1 /* Graph coloring register allocator
2 Copyright (C) 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Michael Matz <matz@suse.de>
4 and Daniel Berlin <dan@cgsoftware.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under the
9 terms of the GNU General Public License as published by the Free Software
10 Foundation; either version 2, or (at your option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
17 You should have received a copy of the GNU General Public License along
18 with GCC; see the file COPYING. If not, write to the Free Software
19 Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
35 /* This file is part of the graph coloring register allocator.
36 It contains the graph colorizer. Given an interference graph
37 as set up in ra-build.c the toplevel function in this file
38 (ra_colorize_graph) colorizes the graph, leaving a list
39 of colored, coalesced and spilled nodes.
41 The algorithm used is a merge of George & Appels iterative coalescing
42 and optimistic coalescing, switchable at runtime. The current default
43 is "optimistic coalescing +", which is based on the normal Briggs/Cooper
44 framework. We can also use biased coloring. Most of the structure
45 here follows the different papers.
47 Additionally there is a custom step to locally improve the overall
48 spill cost of the colored graph (recolor_spills). */
50 static void push_list
PARAMS ((struct dlist
*, struct dlist
**));
51 static void push_list_end
PARAMS ((struct dlist
*, struct dlist
**));
52 static void free_dlist
PARAMS ((struct dlist
**));
53 static void put_web_at_end
PARAMS ((struct web
*, enum node_type
));
54 static void put_move
PARAMS ((struct move
*, enum move_type
));
55 static void build_worklists
PARAMS ((struct df
*));
56 static void enable_move
PARAMS ((struct web
*));
57 static void decrement_degree
PARAMS ((struct web
*, int));
58 static void simplify
PARAMS ((void));
59 static void remove_move_1
PARAMS ((struct web
*, struct move
*));
60 static void remove_move
PARAMS ((struct web
*, struct move
*));
61 static void add_worklist
PARAMS ((struct web
*));
62 static int ok
PARAMS ((struct web
*, struct web
*));
63 static int conservative
PARAMS ((struct web
*, struct web
*));
64 static inline unsigned int simplify_p
PARAMS ((enum node_type
));
65 static void combine
PARAMS ((struct web
*, struct web
*));
66 static void coalesce
PARAMS ((void));
67 static void freeze_moves
PARAMS ((struct web
*));
68 static void freeze
PARAMS ((void));
69 static void select_spill
PARAMS ((void));
70 static int color_usable_p
PARAMS ((int, HARD_REG_SET
, HARD_REG_SET
,
72 int get_free_reg
PARAMS ((HARD_REG_SET
, HARD_REG_SET
, enum machine_mode
));
73 static int get_biased_reg
PARAMS ((HARD_REG_SET
, HARD_REG_SET
, HARD_REG_SET
,
74 HARD_REG_SET
, enum machine_mode
));
75 static int count_long_blocks
PARAMS ((HARD_REG_SET
, int));
76 static char * hardregset_to_string
PARAMS ((HARD_REG_SET
));
77 static void calculate_dont_begin
PARAMS ((struct web
*, HARD_REG_SET
*));
78 static void colorize_one_web
PARAMS ((struct web
*, int));
79 static void assign_colors
PARAMS ((void));
80 static void try_recolor_web
PARAMS ((struct web
*));
81 static void insert_coalesced_conflicts
PARAMS ((void));
82 static int comp_webs_maxcost
PARAMS ((const void *, const void *));
83 static void recolor_spills
PARAMS ((void));
84 static void check_colors
PARAMS ((void));
85 static void restore_conflicts_from_coalesce
PARAMS ((struct web
*));
86 static void break_coalesced_spills
PARAMS ((void));
87 static void unalias_web
PARAMS ((struct web
*));
88 static void break_aliases_to_web
PARAMS ((struct web
*));
89 static void break_precolored_alias
PARAMS ((struct web
*));
90 static void init_web_pairs
PARAMS ((void));
91 static void add_web_pair_cost
PARAMS ((struct web
*, struct web
*,
92 unsigned HOST_WIDE_INT
, unsigned int));
93 static int comp_web_pairs
PARAMS ((const void *, const void *));
94 static void sort_and_combine_web_pairs
PARAMS ((int));
95 static void aggressive_coalesce
PARAMS ((void));
96 static void extended_coalesce_2
PARAMS ((void));
97 static void check_uncoalesced_moves
PARAMS ((void));
99 static struct dlist
*mv_worklist
, *mv_coalesced
, *mv_constrained
;
100 static struct dlist
*mv_frozen
, *mv_active
;
102 /* Push a node onto the front of the list. */
109 if (x
->next
|| x
->prev
)
118 push_list_end (x
, list
)
122 if (x
->prev
|| x
->next
)
129 while ((*list
)->next
)
130 list
= &((*list
)->next
);
135 /* Remove a node from the list. */
138 remove_list (x
, list
)
142 struct dlist
*y
= x
->prev
;
150 x
->next
= x
->prev
= NULL
;
153 /* Pop the front of the list. */
159 struct dlist
*r
= *list
;
161 remove_list (r
, list
);
165 /* Free the given double linked list. */
174 /* The web WEB should get the given new TYPE. Put it onto the
176 Inline, because it's called with constant TYPE every time. */
193 push_list (web
->dlink
, &WEBS(type
));
196 push_list (web
->dlink
, &WEBS(INITIAL
));
200 push_list (web
->dlink
, &WEBS(type
= SIMPLIFY_SPILL
));
201 else if (web
->add_hardregs
)
202 push_list (web
->dlink
, &WEBS(type
= SIMPLIFY_FAT
));
204 push_list (web
->dlink
, &WEBS(SIMPLIFY
));
212 /* After we are done with the whole pass of coloring/spilling,
213 we reset the lists of webs, in preparation of the next pass.
214 The spilled webs become free, colored webs go to the initial list,
215 coalesced webs become free or initial, according to what type of web
216 they are coalesced to. */
223 if (WEBS(SIMPLIFY
) || WEBS(SIMPLIFY_SPILL
) || WEBS(SIMPLIFY_FAT
)
224 || WEBS(FREEZE
) || WEBS(SPILL
) || WEBS(SELECT
))
227 while ((d
= pop_list (&WEBS(COALESCED
))) != NULL
)
229 struct web
*web
= DLIST_WEB (d
);
230 struct web
*aweb
= alias (web
);
231 /* Note, how alias() becomes invalid through the two put_web()'s
232 below. It might set the type of a web to FREE (from COALESCED),
233 which itself is a target of aliasing (i.e. in the middle of
234 an alias chain). We can handle this by checking also for
235 type == FREE. Note nevertheless, that alias() is invalid
237 if (aweb
->type
== SPILLED
|| aweb
->type
== FREE
)
240 put_web (web
, INITIAL
);
242 while ((d
= pop_list (&WEBS(SPILLED
))) != NULL
)
243 put_web (DLIST_WEB (d
), FREE
);
244 while ((d
= pop_list (&WEBS(COLORED
))) != NULL
)
245 put_web (DLIST_WEB (d
), INITIAL
);
247 /* All free webs have no conflicts anymore. */
248 for (d
= WEBS(FREE
); d
; d
= d
->next
)
250 struct web
*web
= DLIST_WEB (d
);
251 BITMAP_XFREE (web
->useless_conflicts
);
252 web
->useless_conflicts
= NULL
;
255 /* Sanity check, that we only have free, initial or precolored webs. */
256 for (i
= 0; i
< num_webs
; i
++)
258 struct web
*web
= ID2WEB (i
);
259 if (web
->type
!= INITIAL
&& web
->type
!= FREE
&& web
->type
!= PRECOLORED
)
262 free_dlist (&mv_worklist
);
263 free_dlist (&mv_coalesced
);
264 free_dlist (&mv_constrained
);
265 free_dlist (&mv_frozen
);
266 free_dlist (&mv_active
);
269 /* Similar to put_web(), but add the web to the end of the appropriate
270 list. Additionally TYPE may not be SIMPLIFY. */
273 put_web_at_end (web
, type
)
277 if (type
== PRECOLORED
)
279 else if (type
== SIMPLIFY
)
281 push_list_end (web
->dlink
, &WEBS(type
));
285 /* Unlink WEB from the list it's currently on (which corresponds to
286 its current type). */
289 remove_web_from_list (web
)
292 if (web
->type
== PRECOLORED
)
293 remove_list (web
->dlink
, &WEBS(INITIAL
));
295 remove_list (web
->dlink
, &WEBS(web
->type
));
298 /* Give MOVE the TYPE, and link it into the correct list. */
301 put_move (move
, type
)
308 push_list (move
->dlink
, &mv_worklist
);
311 push_list (move
->dlink
, &mv_coalesced
);
314 push_list (move
->dlink
, &mv_constrained
);
317 push_list (move
->dlink
, &mv_frozen
);
320 push_list (move
->dlink
, &mv_active
);
328 /* Build the worklists we are going to process. */
332 struct df
*df ATTRIBUTE_UNUSED
;
334 struct dlist
*d
, *d_next
;
335 struct move_list
*ml
;
337 /* If we are not the first pass, put all stackwebs (which are still
338 backed by a new pseudo, but conceptually can stand for a stackslot,
339 i.e. it doesn't really matter if they get a color or not), on
340 the SELECT stack first, those with lowest cost first. This way
341 they will be colored last, so do not constrain the coloring of the
342 normal webs. But still those with the highest count are colored
343 before, i.e. get a color more probable. The use of stackregs is
344 a pure optimization, and all would work, if we used real stackslots
348 unsigned int i
, num
, max_num
;
349 struct web
**order2web
;
350 max_num
= num_webs
- num_subwebs
;
351 order2web
= (struct web
**) xmalloc (max_num
* sizeof (order2web
[0]));
352 for (i
= 0, num
= 0; i
< max_num
; i
++)
353 if (id2web
[i
]->regno
>= max_normal_pseudo
)
354 order2web
[num
++] = id2web
[i
];
357 qsort (order2web
, num
, sizeof (order2web
[0]), comp_webs_maxcost
);
358 for (i
= num
- 1;; i
--)
360 struct web
*web
= order2web
[i
];
361 struct conflict_link
*wl
;
362 remove_list (web
->dlink
, &WEBS(INITIAL
));
363 put_web (web
, SELECT
);
364 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
366 struct web
*pweb
= wl
->t
;
367 pweb
->num_conflicts
-= 1 + web
->add_hardregs
;
376 /* For all remaining initial webs, classify them. */
377 for (d
= WEBS(INITIAL
); d
; d
= d_next
)
379 struct web
*web
= DLIST_WEB (d
);
381 if (web
->type
== PRECOLORED
)
384 remove_list (d
, &WEBS(INITIAL
));
385 if (web
->num_conflicts
>= NUM_REGS (web
))
386 put_web (web
, SPILL
);
388 put_web (web
, FREEZE
);
390 put_web (web
, SIMPLIFY
);
393 /* And put all moves on the worklist for iterated coalescing.
394 Note, that if iterated coalescing is off, then wl_moves doesn't
395 contain any moves. */
396 for (ml
= wl_moves
; ml
; ml
= ml
->next
)
399 struct move
*m
= ml
->move
;
400 d
= (struct dlist
*) ra_calloc (sizeof (struct dlist
));
403 put_move (m
, WORKLIST
);
407 /* Enable the active moves, in which WEB takes part, to be processed. */
413 struct move_list
*ml
;
414 for (ml
= web
->moves
; ml
; ml
= ml
->next
)
415 if (ml
->move
->type
== ACTIVE
)
417 remove_list (ml
->move
->dlink
, &mv_active
);
418 put_move (ml
->move
, WORKLIST
);
422 /* Decrement the degree of node WEB by the amount DEC.
423 Possibly change the type of WEB, if the number of conflicts is
424 now smaller than its freedom. */
427 decrement_degree (web
, dec
)
431 int before
= web
->num_conflicts
;
432 web
->num_conflicts
-= dec
;
433 if (web
->num_conflicts
< NUM_REGS (web
) && before
>= NUM_REGS (web
))
435 struct conflict_link
*a
;
437 for (a
= web
->conflict_list
; a
; a
= a
->next
)
439 struct web
*aweb
= a
->t
;
440 if (aweb
->type
!= SELECT
&& aweb
->type
!= COALESCED
)
443 if (web
->type
!= FREEZE
)
445 remove_web_from_list (web
);
447 put_web (web
, FREEZE
);
449 put_web (web
, SIMPLIFY
);
454 /* Repeatedly simplify the nodes on the simplify worklists. */
461 struct conflict_link
*wl
;
464 /* We try hard to color all the webs resulting from spills first.
465 Without that on register starved machines (x86 e.g) with some live
466 DImode pseudos, -fPIC, and an asm requiring %edx, it might be, that
467 we do rounds over rounds, because the conflict graph says, we can
468 simplify those short webs, but later due to irregularities we can't
469 color those pseudos. So we have to spill them, which in later rounds
470 leads to other spills. */
471 d
= pop_list (&WEBS(SIMPLIFY
));
473 d
= pop_list (&WEBS(SIMPLIFY_FAT
));
475 d
= pop_list (&WEBS(SIMPLIFY_SPILL
));
479 ra_debug_msg (DUMP_PROCESS
, " simplifying web %3d, conflicts = %d\n",
480 web
->id
, web
->num_conflicts
);
481 put_web (web
, SELECT
);
482 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
484 struct web
*pweb
= wl
->t
;
485 if (pweb
->type
!= SELECT
&& pweb
->type
!= COALESCED
)
487 decrement_degree (pweb
, 1 + web
->add_hardregs
);
493 /* Helper function to remove a move from the movelist of the web. */
496 remove_move_1 (web
, move
)
500 struct move_list
*ml
= web
->moves
;
503 if (ml
->move
== move
)
505 web
->moves
= ml
->next
;
508 for (; ml
->next
&& ml
->next
->move
!= move
; ml
= ml
->next
) ;
511 ml
->next
= ml
->next
->next
;
514 /* Remove a move from the movelist of the web. Actually this is just a
515 wrapper around remove_move_1(), making sure, the removed move really is
516 not in the list anymore. */
519 remove_move (web
, move
)
523 struct move_list
*ml
;
524 remove_move_1 (web
, move
);
525 for (ml
= web
->moves
; ml
; ml
= ml
->next
)
526 if (ml
->move
== move
)
530 /* Merge the moves for the two webs into the first web's movelist. */
537 struct move_list
*ml
;
539 seen
= BITMAP_XMALLOC ();
540 for (ml
= u
->moves
; ml
; ml
= ml
->next
)
541 bitmap_set_bit (seen
, INSN_UID (ml
->move
->insn
));
542 for (ml
= v
->moves
; ml
; ml
= ml
->next
)
544 if (! bitmap_bit_p (seen
, INSN_UID (ml
->move
->insn
)))
554 /* Add a web to the simplify worklist, from the freeze worklist. */
560 if (web
->type
!= PRECOLORED
&& !web
->moves
561 && web
->num_conflicts
< NUM_REGS (web
))
563 remove_list (web
->dlink
, &WEBS(FREEZE
));
564 put_web (web
, SIMPLIFY
);
568 /* Precolored node coalescing heuristic. */
572 struct web
*target
, *source
;
574 struct conflict_link
*wl
;
576 int color
= source
->color
;
579 /* Normally one would think, the next test wouldn't be needed.
580 We try to coalesce S and T, and S has already a color, and we checked
581 when processing the insns, that both have the same mode. So naively
582 we could conclude, that of course that mode was valid for this color.
583 Hah. But there is sparc. Before reload there are copy insns
584 (e.g. the ones copying arguments to locals) which happily refer to
585 colors in invalid modes. We can't coalesce those things. */
586 if (! HARD_REGNO_MODE_OK (source
->color
, GET_MODE (target
->orig_x
)))
589 /* Sanity for funny modes. */
590 size
= HARD_REGNO_NREGS (color
, GET_MODE (target
->orig_x
));
594 /* We can't coalesce target with a precolored register which isn't in
597 if (TEST_HARD_REG_BIT (never_use_colors
, color
+ i
)
598 || !TEST_HARD_REG_BIT (target
->usable_regs
, color
+ i
)
599 /* Before usually calling ok() at all, we already test, if the
600 candidates conflict in sup_igraph. But when wide webs are
601 coalesced to hardregs, we only test the hardweb coalesced into.
602 This is only the begin color. When actually coalescing both,
603 it will also take the following size colors, i.e. their webs.
604 We nowhere checked if the candidate possibly conflicts with
605 one of _those_, which is possible with partial conflicts,
606 so we simply do it here (this does one bit-test more than
607 necessary, the first color). Note, that if X is precolored
608 bit [X*num_webs + Y] can't be set (see add_conflict_edge()). */
609 || TEST_BIT (sup_igraph
,
610 target
->id
* num_webs
+ hardreg2web
[color
+ i
]->id
))
613 for (wl
= target
->conflict_list
; wl
; wl
= wl
->next
)
615 struct web
*pweb
= wl
->t
;
616 if (pweb
->type
== SELECT
|| pweb
->type
== COALESCED
)
619 /* Coalescing target (T) and source (S) is o.k, if for
620 all conflicts C of T it is true, that:
621 1) C will be colored, or
622 2) C is a hardreg (precolored), or
623 3) C already conflicts with S too, or
624 4) a web which contains C conflicts already with S.
625 XXX: we handle here only the special case of 4), that C is
626 a subreg, and the containing thing is the reg itself, i.e.
627 we dont handle the situation, were T conflicts with
628 (subreg:SI x 1), and S conflicts with (subreg:DI x 0), which
629 would be allowed also, as the S-conflict overlaps
631 So, we first test the whole web for any of these conditions, and
632 continue with the next C, if 1, 2 or 3 is true. */
633 if (pweb
->num_conflicts
< NUM_REGS (pweb
)
634 || pweb
->type
== PRECOLORED
635 || TEST_BIT (igraph
, igraph_index (source
->id
, pweb
->id
)) )
638 /* This is reached, if not one of 1, 2 or 3 was true. In the case C has
639 no subwebs, 4 can't be true either, so we can't coalesce S and T. */
644 /* The main webs do _not_ conflict, only some parts of both. This
645 means, that 4 is possibly true, so we need to check this too.
646 For this we go thru all sub conflicts between T and C, and see if
647 the target part of C already conflicts with S. When this is not
648 the case we disallow coalescing. */
649 struct sub_conflict
*sl
;
650 for (sl
= wl
->sub
; sl
; sl
= sl
->next
)
652 if (!TEST_BIT (igraph
, igraph_index (source
->id
, sl
->t
->id
)))
660 /* Non-precolored node coalescing heuristic. */
663 conservative (target
, source
)
664 struct web
*target
, *source
;
669 struct conflict_link
*wl
;
670 unsigned int num_regs
= NUM_REGS (target
); /* XXX */
672 /* k counts the resulting conflict weight, if target and source
673 would be merged, and all low-degree neighbors would be
675 k
= 0 * MAX (target
->add_hardregs
, source
->add_hardregs
);
676 seen
= BITMAP_XMALLOC ();
677 for (loop
= 0; loop
< 2; loop
++)
678 for (wl
= ((loop
== 0) ? target
: source
)->conflict_list
;
681 struct web
*pweb
= wl
->t
;
682 if (pweb
->type
!= SELECT
&& pweb
->type
!= COALESCED
683 && pweb
->num_conflicts
>= NUM_REGS (pweb
)
684 && ! REGNO_REG_SET_P (seen
, pweb
->id
))
686 SET_REGNO_REG_SET (seen
, pweb
->id
);
687 k
+= 1 + pweb
->add_hardregs
;
697 /* If the web is coalesced, return it's alias. Otherwise, return what
704 while (web
->type
== COALESCED
)
709 /* Returns nonzero, if the TYPE belongs to one of those representing
712 static inline unsigned int
716 return type
== SIMPLIFY
|| type
== SIMPLIFY_SPILL
|| type
== SIMPLIFY_FAT
;
719 /* Actually combine two webs, that can be coalesced. */
726 struct conflict_link
*wl
;
727 if (u
== v
|| v
->type
== COALESCED
)
729 if ((u
->regno
>= max_normal_pseudo
) != (v
->regno
>= max_normal_pseudo
))
731 remove_web_from_list (v
);
732 put_web (v
, COALESCED
);
736 u
->num_aliased
+= 1 + v
->num_aliased
;
737 if (flag_ra_merge_spill_costs
&& u
->type
!= PRECOLORED
)
738 u
->spill_cost
+= v
->spill_cost
;
739 /*u->spill_cost = MAX (u->spill_cost, v->spill_cost);*/
741 /* combine add_hardregs's of U and V. */
743 for (wl
= v
->conflict_list
; wl
; wl
= wl
->next
)
745 struct web
*pweb
= wl
->t
;
746 /* We don't strictly need to move conflicts between webs which are
747 already coalesced or selected, if we do iterated coalescing, or
748 better if we need not to be able to break aliases again.
749 I.e. normally we would use the condition
750 (pweb->type != SELECT && pweb->type != COALESCED).
751 But for now we simply merge all conflicts. It doesn't take that
756 int nregs
= 1 + v
->add_hardregs
;
757 if (u
->type
== PRECOLORED
)
758 nregs
= HARD_REGNO_NREGS (u
->color
, GET_MODE (v
->orig_x
));
760 /* For precolored U's we need to make conflicts between V's
761 neighbors and as many hardregs from U as V needed if it gets
762 color U. For now we approximate this by V->add_hardregs, which
763 could be too much in multi-length classes. We should really
764 count how many hardregs are needed for V with color U. When U
765 isn't precolored this loop breaks out after one iteration. */
766 for (i
= 0; i
< nregs
; i
++)
768 if (u
->type
== PRECOLORED
)
769 web
= hardreg2web
[i
+ u
->color
];
771 record_conflict (web
, pweb
);
774 struct sub_conflict
*sl
;
775 /* So, between V and PWEB there are sub_conflicts. We
776 need to relocate those conflicts to be between WEB (==
777 U when it wasn't precolored) and PWEB. In the case
778 only a part of V conflicted with (part of) PWEB we
779 nevertheless make the new conflict between the whole U
780 and the (part of) PWEB. Later we might try to find in
781 U the correct subpart corresponding (by size and
782 offset) to the part of V (sl->s) which was the source
784 for (sl
= wl
->sub
; sl
; sl
= sl
->next
)
786 /* Beware: sl->s is no subweb of web (== U) but of V.
787 We try to search a corresponding subpart of U.
788 If we found none we let it conflict with the whole U.
789 Note that find_subweb() only looks for mode and
790 subreg_byte of the REG rtx but not for the pseudo
791 reg number (otherwise it would be guaranteed to
792 _not_ find any subpart). */
793 struct web
*sweb
= NULL
;
794 if (SUBWEB_P (sl
->s
))
795 sweb
= find_subweb (web
, sl
->s
->orig_x
);
798 record_conflict (sweb
, sl
->t
);
801 if (u
->type
!= PRECOLORED
)
804 if (pweb
->type
!= SELECT
&& pweb
->type
!= COALESCED
)
805 decrement_degree (pweb
, 1 + v
->add_hardregs
);
809 /* Now merge the usable_regs together. */
810 /* XXX That merging might normally make it necessary to
811 adjust add_hardregs, which also means to adjust neighbors. This can
812 result in making some more webs trivially colorable, (or the opposite,
813 if this increases our add_hardregs). Because we intersect the
814 usable_regs it should only be possible to decrease add_hardregs. So a
815 conservative solution for now is to simply don't change it. */
817 AND_HARD_REG_SET (u
->usable_regs
, v
->usable_regs
);
818 u
->regclass
= reg_class_subunion
[u
->regclass
][v
->regclass
];
819 /* Count number of possible hardregs. This might make U a spillweb,
820 but that could also happen, if U and V together had too many
822 u
->num_freedom
= hard_regs_count (u
->usable_regs
);
823 u
->num_freedom
-= u
->add_hardregs
;
824 /* The next would mean an invalid coalesced move (both webs have no
825 possible hardreg in common), so abort. */
829 if (u
->num_conflicts
>= NUM_REGS (u
)
830 && (u
->type
== FREEZE
|| simplify_p (u
->type
)))
832 remove_web_from_list (u
);
836 /* We want the most relaxed combination of spill_temp state.
837 I.e. if any was no spilltemp or a spilltemp2, the result is so too,
838 otherwise if any is short, the result is too. It remains, when both
839 are normal spilltemps. */
840 if (v
->spill_temp
== 0)
842 else if (v
->spill_temp
== 2 && u
->spill_temp
!= 0)
844 else if (v
->spill_temp
== 3 && u
->spill_temp
== 1)
848 /* Attempt to coalesce the first thing on the move worklist.
849 This is used only for iterated coalescing. */
854 struct dlist
*d
= pop_list (&mv_worklist
);
855 struct move
*m
= DLIST_MOVE (d
);
856 struct web
*source
= alias (m
->source_web
);
857 struct web
*target
= alias (m
->target_web
);
859 if (target
->type
== PRECOLORED
)
861 struct web
*h
= source
;
865 if (source
== target
)
867 remove_move (source
, m
);
868 put_move (m
, MV_COALESCED
);
869 add_worklist (source
);
871 else if (target
->type
== PRECOLORED
872 || TEST_BIT (sup_igraph
, source
->id
* num_webs
+ target
->id
)
873 || TEST_BIT (sup_igraph
, target
->id
* num_webs
+ source
->id
))
875 remove_move (source
, m
);
876 remove_move (target
, m
);
877 put_move (m
, CONSTRAINED
);
878 add_worklist (source
);
879 add_worklist (target
);
881 else if ((source
->type
== PRECOLORED
&& ok (target
, source
))
882 || (source
->type
!= PRECOLORED
883 && conservative (target
, source
)))
885 remove_move (source
, m
);
886 remove_move (target
, m
);
887 put_move (m
, MV_COALESCED
);
888 combine (source
, target
);
889 add_worklist (source
);
892 put_move (m
, ACTIVE
);
895 /* Freeze the moves associated with the web. Used for iterated coalescing. */
901 struct move_list
*ml
, *ml_next
;
902 for (ml
= web
->moves
; ml
; ml
= ml_next
)
904 struct move
*m
= ml
->move
;
905 struct web
*src
, *dest
;
907 if (m
->type
== ACTIVE
)
908 remove_list (m
->dlink
, &mv_active
);
910 remove_list (m
->dlink
, &mv_worklist
);
911 put_move (m
, FROZEN
);
912 remove_move (web
, m
);
913 src
= alias (m
->source_web
);
914 dest
= alias (m
->target_web
);
915 src
= (src
== web
) ? dest
: src
;
916 remove_move (src
, m
);
917 /* XXX GA use the original v, instead of alias(v) */
918 if (!src
->moves
&& src
->num_conflicts
< NUM_REGS (src
))
920 remove_list (src
->dlink
, &WEBS(FREEZE
));
921 put_web (src
, SIMPLIFY
);
926 /* Freeze the first thing on the freeze worklist (only for iterated
932 struct dlist
*d
= pop_list (&WEBS(FREEZE
));
933 put_web (DLIST_WEB (d
), SIMPLIFY
);
934 freeze_moves (DLIST_WEB (d
));
937 /* The current spill heuristic. Returns a number for a WEB.
938 Webs with higher numbers are selected later. */
940 static unsigned HOST_WIDE_INT (*spill_heuristic
) PARAMS ((struct web
*));
942 static unsigned HOST_WIDE_INT default_spill_heuristic
PARAMS ((struct web
*));
944 /* Our default heuristic is similar to spill_cost / num_conflicts.
945 Just scaled for integer arithmetic, and it favors coalesced webs,
946 and webs which span more insns with deaths. */
948 static unsigned HOST_WIDE_INT
949 default_spill_heuristic (web
)
952 unsigned HOST_WIDE_INT ret
;
953 unsigned int divisor
= 1;
954 /* Make coalesce targets cheaper to spill, because they will be broken
955 up again into smaller parts. */
956 if (flag_ra_break_aliases
)
957 divisor
+= web
->num_aliased
;
958 divisor
+= web
->num_conflicts
;
959 ret
= ((web
->spill_cost
<< 8) + divisor
- 1) / divisor
;
960 /* It is better to spill webs that span more insns (deaths in our
961 case) than other webs with the otherwise same spill_cost. So make
962 them a little bit cheaper. Remember that spill_cost is unsigned. */
963 if (web
->span_deaths
< ret
)
964 ret
-= web
->span_deaths
;
968 /* Select the cheapest spill to be potentially spilled (we don't
969 *actually* spill until we need to). */
974 unsigned HOST_WIDE_INT best
= (unsigned HOST_WIDE_INT
) -1;
975 struct dlist
*bestd
= NULL
;
976 unsigned HOST_WIDE_INT best2
= (unsigned HOST_WIDE_INT
) -1;
977 struct dlist
*bestd2
= NULL
;
979 for (d
= WEBS(SPILL
); d
; d
= d
->next
)
981 struct web
*w
= DLIST_WEB (d
);
982 unsigned HOST_WIDE_INT cost
= spill_heuristic (w
);
983 if ((!w
->spill_temp
) && cost
< best
)
988 /* Specially marked spill temps can be spilled. Also coalesce
989 targets can. Eventually they will be broken up later in the
990 colorizing process, so if we have nothing better take that. */
991 else if ((w
->spill_temp
== 2 || w
->is_coalesced
) && cost
< best2
)
1005 /* Note the potential spill. */
1006 DLIST_WEB (bestd
)->was_spilled
= 1;
1007 remove_list (bestd
, &WEBS(SPILL
));
1008 put_web (DLIST_WEB (bestd
), SIMPLIFY
);
1009 freeze_moves (DLIST_WEB (bestd
));
1010 ra_debug_msg (DUMP_PROCESS
, " potential spill web %3d, conflicts = %d\n",
1011 DLIST_WEB (bestd
)->id
, DLIST_WEB (bestd
)->num_conflicts
);
1014 /* Given a set of forbidden colors to begin at, and a set of still
1015 free colors, and MODE, returns nonzero of color C is still usable. */
1018 color_usable_p (c
, dont_begin_colors
, free_colors
, mode
)
1020 HARD_REG_SET dont_begin_colors
, free_colors
;
1021 enum machine_mode mode
;
1023 if (!TEST_HARD_REG_BIT (dont_begin_colors
, c
)
1024 && TEST_HARD_REG_BIT (free_colors
, c
)
1025 && HARD_REGNO_MODE_OK (c
, mode
))
1028 size
= HARD_REGNO_NREGS (c
, mode
);
1029 for (i
= 1; i
< size
&& TEST_HARD_REG_BIT (free_colors
, c
+ i
); i
++);
1036 /* I don't want to clutter up the actual code with ifdef's. */
1037 #ifdef REG_ALLOC_ORDER
1038 #define INV_REG_ALLOC_ORDER(c) inv_reg_alloc_order[c]
1040 #define INV_REG_ALLOC_ORDER(c) c
1043 /* Searches in FREE_COLORS for a block of hardregs of the right length
1044 for MODE, which doesn't begin at a hardreg mentioned in DONT_BEGIN_COLORS.
1045 If it needs more than one hardreg it prefers blocks beginning
1046 at an even hardreg, and only gives an odd begin reg if no other
1047 block could be found. */
1050 get_free_reg (dont_begin_colors
, free_colors
, mode
)
1051 HARD_REG_SET dont_begin_colors
, free_colors
;
1052 enum machine_mode mode
;
1055 int last_resort_reg
= -1;
1057 int pref_reg_order
= INT_MAX
;
1058 int last_resort_reg_order
= INT_MAX
;
1060 for (c
= 0; c
< FIRST_PSEUDO_REGISTER
; c
++)
1061 if (!TEST_HARD_REG_BIT (dont_begin_colors
, c
)
1062 && TEST_HARD_REG_BIT (free_colors
, c
)
1063 && HARD_REGNO_MODE_OK (c
, mode
))
1066 size
= HARD_REGNO_NREGS (c
, mode
);
1067 for (i
= 1; i
< size
&& TEST_HARD_REG_BIT (free_colors
, c
+ i
); i
++);
1075 if (size
< 2 || (c
& 1) == 0)
1077 if (INV_REG_ALLOC_ORDER (c
) < pref_reg_order
)
1080 pref_reg_order
= INV_REG_ALLOC_ORDER (c
);
1083 else if (INV_REG_ALLOC_ORDER (c
) < last_resort_reg_order
)
1085 last_resort_reg
= c
;
1086 last_resort_reg_order
= INV_REG_ALLOC_ORDER (c
);
1092 return pref_reg
>= 0 ? pref_reg
: last_resort_reg
;
1095 /* Similar to get_free_reg(), but first search in colors provided
1096 by BIAS _and_ PREFER_COLORS, then in BIAS alone, then in PREFER_COLORS
1097 alone, and only then for any free color. If flag_ra_biased is zero
1098 only do the last two steps. */
1101 get_biased_reg (dont_begin_colors
, bias
, prefer_colors
, free_colors
, mode
)
1102 HARD_REG_SET dont_begin_colors
, bias
, prefer_colors
, free_colors
;
1103 enum machine_mode mode
;
1109 COPY_HARD_REG_SET (s
, dont_begin_colors
);
1110 IOR_COMPL_HARD_REG_SET (s
, bias
);
1111 IOR_COMPL_HARD_REG_SET (s
, prefer_colors
);
1112 c
= get_free_reg (s
, free_colors
, mode
);
1115 COPY_HARD_REG_SET (s
, dont_begin_colors
);
1116 IOR_COMPL_HARD_REG_SET (s
, bias
);
1117 c
= get_free_reg (s
, free_colors
, mode
);
1121 COPY_HARD_REG_SET (s
, dont_begin_colors
);
1122 IOR_COMPL_HARD_REG_SET (s
, prefer_colors
);
1123 c
= get_free_reg (s
, free_colors
, mode
);
1126 c
= get_free_reg (dont_begin_colors
, free_colors
, mode
);
1130 /* Counts the number of non-overlapping bitblocks of length LEN
1134 count_long_blocks (free_colors
, len
)
1135 HARD_REG_SET free_colors
;
1140 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1142 if (!TEST_HARD_REG_BIT (free_colors
, i
))
1144 for (j
= 1; j
< len
; j
++)
1145 if (!TEST_HARD_REG_BIT (free_colors
, i
+ j
))
1147 /* Bits [i .. i+j-1] are free. */
1155 /* Given a hardreg set S, return a string representing it.
1156 Either as 0/1 string, or as hex value depending on the implementation
1157 of hardreg sets. Note that this string is statically allocated. */
1160 hardregset_to_string (s
)
1163 static char string
[/*FIRST_PSEUDO_REGISTER + 30*/1024];
1164 #if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDE_INT
1165 sprintf (string
, HOST_WIDE_INT_PRINT_HEX
, s
);
1169 c
+= sprintf (c
, "{ ");
1170 for (i
= 0;i
< HARD_REG_SET_LONGS
; i
++)
1172 for (j
= 0; j
< HOST_BITS_PER_WIDE_INT
; j
++)
1173 c
+= sprintf (c
, "%s", ( 1 << j
) & s
[i
] ? "1" : "0");
1174 c
+= sprintf (c
, "%s", i
? ", " : "");
1176 c
+= sprintf (c
, " }");
1181 /* For WEB, look at its already colored neighbors, and calculate
1182 the set of hardregs which is not allowed as color for WEB. Place
1183 that set int *RESULT. Note that the set of forbidden begin colors
1184 is not the same as all colors taken up by neighbors. E.g. suppose
1185 two DImode webs, but only the lo-part from one conflicts with the
1186 hipart from the other, and suppose the other gets colors 2 and 3
1187 (it needs two SImode hardregs). Now the first can take also color
1188 1 or 2, although in those cases there's a partial overlap. Only
1189 3 can't be used as begin color. */
1192 calculate_dont_begin (web
, result
)
1194 HARD_REG_SET
*result
;
1196 struct conflict_link
*wl
;
1197 HARD_REG_SET dont_begin
;
1198 /* The bits set in dont_begin correspond to the hardregs, at which
1199 WEB may not begin. This differs from the set of _all_ hardregs which
1200 are taken by WEB's conflicts in the presence of wide webs, where only
1201 some parts conflict with others. */
1202 CLEAR_HARD_REG_SET (dont_begin
);
1203 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1206 struct web
*ptarget
= alias (wl
->t
);
1207 struct sub_conflict
*sl
= wl
->sub
;
1208 w
= sl
? sl
->t
: wl
->t
;
1211 if (ptarget
->type
== COLORED
|| ptarget
->type
== PRECOLORED
)
1213 struct web
*source
= (sl
) ? sl
->s
: web
;
1214 unsigned int tsize
= HARD_REGNO_NREGS (ptarget
->color
,
1215 GET_MODE (w
->orig_x
));
1216 /* ssize is only a first guess for the size. */
1217 unsigned int ssize
= HARD_REGNO_NREGS (ptarget
->color
, GET_MODE
1219 unsigned int tofs
= 0;
1220 unsigned int sofs
= 0;
1221 /* C1 and C2 can become negative, so unsigned
1226 && GET_MODE_SIZE (GET_MODE (w
->orig_x
)) >= UNITS_PER_WORD
)
1227 tofs
= (SUBREG_BYTE (w
->orig_x
) / UNITS_PER_WORD
);
1228 if (SUBWEB_P (source
)
1229 && GET_MODE_SIZE (GET_MODE (source
->orig_x
))
1231 sofs
= (SUBREG_BYTE (source
->orig_x
) / UNITS_PER_WORD
);
1232 c1
= ptarget
->color
+ tofs
- sofs
- ssize
+ 1;
1233 c2
= ptarget
->color
+ tofs
+ tsize
- 1 - sofs
;
1238 /* Because ssize was only guessed above, which influenced our
1239 begin color (c1), we need adjustment, if for that color
1240 another size would be needed. This is done by moving
1241 c1 to a place, where the last of sources hardregs does not
1242 overlap the first of targets colors. */
1244 + HARD_REGNO_NREGS (c1
, GET_MODE (source
->orig_x
)) - 1
1245 < ptarget
->color
+ tofs
)
1247 while (c1
> 0 && c1
+ sofs
1248 + HARD_REGNO_NREGS (c1
, GET_MODE (source
->orig_x
)) - 1
1249 > ptarget
->color
+ tofs
)
1251 for (; c1
<= c2
; c1
++)
1252 SET_HARD_REG_BIT (dont_begin
, c1
);
1255 /* The next if() only gets true, if there was no wl->sub at all, in
1256 which case we are only making one go thru this loop with W being
1261 w
= sl
? sl
->t
: NULL
;
1264 COPY_HARD_REG_SET (*result
, dont_begin
);
1267 /* Try to assign a color to WEB. If HARD if nonzero, we try many
1268 tricks to get it one color, including respilling already colored
1271 We also trie very hard, to not constrain the uncolored non-spill
1272 neighbors, which need more hardregs than we. Consider a situation, 2
1273 hardregs free for us (0 and 1), and one of our neighbors needs 2
1274 hardregs, and only conflicts with us. There are 3 hardregs at all. Now
1275 a simple minded method might choose 1 as color for us. Then our neighbor
1276 has two free colors (0 and 2) as it should, but they are not consecutive,
1277 so coloring it later would fail. This leads to nasty problems on
1278 register starved machines, so we try to avoid this. */
1281 colorize_one_web (web
, hard
)
1285 struct conflict_link
*wl
;
1286 HARD_REG_SET colors
, dont_begin
;
1289 int neighbor_needs
= 0;
1290 struct web
*fats_parent
= NULL
;
1292 int long_blocks
= 0;
1293 int best_long_blocks
= -1;
1294 HARD_REG_SET fat_colors
;
1297 if (web
->regno
>= max_normal_pseudo
)
1300 /* First we want to know the colors at which we can't begin. */
1301 calculate_dont_begin (web
, &dont_begin
);
1302 CLEAR_HARD_REG_SET (bias
);
1304 /* Now setup the set of colors used by our neighbors neighbors,
1305 and search the biggest noncolored neighbor. */
1306 neighbor_needs
= web
->add_hardregs
+ 1;
1307 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1310 struct web
*ptarget
= alias (wl
->t
);
1311 struct sub_conflict
*sl
= wl
->sub
;
1312 IOR_HARD_REG_SET (bias
, ptarget
->bias_colors
);
1313 w
= sl
? sl
->t
: wl
->t
;
1314 if (ptarget
->type
!= COLORED
&& ptarget
->type
!= PRECOLORED
1315 && !ptarget
->was_spilled
)
1318 if (find_web_for_subweb (w
)->type
!= COALESCED
1319 && w
->add_hardregs
>= neighbor_needs
)
1321 neighbor_needs
= w
->add_hardregs
;
1322 fats_parent
= ptarget
;
1328 w
= sl
? sl
->t
: NULL
;
1332 ra_debug_msg (DUMP_COLORIZE
, "colorize web %d [don't begin at %s]", web
->id
,
1333 hardregset_to_string (dont_begin
));
1335 /* If there are some fat neighbors, remember their usable regs,
1336 and how many blocks are free in it for that neighbor. */
1339 COPY_HARD_REG_SET (fat_colors
, fats_parent
->usable_regs
);
1340 long_blocks
= count_long_blocks (fat_colors
, neighbor_needs
+ 1);
1343 /* We break out, if we found a color which doesn't constrain
1344 neighbors, or if we can't find any colors. */
1347 HARD_REG_SET call_clobbered
;
1349 /* Here we choose a hard-reg for the current web. For non spill
1350 temporaries we first search in the hardregs for it's preferred
1351 class, then, if we found nothing appropriate, in those of the
1352 alternate class. For spill temporaries we only search in
1353 usable_regs of this web (which is probably larger than that of
1354 the preferred or alternate class). All searches first try to
1355 find a non-call-clobbered hard-reg.
1356 XXX this should be more finegraned... First look into preferred
1357 non-callclobbered hardregs, then _if_ the web crosses calls, in
1358 alternate non-cc hardregs, and only _then_ also in preferred cc
1359 hardregs (and alternate ones). Currently we don't track the number
1360 of calls crossed for webs. We should. */
1361 if (web
->use_my_regs
)
1363 COPY_HARD_REG_SET (colors
, web
->usable_regs
);
1364 AND_HARD_REG_SET (colors
,
1365 usable_regs
[reg_preferred_class (web
->regno
)]);
1368 COPY_HARD_REG_SET (colors
,
1369 usable_regs
[reg_preferred_class (web
->regno
)]);
1370 #ifdef CLASS_CANNOT_CHANGE_MODE
1371 if (web
->mode_changed
)
1372 AND_COMPL_HARD_REG_SET (colors
, reg_class_contents
[
1373 (int) CLASS_CANNOT_CHANGE_MODE
]);
1375 COPY_HARD_REG_SET (call_clobbered
, colors
);
1376 AND_HARD_REG_SET (call_clobbered
, call_used_reg_set
);
1378 /* If this web got a color in the last pass, try to give it the
1379 same color again. This will to much better colorization
1380 down the line, as we spilled for a certain coloring last time. */
1383 c
= web
->old_color
- 1;
1384 if (!color_usable_p (c
, dont_begin
, colors
,
1385 PSEUDO_REGNO_MODE (web
->regno
)))
1391 c
= get_biased_reg (dont_begin
, bias
, web
->prefer_colors
,
1392 call_clobbered
, PSEUDO_REGNO_MODE (web
->regno
));
1394 c
= get_biased_reg (dont_begin
, bias
, web
->prefer_colors
,
1395 colors
, PSEUDO_REGNO_MODE (web
->regno
));
1399 if (web
->use_my_regs
)
1400 IOR_HARD_REG_SET (colors
, web
->usable_regs
);
1402 IOR_HARD_REG_SET (colors
, usable_regs
1403 [reg_alternate_class (web
->regno
)]);
1404 #ifdef CLASS_CANNOT_CHANGE_MODE
1405 if (web
->mode_changed
)
1406 AND_COMPL_HARD_REG_SET (colors
, reg_class_contents
[
1407 (int) CLASS_CANNOT_CHANGE_MODE
]);
1409 COPY_HARD_REG_SET (call_clobbered
, colors
);
1410 AND_HARD_REG_SET (call_clobbered
, call_used_reg_set
);
1412 c
= get_biased_reg (dont_begin
, bias
, web
->prefer_colors
,
1413 call_clobbered
, PSEUDO_REGNO_MODE (web
->regno
));
1415 c
= get_biased_reg (dont_begin
, bias
, web
->prefer_colors
,
1416 colors
, PSEUDO_REGNO_MODE (web
->regno
));
1422 /* If one of the yet uncolored neighbors, which is not a potential
1423 spill needs a block of hardregs be sure, not to destroy such a block
1424 by coloring one reg in the middle. */
1429 HARD_REG_SET colors1
;
1430 COPY_HARD_REG_SET (colors1
, fat_colors
);
1431 for (i
= 0; i
< 1 + web
->add_hardregs
; i
++)
1432 CLEAR_HARD_REG_BIT (colors1
, c
+ i
);
1433 new_long
= count_long_blocks (colors1
, neighbor_needs
+ 1);
1434 /* If we changed the number of long blocks, and it's now smaller
1435 than needed, we try to avoid this color. */
1436 if (long_blocks
!= new_long
&& new_long
< num_fat
)
1438 if (new_long
> best_long_blocks
)
1440 best_long_blocks
= new_long
;
1443 SET_HARD_REG_BIT (dont_begin
, c
);
1444 ra_debug_msg (DUMP_COLORIZE
, " avoid %d", c
);
1447 /* We found a color which doesn't destroy a block. */
1450 /* If we havee no fat neighbors, the current color won't become
1451 "better", so we've found it. */
1455 ra_debug_msg (DUMP_COLORIZE
, " --> got %d", c
< 0 ? bestc
: c
);
1456 if (bestc
>= 0 && c
< 0 && !web
->was_spilled
)
1458 /* This is a non-potential-spill web, which got a color, which did
1459 destroy a hardreg block for one of it's neighbors. We color
1460 this web anyway and hope for the best for the neighbor, if we are
1462 if (1 || web
->spill_temp
)
1464 ra_debug_msg (DUMP_COLORIZE
, " [constrains neighbors]");
1466 ra_debug_msg (DUMP_COLORIZE
, "\n");
1470 /* Guard against a simplified node being spilled. */
1471 /* Don't abort. This can happen, when e.g. enough registers
1472 are available in colors, but they are not consecutive. This is a
1473 very serious issue if this web is a short live one, because
1474 even if we spill this one here, the situation won't become better
1475 in the next iteration. It probably will have the same conflicts,
1476 those will have the same colors, and we would come here again, for
1477 all parts, in which this one gets splitted by the spill. This
1478 can result in endless iteration spilling the same register again and
1479 again. That's why we try to find a neighbor, which spans more
1480 instructions that ourself, and got a color, and try to spill _that_.
1482 if (DLIST_WEB (d)->was_spilled < 0)
1484 if (hard
&& (!web
->was_spilled
|| web
->spill_temp
))
1487 struct web
*try = NULL
;
1488 struct web
*candidates
[8];
1490 ra_debug_msg (DUMP_COLORIZE
, " *** %d spilled, although %s ***\n",
1491 web
->id
, web
->spill_temp
? "spilltemp" : "non-spill");
1492 /* We make multiple passes over our conflicts, first trying to
1493 spill those webs, which only got a color by chance, but
1494 were potential spill ones, and if that isn't enough, in a second
1495 pass also to spill normal colored webs. If we still didn't find
1496 a candidate, but we are a spill-temp, we make a third pass
1497 and include also webs, which were targets for coalescing, and
1499 memset (candidates
, 0, sizeof candidates
);
1500 #define set_cand(i, w) \
1502 if (!candidates[(i)] \
1503 || (candidates[(i)]->spill_cost < (w)->spill_cost)) \
1504 candidates[(i)] = (w); \
1506 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1508 struct web
*w
= wl
->t
;
1509 struct web
*aw
= alias (w
);
1510 /* If we are a spill-temp, we also look at webs coalesced
1511 to precolored ones. Otherwise we only look at webs which
1512 themself were colored, or coalesced to one. */
1513 if (aw
->type
== PRECOLORED
&& w
!= aw
&& web
->spill_temp
1514 && flag_ra_optimistic_coalescing
)
1518 else if (web
->spill_temp
== 2
1519 && w
->spill_temp
== 2
1520 && w
->spill_cost
< web
->spill_cost
)
1522 else if (web
->spill_temp
!= 2
1523 && (w
->spill_temp
== 2
1524 || w
->spill_cost
< web
->spill_cost
))
1528 if (aw
->type
!= COLORED
)
1530 if (w
->type
== COLORED
&& !w
->spill_temp
&& !w
->is_coalesced
1533 if (w
->spill_cost
< web
->spill_cost
)
1535 else if (web
->spill_temp
)
1538 if (w
->type
== COLORED
&& !w
->spill_temp
&& !w
->is_coalesced
1541 if (w
->spill_cost
< web
->spill_cost
)
1543 else if (web
->spill_temp
&& web
->spill_temp
!= 2)
1546 if (web
->spill_temp
)
1548 if (w
->type
== COLORED
&& w
->spill_temp
== 2
1550 && (w
->spill_cost
< web
->spill_cost
1551 || web
->spill_temp
!= 2))
1553 if (!aw
->spill_temp
)
1555 if (aw
->spill_temp
== 2
1556 && (aw
->spill_cost
< web
->spill_cost
1557 || web
->spill_temp
!= 2))
1559 /* For boehm-gc/misc.c. If we are a difficult spilltemp,
1560 also coalesced neighbors are a chance, _even_ if they
1561 too are spilltemps. At least their coalescing can be
1562 broken up, which may be reset usable_regs, and makes
1563 it easier colorable. */
1564 if (web
->spill_temp
!= 2 && aw
->is_coalesced
1565 && flag_ra_optimistic_coalescing
)
1569 for (loop
= 0; try == NULL
&& loop
< 8; loop
++)
1570 if (candidates
[loop
])
1571 try = candidates
[loop
];
1575 int old_c
= try->color
;
1576 if (try->type
== COALESCED
)
1578 if (alias (try)->type
!= PRECOLORED
)
1580 ra_debug_msg (DUMP_COLORIZE
, " breaking alias %d -> %d\n",
1581 try->id
, alias (try)->id
);
1582 break_precolored_alias (try);
1583 colorize_one_web (web
, hard
);
1587 remove_list (try->dlink
, &WEBS(COLORED
));
1588 put_web (try, SPILLED
);
1589 /* Now try to colorize us again. Can recursively make other
1590 webs also spill, until there are no more unspilled
1592 ra_debug_msg (DUMP_COLORIZE
, " trying to spill %d\n", try->id
);
1593 colorize_one_web (web
, hard
);
1594 if (web
->type
!= COLORED
)
1596 /* We tried recursively to spill all already colored
1597 neighbors, but we are still uncolorable. So it made
1598 no sense to spill those neighbors. Recolor them. */
1599 remove_list (try->dlink
, &WEBS(SPILLED
));
1600 put_web (try, COLORED
);
1602 ra_debug_msg (DUMP_COLORIZE
,
1603 " spilling %d was useless\n", try->id
);
1607 ra_debug_msg (DUMP_COLORIZE
,
1608 " to spill %d was a good idea\n",
1610 remove_list (try->dlink
, &WEBS(SPILLED
));
1611 if (try->was_spilled
)
1612 colorize_one_web (try, 0);
1614 colorize_one_web (try, hard
- 1);
1619 /* No more chances to get a color, so give up hope and
1621 put_web (web
, SPILLED
);
1624 put_web (web
, SPILLED
);
1628 put_web (web
, COLORED
);
1632 int nregs
= HARD_REGNO_NREGS (c
, GET_MODE (web
->orig_x
));
1633 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1635 struct web
*ptarget
= alias (wl
->t
);
1637 for (i
= 0; i
< nregs
; i
++)
1638 SET_HARD_REG_BIT (ptarget
->bias_colors
, c
+ i
);
1642 if (web
->regno
>= max_normal_pseudo
&& web
->type
== SPILLED
)
1644 web
->color
= an_unusable_color
;
1645 remove_list (web
->dlink
, &WEBS(SPILLED
));
1646 put_web (web
, COLORED
);
1648 if (web
->type
== SPILLED
&& flag_ra_optimistic_coalescing
1649 && web
->is_coalesced
)
1651 ra_debug_msg (DUMP_COLORIZE
, "breaking aliases to web %d:", web
->id
);
1652 restore_conflicts_from_coalesce (web
);
1653 break_aliases_to_web (web
);
1654 insert_coalesced_conflicts ();
1655 ra_debug_msg (DUMP_COLORIZE
, "\n");
1656 remove_list (web
->dlink
, &WEBS(SPILLED
));
1657 put_web (web
, SELECT
);
1662 /* Assign the colors to all nodes on the select stack. And update the
1663 colors of coalesced webs. */
1670 while (WEBS(SELECT
))
1672 d
= pop_list (&WEBS(SELECT
));
1673 colorize_one_web (DLIST_WEB (d
), 1);
1676 for (d
= WEBS(COALESCED
); d
; d
= d
->next
)
1678 struct web
*a
= alias (DLIST_WEB (d
));
1679 DLIST_WEB (d
)->color
= a
->color
;
1683 /* WEB is a spilled web. Look if we can improve the cost of the graph,
1684 by coloring WEB, even if we then need to spill some of it's neighbors.
1685 For this we calculate the cost for each color C, that results when we
1686 _would_ give WEB color C (i.e. the cost of the then spilled neighbors).
1687 If the lowest cost among them is smaller than the spillcost of WEB, we
1688 do that recoloring, and instead spill the neighbors.
1690 This can sometime help, when due to irregularities in register file,
1691 and due to multi word pseudos, the colorization is suboptimal. But
1692 be aware, that currently this pass is quite slow. */
1695 try_recolor_web (web
)
1698 struct conflict_link
*wl
;
1699 unsigned HOST_WIDE_INT
*cost_neighbors
;
1700 unsigned int *min_color
;
1702 HARD_REG_SET precolored_neighbors
, spill_temps
;
1703 HARD_REG_SET possible_begin
, wide_seen
;
1704 cost_neighbors
= (unsigned HOST_WIDE_INT
*)
1705 xcalloc (FIRST_PSEUDO_REGISTER
, sizeof (cost_neighbors
[0]));
1706 /* For each hard-regs count the number of preceding hardregs, which
1707 would overlap this color, if used in WEB's mode. */
1708 min_color
= (unsigned int *) xcalloc (FIRST_PSEUDO_REGISTER
, sizeof (int));
1709 CLEAR_HARD_REG_SET (possible_begin
);
1710 for (c
= 0; c
< FIRST_PSEUDO_REGISTER
; c
++)
1713 if (!HARD_REGNO_MODE_OK (c
, GET_MODE (web
->orig_x
)))
1715 nregs
= HARD_REGNO_NREGS (c
, GET_MODE (web
->orig_x
));
1716 for (i
= 0; i
< nregs
; i
++)
1717 if (!TEST_HARD_REG_BIT (web
->usable_regs
, c
+ i
))
1719 if (i
< nregs
|| nregs
== 0)
1721 SET_HARD_REG_BIT (possible_begin
, c
);
1723 if (!min_color
[c
+ nregs
])
1724 min_color
[c
+ nregs
] = 1 + c
;
1726 CLEAR_HARD_REG_SET (precolored_neighbors
);
1727 CLEAR_HARD_REG_SET (spill_temps
);
1728 CLEAR_HARD_REG_SET (wide_seen
);
1729 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1731 HARD_REG_SET dont_begin
;
1732 struct web
*web2
= alias (wl
->t
);
1733 struct conflict_link
*nn
;
1736 if (wl
->t
->type
== COALESCED
|| web2
->type
!= COLORED
)
1738 if (web2
->type
== PRECOLORED
)
1740 c1
= min_color
[web2
->color
];
1741 c1
= (c1
== 0) ? web2
->color
: (c1
- 1);
1743 for (; c1
<= c2
; c1
++)
1744 SET_HARD_REG_BIT (precolored_neighbors
, c1
);
1748 /* Mark colors for which some wide webs are involved. For
1749 those the independent sets are not simply one-node graphs, so
1750 they can't be recolored independ from their neighborhood. This
1751 means, that our cost calculation can be incorrect (assuming it
1752 can avoid spilling a web because it thinks some colors are available,
1753 although it's neighbors which itself need recoloring might take
1754 away exactly those colors). */
1755 if (web2
->add_hardregs
)
1757 for (nn
= web2
->conflict_list
; nn
&& !wide_p
; nn
= nn
->next
)
1758 if (alias (nn
->t
)->add_hardregs
)
1760 calculate_dont_begin (web2
, &dont_begin
);
1761 c1
= min_color
[web2
->color
];
1762 /* Note that min_color[] contains 1-based values (zero means
1764 c1
= c1
== 0 ? web2
->color
: (c1
- 1);
1765 c2
= web2
->color
+ HARD_REGNO_NREGS (web2
->color
, GET_MODE
1766 (web2
->orig_x
)) - 1;
1767 for (; c1
<= c2
; c1
++)
1768 if (TEST_HARD_REG_BIT (possible_begin
, c1
))
1771 HARD_REG_SET colors
;
1772 nregs
= HARD_REGNO_NREGS (c1
, GET_MODE (web
->orig_x
));
1773 COPY_HARD_REG_SET (colors
, web2
->usable_regs
);
1775 CLEAR_HARD_REG_BIT (colors
, c1
+ nregs
);
1777 SET_HARD_REG_BIT (wide_seen
, c1
);
1778 if (get_free_reg (dont_begin
, colors
,
1779 GET_MODE (web2
->orig_x
)) < 0)
1781 if (web2
->spill_temp
)
1782 SET_HARD_REG_BIT (spill_temps
, c1
);
1784 cost_neighbors
[c1
] += web2
->spill_cost
;
1789 for (c
= 0; c
< FIRST_PSEUDO_REGISTER
; c
++)
1790 if (TEST_HARD_REG_BIT (possible_begin
, c
)
1791 && !TEST_HARD_REG_BIT (precolored_neighbors
, c
)
1792 && !TEST_HARD_REG_BIT (spill_temps
, c
)
1794 || cost_neighbors
[c
] < cost_neighbors
[newcol
]))
1796 if (newcol
>= 0 && cost_neighbors
[newcol
] < web
->spill_cost
)
1798 int nregs
= HARD_REGNO_NREGS (newcol
, GET_MODE (web
->orig_x
));
1799 unsigned HOST_WIDE_INT cost
= 0;
1801 struct conflict_link
*wl_next
;
1802 ra_debug_msg (DUMP_COLORIZE
, "try to set web %d to color %d\n", web
->id
,
1804 remove_list (web
->dlink
, &WEBS(SPILLED
));
1805 put_web (web
, COLORED
);
1806 web
->color
= newcol
;
1807 old_colors
= (int *) xcalloc (num_webs
, sizeof (int));
1808 for (wl
= web
->conflict_list
; wl
; wl
= wl_next
)
1810 struct web
*web2
= alias (wl
->t
);
1811 /* If web2 is a coalesce-target, and will become spilled
1812 below in colorize_one_web(), and the current conflict wl
1813 between web and web2 was only the result of that coalescing
1814 this conflict will be deleted, making wl invalid. So save
1815 the next conflict right now. Note that if web2 has indeed
1816 such state, then wl->next can not be deleted in this
1819 if (web2
->type
== COLORED
)
1821 int nregs2
= HARD_REGNO_NREGS (web2
->color
, GET_MODE
1823 if (web
->color
>= web2
->color
+ nregs2
1824 || web2
->color
>= web
->color
+ nregs
)
1826 old_colors
[web2
->id
] = web2
->color
+ 1;
1828 remove_list (web2
->dlink
, &WEBS(COLORED
));
1829 web2
->type
= SELECT
;
1830 /* Allow webs to be spilled. */
1831 if (web2
->spill_temp
== 0 || web2
->spill_temp
== 2)
1832 web2
->was_spilled
= 1;
1833 colorize_one_web (web2
, 1);
1834 if (web2
->type
== SPILLED
)
1835 cost
+= web2
->spill_cost
;
1838 /* The actual cost may be smaller than the guessed one, because
1839 partial conflicts could result in some conflicting webs getting
1840 a color, where we assumed it must be spilled. See the comment
1841 above what happens, when wide webs are involved, and why in that
1842 case there might actually be some webs spilled although thought to
1844 if (cost
> cost_neighbors
[newcol
]
1845 && nregs
== 1 && !TEST_HARD_REG_BIT (wide_seen
, newcol
))
1847 /* But if the new spill-cost is higher than our own, then really loose.
1848 Respill us and recolor neighbors as before. */
1849 if (cost
> web
->spill_cost
)
1851 ra_debug_msg (DUMP_COLORIZE
,
1852 "reset coloring of web %d, too expensive\n", web
->id
);
1853 remove_list (web
->dlink
, &WEBS(COLORED
));
1855 put_web (web
, SPILLED
);
1856 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1858 struct web
*web2
= alias (wl
->t
);
1859 if (old_colors
[web2
->id
])
1861 if (web2
->type
== SPILLED
)
1863 remove_list (web2
->dlink
, &WEBS(SPILLED
));
1864 web2
->color
= old_colors
[web2
->id
] - 1;
1865 put_web (web2
, COLORED
);
1867 else if (web2
->type
== COLORED
)
1868 web2
->color
= old_colors
[web2
->id
] - 1;
1869 else if (web2
->type
== SELECT
)
1870 /* This means, that WEB2 once was a part of a coalesced
1871 web, which got spilled in the above colorize_one_web()
1872 call, and whose parts then got splitted and put back
1873 onto the SELECT stack. As the cause for that splitting
1874 (the coloring of WEB) was worthless, we should again
1875 coalesce the parts, as they were before. For now we
1876 simply leave them SELECTed, for our caller to take
1887 free (cost_neighbors
);
1890 /* This ensures that all conflicts of coalesced webs are seen from
1891 the webs coalesced into. combine() only adds the conflicts which
1892 at the time of combining were not already SELECTed or COALESCED
1893 to not destroy num_conflicts. Here we add all remaining conflicts
1894 and thereby destroy num_conflicts. This should be used when num_conflicts
1895 isn't used anymore, e.g. on a completely colored graph. */
1898 insert_coalesced_conflicts ()
1901 for (d
= WEBS(COALESCED
); 0 && d
; d
= d
->next
)
1903 struct web
*web
= DLIST_WEB (d
);
1904 struct web
*aweb
= alias (web
);
1905 struct conflict_link
*wl
;
1906 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1908 struct web
*tweb
= aweb
;
1910 int nregs
= 1 + web
->add_hardregs
;
1911 if (aweb
->type
== PRECOLORED
)
1912 nregs
= HARD_REGNO_NREGS (aweb
->color
, GET_MODE (web
->orig_x
));
1913 for (i
= 0; i
< nregs
; i
++)
1915 if (aweb
->type
== PRECOLORED
)
1916 tweb
= hardreg2web
[i
+ aweb
->color
];
1917 /* There might be some conflict edges laying around
1918 where the usable_regs don't intersect. This can happen
1919 when first some webs were coalesced and conflicts
1920 propagated, then some combining narrowed usable_regs and
1921 further coalescing ignored those conflicts. Now there are
1922 some edges to COALESCED webs but not to it's alias.
1923 So abort only when they really should conflict. */
1924 if ((!(tweb
->type
== PRECOLORED
1925 || TEST_BIT (sup_igraph
, tweb
->id
* num_webs
+ wl
->t
->id
))
1926 || !(wl
->t
->type
== PRECOLORED
1927 || TEST_BIT (sup_igraph
,
1928 wl
->t
->id
* num_webs
+ tweb
->id
)))
1929 && hard_regs_intersect_p (&tweb
->usable_regs
,
1930 &wl
->t
->usable_regs
))
1932 /*if (wl->sub == NULL)
1933 record_conflict (tweb, wl->t);
1936 struct sub_conflict *sl;
1937 for (sl = wl->sub; sl; sl = sl->next)
1938 record_conflict (tweb, sl->t);
1940 if (aweb
->type
!= PRECOLORED
)
1947 /* A function suitable to pass to qsort(). Compare the spill costs
1948 of webs W1 and W2. When used by qsort, this would order webs with
1949 largest cost first. */
1952 comp_webs_maxcost (w1
, w2
)
1953 const void *w1
, *w2
;
1955 struct web
*web1
= *(struct web
**)w1
;
1956 struct web
*web2
= *(struct web
**)w2
;
1957 if (web1
->spill_cost
> web2
->spill_cost
)
1959 else if (web1
->spill_cost
< web2
->spill_cost
)
1965 /* This tries to recolor all spilled webs. See try_recolor_web()
1966 how this is done. This just calls it for each spilled web. */
1971 unsigned int i
, num
;
1972 struct web
**order2web
;
1973 num
= num_webs
- num_subwebs
;
1974 order2web
= (struct web
**) xmalloc (num
* sizeof (order2web
[0]));
1975 for (i
= 0; i
< num
; i
++)
1977 order2web
[i
] = id2web
[i
];
1978 /* If we aren't breaking aliases, combine() wasn't merging the
1979 spill_costs. So do that here to have sane measures. */
1980 if (!flag_ra_merge_spill_costs
&& id2web
[i
]->type
== COALESCED
)
1981 alias (id2web
[i
])->spill_cost
+= id2web
[i
]->spill_cost
;
1983 qsort (order2web
, num
, sizeof (order2web
[0]), comp_webs_maxcost
);
1984 insert_coalesced_conflicts ();
1985 dump_graph_cost (DUMP_COSTS
, "before spill-recolor");
1986 for (i
= 0; i
< num
; i
++)
1988 struct web
*web
= order2web
[i
];
1989 if (web
->type
== SPILLED
)
1990 try_recolor_web (web
);
1992 /* It might have been decided in try_recolor_web() (in colorize_one_web())
1993 that a coalesced web should be spilled, so it was put on the
1994 select stack. Those webs need recoloring again, and all remaining
1995 coalesced webs might need their color updated, so simply call
1996 assign_colors() again. */
2001 /* This checks the current color assignment for obvious errors,
2002 like two conflicting webs overlapping in colors, or the used colors
2003 not being in usable regs. */
2009 for (i
= 0; i
< num_webs
- num_subwebs
; i
++)
2011 struct web
*web
= id2web
[i
];
2012 struct web
*aweb
= alias (web
);
2013 struct conflict_link
*wl
;
2015 if (aweb
->type
== SPILLED
|| web
->regno
>= max_normal_pseudo
)
2017 else if (aweb
->type
== COLORED
)
2018 nregs
= HARD_REGNO_NREGS (aweb
->color
, GET_MODE (web
->orig_x
));
2019 else if (aweb
->type
== PRECOLORED
)
2023 /* The color must be valid for the original usable_regs. */
2024 for (c
= 0; c
< nregs
; c
++)
2025 if (!TEST_HARD_REG_BIT (web
->usable_regs
, aweb
->color
+ c
))
2027 /* Search the original (pre-coalesce) conflict list. In the current
2028 one some imprecise conflicts may be noted (due to combine() or
2029 insert_coalesced_conflicts() relocating partial conflicts) making
2030 it look like some wide webs are in conflict and having the same
2032 wl
= (web
->have_orig_conflicts
? web
->orig_conflict_list
2033 : web
->conflict_list
);
2034 for (; wl
; wl
= wl
->next
)
2035 if (wl
->t
->regno
>= max_normal_pseudo
)
2039 struct web
*web2
= alias (wl
->t
);
2041 if (web2
->type
== COLORED
)
2042 nregs2
= HARD_REGNO_NREGS (web2
->color
, GET_MODE (web2
->orig_x
));
2043 else if (web2
->type
== PRECOLORED
)
2047 if (aweb
->color
>= web2
->color
+ nregs2
2048 || web2
->color
>= aweb
->color
+ nregs
)
2054 struct sub_conflict
*sl
;
2055 int scol
= aweb
->color
;
2056 int tcol
= alias (wl
->t
)->color
;
2057 if (alias (wl
->t
)->type
== SPILLED
)
2059 for (sl
= wl
->sub
; sl
; sl
= sl
->next
)
2061 int ssize
= HARD_REGNO_NREGS (scol
, GET_MODE (sl
->s
->orig_x
));
2062 int tsize
= HARD_REGNO_NREGS (tcol
, GET_MODE (sl
->t
->orig_x
));
2063 int sofs
= 0, tofs
= 0;
2064 if (SUBWEB_P (sl
->t
)
2065 && GET_MODE_SIZE (GET_MODE (sl
->t
->orig_x
)) >= UNITS_PER_WORD
)
2066 tofs
= (SUBREG_BYTE (sl
->t
->orig_x
) / UNITS_PER_WORD
);
2067 if (SUBWEB_P (sl
->s
)
2068 && GET_MODE_SIZE (GET_MODE (sl
->s
->orig_x
))
2070 sofs
= (SUBREG_BYTE (sl
->s
->orig_x
) / UNITS_PER_WORD
);
2071 if ((tcol
+ tofs
>= scol
+ sofs
+ ssize
)
2072 || (scol
+ sofs
>= tcol
+ tofs
+ tsize
))
2080 /* WEB was a coalesced web. Make it unaliased again, and put it
2081 back onto SELECT stack. */
2088 web
->is_coalesced
= 0;
2090 /* Well, initially everything was spilled, so it isn't incorrect,
2091 that also the individual parts can be spilled.
2092 XXX this isn't entirely correct, as we also relaxed the
2093 spill_temp flag in combine(), which might have made components
2094 spill, although they were a short or spilltemp web. */
2095 web
->was_spilled
= 1;
2096 remove_list (web
->dlink
, &WEBS(COALESCED
));
2097 /* Spilltemps must be colored right now (i.e. as early as possible),
2098 other webs can be deferred to the end (the code building the
2099 stack assumed that in this stage only one web was colored). */
2100 if (web
->spill_temp
&& web
->spill_temp
!= 2)
2101 put_web (web
, SELECT
);
2103 put_web_at_end (web
, SELECT
);
2106 /* WEB is a _target_ for coalescing which got spilled.
2107 Break all aliases to WEB, and restore some of its member to the state
2108 they were before coalescing. Due to the suboptimal structure of
2109 the interference graph we need to go through all coalesced webs.
2110 Somewhen we'll change this to be more sane. */
2113 break_aliases_to_web (web
)
2116 struct dlist
*d
, *d_next
;
2117 if (web
->type
!= SPILLED
)
2119 for (d
= WEBS(COALESCED
); d
; d
= d_next
)
2121 struct web
*other
= DLIST_WEB (d
);
2123 /* Beware: Don't use alias() here. We really want to check only
2124 one level of aliasing, i.e. only break up webs directly
2125 aliased to WEB, not also those aliased through other webs. */
2126 if (other
->alias
== web
)
2128 unalias_web (other
);
2129 ra_debug_msg (DUMP_COLORIZE
, " %d", other
->id
);
2132 web
->spill_temp
= web
->orig_spill_temp
;
2133 web
->spill_cost
= web
->orig_spill_cost
;
2134 /* Beware: The following possibly widens usable_regs again. While
2135 it was narrower there might have been some conflicts added which got
2136 ignored because of non-intersecting hardregsets. All those conflicts
2137 would now matter again. Fortunately we only add conflicts when
2138 coalescing, which is also the time of narrowing. And we remove all
2139 those added conflicts again now that we unalias this web.
2140 Therefore this is safe to do. */
2141 COPY_HARD_REG_SET (web
->usable_regs
, web
->orig_usable_regs
);
2142 web
->is_coalesced
= 0;
2143 web
->num_aliased
= 0;
2144 web
->was_spilled
= 1;
2145 /* Reset is_coalesced flag for webs which itself are target of coalescing.
2146 It was cleared above if it was coalesced to WEB. */
2147 for (d
= WEBS(COALESCED
); d
; d
= d
->next
)
2148 DLIST_WEB (d
)->alias
->is_coalesced
= 1;
2151 /* WEB is a web coalesced into a precolored one. Break that alias,
2152 making WEB SELECTed again. Also restores the conflicts which resulted
2153 from initially coalescing both. */
2156 break_precolored_alias (web
)
2159 struct web
*pre
= web
->alias
;
2160 struct conflict_link
*wl
;
2161 unsigned int c
= pre
->color
;
2162 unsigned int nregs
= HARD_REGNO_NREGS (c
, GET_MODE (web
->orig_x
));
2163 if (pre
->type
!= PRECOLORED
)
2166 /* Now we need to look at each conflict X of WEB, if it conflicts
2167 with [PRE, PRE+nregs), and remove such conflicts, of X has not other
2168 conflicts, which are coalesced into those precolored webs. */
2169 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
2171 struct web
*x
= wl
->t
;
2174 struct conflict_link
*wl2
;
2175 struct conflict_link
**pcl
;
2177 if (!x
->have_orig_conflicts
)
2179 /* First look at which colors can not go away, due to other coalesces
2181 CLEAR_HARD_REG_SET (regs
);
2182 for (i
= 0; i
< nregs
; i
++)
2183 SET_HARD_REG_BIT (regs
, c
+ i
);
2184 for (wl2
= x
->conflict_list
; wl2
; wl2
= wl2
->next
)
2185 if (wl2
->t
->type
== COALESCED
&& alias (wl2
->t
)->type
== PRECOLORED
)
2186 CLEAR_HARD_REG_BIT (regs
, alias (wl2
->t
)->color
);
2187 /* Now also remove the colors of those conflicts which already
2188 were there before coalescing at all. */
2189 for (wl2
= x
->orig_conflict_list
; wl2
; wl2
= wl2
->next
)
2190 if (wl2
->t
->type
== PRECOLORED
)
2191 CLEAR_HARD_REG_BIT (regs
, wl2
->t
->color
);
2192 /* The colors now still set are those for which WEB was the last
2193 cause, i.e. those which can be removed. */
2195 for (i
= 0; i
< nregs
; i
++)
2196 if (TEST_HARD_REG_BIT (regs
, c
+ i
))
2199 y
= hardreg2web
[c
+ i
];
2200 RESET_BIT (sup_igraph
, x
->id
* num_webs
+ y
->id
);
2201 RESET_BIT (sup_igraph
, y
->id
* num_webs
+ x
->id
);
2202 RESET_BIT (igraph
, igraph_index (x
->id
, y
->id
));
2203 for (sub
= x
->subreg_next
; sub
; sub
= sub
->subreg_next
)
2204 RESET_BIT (igraph
, igraph_index (sub
->id
, y
->id
));
2208 pcl
= &(x
->conflict_list
);
2211 struct web
*y
= (*pcl
)->t
;
2212 if (y
->type
!= PRECOLORED
|| !TEST_HARD_REG_BIT (regs
, y
->color
))
2213 pcl
= &((*pcl
)->next
);
2215 *pcl
= (*pcl
)->next
;
2220 /* WEB is a spilled web which was target for coalescing.
2221 Delete all interference edges which were added due to that coalescing,
2222 and break up the coalescing. */
2225 restore_conflicts_from_coalesce (web
)
2228 struct conflict_link
**pcl
;
2229 struct conflict_link
*wl
;
2230 pcl
= &(web
->conflict_list
);
2231 /* No original conflict list means no conflict was added at all
2232 after building the graph. So neither we nor any neighbors have
2233 conflicts due to this coalescing. */
2234 if (!web
->have_orig_conflicts
)
2238 struct web
*other
= (*pcl
)->t
;
2239 for (wl
= web
->orig_conflict_list
; wl
; wl
= wl
->next
)
2244 /* We found this conflict also in the original list, so this
2245 was no new conflict. */
2246 pcl
= &((*pcl
)->next
);
2250 /* This is a new conflict, so delete it from us and
2252 struct conflict_link
**opcl
;
2253 struct conflict_link
*owl
;
2254 struct sub_conflict
*sl
;
2257 if (!other
->have_orig_conflicts
&& other
->type
!= PRECOLORED
)
2259 for (owl
= other
->orig_conflict_list
; owl
; owl
= owl
->next
)
2264 opcl
= &(other
->conflict_list
);
2267 if ((*opcl
)->t
== web
)
2275 opcl
= &((*opcl
)->next
);
2278 if (!owl
&& other
->type
!= PRECOLORED
)
2280 /* wl and owl contain the edge data to be deleted. */
2281 RESET_BIT (sup_igraph
, web
->id
* num_webs
+ other
->id
);
2282 RESET_BIT (sup_igraph
, other
->id
* num_webs
+ web
->id
);
2283 RESET_BIT (igraph
, igraph_index (web
->id
, other
->id
));
2284 for (sl
= wl
->sub
; sl
; sl
= sl
->next
)
2285 RESET_BIT (igraph
, igraph_index (sl
->s
->id
, sl
->t
->id
));
2286 if (other
->type
!= PRECOLORED
)
2288 for (sl
= owl
->sub
; sl
; sl
= sl
->next
)
2289 RESET_BIT (igraph
, igraph_index (sl
->s
->id
, sl
->t
->id
));
2294 /* We must restore usable_regs because record_conflict will use it. */
2295 COPY_HARD_REG_SET (web
->usable_regs
, web
->orig_usable_regs
);
2296 /* We might have deleted some conflicts above, which really are still
2297 there (diamond pattern coalescing). This is because we don't reference
2298 count interference edges but some of them were the result of different
2300 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
2301 if (wl
->t
->type
== COALESCED
)
2304 for (tweb
= wl
->t
->alias
; tweb
; tweb
= tweb
->alias
)
2306 if (wl
->sub
== NULL
)
2307 record_conflict (web
, tweb
);
2310 struct sub_conflict
*sl
;
2311 for (sl
= wl
->sub
; sl
; sl
= sl
->next
)
2313 struct web
*sweb
= NULL
;
2314 if (SUBWEB_P (sl
->t
))
2315 sweb
= find_subweb (tweb
, sl
->t
->orig_x
);
2318 record_conflict (sl
->s
, sweb
);
2321 if (tweb
->type
!= COALESCED
)
2327 /* Repeatedly break aliases for spilled webs, which were target for
2328 coalescing, and recolorize the resulting parts. Do this as long as
2329 there are any spilled coalesce targets. */
2332 break_coalesced_spills ()
2339 for (d
= WEBS(SPILLED
); d
; d
= d
->next
)
2340 if (DLIST_WEB (d
)->is_coalesced
)
2345 web
= DLIST_WEB (d
);
2346 ra_debug_msg (DUMP_COLORIZE
, "breaking aliases to web %d:", web
->id
);
2347 restore_conflicts_from_coalesce (web
);
2348 break_aliases_to_web (web
);
2349 /* WEB was a spilled web and isn't anymore. Everything coalesced
2350 to WEB is now SELECTed and might potentially get a color.
2351 If those other webs were itself targets of coalescing it might be
2352 that there are still some conflicts from aliased webs missing,
2353 because they were added in combine() right into the now
2354 SELECTed web. So we need to add those missing conflicts here. */
2355 insert_coalesced_conflicts ();
2356 ra_debug_msg (DUMP_COLORIZE
, "\n");
2357 remove_list (d
, &WEBS(SPILLED
));
2358 put_web (web
, SELECT
);
2360 while (WEBS(SELECT
))
2362 d
= pop_list (&WEBS(SELECT
));
2363 colorize_one_web (DLIST_WEB (d
), 1);
2369 for (d
= WEBS(COALESCED
); d
; d
= d
->next
)
2371 struct web
*a
= alias (DLIST_WEB (d
));
2372 DLIST_WEB (d
)->color
= a
->color
;
2375 dump_graph_cost (DUMP_COSTS
, "after alias-breaking");
2378 /* A structure for fast hashing of a pair of webs.
2379 Used to cumulate savings (from removing copy insns) for coalesced webs.
2380 All the pairs are also put into a single linked list. */
2383 struct web_pair
*next_hash
;
2384 struct web_pair
*next_list
;
2385 struct web
*smaller
;
2387 unsigned int conflicts
;
2388 unsigned HOST_WIDE_INT cost
;
2391 /* The actual hash table. */
2392 #define WEB_PAIR_HASH_SIZE 8192
2393 static struct web_pair
*web_pair_hash
[WEB_PAIR_HASH_SIZE
];
2394 static struct web_pair
*web_pair_list
;
2395 static unsigned int num_web_pairs
;
2397 /* Clear the hash table of web pairs. */
2402 memset (web_pair_hash
, 0, sizeof web_pair_hash
);
2404 web_pair_list
= NULL
;
2407 /* Given two webs connected by a move with cost COST which together
2408 have CONFLICTS conflicts, add that pair to the hash table, or if
2409 already in, cumulate the costs and conflict number. */
2412 add_web_pair_cost (web1
, web2
, cost
, conflicts
)
2413 struct web
*web1
, *web2
;
2414 unsigned HOST_WIDE_INT cost
;
2415 unsigned int conflicts
;
2419 if (web1
->id
> web2
->id
)
2421 struct web
*h
= web1
;
2425 hash
= (web1
->id
* num_webs
+ web2
->id
) % WEB_PAIR_HASH_SIZE
;
2426 for (p
= web_pair_hash
[hash
]; p
; p
= p
->next_hash
)
2427 if (p
->smaller
== web1
&& p
->larger
== web2
)
2430 p
->conflicts
+= conflicts
;
2433 p
= (struct web_pair
*) ra_alloc (sizeof *p
);
2434 p
->next_hash
= web_pair_hash
[hash
];
2435 p
->next_list
= web_pair_list
;
2438 p
->conflicts
= conflicts
;
2440 web_pair_hash
[hash
] = p
;
2445 /* Suitable to be passed to qsort(). Sort web pairs so, that those
2446 with more conflicts and higher cost (which actually is a saving
2447 when the moves are removed) come first. */
2450 comp_web_pairs (w1
, w2
)
2451 const void *w1
, *w2
;
2453 struct web_pair
*p1
= *(struct web_pair
**)w1
;
2454 struct web_pair
*p2
= *(struct web_pair
**)w2
;
2455 if (p1
->conflicts
> p2
->conflicts
)
2457 else if (p1
->conflicts
< p2
->conflicts
)
2459 else if (p1
->cost
> p2
->cost
)
2461 else if (p1
->cost
< p2
->cost
)
2467 /* Given the list of web pairs, begin to combine them from the one
2468 with the most savings. */
2471 sort_and_combine_web_pairs (for_move
)
2475 struct web_pair
**sorted
;
2479 sorted
= (struct web_pair
**) xmalloc (num_web_pairs
* sizeof (sorted
[0]));
2480 for (p
= web_pair_list
, i
= 0; p
; p
= p
->next_list
)
2482 if (i
!= num_web_pairs
)
2484 qsort (sorted
, num_web_pairs
, sizeof (sorted
[0]), comp_web_pairs
);
2486 /* After combining one pair, we actually should adjust the savings
2487 of the other pairs, if they are connected to one of the just coalesced
2489 for (i
= 0; i
< num_web_pairs
; i
++)
2491 struct web
*w1
, *w2
;
2493 w1
= alias (p
->smaller
);
2494 w2
= alias (p
->larger
);
2495 if (!for_move
&& (w1
->type
== PRECOLORED
|| w2
->type
== PRECOLORED
))
2497 else if (w2
->type
== PRECOLORED
)
2504 && !TEST_BIT (sup_igraph
, w1
->id
* num_webs
+ w2
->id
)
2505 && !TEST_BIT (sup_igraph
, w2
->id
* num_webs
+ w1
->id
)
2506 && w2
->type
!= PRECOLORED
2507 && hard_regs_intersect_p (&w1
->usable_regs
, &w2
->usable_regs
))
2509 if (w1
->type
!= PRECOLORED
2510 || (w1
->type
== PRECOLORED
&& ok (w2
, w1
)))
2512 else if (w1
->type
== PRECOLORED
)
2513 SET_HARD_REG_BIT (w2
->prefer_colors
, w1
->color
);
2519 /* Greedily coalesce all moves possible. Begin with the web pair
2520 giving the most saving if coalesced. */
2523 aggressive_coalesce ()
2528 while ((d
= pop_list (&mv_worklist
)) != NULL
)
2529 if ((m
= DLIST_MOVE (d
)))
2531 struct web
*s
= alias (m
->source_web
);
2532 struct web
*t
= alias (m
->target_web
);
2533 if (t
->type
== PRECOLORED
)
2540 && t
->type
!= PRECOLORED
2541 && !TEST_BIT (sup_igraph
, s
->id
* num_webs
+ t
->id
)
2542 && !TEST_BIT (sup_igraph
, t
->id
* num_webs
+ s
->id
))
2544 if ((s
->type
== PRECOLORED
&& ok (t
, s
))
2545 || s
->type
!= PRECOLORED
)
2547 put_move (m
, MV_COALESCED
);
2548 add_web_pair_cost (s
, t
, BLOCK_FOR_INSN (m
->insn
)->frequency
,
2551 else if (s
->type
== PRECOLORED
)
2552 /* It is !ok(t, s). But later when coloring the graph it might
2553 be possible to take that color. So we remember the preferred
2554 color to try that first. */
2556 put_move (m
, CONSTRAINED
);
2557 SET_HARD_REG_BIT (t
->prefer_colors
, s
->color
);
2562 put_move (m
, CONSTRAINED
);
2565 sort_and_combine_web_pairs (1);
2568 /* This is the difference between optimistic coalescing and
2569 optimistic coalescing+. Extended coalesce tries to coalesce also
2570 non-conflicting nodes, not related by a move. The criteria here is,
2571 the one web must be a source, the other a destination of the same insn.
2572 This actually makes sense, as (because they are in the same insn) they
2573 share many of their neighbors, and if they are coalesced, reduce the
2574 number of conflicts of those neighbors by one. For this we sort the
2575 candidate pairs again according to savings (and this time also conflict
2578 This is also a comparatively slow operation, as we need to go through
2579 all insns, and for each insn, through all defs and uses. */
2582 extended_coalesce_2 ()
2585 struct ra_insn_info info
;
2588 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2589 if (INSN_P (insn
) && (info
= insn_df
[INSN_UID (insn
)]).num_defs
)
2590 for (n
= 0; n
< info
.num_defs
; n
++)
2592 struct web
*dest
= def2web
[DF_REF_ID (info
.defs
[n
])];
2593 dest
= alias (find_web_for_subweb (dest
));
2594 if (dest
->type
!= PRECOLORED
&& dest
->regno
< max_normal_pseudo
)
2597 for (n2
= 0; n2
< info
.num_uses
; n2
++)
2599 struct web
*source
= use2web
[DF_REF_ID (info
.uses
[n2
])];
2600 source
= alias (find_web_for_subweb (source
));
2601 if (source
->type
!= PRECOLORED
2603 && source
->regno
< max_normal_pseudo
2604 /* Coalesced webs end up using the same REG rtx in
2605 emit_colors(). So we can only coalesce something
2607 && GET_MODE (source
->orig_x
) == GET_MODE (dest
->orig_x
)
2608 && !TEST_BIT (sup_igraph
,
2609 dest
->id
* num_webs
+ source
->id
)
2610 && !TEST_BIT (sup_igraph
,
2611 source
->id
* num_webs
+ dest
->id
)
2612 && hard_regs_intersect_p (&source
->usable_regs
,
2613 &dest
->usable_regs
))
2614 add_web_pair_cost (dest
, source
,
2615 BLOCK_FOR_INSN (insn
)->frequency
,
2617 + source
->num_conflicts
);
2621 sort_and_combine_web_pairs (0);
2624 /* Check if we forgot to coalesce some moves. */
2627 check_uncoalesced_moves ()
2629 struct move_list
*ml
;
2631 for (ml
= wl_moves
; ml
; ml
= ml
->next
)
2634 struct web
*s
= alias (m
->source_web
);
2635 struct web
*t
= alias (m
->target_web
);
2636 if (t
->type
== PRECOLORED
)
2643 && m
->type
!= CONSTRAINED
2644 /* Following can happen when a move was coalesced, but later
2645 broken up again. Then s!=t, but m is still MV_COALESCED. */
2646 && m
->type
!= MV_COALESCED
2647 && t
->type
!= PRECOLORED
2648 && ((s
->type
== PRECOLORED
&& ok (t
, s
))
2649 || s
->type
!= PRECOLORED
)
2650 && !TEST_BIT (sup_igraph
, s
->id
* num_webs
+ t
->id
)
2651 && !TEST_BIT (sup_igraph
, t
->id
* num_webs
+ s
->id
))
2656 /* The toplevel function in this file. Precondition is, that
2657 the interference graph is built completely by ra-build.c. This
2658 produces a list of spilled, colored and coalesced nodes. */
2661 ra_colorize_graph (df
)
2666 build_worklists (df
);
2668 /* With optimistic coalescing we coalesce everything we can. */
2669 if (flag_ra_optimistic_coalescing
)
2671 aggressive_coalesce ();
2672 extended_coalesce_2 ();
2675 /* Now build the select stack. */
2681 else if (WEBS(FREEZE
))
2683 else if (WEBS(SPILL
))
2686 while (WEBS(SIMPLIFY
) || WEBS(SIMPLIFY_FAT
) || WEBS(SIMPLIFY_SPILL
)
2687 || mv_worklist
|| WEBS(FREEZE
) || WEBS(SPILL
));
2688 if (flag_ra_optimistic_coalescing
)
2689 check_uncoalesced_moves ();
2691 /* Actually colorize the webs from the select stack. */
2694 dump_graph_cost (DUMP_COSTS
, "initially");
2695 if (flag_ra_break_aliases
)
2696 break_coalesced_spills ();
2699 /* And try to improve the cost by recoloring spilled webs. */
2701 dump_graph_cost (DUMP_COSTS
, "after spill-recolor");
2705 /* Initialize this module. */
2707 void ra_colorize_init ()
2709 /* FIXME: Choose spill heuristic for platform if we have one */
2710 spill_heuristic
= default_spill_heuristic
;
2713 /* Free all memory. (Note that we don't need to free any per pass
2717 ra_colorize_free_all ()
2720 while ((d
= pop_list (&WEBS(FREE
))) != NULL
)
2721 put_web (DLIST_WEB (d
), INITIAL
);
2722 while ((d
= pop_list (&WEBS(INITIAL
))) != NULL
)
2724 struct web
*web
=DLIST_WEB (d
);
2726 web
->orig_conflict_list
= NULL
;
2727 web
->conflict_list
= NULL
;
2728 for (web
= web
->subreg_next
; web
; web
= wnext
)
2730 wnext
= web
->subreg_next
;
2733 free (DLIST_WEB (d
));
2738 vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4: