mips.c (mips_output_mi_thunk): Use mips_function_ok_for_sibcall and const_call_insn_o...
[official-gcc.git] / gcc / final.c
blobe5e9b8d0f8086e7b05c156844ec94d7baa0f4438
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74 #include "tree-pass.h"
75 #include "timevar.h"
76 #include "cgraph.h"
77 #include "coverage.h"
78 #include "df.h"
79 #include "vecprim.h"
80 #include "ggc.h"
82 #ifdef XCOFF_DEBUGGING_INFO
83 #include "xcoffout.h" /* Needed for external data
84 declarations for e.g. AIX 4.x. */
85 #endif
87 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
88 #include "dwarf2out.h"
89 #endif
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
95 #ifdef SDB_DEBUGGING_INFO
96 #include "sdbout.h"
97 #endif
99 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
100 null default for it to save conditionalization later. */
101 #ifndef CC_STATUS_INIT
102 #define CC_STATUS_INIT
103 #endif
105 /* How to start an assembler comment. */
106 #ifndef ASM_COMMENT_START
107 #define ASM_COMMENT_START ";#"
108 #endif
110 /* Is the given character a logical line separator for the assembler? */
111 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
112 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
113 #endif
115 #ifndef JUMP_TABLES_IN_TEXT_SECTION
116 #define JUMP_TABLES_IN_TEXT_SECTION 0
117 #endif
119 /* Bitflags used by final_scan_insn. */
120 #define SEEN_BB 1
121 #define SEEN_NOTE 2
122 #define SEEN_EMITTED 4
124 /* Last insn processed by final_scan_insn. */
125 static rtx debug_insn;
126 rtx current_output_insn;
128 /* Line number of last NOTE. */
129 static int last_linenum;
131 /* Highest line number in current block. */
132 static int high_block_linenum;
134 /* Likewise for function. */
135 static int high_function_linenum;
137 /* Filename of last NOTE. */
138 static const char *last_filename;
140 /* Whether to force emission of a line note before the next insn. */
141 static bool force_source_line = false;
143 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
145 /* Nonzero while outputting an `asm' with operands.
146 This means that inconsistencies are the user's fault, so don't die.
147 The precise value is the insn being output, to pass to error_for_asm. */
148 rtx this_is_asm_operands;
150 /* Number of operands of this insn, for an `asm' with operands. */
151 static unsigned int insn_noperands;
153 /* Compare optimization flag. */
155 static rtx last_ignored_compare = 0;
157 /* Assign a unique number to each insn that is output.
158 This can be used to generate unique local labels. */
160 static int insn_counter = 0;
162 #ifdef HAVE_cc0
163 /* This variable contains machine-dependent flags (defined in tm.h)
164 set and examined by output routines
165 that describe how to interpret the condition codes properly. */
167 CC_STATUS cc_status;
169 /* During output of an insn, this contains a copy of cc_status
170 from before the insn. */
172 CC_STATUS cc_prev_status;
173 #endif
175 /* Nonzero means current function must be given a frame pointer.
176 Initialized in function.c to 0. Set only in reload1.c as per
177 the needs of the function. */
179 int frame_pointer_needed;
181 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
183 static int block_depth;
185 /* Nonzero if have enabled APP processing of our assembler output. */
187 static int app_on;
189 /* If we are outputting an insn sequence, this contains the sequence rtx.
190 Zero otherwise. */
192 rtx final_sequence;
194 #ifdef ASSEMBLER_DIALECT
196 /* Number of the assembler dialect to use, starting at 0. */
197 static int dialect_number;
198 #endif
200 #ifdef HAVE_conditional_execution
201 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
202 rtx current_insn_predicate;
203 #endif
205 #ifdef HAVE_ATTR_length
206 static int asm_insn_count (rtx);
207 #endif
208 static void profile_function (FILE *);
209 static void profile_after_prologue (FILE *);
210 static bool notice_source_line (rtx);
211 static rtx walk_alter_subreg (rtx *, bool *);
212 static void output_asm_name (void);
213 static void output_alternate_entry_point (FILE *, rtx);
214 static tree get_mem_expr_from_op (rtx, int *);
215 static void output_asm_operand_names (rtx *, int *, int);
216 static void output_operand (rtx, int);
217 #ifdef LEAF_REGISTERS
218 static void leaf_renumber_regs (rtx);
219 #endif
220 #ifdef HAVE_cc0
221 static int alter_cond (rtx);
222 #endif
223 #ifndef ADDR_VEC_ALIGN
224 static int final_addr_vec_align (rtx);
225 #endif
226 #ifdef HAVE_ATTR_length
227 static int align_fuzz (rtx, rtx, int, unsigned);
228 #endif
230 /* Initialize data in final at the beginning of a compilation. */
232 void
233 init_final (const char *filename ATTRIBUTE_UNUSED)
235 app_on = 0;
236 final_sequence = 0;
238 #ifdef ASSEMBLER_DIALECT
239 dialect_number = ASSEMBLER_DIALECT;
240 #endif
243 /* Default target function prologue and epilogue assembler output.
245 If not overridden for epilogue code, then the function body itself
246 contains return instructions wherever needed. */
247 void
248 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
253 /* Default target hook that outputs nothing to a stream. */
254 void
255 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
259 /* Enable APP processing of subsequent output.
260 Used before the output from an `asm' statement. */
262 void
263 app_enable (void)
265 if (! app_on)
267 fputs (ASM_APP_ON, asm_out_file);
268 app_on = 1;
272 /* Disable APP processing of subsequent output.
273 Called from varasm.c before most kinds of output. */
275 void
276 app_disable (void)
278 if (app_on)
280 fputs (ASM_APP_OFF, asm_out_file);
281 app_on = 0;
285 /* Return the number of slots filled in the current
286 delayed branch sequence (we don't count the insn needing the
287 delay slot). Zero if not in a delayed branch sequence. */
289 #ifdef DELAY_SLOTS
291 dbr_sequence_length (void)
293 if (final_sequence != 0)
294 return XVECLEN (final_sequence, 0) - 1;
295 else
296 return 0;
298 #endif
300 /* The next two pages contain routines used to compute the length of an insn
301 and to shorten branches. */
303 /* Arrays for insn lengths, and addresses. The latter is referenced by
304 `insn_current_length'. */
306 static int *insn_lengths;
308 VEC(int,heap) *insn_addresses_;
310 /* Max uid for which the above arrays are valid. */
311 static int insn_lengths_max_uid;
313 /* Address of insn being processed. Used by `insn_current_length'. */
314 int insn_current_address;
316 /* Address of insn being processed in previous iteration. */
317 int insn_last_address;
319 /* known invariant alignment of insn being processed. */
320 int insn_current_align;
322 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
323 gives the next following alignment insn that increases the known
324 alignment, or NULL_RTX if there is no such insn.
325 For any alignment obtained this way, we can again index uid_align with
326 its uid to obtain the next following align that in turn increases the
327 alignment, till we reach NULL_RTX; the sequence obtained this way
328 for each insn we'll call the alignment chain of this insn in the following
329 comments. */
331 struct label_alignment
333 short alignment;
334 short max_skip;
337 static rtx *uid_align;
338 static int *uid_shuid;
339 static struct label_alignment *label_align;
341 /* Indicate that branch shortening hasn't yet been done. */
343 void
344 init_insn_lengths (void)
346 if (uid_shuid)
348 free (uid_shuid);
349 uid_shuid = 0;
351 if (insn_lengths)
353 free (insn_lengths);
354 insn_lengths = 0;
355 insn_lengths_max_uid = 0;
357 #ifdef HAVE_ATTR_length
358 INSN_ADDRESSES_FREE ();
359 #endif
360 if (uid_align)
362 free (uid_align);
363 uid_align = 0;
367 /* Obtain the current length of an insn. If branch shortening has been done,
368 get its actual length. Otherwise, use FALLBACK_FN to calculate the
369 length. */
370 static inline int
371 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
372 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
374 #ifdef HAVE_ATTR_length
375 rtx body;
376 int i;
377 int length = 0;
379 if (insn_lengths_max_uid > INSN_UID (insn))
380 return insn_lengths[INSN_UID (insn)];
381 else
382 switch (GET_CODE (insn))
384 case NOTE:
385 case BARRIER:
386 case CODE_LABEL:
387 return 0;
389 case CALL_INSN:
390 length = fallback_fn (insn);
391 break;
393 case JUMP_INSN:
394 body = PATTERN (insn);
395 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
397 /* Alignment is machine-dependent and should be handled by
398 ADDR_VEC_ALIGN. */
400 else
401 length = fallback_fn (insn);
402 break;
404 case INSN:
405 body = PATTERN (insn);
406 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
407 return 0;
409 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
410 length = asm_insn_count (body) * fallback_fn (insn);
411 else if (GET_CODE (body) == SEQUENCE)
412 for (i = 0; i < XVECLEN (body, 0); i++)
413 length += get_attr_length (XVECEXP (body, 0, i));
414 else
415 length = fallback_fn (insn);
416 break;
418 default:
419 break;
422 #ifdef ADJUST_INSN_LENGTH
423 ADJUST_INSN_LENGTH (insn, length);
424 #endif
425 return length;
426 #else /* not HAVE_ATTR_length */
427 return 0;
428 #define insn_default_length 0
429 #define insn_min_length 0
430 #endif /* not HAVE_ATTR_length */
433 /* Obtain the current length of an insn. If branch shortening has been done,
434 get its actual length. Otherwise, get its maximum length. */
436 get_attr_length (rtx insn)
438 return get_attr_length_1 (insn, insn_default_length);
441 /* Obtain the current length of an insn. If branch shortening has been done,
442 get its actual length. Otherwise, get its minimum length. */
444 get_attr_min_length (rtx insn)
446 return get_attr_length_1 (insn, insn_min_length);
449 /* Code to handle alignment inside shorten_branches. */
451 /* Here is an explanation how the algorithm in align_fuzz can give
452 proper results:
454 Call a sequence of instructions beginning with alignment point X
455 and continuing until the next alignment point `block X'. When `X'
456 is used in an expression, it means the alignment value of the
457 alignment point.
459 Call the distance between the start of the first insn of block X, and
460 the end of the last insn of block X `IX', for the `inner size of X'.
461 This is clearly the sum of the instruction lengths.
463 Likewise with the next alignment-delimited block following X, which we
464 shall call block Y.
466 Call the distance between the start of the first insn of block X, and
467 the start of the first insn of block Y `OX', for the `outer size of X'.
469 The estimated padding is then OX - IX.
471 OX can be safely estimated as
473 if (X >= Y)
474 OX = round_up(IX, Y)
475 else
476 OX = round_up(IX, X) + Y - X
478 Clearly est(IX) >= real(IX), because that only depends on the
479 instruction lengths, and those being overestimated is a given.
481 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
482 we needn't worry about that when thinking about OX.
484 When X >= Y, the alignment provided by Y adds no uncertainty factor
485 for branch ranges starting before X, so we can just round what we have.
486 But when X < Y, we don't know anything about the, so to speak,
487 `middle bits', so we have to assume the worst when aligning up from an
488 address mod X to one mod Y, which is Y - X. */
490 #ifndef LABEL_ALIGN
491 #define LABEL_ALIGN(LABEL) align_labels_log
492 #endif
494 #ifndef LABEL_ALIGN_MAX_SKIP
495 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
496 #endif
498 #ifndef LOOP_ALIGN
499 #define LOOP_ALIGN(LABEL) align_loops_log
500 #endif
502 #ifndef LOOP_ALIGN_MAX_SKIP
503 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
504 #endif
506 #ifndef LABEL_ALIGN_AFTER_BARRIER
507 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
508 #endif
510 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
511 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
512 #endif
514 #ifndef JUMP_ALIGN
515 #define JUMP_ALIGN(LABEL) align_jumps_log
516 #endif
518 #ifndef JUMP_ALIGN_MAX_SKIP
519 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
520 #endif
522 #ifndef ADDR_VEC_ALIGN
523 static int
524 final_addr_vec_align (rtx addr_vec)
526 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
528 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
529 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
530 return exact_log2 (align);
534 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
535 #endif
537 #ifndef INSN_LENGTH_ALIGNMENT
538 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
539 #endif
541 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
543 static int min_labelno, max_labelno;
545 #define LABEL_TO_ALIGNMENT(LABEL) \
546 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
548 #define LABEL_TO_MAX_SKIP(LABEL) \
549 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
551 /* For the benefit of port specific code do this also as a function. */
554 label_to_alignment (rtx label)
556 return LABEL_TO_ALIGNMENT (label);
559 #ifdef HAVE_ATTR_length
560 /* The differences in addresses
561 between a branch and its target might grow or shrink depending on
562 the alignment the start insn of the range (the branch for a forward
563 branch or the label for a backward branch) starts out on; if these
564 differences are used naively, they can even oscillate infinitely.
565 We therefore want to compute a 'worst case' address difference that
566 is independent of the alignment the start insn of the range end
567 up on, and that is at least as large as the actual difference.
568 The function align_fuzz calculates the amount we have to add to the
569 naively computed difference, by traversing the part of the alignment
570 chain of the start insn of the range that is in front of the end insn
571 of the range, and considering for each alignment the maximum amount
572 that it might contribute to a size increase.
574 For casesi tables, we also want to know worst case minimum amounts of
575 address difference, in case a machine description wants to introduce
576 some common offset that is added to all offsets in a table.
577 For this purpose, align_fuzz with a growth argument of 0 computes the
578 appropriate adjustment. */
580 /* Compute the maximum delta by which the difference of the addresses of
581 START and END might grow / shrink due to a different address for start
582 which changes the size of alignment insns between START and END.
583 KNOWN_ALIGN_LOG is the alignment known for START.
584 GROWTH should be ~0 if the objective is to compute potential code size
585 increase, and 0 if the objective is to compute potential shrink.
586 The return value is undefined for any other value of GROWTH. */
588 static int
589 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
591 int uid = INSN_UID (start);
592 rtx align_label;
593 int known_align = 1 << known_align_log;
594 int end_shuid = INSN_SHUID (end);
595 int fuzz = 0;
597 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
599 int align_addr, new_align;
601 uid = INSN_UID (align_label);
602 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
603 if (uid_shuid[uid] > end_shuid)
604 break;
605 known_align_log = LABEL_TO_ALIGNMENT (align_label);
606 new_align = 1 << known_align_log;
607 if (new_align < known_align)
608 continue;
609 fuzz += (-align_addr ^ growth) & (new_align - known_align);
610 known_align = new_align;
612 return fuzz;
615 /* Compute a worst-case reference address of a branch so that it
616 can be safely used in the presence of aligned labels. Since the
617 size of the branch itself is unknown, the size of the branch is
618 not included in the range. I.e. for a forward branch, the reference
619 address is the end address of the branch as known from the previous
620 branch shortening pass, minus a value to account for possible size
621 increase due to alignment. For a backward branch, it is the start
622 address of the branch as known from the current pass, plus a value
623 to account for possible size increase due to alignment.
624 NB.: Therefore, the maximum offset allowed for backward branches needs
625 to exclude the branch size. */
628 insn_current_reference_address (rtx branch)
630 rtx dest, seq;
631 int seq_uid;
633 if (! INSN_ADDRESSES_SET_P ())
634 return 0;
636 seq = NEXT_INSN (PREV_INSN (branch));
637 seq_uid = INSN_UID (seq);
638 if (!JUMP_P (branch))
639 /* This can happen for example on the PA; the objective is to know the
640 offset to address something in front of the start of the function.
641 Thus, we can treat it like a backward branch.
642 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
643 any alignment we'd encounter, so we skip the call to align_fuzz. */
644 return insn_current_address;
645 dest = JUMP_LABEL (branch);
647 /* BRANCH has no proper alignment chain set, so use SEQ.
648 BRANCH also has no INSN_SHUID. */
649 if (INSN_SHUID (seq) < INSN_SHUID (dest))
651 /* Forward branch. */
652 return (insn_last_address + insn_lengths[seq_uid]
653 - align_fuzz (seq, dest, length_unit_log, ~0));
655 else
657 /* Backward branch. */
658 return (insn_current_address
659 + align_fuzz (dest, seq, length_unit_log, ~0));
662 #endif /* HAVE_ATTR_length */
664 /* Compute branch alignments based on frequency information in the
665 CFG. */
667 static unsigned int
668 compute_alignments (void)
670 int log, max_skip, max_log;
671 basic_block bb;
673 if (label_align)
675 free (label_align);
676 label_align = 0;
679 max_labelno = max_label_num ();
680 min_labelno = get_first_label_num ();
681 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
683 /* If not optimizing or optimizing for size, don't assign any alignments. */
684 if (! optimize || optimize_size)
685 return 0;
687 FOR_EACH_BB (bb)
689 rtx label = BB_HEAD (bb);
690 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
691 edge e;
692 edge_iterator ei;
694 if (!LABEL_P (label)
695 || probably_never_executed_bb_p (bb))
696 continue;
697 max_log = LABEL_ALIGN (label);
698 max_skip = LABEL_ALIGN_MAX_SKIP;
700 FOR_EACH_EDGE (e, ei, bb->preds)
702 if (e->flags & EDGE_FALLTHRU)
703 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
704 else
705 branch_frequency += EDGE_FREQUENCY (e);
708 /* There are two purposes to align block with no fallthru incoming edge:
709 1) to avoid fetch stalls when branch destination is near cache boundary
710 2) to improve cache efficiency in case the previous block is not executed
711 (so it does not need to be in the cache).
713 We to catch first case, we align frequently executed blocks.
714 To catch the second, we align blocks that are executed more frequently
715 than the predecessor and the predecessor is likely to not be executed
716 when function is called. */
718 if (!has_fallthru
719 && (branch_frequency > BB_FREQ_MAX / 10
720 || (bb->frequency > bb->prev_bb->frequency * 10
721 && (bb->prev_bb->frequency
722 <= ENTRY_BLOCK_PTR->frequency / 2))))
724 log = JUMP_ALIGN (label);
725 if (max_log < log)
727 max_log = log;
728 max_skip = JUMP_ALIGN_MAX_SKIP;
731 /* In case block is frequent and reached mostly by non-fallthru edge,
732 align it. It is most likely a first block of loop. */
733 if (has_fallthru
734 && maybe_hot_bb_p (bb)
735 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
736 && branch_frequency > fallthru_frequency * 2)
738 log = LOOP_ALIGN (label);
739 if (max_log < log)
741 max_log = log;
742 max_skip = LOOP_ALIGN_MAX_SKIP;
745 LABEL_TO_ALIGNMENT (label) = max_log;
746 LABEL_TO_MAX_SKIP (label) = max_skip;
748 return 0;
751 struct tree_opt_pass pass_compute_alignments =
753 NULL, /* name */
754 NULL, /* gate */
755 compute_alignments, /* execute */
756 NULL, /* sub */
757 NULL, /* next */
758 0, /* static_pass_number */
759 0, /* tv_id */
760 0, /* properties_required */
761 0, /* properties_provided */
762 0, /* properties_destroyed */
763 0, /* todo_flags_start */
764 0, /* todo_flags_finish */
765 0 /* letter */
769 /* Make a pass over all insns and compute their actual lengths by shortening
770 any branches of variable length if possible. */
772 /* shorten_branches might be called multiple times: for example, the SH
773 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
774 In order to do this, it needs proper length information, which it obtains
775 by calling shorten_branches. This cannot be collapsed with
776 shorten_branches itself into a single pass unless we also want to integrate
777 reorg.c, since the branch splitting exposes new instructions with delay
778 slots. */
780 void
781 shorten_branches (rtx first ATTRIBUTE_UNUSED)
783 rtx insn;
784 int max_uid;
785 int i;
786 int max_log;
787 int max_skip;
788 #ifdef HAVE_ATTR_length
789 #define MAX_CODE_ALIGN 16
790 rtx seq;
791 int something_changed = 1;
792 char *varying_length;
793 rtx body;
794 int uid;
795 rtx align_tab[MAX_CODE_ALIGN];
797 #endif
799 /* Compute maximum UID and allocate label_align / uid_shuid. */
800 max_uid = get_max_uid ();
802 /* Free uid_shuid before reallocating it. */
803 free (uid_shuid);
805 uid_shuid = XNEWVEC (int, max_uid);
807 if (max_labelno != max_label_num ())
809 int old = max_labelno;
810 int n_labels;
811 int n_old_labels;
813 max_labelno = max_label_num ();
815 n_labels = max_labelno - min_labelno + 1;
816 n_old_labels = old - min_labelno + 1;
818 label_align = xrealloc (label_align,
819 n_labels * sizeof (struct label_alignment));
821 /* Range of labels grows monotonically in the function. Failing here
822 means that the initialization of array got lost. */
823 gcc_assert (n_old_labels <= n_labels);
825 memset (label_align + n_old_labels, 0,
826 (n_labels - n_old_labels) * sizeof (struct label_alignment));
829 /* Initialize label_align and set up uid_shuid to be strictly
830 monotonically rising with insn order. */
831 /* We use max_log here to keep track of the maximum alignment we want to
832 impose on the next CODE_LABEL (or the current one if we are processing
833 the CODE_LABEL itself). */
835 max_log = 0;
836 max_skip = 0;
838 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
840 int log;
842 INSN_SHUID (insn) = i++;
843 if (INSN_P (insn))
844 continue;
846 if (LABEL_P (insn))
848 rtx next;
850 /* Merge in alignments computed by compute_alignments. */
851 log = LABEL_TO_ALIGNMENT (insn);
852 if (max_log < log)
854 max_log = log;
855 max_skip = LABEL_TO_MAX_SKIP (insn);
858 log = LABEL_ALIGN (insn);
859 if (max_log < log)
861 max_log = log;
862 max_skip = LABEL_ALIGN_MAX_SKIP;
864 next = next_nonnote_insn (insn);
865 /* ADDR_VECs only take room if read-only data goes into the text
866 section. */
867 if (JUMP_TABLES_IN_TEXT_SECTION
868 || readonly_data_section == text_section)
869 if (next && JUMP_P (next))
871 rtx nextbody = PATTERN (next);
872 if (GET_CODE (nextbody) == ADDR_VEC
873 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
875 log = ADDR_VEC_ALIGN (next);
876 if (max_log < log)
878 max_log = log;
879 max_skip = LABEL_ALIGN_MAX_SKIP;
883 LABEL_TO_ALIGNMENT (insn) = max_log;
884 LABEL_TO_MAX_SKIP (insn) = max_skip;
885 max_log = 0;
886 max_skip = 0;
888 else if (BARRIER_P (insn))
890 rtx label;
892 for (label = insn; label && ! INSN_P (label);
893 label = NEXT_INSN (label))
894 if (LABEL_P (label))
896 log = LABEL_ALIGN_AFTER_BARRIER (insn);
897 if (max_log < log)
899 max_log = log;
900 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
902 break;
906 #ifdef HAVE_ATTR_length
908 /* Allocate the rest of the arrays. */
909 insn_lengths = XNEWVEC (int, max_uid);
910 insn_lengths_max_uid = max_uid;
911 /* Syntax errors can lead to labels being outside of the main insn stream.
912 Initialize insn_addresses, so that we get reproducible results. */
913 INSN_ADDRESSES_ALLOC (max_uid);
915 varying_length = XCNEWVEC (char, max_uid);
917 /* Initialize uid_align. We scan instructions
918 from end to start, and keep in align_tab[n] the last seen insn
919 that does an alignment of at least n+1, i.e. the successor
920 in the alignment chain for an insn that does / has a known
921 alignment of n. */
922 uid_align = XCNEWVEC (rtx, max_uid);
924 for (i = MAX_CODE_ALIGN; --i >= 0;)
925 align_tab[i] = NULL_RTX;
926 seq = get_last_insn ();
927 for (; seq; seq = PREV_INSN (seq))
929 int uid = INSN_UID (seq);
930 int log;
931 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
932 uid_align[uid] = align_tab[0];
933 if (log)
935 /* Found an alignment label. */
936 uid_align[uid] = align_tab[log];
937 for (i = log - 1; i >= 0; i--)
938 align_tab[i] = seq;
941 #ifdef CASE_VECTOR_SHORTEN_MODE
942 if (optimize)
944 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
945 label fields. */
947 int min_shuid = INSN_SHUID (get_insns ()) - 1;
948 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
949 int rel;
951 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
953 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
954 int len, i, min, max, insn_shuid;
955 int min_align;
956 addr_diff_vec_flags flags;
958 if (!JUMP_P (insn)
959 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
960 continue;
961 pat = PATTERN (insn);
962 len = XVECLEN (pat, 1);
963 gcc_assert (len > 0);
964 min_align = MAX_CODE_ALIGN;
965 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
967 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
968 int shuid = INSN_SHUID (lab);
969 if (shuid < min)
971 min = shuid;
972 min_lab = lab;
974 if (shuid > max)
976 max = shuid;
977 max_lab = lab;
979 if (min_align > LABEL_TO_ALIGNMENT (lab))
980 min_align = LABEL_TO_ALIGNMENT (lab);
982 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
983 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
984 insn_shuid = INSN_SHUID (insn);
985 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
986 memset (&flags, 0, sizeof (flags));
987 flags.min_align = min_align;
988 flags.base_after_vec = rel > insn_shuid;
989 flags.min_after_vec = min > insn_shuid;
990 flags.max_after_vec = max > insn_shuid;
991 flags.min_after_base = min > rel;
992 flags.max_after_base = max > rel;
993 ADDR_DIFF_VEC_FLAGS (pat) = flags;
996 #endif /* CASE_VECTOR_SHORTEN_MODE */
998 /* Compute initial lengths, addresses, and varying flags for each insn. */
999 for (insn_current_address = 0, insn = first;
1000 insn != 0;
1001 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1003 uid = INSN_UID (insn);
1005 insn_lengths[uid] = 0;
1007 if (LABEL_P (insn))
1009 int log = LABEL_TO_ALIGNMENT (insn);
1010 if (log)
1012 int align = 1 << log;
1013 int new_address = (insn_current_address + align - 1) & -align;
1014 insn_lengths[uid] = new_address - insn_current_address;
1018 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1020 if (NOTE_P (insn) || BARRIER_P (insn)
1021 || LABEL_P (insn))
1022 continue;
1023 if (INSN_DELETED_P (insn))
1024 continue;
1026 body = PATTERN (insn);
1027 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1029 /* This only takes room if read-only data goes into the text
1030 section. */
1031 if (JUMP_TABLES_IN_TEXT_SECTION
1032 || readonly_data_section == text_section)
1033 insn_lengths[uid] = (XVECLEN (body,
1034 GET_CODE (body) == ADDR_DIFF_VEC)
1035 * GET_MODE_SIZE (GET_MODE (body)));
1036 /* Alignment is handled by ADDR_VEC_ALIGN. */
1038 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1039 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1040 else if (GET_CODE (body) == SEQUENCE)
1042 int i;
1043 int const_delay_slots;
1044 #ifdef DELAY_SLOTS
1045 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1046 #else
1047 const_delay_slots = 0;
1048 #endif
1049 /* Inside a delay slot sequence, we do not do any branch shortening
1050 if the shortening could change the number of delay slots
1051 of the branch. */
1052 for (i = 0; i < XVECLEN (body, 0); i++)
1054 rtx inner_insn = XVECEXP (body, 0, i);
1055 int inner_uid = INSN_UID (inner_insn);
1056 int inner_length;
1058 if (GET_CODE (body) == ASM_INPUT
1059 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1060 inner_length = (asm_insn_count (PATTERN (inner_insn))
1061 * insn_default_length (inner_insn));
1062 else
1063 inner_length = insn_default_length (inner_insn);
1065 insn_lengths[inner_uid] = inner_length;
1066 if (const_delay_slots)
1068 if ((varying_length[inner_uid]
1069 = insn_variable_length_p (inner_insn)) != 0)
1070 varying_length[uid] = 1;
1071 INSN_ADDRESSES (inner_uid) = (insn_current_address
1072 + insn_lengths[uid]);
1074 else
1075 varying_length[inner_uid] = 0;
1076 insn_lengths[uid] += inner_length;
1079 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1081 insn_lengths[uid] = insn_default_length (insn);
1082 varying_length[uid] = insn_variable_length_p (insn);
1085 /* If needed, do any adjustment. */
1086 #ifdef ADJUST_INSN_LENGTH
1087 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1088 if (insn_lengths[uid] < 0)
1089 fatal_insn ("negative insn length", insn);
1090 #endif
1093 /* Now loop over all the insns finding varying length insns. For each,
1094 get the current insn length. If it has changed, reflect the change.
1095 When nothing changes for a full pass, we are done. */
1097 while (something_changed)
1099 something_changed = 0;
1100 insn_current_align = MAX_CODE_ALIGN - 1;
1101 for (insn_current_address = 0, insn = first;
1102 insn != 0;
1103 insn = NEXT_INSN (insn))
1105 int new_length;
1106 #ifdef ADJUST_INSN_LENGTH
1107 int tmp_length;
1108 #endif
1109 int length_align;
1111 uid = INSN_UID (insn);
1113 if (LABEL_P (insn))
1115 int log = LABEL_TO_ALIGNMENT (insn);
1116 if (log > insn_current_align)
1118 int align = 1 << log;
1119 int new_address= (insn_current_address + align - 1) & -align;
1120 insn_lengths[uid] = new_address - insn_current_address;
1121 insn_current_align = log;
1122 insn_current_address = new_address;
1124 else
1125 insn_lengths[uid] = 0;
1126 INSN_ADDRESSES (uid) = insn_current_address;
1127 continue;
1130 length_align = INSN_LENGTH_ALIGNMENT (insn);
1131 if (length_align < insn_current_align)
1132 insn_current_align = length_align;
1134 insn_last_address = INSN_ADDRESSES (uid);
1135 INSN_ADDRESSES (uid) = insn_current_address;
1137 #ifdef CASE_VECTOR_SHORTEN_MODE
1138 if (optimize && JUMP_P (insn)
1139 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1141 rtx body = PATTERN (insn);
1142 int old_length = insn_lengths[uid];
1143 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1144 rtx min_lab = XEXP (XEXP (body, 2), 0);
1145 rtx max_lab = XEXP (XEXP (body, 3), 0);
1146 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1147 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1148 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1149 rtx prev;
1150 int rel_align = 0;
1151 addr_diff_vec_flags flags;
1153 /* Avoid automatic aggregate initialization. */
1154 flags = ADDR_DIFF_VEC_FLAGS (body);
1156 /* Try to find a known alignment for rel_lab. */
1157 for (prev = rel_lab;
1158 prev
1159 && ! insn_lengths[INSN_UID (prev)]
1160 && ! (varying_length[INSN_UID (prev)] & 1);
1161 prev = PREV_INSN (prev))
1162 if (varying_length[INSN_UID (prev)] & 2)
1164 rel_align = LABEL_TO_ALIGNMENT (prev);
1165 break;
1168 /* See the comment on addr_diff_vec_flags in rtl.h for the
1169 meaning of the flags values. base: REL_LAB vec: INSN */
1170 /* Anything after INSN has still addresses from the last
1171 pass; adjust these so that they reflect our current
1172 estimate for this pass. */
1173 if (flags.base_after_vec)
1174 rel_addr += insn_current_address - insn_last_address;
1175 if (flags.min_after_vec)
1176 min_addr += insn_current_address - insn_last_address;
1177 if (flags.max_after_vec)
1178 max_addr += insn_current_address - insn_last_address;
1179 /* We want to know the worst case, i.e. lowest possible value
1180 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1181 its offset is positive, and we have to be wary of code shrink;
1182 otherwise, it is negative, and we have to be vary of code
1183 size increase. */
1184 if (flags.min_after_base)
1186 /* If INSN is between REL_LAB and MIN_LAB, the size
1187 changes we are about to make can change the alignment
1188 within the observed offset, therefore we have to break
1189 it up into two parts that are independent. */
1190 if (! flags.base_after_vec && flags.min_after_vec)
1192 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1193 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1195 else
1196 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1198 else
1200 if (flags.base_after_vec && ! flags.min_after_vec)
1202 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1203 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1205 else
1206 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1208 /* Likewise, determine the highest lowest possible value
1209 for the offset of MAX_LAB. */
1210 if (flags.max_after_base)
1212 if (! flags.base_after_vec && flags.max_after_vec)
1214 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1215 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1217 else
1218 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1220 else
1222 if (flags.base_after_vec && ! flags.max_after_vec)
1224 max_addr += align_fuzz (max_lab, insn, 0, 0);
1225 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1227 else
1228 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1230 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1231 max_addr - rel_addr,
1232 body));
1233 if (JUMP_TABLES_IN_TEXT_SECTION
1234 || readonly_data_section == text_section)
1236 insn_lengths[uid]
1237 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1238 insn_current_address += insn_lengths[uid];
1239 if (insn_lengths[uid] != old_length)
1240 something_changed = 1;
1243 continue;
1245 #endif /* CASE_VECTOR_SHORTEN_MODE */
1247 if (! (varying_length[uid]))
1249 if (NONJUMP_INSN_P (insn)
1250 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1252 int i;
1254 body = PATTERN (insn);
1255 for (i = 0; i < XVECLEN (body, 0); i++)
1257 rtx inner_insn = XVECEXP (body, 0, i);
1258 int inner_uid = INSN_UID (inner_insn);
1260 INSN_ADDRESSES (inner_uid) = insn_current_address;
1262 insn_current_address += insn_lengths[inner_uid];
1265 else
1266 insn_current_address += insn_lengths[uid];
1268 continue;
1271 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1273 int i;
1275 body = PATTERN (insn);
1276 new_length = 0;
1277 for (i = 0; i < XVECLEN (body, 0); i++)
1279 rtx inner_insn = XVECEXP (body, 0, i);
1280 int inner_uid = INSN_UID (inner_insn);
1281 int inner_length;
1283 INSN_ADDRESSES (inner_uid) = insn_current_address;
1285 /* insn_current_length returns 0 for insns with a
1286 non-varying length. */
1287 if (! varying_length[inner_uid])
1288 inner_length = insn_lengths[inner_uid];
1289 else
1290 inner_length = insn_current_length (inner_insn);
1292 if (inner_length != insn_lengths[inner_uid])
1294 insn_lengths[inner_uid] = inner_length;
1295 something_changed = 1;
1297 insn_current_address += insn_lengths[inner_uid];
1298 new_length += inner_length;
1301 else
1303 new_length = insn_current_length (insn);
1304 insn_current_address += new_length;
1307 #ifdef ADJUST_INSN_LENGTH
1308 /* If needed, do any adjustment. */
1309 tmp_length = new_length;
1310 ADJUST_INSN_LENGTH (insn, new_length);
1311 insn_current_address += (new_length - tmp_length);
1312 #endif
1314 if (new_length != insn_lengths[uid])
1316 insn_lengths[uid] = new_length;
1317 something_changed = 1;
1320 /* For a non-optimizing compile, do only a single pass. */
1321 if (!optimize)
1322 break;
1325 free (varying_length);
1327 #endif /* HAVE_ATTR_length */
1330 #ifdef HAVE_ATTR_length
1331 /* Given the body of an INSN known to be generated by an ASM statement, return
1332 the number of machine instructions likely to be generated for this insn.
1333 This is used to compute its length. */
1335 static int
1336 asm_insn_count (rtx body)
1338 const char *template;
1339 int count = 1;
1341 if (GET_CODE (body) == ASM_INPUT)
1342 template = XSTR (body, 0);
1343 else
1344 template = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1346 for (; *template; template++)
1347 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1348 count++;
1350 return count;
1352 #endif
1354 /* ??? This is probably the wrong place for these. */
1355 /* Structure recording the mapping from source file and directory
1356 names at compile time to those to be embedded in debug
1357 information. */
1358 typedef struct debug_prefix_map
1360 const char *old_prefix;
1361 const char *new_prefix;
1362 size_t old_len;
1363 size_t new_len;
1364 struct debug_prefix_map *next;
1365 } debug_prefix_map;
1367 /* Linked list of such structures. */
1368 debug_prefix_map *debug_prefix_maps;
1371 /* Record a debug file prefix mapping. ARG is the argument to
1372 -fdebug-prefix-map and must be of the form OLD=NEW. */
1374 void
1375 add_debug_prefix_map (const char *arg)
1377 debug_prefix_map *map;
1378 const char *p;
1380 p = strchr (arg, '=');
1381 if (!p)
1383 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1384 return;
1386 map = XNEW (debug_prefix_map);
1387 map->old_prefix = ggc_alloc_string (arg, p - arg);
1388 map->old_len = p - arg;
1389 p++;
1390 map->new_prefix = ggc_strdup (p);
1391 map->new_len = strlen (p);
1392 map->next = debug_prefix_maps;
1393 debug_prefix_maps = map;
1396 /* Perform user-specified mapping of debug filename prefixes. Return
1397 the new name corresponding to FILENAME. */
1399 const char *
1400 remap_debug_filename (const char *filename)
1402 debug_prefix_map *map;
1403 char *s;
1404 const char *name;
1405 size_t name_len;
1407 for (map = debug_prefix_maps; map; map = map->next)
1408 if (strncmp (filename, map->old_prefix, map->old_len) == 0)
1409 break;
1410 if (!map)
1411 return filename;
1412 name = filename + map->old_len;
1413 name_len = strlen (name) + 1;
1414 s = (char *) alloca (name_len + map->new_len);
1415 memcpy (s, map->new_prefix, map->new_len);
1416 memcpy (s + map->new_len, name, name_len);
1417 return ggc_strdup (s);
1420 /* Output assembler code for the start of a function,
1421 and initialize some of the variables in this file
1422 for the new function. The label for the function and associated
1423 assembler pseudo-ops have already been output in `assemble_start_function'.
1425 FIRST is the first insn of the rtl for the function being compiled.
1426 FILE is the file to write assembler code to.
1427 OPTIMIZE is nonzero if we should eliminate redundant
1428 test and compare insns. */
1430 void
1431 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1432 int optimize ATTRIBUTE_UNUSED)
1434 block_depth = 0;
1436 this_is_asm_operands = 0;
1438 last_filename = locator_file (prologue_locator);
1439 last_linenum = locator_line (prologue_locator);
1441 high_block_linenum = high_function_linenum = last_linenum;
1443 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1445 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1446 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1447 dwarf2out_begin_prologue (0, NULL);
1448 #endif
1450 #ifdef LEAF_REG_REMAP
1451 if (current_function_uses_only_leaf_regs)
1452 leaf_renumber_regs (first);
1453 #endif
1455 /* The Sun386i and perhaps other machines don't work right
1456 if the profiling code comes after the prologue. */
1457 #ifdef PROFILE_BEFORE_PROLOGUE
1458 if (current_function_profile)
1459 profile_function (file);
1460 #endif /* PROFILE_BEFORE_PROLOGUE */
1462 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1463 if (dwarf2out_do_frame ())
1464 dwarf2out_frame_debug (NULL_RTX, false);
1465 #endif
1467 /* If debugging, assign block numbers to all of the blocks in this
1468 function. */
1469 if (write_symbols)
1471 reemit_insn_block_notes ();
1472 number_blocks (current_function_decl);
1473 /* We never actually put out begin/end notes for the top-level
1474 block in the function. But, conceptually, that block is
1475 always needed. */
1476 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1479 /* First output the function prologue: code to set up the stack frame. */
1480 targetm.asm_out.function_prologue (file, get_frame_size ());
1482 /* If the machine represents the prologue as RTL, the profiling code must
1483 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1484 #ifdef HAVE_prologue
1485 if (! HAVE_prologue)
1486 #endif
1487 profile_after_prologue (file);
1490 static void
1491 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1493 #ifndef PROFILE_BEFORE_PROLOGUE
1494 if (current_function_profile)
1495 profile_function (file);
1496 #endif /* not PROFILE_BEFORE_PROLOGUE */
1499 static void
1500 profile_function (FILE *file ATTRIBUTE_UNUSED)
1502 #ifndef NO_PROFILE_COUNTERS
1503 # define NO_PROFILE_COUNTERS 0
1504 #endif
1505 #if defined(ASM_OUTPUT_REG_PUSH)
1506 int sval = current_function_returns_struct;
1507 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1508 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1509 int cxt = cfun->static_chain_decl != NULL;
1510 #endif
1511 #endif /* ASM_OUTPUT_REG_PUSH */
1513 if (! NO_PROFILE_COUNTERS)
1515 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1516 switch_to_section (data_section);
1517 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1518 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1519 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1522 switch_to_section (current_function_section ());
1524 #if defined(ASM_OUTPUT_REG_PUSH)
1525 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1527 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1529 #endif
1531 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1532 if (cxt)
1533 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1534 #else
1535 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1536 if (cxt)
1538 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1540 #endif
1541 #endif
1543 FUNCTION_PROFILER (file, current_function_funcdef_no);
1545 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1546 if (cxt)
1547 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1548 #else
1549 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1550 if (cxt)
1552 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1554 #endif
1555 #endif
1557 #if defined(ASM_OUTPUT_REG_PUSH)
1558 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1560 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1562 #endif
1565 /* Output assembler code for the end of a function.
1566 For clarity, args are same as those of `final_start_function'
1567 even though not all of them are needed. */
1569 void
1570 final_end_function (void)
1572 app_disable ();
1574 (*debug_hooks->end_function) (high_function_linenum);
1576 /* Finally, output the function epilogue:
1577 code to restore the stack frame and return to the caller. */
1578 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1580 /* And debug output. */
1581 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1583 #if defined (DWARF2_UNWIND_INFO)
1584 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1585 && dwarf2out_do_frame ())
1586 dwarf2out_end_epilogue (last_linenum, last_filename);
1587 #endif
1590 /* Output assembler code for some insns: all or part of a function.
1591 For description of args, see `final_start_function', above. */
1593 void
1594 final (rtx first, FILE *file, int optimize)
1596 rtx insn;
1597 int max_uid = 0;
1598 int seen = 0;
1600 last_ignored_compare = 0;
1602 for (insn = first; insn; insn = NEXT_INSN (insn))
1604 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1605 max_uid = INSN_UID (insn);
1606 #ifdef HAVE_cc0
1607 /* If CC tracking across branches is enabled, record the insn which
1608 jumps to each branch only reached from one place. */
1609 if (optimize && JUMP_P (insn))
1611 rtx lab = JUMP_LABEL (insn);
1612 if (lab && LABEL_NUSES (lab) == 1)
1614 LABEL_REFS (lab) = insn;
1617 #endif
1620 init_recog ();
1622 CC_STATUS_INIT;
1624 /* Output the insns. */
1625 for (insn = first; insn;)
1627 #ifdef HAVE_ATTR_length
1628 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1630 /* This can be triggered by bugs elsewhere in the compiler if
1631 new insns are created after init_insn_lengths is called. */
1632 gcc_assert (NOTE_P (insn));
1633 insn_current_address = -1;
1635 else
1636 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1637 #endif /* HAVE_ATTR_length */
1639 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1643 const char *
1644 get_insn_template (int code, rtx insn)
1646 switch (insn_data[code].output_format)
1648 case INSN_OUTPUT_FORMAT_SINGLE:
1649 return insn_data[code].output.single;
1650 case INSN_OUTPUT_FORMAT_MULTI:
1651 return insn_data[code].output.multi[which_alternative];
1652 case INSN_OUTPUT_FORMAT_FUNCTION:
1653 gcc_assert (insn);
1654 return (*insn_data[code].output.function) (recog_data.operand, insn);
1656 default:
1657 gcc_unreachable ();
1661 /* Emit the appropriate declaration for an alternate-entry-point
1662 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1663 LABEL_KIND != LABEL_NORMAL.
1665 The case fall-through in this function is intentional. */
1666 static void
1667 output_alternate_entry_point (FILE *file, rtx insn)
1669 const char *name = LABEL_NAME (insn);
1671 switch (LABEL_KIND (insn))
1673 case LABEL_WEAK_ENTRY:
1674 #ifdef ASM_WEAKEN_LABEL
1675 ASM_WEAKEN_LABEL (file, name);
1676 #endif
1677 case LABEL_GLOBAL_ENTRY:
1678 targetm.asm_out.globalize_label (file, name);
1679 case LABEL_STATIC_ENTRY:
1680 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1681 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1682 #endif
1683 ASM_OUTPUT_LABEL (file, name);
1684 break;
1686 case LABEL_NORMAL:
1687 default:
1688 gcc_unreachable ();
1692 /* The final scan for one insn, INSN.
1693 Args are same as in `final', except that INSN
1694 is the insn being scanned.
1695 Value returned is the next insn to be scanned.
1697 NOPEEPHOLES is the flag to disallow peephole processing (currently
1698 used for within delayed branch sequence output).
1700 SEEN is used to track the end of the prologue, for emitting
1701 debug information. We force the emission of a line note after
1702 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1703 at the beginning of the second basic block, whichever comes
1704 first. */
1707 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1708 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1710 #ifdef HAVE_cc0
1711 rtx set;
1712 #endif
1713 rtx next;
1715 insn_counter++;
1717 /* Ignore deleted insns. These can occur when we split insns (due to a
1718 template of "#") while not optimizing. */
1719 if (INSN_DELETED_P (insn))
1720 return NEXT_INSN (insn);
1722 switch (GET_CODE (insn))
1724 case NOTE:
1725 switch (NOTE_KIND (insn))
1727 case NOTE_INSN_DELETED:
1728 break;
1730 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1731 in_cold_section_p = !in_cold_section_p;
1732 (*debug_hooks->switch_text_section) ();
1733 switch_to_section (current_function_section ());
1734 break;
1736 case NOTE_INSN_BASIC_BLOCK:
1737 #ifdef TARGET_UNWIND_INFO
1738 targetm.asm_out.unwind_emit (asm_out_file, insn);
1739 #endif
1741 if (flag_debug_asm)
1742 fprintf (asm_out_file, "\t%s basic block %d\n",
1743 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1745 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1747 *seen |= SEEN_EMITTED;
1748 force_source_line = true;
1750 else
1751 *seen |= SEEN_BB;
1753 break;
1755 case NOTE_INSN_EH_REGION_BEG:
1756 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1757 NOTE_EH_HANDLER (insn));
1758 break;
1760 case NOTE_INSN_EH_REGION_END:
1761 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1762 NOTE_EH_HANDLER (insn));
1763 break;
1765 case NOTE_INSN_PROLOGUE_END:
1766 targetm.asm_out.function_end_prologue (file);
1767 profile_after_prologue (file);
1769 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1771 *seen |= SEEN_EMITTED;
1772 force_source_line = true;
1774 else
1775 *seen |= SEEN_NOTE;
1777 break;
1779 case NOTE_INSN_EPILOGUE_BEG:
1780 targetm.asm_out.function_begin_epilogue (file);
1781 break;
1783 case NOTE_INSN_FUNCTION_BEG:
1784 app_disable ();
1785 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1787 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1789 *seen |= SEEN_EMITTED;
1790 force_source_line = true;
1792 else
1793 *seen |= SEEN_NOTE;
1795 break;
1797 case NOTE_INSN_BLOCK_BEG:
1798 if (debug_info_level == DINFO_LEVEL_NORMAL
1799 || debug_info_level == DINFO_LEVEL_VERBOSE
1800 || write_symbols == DWARF2_DEBUG
1801 || write_symbols == VMS_AND_DWARF2_DEBUG
1802 || write_symbols == VMS_DEBUG)
1804 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1806 app_disable ();
1807 ++block_depth;
1808 high_block_linenum = last_linenum;
1810 /* Output debugging info about the symbol-block beginning. */
1811 (*debug_hooks->begin_block) (last_linenum, n);
1813 /* Mark this block as output. */
1814 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1816 break;
1818 case NOTE_INSN_BLOCK_END:
1819 if (debug_info_level == DINFO_LEVEL_NORMAL
1820 || debug_info_level == DINFO_LEVEL_VERBOSE
1821 || write_symbols == DWARF2_DEBUG
1822 || write_symbols == VMS_AND_DWARF2_DEBUG
1823 || write_symbols == VMS_DEBUG)
1825 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1827 app_disable ();
1829 /* End of a symbol-block. */
1830 --block_depth;
1831 gcc_assert (block_depth >= 0);
1833 (*debug_hooks->end_block) (high_block_linenum, n);
1835 break;
1837 case NOTE_INSN_DELETED_LABEL:
1838 /* Emit the label. We may have deleted the CODE_LABEL because
1839 the label could be proved to be unreachable, though still
1840 referenced (in the form of having its address taken. */
1841 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1842 break;
1844 case NOTE_INSN_VAR_LOCATION:
1845 (*debug_hooks->var_location) (insn);
1846 break;
1848 default:
1849 gcc_unreachable ();
1850 break;
1852 break;
1854 case BARRIER:
1855 #if defined (DWARF2_UNWIND_INFO)
1856 if (dwarf2out_do_frame ())
1857 dwarf2out_frame_debug (insn, false);
1858 #endif
1859 break;
1861 case CODE_LABEL:
1862 /* The target port might emit labels in the output function for
1863 some insn, e.g. sh.c output_branchy_insn. */
1864 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1866 int align = LABEL_TO_ALIGNMENT (insn);
1867 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1868 int max_skip = LABEL_TO_MAX_SKIP (insn);
1869 #endif
1871 if (align && NEXT_INSN (insn))
1873 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1874 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1875 #else
1876 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1877 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1878 #else
1879 ASM_OUTPUT_ALIGN (file, align);
1880 #endif
1881 #endif
1884 #ifdef HAVE_cc0
1885 CC_STATUS_INIT;
1886 /* If this label is reached from only one place, set the condition
1887 codes from the instruction just before the branch. */
1889 /* Disabled because some insns set cc_status in the C output code
1890 and NOTICE_UPDATE_CC alone can set incorrect status. */
1891 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1893 rtx jump = LABEL_REFS (insn);
1894 rtx barrier = prev_nonnote_insn (insn);
1895 rtx prev;
1896 /* If the LABEL_REFS field of this label has been set to point
1897 at a branch, the predecessor of the branch is a regular
1898 insn, and that branch is the only way to reach this label,
1899 set the condition codes based on the branch and its
1900 predecessor. */
1901 if (barrier && BARRIER_P (barrier)
1902 && jump && JUMP_P (jump)
1903 && (prev = prev_nonnote_insn (jump))
1904 && NONJUMP_INSN_P (prev))
1906 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1907 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1910 #endif
1912 if (LABEL_NAME (insn))
1913 (*debug_hooks->label) (insn);
1915 if (app_on)
1917 fputs (ASM_APP_OFF, file);
1918 app_on = 0;
1921 next = next_nonnote_insn (insn);
1922 if (next != 0 && JUMP_P (next))
1924 rtx nextbody = PATTERN (next);
1926 /* If this label is followed by a jump-table,
1927 make sure we put the label in the read-only section. Also
1928 possibly write the label and jump table together. */
1930 if (GET_CODE (nextbody) == ADDR_VEC
1931 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1933 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1934 /* In this case, the case vector is being moved by the
1935 target, so don't output the label at all. Leave that
1936 to the back end macros. */
1937 #else
1938 if (! JUMP_TABLES_IN_TEXT_SECTION)
1940 int log_align;
1942 switch_to_section (targetm.asm_out.function_rodata_section
1943 (current_function_decl));
1945 #ifdef ADDR_VEC_ALIGN
1946 log_align = ADDR_VEC_ALIGN (next);
1947 #else
1948 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1949 #endif
1950 ASM_OUTPUT_ALIGN (file, log_align);
1952 else
1953 switch_to_section (current_function_section ());
1955 #ifdef ASM_OUTPUT_CASE_LABEL
1956 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1957 next);
1958 #else
1959 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1960 #endif
1961 #endif
1962 break;
1965 if (LABEL_ALT_ENTRY_P (insn))
1966 output_alternate_entry_point (file, insn);
1967 else
1968 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1969 break;
1971 default:
1973 rtx body = PATTERN (insn);
1974 int insn_code_number;
1975 const char *template;
1977 #ifdef HAVE_conditional_execution
1978 /* Reset this early so it is correct for ASM statements. */
1979 current_insn_predicate = NULL_RTX;
1980 #endif
1981 /* An INSN, JUMP_INSN or CALL_INSN.
1982 First check for special kinds that recog doesn't recognize. */
1984 if (GET_CODE (body) == USE /* These are just declarations. */
1985 || GET_CODE (body) == CLOBBER)
1986 break;
1988 #ifdef HAVE_cc0
1990 /* If there is a REG_CC_SETTER note on this insn, it means that
1991 the setting of the condition code was done in the delay slot
1992 of the insn that branched here. So recover the cc status
1993 from the insn that set it. */
1995 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1996 if (note)
1998 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1999 cc_prev_status = cc_status;
2002 #endif
2004 /* Detect insns that are really jump-tables
2005 and output them as such. */
2007 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2009 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2010 int vlen, idx;
2011 #endif
2013 if (! JUMP_TABLES_IN_TEXT_SECTION)
2014 switch_to_section (targetm.asm_out.function_rodata_section
2015 (current_function_decl));
2016 else
2017 switch_to_section (current_function_section ());
2019 if (app_on)
2021 fputs (ASM_APP_OFF, file);
2022 app_on = 0;
2025 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2026 if (GET_CODE (body) == ADDR_VEC)
2028 #ifdef ASM_OUTPUT_ADDR_VEC
2029 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2030 #else
2031 gcc_unreachable ();
2032 #endif
2034 else
2036 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2037 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2038 #else
2039 gcc_unreachable ();
2040 #endif
2042 #else
2043 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2044 for (idx = 0; idx < vlen; idx++)
2046 if (GET_CODE (body) == ADDR_VEC)
2048 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2049 ASM_OUTPUT_ADDR_VEC_ELT
2050 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2051 #else
2052 gcc_unreachable ();
2053 #endif
2055 else
2057 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2058 ASM_OUTPUT_ADDR_DIFF_ELT
2059 (file,
2060 body,
2061 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2062 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2063 #else
2064 gcc_unreachable ();
2065 #endif
2068 #ifdef ASM_OUTPUT_CASE_END
2069 ASM_OUTPUT_CASE_END (file,
2070 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2071 insn);
2072 #endif
2073 #endif
2075 switch_to_section (current_function_section ());
2077 break;
2079 /* Output this line note if it is the first or the last line
2080 note in a row. */
2081 if (notice_source_line (insn))
2083 (*debug_hooks->source_line) (last_linenum, last_filename);
2086 if (GET_CODE (body) == ASM_INPUT)
2088 const char *string = XSTR (body, 0);
2090 /* There's no telling what that did to the condition codes. */
2091 CC_STATUS_INIT;
2093 if (string[0])
2095 expanded_location loc;
2097 if (! app_on)
2099 fputs (ASM_APP_ON, file);
2100 app_on = 1;
2102 #ifdef USE_MAPPED_LOCATION
2103 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2104 #else
2105 loc.file = ASM_INPUT_SOURCE_FILE (body);
2106 loc.line = ASM_INPUT_SOURCE_LINE (body);
2107 #endif
2108 if (*loc.file && loc.line)
2109 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2110 ASM_COMMENT_START, loc.line, loc.file);
2111 fprintf (asm_out_file, "\t%s\n", string);
2112 #if HAVE_AS_LINE_ZERO
2113 if (*loc.file && loc.line)
2114 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2115 #endif
2117 break;
2120 /* Detect `asm' construct with operands. */
2121 if (asm_noperands (body) >= 0)
2123 unsigned int noperands = asm_noperands (body);
2124 rtx *ops = alloca (noperands * sizeof (rtx));
2125 const char *string;
2126 location_t loc;
2127 expanded_location expanded;
2129 /* There's no telling what that did to the condition codes. */
2130 CC_STATUS_INIT;
2132 /* Get out the operand values. */
2133 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2134 /* Inhibit dieing on what would otherwise be compiler bugs. */
2135 insn_noperands = noperands;
2136 this_is_asm_operands = insn;
2137 expanded = expand_location (loc);
2139 #ifdef FINAL_PRESCAN_INSN
2140 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2141 #endif
2143 /* Output the insn using them. */
2144 if (string[0])
2146 if (! app_on)
2148 fputs (ASM_APP_ON, file);
2149 app_on = 1;
2151 if (expanded.file && expanded.line)
2152 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2153 ASM_COMMENT_START, expanded.line, expanded.file);
2154 output_asm_insn (string, ops);
2155 #if HAVE_AS_LINE_ZERO
2156 if (expanded.file && expanded.line)
2157 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2158 #endif
2161 this_is_asm_operands = 0;
2162 break;
2165 if (app_on)
2167 fputs (ASM_APP_OFF, file);
2168 app_on = 0;
2171 if (GET_CODE (body) == SEQUENCE)
2173 /* A delayed-branch sequence */
2174 int i;
2176 final_sequence = body;
2178 /* Record the delay slots' frame information before the branch.
2179 This is needed for delayed calls: see execute_cfa_program(). */
2180 #if defined (DWARF2_UNWIND_INFO)
2181 if (dwarf2out_do_frame ())
2182 for (i = 1; i < XVECLEN (body, 0); i++)
2183 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2184 #endif
2186 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2187 force the restoration of a comparison that was previously
2188 thought unnecessary. If that happens, cancel this sequence
2189 and cause that insn to be restored. */
2191 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2192 if (next != XVECEXP (body, 0, 1))
2194 final_sequence = 0;
2195 return next;
2198 for (i = 1; i < XVECLEN (body, 0); i++)
2200 rtx insn = XVECEXP (body, 0, i);
2201 rtx next = NEXT_INSN (insn);
2202 /* We loop in case any instruction in a delay slot gets
2203 split. */
2205 insn = final_scan_insn (insn, file, 0, 1, seen);
2206 while (insn != next);
2208 #ifdef DBR_OUTPUT_SEQEND
2209 DBR_OUTPUT_SEQEND (file);
2210 #endif
2211 final_sequence = 0;
2213 /* If the insn requiring the delay slot was a CALL_INSN, the
2214 insns in the delay slot are actually executed before the
2215 called function. Hence we don't preserve any CC-setting
2216 actions in these insns and the CC must be marked as being
2217 clobbered by the function. */
2218 if (CALL_P (XVECEXP (body, 0, 0)))
2220 CC_STATUS_INIT;
2222 break;
2225 /* We have a real machine instruction as rtl. */
2227 body = PATTERN (insn);
2229 #ifdef HAVE_cc0
2230 set = single_set (insn);
2232 /* Check for redundant test and compare instructions
2233 (when the condition codes are already set up as desired).
2234 This is done only when optimizing; if not optimizing,
2235 it should be possible for the user to alter a variable
2236 with the debugger in between statements
2237 and the next statement should reexamine the variable
2238 to compute the condition codes. */
2240 if (optimize)
2242 if (set
2243 && GET_CODE (SET_DEST (set)) == CC0
2244 && insn != last_ignored_compare)
2246 if (GET_CODE (SET_SRC (set)) == SUBREG)
2247 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2248 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2250 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2251 XEXP (SET_SRC (set), 0)
2252 = alter_subreg (&XEXP (SET_SRC (set), 0));
2253 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2254 XEXP (SET_SRC (set), 1)
2255 = alter_subreg (&XEXP (SET_SRC (set), 1));
2257 if ((cc_status.value1 != 0
2258 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2259 || (cc_status.value2 != 0
2260 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2262 /* Don't delete insn if it has an addressing side-effect. */
2263 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2264 /* or if anything in it is volatile. */
2265 && ! volatile_refs_p (PATTERN (insn)))
2267 /* We don't really delete the insn; just ignore it. */
2268 last_ignored_compare = insn;
2269 break;
2274 #endif
2276 #ifdef HAVE_cc0
2277 /* If this is a conditional branch, maybe modify it
2278 if the cc's are in a nonstandard state
2279 so that it accomplishes the same thing that it would
2280 do straightforwardly if the cc's were set up normally. */
2282 if (cc_status.flags != 0
2283 && JUMP_P (insn)
2284 && GET_CODE (body) == SET
2285 && SET_DEST (body) == pc_rtx
2286 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2287 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2288 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2290 /* This function may alter the contents of its argument
2291 and clear some of the cc_status.flags bits.
2292 It may also return 1 meaning condition now always true
2293 or -1 meaning condition now always false
2294 or 2 meaning condition nontrivial but altered. */
2295 int result = alter_cond (XEXP (SET_SRC (body), 0));
2296 /* If condition now has fixed value, replace the IF_THEN_ELSE
2297 with its then-operand or its else-operand. */
2298 if (result == 1)
2299 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2300 if (result == -1)
2301 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2303 /* The jump is now either unconditional or a no-op.
2304 If it has become a no-op, don't try to output it.
2305 (It would not be recognized.) */
2306 if (SET_SRC (body) == pc_rtx)
2308 delete_insn (insn);
2309 break;
2311 else if (GET_CODE (SET_SRC (body)) == RETURN)
2312 /* Replace (set (pc) (return)) with (return). */
2313 PATTERN (insn) = body = SET_SRC (body);
2315 /* Rerecognize the instruction if it has changed. */
2316 if (result != 0)
2317 INSN_CODE (insn) = -1;
2320 /* If this is a conditional trap, maybe modify it if the cc's
2321 are in a nonstandard state so that it accomplishes the same
2322 thing that it would do straightforwardly if the cc's were
2323 set up normally. */
2324 if (cc_status.flags != 0
2325 && NONJUMP_INSN_P (insn)
2326 && GET_CODE (body) == TRAP_IF
2327 && COMPARISON_P (TRAP_CONDITION (body))
2328 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2330 /* This function may alter the contents of its argument
2331 and clear some of the cc_status.flags bits.
2332 It may also return 1 meaning condition now always true
2333 or -1 meaning condition now always false
2334 or 2 meaning condition nontrivial but altered. */
2335 int result = alter_cond (TRAP_CONDITION (body));
2337 /* If TRAP_CONDITION has become always false, delete the
2338 instruction. */
2339 if (result == -1)
2341 delete_insn (insn);
2342 break;
2345 /* If TRAP_CONDITION has become always true, replace
2346 TRAP_CONDITION with const_true_rtx. */
2347 if (result == 1)
2348 TRAP_CONDITION (body) = const_true_rtx;
2350 /* Rerecognize the instruction if it has changed. */
2351 if (result != 0)
2352 INSN_CODE (insn) = -1;
2355 /* If this is a conditional trap, maybe modify it if the cc's
2356 are in a nonstandard state so that it accomplishes the same
2357 thing that it would do straightforwardly if the cc's were
2358 set up normally. */
2359 if (cc_status.flags != 0
2360 && NONJUMP_INSN_P (insn)
2361 && GET_CODE (body) == TRAP_IF
2362 && COMPARISON_P (TRAP_CONDITION (body))
2363 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2365 /* This function may alter the contents of its argument
2366 and clear some of the cc_status.flags bits.
2367 It may also return 1 meaning condition now always true
2368 or -1 meaning condition now always false
2369 or 2 meaning condition nontrivial but altered. */
2370 int result = alter_cond (TRAP_CONDITION (body));
2372 /* If TRAP_CONDITION has become always false, delete the
2373 instruction. */
2374 if (result == -1)
2376 delete_insn (insn);
2377 break;
2380 /* If TRAP_CONDITION has become always true, replace
2381 TRAP_CONDITION with const_true_rtx. */
2382 if (result == 1)
2383 TRAP_CONDITION (body) = const_true_rtx;
2385 /* Rerecognize the instruction if it has changed. */
2386 if (result != 0)
2387 INSN_CODE (insn) = -1;
2390 /* Make same adjustments to instructions that examine the
2391 condition codes without jumping and instructions that
2392 handle conditional moves (if this machine has either one). */
2394 if (cc_status.flags != 0
2395 && set != 0)
2397 rtx cond_rtx, then_rtx, else_rtx;
2399 if (!JUMP_P (insn)
2400 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2402 cond_rtx = XEXP (SET_SRC (set), 0);
2403 then_rtx = XEXP (SET_SRC (set), 1);
2404 else_rtx = XEXP (SET_SRC (set), 2);
2406 else
2408 cond_rtx = SET_SRC (set);
2409 then_rtx = const_true_rtx;
2410 else_rtx = const0_rtx;
2413 switch (GET_CODE (cond_rtx))
2415 case GTU:
2416 case GT:
2417 case LTU:
2418 case LT:
2419 case GEU:
2420 case GE:
2421 case LEU:
2422 case LE:
2423 case EQ:
2424 case NE:
2426 int result;
2427 if (XEXP (cond_rtx, 0) != cc0_rtx)
2428 break;
2429 result = alter_cond (cond_rtx);
2430 if (result == 1)
2431 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2432 else if (result == -1)
2433 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2434 else if (result == 2)
2435 INSN_CODE (insn) = -1;
2436 if (SET_DEST (set) == SET_SRC (set))
2437 delete_insn (insn);
2439 break;
2441 default:
2442 break;
2446 #endif
2448 #ifdef HAVE_peephole
2449 /* Do machine-specific peephole optimizations if desired. */
2451 if (optimize && !flag_no_peephole && !nopeepholes)
2453 rtx next = peephole (insn);
2454 /* When peepholing, if there were notes within the peephole,
2455 emit them before the peephole. */
2456 if (next != 0 && next != NEXT_INSN (insn))
2458 rtx note, prev = PREV_INSN (insn);
2460 for (note = NEXT_INSN (insn); note != next;
2461 note = NEXT_INSN (note))
2462 final_scan_insn (note, file, optimize, nopeepholes, seen);
2464 /* Put the notes in the proper position for a later
2465 rescan. For example, the SH target can do this
2466 when generating a far jump in a delayed branch
2467 sequence. */
2468 note = NEXT_INSN (insn);
2469 PREV_INSN (note) = prev;
2470 NEXT_INSN (prev) = note;
2471 NEXT_INSN (PREV_INSN (next)) = insn;
2472 PREV_INSN (insn) = PREV_INSN (next);
2473 NEXT_INSN (insn) = next;
2474 PREV_INSN (next) = insn;
2477 /* PEEPHOLE might have changed this. */
2478 body = PATTERN (insn);
2480 #endif
2482 /* Try to recognize the instruction.
2483 If successful, verify that the operands satisfy the
2484 constraints for the instruction. Crash if they don't,
2485 since `reload' should have changed them so that they do. */
2487 insn_code_number = recog_memoized (insn);
2488 cleanup_subreg_operands (insn);
2490 /* Dump the insn in the assembly for debugging. */
2491 if (flag_dump_rtl_in_asm)
2493 print_rtx_head = ASM_COMMENT_START;
2494 print_rtl_single (asm_out_file, insn);
2495 print_rtx_head = "";
2498 if (! constrain_operands_cached (1))
2499 fatal_insn_not_found (insn);
2501 /* Some target machines need to prescan each insn before
2502 it is output. */
2504 #ifdef FINAL_PRESCAN_INSN
2505 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2506 #endif
2508 #ifdef HAVE_conditional_execution
2509 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2510 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2511 #endif
2513 #ifdef HAVE_cc0
2514 cc_prev_status = cc_status;
2516 /* Update `cc_status' for this instruction.
2517 The instruction's output routine may change it further.
2518 If the output routine for a jump insn needs to depend
2519 on the cc status, it should look at cc_prev_status. */
2521 NOTICE_UPDATE_CC (body, insn);
2522 #endif
2524 current_output_insn = debug_insn = insn;
2526 #if defined (DWARF2_UNWIND_INFO)
2527 if (CALL_P (insn) && dwarf2out_do_frame ())
2528 dwarf2out_frame_debug (insn, false);
2529 #endif
2531 /* Find the proper template for this insn. */
2532 template = get_insn_template (insn_code_number, insn);
2534 /* If the C code returns 0, it means that it is a jump insn
2535 which follows a deleted test insn, and that test insn
2536 needs to be reinserted. */
2537 if (template == 0)
2539 rtx prev;
2541 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2543 /* We have already processed the notes between the setter and
2544 the user. Make sure we don't process them again, this is
2545 particularly important if one of the notes is a block
2546 scope note or an EH note. */
2547 for (prev = insn;
2548 prev != last_ignored_compare;
2549 prev = PREV_INSN (prev))
2551 if (NOTE_P (prev))
2552 delete_insn (prev); /* Use delete_note. */
2555 return prev;
2558 /* If the template is the string "#", it means that this insn must
2559 be split. */
2560 if (template[0] == '#' && template[1] == '\0')
2562 rtx new = try_split (body, insn, 0);
2564 /* If we didn't split the insn, go away. */
2565 if (new == insn && PATTERN (new) == body)
2566 fatal_insn ("could not split insn", insn);
2568 #ifdef HAVE_ATTR_length
2569 /* This instruction should have been split in shorten_branches,
2570 to ensure that we would have valid length info for the
2571 splitees. */
2572 gcc_unreachable ();
2573 #endif
2575 return new;
2578 #ifdef TARGET_UNWIND_INFO
2579 /* ??? This will put the directives in the wrong place if
2580 get_insn_template outputs assembly directly. However calling it
2581 before get_insn_template breaks if the insns is split. */
2582 targetm.asm_out.unwind_emit (asm_out_file, insn);
2583 #endif
2585 /* Output assembler code from the template. */
2586 output_asm_insn (template, recog_data.operand);
2588 /* If necessary, report the effect that the instruction has on
2589 the unwind info. We've already done this for delay slots
2590 and call instructions. */
2591 #if defined (DWARF2_UNWIND_INFO)
2592 if (final_sequence == 0
2593 #if !defined (HAVE_prologue)
2594 && !ACCUMULATE_OUTGOING_ARGS
2595 #endif
2596 && dwarf2out_do_frame ())
2597 dwarf2out_frame_debug (insn, true);
2598 #endif
2600 current_output_insn = debug_insn = 0;
2603 return NEXT_INSN (insn);
2606 /* Return whether a source line note needs to be emitted before INSN. */
2608 static bool
2609 notice_source_line (rtx insn)
2611 const char *filename = insn_file (insn);
2612 int linenum = insn_line (insn);
2614 if (filename
2615 && (force_source_line
2616 || filename != last_filename
2617 || last_linenum != linenum))
2619 force_source_line = false;
2620 last_filename = filename;
2621 last_linenum = linenum;
2622 high_block_linenum = MAX (last_linenum, high_block_linenum);
2623 high_function_linenum = MAX (last_linenum, high_function_linenum);
2624 return true;
2626 return false;
2629 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2630 directly to the desired hard register. */
2632 void
2633 cleanup_subreg_operands (rtx insn)
2635 int i;
2636 bool changed = false;
2637 extract_insn_cached (insn);
2638 for (i = 0; i < recog_data.n_operands; i++)
2640 /* The following test cannot use recog_data.operand when testing
2641 for a SUBREG: the underlying object might have been changed
2642 already if we are inside a match_operator expression that
2643 matches the else clause. Instead we test the underlying
2644 expression directly. */
2645 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2647 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2648 changed = true;
2650 else if (GET_CODE (recog_data.operand[i]) == PLUS
2651 || GET_CODE (recog_data.operand[i]) == MULT
2652 || MEM_P (recog_data.operand[i]))
2653 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
2656 for (i = 0; i < recog_data.n_dups; i++)
2658 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2660 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2661 changed = true;
2663 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2664 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2665 || MEM_P (*recog_data.dup_loc[i]))
2666 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
2668 if (changed)
2669 df_insn_rescan (insn);
2672 /* If X is a SUBREG, replace it with a REG or a MEM,
2673 based on the thing it is a subreg of. */
2676 alter_subreg (rtx *xp)
2678 rtx x = *xp;
2679 rtx y = SUBREG_REG (x);
2681 /* simplify_subreg does not remove subreg from volatile references.
2682 We are required to. */
2683 if (MEM_P (y))
2685 int offset = SUBREG_BYTE (x);
2687 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2688 contains 0 instead of the proper offset. See simplify_subreg. */
2689 if (offset == 0
2690 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2692 int difference = GET_MODE_SIZE (GET_MODE (y))
2693 - GET_MODE_SIZE (GET_MODE (x));
2694 if (WORDS_BIG_ENDIAN)
2695 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2696 if (BYTES_BIG_ENDIAN)
2697 offset += difference % UNITS_PER_WORD;
2700 *xp = adjust_address (y, GET_MODE (x), offset);
2702 else
2704 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2705 SUBREG_BYTE (x));
2707 if (new != 0)
2708 *xp = new;
2709 else if (REG_P (y))
2711 /* Simplify_subreg can't handle some REG cases, but we have to. */
2712 unsigned int regno = subreg_regno (x);
2713 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2717 return *xp;
2720 /* Do alter_subreg on all the SUBREGs contained in X. */
2722 static rtx
2723 walk_alter_subreg (rtx *xp, bool *changed)
2725 rtx x = *xp;
2726 switch (GET_CODE (x))
2728 case PLUS:
2729 case MULT:
2730 case AND:
2731 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2732 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
2733 break;
2735 case MEM:
2736 case ZERO_EXTEND:
2737 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2738 break;
2740 case SUBREG:
2741 *changed = true;
2742 return alter_subreg (xp);
2744 default:
2745 break;
2748 return *xp;
2751 #ifdef HAVE_cc0
2753 /* Given BODY, the body of a jump instruction, alter the jump condition
2754 as required by the bits that are set in cc_status.flags.
2755 Not all of the bits there can be handled at this level in all cases.
2757 The value is normally 0.
2758 1 means that the condition has become always true.
2759 -1 means that the condition has become always false.
2760 2 means that COND has been altered. */
2762 static int
2763 alter_cond (rtx cond)
2765 int value = 0;
2767 if (cc_status.flags & CC_REVERSED)
2769 value = 2;
2770 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2773 if (cc_status.flags & CC_INVERTED)
2775 value = 2;
2776 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2779 if (cc_status.flags & CC_NOT_POSITIVE)
2780 switch (GET_CODE (cond))
2782 case LE:
2783 case LEU:
2784 case GEU:
2785 /* Jump becomes unconditional. */
2786 return 1;
2788 case GT:
2789 case GTU:
2790 case LTU:
2791 /* Jump becomes no-op. */
2792 return -1;
2794 case GE:
2795 PUT_CODE (cond, EQ);
2796 value = 2;
2797 break;
2799 case LT:
2800 PUT_CODE (cond, NE);
2801 value = 2;
2802 break;
2804 default:
2805 break;
2808 if (cc_status.flags & CC_NOT_NEGATIVE)
2809 switch (GET_CODE (cond))
2811 case GE:
2812 case GEU:
2813 /* Jump becomes unconditional. */
2814 return 1;
2816 case LT:
2817 case LTU:
2818 /* Jump becomes no-op. */
2819 return -1;
2821 case LE:
2822 case LEU:
2823 PUT_CODE (cond, EQ);
2824 value = 2;
2825 break;
2827 case GT:
2828 case GTU:
2829 PUT_CODE (cond, NE);
2830 value = 2;
2831 break;
2833 default:
2834 break;
2837 if (cc_status.flags & CC_NO_OVERFLOW)
2838 switch (GET_CODE (cond))
2840 case GEU:
2841 /* Jump becomes unconditional. */
2842 return 1;
2844 case LEU:
2845 PUT_CODE (cond, EQ);
2846 value = 2;
2847 break;
2849 case GTU:
2850 PUT_CODE (cond, NE);
2851 value = 2;
2852 break;
2854 case LTU:
2855 /* Jump becomes no-op. */
2856 return -1;
2858 default:
2859 break;
2862 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2863 switch (GET_CODE (cond))
2865 default:
2866 gcc_unreachable ();
2868 case NE:
2869 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2870 value = 2;
2871 break;
2873 case EQ:
2874 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2875 value = 2;
2876 break;
2879 if (cc_status.flags & CC_NOT_SIGNED)
2880 /* The flags are valid if signed condition operators are converted
2881 to unsigned. */
2882 switch (GET_CODE (cond))
2884 case LE:
2885 PUT_CODE (cond, LEU);
2886 value = 2;
2887 break;
2889 case LT:
2890 PUT_CODE (cond, LTU);
2891 value = 2;
2892 break;
2894 case GT:
2895 PUT_CODE (cond, GTU);
2896 value = 2;
2897 break;
2899 case GE:
2900 PUT_CODE (cond, GEU);
2901 value = 2;
2902 break;
2904 default:
2905 break;
2908 return value;
2910 #endif
2912 /* Report inconsistency between the assembler template and the operands.
2913 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2915 void
2916 output_operand_lossage (const char *cmsgid, ...)
2918 char *fmt_string;
2919 char *new_message;
2920 const char *pfx_str;
2921 va_list ap;
2923 va_start (ap, cmsgid);
2925 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2926 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2927 vasprintf (&new_message, fmt_string, ap);
2929 if (this_is_asm_operands)
2930 error_for_asm (this_is_asm_operands, "%s", new_message);
2931 else
2932 internal_error ("%s", new_message);
2934 free (fmt_string);
2935 free (new_message);
2936 va_end (ap);
2939 /* Output of assembler code from a template, and its subroutines. */
2941 /* Annotate the assembly with a comment describing the pattern and
2942 alternative used. */
2944 static void
2945 output_asm_name (void)
2947 if (debug_insn)
2949 int num = INSN_CODE (debug_insn);
2950 fprintf (asm_out_file, "\t%s %d\t%s",
2951 ASM_COMMENT_START, INSN_UID (debug_insn),
2952 insn_data[num].name);
2953 if (insn_data[num].n_alternatives > 1)
2954 fprintf (asm_out_file, "/%d", which_alternative + 1);
2955 #ifdef HAVE_ATTR_length
2956 fprintf (asm_out_file, "\t[length = %d]",
2957 get_attr_length (debug_insn));
2958 #endif
2959 /* Clear this so only the first assembler insn
2960 of any rtl insn will get the special comment for -dp. */
2961 debug_insn = 0;
2965 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2966 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2967 corresponds to the address of the object and 0 if to the object. */
2969 static tree
2970 get_mem_expr_from_op (rtx op, int *paddressp)
2972 tree expr;
2973 int inner_addressp;
2975 *paddressp = 0;
2977 if (REG_P (op))
2978 return REG_EXPR (op);
2979 else if (!MEM_P (op))
2980 return 0;
2982 if (MEM_EXPR (op) != 0)
2983 return MEM_EXPR (op);
2985 /* Otherwise we have an address, so indicate it and look at the address. */
2986 *paddressp = 1;
2987 op = XEXP (op, 0);
2989 /* First check if we have a decl for the address, then look at the right side
2990 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2991 But don't allow the address to itself be indirect. */
2992 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2993 return expr;
2994 else if (GET_CODE (op) == PLUS
2995 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2996 return expr;
2998 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2999 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3000 op = XEXP (op, 0);
3002 expr = get_mem_expr_from_op (op, &inner_addressp);
3003 return inner_addressp ? 0 : expr;
3006 /* Output operand names for assembler instructions. OPERANDS is the
3007 operand vector, OPORDER is the order to write the operands, and NOPS
3008 is the number of operands to write. */
3010 static void
3011 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3013 int wrote = 0;
3014 int i;
3016 for (i = 0; i < nops; i++)
3018 int addressp;
3019 rtx op = operands[oporder[i]];
3020 tree expr = get_mem_expr_from_op (op, &addressp);
3022 fprintf (asm_out_file, "%c%s",
3023 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3024 wrote = 1;
3025 if (expr)
3027 fprintf (asm_out_file, "%s",
3028 addressp ? "*" : "");
3029 print_mem_expr (asm_out_file, expr);
3030 wrote = 1;
3032 else if (REG_P (op) && ORIGINAL_REGNO (op)
3033 && ORIGINAL_REGNO (op) != REGNO (op))
3034 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3038 /* Output text from TEMPLATE to the assembler output file,
3039 obeying %-directions to substitute operands taken from
3040 the vector OPERANDS.
3042 %N (for N a digit) means print operand N in usual manner.
3043 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3044 and print the label name with no punctuation.
3045 %cN means require operand N to be a constant
3046 and print the constant expression with no punctuation.
3047 %aN means expect operand N to be a memory address
3048 (not a memory reference!) and print a reference
3049 to that address.
3050 %nN means expect operand N to be a constant
3051 and print a constant expression for minus the value
3052 of the operand, with no other punctuation. */
3054 void
3055 output_asm_insn (const char *template, rtx *operands)
3057 const char *p;
3058 int c;
3059 #ifdef ASSEMBLER_DIALECT
3060 int dialect = 0;
3061 #endif
3062 int oporder[MAX_RECOG_OPERANDS];
3063 char opoutput[MAX_RECOG_OPERANDS];
3064 int ops = 0;
3066 /* An insn may return a null string template
3067 in a case where no assembler code is needed. */
3068 if (*template == 0)
3069 return;
3071 memset (opoutput, 0, sizeof opoutput);
3072 p = template;
3073 putc ('\t', asm_out_file);
3075 #ifdef ASM_OUTPUT_OPCODE
3076 ASM_OUTPUT_OPCODE (asm_out_file, p);
3077 #endif
3079 while ((c = *p++))
3080 switch (c)
3082 case '\n':
3083 if (flag_verbose_asm)
3084 output_asm_operand_names (operands, oporder, ops);
3085 if (flag_print_asm_name)
3086 output_asm_name ();
3088 ops = 0;
3089 memset (opoutput, 0, sizeof opoutput);
3091 putc (c, asm_out_file);
3092 #ifdef ASM_OUTPUT_OPCODE
3093 while ((c = *p) == '\t')
3095 putc (c, asm_out_file);
3096 p++;
3098 ASM_OUTPUT_OPCODE (asm_out_file, p);
3099 #endif
3100 break;
3102 #ifdef ASSEMBLER_DIALECT
3103 case '{':
3105 int i;
3107 if (dialect)
3108 output_operand_lossage ("nested assembly dialect alternatives");
3109 else
3110 dialect = 1;
3112 /* If we want the first dialect, do nothing. Otherwise, skip
3113 DIALECT_NUMBER of strings ending with '|'. */
3114 for (i = 0; i < dialect_number; i++)
3116 while (*p && *p != '}' && *p++ != '|')
3118 if (*p == '}')
3119 break;
3120 if (*p == '|')
3121 p++;
3124 if (*p == '\0')
3125 output_operand_lossage ("unterminated assembly dialect alternative");
3127 break;
3129 case '|':
3130 if (dialect)
3132 /* Skip to close brace. */
3135 if (*p == '\0')
3137 output_operand_lossage ("unterminated assembly dialect alternative");
3138 break;
3141 while (*p++ != '}');
3142 dialect = 0;
3144 else
3145 putc (c, asm_out_file);
3146 break;
3148 case '}':
3149 if (! dialect)
3150 putc (c, asm_out_file);
3151 dialect = 0;
3152 break;
3153 #endif
3155 case '%':
3156 /* %% outputs a single %. */
3157 if (*p == '%')
3159 p++;
3160 putc (c, asm_out_file);
3162 /* %= outputs a number which is unique to each insn in the entire
3163 compilation. This is useful for making local labels that are
3164 referred to more than once in a given insn. */
3165 else if (*p == '=')
3167 p++;
3168 fprintf (asm_out_file, "%d", insn_counter);
3170 /* % followed by a letter and some digits
3171 outputs an operand in a special way depending on the letter.
3172 Letters `acln' are implemented directly.
3173 Other letters are passed to `output_operand' so that
3174 the PRINT_OPERAND macro can define them. */
3175 else if (ISALPHA (*p))
3177 int letter = *p++;
3178 unsigned long opnum;
3179 char *endptr;
3181 opnum = strtoul (p, &endptr, 10);
3183 if (endptr == p)
3184 output_operand_lossage ("operand number missing "
3185 "after %%-letter");
3186 else if (this_is_asm_operands && opnum >= insn_noperands)
3187 output_operand_lossage ("operand number out of range");
3188 else if (letter == 'l')
3189 output_asm_label (operands[opnum]);
3190 else if (letter == 'a')
3191 output_address (operands[opnum]);
3192 else if (letter == 'c')
3194 if (CONSTANT_ADDRESS_P (operands[opnum]))
3195 output_addr_const (asm_out_file, operands[opnum]);
3196 else
3197 output_operand (operands[opnum], 'c');
3199 else if (letter == 'n')
3201 if (GET_CODE (operands[opnum]) == CONST_INT)
3202 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3203 - INTVAL (operands[opnum]));
3204 else
3206 putc ('-', asm_out_file);
3207 output_addr_const (asm_out_file, operands[opnum]);
3210 else
3211 output_operand (operands[opnum], letter);
3213 if (!opoutput[opnum])
3214 oporder[ops++] = opnum;
3215 opoutput[opnum] = 1;
3217 p = endptr;
3218 c = *p;
3220 /* % followed by a digit outputs an operand the default way. */
3221 else if (ISDIGIT (*p))
3223 unsigned long opnum;
3224 char *endptr;
3226 opnum = strtoul (p, &endptr, 10);
3227 if (this_is_asm_operands && opnum >= insn_noperands)
3228 output_operand_lossage ("operand number out of range");
3229 else
3230 output_operand (operands[opnum], 0);
3232 if (!opoutput[opnum])
3233 oporder[ops++] = opnum;
3234 opoutput[opnum] = 1;
3236 p = endptr;
3237 c = *p;
3239 /* % followed by punctuation: output something for that
3240 punctuation character alone, with no operand.
3241 The PRINT_OPERAND macro decides what is actually done. */
3242 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3243 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3244 output_operand (NULL_RTX, *p++);
3245 #endif
3246 else
3247 output_operand_lossage ("invalid %%-code");
3248 break;
3250 default:
3251 putc (c, asm_out_file);
3254 /* Write out the variable names for operands, if we know them. */
3255 if (flag_verbose_asm)
3256 output_asm_operand_names (operands, oporder, ops);
3257 if (flag_print_asm_name)
3258 output_asm_name ();
3260 putc ('\n', asm_out_file);
3263 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3265 void
3266 output_asm_label (rtx x)
3268 char buf[256];
3270 if (GET_CODE (x) == LABEL_REF)
3271 x = XEXP (x, 0);
3272 if (LABEL_P (x)
3273 || (NOTE_P (x)
3274 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3275 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3276 else
3277 output_operand_lossage ("'%%l' operand isn't a label");
3279 assemble_name (asm_out_file, buf);
3282 /* Print operand X using machine-dependent assembler syntax.
3283 The macro PRINT_OPERAND is defined just to control this function.
3284 CODE is a non-digit that preceded the operand-number in the % spec,
3285 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3286 between the % and the digits.
3287 When CODE is a non-letter, X is 0.
3289 The meanings of the letters are machine-dependent and controlled
3290 by PRINT_OPERAND. */
3292 static void
3293 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3295 if (x && GET_CODE (x) == SUBREG)
3296 x = alter_subreg (&x);
3298 /* X must not be a pseudo reg. */
3299 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3301 PRINT_OPERAND (asm_out_file, x, code);
3304 /* Print a memory reference operand for address X
3305 using machine-dependent assembler syntax.
3306 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3308 void
3309 output_address (rtx x)
3311 bool changed = false;
3312 walk_alter_subreg (&x, &changed);
3313 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3316 /* Print an integer constant expression in assembler syntax.
3317 Addition and subtraction are the only arithmetic
3318 that may appear in these expressions. */
3320 void
3321 output_addr_const (FILE *file, rtx x)
3323 char buf[256];
3325 restart:
3326 switch (GET_CODE (x))
3328 case PC:
3329 putc ('.', file);
3330 break;
3332 case SYMBOL_REF:
3333 if (SYMBOL_REF_DECL (x))
3334 mark_decl_referenced (SYMBOL_REF_DECL (x));
3335 #ifdef ASM_OUTPUT_SYMBOL_REF
3336 ASM_OUTPUT_SYMBOL_REF (file, x);
3337 #else
3338 assemble_name (file, XSTR (x, 0));
3339 #endif
3340 break;
3342 case LABEL_REF:
3343 x = XEXP (x, 0);
3344 /* Fall through. */
3345 case CODE_LABEL:
3346 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3347 #ifdef ASM_OUTPUT_LABEL_REF
3348 ASM_OUTPUT_LABEL_REF (file, buf);
3349 #else
3350 assemble_name (file, buf);
3351 #endif
3352 break;
3354 case CONST_INT:
3355 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3356 break;
3358 case CONST:
3359 /* This used to output parentheses around the expression,
3360 but that does not work on the 386 (either ATT or BSD assembler). */
3361 output_addr_const (file, XEXP (x, 0));
3362 break;
3364 case CONST_DOUBLE:
3365 if (GET_MODE (x) == VOIDmode)
3367 /* We can use %d if the number is one word and positive. */
3368 if (CONST_DOUBLE_HIGH (x))
3369 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3370 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3371 else if (CONST_DOUBLE_LOW (x) < 0)
3372 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3373 else
3374 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3376 else
3377 /* We can't handle floating point constants;
3378 PRINT_OPERAND must handle them. */
3379 output_operand_lossage ("floating constant misused");
3380 break;
3382 case CONST_FIXED:
3383 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_FIXED_VALUE_LOW (x));
3384 break;
3386 case PLUS:
3387 /* Some assemblers need integer constants to appear last (eg masm). */
3388 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3390 output_addr_const (file, XEXP (x, 1));
3391 if (INTVAL (XEXP (x, 0)) >= 0)
3392 fprintf (file, "+");
3393 output_addr_const (file, XEXP (x, 0));
3395 else
3397 output_addr_const (file, XEXP (x, 0));
3398 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3399 || INTVAL (XEXP (x, 1)) >= 0)
3400 fprintf (file, "+");
3401 output_addr_const (file, XEXP (x, 1));
3403 break;
3405 case MINUS:
3406 /* Avoid outputting things like x-x or x+5-x,
3407 since some assemblers can't handle that. */
3408 x = simplify_subtraction (x);
3409 if (GET_CODE (x) != MINUS)
3410 goto restart;
3412 output_addr_const (file, XEXP (x, 0));
3413 fprintf (file, "-");
3414 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3415 || GET_CODE (XEXP (x, 1)) == PC
3416 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3417 output_addr_const (file, XEXP (x, 1));
3418 else
3420 fputs (targetm.asm_out.open_paren, file);
3421 output_addr_const (file, XEXP (x, 1));
3422 fputs (targetm.asm_out.close_paren, file);
3424 break;
3426 case ZERO_EXTEND:
3427 case SIGN_EXTEND:
3428 case SUBREG:
3429 output_addr_const (file, XEXP (x, 0));
3430 break;
3432 default:
3433 #ifdef OUTPUT_ADDR_CONST_EXTRA
3434 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3435 break;
3437 fail:
3438 #endif
3439 output_operand_lossage ("invalid expression as operand");
3443 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3444 %R prints the value of REGISTER_PREFIX.
3445 %L prints the value of LOCAL_LABEL_PREFIX.
3446 %U prints the value of USER_LABEL_PREFIX.
3447 %I prints the value of IMMEDIATE_PREFIX.
3448 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3449 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3451 We handle alternate assembler dialects here, just like output_asm_insn. */
3453 void
3454 asm_fprintf (FILE *file, const char *p, ...)
3456 char buf[10];
3457 char *q, c;
3458 va_list argptr;
3460 va_start (argptr, p);
3462 buf[0] = '%';
3464 while ((c = *p++))
3465 switch (c)
3467 #ifdef ASSEMBLER_DIALECT
3468 case '{':
3470 int i;
3472 /* If we want the first dialect, do nothing. Otherwise, skip
3473 DIALECT_NUMBER of strings ending with '|'. */
3474 for (i = 0; i < dialect_number; i++)
3476 while (*p && *p++ != '|')
3479 if (*p == '|')
3480 p++;
3483 break;
3485 case '|':
3486 /* Skip to close brace. */
3487 while (*p && *p++ != '}')
3489 break;
3491 case '}':
3492 break;
3493 #endif
3495 case '%':
3496 c = *p++;
3497 q = &buf[1];
3498 while (strchr ("-+ #0", c))
3500 *q++ = c;
3501 c = *p++;
3503 while (ISDIGIT (c) || c == '.')
3505 *q++ = c;
3506 c = *p++;
3508 switch (c)
3510 case '%':
3511 putc ('%', file);
3512 break;
3514 case 'd': case 'i': case 'u':
3515 case 'x': case 'X': case 'o':
3516 case 'c':
3517 *q++ = c;
3518 *q = 0;
3519 fprintf (file, buf, va_arg (argptr, int));
3520 break;
3522 case 'w':
3523 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3524 'o' cases, but we do not check for those cases. It
3525 means that the value is a HOST_WIDE_INT, which may be
3526 either `long' or `long long'. */
3527 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3528 q += strlen (HOST_WIDE_INT_PRINT);
3529 *q++ = *p++;
3530 *q = 0;
3531 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3532 break;
3534 case 'l':
3535 *q++ = c;
3536 #ifdef HAVE_LONG_LONG
3537 if (*p == 'l')
3539 *q++ = *p++;
3540 *q++ = *p++;
3541 *q = 0;
3542 fprintf (file, buf, va_arg (argptr, long long));
3544 else
3545 #endif
3547 *q++ = *p++;
3548 *q = 0;
3549 fprintf (file, buf, va_arg (argptr, long));
3552 break;
3554 case 's':
3555 *q++ = c;
3556 *q = 0;
3557 fprintf (file, buf, va_arg (argptr, char *));
3558 break;
3560 case 'O':
3561 #ifdef ASM_OUTPUT_OPCODE
3562 ASM_OUTPUT_OPCODE (asm_out_file, p);
3563 #endif
3564 break;
3566 case 'R':
3567 #ifdef REGISTER_PREFIX
3568 fprintf (file, "%s", REGISTER_PREFIX);
3569 #endif
3570 break;
3572 case 'I':
3573 #ifdef IMMEDIATE_PREFIX
3574 fprintf (file, "%s", IMMEDIATE_PREFIX);
3575 #endif
3576 break;
3578 case 'L':
3579 #ifdef LOCAL_LABEL_PREFIX
3580 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3581 #endif
3582 break;
3584 case 'U':
3585 fputs (user_label_prefix, file);
3586 break;
3588 #ifdef ASM_FPRINTF_EXTENSIONS
3589 /* Uppercase letters are reserved for general use by asm_fprintf
3590 and so are not available to target specific code. In order to
3591 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3592 they are defined here. As they get turned into real extensions
3593 to asm_fprintf they should be removed from this list. */
3594 case 'A': case 'B': case 'C': case 'D': case 'E':
3595 case 'F': case 'G': case 'H': case 'J': case 'K':
3596 case 'M': case 'N': case 'P': case 'Q': case 'S':
3597 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3598 break;
3600 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3601 #endif
3602 default:
3603 gcc_unreachable ();
3605 break;
3607 default:
3608 putc (c, file);
3610 va_end (argptr);
3613 /* Split up a CONST_DOUBLE or integer constant rtx
3614 into two rtx's for single words,
3615 storing in *FIRST the word that comes first in memory in the target
3616 and in *SECOND the other. */
3618 void
3619 split_double (rtx value, rtx *first, rtx *second)
3621 if (GET_CODE (value) == CONST_INT)
3623 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3625 /* In this case the CONST_INT holds both target words.
3626 Extract the bits from it into two word-sized pieces.
3627 Sign extend each half to HOST_WIDE_INT. */
3628 unsigned HOST_WIDE_INT low, high;
3629 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3631 /* Set sign_bit to the most significant bit of a word. */
3632 sign_bit = 1;
3633 sign_bit <<= BITS_PER_WORD - 1;
3635 /* Set mask so that all bits of the word are set. We could
3636 have used 1 << BITS_PER_WORD instead of basing the
3637 calculation on sign_bit. However, on machines where
3638 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3639 compiler warning, even though the code would never be
3640 executed. */
3641 mask = sign_bit << 1;
3642 mask--;
3644 /* Set sign_extend as any remaining bits. */
3645 sign_extend = ~mask;
3647 /* Pick the lower word and sign-extend it. */
3648 low = INTVAL (value);
3649 low &= mask;
3650 if (low & sign_bit)
3651 low |= sign_extend;
3653 /* Pick the higher word, shifted to the least significant
3654 bits, and sign-extend it. */
3655 high = INTVAL (value);
3656 high >>= BITS_PER_WORD - 1;
3657 high >>= 1;
3658 high &= mask;
3659 if (high & sign_bit)
3660 high |= sign_extend;
3662 /* Store the words in the target machine order. */
3663 if (WORDS_BIG_ENDIAN)
3665 *first = GEN_INT (high);
3666 *second = GEN_INT (low);
3668 else
3670 *first = GEN_INT (low);
3671 *second = GEN_INT (high);
3674 else
3676 /* The rule for using CONST_INT for a wider mode
3677 is that we regard the value as signed.
3678 So sign-extend it. */
3679 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3680 if (WORDS_BIG_ENDIAN)
3682 *first = high;
3683 *second = value;
3685 else
3687 *first = value;
3688 *second = high;
3692 else if (GET_CODE (value) != CONST_DOUBLE)
3694 if (WORDS_BIG_ENDIAN)
3696 *first = const0_rtx;
3697 *second = value;
3699 else
3701 *first = value;
3702 *second = const0_rtx;
3705 else if (GET_MODE (value) == VOIDmode
3706 /* This is the old way we did CONST_DOUBLE integers. */
3707 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3709 /* In an integer, the words are defined as most and least significant.
3710 So order them by the target's convention. */
3711 if (WORDS_BIG_ENDIAN)
3713 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3714 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3716 else
3718 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3719 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3722 else
3724 REAL_VALUE_TYPE r;
3725 long l[2];
3726 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3728 /* Note, this converts the REAL_VALUE_TYPE to the target's
3729 format, splits up the floating point double and outputs
3730 exactly 32 bits of it into each of l[0] and l[1] --
3731 not necessarily BITS_PER_WORD bits. */
3732 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3734 /* If 32 bits is an entire word for the target, but not for the host,
3735 then sign-extend on the host so that the number will look the same
3736 way on the host that it would on the target. See for instance
3737 simplify_unary_operation. The #if is needed to avoid compiler
3738 warnings. */
3740 #if HOST_BITS_PER_LONG > 32
3741 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3743 if (l[0] & ((long) 1 << 31))
3744 l[0] |= ((long) (-1) << 32);
3745 if (l[1] & ((long) 1 << 31))
3746 l[1] |= ((long) (-1) << 32);
3748 #endif
3750 *first = GEN_INT (l[0]);
3751 *second = GEN_INT (l[1]);
3755 /* Return nonzero if this function has no function calls. */
3758 leaf_function_p (void)
3760 rtx insn;
3761 rtx link;
3763 if (current_function_profile || profile_arc_flag)
3764 return 0;
3766 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3768 if (CALL_P (insn)
3769 && ! SIBLING_CALL_P (insn))
3770 return 0;
3771 if (NONJUMP_INSN_P (insn)
3772 && GET_CODE (PATTERN (insn)) == SEQUENCE
3773 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3774 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3775 return 0;
3777 for (link = current_function_epilogue_delay_list;
3778 link;
3779 link = XEXP (link, 1))
3781 insn = XEXP (link, 0);
3783 if (CALL_P (insn)
3784 && ! SIBLING_CALL_P (insn))
3785 return 0;
3786 if (NONJUMP_INSN_P (insn)
3787 && GET_CODE (PATTERN (insn)) == SEQUENCE
3788 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3789 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3790 return 0;
3793 return 1;
3796 /* Return 1 if branch is a forward branch.
3797 Uses insn_shuid array, so it works only in the final pass. May be used by
3798 output templates to customary add branch prediction hints.
3801 final_forward_branch_p (rtx insn)
3803 int insn_id, label_id;
3805 gcc_assert (uid_shuid);
3806 insn_id = INSN_SHUID (insn);
3807 label_id = INSN_SHUID (JUMP_LABEL (insn));
3808 /* We've hit some insns that does not have id information available. */
3809 gcc_assert (insn_id && label_id);
3810 return insn_id < label_id;
3813 /* On some machines, a function with no call insns
3814 can run faster if it doesn't create its own register window.
3815 When output, the leaf function should use only the "output"
3816 registers. Ordinarily, the function would be compiled to use
3817 the "input" registers to find its arguments; it is a candidate
3818 for leaf treatment if it uses only the "input" registers.
3819 Leaf function treatment means renumbering so the function
3820 uses the "output" registers instead. */
3822 #ifdef LEAF_REGISTERS
3824 /* Return 1 if this function uses only the registers that can be
3825 safely renumbered. */
3828 only_leaf_regs_used (void)
3830 int i;
3831 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3833 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3834 if ((df_regs_ever_live_p (i) || global_regs[i])
3835 && ! permitted_reg_in_leaf_functions[i])
3836 return 0;
3838 if (current_function_uses_pic_offset_table
3839 && pic_offset_table_rtx != 0
3840 && REG_P (pic_offset_table_rtx)
3841 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3842 return 0;
3844 return 1;
3847 /* Scan all instructions and renumber all registers into those
3848 available in leaf functions. */
3850 static void
3851 leaf_renumber_regs (rtx first)
3853 rtx insn;
3855 /* Renumber only the actual patterns.
3856 The reg-notes can contain frame pointer refs,
3857 and renumbering them could crash, and should not be needed. */
3858 for (insn = first; insn; insn = NEXT_INSN (insn))
3859 if (INSN_P (insn))
3860 leaf_renumber_regs_insn (PATTERN (insn));
3861 for (insn = current_function_epilogue_delay_list;
3862 insn;
3863 insn = XEXP (insn, 1))
3864 if (INSN_P (XEXP (insn, 0)))
3865 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3868 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3869 available in leaf functions. */
3871 void
3872 leaf_renumber_regs_insn (rtx in_rtx)
3874 int i, j;
3875 const char *format_ptr;
3877 if (in_rtx == 0)
3878 return;
3880 /* Renumber all input-registers into output-registers.
3881 renumbered_regs would be 1 for an output-register;
3882 they */
3884 if (REG_P (in_rtx))
3886 int newreg;
3888 /* Don't renumber the same reg twice. */
3889 if (in_rtx->used)
3890 return;
3892 newreg = REGNO (in_rtx);
3893 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3894 to reach here as part of a REG_NOTE. */
3895 if (newreg >= FIRST_PSEUDO_REGISTER)
3897 in_rtx->used = 1;
3898 return;
3900 newreg = LEAF_REG_REMAP (newreg);
3901 gcc_assert (newreg >= 0);
3902 df_set_regs_ever_live (REGNO (in_rtx), false);
3903 df_set_regs_ever_live (newreg, true);
3904 SET_REGNO (in_rtx, newreg);
3905 in_rtx->used = 1;
3908 if (INSN_P (in_rtx))
3910 /* Inside a SEQUENCE, we find insns.
3911 Renumber just the patterns of these insns,
3912 just as we do for the top-level insns. */
3913 leaf_renumber_regs_insn (PATTERN (in_rtx));
3914 return;
3917 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3919 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3920 switch (*format_ptr++)
3922 case 'e':
3923 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3924 break;
3926 case 'E':
3927 if (NULL != XVEC (in_rtx, i))
3929 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3930 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3932 break;
3934 case 'S':
3935 case 's':
3936 case '0':
3937 case 'i':
3938 case 'w':
3939 case 'n':
3940 case 'u':
3941 break;
3943 default:
3944 gcc_unreachable ();
3947 #endif
3950 /* When -gused is used, emit debug info for only used symbols. But in
3951 addition to the standard intercepted debug_hooks there are some direct
3952 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3953 Those routines may also be called from a higher level intercepted routine. So
3954 to prevent recording data for an inner call to one of these for an intercept,
3955 we maintain an intercept nesting counter (debug_nesting). We only save the
3956 intercepted arguments if the nesting is 1. */
3957 int debug_nesting = 0;
3959 static tree *symbol_queue;
3960 int symbol_queue_index = 0;
3961 static int symbol_queue_size = 0;
3963 /* Generate the symbols for any queued up type symbols we encountered
3964 while generating the type info for some originally used symbol.
3965 This might generate additional entries in the queue. Only when
3966 the nesting depth goes to 0 is this routine called. */
3968 void
3969 debug_flush_symbol_queue (void)
3971 int i;
3973 /* Make sure that additionally queued items are not flushed
3974 prematurely. */
3976 ++debug_nesting;
3978 for (i = 0; i < symbol_queue_index; ++i)
3980 /* If we pushed queued symbols then such symbols must be
3981 output no matter what anyone else says. Specifically,
3982 we need to make sure dbxout_symbol() thinks the symbol was
3983 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3984 which may be set for outside reasons. */
3985 int saved_tree_used = TREE_USED (symbol_queue[i]);
3986 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3987 TREE_USED (symbol_queue[i]) = 1;
3988 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3990 #ifdef DBX_DEBUGGING_INFO
3991 dbxout_symbol (symbol_queue[i], 0);
3992 #endif
3994 TREE_USED (symbol_queue[i]) = saved_tree_used;
3995 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3998 symbol_queue_index = 0;
3999 --debug_nesting;
4002 /* Queue a type symbol needed as part of the definition of a decl
4003 symbol. These symbols are generated when debug_flush_symbol_queue()
4004 is called. */
4006 void
4007 debug_queue_symbol (tree decl)
4009 if (symbol_queue_index >= symbol_queue_size)
4011 symbol_queue_size += 10;
4012 symbol_queue = xrealloc (symbol_queue,
4013 symbol_queue_size * sizeof (tree));
4016 symbol_queue[symbol_queue_index++] = decl;
4019 /* Free symbol queue. */
4020 void
4021 debug_free_queue (void)
4023 if (symbol_queue)
4025 free (symbol_queue);
4026 symbol_queue = NULL;
4027 symbol_queue_size = 0;
4031 /* Turn the RTL into assembly. */
4032 static unsigned int
4033 rest_of_handle_final (void)
4035 rtx x;
4036 const char *fnname;
4038 /* Get the function's name, as described by its RTL. This may be
4039 different from the DECL_NAME name used in the source file. */
4041 x = DECL_RTL (current_function_decl);
4042 gcc_assert (MEM_P (x));
4043 x = XEXP (x, 0);
4044 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4045 fnname = XSTR (x, 0);
4047 assemble_start_function (current_function_decl, fnname);
4048 final_start_function (get_insns (), asm_out_file, optimize);
4049 final (get_insns (), asm_out_file, optimize);
4050 final_end_function ();
4052 #ifdef TARGET_UNWIND_INFO
4053 /* ??? The IA-64 ".handlerdata" directive must be issued before
4054 the ".endp" directive that closes the procedure descriptor. */
4055 output_function_exception_table (fnname);
4056 #endif
4058 assemble_end_function (current_function_decl, fnname);
4060 #ifndef TARGET_UNWIND_INFO
4061 /* Otherwise, it feels unclean to switch sections in the middle. */
4062 output_function_exception_table (fnname);
4063 #endif
4065 user_defined_section_attribute = false;
4067 /* Free up reg info memory. */
4068 free_reg_info ();
4070 if (! quiet_flag)
4071 fflush (asm_out_file);
4073 /* Write DBX symbols if requested. */
4075 /* Note that for those inline functions where we don't initially
4076 know for certain that we will be generating an out-of-line copy,
4077 the first invocation of this routine (rest_of_compilation) will
4078 skip over this code by doing a `goto exit_rest_of_compilation;'.
4079 Later on, wrapup_global_declarations will (indirectly) call
4080 rest_of_compilation again for those inline functions that need
4081 to have out-of-line copies generated. During that call, we
4082 *will* be routed past here. */
4084 timevar_push (TV_SYMOUT);
4085 (*debug_hooks->function_decl) (current_function_decl);
4086 timevar_pop (TV_SYMOUT);
4087 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4088 && targetm.have_ctors_dtors)
4089 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4090 decl_init_priority_lookup
4091 (current_function_decl));
4092 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4093 && targetm.have_ctors_dtors)
4094 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4095 decl_fini_priority_lookup
4096 (current_function_decl));
4097 return 0;
4100 struct tree_opt_pass pass_final =
4102 NULL, /* name */
4103 NULL, /* gate */
4104 rest_of_handle_final, /* execute */
4105 NULL, /* sub */
4106 NULL, /* next */
4107 0, /* static_pass_number */
4108 TV_FINAL, /* tv_id */
4109 0, /* properties_required */
4110 0, /* properties_provided */
4111 0, /* properties_destroyed */
4112 0, /* todo_flags_start */
4113 TODO_ggc_collect, /* todo_flags_finish */
4114 0 /* letter */
4118 static unsigned int
4119 rest_of_handle_shorten_branches (void)
4121 /* Shorten branches. */
4122 shorten_branches (get_insns ());
4123 return 0;
4126 struct tree_opt_pass pass_shorten_branches =
4128 "shorten", /* name */
4129 NULL, /* gate */
4130 rest_of_handle_shorten_branches, /* execute */
4131 NULL, /* sub */
4132 NULL, /* next */
4133 0, /* static_pass_number */
4134 TV_FINAL, /* tv_id */
4135 0, /* properties_required */
4136 0, /* properties_provided */
4137 0, /* properties_destroyed */
4138 0, /* todo_flags_start */
4139 TODO_dump_func, /* todo_flags_finish */
4140 0 /* letter */
4144 static unsigned int
4145 rest_of_clean_state (void)
4147 rtx insn, next;
4149 /* It is very important to decompose the RTL instruction chain here:
4150 debug information keeps pointing into CODE_LABEL insns inside the function
4151 body. If these remain pointing to the other insns, we end up preserving
4152 whole RTL chain and attached detailed debug info in memory. */
4153 for (insn = get_insns (); insn; insn = next)
4155 next = NEXT_INSN (insn);
4156 NEXT_INSN (insn) = NULL;
4157 PREV_INSN (insn) = NULL;
4160 /* In case the function was not output,
4161 don't leave any temporary anonymous types
4162 queued up for sdb output. */
4163 #ifdef SDB_DEBUGGING_INFO
4164 if (write_symbols == SDB_DEBUG)
4165 sdbout_types (NULL_TREE);
4166 #endif
4168 reload_completed = 0;
4169 epilogue_completed = 0;
4170 #ifdef STACK_REGS
4171 regstack_completed = 0;
4172 #endif
4174 /* Clear out the insn_length contents now that they are no
4175 longer valid. */
4176 init_insn_lengths ();
4178 /* Show no temporary slots allocated. */
4179 init_temp_slots ();
4181 free_bb_for_insn ();
4183 if (targetm.binds_local_p (current_function_decl))
4185 int pref = cfun->preferred_stack_boundary;
4186 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4187 pref = cfun->stack_alignment_needed;
4188 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4189 = pref;
4192 /* Make sure volatile mem refs aren't considered valid operands for
4193 arithmetic insns. We must call this here if this is a nested inline
4194 function, since the above code leaves us in the init_recog state,
4195 and the function context push/pop code does not save/restore volatile_ok.
4197 ??? Maybe it isn't necessary for expand_start_function to call this
4198 anymore if we do it here? */
4200 init_recog_no_volatile ();
4202 /* We're done with this function. Free up memory if we can. */
4203 free_after_parsing (cfun);
4204 free_after_compilation (cfun);
4205 return 0;
4208 struct tree_opt_pass pass_clean_state =
4210 NULL, /* name */
4211 NULL, /* gate */
4212 rest_of_clean_state, /* execute */
4213 NULL, /* sub */
4214 NULL, /* next */
4215 0, /* static_pass_number */
4216 TV_FINAL, /* tv_id */
4217 0, /* properties_required */
4218 0, /* properties_provided */
4219 PROP_rtl, /* properties_destroyed */
4220 0, /* todo_flags_start */
4221 0, /* todo_flags_finish */
4222 0 /* letter */