Call fatal_insn_not_found instead of abort
[official-gcc.git] / gcc / reload.c
blob6431f15609337dbb7add78512ba68a1438db26d6
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "rtl.h"
93 #include "insn-config.h"
94 #include "insn-codes.h"
95 #include "recog.h"
96 #include "reload.h"
97 #include "regs.h"
98 #include "hard-reg-set.h"
99 #include "flags.h"
100 #include "real.h"
101 #include "output.h"
102 #include "expr.h"
103 #include "toplev.h"
105 #ifndef REGISTER_MOVE_COST
106 #define REGISTER_MOVE_COST(x, y) 2
107 #endif
109 #ifndef REGNO_MODE_OK_FOR_BASE_P
110 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
111 #endif
113 #ifndef REG_MODE_OK_FOR_BASE_P
114 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
115 #endif
117 /* The variables set up by `find_reloads' are:
119 n_reloads number of distinct reloads needed; max reload # + 1
120 tables indexed by reload number
121 reload_in rtx for value to reload from
122 reload_out rtx for where to store reload-reg afterward if nec
123 (often the same as reload_in)
124 reload_reg_class enum reg_class, saying what regs to reload into
125 reload_inmode enum machine_mode; mode this operand should have
126 when reloaded, on input.
127 reload_outmode enum machine_mode; mode this operand should have
128 when reloaded, on output.
129 reload_optional char, nonzero for an optional reload.
130 Optional reloads are ignored unless the
131 value is already sitting in a register.
132 reload_nongroup char, nonzero when a reload must use a register
133 not already allocated to a group.
134 reload_inc int, positive amount to increment or decrement by if
135 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
136 Ignored otherwise (don't assume it is zero).
137 reload_in_reg rtx. A reg for which reload_in is the equivalent.
138 If reload_in is a symbol_ref which came from
139 reg_equiv_constant, then this is the pseudo
140 which has that symbol_ref as equivalent.
141 reload_reg_rtx rtx. This is the register to reload into.
142 If it is zero when `find_reloads' returns,
143 you must find a suitable register in the class
144 specified by reload_reg_class, and store here
145 an rtx for that register with mode from
146 reload_inmode or reload_outmode.
147 reload_nocombine char, nonzero if this reload shouldn't be
148 combined with another reload.
149 reload_opnum int, operand number being reloaded. This is
150 used to group related reloads and need not always
151 be equal to the actual operand number in the insn,
152 though it current will be; for in-out operands, it
153 is one of the two operand numbers.
154 reload_when_needed enum, classifies reload as needed either for
155 addressing an input reload, addressing an output,
156 for addressing a non-reloaded mem ref,
157 or for unspecified purposes (i.e., more than one
158 of the above).
159 reload_secondary_p int, 1 if this is a secondary register for one
160 or more reloads.
161 reload_secondary_in_reload
162 reload_secondary_out_reload
163 int, gives the reload number of a secondary
164 reload, when needed; otherwise -1
165 reload_secondary_in_icode
166 reload_secondary_out_icode
167 enum insn_code, if a secondary reload is required,
168 gives the INSN_CODE that uses the secondary
169 reload as a scratch register, or CODE_FOR_nothing
170 if the secondary reload register is to be an
171 intermediate register. */
172 int n_reloads;
174 rtx reload_in[MAX_RELOADS];
175 rtx reload_out[MAX_RELOADS];
176 enum reg_class reload_reg_class[MAX_RELOADS];
177 enum machine_mode reload_inmode[MAX_RELOADS];
178 enum machine_mode reload_outmode[MAX_RELOADS];
179 rtx reload_reg_rtx[MAX_RELOADS];
180 char reload_optional[MAX_RELOADS];
181 char reload_nongroup[MAX_RELOADS];
182 int reload_inc[MAX_RELOADS];
183 rtx reload_in_reg[MAX_RELOADS];
184 char reload_nocombine[MAX_RELOADS];
185 int reload_opnum[MAX_RELOADS];
186 enum reload_type reload_when_needed[MAX_RELOADS];
187 int reload_secondary_p[MAX_RELOADS];
188 int reload_secondary_in_reload[MAX_RELOADS];
189 int reload_secondary_out_reload[MAX_RELOADS];
190 enum insn_code reload_secondary_in_icode[MAX_RELOADS];
191 enum insn_code reload_secondary_out_icode[MAX_RELOADS];
193 /* All the "earlyclobber" operands of the current insn
194 are recorded here. */
195 int n_earlyclobbers;
196 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
198 int reload_n_operands;
200 /* Replacing reloads.
202 If `replace_reloads' is nonzero, then as each reload is recorded
203 an entry is made for it in the table `replacements'.
204 Then later `subst_reloads' can look through that table and
205 perform all the replacements needed. */
207 /* Nonzero means record the places to replace. */
208 static int replace_reloads;
210 /* Each replacement is recorded with a structure like this. */
211 struct replacement
213 rtx *where; /* Location to store in */
214 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
215 a SUBREG; 0 otherwise. */
216 int what; /* which reload this is for */
217 enum machine_mode mode; /* mode it must have */
220 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
222 /* Number of replacements currently recorded. */
223 static int n_replacements;
225 /* Used to track what is modified by an operand. */
226 struct decomposition
228 int reg_flag; /* Nonzero if referencing a register. */
229 int safe; /* Nonzero if this can't conflict with anything. */
230 rtx base; /* Base address for MEM. */
231 HOST_WIDE_INT start; /* Starting offset or register number. */
232 HOST_WIDE_INT end; /* Ending offset or register number. */
235 /* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
236 (see reg_equiv_address). */
237 static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
238 static int n_memlocs;
240 #ifdef SECONDARY_MEMORY_NEEDED
242 /* Save MEMs needed to copy from one class of registers to another. One MEM
243 is used per mode, but normally only one or two modes are ever used.
245 We keep two versions, before and after register elimination. The one
246 after register elimination is record separately for each operand. This
247 is done in case the address is not valid to be sure that we separately
248 reload each. */
250 static rtx secondary_memlocs[NUM_MACHINE_MODES];
251 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
252 #endif
254 /* The instruction we are doing reloads for;
255 so we can test whether a register dies in it. */
256 static rtx this_insn;
258 /* Nonzero if this instruction is a user-specified asm with operands. */
259 static int this_insn_is_asm;
261 /* If hard_regs_live_known is nonzero,
262 we can tell which hard regs are currently live,
263 at least enough to succeed in choosing dummy reloads. */
264 static int hard_regs_live_known;
266 /* Indexed by hard reg number,
267 element is nonnegative if hard reg has been spilled.
268 This vector is passed to `find_reloads' as an argument
269 and is not changed here. */
270 static short *static_reload_reg_p;
272 /* Set to 1 in subst_reg_equivs if it changes anything. */
273 static int subst_reg_equivs_changed;
275 /* On return from push_reload, holds the reload-number for the OUT
276 operand, which can be different for that from the input operand. */
277 static int output_reloadnum;
279 /* Compare two RTX's. */
280 #define MATCHES(x, y) \
281 (x == y || (x != 0 && (GET_CODE (x) == REG \
282 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
283 : rtx_equal_p (x, y) && ! side_effects_p (x))))
285 /* Indicates if two reloads purposes are for similar enough things that we
286 can merge their reloads. */
287 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
288 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
289 || ((when1) == (when2) && (op1) == (op2)) \
290 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
291 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
292 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
293 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
294 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
296 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
297 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
298 ((when1) != (when2) \
299 || ! ((op1) == (op2) \
300 || (when1) == RELOAD_FOR_INPUT \
301 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
302 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
304 /* If we are going to reload an address, compute the reload type to
305 use. */
306 #define ADDR_TYPE(type) \
307 ((type) == RELOAD_FOR_INPUT_ADDRESS \
308 ? RELOAD_FOR_INPADDR_ADDRESS \
309 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
310 ? RELOAD_FOR_OUTADDR_ADDRESS \
311 : (type)))
313 #ifdef HAVE_SECONDARY_RELOADS
314 static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
315 enum machine_mode, enum reload_type,
316 enum insn_code *));
317 #endif
318 static enum reg_class find_valid_class PROTO((enum machine_mode, int));
319 static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
320 enum machine_mode, enum machine_mode,
321 int, int, int, enum reload_type));
322 static void push_replacement PROTO((rtx *, int, enum machine_mode));
323 static void combine_reloads PROTO((void));
324 static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
325 enum machine_mode, enum machine_mode,
326 enum reg_class, int, int));
327 static int earlyclobber_operand_p PROTO((rtx));
328 static int hard_reg_set_here_p PROTO((int, int, rtx));
329 static struct decomposition decompose PROTO((rtx));
330 static int immune_p PROTO((rtx, rtx, struct decomposition));
331 static int alternative_allows_memconst PROTO((char *, int));
332 static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
333 static rtx make_memloc PROTO((rtx, int));
334 static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
335 int, enum reload_type, int, rtx));
336 static rtx subst_reg_equivs PROTO((rtx));
337 static rtx subst_indexed_address PROTO((rtx));
338 static int find_reloads_address_1 PROTO((enum machine_mode, rtx, int, rtx *,
339 int, enum reload_type,int, rtx));
340 static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
341 enum machine_mode, int,
342 enum reload_type, int));
343 static int find_inc_amount PROTO((rtx, rtx));
345 #ifdef HAVE_SECONDARY_RELOADS
347 /* Determine if any secondary reloads are needed for loading (if IN_P is
348 non-zero) or storing (if IN_P is zero) X to or from a reload register of
349 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
350 are needed, push them.
352 Return the reload number of the secondary reload we made, or -1 if
353 we didn't need one. *PICODE is set to the insn_code to use if we do
354 need a secondary reload. */
356 static int
357 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
358 type, picode)
359 int in_p;
360 rtx x;
361 int opnum;
362 int optional;
363 enum reg_class reload_class;
364 enum machine_mode reload_mode;
365 enum reload_type type;
366 enum insn_code *picode;
368 enum reg_class class = NO_REGS;
369 enum machine_mode mode = reload_mode;
370 enum insn_code icode = CODE_FOR_nothing;
371 enum reg_class t_class = NO_REGS;
372 enum machine_mode t_mode = VOIDmode;
373 enum insn_code t_icode = CODE_FOR_nothing;
374 enum reload_type secondary_type;
375 int s_reload, t_reload = -1;
377 if (type == RELOAD_FOR_INPUT_ADDRESS
378 || type == RELOAD_FOR_OUTPUT_ADDRESS
379 || type == RELOAD_FOR_INPADDR_ADDRESS
380 || type == RELOAD_FOR_OUTADDR_ADDRESS)
381 secondary_type = type;
382 else
383 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
385 *picode = CODE_FOR_nothing;
387 /* If X is a paradoxical SUBREG, use the inner value to determine both the
388 mode and object being reloaded. */
389 if (GET_CODE (x) == SUBREG
390 && (GET_MODE_SIZE (GET_MODE (x))
391 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
393 x = SUBREG_REG (x);
394 reload_mode = GET_MODE (x);
397 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
398 is still a pseudo-register by now, it *must* have an equivalent MEM
399 but we don't want to assume that), use that equivalent when seeing if
400 a secondary reload is needed since whether or not a reload is needed
401 might be sensitive to the form of the MEM. */
403 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
404 && reg_equiv_mem[REGNO (x)] != 0)
405 x = reg_equiv_mem[REGNO (x)];
407 #ifdef SECONDARY_INPUT_RELOAD_CLASS
408 if (in_p)
409 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
410 #endif
412 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
413 if (! in_p)
414 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
415 #endif
417 /* If we don't need any secondary registers, done. */
418 if (class == NO_REGS)
419 return -1;
421 /* Get a possible insn to use. If the predicate doesn't accept X, don't
422 use the insn. */
424 icode = (in_p ? reload_in_optab[(int) reload_mode]
425 : reload_out_optab[(int) reload_mode]);
427 if (icode != CODE_FOR_nothing
428 && insn_operand_predicate[(int) icode][in_p]
429 && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
430 icode = CODE_FOR_nothing;
432 /* If we will be using an insn, see if it can directly handle the reload
433 register we will be using. If it can, the secondary reload is for a
434 scratch register. If it can't, we will use the secondary reload for
435 an intermediate register and require a tertiary reload for the scratch
436 register. */
438 if (icode != CODE_FOR_nothing)
440 /* If IN_P is non-zero, the reload register will be the output in
441 operand 0. If IN_P is zero, the reload register will be the input
442 in operand 1. Outputs should have an initial "=", which we must
443 skip. */
445 char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
446 enum reg_class insn_class
447 = (insn_letter == 'r' ? GENERAL_REGS
448 : REG_CLASS_FROM_LETTER (insn_letter));
450 if (insn_class == NO_REGS
451 || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
452 /* The scratch register's constraint must start with "=&". */
453 || insn_operand_constraint[(int) icode][2][0] != '='
454 || insn_operand_constraint[(int) icode][2][1] != '&')
455 abort ();
457 if (reg_class_subset_p (reload_class, insn_class))
458 mode = insn_operand_mode[(int) icode][2];
459 else
461 char t_letter = insn_operand_constraint[(int) icode][2][2];
462 class = insn_class;
463 t_mode = insn_operand_mode[(int) icode][2];
464 t_class = (t_letter == 'r' ? GENERAL_REGS
465 : REG_CLASS_FROM_LETTER (t_letter));
466 t_icode = icode;
467 icode = CODE_FOR_nothing;
471 /* This case isn't valid, so fail. Reload is allowed to use the same
472 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
473 in the case of a secondary register, we actually need two different
474 registers for correct code. We fail here to prevent the possibility of
475 silently generating incorrect code later.
477 The convention is that secondary input reloads are valid only if the
478 secondary_class is different from class. If you have such a case, you
479 can not use secondary reloads, you must work around the problem some
480 other way.
482 Allow this when MODE is not reload_mode and assume that the generated
483 code handles this case (it does on the Alpha, which is the only place
484 this currently happens). */
486 if (in_p && class == reload_class && mode == reload_mode)
487 abort ();
489 /* If we need a tertiary reload, see if we have one we can reuse or else
490 make a new one. */
492 if (t_class != NO_REGS)
494 for (t_reload = 0; t_reload < n_reloads; t_reload++)
495 if (reload_secondary_p[t_reload]
496 && (reg_class_subset_p (t_class, reload_reg_class[t_reload])
497 || reg_class_subset_p (reload_reg_class[t_reload], t_class))
498 && ((in_p && reload_inmode[t_reload] == t_mode)
499 || (! in_p && reload_outmode[t_reload] == t_mode))
500 && ((in_p && (reload_secondary_in_icode[t_reload]
501 == CODE_FOR_nothing))
502 || (! in_p &&(reload_secondary_out_icode[t_reload]
503 == CODE_FOR_nothing)))
504 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
505 && MERGABLE_RELOADS (secondary_type,
506 reload_when_needed[t_reload],
507 opnum, reload_opnum[t_reload]))
509 if (in_p)
510 reload_inmode[t_reload] = t_mode;
511 if (! in_p)
512 reload_outmode[t_reload] = t_mode;
514 if (reg_class_subset_p (t_class, reload_reg_class[t_reload]))
515 reload_reg_class[t_reload] = t_class;
517 reload_opnum[t_reload] = MIN (reload_opnum[t_reload], opnum);
518 reload_optional[t_reload] &= optional;
519 reload_secondary_p[t_reload] = 1;
520 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[t_reload],
521 opnum, reload_opnum[t_reload]))
522 reload_when_needed[t_reload] = RELOAD_OTHER;
525 if (t_reload == n_reloads)
527 /* We need to make a new tertiary reload for this register class. */
528 reload_in[t_reload] = reload_out[t_reload] = 0;
529 reload_reg_class[t_reload] = t_class;
530 reload_inmode[t_reload] = in_p ? t_mode : VOIDmode;
531 reload_outmode[t_reload] = ! in_p ? t_mode : VOIDmode;
532 reload_reg_rtx[t_reload] = 0;
533 reload_optional[t_reload] = optional;
534 reload_nongroup[t_reload] = 0;
535 reload_inc[t_reload] = 0;
536 /* Maybe we could combine these, but it seems too tricky. */
537 reload_nocombine[t_reload] = 1;
538 reload_in_reg[t_reload] = 0;
539 reload_opnum[t_reload] = opnum;
540 reload_when_needed[t_reload] = secondary_type;
541 reload_secondary_in_reload[t_reload] = -1;
542 reload_secondary_out_reload[t_reload] = -1;
543 reload_secondary_in_icode[t_reload] = CODE_FOR_nothing;
544 reload_secondary_out_icode[t_reload] = CODE_FOR_nothing;
545 reload_secondary_p[t_reload] = 1;
547 n_reloads++;
551 /* See if we can reuse an existing secondary reload. */
552 for (s_reload = 0; s_reload < n_reloads; s_reload++)
553 if (reload_secondary_p[s_reload]
554 && (reg_class_subset_p (class, reload_reg_class[s_reload])
555 || reg_class_subset_p (reload_reg_class[s_reload], class))
556 && ((in_p && reload_inmode[s_reload] == mode)
557 || (! in_p && reload_outmode[s_reload] == mode))
558 && ((in_p && reload_secondary_in_reload[s_reload] == t_reload)
559 || (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
560 && ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
561 || (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
562 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
563 && MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
564 opnum, reload_opnum[s_reload]))
566 if (in_p)
567 reload_inmode[s_reload] = mode;
568 if (! in_p)
569 reload_outmode[s_reload] = mode;
571 if (reg_class_subset_p (class, reload_reg_class[s_reload]))
572 reload_reg_class[s_reload] = class;
574 reload_opnum[s_reload] = MIN (reload_opnum[s_reload], opnum);
575 reload_optional[s_reload] &= optional;
576 reload_secondary_p[s_reload] = 1;
577 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[s_reload],
578 opnum, reload_opnum[s_reload]))
579 reload_when_needed[s_reload] = RELOAD_OTHER;
582 if (s_reload == n_reloads)
584 #ifdef SECONDARY_MEMORY_NEEDED
585 /* If we need a memory location to copy between the two reload regs,
586 set it up now. Note that we do the input case before making
587 the reload and the output case after. This is due to the
588 way reloads are output. */
590 if (in_p && icode == CODE_FOR_nothing
591 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
592 get_secondary_mem (x, reload_mode, opnum, type);
593 #endif
595 /* We need to make a new secondary reload for this register class. */
596 reload_in[s_reload] = reload_out[s_reload] = 0;
597 reload_reg_class[s_reload] = class;
599 reload_inmode[s_reload] = in_p ? mode : VOIDmode;
600 reload_outmode[s_reload] = ! in_p ? mode : VOIDmode;
601 reload_reg_rtx[s_reload] = 0;
602 reload_optional[s_reload] = optional;
603 reload_nongroup[s_reload] = 0;
604 reload_inc[s_reload] = 0;
605 /* Maybe we could combine these, but it seems too tricky. */
606 reload_nocombine[s_reload] = 1;
607 reload_in_reg[s_reload] = 0;
608 reload_opnum[s_reload] = opnum;
609 reload_when_needed[s_reload] = secondary_type;
610 reload_secondary_in_reload[s_reload] = in_p ? t_reload : -1;
611 reload_secondary_out_reload[s_reload] = ! in_p ? t_reload : -1;
612 reload_secondary_in_icode[s_reload] = in_p ? t_icode : CODE_FOR_nothing;
613 reload_secondary_out_icode[s_reload]
614 = ! in_p ? t_icode : CODE_FOR_nothing;
615 reload_secondary_p[s_reload] = 1;
617 n_reloads++;
619 #ifdef SECONDARY_MEMORY_NEEDED
620 if (! in_p && icode == CODE_FOR_nothing
621 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
622 get_secondary_mem (x, mode, opnum, type);
623 #endif
626 *picode = icode;
627 return s_reload;
629 #endif /* HAVE_SECONDARY_RELOADS */
631 #ifdef SECONDARY_MEMORY_NEEDED
633 /* Return a memory location that will be used to copy X in mode MODE.
634 If we haven't already made a location for this mode in this insn,
635 call find_reloads_address on the location being returned. */
638 get_secondary_mem (x, mode, opnum, type)
639 rtx x;
640 enum machine_mode mode;
641 int opnum;
642 enum reload_type type;
644 rtx loc;
645 int mem_valid;
647 /* By default, if MODE is narrower than a word, widen it to a word.
648 This is required because most machines that require these memory
649 locations do not support short load and stores from all registers
650 (e.g., FP registers). */
652 #ifdef SECONDARY_MEMORY_NEEDED_MODE
653 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
654 #else
655 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
656 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
657 #endif
659 /* If we already have made a MEM for this operand in MODE, return it. */
660 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
661 return secondary_memlocs_elim[(int) mode][opnum];
663 /* If this is the first time we've tried to get a MEM for this mode,
664 allocate a new one. `something_changed' in reload will get set
665 by noticing that the frame size has changed. */
667 if (secondary_memlocs[(int) mode] == 0)
669 #ifdef SECONDARY_MEMORY_NEEDED_RTX
670 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
671 #else
672 secondary_memlocs[(int) mode]
673 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
674 #endif
677 /* Get a version of the address doing any eliminations needed. If that
678 didn't give us a new MEM, make a new one if it isn't valid. */
680 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
681 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
683 if (! mem_valid && loc == secondary_memlocs[(int) mode])
684 loc = copy_rtx (loc);
686 /* The only time the call below will do anything is if the stack
687 offset is too large. In that case IND_LEVELS doesn't matter, so we
688 can just pass a zero. Adjust the type to be the address of the
689 corresponding object. If the address was valid, save the eliminated
690 address. If it wasn't valid, we need to make a reload each time, so
691 don't save it. */
693 if (! mem_valid)
695 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
696 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
697 : RELOAD_OTHER);
699 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
700 opnum, type, 0, 0);
703 secondary_memlocs_elim[(int) mode][opnum] = loc;
704 return loc;
707 /* Clear any secondary memory locations we've made. */
709 void
710 clear_secondary_mem ()
712 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
714 #endif /* SECONDARY_MEMORY_NEEDED */
716 /* Find the largest class for which every register number plus N is valid in
717 M1 (if in range). Abort if no such class exists. */
719 static enum reg_class
720 find_valid_class (m1, n)
721 enum machine_mode m1;
722 int n;
724 int class;
725 int regno;
726 enum reg_class best_class;
727 int best_size = 0;
729 for (class = 1; class < N_REG_CLASSES; class++)
731 int bad = 0;
732 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
733 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
734 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
735 && ! HARD_REGNO_MODE_OK (regno + n, m1))
736 bad = 1;
738 if (! bad && reg_class_size[class] > best_size)
739 best_class = class, best_size = reg_class_size[class];
742 if (best_size == 0)
743 abort ();
745 return best_class;
748 /* Record one reload that needs to be performed.
749 IN is an rtx saying where the data are to be found before this instruction.
750 OUT says where they must be stored after the instruction.
751 (IN is zero for data not read, and OUT is zero for data not written.)
752 INLOC and OUTLOC point to the places in the instructions where
753 IN and OUT were found.
754 If IN and OUT are both non-zero, it means the same register must be used
755 to reload both IN and OUT.
757 CLASS is a register class required for the reloaded data.
758 INMODE is the machine mode that the instruction requires
759 for the reg that replaces IN and OUTMODE is likewise for OUT.
761 If IN is zero, then OUT's location and mode should be passed as
762 INLOC and INMODE.
764 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
766 OPTIONAL nonzero means this reload does not need to be performed:
767 it can be discarded if that is more convenient.
769 OPNUM and TYPE say what the purpose of this reload is.
771 The return value is the reload-number for this reload.
773 If both IN and OUT are nonzero, in some rare cases we might
774 want to make two separate reloads. (Actually we never do this now.)
775 Therefore, the reload-number for OUT is stored in
776 output_reloadnum when we return; the return value applies to IN.
777 Usually (presently always), when IN and OUT are nonzero,
778 the two reload-numbers are equal, but the caller should be careful to
779 distinguish them. */
781 static int
782 push_reload (in, out, inloc, outloc, class,
783 inmode, outmode, strict_low, optional, opnum, type)
784 register rtx in, out;
785 rtx *inloc, *outloc;
786 enum reg_class class;
787 enum machine_mode inmode, outmode;
788 int strict_low;
789 int optional;
790 int opnum;
791 enum reload_type type;
793 register int i;
794 int dont_share = 0;
795 int dont_remove_subreg = 0;
796 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
797 int secondary_in_reload = -1, secondary_out_reload = -1;
798 enum insn_code secondary_in_icode = CODE_FOR_nothing;
799 enum insn_code secondary_out_icode = CODE_FOR_nothing;
801 /* INMODE and/or OUTMODE could be VOIDmode if no mode
802 has been specified for the operand. In that case,
803 use the operand's mode as the mode to reload. */
804 if (inmode == VOIDmode && in != 0)
805 inmode = GET_MODE (in);
806 if (outmode == VOIDmode && out != 0)
807 outmode = GET_MODE (out);
809 /* If IN is a pseudo register everywhere-equivalent to a constant, and
810 it is not in a hard register, reload straight from the constant,
811 since we want to get rid of such pseudo registers.
812 Often this is done earlier, but not always in find_reloads_address. */
813 if (in != 0 && GET_CODE (in) == REG)
815 register int regno = REGNO (in);
817 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
818 && reg_equiv_constant[regno] != 0)
819 in = reg_equiv_constant[regno];
822 /* Likewise for OUT. Of course, OUT will never be equivalent to
823 an actual constant, but it might be equivalent to a memory location
824 (in the case of a parameter). */
825 if (out != 0 && GET_CODE (out) == REG)
827 register int regno = REGNO (out);
829 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
830 && reg_equiv_constant[regno] != 0)
831 out = reg_equiv_constant[regno];
834 /* If we have a read-write operand with an address side-effect,
835 change either IN or OUT so the side-effect happens only once. */
836 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
838 if (GET_CODE (XEXP (in, 0)) == POST_INC
839 || GET_CODE (XEXP (in, 0)) == POST_DEC)
840 in = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
841 if (GET_CODE (XEXP (in, 0)) == PRE_INC
842 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
843 out = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
846 /* If we are reloading a (SUBREG constant ...), really reload just the
847 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
848 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
849 a pseudo and hence will become a MEM) with M1 wider than M2 and the
850 register is a pseudo, also reload the inside expression.
851 For machines that extend byte loads, do this for any SUBREG of a pseudo
852 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
853 M2 is an integral mode that gets extended when loaded.
854 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
855 either M1 is not valid for R or M2 is wider than a word but we only
856 need one word to store an M2-sized quantity in R.
857 (However, if OUT is nonzero, we need to reload the reg *and*
858 the subreg, so do nothing here, and let following statement handle it.)
860 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
861 we can't handle it here because CONST_INT does not indicate a mode.
863 Similarly, we must reload the inside expression if we have a
864 STRICT_LOW_PART (presumably, in == out in the cas).
866 Also reload the inner expression if it does not require a secondary
867 reload but the SUBREG does.
869 Finally, reload the inner expression if it is a register that is in
870 the class whose registers cannot be referenced in a different size
871 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
872 cannot reload just the inside since we might end up with the wrong
873 register class. */
875 if (in != 0 && GET_CODE (in) == SUBREG && SUBREG_WORD (in) == 0
876 #ifdef CLASS_CANNOT_CHANGE_SIZE
877 && class != CLASS_CANNOT_CHANGE_SIZE
878 #endif
879 && (CONSTANT_P (SUBREG_REG (in))
880 || GET_CODE (SUBREG_REG (in)) == PLUS
881 || strict_low
882 || (((GET_CODE (SUBREG_REG (in)) == REG
883 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
884 || GET_CODE (SUBREG_REG (in)) == MEM)
885 && ((GET_MODE_SIZE (inmode)
886 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
887 #ifdef LOAD_EXTEND_OP
888 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
889 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
890 <= UNITS_PER_WORD)
891 && (GET_MODE_SIZE (inmode)
892 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
893 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
894 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
895 #endif
896 #ifdef WORD_REGISTER_OPERATIONS
897 || ((GET_MODE_SIZE (inmode)
898 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
899 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
900 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
901 / UNITS_PER_WORD)))
902 #endif
904 || (GET_CODE (SUBREG_REG (in)) == REG
905 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
906 /* The case where out is nonzero
907 is handled differently in the following statement. */
908 && (out == 0 || SUBREG_WORD (in) == 0)
909 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
910 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
911 > UNITS_PER_WORD)
912 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
913 / UNITS_PER_WORD)
914 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
915 GET_MODE (SUBREG_REG (in)))))
916 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
917 + SUBREG_WORD (in)),
918 inmode)))
919 #ifdef SECONDARY_INPUT_RELOAD_CLASS
920 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
921 && (SECONDARY_INPUT_RELOAD_CLASS (class,
922 GET_MODE (SUBREG_REG (in)),
923 SUBREG_REG (in))
924 == NO_REGS))
925 #endif
926 #ifdef CLASS_CANNOT_CHANGE_SIZE
927 || (GET_CODE (SUBREG_REG (in)) == REG
928 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
929 && (TEST_HARD_REG_BIT
930 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
931 REGNO (SUBREG_REG (in))))
932 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
933 != GET_MODE_SIZE (inmode)))
934 #endif
937 in_subreg_loc = inloc;
938 inloc = &SUBREG_REG (in);
939 in = *inloc;
940 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
941 if (GET_CODE (in) == MEM)
942 /* This is supposed to happen only for paradoxical subregs made by
943 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
944 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
945 abort ();
946 #endif
947 inmode = GET_MODE (in);
950 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
951 either M1 is not valid for R or M2 is wider than a word but we only
952 need one word to store an M2-sized quantity in R.
954 However, we must reload the inner reg *as well as* the subreg in
955 that case. */
957 /* Similar issue for (SUBREG constant ...) if it was not handled by the
958 code above. This can happen if SUBREG_WORD != 0. */
960 if (in != 0 && GET_CODE (in) == SUBREG
961 && (CONSTANT_P (SUBREG_REG (in))
962 || (GET_CODE (SUBREG_REG (in)) == REG
963 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
964 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
965 + SUBREG_WORD (in),
966 inmode)
967 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
968 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
969 > UNITS_PER_WORD)
970 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
971 / UNITS_PER_WORD)
972 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
973 GET_MODE (SUBREG_REG (in)))))))))
975 /* This relies on the fact that emit_reload_insns outputs the
976 instructions for input reloads of type RELOAD_OTHER in the same
977 order as the reloads. Thus if the outer reload is also of type
978 RELOAD_OTHER, we are guaranteed that this inner reload will be
979 output before the outer reload. */
980 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
981 find_valid_class (inmode, SUBREG_WORD (in)),
982 VOIDmode, VOIDmode, 0, 0, opnum, type);
983 dont_remove_subreg = 1;
986 /* Similarly for paradoxical and problematical SUBREGs on the output.
987 Note that there is no reason we need worry about the previous value
988 of SUBREG_REG (out); even if wider than out,
989 storing in a subreg is entitled to clobber it all
990 (except in the case of STRICT_LOW_PART,
991 and in that case the constraint should label it input-output.) */
992 if (out != 0 && GET_CODE (out) == SUBREG && SUBREG_WORD (out) == 0
993 #ifdef CLASS_CANNOT_CHANGE_SIZE
994 && class != CLASS_CANNOT_CHANGE_SIZE
995 #endif
996 && (CONSTANT_P (SUBREG_REG (out))
997 || strict_low
998 || (((GET_CODE (SUBREG_REG (out)) == REG
999 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1000 || GET_CODE (SUBREG_REG (out)) == MEM)
1001 && ((GET_MODE_SIZE (outmode)
1002 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1003 #ifdef WORD_REGISTER_OPERATIONS
1004 || ((GET_MODE_SIZE (outmode)
1005 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1006 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1007 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1008 / UNITS_PER_WORD)))
1009 #endif
1011 || (GET_CODE (SUBREG_REG (out)) == REG
1012 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1013 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1014 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1015 > UNITS_PER_WORD)
1016 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1017 / UNITS_PER_WORD)
1018 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1019 GET_MODE (SUBREG_REG (out)))))
1020 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1021 + SUBREG_WORD (out)),
1022 outmode)))
1023 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1024 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1025 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1026 GET_MODE (SUBREG_REG (out)),
1027 SUBREG_REG (out))
1028 == NO_REGS))
1029 #endif
1030 #ifdef CLASS_CANNOT_CHANGE_SIZE
1031 || (GET_CODE (SUBREG_REG (out)) == REG
1032 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1033 && (TEST_HARD_REG_BIT
1034 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1035 REGNO (SUBREG_REG (out))))
1036 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1037 != GET_MODE_SIZE (outmode)))
1038 #endif
1041 out_subreg_loc = outloc;
1042 outloc = &SUBREG_REG (out);
1043 out = *outloc;
1044 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1045 if (GET_CODE (out) == MEM
1046 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1047 abort ();
1048 #endif
1049 outmode = GET_MODE (out);
1052 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1053 either M1 is not valid for R or M2 is wider than a word but we only
1054 need one word to store an M2-sized quantity in R.
1056 However, we must reload the inner reg *as well as* the subreg in
1057 that case. In this case, the inner reg is an in-out reload. */
1059 if (out != 0 && GET_CODE (out) == SUBREG
1060 && GET_CODE (SUBREG_REG (out)) == REG
1061 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1062 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1063 outmode)
1064 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1065 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1066 > UNITS_PER_WORD)
1067 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1068 / UNITS_PER_WORD)
1069 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1070 GET_MODE (SUBREG_REG (out)))))))
1072 /* This relies on the fact that emit_reload_insns outputs the
1073 instructions for output reloads of type RELOAD_OTHER in reverse
1074 order of the reloads. Thus if the outer reload is also of type
1075 RELOAD_OTHER, we are guaranteed that this inner reload will be
1076 output after the outer reload. */
1077 dont_remove_subreg = 1;
1078 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1079 &SUBREG_REG (out),
1080 find_valid_class (outmode, SUBREG_WORD (out)),
1081 VOIDmode, VOIDmode, 0, 0,
1082 opnum, RELOAD_OTHER);
1085 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1086 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1087 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1088 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1089 dont_share = 1;
1091 /* If IN is a SUBREG of a hard register, make a new REG. This
1092 simplifies some of the cases below. */
1094 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1095 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1096 && ! dont_remove_subreg)
1097 in = gen_rtx_REG (GET_MODE (in),
1098 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
1100 /* Similarly for OUT. */
1101 if (out != 0 && GET_CODE (out) == SUBREG
1102 && GET_CODE (SUBREG_REG (out)) == REG
1103 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1104 && ! dont_remove_subreg)
1105 out = gen_rtx_REG (GET_MODE (out),
1106 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
1108 /* Narrow down the class of register wanted if that is
1109 desirable on this machine for efficiency. */
1110 if (in != 0)
1111 class = PREFERRED_RELOAD_CLASS (in, class);
1113 /* Output reloads may need analogous treatment, different in detail. */
1114 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1115 if (out != 0)
1116 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1117 #endif
1119 /* Make sure we use a class that can handle the actual pseudo
1120 inside any subreg. For example, on the 386, QImode regs
1121 can appear within SImode subregs. Although GENERAL_REGS
1122 can handle SImode, QImode needs a smaller class. */
1123 #ifdef LIMIT_RELOAD_CLASS
1124 if (in_subreg_loc)
1125 class = LIMIT_RELOAD_CLASS (inmode, class);
1126 else if (in != 0 && GET_CODE (in) == SUBREG)
1127 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1129 if (out_subreg_loc)
1130 class = LIMIT_RELOAD_CLASS (outmode, class);
1131 if (out != 0 && GET_CODE (out) == SUBREG)
1132 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1133 #endif
1135 /* Verify that this class is at least possible for the mode that
1136 is specified. */
1137 if (this_insn_is_asm)
1139 enum machine_mode mode;
1140 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1141 mode = inmode;
1142 else
1143 mode = outmode;
1144 if (mode == VOIDmode)
1146 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1147 mode = word_mode;
1148 if (in != 0)
1149 inmode = word_mode;
1150 if (out != 0)
1151 outmode = word_mode;
1153 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1154 if (HARD_REGNO_MODE_OK (i, mode)
1155 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1157 int nregs = HARD_REGNO_NREGS (i, mode);
1159 int j;
1160 for (j = 1; j < nregs; j++)
1161 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1162 break;
1163 if (j == nregs)
1164 break;
1166 if (i == FIRST_PSEUDO_REGISTER)
1168 error_for_asm (this_insn, "impossible register constraint in `asm'");
1169 class = ALL_REGS;
1173 if (class == NO_REGS)
1174 abort ();
1176 /* We can use an existing reload if the class is right
1177 and at least one of IN and OUT is a match
1178 and the other is at worst neutral.
1179 (A zero compared against anything is neutral.)
1181 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
1182 for the same thing since that can cause us to need more reload registers
1183 than we otherwise would. */
1185 for (i = 0; i < n_reloads; i++)
1186 if ((reg_class_subset_p (class, reload_reg_class[i])
1187 || reg_class_subset_p (reload_reg_class[i], class))
1188 /* If the existing reload has a register, it must fit our class. */
1189 && (reload_reg_rtx[i] == 0
1190 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1191 true_regnum (reload_reg_rtx[i])))
1192 && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
1193 && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
1195 (out != 0 && MATCHES (reload_out[i], out)
1196 && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
1197 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
1198 && MERGABLE_RELOADS (type, reload_when_needed[i],
1199 opnum, reload_opnum[i]))
1200 break;
1202 /* Reloading a plain reg for input can match a reload to postincrement
1203 that reg, since the postincrement's value is the right value.
1204 Likewise, it can match a preincrement reload, since we regard
1205 the preincrementation as happening before any ref in this insn
1206 to that register. */
1207 if (i == n_reloads)
1208 for (i = 0; i < n_reloads; i++)
1209 if ((reg_class_subset_p (class, reload_reg_class[i])
1210 || reg_class_subset_p (reload_reg_class[i], class))
1211 /* If the existing reload has a register, it must fit our class. */
1212 && (reload_reg_rtx[i] == 0
1213 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1214 true_regnum (reload_reg_rtx[i])))
1215 && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
1216 && ((GET_CODE (in) == REG
1217 && (GET_CODE (reload_in[i]) == POST_INC
1218 || GET_CODE (reload_in[i]) == POST_DEC
1219 || GET_CODE (reload_in[i]) == PRE_INC
1220 || GET_CODE (reload_in[i]) == PRE_DEC)
1221 && MATCHES (XEXP (reload_in[i], 0), in))
1223 (GET_CODE (reload_in[i]) == REG
1224 && (GET_CODE (in) == POST_INC
1225 || GET_CODE (in) == POST_DEC
1226 || GET_CODE (in) == PRE_INC
1227 || GET_CODE (in) == PRE_DEC)
1228 && MATCHES (XEXP (in, 0), reload_in[i])))
1229 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
1230 && MERGABLE_RELOADS (type, reload_when_needed[i],
1231 opnum, reload_opnum[i]))
1233 /* Make sure reload_in ultimately has the increment,
1234 not the plain register. */
1235 if (GET_CODE (in) == REG)
1236 in = reload_in[i];
1237 break;
1240 if (i == n_reloads)
1242 /* See if we need a secondary reload register to move between CLASS
1243 and IN or CLASS and OUT. Get the icode and push any required reloads
1244 needed for each of them if so. */
1246 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1247 if (in != 0)
1248 secondary_in_reload
1249 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1250 &secondary_in_icode);
1251 #endif
1253 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1254 if (out != 0 && GET_CODE (out) != SCRATCH)
1255 secondary_out_reload
1256 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1257 type, &secondary_out_icode);
1258 #endif
1260 /* We found no existing reload suitable for re-use.
1261 So add an additional reload. */
1263 #ifdef SECONDARY_MEMORY_NEEDED
1264 /* If a memory location is needed for the copy, make one. */
1265 if (in != 0 && GET_CODE (in) == REG
1266 && REGNO (in) < FIRST_PSEUDO_REGISTER
1267 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1268 class, inmode))
1269 get_secondary_mem (in, inmode, opnum, type);
1270 #endif
1272 i = n_reloads;
1273 reload_in[i] = in;
1274 reload_out[i] = out;
1275 reload_reg_class[i] = class;
1276 reload_inmode[i] = inmode;
1277 reload_outmode[i] = outmode;
1278 reload_reg_rtx[i] = 0;
1279 reload_optional[i] = optional;
1280 reload_nongroup[i] = 0;
1281 reload_inc[i] = 0;
1282 reload_nocombine[i] = 0;
1283 reload_in_reg[i] = inloc ? *inloc : 0;
1284 reload_opnum[i] = opnum;
1285 reload_when_needed[i] = type;
1286 reload_secondary_in_reload[i] = secondary_in_reload;
1287 reload_secondary_out_reload[i] = secondary_out_reload;
1288 reload_secondary_in_icode[i] = secondary_in_icode;
1289 reload_secondary_out_icode[i] = secondary_out_icode;
1290 reload_secondary_p[i] = 0;
1292 n_reloads++;
1294 #ifdef SECONDARY_MEMORY_NEEDED
1295 if (out != 0 && GET_CODE (out) == REG
1296 && REGNO (out) < FIRST_PSEUDO_REGISTER
1297 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1298 outmode))
1299 get_secondary_mem (out, outmode, opnum, type);
1300 #endif
1302 else
1304 /* We are reusing an existing reload,
1305 but we may have additional information for it.
1306 For example, we may now have both IN and OUT
1307 while the old one may have just one of them. */
1309 /* The modes can be different. If they are, we want to reload in
1310 the larger mode, so that the value is valid for both modes. */
1311 if (inmode != VOIDmode
1312 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (reload_inmode[i]))
1313 reload_inmode[i] = inmode;
1314 if (outmode != VOIDmode
1315 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (reload_outmode[i]))
1316 reload_outmode[i] = outmode;
1317 if (in != 0)
1318 reload_in[i] = in;
1319 if (out != 0)
1320 reload_out[i] = out;
1321 if (reg_class_subset_p (class, reload_reg_class[i]))
1322 reload_reg_class[i] = class;
1323 reload_optional[i] &= optional;
1324 if (MERGE_TO_OTHER (type, reload_when_needed[i],
1325 opnum, reload_opnum[i]))
1326 reload_when_needed[i] = RELOAD_OTHER;
1327 reload_opnum[i] = MIN (reload_opnum[i], opnum);
1330 /* If the ostensible rtx being reload differs from the rtx found
1331 in the location to substitute, this reload is not safe to combine
1332 because we cannot reliably tell whether it appears in the insn. */
1334 if (in != 0 && in != *inloc)
1335 reload_nocombine[i] = 1;
1337 #if 0
1338 /* This was replaced by changes in find_reloads_address_1 and the new
1339 function inc_for_reload, which go with a new meaning of reload_inc. */
1341 /* If this is an IN/OUT reload in an insn that sets the CC,
1342 it must be for an autoincrement. It doesn't work to store
1343 the incremented value after the insn because that would clobber the CC.
1344 So we must do the increment of the value reloaded from,
1345 increment it, store it back, then decrement again. */
1346 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1348 out = 0;
1349 reload_out[i] = 0;
1350 reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
1351 /* If we did not find a nonzero amount-to-increment-by,
1352 that contradicts the belief that IN is being incremented
1353 in an address in this insn. */
1354 if (reload_inc[i] == 0)
1355 abort ();
1357 #endif
1359 /* If we will replace IN and OUT with the reload-reg,
1360 record where they are located so that substitution need
1361 not do a tree walk. */
1363 if (replace_reloads)
1365 if (inloc != 0)
1367 register struct replacement *r = &replacements[n_replacements++];
1368 r->what = i;
1369 r->subreg_loc = in_subreg_loc;
1370 r->where = inloc;
1371 r->mode = inmode;
1373 if (outloc != 0 && outloc != inloc)
1375 register struct replacement *r = &replacements[n_replacements++];
1376 r->what = i;
1377 r->where = outloc;
1378 r->subreg_loc = out_subreg_loc;
1379 r->mode = outmode;
1383 /* If this reload is just being introduced and it has both
1384 an incoming quantity and an outgoing quantity that are
1385 supposed to be made to match, see if either one of the two
1386 can serve as the place to reload into.
1388 If one of them is acceptable, set reload_reg_rtx[i]
1389 to that one. */
1391 if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
1393 reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
1394 inmode, outmode,
1395 reload_reg_class[i], i,
1396 earlyclobber_operand_p (out));
1398 /* If the outgoing register already contains the same value
1399 as the incoming one, we can dispense with loading it.
1400 The easiest way to tell the caller that is to give a phony
1401 value for the incoming operand (same as outgoing one). */
1402 if (reload_reg_rtx[i] == out
1403 && (GET_CODE (in) == REG || CONSTANT_P (in))
1404 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1405 static_reload_reg_p, i, inmode))
1406 reload_in[i] = out;
1409 /* If this is an input reload and the operand contains a register that
1410 dies in this insn and is used nowhere else, see if it is the right class
1411 to be used for this reload. Use it if so. (This occurs most commonly
1412 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1413 this if it is also an output reload that mentions the register unless
1414 the output is a SUBREG that clobbers an entire register.
1416 Note that the operand might be one of the spill regs, if it is a
1417 pseudo reg and we are in a block where spilling has not taken place.
1418 But if there is no spilling in this block, that is OK.
1419 An explicitly used hard reg cannot be a spill reg. */
1421 if (reload_reg_rtx[i] == 0 && in != 0)
1423 rtx note;
1424 int regno;
1426 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1427 if (REG_NOTE_KIND (note) == REG_DEAD
1428 && GET_CODE (XEXP (note, 0)) == REG
1429 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1430 && reg_mentioned_p (XEXP (note, 0), in)
1431 && ! refers_to_regno_for_reload_p (regno,
1432 (regno
1433 + HARD_REGNO_NREGS (regno,
1434 inmode)),
1435 PATTERN (this_insn), inloc)
1436 /* If this is also an output reload, IN cannot be used as
1437 the reload register if it is set in this insn unless IN
1438 is also OUT. */
1439 && (out == 0 || in == out
1440 || ! hard_reg_set_here_p (regno,
1441 (regno
1442 + HARD_REGNO_NREGS (regno,
1443 inmode)),
1444 PATTERN (this_insn)))
1445 /* ??? Why is this code so different from the previous?
1446 Is there any simple coherent way to describe the two together?
1447 What's going on here. */
1448 && (in != out
1449 || (GET_CODE (in) == SUBREG
1450 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1451 / UNITS_PER_WORD)
1452 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1453 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1454 /* Make sure the operand fits in the reg that dies. */
1455 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1456 && HARD_REGNO_MODE_OK (regno, inmode)
1457 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1458 && HARD_REGNO_MODE_OK (regno, outmode)
1459 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1460 && !fixed_regs[regno])
1462 reload_reg_rtx[i] = gen_rtx_REG (inmode, regno);
1463 break;
1467 if (out)
1468 output_reloadnum = i;
1470 return i;
1473 /* Record an additional place we must replace a value
1474 for which we have already recorded a reload.
1475 RELOADNUM is the value returned by push_reload
1476 when the reload was recorded.
1477 This is used in insn patterns that use match_dup. */
1479 static void
1480 push_replacement (loc, reloadnum, mode)
1481 rtx *loc;
1482 int reloadnum;
1483 enum machine_mode mode;
1485 if (replace_reloads)
1487 register struct replacement *r = &replacements[n_replacements++];
1488 r->what = reloadnum;
1489 r->where = loc;
1490 r->subreg_loc = 0;
1491 r->mode = mode;
1495 /* Transfer all replacements that used to be in reload FROM to be in
1496 reload TO. */
1498 void
1499 transfer_replacements (to, from)
1500 int to, from;
1502 int i;
1504 for (i = 0; i < n_replacements; i++)
1505 if (replacements[i].what == from)
1506 replacements[i].what = to;
1509 /* Remove all replacements in reload FROM. */
1510 void
1511 remove_replacements (from)
1512 int from;
1514 int i, j;
1516 for (i = 0, j = 0; i < n_replacements; i++)
1518 if (replacements[i].what == from)
1519 continue;
1520 replacements[j++] = replacements[i];
1524 /* If there is only one output reload, and it is not for an earlyclobber
1525 operand, try to combine it with a (logically unrelated) input reload
1526 to reduce the number of reload registers needed.
1528 This is safe if the input reload does not appear in
1529 the value being output-reloaded, because this implies
1530 it is not needed any more once the original insn completes.
1532 If that doesn't work, see we can use any of the registers that
1533 die in this insn as a reload register. We can if it is of the right
1534 class and does not appear in the value being output-reloaded. */
1536 static void
1537 combine_reloads ()
1539 int i;
1540 int output_reload = -1;
1541 int secondary_out = -1;
1542 rtx note;
1544 /* Find the output reload; return unless there is exactly one
1545 and that one is mandatory. */
1547 for (i = 0; i < n_reloads; i++)
1548 if (reload_out[i] != 0)
1550 if (output_reload >= 0)
1551 return;
1552 output_reload = i;
1555 if (output_reload < 0 || reload_optional[output_reload])
1556 return;
1558 /* An input-output reload isn't combinable. */
1560 if (reload_in[output_reload] != 0)
1561 return;
1563 /* If this reload is for an earlyclobber operand, we can't do anything. */
1564 if (earlyclobber_operand_p (reload_out[output_reload]))
1565 return;
1567 /* Check each input reload; can we combine it? */
1569 for (i = 0; i < n_reloads; i++)
1570 if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
1571 /* Life span of this reload must not extend past main insn. */
1572 && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
1573 && reload_when_needed[i] != RELOAD_FOR_OUTADDR_ADDRESS
1574 && reload_when_needed[i] != RELOAD_OTHER
1575 && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
1576 == CLASS_MAX_NREGS (reload_reg_class[output_reload],
1577 reload_outmode[output_reload]))
1578 && reload_inc[i] == 0
1579 && reload_reg_rtx[i] == 0
1580 #ifdef SECONDARY_MEMORY_NEEDED
1581 /* Don't combine two reloads with different secondary
1582 memory locations. */
1583 && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
1584 || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
1585 || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
1586 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
1587 #endif
1588 && (SMALL_REGISTER_CLASSES
1589 ? (reload_reg_class[i] == reload_reg_class[output_reload])
1590 : (reg_class_subset_p (reload_reg_class[i],
1591 reload_reg_class[output_reload])
1592 || reg_class_subset_p (reload_reg_class[output_reload],
1593 reload_reg_class[i])))
1594 && (MATCHES (reload_in[i], reload_out[output_reload])
1595 /* Args reversed because the first arg seems to be
1596 the one that we imagine being modified
1597 while the second is the one that might be affected. */
1598 || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
1599 reload_in[i])
1600 /* However, if the input is a register that appears inside
1601 the output, then we also can't share.
1602 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1603 If the same reload reg is used for both reg 69 and the
1604 result to be stored in memory, then that result
1605 will clobber the address of the memory ref. */
1606 && ! (GET_CODE (reload_in[i]) == REG
1607 && reg_overlap_mentioned_for_reload_p (reload_in[i],
1608 reload_out[output_reload]))))
1609 && (reg_class_size[(int) reload_reg_class[i]]
1610 || SMALL_REGISTER_CLASSES)
1611 /* We will allow making things slightly worse by combining an
1612 input and an output, but no worse than that. */
1613 && (reload_when_needed[i] == RELOAD_FOR_INPUT
1614 || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
1616 int j;
1618 /* We have found a reload to combine with! */
1619 reload_out[i] = reload_out[output_reload];
1620 reload_outmode[i] = reload_outmode[output_reload];
1621 /* Mark the old output reload as inoperative. */
1622 reload_out[output_reload] = 0;
1623 /* The combined reload is needed for the entire insn. */
1624 reload_when_needed[i] = RELOAD_OTHER;
1625 /* If the output reload had a secondary reload, copy it. */
1626 if (reload_secondary_out_reload[output_reload] != -1)
1628 reload_secondary_out_reload[i]
1629 = reload_secondary_out_reload[output_reload];
1630 reload_secondary_out_icode[i]
1631 = reload_secondary_out_icode[output_reload];
1634 #ifdef SECONDARY_MEMORY_NEEDED
1635 /* Copy any secondary MEM. */
1636 if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
1637 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
1638 = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
1639 #endif
1640 /* If required, minimize the register class. */
1641 if (reg_class_subset_p (reload_reg_class[output_reload],
1642 reload_reg_class[i]))
1643 reload_reg_class[i] = reload_reg_class[output_reload];
1645 /* Transfer all replacements from the old reload to the combined. */
1646 for (j = 0; j < n_replacements; j++)
1647 if (replacements[j].what == output_reload)
1648 replacements[j].what = i;
1650 return;
1653 /* If this insn has only one operand that is modified or written (assumed
1654 to be the first), it must be the one corresponding to this reload. It
1655 is safe to use anything that dies in this insn for that output provided
1656 that it does not occur in the output (we already know it isn't an
1657 earlyclobber. If this is an asm insn, give up. */
1659 if (INSN_CODE (this_insn) == -1)
1660 return;
1662 for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
1663 if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
1664 || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
1665 return;
1667 /* See if some hard register that dies in this insn and is not used in
1668 the output is the right class. Only works if the register we pick
1669 up can fully hold our output reload. */
1670 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1671 if (REG_NOTE_KIND (note) == REG_DEAD
1672 && GET_CODE (XEXP (note, 0)) == REG
1673 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1674 reload_out[output_reload])
1675 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1676 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1677 && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
1678 REGNO (XEXP (note, 0)))
1679 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1680 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1681 /* Ensure that a secondary or tertiary reload for this output
1682 won't want this register. */
1683 && ((secondary_out = reload_secondary_out_reload[output_reload]) == -1
1684 || (! (TEST_HARD_REG_BIT
1685 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1686 REGNO (XEXP (note, 0))))
1687 && ((secondary_out = reload_secondary_out_reload[secondary_out]) == -1
1688 || ! (TEST_HARD_REG_BIT
1689 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1690 REGNO (XEXP (note, 0)))))))
1691 && ! fixed_regs[REGNO (XEXP (note, 0))])
1693 reload_reg_rtx[output_reload]
1694 = gen_rtx_REG (reload_outmode[output_reload],
1695 REGNO (XEXP (note, 0)));
1696 return;
1700 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1701 See if one of IN and OUT is a register that may be used;
1702 this is desirable since a spill-register won't be needed.
1703 If so, return the register rtx that proves acceptable.
1705 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1706 CLASS is the register class required for the reload.
1708 If FOR_REAL is >= 0, it is the number of the reload,
1709 and in some cases when it can be discovered that OUT doesn't need
1710 to be computed, clear out reload_out[FOR_REAL].
1712 If FOR_REAL is -1, this should not be done, because this call
1713 is just to see if a register can be found, not to find and install it.
1715 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1716 puts an additional constraint on being able to use IN for OUT since
1717 IN must not appear elsewhere in the insn (it is assumed that IN itself
1718 is safe from the earlyclobber). */
1720 static rtx
1721 find_dummy_reload (real_in, real_out, inloc, outloc,
1722 inmode, outmode, class, for_real, earlyclobber)
1723 rtx real_in, real_out;
1724 rtx *inloc, *outloc;
1725 enum machine_mode inmode, outmode;
1726 enum reg_class class;
1727 int for_real;
1728 int earlyclobber;
1730 rtx in = real_in;
1731 rtx out = real_out;
1732 int in_offset = 0;
1733 int out_offset = 0;
1734 rtx value = 0;
1736 /* If operands exceed a word, we can't use either of them
1737 unless they have the same size. */
1738 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1739 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1740 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1741 return 0;
1743 /* Find the inside of any subregs. */
1744 while (GET_CODE (out) == SUBREG)
1746 out_offset = SUBREG_WORD (out);
1747 out = SUBREG_REG (out);
1749 while (GET_CODE (in) == SUBREG)
1751 in_offset = SUBREG_WORD (in);
1752 in = SUBREG_REG (in);
1755 /* Narrow down the reg class, the same way push_reload will;
1756 otherwise we might find a dummy now, but push_reload won't. */
1757 class = PREFERRED_RELOAD_CLASS (in, class);
1759 /* See if OUT will do. */
1760 if (GET_CODE (out) == REG
1761 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1763 register int regno = REGNO (out) + out_offset;
1764 int nwords = HARD_REGNO_NREGS (regno, outmode);
1765 rtx saved_rtx;
1767 /* When we consider whether the insn uses OUT,
1768 ignore references within IN. They don't prevent us
1769 from copying IN into OUT, because those refs would
1770 move into the insn that reloads IN.
1772 However, we only ignore IN in its role as this reload.
1773 If the insn uses IN elsewhere and it contains OUT,
1774 that counts. We can't be sure it's the "same" operand
1775 so it might not go through this reload. */
1776 saved_rtx = *inloc;
1777 *inloc = const0_rtx;
1779 if (regno < FIRST_PSEUDO_REGISTER
1780 /* A fixed reg that can overlap other regs better not be used
1781 for reloading in any way. */
1782 #ifdef OVERLAPPING_REGNO_P
1783 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1784 #endif
1785 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1786 PATTERN (this_insn), outloc))
1788 int i;
1789 for (i = 0; i < nwords; i++)
1790 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1791 regno + i))
1792 break;
1794 if (i == nwords)
1796 if (GET_CODE (real_out) == REG)
1797 value = real_out;
1798 else
1799 value = gen_rtx_REG (outmode, regno);
1803 *inloc = saved_rtx;
1806 /* Consider using IN if OUT was not acceptable
1807 or if OUT dies in this insn (like the quotient in a divmod insn).
1808 We can't use IN unless it is dies in this insn,
1809 which means we must know accurately which hard regs are live.
1810 Also, the result can't go in IN if IN is used within OUT,
1811 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1812 if (hard_regs_live_known
1813 && GET_CODE (in) == REG
1814 && REGNO (in) < FIRST_PSEUDO_REGISTER
1815 && (value == 0
1816 || find_reg_note (this_insn, REG_UNUSED, real_out))
1817 && find_reg_note (this_insn, REG_DEAD, real_in)
1818 && !fixed_regs[REGNO (in)]
1819 && HARD_REGNO_MODE_OK (REGNO (in),
1820 /* The only case where out and real_out might
1821 have different modes is where real_out
1822 is a subreg, and in that case, out
1823 has a real mode. */
1824 (GET_MODE (out) != VOIDmode
1825 ? GET_MODE (out) : outmode)))
1827 register int regno = REGNO (in) + in_offset;
1828 int nwords = HARD_REGNO_NREGS (regno, inmode);
1830 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
1831 && ! hard_reg_set_here_p (regno, regno + nwords,
1832 PATTERN (this_insn))
1833 && (! earlyclobber
1834 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1835 PATTERN (this_insn), inloc)))
1837 int i;
1838 for (i = 0; i < nwords; i++)
1839 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1840 regno + i))
1841 break;
1843 if (i == nwords)
1845 /* If we were going to use OUT as the reload reg
1846 and changed our mind, it means OUT is a dummy that
1847 dies here. So don't bother copying value to it. */
1848 if (for_real >= 0 && value == real_out)
1849 reload_out[for_real] = 0;
1850 if (GET_CODE (real_in) == REG)
1851 value = real_in;
1852 else
1853 value = gen_rtx_REG (inmode, regno);
1858 return value;
1861 /* This page contains subroutines used mainly for determining
1862 whether the IN or an OUT of a reload can serve as the
1863 reload register. */
1865 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1867 static int
1868 earlyclobber_operand_p (x)
1869 rtx x;
1871 int i;
1873 for (i = 0; i < n_earlyclobbers; i++)
1874 if (reload_earlyclobbers[i] == x)
1875 return 1;
1877 return 0;
1880 /* Return 1 if expression X alters a hard reg in the range
1881 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1882 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1883 X should be the body of an instruction. */
1885 static int
1886 hard_reg_set_here_p (beg_regno, end_regno, x)
1887 register int beg_regno, end_regno;
1888 rtx x;
1890 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1892 register rtx op0 = SET_DEST (x);
1893 while (GET_CODE (op0) == SUBREG)
1894 op0 = SUBREG_REG (op0);
1895 if (GET_CODE (op0) == REG)
1897 register int r = REGNO (op0);
1898 /* See if this reg overlaps range under consideration. */
1899 if (r < end_regno
1900 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1901 return 1;
1904 else if (GET_CODE (x) == PARALLEL)
1906 register int i = XVECLEN (x, 0) - 1;
1907 for (; i >= 0; i--)
1908 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1909 return 1;
1912 return 0;
1915 /* Return 1 if ADDR is a valid memory address for mode MODE,
1916 and check that each pseudo reg has the proper kind of
1917 hard reg. */
1920 strict_memory_address_p (mode, addr)
1921 enum machine_mode mode;
1922 register rtx addr;
1924 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1925 return 0;
1927 win:
1928 return 1;
1931 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1932 if they are the same hard reg, and has special hacks for
1933 autoincrement and autodecrement.
1934 This is specifically intended for find_reloads to use
1935 in determining whether two operands match.
1936 X is the operand whose number is the lower of the two.
1938 The value is 2 if Y contains a pre-increment that matches
1939 a non-incrementing address in X. */
1941 /* ??? To be completely correct, we should arrange to pass
1942 for X the output operand and for Y the input operand.
1943 For now, we assume that the output operand has the lower number
1944 because that is natural in (SET output (... input ...)). */
1947 operands_match_p (x, y)
1948 register rtx x, y;
1950 register int i;
1951 register RTX_CODE code = GET_CODE (x);
1952 register char *fmt;
1953 int success_2;
1955 if (x == y)
1956 return 1;
1957 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1958 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1959 && GET_CODE (SUBREG_REG (y)) == REG)))
1961 register int j;
1963 if (code == SUBREG)
1965 i = REGNO (SUBREG_REG (x));
1966 if (i >= FIRST_PSEUDO_REGISTER)
1967 goto slow;
1968 i += SUBREG_WORD (x);
1970 else
1971 i = REGNO (x);
1973 if (GET_CODE (y) == SUBREG)
1975 j = REGNO (SUBREG_REG (y));
1976 if (j >= FIRST_PSEUDO_REGISTER)
1977 goto slow;
1978 j += SUBREG_WORD (y);
1980 else
1981 j = REGNO (y);
1983 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1984 multiple hard register group, so that for example (reg:DI 0) and
1985 (reg:SI 1) will be considered the same register. */
1986 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
1987 && i < FIRST_PSEUDO_REGISTER)
1988 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
1989 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
1990 && j < FIRST_PSEUDO_REGISTER)
1991 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
1993 return i == j;
1995 /* If two operands must match, because they are really a single
1996 operand of an assembler insn, then two postincrements are invalid
1997 because the assembler insn would increment only once.
1998 On the other hand, an postincrement matches ordinary indexing
1999 if the postincrement is the output operand. */
2000 if (code == POST_DEC || code == POST_INC)
2001 return operands_match_p (XEXP (x, 0), y);
2002 /* Two preincrements are invalid
2003 because the assembler insn would increment only once.
2004 On the other hand, an preincrement matches ordinary indexing
2005 if the preincrement is the input operand.
2006 In this case, return 2, since some callers need to do special
2007 things when this happens. */
2008 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
2009 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2011 slow:
2013 /* Now we have disposed of all the cases
2014 in which different rtx codes can match. */
2015 if (code != GET_CODE (y))
2016 return 0;
2017 if (code == LABEL_REF)
2018 return XEXP (x, 0) == XEXP (y, 0);
2019 if (code == SYMBOL_REF)
2020 return XSTR (x, 0) == XSTR (y, 0);
2022 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2024 if (GET_MODE (x) != GET_MODE (y))
2025 return 0;
2027 /* Compare the elements. If any pair of corresponding elements
2028 fail to match, return 0 for the whole things. */
2030 success_2 = 0;
2031 fmt = GET_RTX_FORMAT (code);
2032 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2034 int val;
2035 switch (fmt[i])
2037 case 'w':
2038 if (XWINT (x, i) != XWINT (y, i))
2039 return 0;
2040 break;
2042 case 'i':
2043 if (XINT (x, i) != XINT (y, i))
2044 return 0;
2045 break;
2047 case 'e':
2048 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2049 if (val == 0)
2050 return 0;
2051 /* If any subexpression returns 2,
2052 we should return 2 if we are successful. */
2053 if (val == 2)
2054 success_2 = 1;
2055 break;
2057 case '0':
2058 break;
2060 /* It is believed that rtx's at this level will never
2061 contain anything but integers and other rtx's,
2062 except for within LABEL_REFs and SYMBOL_REFs. */
2063 default:
2064 abort ();
2067 return 1 + success_2;
2070 /* Return the number of times character C occurs in string S. */
2073 n_occurrences (c, s)
2074 int c;
2075 char *s;
2077 int n = 0;
2078 while (*s)
2079 n += (*s++ == c);
2080 return n;
2083 /* Describe the range of registers or memory referenced by X.
2084 If X is a register, set REG_FLAG and put the first register
2085 number into START and the last plus one into END.
2086 If X is a memory reference, put a base address into BASE
2087 and a range of integer offsets into START and END.
2088 If X is pushing on the stack, we can assume it causes no trouble,
2089 so we set the SAFE field. */
2091 static struct decomposition
2092 decompose (x)
2093 rtx x;
2095 struct decomposition val;
2096 int all_const = 0;
2098 val.reg_flag = 0;
2099 val.safe = 0;
2100 val.base = 0;
2101 if (GET_CODE (x) == MEM)
2103 rtx base, offset = 0;
2104 rtx addr = XEXP (x, 0);
2106 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2107 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2109 val.base = XEXP (addr, 0);
2110 val.start = - GET_MODE_SIZE (GET_MODE (x));
2111 val.end = GET_MODE_SIZE (GET_MODE (x));
2112 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2113 return val;
2116 if (GET_CODE (addr) == CONST)
2118 addr = XEXP (addr, 0);
2119 all_const = 1;
2121 if (GET_CODE (addr) == PLUS)
2123 if (CONSTANT_P (XEXP (addr, 0)))
2125 base = XEXP (addr, 1);
2126 offset = XEXP (addr, 0);
2128 else if (CONSTANT_P (XEXP (addr, 1)))
2130 base = XEXP (addr, 0);
2131 offset = XEXP (addr, 1);
2135 if (offset == 0)
2137 base = addr;
2138 offset = const0_rtx;
2140 if (GET_CODE (offset) == CONST)
2141 offset = XEXP (offset, 0);
2142 if (GET_CODE (offset) == PLUS)
2144 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2146 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2147 offset = XEXP (offset, 0);
2149 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2151 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2152 offset = XEXP (offset, 1);
2154 else
2156 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2157 offset = const0_rtx;
2160 else if (GET_CODE (offset) != CONST_INT)
2162 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2163 offset = const0_rtx;
2166 if (all_const && GET_CODE (base) == PLUS)
2167 base = gen_rtx_CONST (GET_MODE (base), base);
2169 if (GET_CODE (offset) != CONST_INT)
2170 abort ();
2172 val.start = INTVAL (offset);
2173 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2174 val.base = base;
2175 return val;
2177 else if (GET_CODE (x) == REG)
2179 val.reg_flag = 1;
2180 val.start = true_regnum (x);
2181 if (val.start < 0)
2183 /* A pseudo with no hard reg. */
2184 val.start = REGNO (x);
2185 val.end = val.start + 1;
2187 else
2188 /* A hard reg. */
2189 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2191 else if (GET_CODE (x) == SUBREG)
2193 if (GET_CODE (SUBREG_REG (x)) != REG)
2194 /* This could be more precise, but it's good enough. */
2195 return decompose (SUBREG_REG (x));
2196 val.reg_flag = 1;
2197 val.start = true_regnum (x);
2198 if (val.start < 0)
2199 return decompose (SUBREG_REG (x));
2200 else
2201 /* A hard reg. */
2202 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2204 else if (CONSTANT_P (x)
2205 /* This hasn't been assigned yet, so it can't conflict yet. */
2206 || GET_CODE (x) == SCRATCH)
2207 val.safe = 1;
2208 else
2209 abort ();
2210 return val;
2213 /* Return 1 if altering Y will not modify the value of X.
2214 Y is also described by YDATA, which should be decompose (Y). */
2216 static int
2217 immune_p (x, y, ydata)
2218 rtx x, y;
2219 struct decomposition ydata;
2221 struct decomposition xdata;
2223 if (ydata.reg_flag)
2224 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
2225 if (ydata.safe)
2226 return 1;
2228 if (GET_CODE (y) != MEM)
2229 abort ();
2230 /* If Y is memory and X is not, Y can't affect X. */
2231 if (GET_CODE (x) != MEM)
2232 return 1;
2234 xdata = decompose (x);
2236 if (! rtx_equal_p (xdata.base, ydata.base))
2238 /* If bases are distinct symbolic constants, there is no overlap. */
2239 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2240 return 1;
2241 /* Constants and stack slots never overlap. */
2242 if (CONSTANT_P (xdata.base)
2243 && (ydata.base == frame_pointer_rtx
2244 || ydata.base == hard_frame_pointer_rtx
2245 || ydata.base == stack_pointer_rtx))
2246 return 1;
2247 if (CONSTANT_P (ydata.base)
2248 && (xdata.base == frame_pointer_rtx
2249 || xdata.base == hard_frame_pointer_rtx
2250 || xdata.base == stack_pointer_rtx))
2251 return 1;
2252 /* If either base is variable, we don't know anything. */
2253 return 0;
2257 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2260 /* Similar, but calls decompose. */
2263 safe_from_earlyclobber (op, clobber)
2264 rtx op, clobber;
2266 struct decomposition early_data;
2268 early_data = decompose (clobber);
2269 return immune_p (op, clobber, early_data);
2272 /* Main entry point of this file: search the body of INSN
2273 for values that need reloading and record them with push_reload.
2274 REPLACE nonzero means record also where the values occur
2275 so that subst_reloads can be used.
2277 IND_LEVELS says how many levels of indirection are supported by this
2278 machine; a value of zero means that a memory reference is not a valid
2279 memory address.
2281 LIVE_KNOWN says we have valid information about which hard
2282 regs are live at each point in the program; this is true when
2283 we are called from global_alloc but false when stupid register
2284 allocation has been done.
2286 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2287 which is nonnegative if the reg has been commandeered for reloading into.
2288 It is copied into STATIC_RELOAD_REG_P and referenced from there
2289 by various subroutines. */
2291 void
2292 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2293 rtx insn;
2294 int replace, ind_levels;
2295 int live_known;
2296 short *reload_reg_p;
2298 #ifdef REGISTER_CONSTRAINTS
2300 register int insn_code_number;
2301 register int i, j;
2302 int noperands;
2303 /* These are the constraints for the insn. We don't change them. */
2304 char *constraints1[MAX_RECOG_OPERANDS];
2305 /* These start out as the constraints for the insn
2306 and they are chewed up as we consider alternatives. */
2307 char *constraints[MAX_RECOG_OPERANDS];
2308 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2309 a register. */
2310 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2311 char pref_or_nothing[MAX_RECOG_OPERANDS];
2312 /* Nonzero for a MEM operand whose entire address needs a reload. */
2313 int address_reloaded[MAX_RECOG_OPERANDS];
2314 /* Value of enum reload_type to use for operand. */
2315 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2316 /* Value of enum reload_type to use within address of operand. */
2317 enum reload_type address_type[MAX_RECOG_OPERANDS];
2318 /* Save the usage of each operand. */
2319 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2320 int no_input_reloads = 0, no_output_reloads = 0;
2321 int n_alternatives;
2322 int this_alternative[MAX_RECOG_OPERANDS];
2323 char this_alternative_win[MAX_RECOG_OPERANDS];
2324 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2325 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2326 int this_alternative_matches[MAX_RECOG_OPERANDS];
2327 int swapped;
2328 int goal_alternative[MAX_RECOG_OPERANDS];
2329 int this_alternative_number;
2330 int goal_alternative_number;
2331 int operand_reloadnum[MAX_RECOG_OPERANDS];
2332 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2333 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2334 char goal_alternative_win[MAX_RECOG_OPERANDS];
2335 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2336 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2337 int goal_alternative_swapped;
2338 int best;
2339 int commutative;
2340 int changed;
2341 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2342 rtx substed_operand[MAX_RECOG_OPERANDS];
2343 rtx body = PATTERN (insn);
2344 rtx set = single_set (insn);
2345 int goal_earlyclobber, this_earlyclobber;
2346 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2347 /* Cache the last regno for the last pseudo we did an output reload
2348 for in case the next insn uses it. */
2349 static int last_output_reload_regno = -1;
2351 this_insn = insn;
2352 this_insn_is_asm = 0; /* Tentative. */
2353 n_reloads = 0;
2354 n_replacements = 0;
2355 n_memlocs = 0;
2356 n_earlyclobbers = 0;
2357 replace_reloads = replace;
2358 hard_regs_live_known = live_known;
2359 static_reload_reg_p = reload_reg_p;
2361 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2362 neither are insns that SET cc0. Insns that use CC0 are not allowed
2363 to have any input reloads. */
2364 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2365 no_output_reloads = 1;
2367 #ifdef HAVE_cc0
2368 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2369 no_input_reloads = 1;
2370 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2371 no_output_reloads = 1;
2372 #endif
2374 #ifdef SECONDARY_MEMORY_NEEDED
2375 /* The eliminated forms of any secondary memory locations are per-insn, so
2376 clear them out here. */
2378 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
2379 #endif
2381 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2382 Make OPERANDS point to a vector of operand values.
2383 Make OPERAND_LOCS point to a vector of pointers to
2384 where the operands were found.
2385 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2386 constraint-strings for this insn.
2387 Return if the insn needs no reload processing. */
2389 switch (GET_CODE (body))
2391 case USE:
2392 case CLOBBER:
2393 case ASM_INPUT:
2394 case ADDR_VEC:
2395 case ADDR_DIFF_VEC:
2396 return;
2398 case SET:
2399 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2400 is cheap to move between them. If it is not, there may not be an insn
2401 to do the copy, so we may need a reload. */
2402 if (GET_CODE (SET_DEST (body)) == REG
2403 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2404 && GET_CODE (SET_SRC (body)) == REG
2405 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2406 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2407 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2408 return;
2409 case PARALLEL:
2410 case ASM_OPERANDS:
2411 reload_n_operands = noperands = asm_noperands (body);
2412 if (noperands >= 0)
2414 /* This insn is an `asm' with operands. */
2416 insn_code_number = -1;
2417 this_insn_is_asm = 1;
2419 /* expand_asm_operands makes sure there aren't too many operands. */
2420 if (noperands > MAX_RECOG_OPERANDS)
2421 abort ();
2423 /* Now get the operand values and constraints out of the insn. */
2425 decode_asm_operands (body, recog_operand, recog_operand_loc,
2426 constraints, operand_mode);
2427 if (noperands > 0)
2429 bcopy ((char *) constraints, (char *) constraints1,
2430 noperands * sizeof (char *));
2431 n_alternatives = n_occurrences (',', constraints[0]) + 1;
2432 for (i = 1; i < noperands; i++)
2433 if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
2435 error_for_asm (insn, "operand constraints differ in number of alternatives");
2436 /* Avoid further trouble with this insn. */
2437 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
2438 n_reloads = 0;
2439 return;
2442 break;
2445 default:
2446 /* Ordinary insn: recognize it, get the operands via insn_extract
2447 and get the constraints. */
2449 insn_code_number = recog_memoized (insn);
2450 if (insn_code_number < 0)
2451 fatal_insn_not_found (insn);
2453 reload_n_operands = noperands = insn_n_operands[insn_code_number];
2454 n_alternatives = insn_n_alternatives[insn_code_number];
2455 /* Just return "no reloads" if insn has no operands with constraints. */
2456 if (n_alternatives == 0)
2457 return;
2458 insn_extract (insn);
2459 for (i = 0; i < noperands; i++)
2461 constraints[i] = constraints1[i]
2462 = insn_operand_constraint[insn_code_number][i];
2463 operand_mode[i] = insn_operand_mode[insn_code_number][i];
2467 if (noperands == 0)
2468 return;
2470 commutative = -1;
2472 /* If we will need to know, later, whether some pair of operands
2473 are the same, we must compare them now and save the result.
2474 Reloading the base and index registers will clobber them
2475 and afterward they will fail to match. */
2477 for (i = 0; i < noperands; i++)
2479 register char *p;
2480 register int c;
2482 substed_operand[i] = recog_operand[i];
2483 p = constraints[i];
2485 modified[i] = RELOAD_READ;
2487 /* Scan this operand's constraint to see if it is an output operand,
2488 an in-out operand, is commutative, or should match another. */
2490 while ((c = *p++))
2492 if (c == '=')
2493 modified[i] = RELOAD_WRITE;
2494 else if (c == '+')
2495 modified[i] = RELOAD_READ_WRITE;
2496 else if (c == '%')
2498 /* The last operand should not be marked commutative. */
2499 if (i == noperands - 1)
2501 if (this_insn_is_asm)
2502 warning_for_asm (this_insn,
2503 "`%%' constraint used with last operand");
2504 else
2505 abort ();
2507 else
2508 commutative = i;
2510 else if (c >= '0' && c <= '9')
2512 c -= '0';
2513 operands_match[c][i]
2514 = operands_match_p (recog_operand[c], recog_operand[i]);
2516 /* An operand may not match itself. */
2517 if (c == i)
2519 if (this_insn_is_asm)
2520 warning_for_asm (this_insn,
2521 "operand %d has constraint %d", i, c);
2522 else
2523 abort ();
2526 /* If C can be commuted with C+1, and C might need to match I,
2527 then C+1 might also need to match I. */
2528 if (commutative >= 0)
2530 if (c == commutative || c == commutative + 1)
2532 int other = c + (c == commutative ? 1 : -1);
2533 operands_match[other][i]
2534 = operands_match_p (recog_operand[other], recog_operand[i]);
2536 if (i == commutative || i == commutative + 1)
2538 int other = i + (i == commutative ? 1 : -1);
2539 operands_match[c][other]
2540 = operands_match_p (recog_operand[c], recog_operand[other]);
2542 /* Note that C is supposed to be less than I.
2543 No need to consider altering both C and I because in
2544 that case we would alter one into the other. */
2550 /* Examine each operand that is a memory reference or memory address
2551 and reload parts of the addresses into index registers.
2552 Also here any references to pseudo regs that didn't get hard regs
2553 but are equivalent to constants get replaced in the insn itself
2554 with those constants. Nobody will ever see them again.
2556 Finally, set up the preferred classes of each operand. */
2558 for (i = 0; i < noperands; i++)
2560 register RTX_CODE code = GET_CODE (recog_operand[i]);
2562 address_reloaded[i] = 0;
2563 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2564 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2565 : RELOAD_OTHER);
2566 address_type[i]
2567 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2568 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2569 : RELOAD_OTHER);
2571 if (*constraints[i] == 0)
2572 /* Ignore things like match_operator operands. */
2574 else if (constraints[i][0] == 'p')
2576 find_reloads_address (VOIDmode, NULL_PTR,
2577 recog_operand[i], recog_operand_loc[i],
2578 i, operand_type[i], ind_levels, insn);
2580 /* If we now have a simple operand where we used to have a
2581 PLUS or MULT, re-recognize and try again. */
2582 if ((GET_RTX_CLASS (GET_CODE (*recog_operand_loc[i])) == 'o'
2583 || GET_CODE (*recog_operand_loc[i]) == SUBREG)
2584 && (GET_CODE (recog_operand[i]) == MULT
2585 || GET_CODE (recog_operand[i]) == PLUS))
2587 INSN_CODE (insn) = -1;
2588 find_reloads (insn, replace, ind_levels, live_known,
2589 reload_reg_p);
2590 return;
2593 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2595 else if (code == MEM)
2597 if (find_reloads_address (GET_MODE (recog_operand[i]),
2598 recog_operand_loc[i],
2599 XEXP (recog_operand[i], 0),
2600 &XEXP (recog_operand[i], 0),
2601 i, address_type[i], ind_levels, insn))
2602 address_reloaded[i] = 1;
2603 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2605 else if (code == SUBREG)
2607 rtx reg = SUBREG_REG (recog_operand[i]);
2608 rtx op
2609 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2610 ind_levels,
2611 set != 0
2612 && &SET_DEST (set) == recog_operand_loc[i]);
2614 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2615 that didn't get a hard register, emit a USE with a REG_EQUAL
2616 note in front so that we might inherit a previous, possibly
2617 wider reload. */
2619 if (GET_CODE (op) == MEM
2620 && GET_CODE (reg) == REG
2621 && (GET_MODE_SIZE (GET_MODE (reg))
2622 >= GET_MODE_SIZE (GET_MODE (op))))
2623 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2624 = gen_rtx_EXPR_LIST (REG_EQUAL,
2625 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2627 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i] = op;
2629 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2630 /* We can get a PLUS as an "operand" as a result of register
2631 elimination. See eliminate_regs and gen_reload. We handle
2632 a unary operator by reloading the operand. */
2633 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2634 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2635 ind_levels, 0);
2636 else if (code == REG)
2638 /* This is equivalent to calling find_reloads_toplev.
2639 The code is duplicated for speed.
2640 When we find a pseudo always equivalent to a constant,
2641 we replace it by the constant. We must be sure, however,
2642 that we don't try to replace it in the insn in which it
2643 is being set. */
2644 register int regno = REGNO (recog_operand[i]);
2645 if (reg_equiv_constant[regno] != 0
2646 && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
2648 /* Record the existing mode so that the check if constants are
2649 allowed will work when operand_mode isn't specified. */
2651 if (operand_mode[i] == VOIDmode)
2652 operand_mode[i] = GET_MODE (recog_operand[i]);
2654 substed_operand[i] = recog_operand[i]
2655 = reg_equiv_constant[regno];
2657 #if 0 /* This might screw code in reload1.c to delete prior output-reload
2658 that feeds this insn. */
2659 if (reg_equiv_mem[regno] != 0)
2660 substed_operand[i] = recog_operand[i]
2661 = reg_equiv_mem[regno];
2662 #endif
2663 if (reg_equiv_address[regno] != 0)
2665 /* If reg_equiv_address is not a constant address, copy it,
2666 since it may be shared. */
2667 /* We must rerun eliminate_regs, in case the elimination
2668 offsets have changed. */
2669 rtx address = XEXP (eliminate_regs (reg_equiv_memory_loc[regno],
2670 0, NULL_RTX),
2673 if (rtx_varies_p (address))
2674 address = copy_rtx (address);
2676 /* Emit a USE that shows what register is being used/modified. */
2677 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode,
2678 recog_operand[i]),
2679 insn))
2680 = gen_rtx_EXPR_LIST (REG_EQUAL,
2681 reg_equiv_memory_loc[regno],
2682 NULL_RTX);
2684 *recog_operand_loc[i] = recog_operand[i]
2685 = gen_rtx_MEM (GET_MODE (recog_operand[i]), address);
2686 RTX_UNCHANGING_P (recog_operand[i])
2687 = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
2688 find_reloads_address (GET_MODE (recog_operand[i]),
2689 recog_operand_loc[i],
2690 XEXP (recog_operand[i], 0),
2691 &XEXP (recog_operand[i], 0),
2692 i, address_type[i], ind_levels, insn);
2693 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2696 /* If the operand is still a register (we didn't replace it with an
2697 equivalent), get the preferred class to reload it into. */
2698 code = GET_CODE (recog_operand[i]);
2699 preferred_class[i]
2700 = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
2701 ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
2702 pref_or_nothing[i]
2703 = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
2704 && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
2707 /* If this is simply a copy from operand 1 to operand 0, merge the
2708 preferred classes for the operands. */
2709 if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
2710 && recog_operand[1] == SET_SRC (set))
2712 preferred_class[0] = preferred_class[1]
2713 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2714 pref_or_nothing[0] |= pref_or_nothing[1];
2715 pref_or_nothing[1] |= pref_or_nothing[0];
2718 /* Now see what we need for pseudo-regs that didn't get hard regs
2719 or got the wrong kind of hard reg. For this, we must consider
2720 all the operands together against the register constraints. */
2722 best = MAX_RECOG_OPERANDS * 2 + 600;
2724 swapped = 0;
2725 goal_alternative_swapped = 0;
2726 try_swapped:
2728 /* The constraints are made of several alternatives.
2729 Each operand's constraint looks like foo,bar,... with commas
2730 separating the alternatives. The first alternatives for all
2731 operands go together, the second alternatives go together, etc.
2733 First loop over alternatives. */
2735 for (this_alternative_number = 0;
2736 this_alternative_number < n_alternatives;
2737 this_alternative_number++)
2739 /* Loop over operands for one constraint alternative. */
2740 /* LOSERS counts those that don't fit this alternative
2741 and would require loading. */
2742 int losers = 0;
2743 /* BAD is set to 1 if it some operand can't fit this alternative
2744 even after reloading. */
2745 int bad = 0;
2746 /* REJECT is a count of how undesirable this alternative says it is
2747 if any reloading is required. If the alternative matches exactly
2748 then REJECT is ignored, but otherwise it gets this much
2749 counted against it in addition to the reloading needed. Each
2750 ? counts three times here since we want the disparaging caused by
2751 a bad register class to only count 1/3 as much. */
2752 int reject = 0;
2754 this_earlyclobber = 0;
2756 for (i = 0; i < noperands; i++)
2758 register char *p = constraints[i];
2759 register int win = 0;
2760 /* 0 => this operand can be reloaded somehow for this alternative */
2761 int badop = 1;
2762 /* 0 => this operand can be reloaded if the alternative allows regs. */
2763 int winreg = 0;
2764 int c;
2765 register rtx operand = recog_operand[i];
2766 int offset = 0;
2767 /* Nonzero means this is a MEM that must be reloaded into a reg
2768 regardless of what the constraint says. */
2769 int force_reload = 0;
2770 int offmemok = 0;
2771 /* Nonzero if a constant forced into memory would be OK for this
2772 operand. */
2773 int constmemok = 0;
2774 int earlyclobber = 0;
2776 /* If the predicate accepts a unary operator, it means that
2777 we need to reload the operand, but do not do this for
2778 match_operator and friends. */
2779 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2780 operand = XEXP (operand, 0);
2782 /* If the operand is a SUBREG, extract
2783 the REG or MEM (or maybe even a constant) within.
2784 (Constants can occur as a result of reg_equiv_constant.) */
2786 while (GET_CODE (operand) == SUBREG)
2788 offset += SUBREG_WORD (operand);
2789 operand = SUBREG_REG (operand);
2790 /* Force reload if this is a constant or PLUS or if there may
2791 be a problem accessing OPERAND in the outer mode. */
2792 if (CONSTANT_P (operand)
2793 || GET_CODE (operand) == PLUS
2794 /* We must force a reload of paradoxical SUBREGs
2795 of a MEM because the alignment of the inner value
2796 may not be enough to do the outer reference. On
2797 big-endian machines, it may also reference outside
2798 the object.
2800 On machines that extend byte operations and we have a
2801 SUBREG where both the inner and outer modes are no wider
2802 than a word and the inner mode is narrower, is integral,
2803 and gets extended when loaded from memory, combine.c has
2804 made assumptions about the behavior of the machine in such
2805 register access. If the data is, in fact, in memory we
2806 must always load using the size assumed to be in the
2807 register and let the insn do the different-sized
2808 accesses.
2810 This is doubly true if WORD_REGISTER_OPERATIONS. In
2811 this case eliminate_regs has left non-paradoxical
2812 subregs for push_reloads to see. Make sure it does
2813 by forcing the reload.
2815 ??? When is it right at this stage to have a subreg
2816 of a mem that is _not_ to be handled specialy? IMO
2817 those should have been reduced to just a mem. */
2818 || ((GET_CODE (operand) == MEM
2819 || (GET_CODE (operand)== REG
2820 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2821 #ifndef WORD_REGISTER_OPERATIONS
2822 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2823 < BIGGEST_ALIGNMENT)
2824 && (GET_MODE_SIZE (operand_mode[i])
2825 > GET_MODE_SIZE (GET_MODE (operand))))
2826 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2827 #ifdef LOAD_EXTEND_OP
2828 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2829 && (GET_MODE_SIZE (GET_MODE (operand))
2830 <= UNITS_PER_WORD)
2831 && (GET_MODE_SIZE (operand_mode[i])
2832 > GET_MODE_SIZE (GET_MODE (operand)))
2833 && INTEGRAL_MODE_P (GET_MODE (operand))
2834 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2835 #endif
2837 #endif
2839 /* Subreg of a hard reg which can't handle the subreg's mode
2840 or which would handle that mode in the wrong number of
2841 registers for subregging to work. */
2842 || (GET_CODE (operand) == REG
2843 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2844 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2845 && (GET_MODE_SIZE (GET_MODE (operand))
2846 > UNITS_PER_WORD)
2847 && ((GET_MODE_SIZE (GET_MODE (operand))
2848 / UNITS_PER_WORD)
2849 != HARD_REGNO_NREGS (REGNO (operand),
2850 GET_MODE (operand))))
2851 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2852 operand_mode[i]))))
2853 force_reload = 1;
2856 this_alternative[i] = (int) NO_REGS;
2857 this_alternative_win[i] = 0;
2858 this_alternative_offmemok[i] = 0;
2859 this_alternative_earlyclobber[i] = 0;
2860 this_alternative_matches[i] = -1;
2862 /* An empty constraint or empty alternative
2863 allows anything which matched the pattern. */
2864 if (*p == 0 || *p == ',')
2865 win = 1, badop = 0;
2867 /* Scan this alternative's specs for this operand;
2868 set WIN if the operand fits any letter in this alternative.
2869 Otherwise, clear BADOP if this operand could
2870 fit some letter after reloads,
2871 or set WINREG if this operand could fit after reloads
2872 provided the constraint allows some registers. */
2874 while (*p && (c = *p++) != ',')
2875 switch (c)
2877 case '=':
2878 case '+':
2879 case '*':
2880 break;
2882 case '%':
2883 /* The last operand should not be marked commutative. */
2884 if (i != noperands - 1)
2885 commutative = i;
2886 break;
2888 case '?':
2889 reject += 6;
2890 break;
2892 case '!':
2893 reject = 600;
2894 break;
2896 case '#':
2897 /* Ignore rest of this alternative as far as
2898 reloading is concerned. */
2899 while (*p && *p != ',') p++;
2900 break;
2902 case '0':
2903 case '1':
2904 case '2':
2905 case '3':
2906 case '4':
2907 c -= '0';
2908 this_alternative_matches[i] = c;
2909 /* We are supposed to match a previous operand.
2910 If we do, we win if that one did.
2911 If we do not, count both of the operands as losers.
2912 (This is too conservative, since most of the time
2913 only a single reload insn will be needed to make
2914 the two operands win. As a result, this alternative
2915 may be rejected when it is actually desirable.) */
2916 if ((swapped && (c != commutative || i != commutative + 1))
2917 /* If we are matching as if two operands were swapped,
2918 also pretend that operands_match had been computed
2919 with swapped.
2920 But if I is the second of those and C is the first,
2921 don't exchange them, because operands_match is valid
2922 only on one side of its diagonal. */
2923 ? (operands_match
2924 [(c == commutative || c == commutative + 1)
2925 ? 2*commutative + 1 - c : c]
2926 [(i == commutative || i == commutative + 1)
2927 ? 2*commutative + 1 - i : i])
2928 : operands_match[c][i])
2930 /* If we are matching a non-offsettable address where an
2931 offsettable address was expected, then we must reject
2932 this combination, because we can't reload it. */
2933 if (this_alternative_offmemok[c]
2934 && GET_CODE (recog_operand[c]) == MEM
2935 && this_alternative[c] == (int) NO_REGS
2936 && ! this_alternative_win[c])
2937 bad = 1;
2939 win = this_alternative_win[c];
2941 else
2943 /* Operands don't match. */
2944 rtx value;
2945 /* Retroactively mark the operand we had to match
2946 as a loser, if it wasn't already. */
2947 if (this_alternative_win[c])
2948 losers++;
2949 this_alternative_win[c] = 0;
2950 if (this_alternative[c] == (int) NO_REGS)
2951 bad = 1;
2952 /* But count the pair only once in the total badness of
2953 this alternative, if the pair can be a dummy reload. */
2954 value
2955 = find_dummy_reload (recog_operand[i], recog_operand[c],
2956 recog_operand_loc[i], recog_operand_loc[c],
2957 operand_mode[i], operand_mode[c],
2958 this_alternative[c], -1,
2959 this_alternative_earlyclobber[c]);
2961 if (value != 0)
2962 losers--;
2964 /* This can be fixed with reloads if the operand
2965 we are supposed to match can be fixed with reloads. */
2966 badop = 0;
2967 this_alternative[i] = this_alternative[c];
2969 /* If we have to reload this operand and some previous
2970 operand also had to match the same thing as this
2971 operand, we don't know how to do that. So reject this
2972 alternative. */
2973 if (! win || force_reload)
2974 for (j = 0; j < i; j++)
2975 if (this_alternative_matches[j]
2976 == this_alternative_matches[i])
2977 badop = 1;
2979 break;
2981 case 'p':
2982 /* All necessary reloads for an address_operand
2983 were handled in find_reloads_address. */
2984 this_alternative[i] = (int) BASE_REG_CLASS;
2985 win = 1;
2986 break;
2988 case 'm':
2989 if (force_reload)
2990 break;
2991 if (GET_CODE (operand) == MEM
2992 || (GET_CODE (operand) == REG
2993 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2994 && reg_renumber[REGNO (operand)] < 0))
2995 win = 1;
2996 if (CONSTANT_P (operand)
2997 /* force_const_mem does not accept HIGH. */
2998 && GET_CODE (operand) != HIGH)
2999 badop = 0;
3000 constmemok = 1;
3001 break;
3003 case '<':
3004 if (GET_CODE (operand) == MEM
3005 && ! address_reloaded[i]
3006 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3007 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3008 win = 1;
3009 break;
3011 case '>':
3012 if (GET_CODE (operand) == MEM
3013 && ! address_reloaded[i]
3014 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3015 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3016 win = 1;
3017 break;
3019 /* Memory operand whose address is not offsettable. */
3020 case 'V':
3021 if (force_reload)
3022 break;
3023 if (GET_CODE (operand) == MEM
3024 && ! (ind_levels ? offsettable_memref_p (operand)
3025 : offsettable_nonstrict_memref_p (operand))
3026 /* Certain mem addresses will become offsettable
3027 after they themselves are reloaded. This is important;
3028 we don't want our own handling of unoffsettables
3029 to override the handling of reg_equiv_address. */
3030 && !(GET_CODE (XEXP (operand, 0)) == REG
3031 && (ind_levels == 0
3032 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3033 win = 1;
3034 break;
3036 /* Memory operand whose address is offsettable. */
3037 case 'o':
3038 if (force_reload)
3039 break;
3040 if ((GET_CODE (operand) == MEM
3041 /* If IND_LEVELS, find_reloads_address won't reload a
3042 pseudo that didn't get a hard reg, so we have to
3043 reject that case. */
3044 && (ind_levels ? offsettable_memref_p (operand)
3045 : offsettable_nonstrict_memref_p (operand)))
3046 /* A reloaded auto-increment address is offsettable,
3047 because it is now just a simple register indirect. */
3048 || (GET_CODE (operand) == MEM
3049 && address_reloaded[i]
3050 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3051 || GET_CODE (XEXP (operand, 0)) == PRE_DEC
3052 || GET_CODE (XEXP (operand, 0)) == POST_INC
3053 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3054 /* Certain mem addresses will become offsettable
3055 after they themselves are reloaded. This is important;
3056 we don't want our own handling of unoffsettables
3057 to override the handling of reg_equiv_address. */
3058 || (GET_CODE (operand) == MEM
3059 && GET_CODE (XEXP (operand, 0)) == REG
3060 && (ind_levels == 0
3061 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
3062 || (GET_CODE (operand) == REG
3063 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3064 && reg_renumber[REGNO (operand)] < 0
3065 /* If reg_equiv_address is nonzero, we will be
3066 loading it into a register; hence it will be
3067 offsettable, but we cannot say that reg_equiv_mem
3068 is offsettable without checking. */
3069 && ((reg_equiv_mem[REGNO (operand)] != 0
3070 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3071 || (reg_equiv_address[REGNO (operand)] != 0))))
3072 win = 1;
3073 /* force_const_mem does not accept HIGH. */
3074 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3075 || GET_CODE (operand) == MEM)
3076 badop = 0;
3077 constmemok = 1;
3078 offmemok = 1;
3079 break;
3081 case '&':
3082 /* Output operand that is stored before the need for the
3083 input operands (and their index registers) is over. */
3084 earlyclobber = 1, this_earlyclobber = 1;
3085 break;
3087 case 'E':
3088 #ifndef REAL_ARITHMETIC
3089 /* Match any floating double constant, but only if
3090 we can examine the bits of it reliably. */
3091 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3092 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3093 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3094 break;
3095 #endif
3096 if (GET_CODE (operand) == CONST_DOUBLE)
3097 win = 1;
3098 break;
3100 case 'F':
3101 if (GET_CODE (operand) == CONST_DOUBLE)
3102 win = 1;
3103 break;
3105 case 'G':
3106 case 'H':
3107 if (GET_CODE (operand) == CONST_DOUBLE
3108 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3109 win = 1;
3110 break;
3112 case 's':
3113 if (GET_CODE (operand) == CONST_INT
3114 || (GET_CODE (operand) == CONST_DOUBLE
3115 && GET_MODE (operand) == VOIDmode))
3116 break;
3117 case 'i':
3118 if (CONSTANT_P (operand)
3119 #ifdef LEGITIMATE_PIC_OPERAND_P
3120 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3121 #endif
3123 win = 1;
3124 break;
3126 case 'n':
3127 if (GET_CODE (operand) == CONST_INT
3128 || (GET_CODE (operand) == CONST_DOUBLE
3129 && GET_MODE (operand) == VOIDmode))
3130 win = 1;
3131 break;
3133 case 'I':
3134 case 'J':
3135 case 'K':
3136 case 'L':
3137 case 'M':
3138 case 'N':
3139 case 'O':
3140 case 'P':
3141 if (GET_CODE (operand) == CONST_INT
3142 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3143 win = 1;
3144 break;
3146 case 'X':
3147 win = 1;
3148 break;
3150 case 'g':
3151 if (! force_reload
3152 /* A PLUS is never a valid operand, but reload can make
3153 it from a register when eliminating registers. */
3154 && GET_CODE (operand) != PLUS
3155 /* A SCRATCH is not a valid operand. */
3156 && GET_CODE (operand) != SCRATCH
3157 #ifdef LEGITIMATE_PIC_OPERAND_P
3158 && (! CONSTANT_P (operand)
3159 || ! flag_pic
3160 || LEGITIMATE_PIC_OPERAND_P (operand))
3161 #endif
3162 && (GENERAL_REGS == ALL_REGS
3163 || GET_CODE (operand) != REG
3164 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3165 && reg_renumber[REGNO (operand)] < 0)))
3166 win = 1;
3167 /* Drop through into 'r' case */
3169 case 'r':
3170 this_alternative[i]
3171 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3172 goto reg;
3174 #ifdef EXTRA_CONSTRAINT
3175 case 'Q':
3176 case 'R':
3177 case 'S':
3178 case 'T':
3179 case 'U':
3180 if (EXTRA_CONSTRAINT (operand, c))
3181 win = 1;
3182 break;
3183 #endif
3185 default:
3186 this_alternative[i]
3187 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3189 reg:
3190 if (GET_MODE (operand) == BLKmode)
3191 break;
3192 winreg = 1;
3193 if (GET_CODE (operand) == REG
3194 && reg_fits_class_p (operand, this_alternative[i],
3195 offset, GET_MODE (recog_operand[i])))
3196 win = 1;
3197 break;
3200 constraints[i] = p;
3202 /* If this operand could be handled with a reg,
3203 and some reg is allowed, then this operand can be handled. */
3204 if (winreg && this_alternative[i] != (int) NO_REGS)
3205 badop = 0;
3207 /* Record which operands fit this alternative. */
3208 this_alternative_earlyclobber[i] = earlyclobber;
3209 if (win && ! force_reload)
3210 this_alternative_win[i] = 1;
3211 else
3213 int const_to_mem = 0;
3215 this_alternative_offmemok[i] = offmemok;
3216 losers++;
3217 if (badop)
3218 bad = 1;
3219 /* Alternative loses if it has no regs for a reg operand. */
3220 if (GET_CODE (operand) == REG
3221 && this_alternative[i] == (int) NO_REGS
3222 && this_alternative_matches[i] < 0)
3223 bad = 1;
3225 /* If this is a pseudo-register that is set in the previous
3226 insns, there's a good chance that it will already be in a
3227 spill register and we can use that spill register. So
3228 make this case cheaper. */
3229 if (GET_CODE (operand) == REG
3230 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3231 && REGNO (operand) == last_output_reload_regno)
3232 reject--;
3234 /* If this is a constant that is reloaded into the desired
3235 class by copying it to memory first, count that as another
3236 reload. This is consistent with other code and is
3237 required to avoid choosing another alternative when
3238 the constant is moved into memory by this function on
3239 an early reload pass. Note that the test here is
3240 precisely the same as in the code below that calls
3241 force_const_mem. */
3242 if (CONSTANT_P (operand)
3243 /* force_const_mem does not accept HIGH. */
3244 && GET_CODE (operand) != HIGH
3245 && ((PREFERRED_RELOAD_CLASS (operand,
3246 (enum reg_class) this_alternative[i])
3247 == NO_REGS)
3248 || no_input_reloads)
3249 && operand_mode[i] != VOIDmode)
3251 const_to_mem = 1;
3252 if (this_alternative[i] != (int) NO_REGS)
3253 losers++;
3256 /* If we can't reload this value at all, reject this
3257 alternative. Note that we could also lose due to
3258 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3259 here. */
3261 if (! CONSTANT_P (operand)
3262 && (enum reg_class) this_alternative[i] != NO_REGS
3263 && (PREFERRED_RELOAD_CLASS (operand,
3264 (enum reg_class) this_alternative[i])
3265 == NO_REGS))
3266 bad = 1;
3268 /* Alternative loses if it requires a type of reload not
3269 permitted for this insn. We can always reload SCRATCH
3270 and objects with a REG_UNUSED note. */
3271 else if (GET_CODE (operand) != SCRATCH
3272 && modified[i] != RELOAD_READ && no_output_reloads
3273 && ! find_reg_note (insn, REG_UNUSED, operand))
3274 bad = 1;
3275 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3276 && ! const_to_mem)
3277 bad = 1;
3280 /* We prefer to reload pseudos over reloading other things,
3281 since such reloads may be able to be eliminated later.
3282 If we are reloading a SCRATCH, we won't be generating any
3283 insns, just using a register, so it is also preferred.
3284 So bump REJECT in other cases. Don't do this in the
3285 case where we are forcing a constant into memory and
3286 it will then win since we don't want to have a different
3287 alternative match then. */
3288 if (! (GET_CODE (operand) == REG
3289 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3290 && GET_CODE (operand) != SCRATCH
3291 && ! (const_to_mem && constmemok))
3292 reject += 2;
3294 /* Input reloads can be inherited more often than output
3295 reloads can be removed, so penalize output reloads. */
3296 if (operand_type[i] != RELOAD_FOR_INPUT
3297 && GET_CODE (operand) != SCRATCH)
3298 reject++;
3301 /* If this operand is a pseudo register that didn't get a hard
3302 reg and this alternative accepts some register, see if the
3303 class that we want is a subset of the preferred class for this
3304 register. If not, but it intersects that class, use the
3305 preferred class instead. If it does not intersect the preferred
3306 class, show that usage of this alternative should be discouraged;
3307 it will be discouraged more still if the register is `preferred
3308 or nothing'. We do this because it increases the chance of
3309 reusing our spill register in a later insn and avoiding a pair
3310 of memory stores and loads.
3312 Don't bother with this if this alternative will accept this
3313 operand.
3315 Don't do this for a multiword operand, since it is only a
3316 small win and has the risk of requiring more spill registers,
3317 which could cause a large loss.
3319 Don't do this if the preferred class has only one register
3320 because we might otherwise exhaust the class. */
3323 if (! win && this_alternative[i] != (int) NO_REGS
3324 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3325 && reg_class_size[(int) preferred_class[i]] > 1)
3327 if (! reg_class_subset_p (this_alternative[i],
3328 preferred_class[i]))
3330 /* Since we don't have a way of forming the intersection,
3331 we just do something special if the preferred class
3332 is a subset of the class we have; that's the most
3333 common case anyway. */
3334 if (reg_class_subset_p (preferred_class[i],
3335 this_alternative[i]))
3336 this_alternative[i] = (int) preferred_class[i];
3337 else
3338 reject += (2 + 2 * pref_or_nothing[i]);
3343 /* Now see if any output operands that are marked "earlyclobber"
3344 in this alternative conflict with any input operands
3345 or any memory addresses. */
3347 for (i = 0; i < noperands; i++)
3348 if (this_alternative_earlyclobber[i]
3349 && this_alternative_win[i])
3351 struct decomposition early_data;
3353 early_data = decompose (recog_operand[i]);
3355 if (modified[i] == RELOAD_READ)
3357 if (this_insn_is_asm)
3358 warning_for_asm (this_insn,
3359 "`&' constraint used with input operand");
3360 else
3361 abort ();
3362 continue;
3365 if (this_alternative[i] == NO_REGS)
3367 this_alternative_earlyclobber[i] = 0;
3368 if (this_insn_is_asm)
3369 error_for_asm (this_insn,
3370 "`&' constraint used with no register class");
3371 else
3372 abort ();
3375 for (j = 0; j < noperands; j++)
3376 /* Is this an input operand or a memory ref? */
3377 if ((GET_CODE (recog_operand[j]) == MEM
3378 || modified[j] != RELOAD_WRITE)
3379 && j != i
3380 /* Ignore things like match_operator operands. */
3381 && *constraints1[j] != 0
3382 /* Don't count an input operand that is constrained to match
3383 the early clobber operand. */
3384 && ! (this_alternative_matches[j] == i
3385 && rtx_equal_p (recog_operand[i], recog_operand[j]))
3386 /* Is it altered by storing the earlyclobber operand? */
3387 && !immune_p (recog_operand[j], recog_operand[i], early_data))
3389 /* If the output is in a single-reg class,
3390 it's costly to reload it, so reload the input instead. */
3391 if (reg_class_size[this_alternative[i]] == 1
3392 && (GET_CODE (recog_operand[j]) == REG
3393 || GET_CODE (recog_operand[j]) == SUBREG))
3395 losers++;
3396 this_alternative_win[j] = 0;
3398 else
3399 break;
3401 /* If an earlyclobber operand conflicts with something,
3402 it must be reloaded, so request this and count the cost. */
3403 if (j != noperands)
3405 losers++;
3406 this_alternative_win[i] = 0;
3407 for (j = 0; j < noperands; j++)
3408 if (this_alternative_matches[j] == i
3409 && this_alternative_win[j])
3411 this_alternative_win[j] = 0;
3412 losers++;
3417 /* If one alternative accepts all the operands, no reload required,
3418 choose that alternative; don't consider the remaining ones. */
3419 if (losers == 0)
3421 /* Unswap these so that they are never swapped at `finish'. */
3422 if (commutative >= 0)
3424 recog_operand[commutative] = substed_operand[commutative];
3425 recog_operand[commutative + 1]
3426 = substed_operand[commutative + 1];
3428 for (i = 0; i < noperands; i++)
3430 goal_alternative_win[i] = 1;
3431 goal_alternative[i] = this_alternative[i];
3432 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3433 goal_alternative_matches[i] = this_alternative_matches[i];
3434 goal_alternative_earlyclobber[i]
3435 = this_alternative_earlyclobber[i];
3437 goal_alternative_number = this_alternative_number;
3438 goal_alternative_swapped = swapped;
3439 goal_earlyclobber = this_earlyclobber;
3440 goto finish;
3443 /* REJECT, set by the ! and ? constraint characters and when a register
3444 would be reloaded into a non-preferred class, discourages the use of
3445 this alternative for a reload goal. REJECT is incremented by six
3446 for each ? and two for each non-preferred class. */
3447 losers = losers * 6 + reject;
3449 /* If this alternative can be made to work by reloading,
3450 and it needs less reloading than the others checked so far,
3451 record it as the chosen goal for reloading. */
3452 if (! bad && best > losers)
3454 for (i = 0; i < noperands; i++)
3456 goal_alternative[i] = this_alternative[i];
3457 goal_alternative_win[i] = this_alternative_win[i];
3458 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3459 goal_alternative_matches[i] = this_alternative_matches[i];
3460 goal_alternative_earlyclobber[i]
3461 = this_alternative_earlyclobber[i];
3463 goal_alternative_swapped = swapped;
3464 best = losers;
3465 goal_alternative_number = this_alternative_number;
3466 goal_earlyclobber = this_earlyclobber;
3470 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3471 then we need to try each alternative twice,
3472 the second time matching those two operands
3473 as if we had exchanged them.
3474 To do this, really exchange them in operands.
3476 If we have just tried the alternatives the second time,
3477 return operands to normal and drop through. */
3479 if (commutative >= 0)
3481 swapped = !swapped;
3482 if (swapped)
3484 register enum reg_class tclass;
3485 register int t;
3487 recog_operand[commutative] = substed_operand[commutative + 1];
3488 recog_operand[commutative + 1] = substed_operand[commutative];
3490 tclass = preferred_class[commutative];
3491 preferred_class[commutative] = preferred_class[commutative + 1];
3492 preferred_class[commutative + 1] = tclass;
3494 t = pref_or_nothing[commutative];
3495 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3496 pref_or_nothing[commutative + 1] = t;
3498 bcopy ((char *) constraints1, (char *) constraints,
3499 noperands * sizeof (char *));
3500 goto try_swapped;
3502 else
3504 recog_operand[commutative] = substed_operand[commutative];
3505 recog_operand[commutative + 1] = substed_operand[commutative + 1];
3509 /* The operands don't meet the constraints.
3510 goal_alternative describes the alternative
3511 that we could reach by reloading the fewest operands.
3512 Reload so as to fit it. */
3514 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3516 /* No alternative works with reloads?? */
3517 if (insn_code_number >= 0)
3518 abort ();
3519 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3520 /* Avoid further trouble with this insn. */
3521 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3522 n_reloads = 0;
3523 return;
3526 /* Jump to `finish' from above if all operands are valid already.
3527 In that case, goal_alternative_win is all 1. */
3528 finish:
3530 /* Right now, for any pair of operands I and J that are required to match,
3531 with I < J,
3532 goal_alternative_matches[J] is I.
3533 Set up goal_alternative_matched as the inverse function:
3534 goal_alternative_matched[I] = J. */
3536 for (i = 0; i < noperands; i++)
3537 goal_alternative_matched[i] = -1;
3539 for (i = 0; i < noperands; i++)
3540 if (! goal_alternative_win[i]
3541 && goal_alternative_matches[i] >= 0)
3542 goal_alternative_matched[goal_alternative_matches[i]] = i;
3544 /* If the best alternative is with operands 1 and 2 swapped,
3545 consider them swapped before reporting the reloads. Update the
3546 operand numbers of any reloads already pushed. */
3548 if (goal_alternative_swapped)
3550 register rtx tem;
3552 tem = substed_operand[commutative];
3553 substed_operand[commutative] = substed_operand[commutative + 1];
3554 substed_operand[commutative + 1] = tem;
3555 tem = recog_operand[commutative];
3556 recog_operand[commutative] = recog_operand[commutative + 1];
3557 recog_operand[commutative + 1] = tem;
3559 for (i = 0; i < n_reloads; i++)
3561 if (reload_opnum[i] == commutative)
3562 reload_opnum[i] = commutative + 1;
3563 else if (reload_opnum[i] == commutative + 1)
3564 reload_opnum[i] = commutative;
3568 /* Perform whatever substitutions on the operands we are supposed
3569 to make due to commutativity or replacement of registers
3570 with equivalent constants or memory slots. */
3572 for (i = 0; i < noperands; i++)
3574 *recog_operand_loc[i] = substed_operand[i];
3575 /* While we are looping on operands, initialize this. */
3576 operand_reloadnum[i] = -1;
3578 /* If this is an earlyclobber operand, we need to widen the scope.
3579 The reload must remain valid from the start of the insn being
3580 reloaded until after the operand is stored into its destination.
3581 We approximate this with RELOAD_OTHER even though we know that we
3582 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3584 One special case that is worth checking is when we have an
3585 output that is earlyclobber but isn't used past the insn (typically
3586 a SCRATCH). In this case, we only need have the reload live
3587 through the insn itself, but not for any of our input or output
3588 reloads.
3589 But we must not accidentally narrow the scope of an existing
3590 RELOAD_OTHER reload - leave these alone.
3592 In any case, anything needed to address this operand can remain
3593 however they were previously categorized. */
3595 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3596 operand_type[i]
3597 = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
3598 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3601 /* Any constants that aren't allowed and can't be reloaded
3602 into registers are here changed into memory references. */
3603 for (i = 0; i < noperands; i++)
3604 if (! goal_alternative_win[i]
3605 && CONSTANT_P (recog_operand[i])
3606 /* force_const_mem does not accept HIGH. */
3607 && GET_CODE (recog_operand[i]) != HIGH
3608 && ((PREFERRED_RELOAD_CLASS (recog_operand[i],
3609 (enum reg_class) goal_alternative[i])
3610 == NO_REGS)
3611 || no_input_reloads)
3612 && operand_mode[i] != VOIDmode)
3614 *recog_operand_loc[i] = recog_operand[i]
3615 = find_reloads_toplev (force_const_mem (operand_mode[i],
3616 recog_operand[i]),
3617 i, address_type[i], ind_levels, 0);
3618 if (alternative_allows_memconst (constraints1[i],
3619 goal_alternative_number))
3620 goal_alternative_win[i] = 1;
3623 /* Record the values of the earlyclobber operands for the caller. */
3624 if (goal_earlyclobber)
3625 for (i = 0; i < noperands; i++)
3626 if (goal_alternative_earlyclobber[i])
3627 reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
3629 /* Now record reloads for all the operands that need them. */
3630 last_output_reload_regno = -1;
3631 for (i = 0; i < noperands; i++)
3632 if (! goal_alternative_win[i])
3634 /* Operands that match previous ones have already been handled. */
3635 if (goal_alternative_matches[i] >= 0)
3637 /* Handle an operand with a nonoffsettable address
3638 appearing where an offsettable address will do
3639 by reloading the address into a base register.
3641 ??? We can also do this when the operand is a register and
3642 reg_equiv_mem is not offsettable, but this is a bit tricky,
3643 so we don't bother with it. It may not be worth doing. */
3644 else if (goal_alternative_matched[i] == -1
3645 && goal_alternative_offmemok[i]
3646 && GET_CODE (recog_operand[i]) == MEM)
3648 operand_reloadnum[i]
3649 = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
3650 &XEXP (recog_operand[i], 0), NULL_PTR,
3651 BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
3652 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3653 reload_inc[operand_reloadnum[i]]
3654 = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
3656 /* If this operand is an output, we will have made any
3657 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3658 now we are treating part of the operand as an input, so
3659 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3661 if (modified[i] == RELOAD_WRITE)
3663 for (j = 0; j < n_reloads; j++)
3665 if (reload_opnum[j] == i)
3667 if (reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3668 reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
3669 else if (reload_when_needed[j]
3670 == RELOAD_FOR_OUTADDR_ADDRESS)
3671 reload_when_needed[j] = RELOAD_FOR_INPADDR_ADDRESS;
3676 else if (goal_alternative_matched[i] == -1)
3678 operand_reloadnum[i]
3679 = push_reload ((modified[i] != RELOAD_WRITE
3680 ? recog_operand[i] : 0),
3681 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3682 (modified[i] != RELOAD_WRITE
3683 ? recog_operand_loc[i] : 0),
3684 (modified[i] != RELOAD_READ
3685 ? recog_operand_loc[i] : 0),
3686 (enum reg_class) goal_alternative[i],
3687 (modified[i] == RELOAD_WRITE
3688 ? VOIDmode : operand_mode[i]),
3689 (modified[i] == RELOAD_READ
3690 ? VOIDmode : operand_mode[i]),
3691 (insn_code_number < 0 ? 0
3692 : insn_operand_strict_low[insn_code_number][i]),
3693 0, i, operand_type[i]);
3694 if (modified[i] != RELOAD_READ
3695 && GET_CODE (recog_operand[i]) == REG)
3696 last_output_reload_regno = REGNO (recog_operand[i]);
3698 /* In a matching pair of operands, one must be input only
3699 and the other must be output only.
3700 Pass the input operand as IN and the other as OUT. */
3701 else if (modified[i] == RELOAD_READ
3702 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3704 operand_reloadnum[i]
3705 = push_reload (recog_operand[i],
3706 recog_operand[goal_alternative_matched[i]],
3707 recog_operand_loc[i],
3708 recog_operand_loc[goal_alternative_matched[i]],
3709 (enum reg_class) goal_alternative[i],
3710 operand_mode[i],
3711 operand_mode[goal_alternative_matched[i]],
3712 0, 0, i, RELOAD_OTHER);
3713 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3714 if (GET_CODE (recog_operand[goal_alternative_matched[i]]) == REG)
3715 last_output_reload_regno
3716 = REGNO (recog_operand[goal_alternative_matched[i]]);
3718 else if (modified[i] == RELOAD_WRITE
3719 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3721 operand_reloadnum[goal_alternative_matched[i]]
3722 = push_reload (recog_operand[goal_alternative_matched[i]],
3723 recog_operand[i],
3724 recog_operand_loc[goal_alternative_matched[i]],
3725 recog_operand_loc[i],
3726 (enum reg_class) goal_alternative[i],
3727 operand_mode[goal_alternative_matched[i]],
3728 operand_mode[i],
3729 0, 0, i, RELOAD_OTHER);
3730 operand_reloadnum[i] = output_reloadnum;
3731 if (GET_CODE (recog_operand[i]) == REG)
3732 last_output_reload_regno = REGNO (recog_operand[i]);
3734 else if (insn_code_number >= 0)
3735 abort ();
3736 else
3738 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3739 /* Avoid further trouble with this insn. */
3740 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3741 n_reloads = 0;
3742 return;
3745 else if (goal_alternative_matched[i] < 0
3746 && goal_alternative_matches[i] < 0
3747 && optimize)
3749 /* For each non-matching operand that's a MEM or a pseudo-register
3750 that didn't get a hard register, make an optional reload.
3751 This may get done even if the insn needs no reloads otherwise. */
3753 rtx operand = recog_operand[i];
3755 while (GET_CODE (operand) == SUBREG)
3756 operand = XEXP (operand, 0);
3757 if ((GET_CODE (operand) == MEM
3758 || (GET_CODE (operand) == REG
3759 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3760 && (enum reg_class) goal_alternative[i] != NO_REGS
3761 && ! no_input_reloads
3762 /* Optional output reloads don't do anything and we mustn't
3763 make in-out reloads on insns that are not permitted output
3764 reloads. */
3765 && (modified[i] == RELOAD_READ
3766 || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
3767 operand_reloadnum[i]
3768 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3769 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3770 (modified[i] != RELOAD_WRITE
3771 ? recog_operand_loc[i] : 0),
3772 (modified[i] != RELOAD_READ
3773 ? recog_operand_loc[i] : 0),
3774 (enum reg_class) goal_alternative[i],
3775 (modified[i] == RELOAD_WRITE
3776 ? VOIDmode : operand_mode[i]),
3777 (modified[i] == RELOAD_READ
3778 ? VOIDmode : operand_mode[i]),
3779 (insn_code_number < 0 ? 0
3780 : insn_operand_strict_low[insn_code_number][i]),
3781 1, i, operand_type[i]);
3783 else if (goal_alternative_matches[i] >= 0
3784 && goal_alternative_win[goal_alternative_matches[i]]
3785 && modified[i] == RELOAD_READ
3786 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3787 && ! no_input_reloads && ! no_output_reloads
3788 && optimize)
3790 /* Similarly, make an optional reload for a pair of matching
3791 objects that are in MEM or a pseudo that didn't get a hard reg. */
3793 rtx operand = recog_operand[i];
3795 while (GET_CODE (operand) == SUBREG)
3796 operand = XEXP (operand, 0);
3797 if ((GET_CODE (operand) == MEM
3798 || (GET_CODE (operand) == REG
3799 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3800 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3801 != NO_REGS))
3802 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3803 = push_reload (recog_operand[goal_alternative_matches[i]],
3804 recog_operand[i],
3805 recog_operand_loc[goal_alternative_matches[i]],
3806 recog_operand_loc[i],
3807 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3808 operand_mode[goal_alternative_matches[i]],
3809 operand_mode[i],
3810 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3813 /* If this insn pattern contains any MATCH_DUP's, make sure that
3814 they will be substituted if the operands they match are substituted.
3815 Also do now any substitutions we already did on the operands.
3817 Don't do this if we aren't making replacements because we might be
3818 propagating things allocated by frame pointer elimination into places
3819 it doesn't expect. */
3821 if (insn_code_number >= 0 && replace)
3822 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
3824 int opno = recog_dup_num[i];
3825 *recog_dup_loc[i] = *recog_operand_loc[opno];
3826 if (operand_reloadnum[opno] >= 0)
3827 push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
3828 insn_operand_mode[insn_code_number][opno]);
3831 #if 0
3832 /* This loses because reloading of prior insns can invalidate the equivalence
3833 (or at least find_equiv_reg isn't smart enough to find it any more),
3834 causing this insn to need more reload regs than it needed before.
3835 It may be too late to make the reload regs available.
3836 Now this optimization is done safely in choose_reload_regs. */
3838 /* For each reload of a reg into some other class of reg,
3839 search for an existing equivalent reg (same value now) in the right class.
3840 We can use it as long as we don't need to change its contents. */
3841 for (i = 0; i < n_reloads; i++)
3842 if (reload_reg_rtx[i] == 0
3843 && reload_in[i] != 0
3844 && GET_CODE (reload_in[i]) == REG
3845 && reload_out[i] == 0)
3847 reload_reg_rtx[i]
3848 = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
3849 static_reload_reg_p, 0, reload_inmode[i]);
3850 /* Prevent generation of insn to load the value
3851 because the one we found already has the value. */
3852 if (reload_reg_rtx[i])
3853 reload_in[i] = reload_reg_rtx[i];
3855 #endif
3857 /* Perhaps an output reload can be combined with another
3858 to reduce needs by one. */
3859 if (!goal_earlyclobber)
3860 combine_reloads ();
3862 /* If we have a pair of reloads for parts of an address, they are reloading
3863 the same object, the operands themselves were not reloaded, and they
3864 are for two operands that are supposed to match, merge the reloads and
3865 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3867 for (i = 0; i < n_reloads; i++)
3869 int k;
3871 for (j = i + 1; j < n_reloads; j++)
3872 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3873 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3874 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3875 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3876 && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
3877 || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS
3878 || reload_when_needed[j] == RELOAD_FOR_INPADDR_ADDRESS
3879 || reload_when_needed[j] == RELOAD_FOR_OUTADDR_ADDRESS)
3880 && rtx_equal_p (reload_in[i], reload_in[j])
3881 && (operand_reloadnum[reload_opnum[i]] < 0
3882 || reload_optional[operand_reloadnum[reload_opnum[i]]])
3883 && (operand_reloadnum[reload_opnum[j]] < 0
3884 || reload_optional[operand_reloadnum[reload_opnum[j]]])
3885 && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
3886 || (goal_alternative_matches[reload_opnum[j]]
3887 == reload_opnum[i])))
3889 for (k = 0; k < n_replacements; k++)
3890 if (replacements[k].what == j)
3891 replacements[k].what = i;
3893 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3894 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3895 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3896 else
3897 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3898 reload_in[j] = 0;
3902 /* Scan all the reloads and update their type.
3903 If a reload is for the address of an operand and we didn't reload
3904 that operand, change the type. Similarly, change the operand number
3905 of a reload when two operands match. If a reload is optional, treat it
3906 as though the operand isn't reloaded.
3908 ??? This latter case is somewhat odd because if we do the optional
3909 reload, it means the object is hanging around. Thus we need only
3910 do the address reload if the optional reload was NOT done.
3912 Change secondary reloads to be the address type of their operand, not
3913 the normal type.
3915 If an operand's reload is now RELOAD_OTHER, change any
3916 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3917 RELOAD_FOR_OTHER_ADDRESS. */
3919 for (i = 0; i < n_reloads; i++)
3921 if (reload_secondary_p[i]
3922 && reload_when_needed[i] == operand_type[reload_opnum[i]])
3923 reload_when_needed[i] = address_type[reload_opnum[i]];
3925 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3926 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3927 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3928 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3929 && (operand_reloadnum[reload_opnum[i]] < 0
3930 || reload_optional[operand_reloadnum[reload_opnum[i]]]))
3932 /* If we have a secondary reload to go along with this reload,
3933 change its type to RELOAD_FOR_OPADDR_ADDR. */
3935 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3936 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
3937 && reload_secondary_in_reload[i] != -1)
3939 int secondary_in_reload = reload_secondary_in_reload[i];
3941 reload_when_needed[secondary_in_reload]
3942 = RELOAD_FOR_OPADDR_ADDR;
3944 /* If there's a tertiary reload we have to change it also. */
3945 if (secondary_in_reload > 0
3946 && reload_secondary_in_reload[secondary_in_reload] != -1)
3947 reload_when_needed[reload_secondary_in_reload[secondary_in_reload]]
3948 = RELOAD_FOR_OPADDR_ADDR;
3951 if ((reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3952 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3953 && reload_secondary_out_reload[i] != -1)
3955 int secondary_out_reload = reload_secondary_out_reload[i];
3957 reload_when_needed[secondary_out_reload]
3958 = RELOAD_FOR_OPADDR_ADDR;
3960 /* If there's a tertiary reload we have to change it also. */
3961 if (secondary_out_reload
3962 && reload_secondary_out_reload[secondary_out_reload] != -1)
3963 reload_when_needed[reload_secondary_out_reload[secondary_out_reload]]
3964 = RELOAD_FOR_OPADDR_ADDR;
3967 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3970 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3971 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
3972 && operand_reloadnum[reload_opnum[i]] >= 0
3973 && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
3974 == RELOAD_OTHER))
3975 reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
3977 if (goal_alternative_matches[reload_opnum[i]] >= 0)
3978 reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
3981 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3982 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3983 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3985 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3986 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3987 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3988 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3989 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3990 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3991 This is complicated by the fact that a single operand can have more
3992 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3993 choose_reload_regs without affecting code quality, and cases that
3994 actually fail are extremely rare, so it turns out to be better to fix
3995 the problem here by not generating cases that choose_reload_regs will
3996 fail for. */
3999 int op_addr_reloads = 0;
4000 for (i = 0; i < n_reloads; i++)
4001 if (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS)
4002 op_addr_reloads++;
4004 if (op_addr_reloads > 1)
4005 for (i = 0; i < n_reloads; i++)
4006 if (reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR)
4007 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
4010 /* See if we have any reloads that are now allowed to be merged
4011 because we've changed when the reload is needed to
4012 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4013 check for the most common cases. */
4015 for (i = 0; i < n_reloads; i++)
4016 if (reload_in[i] != 0 && reload_out[i] == 0
4017 && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
4018 || reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR
4019 || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
4020 for (j = 0; j < n_reloads; j++)
4021 if (i != j && reload_in[j] != 0 && reload_out[j] == 0
4022 && reload_when_needed[j] == reload_when_needed[i]
4023 && MATCHES (reload_in[i], reload_in[j])
4024 && reload_reg_class[i] == reload_reg_class[j]
4025 && !reload_nocombine[i] && !reload_nocombine[j]
4026 && reload_reg_rtx[i] == reload_reg_rtx[j])
4028 reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
4029 transfer_replacements (i, j);
4030 reload_in[j] = 0;
4033 /* Set which reloads must use registers not used in any group. Start
4034 with those that conflict with a group and then include ones that
4035 conflict with ones that are already known to conflict with a group. */
4037 changed = 0;
4038 for (i = 0; i < n_reloads; i++)
4040 enum machine_mode mode = reload_inmode[i];
4041 enum reg_class class = reload_reg_class[i];
4042 int size;
4044 if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
4045 mode = reload_outmode[i];
4046 size = CLASS_MAX_NREGS (class, mode);
4048 if (size == 1)
4049 for (j = 0; j < n_reloads; j++)
4050 if ((CLASS_MAX_NREGS (reload_reg_class[j],
4051 (GET_MODE_SIZE (reload_outmode[j])
4052 > GET_MODE_SIZE (reload_inmode[j]))
4053 ? reload_outmode[j] : reload_inmode[j])
4054 > 1)
4055 && !reload_optional[j]
4056 && (reload_in[j] != 0 || reload_out[j] != 0
4057 || reload_secondary_p[j])
4058 && reloads_conflict (i, j)
4059 && reg_classes_intersect_p (class, reload_reg_class[j]))
4061 reload_nongroup[i] = 1;
4062 changed = 1;
4063 break;
4067 while (changed)
4069 changed = 0;
4071 for (i = 0; i < n_reloads; i++)
4073 enum machine_mode mode = reload_inmode[i];
4074 enum reg_class class = reload_reg_class[i];
4075 int size;
4077 if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
4078 mode = reload_outmode[i];
4079 size = CLASS_MAX_NREGS (class, mode);
4081 if (! reload_nongroup[i] && size == 1)
4082 for (j = 0; j < n_reloads; j++)
4083 if (reload_nongroup[j]
4084 && reloads_conflict (i, j)
4085 && reg_classes_intersect_p (class, reload_reg_class[j]))
4087 reload_nongroup[i] = 1;
4088 changed = 1;
4089 break;
4094 #else /* no REGISTER_CONSTRAINTS */
4095 int noperands;
4096 int insn_code_number;
4097 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
4098 register int i;
4099 rtx body = PATTERN (insn);
4101 n_reloads = 0;
4102 n_replacements = 0;
4103 n_earlyclobbers = 0;
4104 replace_reloads = replace;
4105 this_insn = insn;
4107 /* Find what kind of insn this is. NOPERANDS gets number of operands.
4108 Store the operand values in RECOG_OPERAND and the locations
4109 of the words in the insn that point to them in RECOG_OPERAND_LOC.
4110 Return if the insn needs no reload processing. */
4112 switch (GET_CODE (body))
4114 case USE:
4115 case CLOBBER:
4116 case ASM_INPUT:
4117 case ADDR_VEC:
4118 case ADDR_DIFF_VEC:
4119 return;
4121 case PARALLEL:
4122 case SET:
4123 noperands = asm_noperands (body);
4124 if (noperands >= 0)
4126 /* This insn is an `asm' with operands.
4127 First, find out how many operands, and allocate space. */
4129 insn_code_number = -1;
4130 /* ??? This is a bug! ???
4131 Give up and delete this insn if it has too many operands. */
4132 if (noperands > MAX_RECOG_OPERANDS)
4133 abort ();
4135 /* Now get the operand values out of the insn. */
4137 decode_asm_operands (body, recog_operand, recog_operand_loc,
4138 NULL_PTR, NULL_PTR);
4139 break;
4142 default:
4143 /* Ordinary insn: recognize it, allocate space for operands and
4144 constraints, and get them out via insn_extract. */
4146 insn_code_number = recog_memoized (insn);
4147 noperands = insn_n_operands[insn_code_number];
4148 insn_extract (insn);
4151 if (noperands == 0)
4152 return;
4154 for (i = 0; i < noperands; i++)
4156 register RTX_CODE code = GET_CODE (recog_operand[i]);
4157 int is_set_dest = GET_CODE (body) == SET && (i == 0);
4159 if (insn_code_number >= 0)
4160 if (insn_operand_address_p[insn_code_number][i])
4161 find_reloads_address (VOIDmode, NULL_PTR,
4162 recog_operand[i], recog_operand_loc[i],
4163 i, RELOAD_FOR_INPUT, ind_levels, insn);
4165 /* In these cases, we can't tell if the operand is an input
4166 or an output, so be conservative. In practice it won't be
4167 problem. */
4169 if (code == MEM)
4170 find_reloads_address (GET_MODE (recog_operand[i]),
4171 recog_operand_loc[i],
4172 XEXP (recog_operand[i], 0),
4173 &XEXP (recog_operand[i], 0),
4174 i, RELOAD_OTHER, ind_levels, insn);
4175 if (code == SUBREG)
4176 recog_operand[i] = *recog_operand_loc[i]
4177 = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
4178 ind_levels, is_set_dest);
4179 if (code == REG)
4181 register int regno = REGNO (recog_operand[i]);
4182 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4183 recog_operand[i] = *recog_operand_loc[i]
4184 = reg_equiv_constant[regno];
4185 #if 0 /* This might screw code in reload1.c to delete prior output-reload
4186 that feeds this insn. */
4187 if (reg_equiv_mem[regno] != 0)
4188 recog_operand[i] = *recog_operand_loc[i]
4189 = reg_equiv_mem[regno];
4190 #endif
4194 /* Perhaps an output reload can be combined with another
4195 to reduce needs by one. */
4196 if (!goal_earlyclobber)
4197 combine_reloads ();
4198 #endif /* no REGISTER_CONSTRAINTS */
4201 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4202 accepts a memory operand with constant address. */
4204 static int
4205 alternative_allows_memconst (constraint, altnum)
4206 char *constraint;
4207 int altnum;
4209 register int c;
4210 /* Skip alternatives before the one requested. */
4211 while (altnum > 0)
4213 while (*constraint++ != ',');
4214 altnum--;
4216 /* Scan the requested alternative for 'm' or 'o'.
4217 If one of them is present, this alternative accepts memory constants. */
4218 while ((c = *constraint++) && c != ',' && c != '#')
4219 if (c == 'm' || c == 'o')
4220 return 1;
4221 return 0;
4224 /* Scan X for memory references and scan the addresses for reloading.
4225 Also checks for references to "constant" regs that we want to eliminate
4226 and replaces them with the values they stand for.
4227 We may alter X destructively if it contains a reference to such.
4228 If X is just a constant reg, we return the equivalent value
4229 instead of X.
4231 IND_LEVELS says how many levels of indirect addressing this machine
4232 supports.
4234 OPNUM and TYPE identify the purpose of the reload.
4236 IS_SET_DEST is true if X is the destination of a SET, which is not
4237 appropriate to be replaced by a constant. */
4239 static rtx
4240 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
4241 rtx x;
4242 int opnum;
4243 enum reload_type type;
4244 int ind_levels;
4245 int is_set_dest;
4247 register RTX_CODE code = GET_CODE (x);
4249 register char *fmt = GET_RTX_FORMAT (code);
4250 register int i;
4252 if (code == REG)
4254 /* This code is duplicated for speed in find_reloads. */
4255 register int regno = REGNO (x);
4256 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4257 x = reg_equiv_constant[regno];
4258 #if 0
4259 /* This creates (subreg (mem...)) which would cause an unnecessary
4260 reload of the mem. */
4261 else if (reg_equiv_mem[regno] != 0)
4262 x = reg_equiv_mem[regno];
4263 #endif
4264 else if (reg_equiv_address[regno] != 0)
4266 /* If reg_equiv_address varies, it may be shared, so copy it. */
4267 /* We must rerun eliminate_regs, in case the elimination
4268 offsets have changed. */
4269 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
4270 NULL_RTX),
4273 if (rtx_varies_p (addr))
4274 addr = copy_rtx (addr);
4276 x = gen_rtx_MEM (GET_MODE (x), addr);
4277 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4278 find_reloads_address (GET_MODE (x), NULL_PTR,
4279 XEXP (x, 0),
4280 &XEXP (x, 0), opnum, type, ind_levels, 0);
4282 return x;
4284 if (code == MEM)
4286 rtx tem = x;
4287 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4288 opnum, type, ind_levels, 0);
4289 return tem;
4292 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4294 /* Check for SUBREG containing a REG that's equivalent to a constant.
4295 If the constant has a known value, truncate it right now.
4296 Similarly if we are extracting a single-word of a multi-word
4297 constant. If the constant is symbolic, allow it to be substituted
4298 normally. push_reload will strip the subreg later. If the
4299 constant is VOIDmode, abort because we will lose the mode of
4300 the register (this should never happen because one of the cases
4301 above should handle it). */
4303 register int regno = REGNO (SUBREG_REG (x));
4304 rtx tem;
4306 if (subreg_lowpart_p (x)
4307 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4308 && reg_equiv_constant[regno] != 0
4309 && (tem = gen_lowpart_common (GET_MODE (x),
4310 reg_equiv_constant[regno])) != 0)
4311 return tem;
4313 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4314 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4315 && reg_equiv_constant[regno] != 0
4316 && (tem = operand_subword (reg_equiv_constant[regno],
4317 SUBREG_WORD (x), 0,
4318 GET_MODE (SUBREG_REG (x)))) != 0)
4320 /* TEM is now a word sized constant for the bits from X that
4321 we wanted. However, TEM may be the wrong representation.
4323 Use gen_lowpart_common to convert a CONST_INT into a
4324 CONST_DOUBLE and vice versa as needed according to by the mode
4325 of the SUBREG. */
4326 tem = gen_lowpart_common (GET_MODE (x), tem);
4327 if (!tem)
4328 abort ();
4329 return tem;
4332 /* If the SUBREG is wider than a word, the above test will fail.
4333 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4334 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4335 a 32 bit target. We still can - and have to - handle this
4336 for non-paradoxical subregs of CONST_INTs. */
4337 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4338 && reg_equiv_constant[regno] != 0
4339 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4340 && (GET_MODE_SIZE (GET_MODE (x))
4341 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4343 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4344 if (WORDS_BIG_ENDIAN)
4345 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4346 - GET_MODE_BITSIZE (GET_MODE (x))
4347 - shift);
4348 /* Here we use the knowledge that CONST_INTs have a
4349 HOST_WIDE_INT field. */
4350 if (shift >= HOST_BITS_PER_WIDE_INT)
4351 shift = HOST_BITS_PER_WIDE_INT - 1;
4352 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4355 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4356 && reg_equiv_constant[regno] != 0
4357 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4358 abort ();
4360 /* If the subreg contains a reg that will be converted to a mem,
4361 convert the subreg to a narrower memref now.
4362 Otherwise, we would get (subreg (mem ...) ...),
4363 which would force reload of the mem.
4365 We also need to do this if there is an equivalent MEM that is
4366 not offsettable. In that case, alter_subreg would produce an
4367 invalid address on big-endian machines.
4369 For machines that extend byte loads, we must not reload using
4370 a wider mode if we have a paradoxical SUBREG. find_reloads will
4371 force a reload in that case. So we should not do anything here. */
4373 else if (regno >= FIRST_PSEUDO_REGISTER
4374 #ifdef LOAD_EXTEND_OP
4375 && (GET_MODE_SIZE (GET_MODE (x))
4376 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4377 #endif
4378 && (reg_equiv_address[regno] != 0
4379 || (reg_equiv_mem[regno] != 0
4380 && (! strict_memory_address_p (GET_MODE (x),
4381 XEXP (reg_equiv_mem[regno], 0))
4382 || ! offsettable_memref_p (reg_equiv_mem[regno])))))
4384 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
4385 /* We must rerun eliminate_regs, in case the elimination
4386 offsets have changed. */
4387 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
4388 NULL_RTX),
4390 if (BYTES_BIG_ENDIAN)
4392 int size;
4393 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
4394 offset += MIN (size, UNITS_PER_WORD);
4395 size = GET_MODE_SIZE (GET_MODE (x));
4396 offset -= MIN (size, UNITS_PER_WORD);
4398 addr = plus_constant (addr, offset);
4399 x = gen_rtx_MEM (GET_MODE (x), addr);
4400 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4401 find_reloads_address (GET_MODE (x), NULL_PTR,
4402 XEXP (x, 0),
4403 &XEXP (x, 0), opnum, type, ind_levels, 0);
4408 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4410 if (fmt[i] == 'e')
4411 XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
4412 ind_levels, is_set_dest);
4414 return x;
4417 /* Return a mem ref for the memory equivalent of reg REGNO.
4418 This mem ref is not shared with anything. */
4420 static rtx
4421 make_memloc (ad, regno)
4422 rtx ad;
4423 int regno;
4425 #if 0
4426 register int i;
4427 #endif
4428 /* We must rerun eliminate_regs, in case the elimination
4429 offsets have changed. */
4430 rtx tem = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4432 #if 0 /* We cannot safely reuse a memloc made here;
4433 if the pseudo appears twice, and its mem needs a reload,
4434 it gets two separate reloads assigned, but it only
4435 gets substituted with the second of them;
4436 then it can get used before that reload reg gets loaded up. */
4437 for (i = 0; i < n_memlocs; i++)
4438 if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
4439 return memlocs[i];
4440 #endif
4442 /* If TEM might contain a pseudo, we must copy it to avoid
4443 modifying it when we do the substitution for the reload. */
4444 if (rtx_varies_p (tem))
4445 tem = copy_rtx (tem);
4447 tem = gen_rtx_MEM (GET_MODE (ad), tem);
4448 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4449 memlocs[n_memlocs++] = tem;
4450 return tem;
4453 /* Record all reloads needed for handling memory address AD
4454 which appears in *LOC in a memory reference to mode MODE
4455 which itself is found in location *MEMREFLOC.
4456 Note that we take shortcuts assuming that no multi-reg machine mode
4457 occurs as part of an address.
4459 OPNUM and TYPE specify the purpose of this reload.
4461 IND_LEVELS says how many levels of indirect addressing this machine
4462 supports.
4464 INSN, if nonzero, is the insn in which we do the reload. It is used
4465 to determine if we may generate output reloads.
4467 Value is nonzero if this address is reloaded or replaced as a whole.
4468 This is interesting to the caller if the address is an autoincrement.
4470 Note that there is no verification that the address will be valid after
4471 this routine does its work. Instead, we rely on the fact that the address
4472 was valid when reload started. So we need only undo things that reload
4473 could have broken. These are wrong register types, pseudos not allocated
4474 to a hard register, and frame pointer elimination. */
4476 static int
4477 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4478 enum machine_mode mode;
4479 rtx *memrefloc;
4480 rtx ad;
4481 rtx *loc;
4482 int opnum;
4483 enum reload_type type;
4484 int ind_levels;
4485 rtx insn;
4487 register int regno;
4488 rtx tem;
4490 /* If the address is a register, see if it is a legitimate address and
4491 reload if not. We first handle the cases where we need not reload
4492 or where we must reload in a non-standard way. */
4494 if (GET_CODE (ad) == REG)
4496 regno = REGNO (ad);
4498 if (reg_equiv_constant[regno] != 0
4499 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4501 *loc = ad = reg_equiv_constant[regno];
4502 return 1;
4505 else if (reg_equiv_address[regno] != 0)
4507 tem = make_memloc (ad, regno);
4508 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
4509 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4510 ind_levels, insn);
4511 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4512 reload_address_base_reg_class,
4513 GET_MODE (ad), VOIDmode, 0, 0,
4514 opnum, type);
4515 return 1;
4518 /* We can avoid a reload if the register's equivalent memory expression
4519 is valid as an indirect memory address.
4520 But not all addresses are valid in a mem used as an indirect address:
4521 only reg or reg+constant. */
4523 else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
4524 && strict_memory_address_p (mode, reg_equiv_mem[regno])
4525 && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
4526 || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
4527 && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
4528 && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 1)))))
4529 return 0;
4531 /* The only remaining case where we can avoid a reload is if this is a
4532 hard register that is valid as a base register and which is not the
4533 subject of a CLOBBER in this insn. */
4535 else if (regno < FIRST_PSEUDO_REGISTER
4536 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4537 && ! regno_clobbered_p (regno, this_insn))
4538 return 0;
4540 /* If we do not have one of the cases above, we must do the reload. */
4541 push_reload (ad, NULL_RTX, loc, NULL_PTR, reload_address_base_reg_class,
4542 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4543 return 1;
4546 if (strict_memory_address_p (mode, ad))
4548 /* The address appears valid, so reloads are not needed.
4549 But the address may contain an eliminable register.
4550 This can happen because a machine with indirect addressing
4551 may consider a pseudo register by itself a valid address even when
4552 it has failed to get a hard reg.
4553 So do a tree-walk to find and eliminate all such regs. */
4555 /* But first quickly dispose of a common case. */
4556 if (GET_CODE (ad) == PLUS
4557 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4558 && GET_CODE (XEXP (ad, 0)) == REG
4559 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4560 return 0;
4562 subst_reg_equivs_changed = 0;
4563 *loc = subst_reg_equivs (ad);
4565 if (! subst_reg_equivs_changed)
4566 return 0;
4568 /* Check result for validity after substitution. */
4569 if (strict_memory_address_p (mode, ad))
4570 return 0;
4573 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4576 if (memrefloc)
4578 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4579 ind_levels, win);
4581 break;
4582 win:
4583 *memrefloc = copy_rtx (*memrefloc);
4584 XEXP (*memrefloc, 0) = ad;
4585 move_replacements (&ad, &XEXP (*memrefloc, 0));
4586 return 1;
4588 while (0);
4589 #endif
4591 /* The address is not valid. We have to figure out why. One possibility
4592 is that it is itself a MEM. This can happen when the frame pointer is
4593 being eliminated, a pseudo is not allocated to a hard register, and the
4594 offset between the frame and stack pointers is not its initial value.
4595 In that case the pseudo will have been replaced by a MEM referring to
4596 the stack pointer. */
4597 if (GET_CODE (ad) == MEM)
4599 /* First ensure that the address in this MEM is valid. Then, unless
4600 indirect addresses are valid, reload the MEM into a register. */
4601 tem = ad;
4602 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4603 opnum, ADDR_TYPE (type),
4604 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4606 /* If tem was changed, then we must create a new memory reference to
4607 hold it and store it back into memrefloc. */
4608 if (tem != ad && memrefloc)
4610 *memrefloc = copy_rtx (*memrefloc);
4611 copy_replacements (tem, XEXP (*memrefloc, 0));
4612 loc = &XEXP (*memrefloc, 0);
4615 /* Check similar cases as for indirect addresses as above except
4616 that we can allow pseudos and a MEM since they should have been
4617 taken care of above. */
4619 if (ind_levels == 0
4620 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4621 || GET_CODE (XEXP (tem, 0)) == MEM
4622 || ! (GET_CODE (XEXP (tem, 0)) == REG
4623 || (GET_CODE (XEXP (tem, 0)) == PLUS
4624 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4625 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4627 /* Must use TEM here, not AD, since it is the one that will
4628 have any subexpressions reloaded, if needed. */
4629 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4630 reload_address_base_reg_class, GET_MODE (tem),
4631 VOIDmode, 0,
4632 0, opnum, type);
4633 return 1;
4635 else
4636 return 0;
4639 /* If we have address of a stack slot but it's not valid because the
4640 displacement is too large, compute the sum in a register.
4641 Handle all base registers here, not just fp/ap/sp, because on some
4642 targets (namely SH) we can also get too large displacements from
4643 big-endian corrections. */
4644 else if (GET_CODE (ad) == PLUS
4645 && GET_CODE (XEXP (ad, 0)) == REG
4646 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4647 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4648 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4650 /* Unshare the MEM rtx so we can safely alter it. */
4651 if (memrefloc)
4653 *memrefloc = copy_rtx (*memrefloc);
4654 loc = &XEXP (*memrefloc, 0);
4656 if (double_reg_address_ok)
4658 /* Unshare the sum as well. */
4659 *loc = ad = copy_rtx (ad);
4660 /* Reload the displacement into an index reg.
4661 We assume the frame pointer or arg pointer is a base reg. */
4662 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4663 reload_address_index_reg_class,
4664 GET_MODE (ad), opnum, type, ind_levels);
4666 else
4668 /* If the sum of two regs is not necessarily valid,
4669 reload the sum into a base reg.
4670 That will at least work. */
4671 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4672 Pmode, opnum, type, ind_levels);
4674 return 1;
4677 /* If we have an indexed stack slot, there are three possible reasons why
4678 it might be invalid: The index might need to be reloaded, the address
4679 might have been made by frame pointer elimination and hence have a
4680 constant out of range, or both reasons might apply.
4682 We can easily check for an index needing reload, but even if that is the
4683 case, we might also have an invalid constant. To avoid making the
4684 conservative assumption and requiring two reloads, we see if this address
4685 is valid when not interpreted strictly. If it is, the only problem is
4686 that the index needs a reload and find_reloads_address_1 will take care
4687 of it.
4689 There is still a case when we might generate an extra reload,
4690 however. In certain cases eliminate_regs will return a MEM for a REG
4691 (see the code there for details). In those cases, memory_address_p
4692 applied to our address will return 0 so we will think that our offset
4693 must be too large. But it might indeed be valid and the only problem
4694 is that a MEM is present where a REG should be. This case should be
4695 very rare and there doesn't seem to be any way to avoid it.
4697 If we decide to do something here, it must be that
4698 `double_reg_address_ok' is true and that this address rtl was made by
4699 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4700 rework the sum so that the reload register will be added to the index.
4701 This is safe because we know the address isn't shared.
4703 We check for fp/ap/sp as both the first and second operand of the
4704 innermost PLUS. */
4706 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4707 && GET_CODE (XEXP (ad, 0)) == PLUS
4708 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4709 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4710 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4711 #endif
4712 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4713 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4714 #endif
4715 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4716 && ! memory_address_p (mode, ad))
4718 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4719 plus_constant (XEXP (XEXP (ad, 0), 0),
4720 INTVAL (XEXP (ad, 1))),
4721 XEXP (XEXP (ad, 0), 1));
4722 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4723 reload_address_base_reg_class,
4724 GET_MODE (ad), opnum, type, ind_levels);
4725 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4726 type, 0, insn);
4728 return 1;
4731 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4732 && GET_CODE (XEXP (ad, 0)) == PLUS
4733 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4734 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4735 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4736 #endif
4737 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4738 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4739 #endif
4740 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4741 && ! memory_address_p (mode, ad))
4743 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4744 XEXP (XEXP (ad, 0), 0),
4745 plus_constant (XEXP (XEXP (ad, 0), 1),
4746 INTVAL (XEXP (ad, 1))));
4747 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4748 reload_address_base_reg_class,
4749 GET_MODE (ad), opnum, type, ind_levels);
4750 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4751 type, 0, insn);
4753 return 1;
4756 /* See if address becomes valid when an eliminable register
4757 in a sum is replaced. */
4759 tem = ad;
4760 if (GET_CODE (ad) == PLUS)
4761 tem = subst_indexed_address (ad);
4762 if (tem != ad && strict_memory_address_p (mode, tem))
4764 /* Ok, we win that way. Replace any additional eliminable
4765 registers. */
4767 subst_reg_equivs_changed = 0;
4768 tem = subst_reg_equivs (tem);
4770 /* Make sure that didn't make the address invalid again. */
4772 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4774 *loc = tem;
4775 return 0;
4779 /* If constants aren't valid addresses, reload the constant address
4780 into a register. */
4781 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4783 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4784 Unshare it so we can safely alter it. */
4785 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4786 && CONSTANT_POOL_ADDRESS_P (ad))
4788 *memrefloc = copy_rtx (*memrefloc);
4789 loc = &XEXP (*memrefloc, 0);
4792 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4793 Pmode, opnum, type,
4794 ind_levels);
4795 return 1;
4798 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4799 insn);
4802 /* Find all pseudo regs appearing in AD
4803 that are eliminable in favor of equivalent values
4804 and do not have hard regs; replace them by their equivalents. */
4806 static rtx
4807 subst_reg_equivs (ad)
4808 rtx ad;
4810 register RTX_CODE code = GET_CODE (ad);
4811 register int i;
4812 register char *fmt;
4814 switch (code)
4816 case HIGH:
4817 case CONST_INT:
4818 case CONST:
4819 case CONST_DOUBLE:
4820 case SYMBOL_REF:
4821 case LABEL_REF:
4822 case PC:
4823 case CC0:
4824 return ad;
4826 case REG:
4828 register int regno = REGNO (ad);
4830 if (reg_equiv_constant[regno] != 0)
4832 subst_reg_equivs_changed = 1;
4833 return reg_equiv_constant[regno];
4836 return ad;
4838 case PLUS:
4839 /* Quickly dispose of a common case. */
4840 if (XEXP (ad, 0) == frame_pointer_rtx
4841 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4842 return ad;
4843 break;
4845 default:
4846 break;
4849 fmt = GET_RTX_FORMAT (code);
4850 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4851 if (fmt[i] == 'e')
4852 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
4853 return ad;
4856 /* Compute the sum of X and Y, making canonicalizations assumed in an
4857 address, namely: sum constant integers, surround the sum of two
4858 constants with a CONST, put the constant as the second operand, and
4859 group the constant on the outermost sum.
4861 This routine assumes both inputs are already in canonical form. */
4864 form_sum (x, y)
4865 rtx x, y;
4867 rtx tem;
4868 enum machine_mode mode = GET_MODE (x);
4870 if (mode == VOIDmode)
4871 mode = GET_MODE (y);
4873 if (mode == VOIDmode)
4874 mode = Pmode;
4876 if (GET_CODE (x) == CONST_INT)
4877 return plus_constant (y, INTVAL (x));
4878 else if (GET_CODE (y) == CONST_INT)
4879 return plus_constant (x, INTVAL (y));
4880 else if (CONSTANT_P (x))
4881 tem = x, x = y, y = tem;
4883 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4884 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4886 /* Note that if the operands of Y are specified in the opposite
4887 order in the recursive calls below, infinite recursion will occur. */
4888 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4889 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4891 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4892 constant will have been placed second. */
4893 if (CONSTANT_P (x) && CONSTANT_P (y))
4895 if (GET_CODE (x) == CONST)
4896 x = XEXP (x, 0);
4897 if (GET_CODE (y) == CONST)
4898 y = XEXP (y, 0);
4900 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4903 return gen_rtx_PLUS (mode, x, y);
4906 /* If ADDR is a sum containing a pseudo register that should be
4907 replaced with a constant (from reg_equiv_constant),
4908 return the result of doing so, and also apply the associative
4909 law so that the result is more likely to be a valid address.
4910 (But it is not guaranteed to be one.)
4912 Note that at most one register is replaced, even if more are
4913 replaceable. Also, we try to put the result into a canonical form
4914 so it is more likely to be a valid address.
4916 In all other cases, return ADDR. */
4918 static rtx
4919 subst_indexed_address (addr)
4920 rtx addr;
4922 rtx op0 = 0, op1 = 0, op2 = 0;
4923 rtx tem;
4924 int regno;
4926 if (GET_CODE (addr) == PLUS)
4928 /* Try to find a register to replace. */
4929 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4930 if (GET_CODE (op0) == REG
4931 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4932 && reg_renumber[regno] < 0
4933 && reg_equiv_constant[regno] != 0)
4934 op0 = reg_equiv_constant[regno];
4935 else if (GET_CODE (op1) == REG
4936 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4937 && reg_renumber[regno] < 0
4938 && reg_equiv_constant[regno] != 0)
4939 op1 = reg_equiv_constant[regno];
4940 else if (GET_CODE (op0) == PLUS
4941 && (tem = subst_indexed_address (op0)) != op0)
4942 op0 = tem;
4943 else if (GET_CODE (op1) == PLUS
4944 && (tem = subst_indexed_address (op1)) != op1)
4945 op1 = tem;
4946 else
4947 return addr;
4949 /* Pick out up to three things to add. */
4950 if (GET_CODE (op1) == PLUS)
4951 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4952 else if (GET_CODE (op0) == PLUS)
4953 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4955 /* Compute the sum. */
4956 if (op2 != 0)
4957 op1 = form_sum (op1, op2);
4958 if (op1 != 0)
4959 op0 = form_sum (op0, op1);
4961 return op0;
4963 return addr;
4966 /* Record the pseudo registers we must reload into hard registers in a
4967 subexpression of a would-be memory address, X referring to a value
4968 in mode MODE. (This function is not called if the address we find
4969 is strictly valid.)
4971 CONTEXT = 1 means we are considering regs as index regs,
4972 = 0 means we are considering them as base regs.
4974 OPNUM and TYPE specify the purpose of any reloads made.
4976 IND_LEVELS says how many levels of indirect addressing are
4977 supported at this point in the address.
4979 INSN, if nonzero, is the insn in which we do the reload. It is used
4980 to determine if we may generate output reloads.
4982 We return nonzero if X, as a whole, is reloaded or replaced. */
4984 /* Note that we take shortcuts assuming that no multi-reg machine mode
4985 occurs as part of an address.
4986 Also, this is not fully machine-customizable; it works for machines
4987 such as vaxes and 68000's and 32000's, but other possible machines
4988 could have addressing modes that this does not handle right. */
4990 static int
4991 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
4992 enum machine_mode mode;
4993 rtx x;
4994 int context;
4995 rtx *loc;
4996 int opnum;
4997 enum reload_type type;
4998 int ind_levels;
4999 rtx insn;
5001 register RTX_CODE code = GET_CODE (x);
5003 switch (code)
5005 case PLUS:
5007 register rtx orig_op0 = XEXP (x, 0);
5008 register rtx orig_op1 = XEXP (x, 1);
5009 register RTX_CODE code0 = GET_CODE (orig_op0);
5010 register RTX_CODE code1 = GET_CODE (orig_op1);
5011 register rtx op0 = orig_op0;
5012 register rtx op1 = orig_op1;
5014 if (GET_CODE (op0) == SUBREG)
5016 op0 = SUBREG_REG (op0);
5017 code0 = GET_CODE (op0);
5018 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5019 op0 = gen_rtx_REG (word_mode,
5020 REGNO (op0) + SUBREG_WORD (orig_op0));
5023 if (GET_CODE (op1) == SUBREG)
5025 op1 = SUBREG_REG (op1);
5026 code1 = GET_CODE (op1);
5027 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5028 op1 = gen_rtx_REG (GET_MODE (op1),
5029 REGNO (op1) + SUBREG_WORD (orig_op1));
5032 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5033 || code0 == ZERO_EXTEND || code1 == MEM)
5035 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5036 type, ind_levels, insn);
5037 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5038 type, ind_levels, insn);
5041 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5042 || code1 == ZERO_EXTEND || code0 == MEM)
5044 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5045 type, ind_levels, insn);
5046 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5047 type, ind_levels, insn);
5050 else if (code0 == CONST_INT || code0 == CONST
5051 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5052 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5053 type, ind_levels, insn);
5055 else if (code1 == CONST_INT || code1 == CONST
5056 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5057 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5058 type, ind_levels, insn);
5060 else if (code0 == REG && code1 == REG)
5062 if (REG_OK_FOR_INDEX_P (op0)
5063 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5064 return 0;
5065 else if (REG_OK_FOR_INDEX_P (op1)
5066 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5067 return 0;
5068 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5069 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5070 type, ind_levels, insn);
5071 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5072 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5073 type, ind_levels, insn);
5074 else if (REG_OK_FOR_INDEX_P (op1))
5075 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5076 type, ind_levels, insn);
5077 else if (REG_OK_FOR_INDEX_P (op0))
5078 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5079 type, ind_levels, insn);
5080 else
5082 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5083 type, ind_levels, insn);
5084 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5085 type, ind_levels, insn);
5089 else if (code0 == REG)
5091 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5092 type, ind_levels, insn);
5093 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5094 type, ind_levels, insn);
5097 else if (code1 == REG)
5099 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5100 type, ind_levels, insn);
5101 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5102 type, ind_levels, insn);
5106 return 0;
5108 case POST_INC:
5109 case POST_DEC:
5110 case PRE_INC:
5111 case PRE_DEC:
5112 if (GET_CODE (XEXP (x, 0)) == REG)
5114 register int regno = REGNO (XEXP (x, 0));
5115 int value = 0;
5116 rtx x_orig = x;
5118 /* A register that is incremented cannot be constant! */
5119 if (regno >= FIRST_PSEUDO_REGISTER
5120 && reg_equiv_constant[regno] != 0)
5121 abort ();
5123 /* Handle a register that is equivalent to a memory location
5124 which cannot be addressed directly. */
5125 if (reg_equiv_address[regno] != 0)
5127 rtx tem = make_memloc (XEXP (x, 0), regno);
5128 /* First reload the memory location's address.
5129 We can't use ADDR_TYPE (type) here, because we need to
5130 write back the value after reading it, hence we actually
5131 need two registers. */
5132 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5133 &XEXP (tem, 0), opnum, type,
5134 ind_levels, insn);
5135 /* Put this inside a new increment-expression. */
5136 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5137 /* Proceed to reload that, as if it contained a register. */
5140 /* If we have a hard register that is ok as an index,
5141 don't make a reload. If an autoincrement of a nice register
5142 isn't "valid", it must be that no autoincrement is "valid".
5143 If that is true and something made an autoincrement anyway,
5144 this must be a special context where one is allowed.
5145 (For example, a "push" instruction.)
5146 We can't improve this address, so leave it alone. */
5148 /* Otherwise, reload the autoincrement into a suitable hard reg
5149 and record how much to increment by. */
5151 if (reg_renumber[regno] >= 0)
5152 regno = reg_renumber[regno];
5153 if ((regno >= FIRST_PSEUDO_REGISTER
5154 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5155 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5157 #ifdef AUTO_INC_DEC
5158 register rtx link;
5159 #endif
5160 int reloadnum;
5162 /* If we can output the register afterwards, do so, this
5163 saves the extra update.
5164 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5165 CALL_INSN - and it does not set CC0.
5166 But don't do this if we cannot directly address the
5167 memory location, since this will make it harder to
5168 reuse address reloads, and increases register pressure.
5169 Also don't do this if we can probably update x directly. */
5170 rtx equiv = reg_equiv_mem[regno];
5171 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5172 if (insn && GET_CODE (insn) == INSN && equiv
5173 #ifdef HAVE_cc0
5174 && ! sets_cc0_p (PATTERN (insn))
5175 #endif
5176 && ! (icode != CODE_FOR_nothing
5177 && (*insn_operand_predicate[icode][0]) (equiv, Pmode)
5178 && (*insn_operand_predicate[icode][1]) (equiv, Pmode)))
5180 loc = &XEXP (x, 0);
5181 x = XEXP (x, 0);
5182 reloadnum
5183 = push_reload (x, x, loc, loc,
5184 (context
5185 ? reload_address_index_reg_class
5186 : reload_address_base_reg_class),
5187 GET_MODE (x), GET_MODE (x), 0, 0,
5188 opnum, RELOAD_OTHER);
5190 else
5192 reloadnum
5193 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5194 (context
5195 ? reload_address_index_reg_class
5196 : reload_address_base_reg_class),
5197 GET_MODE (x), GET_MODE (x), 0, 0,
5198 opnum, type);
5199 reload_inc[reloadnum]
5200 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5202 value = 1;
5205 #ifdef AUTO_INC_DEC
5206 /* Update the REG_INC notes. */
5208 for (link = REG_NOTES (this_insn);
5209 link; link = XEXP (link, 1))
5210 if (REG_NOTE_KIND (link) == REG_INC
5211 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
5212 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5213 #endif
5215 return value;
5218 else if (GET_CODE (XEXP (x, 0)) == MEM)
5220 /* This is probably the result of a substitution, by eliminate_regs,
5221 of an equivalent address for a pseudo that was not allocated to a
5222 hard register. Verify that the specified address is valid and
5223 reload it into a register. */
5224 rtx tem = XEXP (x, 0);
5225 register rtx link;
5226 int reloadnum;
5228 /* Since we know we are going to reload this item, don't decrement
5229 for the indirection level.
5231 Note that this is actually conservative: it would be slightly
5232 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5233 reload1.c here. */
5234 /* We can't use ADDR_TYPE (type) here, because we need to
5235 write back the value after reading it, hence we actually
5236 need two registers. */
5237 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5238 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5239 opnum, type, ind_levels, insn);
5241 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
5242 (context
5243 ? reload_address_index_reg_class
5244 : reload_address_base_reg_class),
5245 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5246 reload_inc[reloadnum]
5247 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5249 link = FIND_REG_INC_NOTE (this_insn, tem);
5250 if (link != 0)
5251 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5253 return 1;
5255 return 0;
5257 case MEM:
5258 /* This is probably the result of a substitution, by eliminate_regs, of
5259 an equivalent address for a pseudo that was not allocated to a hard
5260 register. Verify that the specified address is valid and reload it
5261 into a register.
5263 Since we know we are going to reload this item, don't decrement for
5264 the indirection level.
5266 Note that this is actually conservative: it would be slightly more
5267 efficient to use the value of SPILL_INDIRECT_LEVELS from
5268 reload1.c here. */
5270 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5271 opnum, ADDR_TYPE (type), ind_levels, insn);
5272 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
5273 (context ? reload_address_index_reg_class
5274 : reload_address_base_reg_class),
5275 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5276 return 1;
5278 case REG:
5280 register int regno = REGNO (x);
5282 if (reg_equiv_constant[regno] != 0)
5284 find_reloads_address_part (reg_equiv_constant[regno], loc,
5285 (context
5286 ? reload_address_index_reg_class
5287 : reload_address_base_reg_class),
5288 GET_MODE (x), opnum, type, ind_levels);
5289 return 1;
5292 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5293 that feeds this insn. */
5294 if (reg_equiv_mem[regno] != 0)
5296 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
5297 (context
5298 ? reload_address_index_reg_class
5299 : reload_address_base_reg_class),
5300 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5301 return 1;
5303 #endif
5305 if (reg_equiv_address[regno] != 0)
5307 x = make_memloc (x, regno);
5308 find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
5309 opnum, ADDR_TYPE (type), ind_levels, insn);
5312 if (reg_renumber[regno] >= 0)
5313 regno = reg_renumber[regno];
5315 if ((regno >= FIRST_PSEUDO_REGISTER
5316 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5317 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5319 push_reload (x, NULL_RTX, loc, NULL_PTR,
5320 (context
5321 ? reload_address_index_reg_class
5322 : reload_address_base_reg_class),
5323 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5324 return 1;
5327 /* If a register appearing in an address is the subject of a CLOBBER
5328 in this insn, reload it into some other register to be safe.
5329 The CLOBBER is supposed to make the register unavailable
5330 from before this insn to after it. */
5331 if (regno_clobbered_p (regno, this_insn))
5333 push_reload (x, NULL_RTX, loc, NULL_PTR,
5334 (context
5335 ? reload_address_index_reg_class
5336 : reload_address_base_reg_class),
5337 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5338 return 1;
5341 return 0;
5343 case SUBREG:
5344 if (GET_CODE (SUBREG_REG (x)) == REG)
5346 /* If this is a SUBREG of a hard register and the resulting register
5347 is of the wrong class, reload the whole SUBREG. This avoids
5348 needless copies if SUBREG_REG is multi-word. */
5349 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5351 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5353 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5354 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5356 push_reload (x, NULL_RTX, loc, NULL_PTR,
5357 (context
5358 ? reload_address_index_reg_class
5359 : reload_address_base_reg_class),
5360 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5361 return 1;
5364 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5365 is larger than the class size, then reload the whole SUBREG. */
5366 else
5368 enum reg_class class = (context
5369 ? reload_address_index_reg_class
5370 : reload_address_base_reg_class);
5371 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5372 > reg_class_size[class])
5374 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5375 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5376 return 1;
5380 break;
5382 default:
5383 break;
5387 register char *fmt = GET_RTX_FORMAT (code);
5388 register int i;
5390 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5392 if (fmt[i] == 'e')
5393 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5394 opnum, type, ind_levels, insn);
5398 return 0;
5401 /* X, which is found at *LOC, is a part of an address that needs to be
5402 reloaded into a register of class CLASS. If X is a constant, or if
5403 X is a PLUS that contains a constant, check that the constant is a
5404 legitimate operand and that we are supposed to be able to load
5405 it into the register.
5407 If not, force the constant into memory and reload the MEM instead.
5409 MODE is the mode to use, in case X is an integer constant.
5411 OPNUM and TYPE describe the purpose of any reloads made.
5413 IND_LEVELS says how many levels of indirect addressing this machine
5414 supports. */
5416 static void
5417 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5418 rtx x;
5419 rtx *loc;
5420 enum reg_class class;
5421 enum machine_mode mode;
5422 int opnum;
5423 enum reload_type type;
5424 int ind_levels;
5426 if (CONSTANT_P (x)
5427 && (! LEGITIMATE_CONSTANT_P (x)
5428 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5430 rtx tem = x = force_const_mem (mode, x);
5431 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5432 opnum, type, ind_levels, 0);
5435 else if (GET_CODE (x) == PLUS
5436 && CONSTANT_P (XEXP (x, 1))
5437 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5438 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5440 rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5442 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5443 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5444 opnum, type, ind_levels, 0);
5447 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5448 mode, VOIDmode, 0, 0, opnum, type);
5451 /* Substitute into the current INSN the registers into which we have reloaded
5452 the things that need reloading. The array `replacements'
5453 says contains the locations of all pointers that must be changed
5454 and says what to replace them with.
5456 Return the rtx that X translates into; usually X, but modified. */
5458 void
5459 subst_reloads ()
5461 register int i;
5463 for (i = 0; i < n_replacements; i++)
5465 register struct replacement *r = &replacements[i];
5466 register rtx reloadreg = reload_reg_rtx[r->what];
5467 if (reloadreg)
5469 /* Encapsulate RELOADREG so its machine mode matches what
5470 used to be there. Note that gen_lowpart_common will
5471 do the wrong thing if RELOADREG is multi-word. RELOADREG
5472 will always be a REG here. */
5473 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5474 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5476 /* If we are putting this into a SUBREG and RELOADREG is a
5477 SUBREG, we would be making nested SUBREGs, so we have to fix
5478 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5480 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5482 if (GET_MODE (*r->subreg_loc)
5483 == GET_MODE (SUBREG_REG (reloadreg)))
5484 *r->subreg_loc = SUBREG_REG (reloadreg);
5485 else
5487 *r->where = SUBREG_REG (reloadreg);
5488 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5491 else
5492 *r->where = reloadreg;
5494 /* If reload got no reg and isn't optional, something's wrong. */
5495 else if (! reload_optional[r->what])
5496 abort ();
5500 /* Make a copy of any replacements being done into X and move those copies
5501 to locations in Y, a copy of X. We only look at the highest level of
5502 the RTL. */
5504 void
5505 copy_replacements (x, y)
5506 rtx x;
5507 rtx y;
5509 int i, j;
5510 enum rtx_code code = GET_CODE (x);
5511 char *fmt = GET_RTX_FORMAT (code);
5512 struct replacement *r;
5514 /* We can't support X being a SUBREG because we might then need to know its
5515 location if something inside it was replaced. */
5516 if (code == SUBREG)
5517 abort ();
5519 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5520 if (fmt[i] == 'e')
5521 for (j = 0; j < n_replacements; j++)
5523 if (replacements[j].subreg_loc == &XEXP (x, i))
5525 r = &replacements[n_replacements++];
5526 r->where = replacements[j].where;
5527 r->subreg_loc = &XEXP (y, i);
5528 r->what = replacements[j].what;
5529 r->mode = replacements[j].mode;
5531 else if (replacements[j].where == &XEXP (x, i))
5533 r = &replacements[n_replacements++];
5534 r->where = &XEXP (y, i);
5535 r->subreg_loc = 0;
5536 r->what = replacements[j].what;
5537 r->mode = replacements[j].mode;
5542 /* Change any replacements being done to *X to be done to *Y */
5544 void
5545 move_replacements (x, y)
5546 rtx *x;
5547 rtx *y;
5549 int i;
5551 for (i = 0; i < n_replacements; i++)
5552 if (replacements[i].subreg_loc == x)
5553 replacements[i].subreg_loc = y;
5554 else if (replacements[i].where == x)
5556 replacements[i].where = y;
5557 replacements[i].subreg_loc = 0;
5561 /* If LOC was scheduled to be replaced by something, return the replacement.
5562 Otherwise, return *LOC. */
5565 find_replacement (loc)
5566 rtx *loc;
5568 struct replacement *r;
5570 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5572 rtx reloadreg = reload_reg_rtx[r->what];
5574 if (reloadreg && r->where == loc)
5576 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5577 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5579 return reloadreg;
5581 else if (reloadreg && r->subreg_loc == loc)
5583 /* RELOADREG must be either a REG or a SUBREG.
5585 ??? Is it actually still ever a SUBREG? If so, why? */
5587 if (GET_CODE (reloadreg) == REG)
5588 return gen_rtx_REG (GET_MODE (*loc),
5589 REGNO (reloadreg) + SUBREG_WORD (*loc));
5590 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5591 return reloadreg;
5592 else
5593 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5594 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
5598 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5599 what's inside and make a new rtl if so. */
5600 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5601 || GET_CODE (*loc) == MULT)
5603 rtx x = find_replacement (&XEXP (*loc, 0));
5604 rtx y = find_replacement (&XEXP (*loc, 1));
5606 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5607 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5610 return *loc;
5613 /* Return nonzero if register in range [REGNO, ENDREGNO)
5614 appears either explicitly or implicitly in X
5615 other than being stored into (except for earlyclobber operands).
5617 References contained within the substructure at LOC do not count.
5618 LOC may be zero, meaning don't ignore anything.
5620 This is similar to refers_to_regno_p in rtlanal.c except that we
5621 look at equivalences for pseudos that didn't get hard registers. */
5624 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5625 int regno, endregno;
5626 rtx x;
5627 rtx *loc;
5629 register int i;
5630 register RTX_CODE code;
5631 register char *fmt;
5633 if (x == 0)
5634 return 0;
5636 repeat:
5637 code = GET_CODE (x);
5639 switch (code)
5641 case REG:
5642 i = REGNO (x);
5644 /* If this is a pseudo, a hard register must not have been allocated.
5645 X must therefore either be a constant or be in memory. */
5646 if (i >= FIRST_PSEUDO_REGISTER)
5648 if (reg_equiv_memory_loc[i])
5649 return refers_to_regno_for_reload_p (regno, endregno,
5650 reg_equiv_memory_loc[i],
5651 NULL_PTR);
5653 if (reg_equiv_constant[i])
5654 return 0;
5656 abort ();
5659 return (endregno > i
5660 && regno < i + (i < FIRST_PSEUDO_REGISTER
5661 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5662 : 1));
5664 case SUBREG:
5665 /* If this is a SUBREG of a hard reg, we can see exactly which
5666 registers are being modified. Otherwise, handle normally. */
5667 if (GET_CODE (SUBREG_REG (x)) == REG
5668 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5670 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5671 int inner_endregno
5672 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5673 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5675 return endregno > inner_regno && regno < inner_endregno;
5677 break;
5679 case CLOBBER:
5680 case SET:
5681 if (&SET_DEST (x) != loc
5682 /* Note setting a SUBREG counts as referring to the REG it is in for
5683 a pseudo but not for hard registers since we can
5684 treat each word individually. */
5685 && ((GET_CODE (SET_DEST (x)) == SUBREG
5686 && loc != &SUBREG_REG (SET_DEST (x))
5687 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5688 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5689 && refers_to_regno_for_reload_p (regno, endregno,
5690 SUBREG_REG (SET_DEST (x)),
5691 loc))
5692 /* If the output is an earlyclobber operand, this is
5693 a conflict. */
5694 || ((GET_CODE (SET_DEST (x)) != REG
5695 || earlyclobber_operand_p (SET_DEST (x)))
5696 && refers_to_regno_for_reload_p (regno, endregno,
5697 SET_DEST (x), loc))))
5698 return 1;
5700 if (code == CLOBBER || loc == &SET_SRC (x))
5701 return 0;
5702 x = SET_SRC (x);
5703 goto repeat;
5705 default:
5706 break;
5709 /* X does not match, so try its subexpressions. */
5711 fmt = GET_RTX_FORMAT (code);
5712 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5714 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5716 if (i == 0)
5718 x = XEXP (x, 0);
5719 goto repeat;
5721 else
5722 if (refers_to_regno_for_reload_p (regno, endregno,
5723 XEXP (x, i), loc))
5724 return 1;
5726 else if (fmt[i] == 'E')
5728 register int j;
5729 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5730 if (loc != &XVECEXP (x, i, j)
5731 && refers_to_regno_for_reload_p (regno, endregno,
5732 XVECEXP (x, i, j), loc))
5733 return 1;
5736 return 0;
5739 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5740 we check if any register number in X conflicts with the relevant register
5741 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5742 contains a MEM (we don't bother checking for memory addresses that can't
5743 conflict because we expect this to be a rare case.
5745 This function is similar to reg_overlap_mention_p in rtlanal.c except
5746 that we look at equivalences for pseudos that didn't get hard registers. */
5749 reg_overlap_mentioned_for_reload_p (x, in)
5750 rtx x, in;
5752 int regno, endregno;
5754 if (GET_CODE (x) == SUBREG)
5756 regno = REGNO (SUBREG_REG (x));
5757 if (regno < FIRST_PSEUDO_REGISTER)
5758 regno += SUBREG_WORD (x);
5760 else if (GET_CODE (x) == REG)
5762 regno = REGNO (x);
5764 /* If this is a pseudo, it must not have been assigned a hard register.
5765 Therefore, it must either be in memory or be a constant. */
5767 if (regno >= FIRST_PSEUDO_REGISTER)
5769 if (reg_equiv_memory_loc[regno])
5770 return refers_to_mem_for_reload_p (in);
5771 else if (reg_equiv_constant[regno])
5772 return 0;
5773 abort ();
5776 else if (CONSTANT_P (x))
5777 return 0;
5778 else if (GET_CODE (x) == MEM)
5779 return refers_to_mem_for_reload_p (in);
5780 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5781 || GET_CODE (x) == CC0)
5782 return reg_mentioned_p (x, in);
5783 else
5784 abort ();
5786 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5787 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5789 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
5792 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
5793 registers. */
5796 refers_to_mem_for_reload_p (x)
5797 rtx x;
5799 char *fmt;
5800 int i;
5802 if (GET_CODE (x) == MEM)
5803 return 1;
5805 if (GET_CODE (x) == REG)
5806 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
5807 && reg_equiv_memory_loc[REGNO (x)]);
5809 fmt = GET_RTX_FORMAT (GET_CODE (x));
5810 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5811 if (fmt[i] == 'e'
5812 && (GET_CODE (XEXP (x, i)) == MEM
5813 || refers_to_mem_for_reload_p (XEXP (x, i))))
5814 return 1;
5816 return 0;
5819 /* Check the insns before INSN to see if there is a suitable register
5820 containing the same value as GOAL.
5821 If OTHER is -1, look for a register in class CLASS.
5822 Otherwise, just see if register number OTHER shares GOAL's value.
5824 Return an rtx for the register found, or zero if none is found.
5826 If RELOAD_REG_P is (short *)1,
5827 we reject any hard reg that appears in reload_reg_rtx
5828 because such a hard reg is also needed coming into this insn.
5830 If RELOAD_REG_P is any other nonzero value,
5831 it is a vector indexed by hard reg number
5832 and we reject any hard reg whose element in the vector is nonnegative
5833 as well as any that appears in reload_reg_rtx.
5835 If GOAL is zero, then GOALREG is a register number; we look
5836 for an equivalent for that register.
5838 MODE is the machine mode of the value we want an equivalence for.
5839 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5841 This function is used by jump.c as well as in the reload pass.
5843 If GOAL is the sum of the stack pointer and a constant, we treat it
5844 as if it were a constant except that sp is required to be unchanging. */
5847 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
5848 register rtx goal;
5849 rtx insn;
5850 enum reg_class class;
5851 register int other;
5852 short *reload_reg_p;
5853 int goalreg;
5854 enum machine_mode mode;
5856 register rtx p = insn;
5857 rtx goaltry, valtry, value, where;
5858 register rtx pat;
5859 register int regno = -1;
5860 int valueno;
5861 int goal_mem = 0;
5862 int goal_const = 0;
5863 int goal_mem_addr_varies = 0;
5864 int need_stable_sp = 0;
5865 int nregs;
5866 int valuenregs;
5868 if (goal == 0)
5869 regno = goalreg;
5870 else if (GET_CODE (goal) == REG)
5871 regno = REGNO (goal);
5872 else if (GET_CODE (goal) == MEM)
5874 enum rtx_code code = GET_CODE (XEXP (goal, 0));
5875 if (MEM_VOLATILE_P (goal))
5876 return 0;
5877 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
5878 return 0;
5879 /* An address with side effects must be reexecuted. */
5880 switch (code)
5882 case POST_INC:
5883 case PRE_INC:
5884 case POST_DEC:
5885 case PRE_DEC:
5886 return 0;
5887 default:
5888 break;
5890 goal_mem = 1;
5892 else if (CONSTANT_P (goal))
5893 goal_const = 1;
5894 else if (GET_CODE (goal) == PLUS
5895 && XEXP (goal, 0) == stack_pointer_rtx
5896 && CONSTANT_P (XEXP (goal, 1)))
5897 goal_const = need_stable_sp = 1;
5898 else if (GET_CODE (goal) == PLUS
5899 && XEXP (goal, 0) == frame_pointer_rtx
5900 && CONSTANT_P (XEXP (goal, 1)))
5901 goal_const = 1;
5902 else
5903 return 0;
5905 /* On some machines, certain regs must always be rejected
5906 because they don't behave the way ordinary registers do. */
5908 #ifdef OVERLAPPING_REGNO_P
5909 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5910 && OVERLAPPING_REGNO_P (regno))
5911 return 0;
5912 #endif
5914 /* Scan insns back from INSN, looking for one that copies
5915 a value into or out of GOAL.
5916 Stop and give up if we reach a label. */
5918 while (1)
5920 p = PREV_INSN (p);
5921 if (p == 0 || GET_CODE (p) == CODE_LABEL)
5922 return 0;
5923 if (GET_CODE (p) == INSN
5924 /* If we don't want spill regs ... */
5925 && (! (reload_reg_p != 0
5926 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
5927 /* ... then ignore insns introduced by reload; they aren't useful
5928 and can cause results in reload_as_needed to be different
5929 from what they were when calculating the need for spills.
5930 If we notice an input-reload insn here, we will reject it below,
5931 but it might hide a usable equivalent. That makes bad code.
5932 It may even abort: perhaps no reg was spilled for this insn
5933 because it was assumed we would find that equivalent. */
5934 || INSN_UID (p) < reload_first_uid))
5936 rtx tem;
5937 pat = single_set (p);
5938 /* First check for something that sets some reg equal to GOAL. */
5939 if (pat != 0
5940 && ((regno >= 0
5941 && true_regnum (SET_SRC (pat)) == regno
5942 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5944 (regno >= 0
5945 && true_regnum (SET_DEST (pat)) == regno
5946 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
5948 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
5949 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5950 || (goal_mem
5951 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
5952 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
5953 || (goal_mem
5954 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
5955 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
5956 /* If we are looking for a constant,
5957 and something equivalent to that constant was copied
5958 into a reg, we can use that reg. */
5959 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5960 NULL_RTX))
5961 && rtx_equal_p (XEXP (tem, 0), goal)
5962 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5963 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5964 NULL_RTX))
5965 && GET_CODE (SET_DEST (pat)) == REG
5966 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5967 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5968 && GET_CODE (goal) == CONST_INT
5969 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
5970 VOIDmode))
5971 && rtx_equal_p (goal, goaltry)
5972 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
5973 VOIDmode))
5974 && (valueno = true_regnum (valtry)) >= 0)
5975 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5976 NULL_RTX))
5977 && GET_CODE (SET_DEST (pat)) == REG
5978 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5979 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5980 && GET_CODE (goal) == CONST_INT
5981 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
5982 VOIDmode))
5983 && rtx_equal_p (goal, goaltry)
5984 && (valtry
5985 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
5986 && (valueno = true_regnum (valtry)) >= 0)))
5987 if (other >= 0
5988 ? valueno == other
5989 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
5990 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
5991 valueno)))
5993 value = valtry;
5994 where = p;
5995 break;
6000 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6001 (or copying VALUE into GOAL, if GOAL is also a register).
6002 Now verify that VALUE is really valid. */
6004 /* VALUENO is the register number of VALUE; a hard register. */
6006 /* Don't try to re-use something that is killed in this insn. We want
6007 to be able to trust REG_UNUSED notes. */
6008 if (find_reg_note (where, REG_UNUSED, value))
6009 return 0;
6011 /* If we propose to get the value from the stack pointer or if GOAL is
6012 a MEM based on the stack pointer, we need a stable SP. */
6013 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6014 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6015 goal)))
6016 need_stable_sp = 1;
6018 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6019 if (GET_MODE (value) != mode)
6020 return 0;
6022 /* Reject VALUE if it was loaded from GOAL
6023 and is also a register that appears in the address of GOAL. */
6025 if (goal_mem && value == SET_DEST (single_set (where))
6026 && refers_to_regno_for_reload_p (valueno,
6027 (valueno
6028 + HARD_REGNO_NREGS (valueno, mode)),
6029 goal, NULL_PTR))
6030 return 0;
6032 /* Reject registers that overlap GOAL. */
6034 if (!goal_mem && !goal_const
6035 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
6036 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
6037 return 0;
6039 /* Reject VALUE if it is one of the regs reserved for reloads.
6040 Reload1 knows how to reuse them anyway, and it would get
6041 confused if we allocated one without its knowledge.
6042 (Now that insns introduced by reload are ignored above,
6043 this case shouldn't happen, but I'm not positive.) */
6045 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
6046 && reload_reg_p[valueno] >= 0)
6047 return 0;
6049 /* On some machines, certain regs must always be rejected
6050 because they don't behave the way ordinary registers do. */
6052 #ifdef OVERLAPPING_REGNO_P
6053 if (OVERLAPPING_REGNO_P (valueno))
6054 return 0;
6055 #endif
6057 nregs = HARD_REGNO_NREGS (regno, mode);
6058 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6060 /* Reject VALUE if it is a register being used for an input reload
6061 even if it is not one of those reserved. */
6063 if (reload_reg_p != 0)
6065 int i;
6066 for (i = 0; i < n_reloads; i++)
6067 if (reload_reg_rtx[i] != 0 && reload_in[i])
6069 int regno1 = REGNO (reload_reg_rtx[i]);
6070 int nregs1 = HARD_REGNO_NREGS (regno1,
6071 GET_MODE (reload_reg_rtx[i]));
6072 if (regno1 < valueno + valuenregs
6073 && regno1 + nregs1 > valueno)
6074 return 0;
6078 if (goal_mem)
6079 /* We must treat frame pointer as varying here,
6080 since it can vary--in a nonlocal goto as generated by expand_goto. */
6081 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6083 /* Now verify that the values of GOAL and VALUE remain unaltered
6084 until INSN is reached. */
6086 p = insn;
6087 while (1)
6089 p = PREV_INSN (p);
6090 if (p == where)
6091 return value;
6093 /* Don't trust the conversion past a function call
6094 if either of the two is in a call-clobbered register, or memory. */
6095 if (GET_CODE (p) == CALL_INSN
6096 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
6097 && call_used_regs[regno])
6099 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
6100 && call_used_regs[valueno])
6102 goal_mem
6103 || need_stable_sp))
6104 return 0;
6106 #ifdef NON_SAVING_SETJMP
6107 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
6108 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
6109 return 0;
6110 #endif
6112 #ifdef INSN_CLOBBERS_REGNO_P
6113 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
6114 && INSN_CLOBBERS_REGNO_P (p, valueno))
6115 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
6116 && INSN_CLOBBERS_REGNO_P (p, regno)))
6117 return 0;
6118 #endif
6120 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6122 /* If this insn P stores in either GOAL or VALUE, return 0.
6123 If GOAL is a memory ref and this insn writes memory, return 0.
6124 If GOAL is a memory ref and its address is not constant,
6125 and this insn P changes a register used in GOAL, return 0. */
6127 pat = PATTERN (p);
6128 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6130 register rtx dest = SET_DEST (pat);
6131 while (GET_CODE (dest) == SUBREG
6132 || GET_CODE (dest) == ZERO_EXTRACT
6133 || GET_CODE (dest) == SIGN_EXTRACT
6134 || GET_CODE (dest) == STRICT_LOW_PART)
6135 dest = XEXP (dest, 0);
6136 if (GET_CODE (dest) == REG)
6138 register int xregno = REGNO (dest);
6139 int xnregs;
6140 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6141 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6142 else
6143 xnregs = 1;
6144 if (xregno < regno + nregs && xregno + xnregs > regno)
6145 return 0;
6146 if (xregno < valueno + valuenregs
6147 && xregno + xnregs > valueno)
6148 return 0;
6149 if (goal_mem_addr_varies
6150 && reg_overlap_mentioned_for_reload_p (dest, goal))
6151 return 0;
6153 else if (goal_mem && GET_CODE (dest) == MEM
6154 && ! push_operand (dest, GET_MODE (dest)))
6155 return 0;
6156 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6157 && reg_equiv_memory_loc[regno] != 0)
6158 return 0;
6159 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6160 return 0;
6162 else if (GET_CODE (pat) == PARALLEL)
6164 register int i;
6165 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6167 register rtx v1 = XVECEXP (pat, 0, i);
6168 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6170 register rtx dest = SET_DEST (v1);
6171 while (GET_CODE (dest) == SUBREG
6172 || GET_CODE (dest) == ZERO_EXTRACT
6173 || GET_CODE (dest) == SIGN_EXTRACT
6174 || GET_CODE (dest) == STRICT_LOW_PART)
6175 dest = XEXP (dest, 0);
6176 if (GET_CODE (dest) == REG)
6178 register int xregno = REGNO (dest);
6179 int xnregs;
6180 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6181 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6182 else
6183 xnregs = 1;
6184 if (xregno < regno + nregs
6185 && xregno + xnregs > regno)
6186 return 0;
6187 if (xregno < valueno + valuenregs
6188 && xregno + xnregs > valueno)
6189 return 0;
6190 if (goal_mem_addr_varies
6191 && reg_overlap_mentioned_for_reload_p (dest,
6192 goal))
6193 return 0;
6195 else if (goal_mem && GET_CODE (dest) == MEM
6196 && ! push_operand (dest, GET_MODE (dest)))
6197 return 0;
6198 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6199 && reg_equiv_memory_loc[regno] != 0)
6200 return 0;
6201 else if (need_stable_sp
6202 && push_operand (dest, GET_MODE (dest)))
6203 return 0;
6208 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6210 rtx link;
6212 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6213 link = XEXP (link, 1))
6215 pat = XEXP (link, 0);
6216 if (GET_CODE (pat) == CLOBBER)
6218 register rtx dest = SET_DEST (pat);
6219 while (GET_CODE (dest) == SUBREG
6220 || GET_CODE (dest) == ZERO_EXTRACT
6221 || GET_CODE (dest) == SIGN_EXTRACT
6222 || GET_CODE (dest) == STRICT_LOW_PART)
6223 dest = XEXP (dest, 0);
6224 if (GET_CODE (dest) == REG)
6226 register int xregno = REGNO (dest);
6227 int xnregs;
6228 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6229 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6230 else
6231 xnregs = 1;
6232 if (xregno < regno + nregs
6233 && xregno + xnregs > regno)
6234 return 0;
6235 if (xregno < valueno + valuenregs
6236 && xregno + xnregs > valueno)
6237 return 0;
6238 if (goal_mem_addr_varies
6239 && reg_overlap_mentioned_for_reload_p (dest,
6240 goal))
6241 return 0;
6243 else if (goal_mem && GET_CODE (dest) == MEM
6244 && ! push_operand (dest, GET_MODE (dest)))
6245 return 0;
6246 else if (need_stable_sp
6247 && push_operand (dest, GET_MODE (dest)))
6248 return 0;
6253 #ifdef AUTO_INC_DEC
6254 /* If this insn auto-increments or auto-decrements
6255 either regno or valueno, return 0 now.
6256 If GOAL is a memory ref and its address is not constant,
6257 and this insn P increments a register used in GOAL, return 0. */
6259 register rtx link;
6261 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6262 if (REG_NOTE_KIND (link) == REG_INC
6263 && GET_CODE (XEXP (link, 0)) == REG)
6265 register int incno = REGNO (XEXP (link, 0));
6266 if (incno < regno + nregs && incno >= regno)
6267 return 0;
6268 if (incno < valueno + valuenregs && incno >= valueno)
6269 return 0;
6270 if (goal_mem_addr_varies
6271 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6272 goal))
6273 return 0;
6276 #endif
6281 /* Find a place where INCED appears in an increment or decrement operator
6282 within X, and return the amount INCED is incremented or decremented by.
6283 The value is always positive. */
6285 static int
6286 find_inc_amount (x, inced)
6287 rtx x, inced;
6289 register enum rtx_code code = GET_CODE (x);
6290 register char *fmt;
6291 register int i;
6293 if (code == MEM)
6295 register rtx addr = XEXP (x, 0);
6296 if ((GET_CODE (addr) == PRE_DEC
6297 || GET_CODE (addr) == POST_DEC
6298 || GET_CODE (addr) == PRE_INC
6299 || GET_CODE (addr) == POST_INC)
6300 && XEXP (addr, 0) == inced)
6301 return GET_MODE_SIZE (GET_MODE (x));
6304 fmt = GET_RTX_FORMAT (code);
6305 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6307 if (fmt[i] == 'e')
6309 register int tem = find_inc_amount (XEXP (x, i), inced);
6310 if (tem != 0)
6311 return tem;
6313 if (fmt[i] == 'E')
6315 register int j;
6316 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6318 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6319 if (tem != 0)
6320 return tem;
6325 return 0;
6328 /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6331 regno_clobbered_p (regno, insn)
6332 int regno;
6333 rtx insn;
6335 if (GET_CODE (PATTERN (insn)) == CLOBBER
6336 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6337 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6339 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6341 int i = XVECLEN (PATTERN (insn), 0) - 1;
6343 for (; i >= 0; i--)
6345 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6346 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6347 && REGNO (XEXP (elt, 0)) == regno)
6348 return 1;
6352 return 0;
6355 static char *reload_when_needed_name[] =
6357 "RELOAD_FOR_INPUT",
6358 "RELOAD_FOR_OUTPUT",
6359 "RELOAD_FOR_INSN",
6360 "RELOAD_FOR_INPUT_ADDRESS",
6361 "RELOAD_FOR_INPADDR_ADDRESS",
6362 "RELOAD_FOR_OUTPUT_ADDRESS",
6363 "RELOAD_FOR_OUTADDR_ADDRESS",
6364 "RELOAD_FOR_OPERAND_ADDRESS",
6365 "RELOAD_FOR_OPADDR_ADDR",
6366 "RELOAD_OTHER",
6367 "RELOAD_FOR_OTHER_ADDRESS"
6370 static char *reg_class_names[] = REG_CLASS_NAMES;
6372 /* These functions are used to print the variables set by 'find_reloads' */
6374 void
6375 debug_reload_to_stream (f)
6376 FILE *f;
6378 int r;
6379 char *prefix;
6381 if (! f)
6382 f = stderr;
6383 for (r = 0; r < n_reloads; r++)
6385 fprintf (f, "Reload %d: ", r);
6387 if (reload_in[r] != 0)
6389 fprintf (f, "reload_in (%s) = ",
6390 GET_MODE_NAME (reload_inmode[r]));
6391 print_inline_rtx (f, reload_in[r], 24);
6392 fprintf (f, "\n\t");
6395 if (reload_out[r] != 0)
6397 fprintf (f, "reload_out (%s) = ",
6398 GET_MODE_NAME (reload_outmode[r]));
6399 print_inline_rtx (f, reload_out[r], 24);
6400 fprintf (f, "\n\t");
6403 fprintf (f, "%s, ", reg_class_names[(int) reload_reg_class[r]]);
6405 fprintf (f, "%s (opnum = %d)",
6406 reload_when_needed_name[(int) reload_when_needed[r]],
6407 reload_opnum[r]);
6409 if (reload_optional[r])
6410 fprintf (f, ", optional");
6412 if (reload_nongroup[r])
6413 fprintf (stderr, ", nongroup");
6415 if (reload_inc[r] != 0)
6416 fprintf (f, ", inc by %d", reload_inc[r]);
6418 if (reload_nocombine[r])
6419 fprintf (f, ", can't combine");
6421 if (reload_secondary_p[r])
6422 fprintf (f, ", secondary_reload_p");
6424 if (reload_in_reg[r] != 0)
6426 fprintf (f, "\n\treload_in_reg: ");
6427 print_inline_rtx (f, reload_in_reg[r], 24);
6430 if (reload_reg_rtx[r] != 0)
6432 fprintf (f, "\n\treload_reg_rtx: ");
6433 print_inline_rtx (f, reload_reg_rtx[r], 24);
6436 prefix = "\n\t";
6437 if (reload_secondary_in_reload[r] != -1)
6439 fprintf (f, "%ssecondary_in_reload = %d",
6440 prefix, reload_secondary_in_reload[r]);
6441 prefix = ", ";
6444 if (reload_secondary_out_reload[r] != -1)
6445 fprintf (f, "%ssecondary_out_reload = %d\n",
6446 prefix, reload_secondary_out_reload[r]);
6448 prefix = "\n\t";
6449 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
6451 fprintf (stderr, "%ssecondary_in_icode = %s", prefix,
6452 insn_name[reload_secondary_in_icode[r]]);
6453 prefix = ", ";
6456 if (reload_secondary_out_icode[r] != CODE_FOR_nothing)
6457 fprintf (stderr, "%ssecondary_out_icode = %s", prefix,
6458 insn_name[reload_secondary_out_icode[r]]);
6460 fprintf (f, "\n");
6464 void
6465 debug_reload ()
6467 debug_reload_to_stream (stderr);