Fix typos in comments.
[official-gcc.git] / gcc / config / vax / vax.h
blob9901ba4536c3aae886a5f0a9ffdd1264d943a3e5
1 /* Definitions of target machine for GNU compiler. Vax version.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Names to predefine in the preprocessor for this target machine. */
25 #define CPP_PREDEFINES "-Dvax -D__vax__ -Dunix -Asystem(unix) -Asystem(bsd) -Acpu(vax) -Amachine(vax)"
27 /* If using g-format floating point, alter math.h. */
29 #define CPP_SPEC "%{mg:%{!ansi:-DGFLOAT} -D__GFLOAT}"
31 /* Choose proper libraries depending on float format.
32 Note that there are no profiling libraries for g-format.
33 Also use -lg for the sake of dbx. */
35 #define LIB_SPEC "%{g:-lg}\
36 %{mg:%{lm:-lmg} -lcg \
37 %{p:%eprofiling not supported with -mg\n}\
38 %{pg:%eprofiling not supported with -mg\n}}\
39 %{!mg:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
41 /* Print subsidiary information on the compiler version in use. */
43 #ifndef TARGET_NAME /* A more specific value might be supplied via -D. */
44 #define TARGET_NAME "vax"
45 #endif
46 #define TARGET_VERSION fprintf (stderr, " (%s)", TARGET_NAME)
48 /* Run-time compilation parameters selecting different hardware subsets. */
50 extern int target_flags;
52 /* Macros used in the machine description to test the flags. */
54 /* Nonzero if compiling code that Unix assembler can assemble. */
55 #define TARGET_UNIX_ASM (target_flags & 1)
57 /* Nonzero if compiling with VAX-11 "C" style structure alignment */
58 #define TARGET_VAXC_ALIGNMENT (target_flags & 2)
60 /* Nonzero if compiling with `G'-format floating point */
61 #define TARGET_G_FLOAT (target_flags & 4)
63 /* Macro to define tables used to set the flags.
64 This is a list in braces of pairs in braces,
65 each pair being { "NAME", VALUE }
66 where VALUE is the bits to set or minus the bits to clear.
67 An empty string NAME is used to identify the default VALUE. */
69 #define TARGET_SWITCHES \
70 { {"unix", 1, "Generate code for UNIX assembler"}, \
71 {"gnu", -1, "Generate code for GNU assembler (gas)"}, \
72 {"vaxc-alignment", 2, "Use VAXC structure conventions"}, \
73 {"g", 4, "Generate GFLOAT double precision code"}, \
74 {"g-float", 4, "Generate GFLOAT double precision code"}, \
75 {"d", -4, "Generate DFLOAT double precision code"}, \
76 {"d-float", -4, "Generate DFLOAT double precision code"}, \
77 { "", TARGET_DEFAULT, 0}}
79 /* Default target_flags if no switches specified. */
81 #ifndef TARGET_DEFAULT
82 #define TARGET_DEFAULT 1
83 #endif
85 /* Target machine storage layout */
87 /* Define for software floating point emulation of VAX format
88 when cross compiling from a non-VAX host. */
89 /* #define REAL_ARITHMETIC */
91 /* Define this if most significant bit is lowest numbered
92 in instructions that operate on numbered bit-fields.
93 This is not true on the vax. */
94 #define BITS_BIG_ENDIAN 0
96 /* Define this if most significant byte of a word is the lowest numbered. */
97 /* That is not true on the vax. */
98 #define BYTES_BIG_ENDIAN 0
100 /* Define this if most significant word of a multiword number is the lowest
101 numbered. */
102 /* This is not true on the vax. */
103 #define WORDS_BIG_ENDIAN 0
105 /* Number of bits in an addressable storage unit */
106 #define BITS_PER_UNIT 8
108 /* Width in bits of a "word", which is the contents of a machine register.
109 Note that this is not necessarily the width of data type `int';
110 if using 16-bit ints on a 68000, this would still be 32.
111 But on a machine with 16-bit registers, this would be 16. */
112 #define BITS_PER_WORD 32
114 /* Width of a word, in units (bytes). */
115 #define UNITS_PER_WORD 4
117 /* Width in bits of a pointer.
118 See also the macro `Pmode' defined below. */
119 #define POINTER_SIZE 32
121 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
122 #define PARM_BOUNDARY 32
124 /* Allocation boundary (in *bits*) for the code of a function. */
125 #define FUNCTION_BOUNDARY 16
127 /* Alignment of field after `int : 0' in a structure. */
128 #define EMPTY_FIELD_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
130 /* Every structure's size must be a multiple of this. */
131 #define STRUCTURE_SIZE_BOUNDARY 8
133 /* A bitfield declared as `int' forces `int' alignment for the struct. */
134 #define PCC_BITFIELD_TYPE_MATTERS (! TARGET_VAXC_ALIGNMENT)
136 /* No data type wants to be aligned rounder than this. */
137 #define BIGGEST_ALIGNMENT 32
139 /* No structure field wants to be aligned rounder than this. */
140 #define BIGGEST_FIELD_ALIGNMENT (TARGET_VAXC_ALIGNMENT ? 8 : 32)
142 /* Set this nonzero if move instructions will actually fail to work
143 when given unaligned data. */
144 #define STRICT_ALIGNMENT 0
146 /* Let's keep the stack somewhat aligned. */
147 #define STACK_BOUNDARY 32
149 /* The table of an ADDR_DIFF_VEC must be contiguous with the case
150 opcode, it is part of the case instruction. */
151 #define ADDR_VEC_ALIGN(ADDR_VEC) 0
153 /* Standard register usage. */
155 /* Number of actual hardware registers.
156 The hardware registers are assigned numbers for the compiler
157 from 0 to just below FIRST_PSEUDO_REGISTER.
158 All registers that the compiler knows about must be given numbers,
159 even those that are not normally considered general registers. */
160 #define FIRST_PSEUDO_REGISTER 16
162 /* 1 for registers that have pervasive standard uses
163 and are not available for the register allocator.
164 On the vax, these are the AP, FP, SP and PC. */
165 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
167 /* 1 for registers not available across function calls.
168 These must include the FIXED_REGISTERS and also any
169 registers that can be used without being saved.
170 The latter must include the registers where values are returned
171 and the register where structure-value addresses are passed.
172 Aside from that, you can include as many other registers as you like. */
173 #define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
175 /* Return number of consecutive hard regs needed starting at reg REGNO
176 to hold something of mode MODE.
177 This is ordinarily the length in words of a value of mode MODE
178 but can be less for certain modes in special long registers.
179 On the vax, all registers are one word long. */
180 #define HARD_REGNO_NREGS(REGNO, MODE) \
181 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
183 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
184 On the vax, all registers can hold all modes. */
185 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
187 /* Value is 1 if it is a good idea to tie two pseudo registers
188 when one has mode MODE1 and one has mode MODE2.
189 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
190 for any hard reg, then this must be 0 for correct output. */
191 #define MODES_TIEABLE_P(MODE1, MODE2) 1
193 /* Specify the registers used for certain standard purposes.
194 The values of these macros are register numbers. */
196 /* Vax pc is overloaded on a register. */
197 #define PC_REGNUM 15
199 /* Register to use for pushing function arguments. */
200 #define STACK_POINTER_REGNUM 14
202 /* Base register for access to local variables of the function. */
203 #define FRAME_POINTER_REGNUM 13
205 /* Value should be nonzero if functions must have frame pointers.
206 Zero means the frame pointer need not be set up (and parms
207 may be accessed via the stack pointer) in functions that seem suitable.
208 This is computed in `reload', in reload1.c. */
209 #define FRAME_POINTER_REQUIRED 1
211 /* Base register for access to arguments of the function. */
212 #define ARG_POINTER_REGNUM 12
214 /* Register in which static-chain is passed to a function. */
215 #define STATIC_CHAIN_REGNUM 0
217 /* Register in which address to store a structure value
218 is passed to a function. */
219 #define STRUCT_VALUE_REGNUM 1
221 /* Define the classes of registers for register constraints in the
222 machine description. Also define ranges of constants.
224 One of the classes must always be named ALL_REGS and include all hard regs.
225 If there is more than one class, another class must be named NO_REGS
226 and contain no registers.
228 The name GENERAL_REGS must be the name of a class (or an alias for
229 another name such as ALL_REGS). This is the class of registers
230 that is allowed by "g" or "r" in a register constraint.
231 Also, registers outside this class are allocated only when
232 instructions express preferences for them.
234 The classes must be numbered in nondecreasing order; that is,
235 a larger-numbered class must never be contained completely
236 in a smaller-numbered class.
238 For any two classes, it is very desirable that there be another
239 class that represents their union. */
241 /* The vax has only one kind of registers, so NO_REGS and ALL_REGS
242 are the only classes. */
244 enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
246 #define N_REG_CLASSES (int) LIM_REG_CLASSES
248 /* Since GENERAL_REGS is the same class as ALL_REGS,
249 don't give it a different class number; just make it an alias. */
251 #define GENERAL_REGS ALL_REGS
253 /* Give names of register classes as strings for dump file. */
255 #define REG_CLASS_NAMES \
256 {"NO_REGS", "ALL_REGS" }
258 /* Define which registers fit in which classes.
259 This is an initializer for a vector of HARD_REG_SET
260 of length N_REG_CLASSES. */
262 #define REG_CLASS_CONTENTS {{0}, {0xffff}}
264 /* The same information, inverted:
265 Return the class number of the smallest class containing
266 reg number REGNO. This could be a conditional expression
267 or could index an array. */
269 #define REGNO_REG_CLASS(REGNO) ALL_REGS
271 /* The class value for index registers, and the one for base regs. */
273 #define INDEX_REG_CLASS ALL_REGS
274 #define BASE_REG_CLASS ALL_REGS
276 /* Get reg_class from a letter such as appears in the machine description. */
278 #define REG_CLASS_FROM_LETTER(C) NO_REGS
280 /* The letters I, J, K, L and M in a register constraint string
281 can be used to stand for particular ranges of immediate operands.
282 This macro defines what the ranges are.
283 C is the letter, and VALUE is a constant value.
284 Return 1 if VALUE is in the range specified by C.
286 `I' is the constant zero. */
288 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
289 ((C) == 'I' ? (VALUE) == 0 \
290 : 0)
292 /* Similar, but for floating constants, and defining letters G and H.
293 Here VALUE is the CONST_DOUBLE rtx itself.
295 `G' is a floating-point zero. */
297 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
298 ((C) == 'G' ? ((VALUE) == CONST0_RTX (DFmode) \
299 || (VALUE) == CONST0_RTX (SFmode)) \
300 : 0)
302 /* Optional extra constraints for this machine.
304 For the VAX, `Q' means that OP is a MEM that does not have a mode-dependent
305 address. */
307 #define EXTRA_CONSTRAINT(OP, C) \
308 ((C) == 'Q' \
309 ? GET_CODE (OP) == MEM && ! mode_dependent_address_p (XEXP (OP, 0)) \
310 : 0)
312 /* Given an rtx X being reloaded into a reg required to be
313 in class CLASS, return the class of reg to actually use.
314 In general this is just CLASS; but on some machines
315 in some cases it is preferable to use a more restrictive class. */
317 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
319 /* Return the maximum number of consecutive registers
320 needed to represent mode MODE in a register of class CLASS. */
321 /* On the vax, this is always the size of MODE in words,
322 since all registers are the same size. */
323 #define CLASS_MAX_NREGS(CLASS, MODE) \
324 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
326 /* Stack layout; function entry, exit and calling. */
328 /* Define this if pushing a word on the stack
329 makes the stack pointer a smaller address. */
330 #define STACK_GROWS_DOWNWARD
332 /* Define this if longjmp restores from saved registers
333 rather than from what setjmp saved. */
334 #define LONGJMP_RESTORE_FROM_STACK
336 /* Define this if the nominal address of the stack frame
337 is at the high-address end of the local variables;
338 that is, each additional local variable allocated
339 goes at a more negative offset in the frame. */
340 #define FRAME_GROWS_DOWNWARD
342 /* Offset within stack frame to start allocating local variables at.
343 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
344 first local allocated. Otherwise, it is the offset to the BEGINNING
345 of the first local allocated. */
346 #define STARTING_FRAME_OFFSET 0
348 /* Given an rtx for the address of a frame,
349 return an rtx for the address of the word in the frame
350 that holds the dynamic chain--the previous frame's address. */
351 #define DYNAMIC_CHAIN_ADDRESS(FRAME) plus_constant ((FRAME), 12)
353 /* If we generate an insn to push BYTES bytes,
354 this says how many the stack pointer really advances by.
355 On the vax, -(sp) pushes only the bytes of the operands. */
356 #define PUSH_ROUNDING(BYTES) (BYTES)
358 /* Offset of first parameter from the argument pointer register value. */
359 #define FIRST_PARM_OFFSET(FNDECL) 4
361 /* Value is the number of bytes of arguments automatically
362 popped when returning from a subroutine call.
363 FUNDECL is the declaration node of the function (as a tree),
364 FUNTYPE is the data type of the function (as a tree),
365 or for a library call it is an identifier node for the subroutine name.
366 SIZE is the number of bytes of arguments passed on the stack.
368 On the Vax, the RET insn always pops all the args for any function. */
370 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
372 /* Define how to find the value returned by a function.
373 VALTYPE is the data type of the value (as a tree).
374 If the precise function being called is known, FUNC is its FUNCTION_DECL;
375 otherwise, FUNC is 0. */
377 /* On the Vax the return value is in R0 regardless. */
379 #define FUNCTION_VALUE(VALTYPE, FUNC) \
380 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
382 /* Define how to find the value returned by a library function
383 assuming the value has mode MODE. */
385 /* On the Vax the return value is in R0 regardless. */
387 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
389 /* Define this if PCC uses the nonreentrant convention for returning
390 structure and union values. */
392 #define PCC_STATIC_STRUCT_RETURN
394 /* 1 if N is a possible register number for a function value.
395 On the Vax, R0 is the only register thus used. */
397 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
399 /* 1 if N is a possible register number for function argument passing.
400 On the Vax, no registers are used in this way. */
402 #define FUNCTION_ARG_REGNO_P(N) 0
404 /* Define a data type for recording info about an argument list
405 during the scan of that argument list. This data type should
406 hold all necessary information about the function itself
407 and about the args processed so far, enough to enable macros
408 such as FUNCTION_ARG to determine where the next arg should go.
410 On the vax, this is a single integer, which is a number of bytes
411 of arguments scanned so far. */
413 #define CUMULATIVE_ARGS int
415 /* Initialize a variable CUM of type CUMULATIVE_ARGS
416 for a call to a function whose data type is FNTYPE.
417 For a library call, FNTYPE is 0.
419 On the vax, the offset starts at 0. */
421 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
422 ((CUM) = 0)
424 /* Update the data in CUM to advance over an argument
425 of mode MODE and data type TYPE.
426 (TYPE is null for libcalls where that information may not be available.) */
428 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
429 ((CUM) += ((MODE) != BLKmode \
430 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
431 : (int_size_in_bytes (TYPE) + 3) & ~3))
433 /* Define where to put the arguments to a function.
434 Value is zero to push the argument on the stack,
435 or a hard register in which to store the argument.
437 MODE is the argument's machine mode.
438 TYPE is the data type of the argument (as a tree).
439 This is null for libcalls where that information may
440 not be available.
441 CUM is a variable of type CUMULATIVE_ARGS which gives info about
442 the preceding args and about the function being called.
443 NAMED is nonzero if this argument is a named parameter
444 (otherwise it is an extra parameter matching an ellipsis). */
446 /* On the vax all args are pushed. */
448 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
450 /* This macro generates the assembly code for function entry.
451 FILE is a stdio stream to output the code to.
452 SIZE is an int: how many units of temporary storage to allocate,
453 adjusted by STARTING_FRAME_OFFSET to accommodate vms.h.
454 Refer to the array `regs_ever_live' to determine which registers
455 to save; `regs_ever_live[I]' is nonzero if register number I
456 is ever used in the function. This macro is responsible for
457 knowing which registers should not be saved even if used. */
459 #define FUNCTION_PROLOGUE(FILE, SIZE) \
460 { register int regno; \
461 register int mask = 0; \
462 register int size = SIZE - STARTING_FRAME_OFFSET; \
463 extern char call_used_regs[]; \
464 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
465 if (regs_ever_live[regno] && !call_used_regs[regno]) \
466 mask |= 1 << regno; \
467 fprintf (FILE, "\t.word 0x%x\n", mask); \
468 MAYBE_VMS_FUNCTION_PROLOGUE(FILE) \
469 if ((size) >= 64) fprintf (FILE, "\tmovab %d(sp),sp\n", -size);\
470 else if (size) fprintf (FILE, "\tsubl2 $%d,sp\n", (size)); }
472 /* vms.h redefines this. */
473 #define MAYBE_VMS_FUNCTION_PROLOGUE(FILE)
475 /* Output assembler code to FILE to increment profiler label # LABELNO
476 for profiling a function entry. */
478 #define FUNCTION_PROFILER(FILE, LABELNO) \
479 fprintf (FILE, "\tmovab LP%d,r0\n\tjsb mcount\n", (LABELNO));
481 /* Output assembler code to FILE to initialize this source file's
482 basic block profiling info, if that has not already been done. */
484 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
485 fprintf (FILE, "\ttstl LPBX0\n\tjneq LPI%d\n\tpushal LPBX0\n\tcalls $1,__bb_init_func\nLPI%d:\n", \
486 LABELNO, LABELNO);
488 /* Output assembler code to FILE to increment the entry-count for
489 the BLOCKNO'th basic block in this source file. This is a real pain in the
490 sphincter on a VAX, since we do not want to change any of the bits in the
491 processor status word. The way it is done here, it is pushed onto the stack
492 before any flags have changed, and then the stack is fixed up to account for
493 the fact that the instruction to restore the flags only reads a word.
494 It may seem a bit clumsy, but at least it works.
497 #define BLOCK_PROFILER(FILE, BLOCKNO) \
498 fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
499 4 * BLOCKNO)
501 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
502 the stack pointer does not matter. The value is tested only in
503 functions that have frame pointers.
504 No definition is equivalent to always zero. */
506 #define EXIT_IGNORE_STACK 1
508 /* This macro generates the assembly code for function exit,
509 on machines that need it. If FUNCTION_EPILOGUE is not defined
510 then individual return instructions are generated for each
511 return statement. Args are same as for FUNCTION_PROLOGUE. */
513 /* #define FUNCTION_EPILOGUE(FILE, SIZE) */
515 /* Store in the variable DEPTH the initial difference between the
516 frame pointer reg contents and the stack pointer reg contents,
517 as of the start of the function body. This depends on the layout
518 of the fixed parts of the stack frame and on how registers are saved.
520 On the Vax, FRAME_POINTER_REQUIRED is always 1, so the definition of this
521 macro doesn't matter. But it must be defined. */
523 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
525 /* Output assembler code for a block containing the constant parts
526 of a trampoline, leaving space for the variable parts. */
528 /* On the vax, the trampoline contains an entry mask and two instructions:
529 .word NN
530 movl $STATIC,r0 (store the functions static chain)
531 jmp *$FUNCTION (jump to function code at address FUNCTION) */
533 #define TRAMPOLINE_TEMPLATE(FILE) \
535 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
536 ASM_OUTPUT_SHORT (FILE, GEN_INT (0x8fd0)); \
537 ASM_OUTPUT_INT (FILE, const0_rtx); \
538 ASM_OUTPUT_BYTE (FILE, 0x50 + STATIC_CHAIN_REGNUM); \
539 ASM_OUTPUT_SHORT (FILE, GEN_INT (0x9f17)); \
540 ASM_OUTPUT_INT (FILE, const0_rtx); \
543 /* Length in units of the trampoline for entering a nested function. */
545 #define TRAMPOLINE_SIZE 15
547 /* Emit RTL insns to initialize the variable parts of a trampoline.
548 FNADDR is an RTX for the address of the function's pure code.
549 CXT is an RTX for the static chain value for the function. */
551 /* We copy the register-mask from the function's pure code
552 to the start of the trampoline. */
553 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
555 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, \
556 "movpsl -(sp)\n\tpushal 1(pc)\n\trei")); \
557 emit_move_insn (gen_rtx_MEM (HImode, TRAMP), \
558 gen_rtx_MEM (HImode, FNADDR)); \
559 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), CXT);\
560 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 11)), \
561 plus_constant (FNADDR, 2)); \
564 /* Byte offset of return address in a stack frame. The "saved PC" field
565 is in element [4] when treating the frame as an array of longwords. */
567 #define RETURN_ADDRESS_OFFSET (4 * UNITS_PER_WORD) /* 16 */
569 /* A C expression whose value is RTL representing the value of the return
570 address for the frame COUNT steps up from the current frame.
571 FRAMEADDR is already the frame pointer of the COUNT frame, so we
572 can ignore COUNT. */
574 #define RETURN_ADDR_RTX(COUNT, FRAME) \
575 ((COUNT == 0) \
576 ? gen_rtx_MEM (Pmode, plus_constant (FRAME, RETURN_ADDRESS_OFFSET)) \
577 : (rtx) 0)
580 /* Addressing modes, and classification of registers for them. */
582 #define HAVE_POST_INCREMENT 1
583 /* #define HAVE_POST_DECREMENT 0 */
585 #define HAVE_PRE_DECREMENT 1
586 /* #define HAVE_PRE_INCREMENT 0 */
588 /* Macros to check register numbers against specific register classes. */
590 /* These assume that REGNO is a hard or pseudo reg number.
591 They give nonzero only if REGNO is a hard reg of the suitable class
592 or a pseudo reg currently allocated to a suitable hard reg.
593 Since they use reg_renumber, they are safe only once reg_renumber
594 has been allocated, which happens in local-alloc.c. */
596 #define REGNO_OK_FOR_INDEX_P(regno) \
597 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
598 #define REGNO_OK_FOR_BASE_P(regno) \
599 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
601 /* Maximum number of registers that can appear in a valid memory address. */
603 #define MAX_REGS_PER_ADDRESS 2
605 /* 1 if X is an rtx for a constant that is a valid address. */
607 #define CONSTANT_ADDRESS_P(X) \
608 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
609 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
610 || GET_CODE (X) == HIGH)
612 /* Nonzero if the constant value X is a legitimate general operand.
613 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
615 #define LEGITIMATE_CONSTANT_P(X) 1
617 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
618 and check its validity for a certain class.
619 We have two alternate definitions for each of them.
620 The usual definition accepts all pseudo regs; the other rejects
621 them unless they have been allocated suitable hard regs.
622 The symbol REG_OK_STRICT causes the latter definition to be used.
624 Most source files want to accept pseudo regs in the hope that
625 they will get allocated to the class that the insn wants them to be in.
626 Source files for reload pass need to be strict.
627 After reload, it makes no difference, since pseudo regs have
628 been eliminated by then. */
630 #ifndef REG_OK_STRICT
632 /* Nonzero if X is a hard reg that can be used as an index
633 or if it is a pseudo reg. */
634 #define REG_OK_FOR_INDEX_P(X) 1
635 /* Nonzero if X is a hard reg that can be used as a base reg
636 or if it is a pseudo reg. */
637 #define REG_OK_FOR_BASE_P(X) 1
639 #else
641 /* Nonzero if X is a hard reg that can be used as an index. */
642 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
643 /* Nonzero if X is a hard reg that can be used as a base reg. */
644 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
646 #endif
648 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
649 that is a valid memory address for an instruction.
650 The MODE argument is the machine mode for the MEM expression
651 that wants to use this address.
653 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
654 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
656 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS
658 /* Zero if this contains a (CONST (PLUS (SYMBOL_REF) (...))) and the
659 symbol in the SYMBOL_REF is an external symbol. */
661 #define INDIRECTABLE_CONSTANT_P(X) \
662 (! (GET_CODE ((X)) == CONST \
663 && GET_CODE (XEXP ((X), 0)) == PLUS \
664 && GET_CODE (XEXP (XEXP ((X), 0), 0)) == SYMBOL_REF \
665 && SYMBOL_REF_FLAG (XEXP (XEXP ((X), 0), 0))))
667 /* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
668 are no SYMBOL_REFs for external symbols present. */
670 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) \
671 (GET_CODE (X) == LABEL_REF \
672 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_FLAG (X)) \
673 || (GET_CODE (X) == CONST && INDIRECTABLE_CONSTANT_P(X)) \
674 || GET_CODE (X) == CONST_INT)
677 /* Non-zero if X is an address which can be indirected. External symbols
678 could be in a sharable image library, so we disallow those. */
680 #define INDIRECTABLE_ADDRESS_P(X) \
681 (INDIRECTABLE_CONSTANT_ADDRESS_P (X) \
682 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
683 || (GET_CODE (X) == PLUS \
684 && GET_CODE (XEXP (X, 0)) == REG \
685 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
686 && INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))))
688 #else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
690 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) CONSTANT_ADDRESS_P(X)
692 /* Non-zero if X is an address which can be indirected. */
693 #define INDIRECTABLE_ADDRESS_P(X) \
694 (CONSTANT_ADDRESS_P (X) \
695 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
696 || (GET_CODE (X) == PLUS \
697 && GET_CODE (XEXP (X, 0)) == REG \
698 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
699 && CONSTANT_ADDRESS_P (XEXP (X, 1))))
701 #endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
703 /* Go to ADDR if X is a valid address not using indexing.
704 (This much is the easy part.) */
705 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
706 { register rtx xfoob = (X); \
707 if (GET_CODE (xfoob) == REG) \
709 extern rtx *reg_equiv_mem; \
710 if (! reload_in_progress \
711 || reg_equiv_mem[REGNO (xfoob)] == 0 \
712 || INDIRECTABLE_ADDRESS_P (reg_equiv_mem[REGNO (xfoob)])) \
713 goto ADDR; \
715 if (CONSTANT_ADDRESS_P (xfoob)) goto ADDR; \
716 if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
717 xfoob = XEXP (X, 0); \
718 if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
719 goto ADDR; \
720 if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
721 && GET_CODE (xfoob) == REG && REG_OK_FOR_BASE_P (xfoob)) \
722 goto ADDR; }
724 /* 1 if PROD is either a reg times size of mode MODE
725 or just a reg, if MODE is just one byte.
726 This macro's expansion uses the temporary variables xfoo0 and xfoo1
727 that must be declared in the surrounding context. */
728 #define INDEX_TERM_P(PROD, MODE) \
729 (GET_MODE_SIZE (MODE) == 1 \
730 ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
731 : (GET_CODE (PROD) == MULT \
732 && \
733 (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
734 ((((GET_CODE (xfoo0) == CONST_INT \
735 && GET_CODE (xfoo1) == REG) \
736 && INTVAL (xfoo0) == (int)GET_MODE_SIZE (MODE)) \
737 && REG_OK_FOR_INDEX_P (xfoo1)) \
738 || \
739 (((GET_CODE (xfoo1) == CONST_INT \
740 && GET_CODE (xfoo0) == REG) \
741 && INTVAL (xfoo1) == (int)GET_MODE_SIZE (MODE)) \
742 && REG_OK_FOR_INDEX_P (xfoo0))))))
744 /* Go to ADDR if X is the sum of a register
745 and a valid index term for mode MODE. */
746 #define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
747 { register rtx xfooa; \
748 if (GET_CODE (X) == PLUS) \
749 { if (GET_CODE (XEXP (X, 0)) == REG \
750 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
751 && (xfooa = XEXP (X, 1), \
752 INDEX_TERM_P (xfooa, MODE))) \
753 goto ADDR; \
754 if (GET_CODE (XEXP (X, 1)) == REG \
755 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
756 && (xfooa = XEXP (X, 0), \
757 INDEX_TERM_P (xfooa, MODE))) \
758 goto ADDR; } }
760 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
761 { register rtx xfoo, xfoo0, xfoo1; \
762 GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
763 if (GET_CODE (X) == PLUS) \
764 { /* Handle <address>[index] represented with index-sum outermost */\
765 xfoo = XEXP (X, 0); \
766 if (INDEX_TERM_P (xfoo, MODE)) \
767 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
768 xfoo = XEXP (X, 1); \
769 if (INDEX_TERM_P (xfoo, MODE)) \
770 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
771 /* Handle offset(reg)[index] with offset added outermost */ \
772 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 0))) \
773 { if (GET_CODE (XEXP (X, 1)) == REG \
774 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
775 goto ADDR; \
776 GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
777 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))) \
778 { if (GET_CODE (XEXP (X, 0)) == REG \
779 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
780 goto ADDR; \
781 GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
783 /* Try machine-dependent ways of modifying an illegitimate address
784 to be legitimate. If we find one, return the new, valid address.
785 This macro is used in only one place: `memory_address' in explow.c.
787 OLDX is the address as it was before break_out_memory_refs was called.
788 In some cases it is useful to look at this to decide what needs to be done.
790 MODE and WIN are passed so that this macro can use
791 GO_IF_LEGITIMATE_ADDRESS.
793 It is always safe for this macro to do nothing. It exists to recognize
794 opportunities to optimize the output.
796 For the vax, nothing needs to be done. */
798 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
800 /* Go to LABEL if ADDR (a legitimate address expression)
801 has an effect that depends on the machine mode it is used for.
802 On the VAX, the predecrement and postincrement address depend thus
803 (the amount of decrement or increment being the length of the operand)
804 and all indexed address depend thus (because the index scale factor
805 is the length of the operand). */
806 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
807 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
808 goto LABEL; \
809 if (GET_CODE (ADDR) == PLUS) \
810 { if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
811 && GET_CODE (XEXP (ADDR, 1)) == REG); \
812 else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
813 && GET_CODE (XEXP (ADDR, 0)) == REG); \
814 else goto LABEL; }}
816 /* Specify the machine mode that this machine uses
817 for the index in the tablejump instruction. */
818 #define CASE_VECTOR_MODE HImode
820 /* Define as C expression which evaluates to nonzero if the tablejump
821 instruction expects the table to contain offsets from the address of the
822 table.
823 Do not define this if the table should contain absolute addresses. */
824 #define CASE_VECTOR_PC_RELATIVE 1
826 /* Define this if the case instruction drops through after the table
827 when the index is out of range. Don't define it if the case insn
828 jumps to the default label instead. */
829 #define CASE_DROPS_THROUGH
831 /* Specify the tree operation to be used to convert reals to integers. */
832 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
834 /* This is the kind of divide that is easiest to do in the general case. */
835 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
837 /* Define this as 1 if `char' should by default be signed; else as 0. */
838 #define DEFAULT_SIGNED_CHAR 1
840 /* This flag, if defined, says the same insns that convert to a signed fixnum
841 also convert validly to an unsigned one. */
842 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
844 /* Max number of bytes we can move from memory to memory
845 in one reasonably fast instruction. */
846 #define MOVE_MAX 8
848 /* Define this if zero-extension is slow (more than one real instruction). */
849 /* #define SLOW_ZERO_EXTEND */
851 /* Nonzero if access to memory by bytes is slow and undesirable. */
852 #define SLOW_BYTE_ACCESS 0
854 /* Define if shifts truncate the shift count
855 which implies one can omit a sign-extension or zero-extension
856 of a shift count. */
857 /* #define SHIFT_COUNT_TRUNCATED */
859 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
860 is done just by pretending it is already truncated. */
861 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
863 /* Specify the machine mode that pointers have.
864 After generation of rtl, the compiler makes no further distinction
865 between pointers and any other objects of this machine mode. */
866 #define Pmode SImode
868 /* A function address in a call instruction
869 is a byte address (for indexing purposes)
870 so give the MEM rtx a byte's mode. */
871 #define FUNCTION_MODE QImode
873 /* This machine doesn't use IEEE floats. */
875 #define TARGET_FLOAT_FORMAT VAX_FLOAT_FORMAT
877 /* Compute the cost of computing a constant rtl expression RTX
878 whose rtx-code is CODE. The body of this macro is a portion
879 of a switch statement. If the code is computed here,
880 return it with a return statement. Otherwise, break from the switch. */
882 /* On a VAX, constants from 0..63 are cheap because they can use the
883 1 byte literal constant format. compare to -1 should be made cheap
884 so that decrement-and-branch insns can be formed more easily (if
885 the value -1 is copied to a register some decrement-and-branch patterns
886 will not match). */
888 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
889 case CONST_INT: \
890 if (INTVAL (RTX) == 0) return 0; \
891 if ((OUTER_CODE) == AND) \
892 return ((unsigned) ~INTVAL (RTX) <= 077) ? 1 : 2; \
893 if ((unsigned) INTVAL (RTX) <= 077) return 1; \
894 if ((OUTER_CODE) == COMPARE && INTVAL (RTX) == -1) \
895 return 1; \
896 if ((OUTER_CODE) == PLUS && (unsigned) -INTVAL (RTX) <= 077)\
897 return 1; \
898 case CONST: \
899 case LABEL_REF: \
900 case SYMBOL_REF: \
901 return 3; \
902 case CONST_DOUBLE: \
903 if (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
904 return vax_float_literal (RTX) ? 5 : 8; \
905 else \
906 return (((CONST_DOUBLE_HIGH (RTX) == 0 \
907 && (unsigned) CONST_DOUBLE_LOW (RTX) < 64) \
908 || ((OUTER_CODE) == PLUS \
909 && CONST_DOUBLE_HIGH (RTX) == -1 \
910 && (unsigned)-CONST_DOUBLE_LOW (RTX) < 64)) \
911 ? 2 : 5);
913 #define RTX_COSTS(RTX,CODE,OUTER_CODE) case FIX: case FLOAT: \
914 case MULT: case DIV: case UDIV: case MOD: case UMOD: \
915 case ASHIFT: case LSHIFTRT: case ASHIFTRT: \
916 case ROTATE: case ROTATERT: case PLUS: case MINUS: case IOR: \
917 case XOR: case AND: case NEG: case NOT: case ZERO_EXTRACT: \
918 case SIGN_EXTRACT: case MEM: return vax_rtx_cost(RTX)
920 #define ADDRESS_COST(RTX) (1 + (GET_CODE (RTX) == REG ? 0 : vax_address_cost(RTX)))
922 /* Specify the cost of a branch insn; roughly the number of extra insns that
923 should be added to avoid a branch.
925 Branches are extremely cheap on the VAX while the shift insns often
926 used to replace branches can be expensive. */
928 #define BRANCH_COST 0
931 * We can use the BSD C library routines for the libgcc calls that are
932 * still generated, since that's what they boil down to anyways.
935 #define UDIVSI3_LIBCALL "*udiv"
936 #define UMODSI3_LIBCALL "*urem"
938 /* Check a `double' value for validity for a particular machine mode. */
940 /* note that it is very hard to accidentally create a number that fits in a
941 double but not in a float, since their ranges are almost the same */
943 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
944 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
946 /* For future reference:
947 D Float: 9 bit, sign magnitude, excess 128 binary exponent
948 normalized 56 bit fraction, redundant bit not represented
949 approximately 16 decimal digits of precision
951 The values to use if we trust decimal to binary conversions:
952 #define MAX_D_FLOAT 1.7014118346046923e+38
953 #define MIN_D_FLOAT .29387358770557188e-38
955 G float: 12 bit, sign magnitude, excess 1024 binary exponent
956 normalized 53 bit fraction, redundant bit not represented
957 approximately 15 decimal digits precision
959 The values to use if we trust decimal to binary conversions:
960 #define MAX_G_FLOAT .898846567431157e+308
961 #define MIN_G_FLOAT .556268464626800e-308
964 /* Tell final.c how to eliminate redundant test instructions. */
966 /* Here we define machine-dependent flags and fields in cc_status
967 (see `conditions.h'). No extra ones are needed for the vax. */
969 /* Store in cc_status the expressions
970 that the condition codes will describe
971 after execution of an instruction whose pattern is EXP.
972 Do not alter them if the instruction would not alter the cc's. */
974 #define NOTICE_UPDATE_CC(EXP, INSN) \
975 { if (GET_CODE (EXP) == SET) \
976 { if (GET_CODE (SET_SRC (EXP)) == CALL) \
977 CC_STATUS_INIT; \
978 else if (GET_CODE (SET_DEST (EXP)) != ZERO_EXTRACT \
979 && GET_CODE (SET_DEST (EXP)) != PC) \
980 { cc_status.flags = 0; \
981 cc_status.value1 = SET_DEST (EXP); \
982 cc_status.value2 = SET_SRC (EXP); } } \
983 else if (GET_CODE (EXP) == PARALLEL \
984 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
986 if (GET_CODE (SET_SRC (XVECEXP (EXP, 0, 0))) == CALL) \
987 CC_STATUS_INIT; \
988 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
989 { cc_status.flags = 0; \
990 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
991 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \
992 else \
993 /* PARALLELs whose first element sets the PC are aob, \
994 sob insns. They do change the cc's. */ \
995 CC_STATUS_INIT; } \
996 else CC_STATUS_INIT; \
997 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
998 && cc_status.value2 \
999 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
1000 cc_status.value2 = 0; \
1001 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
1002 && cc_status.value2 \
1003 && GET_CODE (cc_status.value2) == MEM) \
1004 cc_status.value2 = 0; }
1005 /* Actual condition, one line up, should be that value2's address
1006 depends on value1, but that is too much of a pain. */
1008 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1009 { if (cc_status.flags & CC_NO_OVERFLOW) \
1010 return NO_OV; \
1011 return NORMAL; }
1013 /* Control the assembler format that we output. */
1015 /* Output at beginning of assembler file. */
1017 #define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n");
1019 /* Output to assembler file text saying following lines
1020 may contain character constants, extra white space, comments, etc. */
1022 #define ASM_APP_ON "#APP\n"
1024 /* Output to assembler file text saying following lines
1025 no longer contain unusual constructs. */
1027 #define ASM_APP_OFF "#NO_APP\n"
1029 /* Output before read-only data. */
1031 #define TEXT_SECTION_ASM_OP ".text"
1033 /* Output before writable data. */
1035 #define DATA_SECTION_ASM_OP ".data"
1037 /* How to refer to registers in assembler output.
1038 This sequence is indexed by compiler's hard-register-number (see above). */
1040 #define REGISTER_NAMES \
1041 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
1042 "r9", "r10", "r11", "ap", "fp", "sp", "pc"}
1044 /* This is BSD, so it wants DBX format. */
1046 #define DBX_DEBUGGING_INFO
1048 /* How to renumber registers for dbx and gdb.
1049 Vax needs no change in the numeration. */
1051 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1053 /* Do not break .stabs pseudos into continuations. */
1055 #define DBX_CONTIN_LENGTH 0
1057 /* This is the char to use for continuation (in case we need to turn
1058 continuation back on). */
1060 #define DBX_CONTIN_CHAR '?'
1062 /* Don't use the `xsfoo;' construct in DBX output; this system
1063 doesn't support it. */
1065 #define DBX_NO_XREFS
1067 /* Output the .stabs for a C `static' variable in the data section. */
1068 #define DBX_STATIC_STAB_DATA_SECTION
1070 /* Vax specific: which type character is used for type double? */
1072 #define ASM_DOUBLE_CHAR (TARGET_G_FLOAT ? 'g' : 'd')
1074 /* This is how to output the definition of a user-level label named NAME,
1075 such as the label on a static function or variable NAME. */
1077 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1078 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1080 /* This is how to output a command to make the user-level label named NAME
1081 defined for reference from other files. */
1083 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1084 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1086 /* The prefix to add to user-visible assembler symbols. */
1088 #define USER_LABEL_PREFIX "_"
1090 /* This is how to output an internal numbered label where
1091 PREFIX is the class of label and NUM is the number within the class. */
1093 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1094 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1096 /* This is how to store into the string LABEL
1097 the symbol_ref name of an internal numbered label where
1098 PREFIX is the class of label and NUM is the number within the class.
1099 This is suitable for output with `assemble_name'. */
1101 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1102 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1104 /* This is how to output an assembler line defining a `double' constant.
1105 It is .dfloat or .gfloat, depending. */
1107 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1108 do { char dstr[30]; \
1109 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", dstr); \
1110 fprintf (FILE, "\t.%cfloat 0%c%s\n", ASM_DOUBLE_CHAR, \
1111 ASM_DOUBLE_CHAR, dstr); \
1112 } while (0);
1114 /* This is how to output an assembler line defining a `float' constant. */
1116 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1117 do { char dstr[30]; \
1118 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", dstr); \
1119 fprintf (FILE, "\t.float 0f%s\n", dstr); } while (0);
1121 /* This is how to output an assembler line defining an `int' constant. */
1123 #define ASM_OUTPUT_INT(FILE,VALUE) \
1124 ( fprintf (FILE, "\t.long "), \
1125 output_addr_const (FILE, (VALUE)), \
1126 fprintf (FILE, "\n"))
1128 /* Likewise for `char' and `short' constants. */
1130 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1131 ( fprintf (FILE, "\t.word "), \
1132 output_addr_const (FILE, (VALUE)), \
1133 fprintf (FILE, "\n"))
1135 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1136 ( fprintf (FILE, "\t.byte "), \
1137 output_addr_const (FILE, (VALUE)), \
1138 fprintf (FILE, "\n"))
1140 /* This is how to output an assembler line for a numeric constant byte. */
1142 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1143 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1145 /* This is how to output an insn to push a register on the stack.
1146 It need not be very fast code. */
1148 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1149 fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
1151 /* This is how to output an insn to pop a register from the stack.
1152 It need not be very fast code. */
1154 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1155 fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO])
1157 /* This is how to output an element of a case-vector that is absolute.
1158 (The Vax does not use such vectors,
1159 but we must define this macro anyway.) */
1161 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1162 fprintf (FILE, "\t.long L%d\n", VALUE)
1164 /* This is how to output an element of a case-vector that is relative. */
1166 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1167 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1169 /* This is how to output an assembler line
1170 that says to advance the location counter
1171 to a multiple of 2**LOG bytes. */
1173 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1174 fprintf (FILE, "\t.align %d\n", (LOG))
1176 /* This is how to output an assembler line
1177 that says to advance the location counter by SIZE bytes. */
1179 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1180 fprintf (FILE, "\t.space %u\n", (SIZE))
1182 /* This says how to output an assembler line
1183 to define a global common symbol. */
1185 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1186 ( fputs (".comm ", (FILE)), \
1187 assemble_name ((FILE), (NAME)), \
1188 fprintf ((FILE), ",%u\n", (ROUNDED)))
1190 /* This says how to output an assembler line
1191 to define a local common symbol. */
1193 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1194 ( fputs (".lcomm ", (FILE)), \
1195 assemble_name ((FILE), (NAME)), \
1196 fprintf ((FILE), ",%u\n", (ROUNDED)))
1198 /* Store in OUTPUT a string (made with alloca) containing
1199 an assembler-name for a local static variable named NAME.
1200 LABELNO is an integer which is different for each call. */
1202 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1203 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1204 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1206 /* When debugging, we want to output an extra dummy label so that gas
1207 can distinguish between D_float and G_float prior to processing the
1208 .stabs directive identifying type double. */
1210 #define ASM_IDENTIFY_LANGUAGE(FILE) \
1211 do { \
1212 output_lang_identify (FILE); \
1213 if (write_symbols == DBX_DEBUG) \
1214 fprintf (FILE, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR); \
1215 } while (0)
1217 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
1218 Used for C++ multiple inheritance.
1219 .mask ^m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11> #conservative entry mask
1220 addl2 $DELTA, 4(ap) #adjust first argument
1221 jmp FUNCTION+2 #jump beyond FUNCTION's entry mask
1223 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1224 do { \
1225 fprintf (FILE, "\t.word 0x0ffc\n"); \
1226 fprintf (FILE, "\taddl2 $%d,4(ap)\n", DELTA); \
1227 fprintf (FILE, "\tjmp "); \
1228 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1229 fprintf (FILE, "+2\n"); \
1230 } while (0)
1232 /* Define the parentheses used to group arithmetic operations
1233 in assembler code. */
1235 #define ASM_OPEN_PAREN "("
1236 #define ASM_CLOSE_PAREN ")"
1238 /* Define results of standard character escape sequences. */
1239 #define TARGET_BELL 007
1240 #define TARGET_BS 010
1241 #define TARGET_TAB 011
1242 #define TARGET_NEWLINE 012
1243 #define TARGET_VT 013
1244 #define TARGET_FF 014
1245 #define TARGET_CR 015
1247 /* Print an instruction operand X on file FILE.
1248 CODE is the code from the %-spec that requested printing this operand;
1249 if `%z3' was used to print operand 3, then CODE is 'z'.
1251 VAX operand formatting codes:
1253 letter print
1254 C reverse branch condition
1255 D 64-bit immediate operand
1256 B the low 8 bits of the complement of a constant operand
1257 H the low 16 bits of the complement of a constant operand
1258 M a mask for the N highest bits of a word
1259 N the complement of a constant integer operand
1260 P constant operand plus 1
1261 R 32 - constant operand
1262 b the low 8 bits of a negated constant operand
1263 h the low 16 bits of a negated constant operand
1264 # 'd' or 'g' depending on whether dfloat or gfloat is used */
1266 /* The purpose of D is to get around a quirk or bug in vax assembler
1267 whereby -1 in a 64-bit immediate operand means 0x00000000ffffffff,
1268 which is not a 64-bit minus one. */
1270 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1271 ((CODE) == '#')
1273 #define PRINT_OPERAND(FILE, X, CODE) \
1274 { if (CODE == '#') fputc (ASM_DOUBLE_CHAR, FILE); \
1275 else if (CODE == 'C') \
1276 fputs (rev_cond_name (X), FILE); \
1277 else if (CODE == 'D' && GET_CODE (X) == CONST_INT && INTVAL (X) < 0) \
1278 fprintf (FILE, "$0xffffffff%08x", INTVAL (X)); \
1279 else if (CODE == 'P' && GET_CODE (X) == CONST_INT) \
1280 fprintf (FILE, "$%d", INTVAL (X) + 1); \
1281 else if (CODE == 'N' && GET_CODE (X) == CONST_INT) \
1282 fprintf (FILE, "$%d", ~ INTVAL (X)); \
1283 /* rotl instruction cannot deal with negative arguments. */ \
1284 else if (CODE == 'R' && GET_CODE (X) == CONST_INT) \
1285 fprintf (FILE, "$%d", 32 - INTVAL (X)); \
1286 else if (CODE == 'H' && GET_CODE (X) == CONST_INT) \
1287 fprintf (FILE, "$%d", 0xffff & ~ INTVAL (X)); \
1288 else if (CODE == 'h' && GET_CODE (X) == CONST_INT) \
1289 fprintf (FILE, "$%d", (short) - INTVAL (x)); \
1290 else if (CODE == 'B' && GET_CODE (X) == CONST_INT) \
1291 fprintf (FILE, "$%d", 0xff & ~ INTVAL (X)); \
1292 else if (CODE == 'b' && GET_CODE (X) == CONST_INT) \
1293 fprintf (FILE, "$%d", 0xff & - INTVAL (X)); \
1294 else if (CODE == 'M' && GET_CODE (X) == CONST_INT) \
1295 fprintf (FILE, "$%d", ~((1 << INTVAL (x)) - 1)); \
1296 else if (GET_CODE (X) == REG) \
1297 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1298 else if (GET_CODE (X) == MEM) \
1299 output_address (XEXP (X, 0)); \
1300 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
1301 { REAL_VALUE_TYPE r; char dstr[30]; \
1302 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
1303 REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
1304 fprintf (FILE, "$0f%s", dstr); } \
1305 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode) \
1306 { REAL_VALUE_TYPE r; char dstr[30]; \
1307 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
1308 REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
1309 fprintf (FILE, "$0%c%s", ASM_DOUBLE_CHAR, dstr); } \
1310 else { putc ('$', FILE); output_addr_const (FILE, X); }}
1312 /* Print a memory operand whose address is X, on file FILE.
1313 This uses a function in output-vax.c. */
1315 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1316 print_operand_address (FILE, ADDR)