j))
3051 success = 0;
3052 break;
3055 if (success)
3057 for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
3058 SET_HARD_REG_BIT (*reg_set, regno + j);
3060 /* Start the next search with the next register. */
3061 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3062 raw_regno = 0;
3063 search_ofs = raw_regno;
3065 return gen_rtx_REG (mode, regno);
3069 search_ofs = 0;
3070 return NULL_RTX;
3073 /* Perform the peephole2 optimization pass. */
3075 void
3076 peephole2_optimize (dump_file)
3077 FILE *dump_file ATTRIBUTE_UNUSED;
3079 regset_head rs_heads[MAX_INSNS_PER_PEEP2 + 2];
3080 rtx insn, prev;
3081 regset live;
3082 int i;
3083 basic_block bb;
3084 #ifdef HAVE_conditional_execution
3085 sbitmap blocks;
3086 bool changed;
3087 #endif
3088 bool do_cleanup_cfg = false;
3089 bool do_rebuild_jump_labels = false;
3091 /* Initialize the regsets we're going to use. */
3092 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3093 peep2_insn_data[i].live_before = INITIALIZE_REG_SET (rs_heads[i]);
3094 live = INITIALIZE_REG_SET (rs_heads[i]);
3096 #ifdef HAVE_conditional_execution
3097 blocks = sbitmap_alloc (last_basic_block);
3098 sbitmap_zero (blocks);
3099 changed = false;
3100 #else
3101 count_or_remove_death_notes (NULL, 1);
3102 #endif
3104 FOR_EACH_BB_REVERSE (bb)
3106 struct propagate_block_info *pbi;
3108 /* Indicate that all slots except the last holds invalid data. */
3109 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3110 peep2_insn_data[i].insn = NULL_RTX;
3112 /* Indicate that the last slot contains live_after data. */
3113 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3114 peep2_current = MAX_INSNS_PER_PEEP2;
3116 /* Start up propagation. */
3117 COPY_REG_SET (live, bb->global_live_at_end);
3118 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3120 #ifdef HAVE_conditional_execution
3121 pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
3122 #else
3123 pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
3124 #endif
3126 for (insn = bb->end; ; insn = prev)
3128 prev = PREV_INSN (insn);
3129 if (INSN_P (insn))
3131 rtx try, before_try, x;
3132 int match_len;
3133 rtx note;
3134 bool was_call = false;
3136 /* Record this insn. */
3137 if (--peep2_current < 0)
3138 peep2_current = MAX_INSNS_PER_PEEP2;
3139 peep2_insn_data[peep2_current].insn = insn;
3140 propagate_one_insn (pbi, insn);
3141 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3143 /* Match the peephole. */
3144 try = peephole2_insns (PATTERN (insn), insn, &match_len);
3145 if (try != NULL)
3147 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3148 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3149 cfg-related call notes. */
3150 for (i = 0; i <= match_len; ++i)
3152 int j;
3153 rtx old_insn, new_insn, note;
3155 j = i + peep2_current;
3156 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3157 j -= MAX_INSNS_PER_PEEP2 + 1;
3158 old_insn = peep2_insn_data[j].insn;
3159 if (GET_CODE (old_insn) != CALL_INSN)
3160 continue;
3161 was_call = true;
3163 new_insn = try;
3164 while (new_insn != NULL_RTX)
3166 if (GET_CODE (new_insn) == CALL_INSN)
3167 break;
3168 new_insn = NEXT_INSN (new_insn);
3171 if (new_insn == NULL_RTX)
3172 abort ();
3174 CALL_INSN_FUNCTION_USAGE (new_insn)
3175 = CALL_INSN_FUNCTION_USAGE (old_insn);
3177 for (note = REG_NOTES (old_insn);
3178 note;
3179 note = XEXP (note, 1))
3180 switch (REG_NOTE_KIND (note))
3182 case REG_NORETURN:
3183 case REG_SETJMP:
3184 case REG_ALWAYS_RETURN:
3185 REG_NOTES (new_insn)
3186 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3187 XEXP (note, 0),
3188 REG_NOTES (new_insn));
3189 default:
3190 /* Discard all other reg notes. */
3191 break;
3194 /* Croak if there is another call in the sequence. */
3195 while (++i <= match_len)
3197 j = i + peep2_current;
3198 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3199 j -= MAX_INSNS_PER_PEEP2 + 1;
3200 old_insn = peep2_insn_data[j].insn;
3201 if (GET_CODE (old_insn) == CALL_INSN)
3202 abort ();
3204 break;
3207 i = match_len + peep2_current;
3208 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3209 i -= MAX_INSNS_PER_PEEP2 + 1;
3211 note = find_reg_note (peep2_insn_data[i].insn,
3212 REG_EH_REGION, NULL_RTX);
3214 /* Replace the old sequence with the new. */
3215 try = emit_insn_after_scope (try, peep2_insn_data[i].insn,
3216 INSN_SCOPE (peep2_insn_data[i].insn));
3217 before_try = PREV_INSN (insn);
3218 delete_insn_chain (insn, peep2_insn_data[i].insn);
3220 /* Re-insert the EH_REGION notes. */
3221 if (note || (was_call && nonlocal_goto_handler_labels))
3223 edge eh_edge;
3225 for (eh_edge = bb->succ; eh_edge
3226 ; eh_edge = eh_edge->succ_next)
3227 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3228 break;
3230 for (x = try ; x != before_try ; x = PREV_INSN (x))
3231 if (GET_CODE (x) == CALL_INSN
3232 || (flag_non_call_exceptions
3233 && may_trap_p (PATTERN (x))
3234 && !find_reg_note (x, REG_EH_REGION, NULL)))
3236 if (note)
3237 REG_NOTES (x)
3238 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3239 XEXP (note, 0),
3240 REG_NOTES (x));
3242 if (x != bb->end && eh_edge)
3244 edge nfte, nehe;
3245 int flags;
3247 nfte = split_block (bb, x);
3248 flags = (eh_edge->flags
3249 & (EDGE_EH | EDGE_ABNORMAL));
3250 if (GET_CODE (x) == CALL_INSN)
3251 flags |= EDGE_ABNORMAL_CALL;
3252 nehe = make_edge (nfte->src, eh_edge->dest,
3253 flags);
3255 nehe->probability = eh_edge->probability;
3256 nfte->probability
3257 = REG_BR_PROB_BASE - nehe->probability;
3259 do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3260 #ifdef HAVE_conditional_execution
3261 SET_BIT (blocks, nfte->dest->index);
3262 changed = true;
3263 #endif
3264 bb = nfte->src;
3265 eh_edge = nehe;
3269 /* Converting possibly trapping insn to non-trapping is
3270 possible. Zap dummy outgoing edges. */
3271 do_cleanup_cfg |= purge_dead_edges (bb);
3274 #ifdef HAVE_conditional_execution
3275 /* With conditional execution, we cannot back up the
3276 live information so easily, since the conditional
3277 death data structures are not so self-contained.
3278 So record that we've made a modification to this
3279 block and update life information at the end. */
3280 SET_BIT (blocks, bb->index);
3281 changed = true;
3283 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3284 peep2_insn_data[i].insn = NULL_RTX;
3285 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3286 #else
3287 /* Back up lifetime information past the end of the
3288 newly created sequence. */
3289 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3290 i = 0;
3291 COPY_REG_SET (live, peep2_insn_data[i].live_before);
3293 /* Update life information for the new sequence. */
3294 x = try;
3297 if (INSN_P (x))
3299 if (--i < 0)
3300 i = MAX_INSNS_PER_PEEP2;
3301 peep2_insn_data[i].insn = x;
3302 propagate_one_insn (pbi, x);
3303 COPY_REG_SET (peep2_insn_data[i].live_before, live);
3305 x = PREV_INSN (x);
3307 while (x != prev);
3309 /* ??? Should verify that LIVE now matches what we
3310 had before the new sequence. */
3312 peep2_current = i;
3313 #endif
3315 /* If we generated a jump instruction, it won't have
3316 JUMP_LABEL set. Recompute after we're done. */
3317 for (x = try; x != before_try; x = PREV_INSN (x))
3318 if (GET_CODE (x) == JUMP_INSN)
3320 do_rebuild_jump_labels = true;
3321 break;
3326 if (insn == bb->head)
3327 break;
3330 free_propagate_block_info (pbi);
3333 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3334 FREE_REG_SET (peep2_insn_data[i].live_before);
3335 FREE_REG_SET (live);
3337 if (do_rebuild_jump_labels)
3338 rebuild_jump_labels (get_insns ());
3340 /* If we eliminated EH edges, we may be able to merge blocks. Further,
3341 we've changed global life since exception handlers are no longer
3342 reachable. */
3343 if (do_cleanup_cfg)
3345 cleanup_cfg (0);
3346 update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
3348 #ifdef HAVE_conditional_execution
3349 else
3351 count_or_remove_death_notes (blocks, 1);
3352 update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
3354 sbitmap_free (blocks);
3355 #endif
3357 #endif /* HAVE_peephole2 */
3359 /* Common predicates for use with define_bypass. */
3361 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3362 data not the address operand(s) of the store. IN_INSN must be
3363 single_set. OUT_INSN must be either a single_set or a PARALLEL with
3364 SETs inside. */
3367 store_data_bypass_p (out_insn, in_insn)
3368 rtx out_insn, in_insn;
3370 rtx out_set, in_set;
3372 in_set = single_set (in_insn);
3373 if (! in_set)
3374 abort ();
3376 if (GET_CODE (SET_DEST (in_set)) != MEM)
3377 return false;
3379 out_set = single_set (out_insn);
3380 if (out_set)
3382 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3383 return false;
3385 else
3387 rtx out_pat;
3388 int i;
3390 out_pat = PATTERN (out_insn);
3391 if (GET_CODE (out_pat) != PARALLEL)
3392 abort ();
3394 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3396 rtx exp = XVECEXP (out_pat, 0, i);
3398 if (GET_CODE (exp) == CLOBBER)
3399 continue;
3401 if (GET_CODE (exp) != SET)
3402 abort ();
3404 if (reg_mentioned_p (SET_DEST (exp), SET_DEST (in_set)))
3405 return false;
3409 return true;
3412 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3413 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3414 or multiple set; IN_INSN should be single_set for truth, but for convenience
3415 of insn categorization may be any JUMP or CALL insn. */
3418 if_test_bypass_p (out_insn, in_insn)
3419 rtx out_insn, in_insn;
3421 rtx out_set, in_set;
3423 in_set = single_set (in_insn);
3424 if (! in_set)
3426 if (GET_CODE (in_insn) == JUMP_INSN || GET_CODE (in_insn) == CALL_INSN)
3427 return false;
3428 abort ();
3431 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3432 return false;
3433 in_set = SET_SRC (in_set);
3435 out_set = single_set (out_insn);
3436 if (out_set)
3438 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3439 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3440 return false;
3442 else
3444 rtx out_pat;
3445 int i;
3447 out_pat = PATTERN (out_insn);
3448 if (GET_CODE (out_pat) != PARALLEL)
3449 abort ();
3451 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3453 rtx exp = XVECEXP (out_pat, 0, i);
3455 if (GET_CODE (exp) == CLOBBER)
3456 continue;
3458 if (GET_CODE (exp) != SET)
3459 abort ();
3461 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3462 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3463 return false;
3467 return true;