1 // Copyright 2017 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
8 "runtime/internal/atomic"
12 // A profBuf is a lock-free buffer for profiling events,
13 // safe for concurrent use by one reader and one writer.
14 // The writer may be a signal handler running without a user g.
15 // The reader is assumed to be a user g.
17 // Each logged event corresponds to a fixed size header, a list of
18 // uintptrs (typically a stack), and exactly one unsafe.Pointer tag.
19 // The header and uintptrs are stored in the circular buffer data and the
20 // tag is stored in a circular buffer tags, running in parallel.
21 // In the circular buffer data, each event takes 2+hdrsize+len(stk)
22 // words: the value 2+hdrsize+len(stk), then the time of the event, then
23 // hdrsize words giving the fixed-size header, and then len(stk) words
26 // The current effective offsets into the tags and data circular buffers
27 // for reading and writing are stored in the high 30 and low 32 bits of r and w.
28 // The bottom bits of the high 32 are additional flag bits in w, unused in r.
29 // "Effective" offsets means the total number of reads or writes, mod 2^length.
30 // The offset in the buffer is the effective offset mod the length of the buffer.
31 // To make wraparound mod 2^length match wraparound mod length of the buffer,
32 // the length of the buffer must be a power of two.
34 // If the reader catches up to the writer, a flag passed to read controls
35 // whether the read blocks until more data is available. A read returns a
36 // pointer to the buffer data itself; the caller is assumed to be done with
37 // that data at the next read. The read offset rNext tracks the next offset to
38 // be returned by read. By definition, r ≤ rNext ≤ w (before wraparound),
39 // and rNext is only used by the reader, so it can be accessed without atomics.
41 // If the writer gets ahead of the reader, so that the buffer fills,
42 // future writes are discarded and replaced in the output stream by an
43 // overflow entry, which has size 2+hdrsize+1, time set to the time of
44 // the first discarded write, a header of all zeroed words, and a "stack"
45 // containing one word, the number of discarded writes.
47 // Between the time the buffer fills and the buffer becomes empty enough
48 // to hold more data, the overflow entry is stored as a pending overflow
49 // entry in the fields overflow and overflowTime. The pending overflow
50 // entry can be turned into a real record by either the writer or the
51 // reader. If the writer is called to write a new record and finds that
52 // the output buffer has room for both the pending overflow entry and the
53 // new record, the writer emits the pending overflow entry and the new
54 // record into the buffer. If the reader is called to read data and finds
55 // that the output buffer is empty but that there is a pending overflow
56 // entry, the reader will return a synthesized record for the pending
59 // Only the writer can create or add to a pending overflow entry, but
60 // either the reader or the writer can clear the pending overflow entry.
61 // A pending overflow entry is indicated by the low 32 bits of 'overflow'
62 // holding the number of discarded writes, and overflowTime holding the
63 // time of the first discarded write. The high 32 bits of 'overflow'
64 // increment each time the low 32 bits transition from zero to non-zero
65 // or vice versa. This sequence number avoids ABA problems in the use of
66 // compare-and-swap to coordinate between reader and writer.
67 // The overflowTime is only written when the low 32 bits of overflow are
68 // zero, that is, only when there is no pending overflow entry, in
69 // preparation for creating a new one. The reader can therefore fetch and
70 // clear the entry atomically using
73 // overflow = load(&b.overflow)
74 // if uint32(overflow) == 0 {
75 // // no pending entry
78 // time = load(&b.overflowTime)
79 // if cas(&b.overflow, overflow, ((overflow>>32)+1)<<32) {
80 // // pending entry cleared
84 // if uint32(overflow) > 0 {
85 // emit entry for uint32(overflow), time
89 // accessed atomically
95 // immutable (excluding slice content)
102 overflowBuf
[]uint64 // for use by reader to return overflow record
106 // A profAtomic is the atomically-accessed word holding a profIndex.
107 type profAtomic
uint64
109 // A profIndex is the packet tag and data counts and flags bits, described above.
110 type profIndex
uint64
113 profReaderSleeping profIndex
= 1 << 32 // reader is sleeping and must be woken up
114 profWriteExtra profIndex
= 1 << 33 // overflow or eof waiting
117 func (x
*profAtomic
) load() profIndex
{
118 return profIndex(atomic
.Load64((*uint64)(x
)))
121 func (x
*profAtomic
) store(new profIndex
) {
122 atomic
.Store64((*uint64)(x
), uint64(new))
125 func (x
*profAtomic
) cas(old
, new profIndex
) bool {
126 return atomic
.Cas64((*uint64)(x
), uint64(old
), uint64(new))
129 func (x profIndex
) dataCount() uint32 {
133 func (x profIndex
) tagCount() uint32 {
134 return uint32(x
>> 34)
137 // countSub subtracts two counts obtained from profIndex.dataCount or profIndex.tagCount,
138 // assuming that they are no more than 2^29 apart (guaranteed since they are never more than
139 // len(data) or len(tags) apart, respectively).
140 // tagCount wraps at 2^30, while dataCount wraps at 2^32.
141 // This function works for both.
142 func countSub(x
, y
uint32) int {
143 // x-y is 32-bit signed or 30-bit signed; sign-extend to 32 bits and convert to int.
144 return int(int32(x
-y
) << 2 >> 2)
147 // addCountsAndClearFlags returns the packed form of "x + (data, tag) - all flags".
148 func (x profIndex
) addCountsAndClearFlags(data
, tag
int) profIndex
{
149 return profIndex((uint64(x
)>>34+uint64(uint32(tag
)<<2>>2))<<34 |
uint64(uint32(x
)+uint32(data
)))
152 // hasOverflow reports whether b has any overflow records pending.
153 func (b
*profBuf
) hasOverflow() bool {
154 return uint32(atomic
.Load64(&b
.overflow
)) > 0
157 // takeOverflow consumes the pending overflow records, returning the overflow count
158 // and the time of the first overflow.
159 // When called by the reader, it is racing against incrementOverflow.
160 func (b
*profBuf
) takeOverflow() (count
uint32, time
uint64) {
161 overflow
:= atomic
.Load64(&b
.overflow
)
162 time
= atomic
.Load64(&b
.overflowTime
)
164 count
= uint32(overflow
)
169 // Increment generation, clear overflow count in low bits.
170 if atomic
.Cas64(&b
.overflow
, overflow
, ((overflow
>>32)+1)<<32) {
173 overflow
= atomic
.Load64(&b
.overflow
)
174 time
= atomic
.Load64(&b
.overflowTime
)
176 return uint32(overflow
), time
179 // incrementOverflow records a single overflow at time now.
180 // It is racing against a possible takeOverflow in the reader.
181 func (b
*profBuf
) incrementOverflow(now
int64) {
183 overflow
:= atomic
.Load64(&b
.overflow
)
185 // Once we see b.overflow reach 0, it's stable: no one else is changing it underfoot.
186 // We need to set overflowTime if we're incrementing b.overflow from 0.
187 if uint32(overflow
) == 0 {
188 // Store overflowTime first so it's always available when overflow != 0.
189 atomic
.Store64(&b
.overflowTime
, uint64(now
))
190 atomic
.Store64(&b
.overflow
, (((overflow
>>32)+1)<<32)+1)
193 // Otherwise we're racing to increment against reader
194 // who wants to set b.overflow to 0.
195 // Out of paranoia, leave 2³²-1 a sticky overflow value,
196 // to avoid wrapping around. Extremely unlikely.
197 if int32(overflow
) == -1 {
200 if atomic
.Cas64(&b
.overflow
, overflow
, overflow
+1) {
206 // newProfBuf returns a new profiling buffer with room for
207 // a header of hdrsize words and a buffer of at least bufwords words.
208 func newProfBuf(hdrsize
, bufwords
, tags
int) *profBuf
{
209 if min
:= 2 + hdrsize
+ 1; bufwords
< min
{
213 // Buffer sizes must be power of two, so that we don't have to
214 // worry about uint32 wraparound changing the effective position
215 // within the buffers. We store 30 bits of count; limiting to 28
216 // gives us some room for intermediate calculations.
217 if bufwords
>= 1<<28 || tags
>= 1<<28 {
218 throw("newProfBuf: buffer too large")
221 for i
= 1; i
< bufwords
; i
<<= 1 {
224 for i
= 1; i
< tags
; i
<<= 1 {
229 b
.hdrsize
= uintptr(hdrsize
)
230 b
.data
= make([]uint64, bufwords
)
231 b
.tags
= make([]unsafe
.Pointer
, tags
)
232 b
.overflowBuf
= make([]uint64, 2+b
.hdrsize
+1)
236 // canWriteRecord reports whether the buffer has room
237 // for a single contiguous record with a stack of length nstk.
238 func (b
*profBuf
) canWriteRecord(nstk
int) bool {
243 if countSub(br
.tagCount(), bw
.tagCount())+len(b
.tags
) < 1 {
248 nd
:= countSub(br
.dataCount(), bw
.dataCount()) + len(b
.data
)
249 want
:= 2 + int(b
.hdrsize
) + nstk
250 i
:= int(bw
.dataCount() % uint32(len(b
.data
)))
251 if i
+want
> len(b
.data
) {
252 // Can't fit in trailing fragment of slice.
253 // Skip over that and start over at beginning of slice.
254 nd
-= len(b
.data
) - i
259 // canWriteTwoRecords reports whether the buffer has room
260 // for two records with stack lengths nstk1, nstk2, in that order.
261 // Each record must be contiguous on its own, but the two
262 // records need not be contiguous (one can be at the end of the buffer
263 // and the other can wrap around and start at the beginning of the buffer).
264 func (b
*profBuf
) canWriteTwoRecords(nstk1
, nstk2
int) bool {
269 if countSub(br
.tagCount(), bw
.tagCount())+len(b
.tags
) < 2 {
274 nd
:= countSub(br
.dataCount(), bw
.dataCount()) + len(b
.data
)
277 want
:= 2 + int(b
.hdrsize
) + nstk1
278 i
:= int(bw
.dataCount() % uint32(len(b
.data
)))
279 if i
+want
> len(b
.data
) {
280 // Can't fit in trailing fragment of slice.
281 // Skip over that and start over at beginning of slice.
282 nd
-= len(b
.data
) - i
289 want
= 2 + int(b
.hdrsize
) + nstk2
290 if i
+want
> len(b
.data
) {
291 // Can't fit in trailing fragment of slice.
292 // Skip over that and start over at beginning of slice.
293 nd
-= len(b
.data
) - i
299 // write writes an entry to the profiling buffer b.
300 // The entry begins with a fixed hdr, which must have
301 // length b.hdrsize, followed by a variable-sized stack
302 // and a single tag pointer *tagPtr (or nil if tagPtr is nil).
303 // No write barriers allowed because this might be called from a signal handler.
304 func (b
*profBuf
) write(tagPtr
*unsafe
.Pointer
, now
int64, hdr
[]uint64, stk
[]uintptr) {
308 if len(hdr
) > int(b
.hdrsize
) {
309 throw("misuse of profBuf.write")
312 if hasOverflow
:= b
.hasOverflow(); hasOverflow
&& b
.canWriteTwoRecords(1, len(stk
)) {
313 // Room for both an overflow record and the one being written.
314 // Write the overflow record if the reader hasn't gotten to it yet.
315 // Only racing against reader, not other writers.
316 count
, time
:= b
.takeOverflow()
319 stk
[0] = uintptr(count
)
320 b
.write(nil, int64(time
), nil, stk
[:])
322 } else if hasOverflow ||
!b
.canWriteRecord(len(stk
)) {
323 // Pending overflow without room to write overflow and new records
324 // or no overflow but also no room for new record.
325 b
.incrementOverflow(now
)
330 // There's room: write the record.
336 // The tag is a pointer, but we can't run a write barrier here.
337 // We have interrupted the OS-level execution of gp, but the
338 // runtime still sees gp as executing. In effect, we are running
339 // in place of the real gp. Since gp is the only goroutine that
340 // can overwrite gp.labels, the value of gp.labels is stable during
341 // this signal handler: it will still be reachable from gp when
342 // we finish executing. If a GC is in progress right now, it must
343 // keep gp.labels alive, because gp.labels is reachable from gp.
344 // If gp were to overwrite gp.labels, the deletion barrier would
345 // still shade that pointer, which would preserve it for the
346 // in-progress GC, so all is well. Any future GC will see the
347 // value we copied when scanning b.tags (heap-allocated).
348 // We arrange that the store here is always overwriting a nil,
349 // so there is no need for a deletion barrier on b.tags[wt].
350 wt
:= int(bw
.tagCount() % uint32(len(b
.tags
)))
352 *(*uintptr)(unsafe
.Pointer(&b
.tags
[wt
])) = uintptr(unsafe
.Pointer(*tagPtr
))
356 // It has to fit in a contiguous section of the slice, so if it doesn't fit at the end,
357 // leave a rewind marker (0) and start over at the beginning of the slice.
358 wd
:= int(bw
.dataCount() % uint32(len(b
.data
)))
359 nd
:= countSub(br
.dataCount(), bw
.dataCount()) + len(b
.data
)
361 if wd
+2+int(b
.hdrsize
)+len(stk
) > len(b
.data
) {
363 skip
= len(b
.data
) - wd
368 data
[0] = uint64(2 + b
.hdrsize
+ uintptr(len(stk
))) // length
369 data
[1] = uint64(now
) // time stamp
370 // header, zero-padded
371 i
:= uintptr(copy(data
[2:2+b
.hdrsize
], hdr
))
372 for ; i
< b
.hdrsize
; i
++ {
375 for i
, pc
:= range stk
{
376 data
[2+b
.hdrsize
+uintptr(i
)] = uint64(pc
)
381 // Racing with reader setting flag bits in b.w, to avoid lost wakeups.
383 new := old
.addCountsAndClearFlags(skip
+2+len(stk
)+int(b
.hdrsize
), 1)
384 if !b
.w
.cas(old
, new) {
387 // If there was a reader, wake it up.
388 if old
&profReaderSleeping
!= 0 {
395 // close signals that there will be no more writes on the buffer.
396 // Once all the data has been read from the buffer, reads will return eof=true.
397 func (b
*profBuf
) close() {
398 if atomic
.Load(&b
.eof
) > 0 {
399 throw("runtime: profBuf already closed")
401 atomic
.Store(&b
.eof
, 1)
405 // wakeupExtra must be called after setting one of the "extra"
406 // atomic fields b.overflow or b.eof.
407 // It records the change in b.w and wakes up the reader if needed.
408 func (b
*profBuf
) wakeupExtra() {
411 new := old | profWriteExtra
412 if !b
.w
.cas(old
, new) {
415 if old
&profReaderSleeping
!= 0 {
422 // profBufReadMode specifies whether to block when no data is available to read.
423 type profBufReadMode
int
426 profBufBlocking profBufReadMode
= iota
430 var overflowTag
[1]unsafe
.Pointer
// always nil
432 func (b
*profBuf
) read(mode profBufReadMode
) (data
[]uint64, tags
[]unsafe
.Pointer
, eof
bool) {
434 return nil, nil, true
439 // Commit previous read, returning that part of the ring to the writer.
440 // First clear tags that have now been read, both to avoid holding
441 // up the memory they point at for longer than necessary
442 // and so that b.write can assume it is always overwriting
443 // nil tag entries (see comment in b.write).
446 ntag
:= countSub(br
.tagCount(), rPrev
.tagCount())
447 ti
:= int(rPrev
.tagCount() % uint32(len(b
.tags
)))
448 for i
:= 0; i
< ntag
; i
++ {
450 if ti
++; ti
== len(b
.tags
) {
459 numData
:= countSub(bw
.dataCount(), br
.dataCount())
462 // No data to read, but there is overflow to report.
463 // Racing with writer flushing b.overflow into a real record.
464 count
, time
:= b
.takeOverflow()
466 // Lost the race, go around again.
469 // Won the race, report overflow.
471 dst
[0] = uint64(2 + b
.hdrsize
+ 1)
472 dst
[1] = uint64(time
)
473 for i
:= uintptr(0); i
< b
.hdrsize
; i
++ {
476 dst
[2+b
.hdrsize
] = uint64(count
)
477 return dst
[:2+b
.hdrsize
+1], overflowTag
[:1], false
479 if atomic
.Load(&b
.eof
) > 0 {
480 // No data, no overflow, EOF set: done.
481 return nil, nil, true
483 if bw
&profWriteExtra
!= 0 {
484 // Writer claims to have published extra information (overflow or eof).
485 // Attempt to clear notification and then check again.
486 // If we fail to clear the notification it means b.w changed,
487 // so we still need to check again.
488 b
.w
.cas(bw
, bw
&^profWriteExtra
)
492 // Nothing to read right now.
493 // Return or sleep according to mode.
494 if mode
== profBufNonBlocking
{
495 return nil, nil, false
497 if !b
.w
.cas(bw
, bw|profReaderSleeping
) {
500 // Committed to sleeping.
501 notetsleepg(&b
.wait
, -1)
505 data
= b
.data
[br
.dataCount()%uint
32(len(b
.data
)):]
506 if len(data
) > numData
{
507 data
= data
[:numData
]
509 numData
-= len(data
) // available in case of wraparound
513 // Wraparound record. Go back to the beginning of the ring.
516 if len(data
) > numData
{
517 data
= data
[:numData
]
521 ntag
:= countSub(bw
.tagCount(), br
.tagCount())
523 throw("runtime: malformed profBuf buffer - tag and data out of sync")
525 tags
= b
.tags
[br
.tagCount()%uint
32(len(b
.tags
)):]
526 if len(tags
) > ntag
{
530 // Count out whole data records until either data or tags is done.
531 // They are always in sync in the buffer, but due to an end-of-slice
532 // wraparound we might need to stop early and return the rest
536 for di
< len(data
) && data
[di
] != 0 && ti
< len(tags
) {
537 if uintptr(di
)+uintptr(data
[di
]) > uintptr(len(data
)) {
538 throw("runtime: malformed profBuf buffer - invalid size")
544 // Remember how much we returned, to commit read on next call.
545 b
.rNext
= br
.addCountsAndClearFlags(skip
+di
, ti
)
548 // Match racereleasemerge in runtime_setProfLabel,
549 // so that the setting of the labels in runtime_setProfLabel
550 // is treated as happening before any use of the labels
551 // by our caller. The synchronization on labelSync itself is a fiction
552 // for the race detector. The actual synchronization is handled
553 // by the fact that the signal handler only reads from the current
554 // goroutine and uses atomics to write the updated queue indices,
555 // and then the read-out from the signal handler buffer uses
556 // atomics to read those queue indices.
557 raceacquire(unsafe
.Pointer(&labelSync
))
560 return data
[:di
], tags
[:ti
], false