1 // Copyright 2014 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Go execution tracer.
6 // The tracer captures a wide range of execution events like goroutine
7 // creation/blocking/unblocking, syscall enter/exit/block, GC-related events,
8 // changes of heap size, processor start/stop, etc and writes them to a buffer
9 // in a compact form. A precise nanosecond-precision timestamp and a stack
10 // trace is captured for most events.
11 // See https://golang.org/s/go15trace for more info.
16 "runtime/internal/sys"
20 // Event types in the trace, args are given in square brackets.
22 traceEvNone
= 0 // unused
23 traceEvBatch
= 1 // start of per-P batch of events [pid, timestamp]
24 traceEvFrequency
= 2 // contains tracer timer frequency [frequency (ticks per second)]
25 traceEvStack
= 3 // stack [stack id, number of PCs, array of {PC, func string ID, file string ID, line}]
26 traceEvGomaxprocs
= 4 // current value of GOMAXPROCS [timestamp, GOMAXPROCS, stack id]
27 traceEvProcStart
= 5 // start of P [timestamp, thread id]
28 traceEvProcStop
= 6 // stop of P [timestamp]
29 traceEvGCStart
= 7 // GC start [timestamp, seq, stack id]
30 traceEvGCDone
= 8 // GC done [timestamp]
31 traceEvGCSTWStart
= 9 // GC STW start [timestamp, kind]
32 traceEvGCSTWDone
= 10 // GC STW done [timestamp]
33 traceEvGCSweepStart
= 11 // GC sweep start [timestamp, stack id]
34 traceEvGCSweepDone
= 12 // GC sweep done [timestamp, swept, reclaimed]
35 traceEvGoCreate
= 13 // goroutine creation [timestamp, new goroutine id, new stack id, stack id]
36 traceEvGoStart
= 14 // goroutine starts running [timestamp, goroutine id, seq]
37 traceEvGoEnd
= 15 // goroutine ends [timestamp]
38 traceEvGoStop
= 16 // goroutine stops (like in select{}) [timestamp, stack]
39 traceEvGoSched
= 17 // goroutine calls Gosched [timestamp, stack]
40 traceEvGoPreempt
= 18 // goroutine is preempted [timestamp, stack]
41 traceEvGoSleep
= 19 // goroutine calls Sleep [timestamp, stack]
42 traceEvGoBlock
= 20 // goroutine blocks [timestamp, stack]
43 traceEvGoUnblock
= 21 // goroutine is unblocked [timestamp, goroutine id, seq, stack]
44 traceEvGoBlockSend
= 22 // goroutine blocks on chan send [timestamp, stack]
45 traceEvGoBlockRecv
= 23 // goroutine blocks on chan recv [timestamp, stack]
46 traceEvGoBlockSelect
= 24 // goroutine blocks on select [timestamp, stack]
47 traceEvGoBlockSync
= 25 // goroutine blocks on Mutex/RWMutex [timestamp, stack]
48 traceEvGoBlockCond
= 26 // goroutine blocks on Cond [timestamp, stack]
49 traceEvGoBlockNet
= 27 // goroutine blocks on network [timestamp, stack]
50 traceEvGoSysCall
= 28 // syscall enter [timestamp, stack]
51 traceEvGoSysExit
= 29 // syscall exit [timestamp, goroutine id, seq, real timestamp]
52 traceEvGoSysBlock
= 30 // syscall blocks [timestamp]
53 traceEvGoWaiting
= 31 // denotes that goroutine is blocked when tracing starts [timestamp, goroutine id]
54 traceEvGoInSyscall
= 32 // denotes that goroutine is in syscall when tracing starts [timestamp, goroutine id]
55 traceEvHeapAlloc
= 33 // memstats.heap_live change [timestamp, heap_alloc]
56 traceEvNextGC
= 34 // memstats.next_gc change [timestamp, next_gc]
57 traceEvTimerGoroutine
= 35 // denotes timer goroutine [timer goroutine id]
58 traceEvFutileWakeup
= 36 // denotes that the previous wakeup of this goroutine was futile [timestamp]
59 traceEvString
= 37 // string dictionary entry [ID, length, string]
60 traceEvGoStartLocal
= 38 // goroutine starts running on the same P as the last event [timestamp, goroutine id]
61 traceEvGoUnblockLocal
= 39 // goroutine is unblocked on the same P as the last event [timestamp, goroutine id, stack]
62 traceEvGoSysExitLocal
= 40 // syscall exit on the same P as the last event [timestamp, goroutine id, real timestamp]
63 traceEvGoStartLabel
= 41 // goroutine starts running with label [timestamp, goroutine id, seq, label string id]
64 traceEvGoBlockGC
= 42 // goroutine blocks on GC assist [timestamp, stack]
65 traceEvGCMarkAssistStart
= 43 // GC mark assist start [timestamp, stack]
66 traceEvGCMarkAssistDone
= 44 // GC mark assist done [timestamp]
71 // Timestamps in trace are cputicks/traceTickDiv.
72 // This makes absolute values of timestamp diffs smaller,
73 // and so they are encoded in less number of bytes.
74 // 64 on x86 is somewhat arbitrary (one tick is ~20ns on a 3GHz machine).
75 // The suggested increment frequency for PowerPC's time base register is
76 // 512 MHz according to Power ISA v2.07 section 6.2, so we use 16 on ppc64
78 // Tracing won't work reliably for architectures where cputicks is emulated
79 // by nanotime, so the value doesn't matter for those architectures.
80 traceTickDiv
= 16 + 48*(sys
.Goarch386|sys
.GoarchAmd64|sys
.GoarchAmd64p32
)
81 // Maximum number of PCs in a single stack trace.
82 // Since events contain only stack id rather than whole stack trace,
83 // we can allow quite large values here.
85 // Identifier of a fake P that is used when we trace without a real P.
87 // Maximum number of bytes to encode uint64 in base-128.
88 traceBytesPerNumber
= 10
89 // Shift of the number of arguments in the first event byte.
90 traceArgCountShift
= 6
91 // Flag passed to traceGoPark to denote that the previous wakeup of this
92 // goroutine was futile. For example, a goroutine was unblocked on a mutex,
93 // but another goroutine got ahead and acquired the mutex before the first
94 // goroutine is scheduled, so the first goroutine has to block again.
95 // Such wakeups happen on buffered channels and sync.Mutex,
96 // but are generally not interesting for end user.
97 traceFutileWakeup
byte = 128
100 // trace is global tracing context.
102 lock mutex
// protects the following members
103 lockOwner
*g
// to avoid deadlocks during recursive lock locks
104 enabled
bool // when set runtime traces events
105 shutdown
bool // set when we are waiting for trace reader to finish after setting enabled to false
106 headerWritten
bool // whether ReadTrace has emitted trace header
107 footerWritten
bool // whether ReadTrace has emitted trace footer
108 shutdownSema
uint32 // used to wait for ReadTrace completion
109 seqStart
uint64 // sequence number when tracing was started
110 ticksStart
int64 // cputicks when tracing was started
111 ticksEnd
int64 // cputicks when tracing was stopped
112 timeStart
int64 // nanotime when tracing was started
113 timeEnd
int64 // nanotime when tracing was stopped
114 seqGC
uint64 // GC start/done sequencer
115 reading traceBufPtr
// buffer currently handed off to user
116 empty traceBufPtr
// stack of empty buffers
117 fullHead traceBufPtr
// queue of full buffers
119 reader guintptr
// goroutine that called ReadTrace, or nil
120 stackTab traceStackTable
// maps stack traces to unique ids
122 // Dictionary for traceEvString.
124 // Currently this is used only at trace setup and for
125 // func/file:line info after tracing session, so we assume
126 // single-threaded access.
127 strings
map[string]uint64
130 // markWorkerLabels maps gcMarkWorkerMode to string ID.
131 markWorkerLabels
[len(gcMarkWorkerModeStrings
)]uint64
133 bufLock mutex
// protects buf
134 buf traceBufPtr
// global trace buffer, used when running without a p
137 // traceBufHeader is per-P tracing buffer.
138 type traceBufHeader
struct {
139 link traceBufPtr
// in trace.empty/full
140 lastTicks
uint64 // when we wrote the last event
141 pos
int // next write offset in arr
142 stk
[traceStackSize
]location
// scratch buffer for traceback
145 // traceBuf is per-P tracing buffer.
148 type traceBuf
struct {
150 arr
[64<<10 - unsafe
.Sizeof(traceBufHeader
{})]byte // underlying buffer for traceBufHeader.buf
153 // traceBufPtr is a *traceBuf that is not traced by the garbage
154 // collector and doesn't have write barriers. traceBufs are not
155 // allocated from the GC'd heap, so this is safe, and are often
156 // manipulated in contexts where write barriers are not allowed, so
157 // this is necessary.
159 // TODO: Since traceBuf is now go:notinheap, this isn't necessary.
160 type traceBufPtr
uintptr
162 func (tp traceBufPtr
) ptr() *traceBuf
{ return (*traceBuf
)(unsafe
.Pointer(tp
)) }
163 func (tp
*traceBufPtr
) set(b
*traceBuf
) { *tp
= traceBufPtr(unsafe
.Pointer(b
)) }
164 func traceBufPtrOf(b
*traceBuf
) traceBufPtr
{
165 return traceBufPtr(unsafe
.Pointer(b
))
168 // StartTrace enables tracing for the current process.
169 // While tracing, the data will be buffered and available via ReadTrace.
170 // StartTrace returns an error if tracing is already enabled.
171 // Most clients should use the runtime/trace package or the testing package's
172 // -test.trace flag instead of calling StartTrace directly.
173 func StartTrace() error
{
174 // Stop the world, so that we can take a consistent snapshot
175 // of all goroutines at the beginning of the trace.
176 stopTheWorld("start tracing")
178 // We are in stop-the-world, but syscalls can finish and write to trace concurrently.
179 // Exitsyscall could check trace.enabled long before and then suddenly wake up
180 // and decide to write to trace at a random point in time.
181 // However, such syscall will use the global trace.buf buffer, because we've
182 // acquired all p's by doing stop-the-world. So this protects us from such races.
185 if trace
.enabled || trace
.shutdown
{
186 unlock(&trace
.bufLock
)
188 return errorString("tracing is already enabled")
191 // Can't set trace.enabled yet. While the world is stopped, exitsyscall could
192 // already emit a delayed event (see exitTicks in exitsyscall) if we set trace.enabled here.
193 // That would lead to an inconsistent trace:
194 // - either GoSysExit appears before EvGoInSyscall,
195 // - or GoSysExit appears for a goroutine for which we don't emit EvGoInSyscall below.
196 // To instruct traceEvent that it must not ignore events below, we set startingtrace.
197 // trace.enabled is set afterwards once we have emitted all preliminary events.
199 _g_
.m
.startingtrace
= true
201 // Obtain current stack ID to use in all traceEvGoCreate events below.
203 stkBuf
:= make([]location
, traceStackSize
)
204 stackID
:= traceStackID(mp
, stkBuf
, 2)
207 for _
, gp
:= range allgs
{
208 status
:= readgstatus(gp
)
209 if status
!= _Gdead
{
211 gp
.tracelastp
= getg().m
.p
212 // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum.
213 id
:= trace
.stackTab
.put([]location
{location
{pc
: gp
.startpc
+ sys
.PCQuantum
}})
214 traceEvent(traceEvGoCreate
, -1, uint64(gp
.goid
), uint64(id
), stackID
)
216 if status
== _Gwaiting
{
217 // traceEvGoWaiting is implied to have seq=1.
219 traceEvent(traceEvGoWaiting
, -1, uint64(gp
.goid
))
221 if status
== _Gsyscall
{
223 traceEvent(traceEvGoInSyscall
, -1, uint64(gp
.goid
))
225 gp
.sysblocktraced
= false
230 // Note: ticksStart needs to be set after we emit traceEvGoInSyscall events.
231 // If we do it the other way around, it is possible that exitsyscall will
232 // query sysexitticks after ticksStart but before traceEvGoInSyscall timestamp.
233 // It will lead to a false conclusion that cputicks is broken.
234 trace
.ticksStart
= cputicks()
235 trace
.timeStart
= nanotime()
236 trace
.headerWritten
= false
237 trace
.footerWritten
= false
239 // string to id mapping
240 // 0 : reserved for an empty string
241 // remaining: other strings registered by traceString
243 trace
.strings
= make(map[string]uint64)
246 _g_
.m
.startingtrace
= false
249 // Register runtime goroutine labels.
250 _
, pid
, bufp
:= traceAcquireBuffer()
251 for i
, label
:= range gcMarkWorkerModeStrings
[:] {
252 trace
.markWorkerLabels
[i
], bufp
= traceString(bufp
, pid
, label
)
254 traceReleaseBuffer(pid
)
256 unlock(&trace
.bufLock
)
262 // StopTrace stops tracing, if it was previously enabled.
263 // StopTrace only returns after all the reads for the trace have completed.
265 // Stop the world so that we can collect the trace buffers from all p's below,
266 // and also to avoid races with traceEvent.
267 stopTheWorld("stop tracing")
269 // See the comment in StartTrace.
273 unlock(&trace
.bufLock
)
280 // Loop over all allocated Ps because dead Ps may still have
282 for _
, p
:= range allp
[:cap(allp
)] {
292 if buf
.ptr().pos
!= 0 {
298 trace
.ticksEnd
= cputicks()
299 trace
.timeEnd
= nanotime()
300 // Windows time can tick only every 15ms, wait for at least one tick.
301 if trace
.timeEnd
!= trace
.timeStart
{
307 trace
.enabled
= false
308 trace
.shutdown
= true
309 unlock(&trace
.bufLock
)
313 // The world is started but we've set trace.shutdown, so new tracing can't start.
314 // Wait for the trace reader to flush pending buffers and stop.
315 semacquire(&trace
.shutdownSema
)
317 raceacquire(unsafe
.Pointer(&trace
.shutdownSema
))
320 // The lock protects us from races with StartTrace/StopTrace because they do stop-the-world.
322 for _
, p
:= range allp
[:cap(allp
)] {
324 throw("trace: non-empty trace buffer in proc")
328 throw("trace: non-empty global trace buffer")
330 if trace
.fullHead
!= 0 || trace
.fullTail
!= 0 {
331 throw("trace: non-empty full trace buffer")
333 if trace
.reading
!= 0 || trace
.reader
!= 0 {
334 throw("trace: reading after shutdown")
336 for trace
.empty
!= 0 {
338 trace
.empty
= buf
.ptr().link
339 sysFree(unsafe
.Pointer(buf
), unsafe
.Sizeof(*buf
.ptr()), &memstats
.other_sys
)
342 trace
.shutdown
= false
346 // ReadTrace returns the next chunk of binary tracing data, blocking until data
347 // is available. If tracing is turned off and all the data accumulated while it
348 // was on has been returned, ReadTrace returns nil. The caller must copy the
349 // returned data before calling ReadTrace again.
350 // ReadTrace must be called from one goroutine at a time.
351 func ReadTrace() []byte {
352 // This function may need to lock trace.lock recursively
353 // (goparkunlock -> traceGoPark -> traceEvent -> traceFlush).
354 // To allow this we use trace.lockOwner.
355 // Also this function must not allocate while holding trace.lock:
356 // allocation can call heap allocate, which will try to emit a trace
357 // event while holding heap lock.
359 trace
.lockOwner
= getg()
361 if trace
.reader
!= 0 {
362 // More than one goroutine reads trace. This is bad.
363 // But we rather do not crash the program because of tracing,
364 // because tracing can be enabled at runtime on prod servers.
365 trace
.lockOwner
= nil
367 println("runtime: ReadTrace called from multiple goroutines simultaneously")
370 // Recycle the old buffer.
371 if buf
:= trace
.reading
; buf
!= 0 {
372 buf
.ptr().link
= trace
.empty
376 // Write trace header.
377 if !trace
.headerWritten
{
378 trace
.headerWritten
= true
379 trace
.lockOwner
= nil
381 return []byte("go 1.10 trace\x00\x00\x00")
383 // Wait for new data.
384 if trace
.fullHead
== 0 && !trace
.shutdown
{
385 trace
.reader
.set(getg())
386 goparkunlock(&trace
.lock
, "trace reader (blocked)", traceEvGoBlock
, 2)
390 if trace
.fullHead
!= 0 {
391 buf
:= traceFullDequeue()
393 trace
.lockOwner
= nil
395 return buf
.ptr().arr
[:buf
.ptr().pos
]
397 // Write footer with timer frequency.
398 if !trace
.footerWritten
{
399 trace
.footerWritten
= true
400 // Use float64 because (trace.ticksEnd - trace.ticksStart) * 1e9 can overflow int64.
401 freq
:= float64(trace
.ticksEnd
-trace
.ticksStart
) * 1e9
/ float64(trace
.timeEnd
-trace
.timeStart
) / traceTickDiv
402 trace
.lockOwner
= nil
405 data
= append(data
, traceEvFrequency|
0<<traceArgCountShift
)
406 data
= traceAppend(data
, uint64(freq
))
407 for i
:= range timers
{
410 data
= append(data
, traceEvTimerGoroutine|
0<<traceArgCountShift
)
411 data
= traceAppend(data
, uint64(tb
.gp
.goid
))
414 // This will emit a bunch of full buffers, we will pick them up
415 // on the next iteration.
416 trace
.stackTab
.dump()
421 trace
.lockOwner
= nil
424 // Model synchronization on trace.shutdownSema, which race
425 // detector does not see. This is required to avoid false
426 // race reports on writer passed to trace.Start.
427 racerelease(unsafe
.Pointer(&trace
.shutdownSema
))
429 // trace.enabled is already reset, so can call traceable functions.
430 semrelease(&trace
.shutdownSema
)
433 // Also bad, but see the comment above.
434 trace
.lockOwner
= nil
436 println("runtime: spurious wakeup of trace reader")
440 // traceReader returns the trace reader that should be woken up, if any.
441 func traceReader() *g
{
442 if trace
.reader
== 0 ||
(trace
.fullHead
== 0 && !trace
.shutdown
) {
446 if trace
.reader
== 0 ||
(trace
.fullHead
== 0 && !trace
.shutdown
) {
450 gp
:= trace
.reader
.ptr()
451 trace
.reader
.set(nil)
456 // traceProcFree frees trace buffer associated with pp.
457 func traceProcFree(pp
*p
) {
468 // traceFullQueue queues buf into queue of full buffers.
469 func traceFullQueue(buf traceBufPtr
) {
471 if trace
.fullHead
== 0 {
474 trace
.fullTail
.ptr().link
= buf
479 // traceFullDequeue dequeues from queue of full buffers.
480 func traceFullDequeue() traceBufPtr
{
481 buf
:= trace
.fullHead
485 trace
.fullHead
= buf
.ptr().link
486 if trace
.fullHead
== 0 {
493 // traceEvent writes a single event to trace buffer, flushing the buffer if necessary.
495 // If skip > 0, write current stack id as the last argument (skipping skip top frames).
496 // If skip = 0, this event type should contain a stack, but we don't want
497 // to collect and remember it for this particular call.
498 func traceEvent(ev
byte, skip
int, args
...uint64) {
499 mp
, pid
, bufp
:= traceAcquireBuffer()
500 // Double-check trace.enabled now that we've done m.locks++ and acquired bufLock.
501 // This protects from races between traceEvent and StartTrace/StopTrace.
503 // The caller checked that trace.enabled == true, but trace.enabled might have been
504 // turned off between the check and now. Check again. traceLockBuffer did mp.locks++,
505 // StopTrace does stopTheWorld, and stopTheWorld waits for mp.locks to go back to zero,
506 // so if we see trace.enabled == true now, we know it's true for the rest of the function.
507 // Exitsyscall can run even during stopTheWorld. The race with StartTrace/StopTrace
508 // during tracing in exitsyscall is resolved by locking trace.bufLock in traceLockBuffer.
509 if !trace
.enabled
&& !mp
.startingtrace
{
510 traceReleaseBuffer(pid
)
514 const maxSize
= 2 + 5*traceBytesPerNumber
// event type, length, sequence, timestamp, stack id and two add params
515 if buf
== nil ||
len(buf
.arr
)-buf
.pos
< maxSize
{
516 buf
= traceFlush(traceBufPtrOf(buf
), pid
).ptr()
520 ticks
:= uint64(cputicks()) / traceTickDiv
521 tickDiff
:= ticks
- buf
.lastTicks
522 buf
.lastTicks
= ticks
523 narg
:= byte(len(args
))
527 // We have only 2 bits for number of arguments.
528 // If number is >= 3, then the event type is followed by event length in bytes.
533 buf
.byte(ev | narg
<<traceArgCountShift
)
536 // Reserve the byte for length assuming that length < 128.
538 lenp
= &buf
.arr
[buf
.pos
-1]
541 for _
, a
:= range args
{
547 buf
.varint(traceStackID(mp
, buf
.stk
[:], skip
))
549 evSize
:= buf
.pos
- startPos
550 if evSize
> maxSize
{
551 throw("invalid length of trace event")
554 // Fill in actual length.
555 *lenp
= byte(evSize
- 2)
557 traceReleaseBuffer(pid
)
560 func traceStackID(mp
*m
, buf
[]location
, skip
int) uint64 {
565 nstk
= callers(skip
+1, buf
[:])
566 } else if gp
!= nil {
567 // FIXME: get stack trace of different goroutine.
570 nstk
-- // skip runtime.goexit
572 if nstk
> 0 && gp
.goid
== 1 {
573 nstk
-- // skip runtime.main
575 id
:= trace
.stackTab
.put(buf
[:nstk
])
579 // traceAcquireBuffer returns trace buffer to use and, if necessary, locks it.
580 func traceAcquireBuffer() (mp
*m
, pid
int32, bufp
*traceBufPtr
) {
582 if p
:= mp
.p
.ptr(); p
!= nil {
583 return mp
, p
.id
, &p
.tracebuf
586 return mp
, traceGlobProc
, &trace
.buf
589 // traceReleaseBuffer releases a buffer previously acquired with traceAcquireBuffer.
590 func traceReleaseBuffer(pid
int32) {
591 if pid
== traceGlobProc
{
592 unlock(&trace
.bufLock
)
597 // traceFlush puts buf onto stack of full buffers and returns an empty buffer.
598 func traceFlush(buf traceBufPtr
, pid
int32) traceBufPtr
{
599 owner
:= trace
.lockOwner
600 dolock
:= owner
== nil || owner
!= getg().m
.curg
607 if trace
.empty
!= 0 {
609 trace
.empty
= buf
.ptr().link
611 buf
= traceBufPtr(sysAlloc(unsafe
.Sizeof(traceBuf
{}), &memstats
.other_sys
))
613 throw("trace: out of memory")
620 // initialize the buffer for a new batch
621 ticks
:= uint64(cputicks()) / traceTickDiv
622 bufp
.lastTicks
= ticks
623 bufp
.byte(traceEvBatch |
1<<traceArgCountShift
)
624 bufp
.varint(uint64(pid
))
633 // traceString adds a string to the trace.strings and returns the id.
634 func traceString(bufp
*traceBufPtr
, pid
int32, s
string) (uint64, *traceBufPtr
) {
638 if id
, ok
:= trace
.strings
[s
]; ok
{
643 id
:= trace
.stringSeq
644 trace
.strings
[s
] = id
646 // memory allocation in above may trigger tracing and
647 // cause *bufp changes. Following code now works with *bufp,
648 // so there must be no memory allocation or any activities
649 // that causes tracing after this point.
652 size
:= 1 + 2*traceBytesPerNumber
+ len(s
)
653 if buf
== nil ||
len(buf
.arr
)-buf
.pos
< size
{
654 buf
= traceFlush(traceBufPtrOf(buf
), pid
).ptr()
657 buf
.byte(traceEvString
)
659 buf
.varint(uint64(len(s
)))
660 buf
.pos
+= copy(buf
.arr
[buf
.pos
:], s
)
666 // traceAppend appends v to buf in little-endian-base-128 encoding.
667 func traceAppend(buf
[]byte, v
uint64) []byte {
668 for ; v
>= 0x80; v
>>= 7 {
669 buf
= append(buf
, 0x80|
byte(v
))
671 buf
= append(buf
, byte(v
))
675 // varint appends v to buf in little-endian-base-128 encoding.
676 func (buf
*traceBuf
) varint(v
uint64) {
678 for ; v
>= 0x80; v
>>= 7 {
679 buf
.arr
[pos
] = 0x80 |
byte(v
)
682 buf
.arr
[pos
] = byte(v
)
687 // byte appends v to buf.
688 func (buf
*traceBuf
) byte(v
byte) {
693 // traceStackTable maps stack traces (arrays of PC's) to unique uint32 ids.
694 // It is lock-free for reading.
695 type traceStackTable
struct {
699 tab
[1 << 13]traceStackPtr
702 // traceStack is a single stack in traceStackTable.
703 type traceStack
struct {
708 stk
[0]location
// real type [n]location
711 type traceStackPtr
uintptr
713 func (tp traceStackPtr
) ptr() *traceStack
{ return (*traceStack
)(unsafe
.Pointer(tp
)) }
715 // stack returns slice of PCs.
716 func (ts
*traceStack
) stack() []location
{
717 return (*[traceStackSize
]location
)(unsafe
.Pointer(&ts
.stk
))[:ts
.n
]
720 // put returns a unique id for the stack trace pcs and caches it in the table,
721 // if it sees the trace for the first time.
722 func (tab
*traceStackTable
) put(pcs
[]location
) uint32 {
727 for _
, loc
:= range pcs
{
732 // First, search the hashtable w/o the mutex.
733 if id
:= tab
.find(pcs
, hash
); id
!= 0 {
736 // Now, double check under the mutex.
738 if id
:= tab
.find(pcs
, hash
); id
!= 0 {
742 // Create new record.
744 stk
:= tab
.newStack(len(pcs
))
749 for i
, pc
:= range pcs
{
752 part
:= int(hash
% uintptr(len(tab
.tab
)))
753 stk
.link
= tab
.tab
[part
]
754 atomicstorep(unsafe
.Pointer(&tab
.tab
[part
]), unsafe
.Pointer(stk
))
759 // find checks if the stack trace pcs is already present in the table.
760 func (tab
*traceStackTable
) find(pcs
[]location
, hash
uintptr) uint32 {
761 part
:= int(hash
% uintptr(len(tab
.tab
)))
763 for stk
:= tab
.tab
[part
].ptr(); stk
!= nil; stk
= stk
.link
.ptr() {
764 if stk
.hash
== hash
&& stk
.n
== len(pcs
) {
765 for i
, stkpc
:= range stk
.stack() {
776 // newStack allocates a new stack of size n.
777 func (tab
*traceStackTable
) newStack(n
int) *traceStack
{
778 return (*traceStack
)(tab
.mem
.alloc(unsafe
.Sizeof(traceStack
{}) + uintptr(n
)*unsafe
.Sizeof(location
{})))
781 // dump writes all previously cached stacks to trace buffers,
782 // releases all memory and resets state.
783 func (tab
*traceStackTable
) dump() {
784 var tmp
[(2 + 4*traceStackSize
) * traceBytesPerNumber
]byte
785 bufp
:= traceFlush(0, 0)
786 for _
, stk
:= range tab
.tab
{
788 for ; stk
!= nil; stk
= stk
.link
.ptr() {
790 tmpbuf
= traceAppend(tmpbuf
, uint64(stk
.id
))
791 frames
:= stk
.stack()
792 tmpbuf
= traceAppend(tmpbuf
, uint64(len(frames
)))
793 for _
, f
:= range frames
{
795 frame
, bufp
= traceFrameForPC(bufp
, 0, f
)
796 tmpbuf
= traceAppend(tmpbuf
, uint64(f
.pc
))
797 tmpbuf
= traceAppend(tmpbuf
, uint64(frame
.funcID
))
798 tmpbuf
= traceAppend(tmpbuf
, uint64(frame
.fileID
))
799 tmpbuf
= traceAppend(tmpbuf
, uint64(frame
.line
))
801 // Now copy to the buffer.
802 size
:= 1 + traceBytesPerNumber
+ len(tmpbuf
)
803 if buf
:= bufp
.ptr(); len(buf
.arr
)-buf
.pos
< size
{
804 bufp
= traceFlush(bufp
, 0)
807 buf
.byte(traceEvStack |
3<<traceArgCountShift
)
808 buf
.varint(uint64(len(tmpbuf
)))
809 buf
.pos
+= copy(buf
.arr
[buf
.pos
:], tmpbuf
)
818 *tab
= traceStackTable
{}
821 type traceFrame
struct {
827 // traceFrameForPC records the frame information.
828 // It may allocate memory.
829 func traceFrameForPC(buf traceBufPtr
, pid
int32, f location
) (traceFrame
, traceBufPtr
) {
834 const maxLen
= 1 << 10
835 if len(fn
) > maxLen
{
836 fn
= fn
[len(fn
)-maxLen
:]
838 frame
.funcID
, bufp
= traceString(bufp
, pid
, fn
)
839 frame
.line
= uint64(f
.lineno
)
841 if len(file
) > maxLen
{
842 file
= file
[len(file
)-maxLen
:]
844 frame
.fileID
, bufp
= traceString(bufp
, pid
, file
)
845 return frame
, (*bufp
)
848 // traceAlloc is a non-thread-safe region allocator.
849 // It holds a linked list of traceAllocBlock.
850 type traceAlloc
struct {
851 head traceAllocBlockPtr
855 // traceAllocBlock is a block in traceAlloc.
857 // traceAllocBlock is allocated from non-GC'd memory, so it must not
858 // contain heap pointers. Writes to pointers to traceAllocBlocks do
859 // not need write barriers.
862 type traceAllocBlock
struct {
863 next traceAllocBlockPtr
864 data
[64<<10 - sys
.PtrSize
]byte
867 // TODO: Since traceAllocBlock is now go:notinheap, this isn't necessary.
868 type traceAllocBlockPtr
uintptr
870 func (p traceAllocBlockPtr
) ptr() *traceAllocBlock
{ return (*traceAllocBlock
)(unsafe
.Pointer(p
)) }
871 func (p
*traceAllocBlockPtr
) set(x
*traceAllocBlock
) { *p
= traceAllocBlockPtr(unsafe
.Pointer(x
)) }
873 // alloc allocates n-byte block.
874 func (a
*traceAlloc
) alloc(n
uintptr) unsafe
.Pointer
{
875 n
= round(n
, sys
.PtrSize
)
876 if a
.head
== 0 || a
.off
+n
> uintptr(len(a
.head
.ptr().data
)) {
877 if n
> uintptr(len(a
.head
.ptr().data
)) {
878 throw("trace: alloc too large")
880 // This is only safe because the strings returned by callers
881 // are stored in a location that is not in the Go heap.
882 block
:= (*traceAllocBlock
)(sysAlloc(unsafe
.Sizeof(traceAllocBlock
{}), &memstats
.other_sys
))
884 throw("trace: out of memory")
886 block
.next
.set(a
.head
.ptr())
890 p
:= &a
.head
.ptr().data
[a
.off
]
892 return unsafe
.Pointer(p
)
895 // drop frees all previously allocated memory and resets the allocator.
896 func (a
*traceAlloc
) drop() {
898 block
:= a
.head
.ptr()
899 a
.head
.set(block
.next
.ptr())
900 sysFree(unsafe
.Pointer(block
), unsafe
.Sizeof(traceAllocBlock
{}), &memstats
.other_sys
)
904 // The following functions write specific events to trace.
906 func traceGomaxprocs(procs
int32) {
907 traceEvent(traceEvGomaxprocs
, 1, uint64(procs
))
910 func traceProcStart() {
911 traceEvent(traceEvProcStart
, -1, uint64(getg().m
.id
))
914 func traceProcStop(pp
*p
) {
915 // Sysmon and stopTheWorld can stop Ps blocked in syscalls,
916 // to handle this we temporary employ the P.
920 traceEvent(traceEvProcStop
, -1)
925 func traceGCStart() {
926 traceEvent(traceEvGCStart
, 3, trace
.seqGC
)
931 traceEvent(traceEvGCDone
, -1)
934 func traceGCSTWStart(kind
int) {
935 traceEvent(traceEvGCSTWStart
, -1, uint64(kind
))
938 func traceGCSTWDone() {
939 traceEvent(traceEvGCSTWDone
, -1)
942 // traceGCSweepStart prepares to trace a sweep loop. This does not
943 // emit any events until traceGCSweepSpan is called.
945 // traceGCSweepStart must be paired with traceGCSweepDone and there
946 // must be no preemption points between these two calls.
947 func traceGCSweepStart() {
948 // Delay the actual GCSweepStart event until the first span
949 // sweep. If we don't sweep anything, don't emit any events.
950 _p_
:= getg().m
.p
.ptr()
952 throw("double traceGCSweepStart")
954 _p_
.traceSweep
, _p_
.traceSwept
, _p_
.traceReclaimed
= true, 0, 0
957 // traceGCSweepSpan traces the sweep of a single page.
959 // This may be called outside a traceGCSweepStart/traceGCSweepDone
960 // pair; however, it will not emit any trace events in this case.
961 func traceGCSweepSpan(bytesSwept
uintptr) {
962 _p_
:= getg().m
.p
.ptr()
964 if _p_
.traceSwept
== 0 {
965 traceEvent(traceEvGCSweepStart
, 1)
967 _p_
.traceSwept
+= bytesSwept
971 func traceGCSweepDone() {
972 _p_
:= getg().m
.p
.ptr()
974 throw("missing traceGCSweepStart")
976 if _p_
.traceSwept
!= 0 {
977 traceEvent(traceEvGCSweepDone
, -1, uint64(_p_
.traceSwept
), uint64(_p_
.traceReclaimed
))
979 _p_
.traceSweep
= false
982 func traceGCMarkAssistStart() {
983 traceEvent(traceEvGCMarkAssistStart
, 1)
986 func traceGCMarkAssistDone() {
987 traceEvent(traceEvGCMarkAssistDone
, -1)
990 func traceGoCreate(newg
*g
, pc
uintptr) {
992 newg
.tracelastp
= getg().m
.p
993 // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum.
994 id
:= trace
.stackTab
.put([]location
{location
{pc
: pc
+ sys
.PCQuantum
}})
995 traceEvent(traceEvGoCreate
, 2, uint64(newg
.goid
), uint64(id
))
998 func traceGoStart() {
1002 if _g_
== _p_
.ptr().gcBgMarkWorker
.ptr() {
1003 traceEvent(traceEvGoStartLabel
, -1, uint64(_g_
.goid
), _g_
.traceseq
, trace
.markWorkerLabels
[_p_
.ptr().gcMarkWorkerMode
])
1004 } else if _g_
.tracelastp
== _p_
{
1005 traceEvent(traceEvGoStartLocal
, -1, uint64(_g_
.goid
))
1007 _g_
.tracelastp
= _p_
1008 traceEvent(traceEvGoStart
, -1, uint64(_g_
.goid
), _g_
.traceseq
)
1013 traceEvent(traceEvGoEnd
, -1)
1016 func traceGoSched() {
1018 _g_
.tracelastp
= _g_
.m
.p
1019 traceEvent(traceEvGoSched
, 1)
1022 func traceGoPreempt() {
1024 _g_
.tracelastp
= _g_
.m
.p
1025 traceEvent(traceEvGoPreempt
, 1)
1028 func traceGoPark(traceEv
byte, skip
int) {
1029 if traceEv
&traceFutileWakeup
!= 0 {
1030 traceEvent(traceEvFutileWakeup
, -1)
1032 traceEvent(traceEv
& ^traceFutileWakeup
, skip
)
1035 func traceGoUnpark(gp
*g
, skip
int) {
1038 if gp
.tracelastp
== _p_
{
1039 traceEvent(traceEvGoUnblockLocal
, skip
, uint64(gp
.goid
))
1042 traceEvent(traceEvGoUnblock
, skip
, uint64(gp
.goid
), gp
.traceseq
)
1046 func traceGoSysCall() {
1047 traceEvent(traceEvGoSysCall
, 1)
1050 func traceGoSysExit(ts
int64) {
1051 if ts
!= 0 && ts
< trace
.ticksStart
{
1052 // There is a race between the code that initializes sysexitticks
1053 // (in exitsyscall, which runs without a P, and therefore is not
1054 // stopped with the rest of the world) and the code that initializes
1055 // a new trace. The recorded sysexitticks must therefore be treated
1056 // as "best effort". If they are valid for this trace, then great,
1057 // use them for greater accuracy. But if they're not valid for this
1058 // trace, assume that the trace was started after the actual syscall
1059 // exit (but before we actually managed to start the goroutine,
1060 // aka right now), and assign a fresh time stamp to keep the log consistent.
1063 _g_
:= getg().m
.curg
1065 _g_
.tracelastp
= _g_
.m
.p
1066 traceEvent(traceEvGoSysExit
, -1, uint64(_g_
.goid
), _g_
.traceseq
, uint64(ts
)/traceTickDiv
)
1069 func traceGoSysBlock(pp
*p
) {
1070 // Sysmon and stopTheWorld can declare syscalls running on remote Ps as blocked,
1071 // to handle this we temporary employ the P.
1075 traceEvent(traceEvGoSysBlock
, -1)
1080 func traceHeapAlloc() {
1081 traceEvent(traceEvHeapAlloc
, -1, memstats
.heap_live
)
1084 func traceNextGC() {
1085 if memstats
.next_gc
== ^uint64(0) {
1086 // Heap-based triggering is disabled.
1087 traceEvent(traceEvNextGC
, -1, 0)
1089 traceEvent(traceEvNextGC
, -1, memstats
.next_gc
)