1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "double-int.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
40 #include "hard-reg-set.h"
42 #include "dominance.h"
45 #include "basic-block.h"
46 #include "tree-ssa-alias.h"
47 #include "internal-fn.h"
48 #include "gimple-fold.h"
50 #include "gimple-expr.h"
53 #include "gimple-iterator.h"
54 #include "gimple-walk.h"
55 #include "gimple-ssa.h"
57 #include "tree-phinodes.h"
58 #include "ssa-iterators.h"
59 #include "stringpool.h"
60 #include "tree-ssanames.h"
61 #include "tree-ssa-loop-manip.h"
62 #include "tree-ssa-loop-niter.h"
63 #include "tree-ssa-loop.h"
64 #include "tree-into-ssa.h"
66 #include "tree-pass.h"
67 #include "tree-dump.h"
68 #include "gimple-pretty-print.h"
69 #include "diagnostic-core.h"
72 #include "tree-scalar-evolution.h"
73 #include "tree-ssa-propagate.h"
74 #include "tree-chrec.h"
75 #include "tree-ssa-threadupdate.h"
78 #include "statistics.h"
80 #include "fixed-value.h"
81 #include "insn-config.h"
89 #include "insn-codes.h"
91 #include "tree-ssa-threadedge.h"
95 /* Range of values that can be associated with an SSA_NAME after VRP
99 /* Lattice value represented by this range. */
100 enum value_range_type type
;
102 /* Minimum and maximum values represented by this range. These
103 values should be interpreted as follows:
105 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
108 - If TYPE == VR_RANGE then MIN holds the minimum value and
109 MAX holds the maximum value of the range [MIN, MAX].
111 - If TYPE == ANTI_RANGE the variable is known to NOT
112 take any values in the range [MIN, MAX]. */
116 /* Set of SSA names whose value ranges are equivalent to this one.
117 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
121 typedef struct value_range_d value_range_t
;
123 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
125 /* Set of SSA names found live during the RPO traversal of the function
126 for still active basic-blocks. */
127 static sbitmap
*live
;
129 /* Return true if the SSA name NAME is live on the edge E. */
132 live_on_edge (edge e
, tree name
)
134 return (live
[e
->dest
->index
]
135 && bitmap_bit_p (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
138 /* Local functions. */
139 static int compare_values (tree val1
, tree val2
);
140 static int compare_values_warnv (tree val1
, tree val2
, bool *);
141 static void vrp_meet (value_range_t
*, value_range_t
*);
142 static void vrp_intersect_ranges (value_range_t
*, value_range_t
*);
143 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
144 tree
, tree
, bool, bool *,
147 /* Location information for ASSERT_EXPRs. Each instance of this
148 structure describes an ASSERT_EXPR for an SSA name. Since a single
149 SSA name may have more than one assertion associated with it, these
150 locations are kept in a linked list attached to the corresponding
152 struct assert_locus_d
154 /* Basic block where the assertion would be inserted. */
157 /* Some assertions need to be inserted on an edge (e.g., assertions
158 generated by COND_EXPRs). In those cases, BB will be NULL. */
161 /* Pointer to the statement that generated this assertion. */
162 gimple_stmt_iterator si
;
164 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
165 enum tree_code comp_code
;
167 /* Value being compared against. */
170 /* Expression to compare. */
173 /* Next node in the linked list. */
174 struct assert_locus_d
*next
;
177 typedef struct assert_locus_d
*assert_locus_t
;
179 /* If bit I is present, it means that SSA name N_i has a list of
180 assertions that should be inserted in the IL. */
181 static bitmap need_assert_for
;
183 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
184 holds a list of ASSERT_LOCUS_T nodes that describe where
185 ASSERT_EXPRs for SSA name N_I should be inserted. */
186 static assert_locus_t
*asserts_for
;
188 /* Value range array. After propagation, VR_VALUE[I] holds the range
189 of values that SSA name N_I may take. */
190 static unsigned num_vr_values
;
191 static value_range_t
**vr_value
;
192 static bool values_propagated
;
194 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
195 number of executable edges we saw the last time we visited the
197 static int *vr_phi_edge_counts
;
204 static vec
<edge
> to_remove_edges
;
205 static vec
<switch_update
> to_update_switch_stmts
;
208 /* Return the maximum value for TYPE. */
211 vrp_val_max (const_tree type
)
213 if (!INTEGRAL_TYPE_P (type
))
216 return TYPE_MAX_VALUE (type
);
219 /* Return the minimum value for TYPE. */
222 vrp_val_min (const_tree type
)
224 if (!INTEGRAL_TYPE_P (type
))
227 return TYPE_MIN_VALUE (type
);
230 /* Return whether VAL is equal to the maximum value of its type. This
231 will be true for a positive overflow infinity. We can't do a
232 simple equality comparison with TYPE_MAX_VALUE because C typedefs
233 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
234 to the integer constant with the same value in the type. */
237 vrp_val_is_max (const_tree val
)
239 tree type_max
= vrp_val_max (TREE_TYPE (val
));
240 return (val
== type_max
241 || (type_max
!= NULL_TREE
242 && operand_equal_p (val
, type_max
, 0)));
245 /* Return whether VAL is equal to the minimum value of its type. This
246 will be true for a negative overflow infinity. */
249 vrp_val_is_min (const_tree val
)
251 tree type_min
= vrp_val_min (TREE_TYPE (val
));
252 return (val
== type_min
253 || (type_min
!= NULL_TREE
254 && operand_equal_p (val
, type_min
, 0)));
258 /* Return whether TYPE should use an overflow infinity distinct from
259 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
260 represent a signed overflow during VRP computations. An infinity
261 is distinct from a half-range, which will go from some number to
262 TYPE_{MIN,MAX}_VALUE. */
265 needs_overflow_infinity (const_tree type
)
267 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
270 /* Return whether TYPE can support our overflow infinity
271 representation: we use the TREE_OVERFLOW flag, which only exists
272 for constants. If TYPE doesn't support this, we don't optimize
273 cases which would require signed overflow--we drop them to
277 supports_overflow_infinity (const_tree type
)
279 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
280 #ifdef ENABLE_CHECKING
281 gcc_assert (needs_overflow_infinity (type
));
283 return (min
!= NULL_TREE
284 && CONSTANT_CLASS_P (min
)
286 && CONSTANT_CLASS_P (max
));
289 /* VAL is the maximum or minimum value of a type. Return a
290 corresponding overflow infinity. */
293 make_overflow_infinity (tree val
)
295 gcc_checking_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
296 val
= copy_node (val
);
297 TREE_OVERFLOW (val
) = 1;
301 /* Return a negative overflow infinity for TYPE. */
304 negative_overflow_infinity (tree type
)
306 gcc_checking_assert (supports_overflow_infinity (type
));
307 return make_overflow_infinity (vrp_val_min (type
));
310 /* Return a positive overflow infinity for TYPE. */
313 positive_overflow_infinity (tree type
)
315 gcc_checking_assert (supports_overflow_infinity (type
));
316 return make_overflow_infinity (vrp_val_max (type
));
319 /* Return whether VAL is a negative overflow infinity. */
322 is_negative_overflow_infinity (const_tree val
)
324 return (TREE_OVERFLOW_P (val
)
325 && needs_overflow_infinity (TREE_TYPE (val
))
326 && vrp_val_is_min (val
));
329 /* Return whether VAL is a positive overflow infinity. */
332 is_positive_overflow_infinity (const_tree val
)
334 return (TREE_OVERFLOW_P (val
)
335 && needs_overflow_infinity (TREE_TYPE (val
))
336 && vrp_val_is_max (val
));
339 /* Return whether VAL is a positive or negative overflow infinity. */
342 is_overflow_infinity (const_tree val
)
344 return (TREE_OVERFLOW_P (val
)
345 && needs_overflow_infinity (TREE_TYPE (val
))
346 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
349 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
352 stmt_overflow_infinity (gimple stmt
)
354 if (is_gimple_assign (stmt
)
355 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
357 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
361 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
362 the same value with TREE_OVERFLOW clear. This can be used to avoid
363 confusing a regular value with an overflow value. */
366 avoid_overflow_infinity (tree val
)
368 if (!is_overflow_infinity (val
))
371 if (vrp_val_is_max (val
))
372 return vrp_val_max (TREE_TYPE (val
));
375 gcc_checking_assert (vrp_val_is_min (val
));
376 return vrp_val_min (TREE_TYPE (val
));
381 /* Return true if ARG is marked with the nonnull attribute in the
382 current function signature. */
385 nonnull_arg_p (const_tree arg
)
387 tree t
, attrs
, fntype
;
388 unsigned HOST_WIDE_INT arg_num
;
390 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
392 /* The static chain decl is always non null. */
393 if (arg
== cfun
->static_chain_decl
)
396 fntype
= TREE_TYPE (current_function_decl
);
397 for (attrs
= TYPE_ATTRIBUTES (fntype
); attrs
; attrs
= TREE_CHAIN (attrs
))
399 attrs
= lookup_attribute ("nonnull", attrs
);
401 /* If "nonnull" wasn't specified, we know nothing about the argument. */
402 if (attrs
== NULL_TREE
)
405 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
406 if (TREE_VALUE (attrs
) == NULL_TREE
)
409 /* Get the position number for ARG in the function signature. */
410 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
412 t
= DECL_CHAIN (t
), arg_num
++)
418 gcc_assert (t
== arg
);
420 /* Now see if ARG_NUM is mentioned in the nonnull list. */
421 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
423 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
432 /* Set value range VR to VR_UNDEFINED. */
435 set_value_range_to_undefined (value_range_t
*vr
)
437 vr
->type
= VR_UNDEFINED
;
438 vr
->min
= vr
->max
= NULL_TREE
;
440 bitmap_clear (vr
->equiv
);
444 /* Set value range VR to VR_VARYING. */
447 set_value_range_to_varying (value_range_t
*vr
)
449 vr
->type
= VR_VARYING
;
450 vr
->min
= vr
->max
= NULL_TREE
;
452 bitmap_clear (vr
->equiv
);
456 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
459 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
460 tree max
, bitmap equiv
)
462 #if defined ENABLE_CHECKING
463 /* Check the validity of the range. */
464 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
468 gcc_assert (min
&& max
);
470 gcc_assert ((!TREE_OVERFLOW_P (min
) || is_overflow_infinity (min
))
471 && (!TREE_OVERFLOW_P (max
) || is_overflow_infinity (max
)));
473 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
474 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
476 cmp
= compare_values (min
, max
);
477 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
479 if (needs_overflow_infinity (TREE_TYPE (min
)))
480 gcc_assert (!is_overflow_infinity (min
)
481 || !is_overflow_infinity (max
));
484 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
485 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
487 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
488 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
495 /* Since updating the equivalence set involves deep copying the
496 bitmaps, only do it if absolutely necessary. */
497 if (vr
->equiv
== NULL
499 vr
->equiv
= BITMAP_ALLOC (NULL
);
501 if (equiv
!= vr
->equiv
)
503 if (equiv
&& !bitmap_empty_p (equiv
))
504 bitmap_copy (vr
->equiv
, equiv
);
506 bitmap_clear (vr
->equiv
);
511 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
512 This means adjusting T, MIN and MAX representing the case of a
513 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
514 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
515 In corner cases where MAX+1 or MIN-1 wraps this will fall back
517 This routine exists to ease canonicalization in the case where we
518 extract ranges from var + CST op limit. */
521 set_and_canonicalize_value_range (value_range_t
*vr
, enum value_range_type t
,
522 tree min
, tree max
, bitmap equiv
)
524 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
525 if (t
== VR_UNDEFINED
)
527 set_value_range_to_undefined (vr
);
530 else if (t
== VR_VARYING
)
532 set_value_range_to_varying (vr
);
536 /* Nothing to canonicalize for symbolic ranges. */
537 if (TREE_CODE (min
) != INTEGER_CST
538 || TREE_CODE (max
) != INTEGER_CST
)
540 set_value_range (vr
, t
, min
, max
, equiv
);
544 /* Wrong order for min and max, to swap them and the VR type we need
546 if (tree_int_cst_lt (max
, min
))
550 /* For one bit precision if max < min, then the swapped
551 range covers all values, so for VR_RANGE it is varying and
552 for VR_ANTI_RANGE empty range, so drop to varying as well. */
553 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1)
555 set_value_range_to_varying (vr
);
559 one
= build_int_cst (TREE_TYPE (min
), 1);
560 tmp
= int_const_binop (PLUS_EXPR
, max
, one
);
561 max
= int_const_binop (MINUS_EXPR
, min
, one
);
564 /* There's one corner case, if we had [C+1, C] before we now have
565 that again. But this represents an empty value range, so drop
566 to varying in this case. */
567 if (tree_int_cst_lt (max
, min
))
569 set_value_range_to_varying (vr
);
573 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
576 /* Anti-ranges that can be represented as ranges should be so. */
577 if (t
== VR_ANTI_RANGE
)
579 bool is_min
= vrp_val_is_min (min
);
580 bool is_max
= vrp_val_is_max (max
);
582 if (is_min
&& is_max
)
584 /* We cannot deal with empty ranges, drop to varying.
585 ??? This could be VR_UNDEFINED instead. */
586 set_value_range_to_varying (vr
);
589 else if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
590 && (is_min
|| is_max
))
592 /* Non-empty boolean ranges can always be represented
593 as a singleton range. */
595 min
= max
= vrp_val_max (TREE_TYPE (min
));
597 min
= max
= vrp_val_min (TREE_TYPE (min
));
601 /* As a special exception preserve non-null ranges. */
602 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
603 && integer_zerop (max
)))
605 tree one
= build_int_cst (TREE_TYPE (max
), 1);
606 min
= int_const_binop (PLUS_EXPR
, max
, one
);
607 max
= vrp_val_max (TREE_TYPE (max
));
612 tree one
= build_int_cst (TREE_TYPE (min
), 1);
613 max
= int_const_binop (MINUS_EXPR
, min
, one
);
614 min
= vrp_val_min (TREE_TYPE (min
));
619 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
620 if (needs_overflow_infinity (TREE_TYPE (min
))
621 && is_overflow_infinity (min
)
622 && is_overflow_infinity (max
))
624 set_value_range_to_varying (vr
);
628 set_value_range (vr
, t
, min
, max
, equiv
);
631 /* Copy value range FROM into value range TO. */
634 copy_value_range (value_range_t
*to
, value_range_t
*from
)
636 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
639 /* Set value range VR to a single value. This function is only called
640 with values we get from statements, and exists to clear the
641 TREE_OVERFLOW flag so that we don't think we have an overflow
642 infinity when we shouldn't. */
645 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
647 gcc_assert (is_gimple_min_invariant (val
));
648 if (TREE_OVERFLOW_P (val
))
649 val
= drop_tree_overflow (val
);
650 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
653 /* Set value range VR to a non-negative range of type TYPE.
654 OVERFLOW_INFINITY indicates whether to use an overflow infinity
655 rather than TYPE_MAX_VALUE; this should be true if we determine
656 that the range is nonnegative based on the assumption that signed
657 overflow does not occur. */
660 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
661 bool overflow_infinity
)
665 if (overflow_infinity
&& !supports_overflow_infinity (type
))
667 set_value_range_to_varying (vr
);
671 zero
= build_int_cst (type
, 0);
672 set_value_range (vr
, VR_RANGE
, zero
,
674 ? positive_overflow_infinity (type
)
675 : TYPE_MAX_VALUE (type
)),
679 /* Set value range VR to a non-NULL range of type TYPE. */
682 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
684 tree zero
= build_int_cst (type
, 0);
685 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
689 /* Set value range VR to a NULL range of type TYPE. */
692 set_value_range_to_null (value_range_t
*vr
, tree type
)
694 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
698 /* Set value range VR to a range of a truthvalue of type TYPE. */
701 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
703 if (TYPE_PRECISION (type
) == 1)
704 set_value_range_to_varying (vr
);
706 set_value_range (vr
, VR_RANGE
,
707 build_int_cst (type
, 0), build_int_cst (type
, 1),
712 /* If abs (min) < abs (max), set VR to [-max, max], if
713 abs (min) >= abs (max), set VR to [-min, min]. */
716 abs_extent_range (value_range_t
*vr
, tree min
, tree max
)
720 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
721 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
722 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
723 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
724 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
725 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
726 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
728 set_value_range_to_varying (vr
);
731 cmp
= compare_values (min
, max
);
733 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
734 else if (cmp
== 0 || cmp
== 1)
737 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
741 set_value_range_to_varying (vr
);
744 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
748 /* Return value range information for VAR.
750 If we have no values ranges recorded (ie, VRP is not running), then
751 return NULL. Otherwise create an empty range if none existed for VAR. */
753 static value_range_t
*
754 get_value_range (const_tree var
)
756 static const struct value_range_d vr_const_varying
757 = { VR_VARYING
, NULL_TREE
, NULL_TREE
, NULL
};
760 unsigned ver
= SSA_NAME_VERSION (var
);
762 /* If we have no recorded ranges, then return NULL. */
766 /* If we query the range for a new SSA name return an unmodifiable VARYING.
767 We should get here at most from the substitute-and-fold stage which
768 will never try to change values. */
769 if (ver
>= num_vr_values
)
770 return CONST_CAST (value_range_t
*, &vr_const_varying
);
776 /* After propagation finished do not allocate new value-ranges. */
777 if (values_propagated
)
778 return CONST_CAST (value_range_t
*, &vr_const_varying
);
780 /* Create a default value range. */
781 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
783 /* Defer allocating the equivalence set. */
786 /* If VAR is a default definition of a parameter, the variable can
787 take any value in VAR's type. */
788 if (SSA_NAME_IS_DEFAULT_DEF (var
))
790 sym
= SSA_NAME_VAR (var
);
791 if (TREE_CODE (sym
) == PARM_DECL
)
793 /* Try to use the "nonnull" attribute to create ~[0, 0]
794 anti-ranges for pointers. Note that this is only valid with
795 default definitions of PARM_DECLs. */
796 if (POINTER_TYPE_P (TREE_TYPE (sym
))
797 && nonnull_arg_p (sym
))
798 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
800 set_value_range_to_varying (vr
);
802 else if (TREE_CODE (sym
) == RESULT_DECL
803 && DECL_BY_REFERENCE (sym
))
804 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
810 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
813 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
817 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
819 return is_overflow_infinity (val1
) == is_overflow_infinity (val2
);
822 /* Return true, if the bitmaps B1 and B2 are equal. */
825 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
828 || ((!b1
|| bitmap_empty_p (b1
))
829 && (!b2
|| bitmap_empty_p (b2
)))
831 && bitmap_equal_p (b1
, b2
)));
834 /* Update the value range and equivalence set for variable VAR to
835 NEW_VR. Return true if NEW_VR is different from VAR's previous
838 NOTE: This function assumes that NEW_VR is a temporary value range
839 object created for the sole purpose of updating VAR's range. The
840 storage used by the equivalence set from NEW_VR will be freed by
841 this function. Do not call update_value_range when NEW_VR
842 is the range object associated with another SSA name. */
845 update_value_range (const_tree var
, value_range_t
*new_vr
)
847 value_range_t
*old_vr
;
850 /* If there is a value-range on the SSA name from earlier analysis
852 if (INTEGRAL_TYPE_P (TREE_TYPE (var
)))
855 value_range_type rtype
= get_range_info (var
, &min
, &max
);
856 if (rtype
== VR_RANGE
|| rtype
== VR_ANTI_RANGE
)
860 nr
.min
= wide_int_to_tree (TREE_TYPE (var
), min
);
861 nr
.max
= wide_int_to_tree (TREE_TYPE (var
), max
);
863 vrp_intersect_ranges (new_vr
, &nr
);
867 /* Update the value range, if necessary. */
868 old_vr
= get_value_range (var
);
869 is_new
= old_vr
->type
!= new_vr
->type
870 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
871 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
872 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
876 /* Do not allow transitions up the lattice. The following
877 is slightly more awkward than just new_vr->type < old_vr->type
878 because VR_RANGE and VR_ANTI_RANGE need to be considered
879 the same. We may not have is_new when transitioning to
880 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
882 if (new_vr
->type
== VR_UNDEFINED
)
884 BITMAP_FREE (new_vr
->equiv
);
885 set_value_range_to_varying (old_vr
);
886 set_value_range_to_varying (new_vr
);
890 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
894 BITMAP_FREE (new_vr
->equiv
);
900 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
901 point where equivalence processing can be turned on/off. */
904 add_equivalence (bitmap
*equiv
, const_tree var
)
906 unsigned ver
= SSA_NAME_VERSION (var
);
907 value_range_t
*vr
= vr_value
[ver
];
910 *equiv
= BITMAP_ALLOC (NULL
);
911 bitmap_set_bit (*equiv
, ver
);
913 bitmap_ior_into (*equiv
, vr
->equiv
);
917 /* Return true if VR is ~[0, 0]. */
920 range_is_nonnull (value_range_t
*vr
)
922 return vr
->type
== VR_ANTI_RANGE
923 && integer_zerop (vr
->min
)
924 && integer_zerop (vr
->max
);
928 /* Return true if VR is [0, 0]. */
931 range_is_null (value_range_t
*vr
)
933 return vr
->type
== VR_RANGE
934 && integer_zerop (vr
->min
)
935 && integer_zerop (vr
->max
);
938 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
942 range_int_cst_p (value_range_t
*vr
)
944 return (vr
->type
== VR_RANGE
945 && TREE_CODE (vr
->max
) == INTEGER_CST
946 && TREE_CODE (vr
->min
) == INTEGER_CST
);
949 /* Return true if VR is a INTEGER_CST singleton. */
952 range_int_cst_singleton_p (value_range_t
*vr
)
954 return (range_int_cst_p (vr
)
955 && !is_overflow_infinity (vr
->min
)
956 && !is_overflow_infinity (vr
->max
)
957 && tree_int_cst_equal (vr
->min
, vr
->max
));
960 /* Return true if value range VR involves at least one symbol. */
963 symbolic_range_p (value_range_t
*vr
)
965 return (!is_gimple_min_invariant (vr
->min
)
966 || !is_gimple_min_invariant (vr
->max
));
969 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
970 otherwise. We only handle additive operations and set NEG to true if the
971 symbol is negated and INV to the invariant part, if any. */
974 get_single_symbol (tree t
, bool *neg
, tree
*inv
)
979 if (TREE_CODE (t
) == PLUS_EXPR
980 || TREE_CODE (t
) == POINTER_PLUS_EXPR
981 || TREE_CODE (t
) == MINUS_EXPR
)
983 if (is_gimple_min_invariant (TREE_OPERAND (t
, 0)))
985 neg_
= (TREE_CODE (t
) == MINUS_EXPR
);
986 inv_
= TREE_OPERAND (t
, 0);
987 t
= TREE_OPERAND (t
, 1);
989 else if (is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
992 inv_
= TREE_OPERAND (t
, 1);
993 t
= TREE_OPERAND (t
, 0);
1004 if (TREE_CODE (t
) == NEGATE_EXPR
)
1006 t
= TREE_OPERAND (t
, 0);
1010 if (TREE_CODE (t
) != SSA_NAME
)
1018 /* The reverse operation: build a symbolic expression with TYPE
1019 from symbol SYM, negated according to NEG, and invariant INV. */
1022 build_symbolic_expr (tree type
, tree sym
, bool neg
, tree inv
)
1024 const bool pointer_p
= POINTER_TYPE_P (type
);
1028 t
= build1 (NEGATE_EXPR
, type
, t
);
1030 if (integer_zerop (inv
))
1033 return build2 (pointer_p
? POINTER_PLUS_EXPR
: PLUS_EXPR
, type
, t
, inv
);
1036 /* Return true if value range VR involves exactly one symbol SYM. */
1039 symbolic_range_based_on_p (value_range_t
*vr
, const_tree sym
)
1041 bool neg
, min_has_symbol
, max_has_symbol
;
1044 if (is_gimple_min_invariant (vr
->min
))
1045 min_has_symbol
= false;
1046 else if (get_single_symbol (vr
->min
, &neg
, &inv
) == sym
)
1047 min_has_symbol
= true;
1051 if (is_gimple_min_invariant (vr
->max
))
1052 max_has_symbol
= false;
1053 else if (get_single_symbol (vr
->max
, &neg
, &inv
) == sym
)
1054 max_has_symbol
= true;
1058 return (min_has_symbol
|| max_has_symbol
);
1061 /* Return true if value range VR uses an overflow infinity. */
1064 overflow_infinity_range_p (value_range_t
*vr
)
1066 return (vr
->type
== VR_RANGE
1067 && (is_overflow_infinity (vr
->min
)
1068 || is_overflow_infinity (vr
->max
)));
1071 /* Return false if we can not make a valid comparison based on VR;
1072 this will be the case if it uses an overflow infinity and overflow
1073 is not undefined (i.e., -fno-strict-overflow is in effect).
1074 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
1075 uses an overflow infinity. */
1078 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
1080 gcc_assert (vr
->type
== VR_RANGE
);
1081 if (is_overflow_infinity (vr
->min
))
1083 *strict_overflow_p
= true;
1084 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
1087 if (is_overflow_infinity (vr
->max
))
1089 *strict_overflow_p
= true;
1090 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
1097 /* Return true if the result of assignment STMT is know to be non-negative.
1098 If the return value is based on the assumption that signed overflow is
1099 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1100 *STRICT_OVERFLOW_P.*/
1103 gimple_assign_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1105 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1106 switch (get_gimple_rhs_class (code
))
1108 case GIMPLE_UNARY_RHS
:
1109 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
1110 gimple_expr_type (stmt
),
1111 gimple_assign_rhs1 (stmt
),
1113 case GIMPLE_BINARY_RHS
:
1114 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
1115 gimple_expr_type (stmt
),
1116 gimple_assign_rhs1 (stmt
),
1117 gimple_assign_rhs2 (stmt
),
1119 case GIMPLE_TERNARY_RHS
:
1121 case GIMPLE_SINGLE_RHS
:
1122 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt
),
1124 case GIMPLE_INVALID_RHS
:
1131 /* Return true if return value of call STMT is know to be non-negative.
1132 If the return value is based on the assumption that signed overflow is
1133 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1134 *STRICT_OVERFLOW_P.*/
1137 gimple_call_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1139 tree arg0
= gimple_call_num_args (stmt
) > 0 ?
1140 gimple_call_arg (stmt
, 0) : NULL_TREE
;
1141 tree arg1
= gimple_call_num_args (stmt
) > 1 ?
1142 gimple_call_arg (stmt
, 1) : NULL_TREE
;
1144 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt
),
1145 gimple_call_fndecl (stmt
),
1151 /* Return true if STMT is know to to compute a non-negative value.
1152 If the return value is based on the assumption that signed overflow is
1153 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1154 *STRICT_OVERFLOW_P.*/
1157 gimple_stmt_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1159 switch (gimple_code (stmt
))
1162 return gimple_assign_nonnegative_warnv_p (stmt
, strict_overflow_p
);
1164 return gimple_call_nonnegative_warnv_p (stmt
, strict_overflow_p
);
1170 /* Return true if the result of assignment STMT is know to be non-zero.
1171 If the return value is based on the assumption that signed overflow is
1172 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1173 *STRICT_OVERFLOW_P.*/
1176 gimple_assign_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1178 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1179 switch (get_gimple_rhs_class (code
))
1181 case GIMPLE_UNARY_RHS
:
1182 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1183 gimple_expr_type (stmt
),
1184 gimple_assign_rhs1 (stmt
),
1186 case GIMPLE_BINARY_RHS
:
1187 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1188 gimple_expr_type (stmt
),
1189 gimple_assign_rhs1 (stmt
),
1190 gimple_assign_rhs2 (stmt
),
1192 case GIMPLE_TERNARY_RHS
:
1194 case GIMPLE_SINGLE_RHS
:
1195 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
1197 case GIMPLE_INVALID_RHS
:
1204 /* Return true if STMT is known to compute a non-zero value.
1205 If the return value is based on the assumption that signed overflow is
1206 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1207 *STRICT_OVERFLOW_P.*/
1210 gimple_stmt_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1212 switch (gimple_code (stmt
))
1215 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
1218 tree fndecl
= gimple_call_fndecl (stmt
);
1219 if (!fndecl
) return false;
1220 if (flag_delete_null_pointer_checks
&& !flag_check_new
1221 && DECL_IS_OPERATOR_NEW (fndecl
)
1222 && !TREE_NOTHROW (fndecl
))
1224 if (flag_delete_null_pointer_checks
&&
1225 lookup_attribute ("returns_nonnull",
1226 TYPE_ATTRIBUTES (gimple_call_fntype (stmt
))))
1228 return gimple_alloca_call_p (stmt
);
1235 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1239 vrp_stmt_computes_nonzero (gimple stmt
, bool *strict_overflow_p
)
1241 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
1244 /* If we have an expression of the form &X->a, then the expression
1245 is nonnull if X is nonnull. */
1246 if (is_gimple_assign (stmt
)
1247 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
1249 tree expr
= gimple_assign_rhs1 (stmt
);
1250 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
1252 if (base
!= NULL_TREE
1253 && TREE_CODE (base
) == MEM_REF
1254 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
1256 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
1257 if (range_is_nonnull (vr
))
1265 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1266 a gimple invariant, or SSA_NAME +- CST. */
1269 valid_value_p (tree expr
)
1271 if (TREE_CODE (expr
) == SSA_NAME
)
1274 if (TREE_CODE (expr
) == PLUS_EXPR
1275 || TREE_CODE (expr
) == MINUS_EXPR
)
1276 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
1277 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
1279 return is_gimple_min_invariant (expr
);
1285 -2 if those are incomparable. */
1287 operand_less_p (tree val
, tree val2
)
1289 /* LT is folded faster than GE and others. Inline the common case. */
1290 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1291 return tree_int_cst_lt (val
, val2
);
1296 fold_defer_overflow_warnings ();
1298 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1300 fold_undefer_and_ignore_overflow_warnings ();
1303 || TREE_CODE (tcmp
) != INTEGER_CST
)
1306 if (!integer_zerop (tcmp
))
1310 /* val >= val2, not considering overflow infinity. */
1311 if (is_negative_overflow_infinity (val
))
1312 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1313 else if (is_positive_overflow_infinity (val2
))
1314 return is_positive_overflow_infinity (val
) ? 0 : 1;
1319 /* Compare two values VAL1 and VAL2. Return
1321 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1324 +1 if VAL1 > VAL2, and
1327 This is similar to tree_int_cst_compare but supports pointer values
1328 and values that cannot be compared at compile time.
1330 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1331 true if the return value is only valid if we assume that signed
1332 overflow is undefined. */
1335 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1340 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1342 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1343 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1345 /* Convert the two values into the same type. This is needed because
1346 sizetype causes sign extension even for unsigned types. */
1347 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1348 STRIP_USELESS_TYPE_CONVERSION (val2
);
1350 if ((TREE_CODE (val1
) == SSA_NAME
1351 || (TREE_CODE (val1
) == NEGATE_EXPR
1352 && TREE_CODE (TREE_OPERAND (val1
, 0)) == SSA_NAME
)
1353 || TREE_CODE (val1
) == PLUS_EXPR
1354 || TREE_CODE (val1
) == MINUS_EXPR
)
1355 && (TREE_CODE (val2
) == SSA_NAME
1356 || (TREE_CODE (val2
) == NEGATE_EXPR
1357 && TREE_CODE (TREE_OPERAND (val2
, 0)) == SSA_NAME
)
1358 || TREE_CODE (val2
) == PLUS_EXPR
1359 || TREE_CODE (val2
) == MINUS_EXPR
))
1361 tree n1
, c1
, n2
, c2
;
1362 enum tree_code code1
, code2
;
1364 /* If VAL1 and VAL2 are of the form '[-]NAME [+-] CST' or 'NAME',
1365 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1366 same name, return -2. */
1367 if (TREE_CODE (val1
) == SSA_NAME
|| TREE_CODE (val1
) == NEGATE_EXPR
)
1375 code1
= TREE_CODE (val1
);
1376 n1
= TREE_OPERAND (val1
, 0);
1377 c1
= TREE_OPERAND (val1
, 1);
1378 if (tree_int_cst_sgn (c1
) == -1)
1380 if (is_negative_overflow_infinity (c1
))
1382 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
1385 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1389 if (TREE_CODE (val2
) == SSA_NAME
|| TREE_CODE (val2
) == NEGATE_EXPR
)
1397 code2
= TREE_CODE (val2
);
1398 n2
= TREE_OPERAND (val2
, 0);
1399 c2
= TREE_OPERAND (val2
, 1);
1400 if (tree_int_cst_sgn (c2
) == -1)
1402 if (is_negative_overflow_infinity (c2
))
1404 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
1407 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1411 /* Both values must use the same name. */
1412 if (TREE_CODE (n1
) == NEGATE_EXPR
&& TREE_CODE (n2
) == NEGATE_EXPR
)
1414 n1
= TREE_OPERAND (n1
, 0);
1415 n2
= TREE_OPERAND (n2
, 0);
1420 if (code1
== SSA_NAME
&& code2
== SSA_NAME
)
1424 /* If overflow is defined we cannot simplify more. */
1425 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
1428 if (strict_overflow_p
!= NULL
1429 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
1430 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
1431 *strict_overflow_p
= true;
1433 if (code1
== SSA_NAME
)
1435 if (code2
== PLUS_EXPR
)
1436 /* NAME < NAME + CST */
1438 else if (code2
== MINUS_EXPR
)
1439 /* NAME > NAME - CST */
1442 else if (code1
== PLUS_EXPR
)
1444 if (code2
== SSA_NAME
)
1445 /* NAME + CST > NAME */
1447 else if (code2
== PLUS_EXPR
)
1448 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1449 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
1450 else if (code2
== MINUS_EXPR
)
1451 /* NAME + CST1 > NAME - CST2 */
1454 else if (code1
== MINUS_EXPR
)
1456 if (code2
== SSA_NAME
)
1457 /* NAME - CST < NAME */
1459 else if (code2
== PLUS_EXPR
)
1460 /* NAME - CST1 < NAME + CST2 */
1462 else if (code2
== MINUS_EXPR
)
1463 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1464 C1 and C2 are swapped in the call to compare_values. */
1465 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
1471 /* We cannot compare non-constants. */
1472 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
1475 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1477 /* We cannot compare overflowed values, except for overflow
1479 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1481 if (strict_overflow_p
!= NULL
)
1482 *strict_overflow_p
= true;
1483 if (is_negative_overflow_infinity (val1
))
1484 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1485 else if (is_negative_overflow_infinity (val2
))
1487 else if (is_positive_overflow_infinity (val1
))
1488 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1489 else if (is_positive_overflow_infinity (val2
))
1494 return tree_int_cst_compare (val1
, val2
);
1500 /* First see if VAL1 and VAL2 are not the same. */
1501 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1504 /* If VAL1 is a lower address than VAL2, return -1. */
1505 if (operand_less_p (val1
, val2
) == 1)
1508 /* If VAL1 is a higher address than VAL2, return +1. */
1509 if (operand_less_p (val2
, val1
) == 1)
1512 /* If VAL1 is different than VAL2, return +2.
1513 For integer constants we either have already returned -1 or 1
1514 or they are equivalent. We still might succeed in proving
1515 something about non-trivial operands. */
1516 if (TREE_CODE (val1
) != INTEGER_CST
1517 || TREE_CODE (val2
) != INTEGER_CST
)
1519 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1520 if (t
&& integer_onep (t
))
1528 /* Compare values like compare_values_warnv, but treat comparisons of
1529 nonconstants which rely on undefined overflow as incomparable. */
1532 compare_values (tree val1
, tree val2
)
1538 ret
= compare_values_warnv (val1
, val2
, &sop
);
1540 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1546 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1547 0 if VAL is not inside [MIN, MAX],
1548 -2 if we cannot tell either way.
1550 Benchmark compile/20001226-1.c compilation time after changing this
1554 value_inside_range (tree val
, tree min
, tree max
)
1558 cmp1
= operand_less_p (val
, min
);
1564 cmp2
= operand_less_p (max
, val
);
1572 /* Return true if value ranges VR0 and VR1 have a non-empty
1575 Benchmark compile/20001226-1.c compilation time after changing this
1580 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1582 /* The value ranges do not intersect if the maximum of the first range is
1583 less than the minimum of the second range or vice versa.
1584 When those relations are unknown, we can't do any better. */
1585 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1587 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1593 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1594 include the value zero, -2 if we cannot tell. */
1597 range_includes_zero_p (tree min
, tree max
)
1599 tree zero
= build_int_cst (TREE_TYPE (min
), 0);
1600 return value_inside_range (zero
, min
, max
);
1603 /* Return true if *VR is know to only contain nonnegative values. */
1606 value_range_nonnegative_p (value_range_t
*vr
)
1608 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1609 which would return a useful value should be encoded as a
1611 if (vr
->type
== VR_RANGE
)
1613 int result
= compare_values (vr
->min
, integer_zero_node
);
1614 return (result
== 0 || result
== 1);
1620 /* If *VR has a value rante that is a single constant value return that,
1621 otherwise return NULL_TREE. */
1624 value_range_constant_singleton (value_range_t
*vr
)
1626 if (vr
->type
== VR_RANGE
1627 && operand_equal_p (vr
->min
, vr
->max
, 0)
1628 && is_gimple_min_invariant (vr
->min
))
1634 /* If OP has a value range with a single constant value return that,
1635 otherwise return NULL_TREE. This returns OP itself if OP is a
1639 op_with_constant_singleton_value_range (tree op
)
1641 if (is_gimple_min_invariant (op
))
1644 if (TREE_CODE (op
) != SSA_NAME
)
1647 return value_range_constant_singleton (get_value_range (op
));
1650 /* Return true if op is in a boolean [0, 1] value-range. */
1653 op_with_boolean_value_range_p (tree op
)
1657 if (TYPE_PRECISION (TREE_TYPE (op
)) == 1)
1660 if (integer_zerop (op
)
1661 || integer_onep (op
))
1664 if (TREE_CODE (op
) != SSA_NAME
)
1667 vr
= get_value_range (op
);
1668 return (vr
->type
== VR_RANGE
1669 && integer_zerop (vr
->min
)
1670 && integer_onep (vr
->max
));
1673 /* Extract value range information from an ASSERT_EXPR EXPR and store
1677 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1679 tree var
, cond
, limit
, min
, max
, type
;
1680 value_range_t
*limit_vr
;
1681 enum tree_code cond_code
;
1683 var
= ASSERT_EXPR_VAR (expr
);
1684 cond
= ASSERT_EXPR_COND (expr
);
1686 gcc_assert (COMPARISON_CLASS_P (cond
));
1688 /* Find VAR in the ASSERT_EXPR conditional. */
1689 if (var
== TREE_OPERAND (cond
, 0)
1690 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1691 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1693 /* If the predicate is of the form VAR COMP LIMIT, then we just
1694 take LIMIT from the RHS and use the same comparison code. */
1695 cond_code
= TREE_CODE (cond
);
1696 limit
= TREE_OPERAND (cond
, 1);
1697 cond
= TREE_OPERAND (cond
, 0);
1701 /* If the predicate is of the form LIMIT COMP VAR, then we need
1702 to flip around the comparison code to create the proper range
1704 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1705 limit
= TREE_OPERAND (cond
, 0);
1706 cond
= TREE_OPERAND (cond
, 1);
1709 limit
= avoid_overflow_infinity (limit
);
1711 type
= TREE_TYPE (var
);
1712 gcc_assert (limit
!= var
);
1714 /* For pointer arithmetic, we only keep track of pointer equality
1716 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1718 set_value_range_to_varying (vr_p
);
1722 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1723 try to use LIMIT's range to avoid creating symbolic ranges
1725 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1727 /* LIMIT's range is only interesting if it has any useful information. */
1729 && (limit_vr
->type
== VR_UNDEFINED
1730 || limit_vr
->type
== VR_VARYING
1731 || symbolic_range_p (limit_vr
)))
1734 /* Initially, the new range has the same set of equivalences of
1735 VAR's range. This will be revised before returning the final
1736 value. Since assertions may be chained via mutually exclusive
1737 predicates, we will need to trim the set of equivalences before
1739 gcc_assert (vr_p
->equiv
== NULL
);
1740 add_equivalence (&vr_p
->equiv
, var
);
1742 /* Extract a new range based on the asserted comparison for VAR and
1743 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1744 will only use it for equality comparisons (EQ_EXPR). For any
1745 other kind of assertion, we cannot derive a range from LIMIT's
1746 anti-range that can be used to describe the new range. For
1747 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1748 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1749 no single range for x_2 that could describe LE_EXPR, so we might
1750 as well build the range [b_4, +INF] for it.
1751 One special case we handle is extracting a range from a
1752 range test encoded as (unsigned)var + CST <= limit. */
1753 if (TREE_CODE (cond
) == NOP_EXPR
1754 || TREE_CODE (cond
) == PLUS_EXPR
)
1756 if (TREE_CODE (cond
) == PLUS_EXPR
)
1758 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (cond
, 1)),
1759 TREE_OPERAND (cond
, 1));
1760 max
= int_const_binop (PLUS_EXPR
, limit
, min
);
1761 cond
= TREE_OPERAND (cond
, 0);
1765 min
= build_int_cst (TREE_TYPE (var
), 0);
1769 /* Make sure to not set TREE_OVERFLOW on the final type
1770 conversion. We are willingly interpreting large positive
1771 unsigned values as negative signed values here. */
1772 min
= force_fit_type (TREE_TYPE (var
), wi::to_widest (min
), 0, false);
1773 max
= force_fit_type (TREE_TYPE (var
), wi::to_widest (max
), 0, false);
1775 /* We can transform a max, min range to an anti-range or
1776 vice-versa. Use set_and_canonicalize_value_range which does
1778 if (cond_code
== LE_EXPR
)
1779 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1780 min
, max
, vr_p
->equiv
);
1781 else if (cond_code
== GT_EXPR
)
1782 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1783 min
, max
, vr_p
->equiv
);
1787 else if (cond_code
== EQ_EXPR
)
1789 enum value_range_type range_type
;
1793 range_type
= limit_vr
->type
;
1794 min
= limit_vr
->min
;
1795 max
= limit_vr
->max
;
1799 range_type
= VR_RANGE
;
1804 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1806 /* When asserting the equality VAR == LIMIT and LIMIT is another
1807 SSA name, the new range will also inherit the equivalence set
1809 if (TREE_CODE (limit
) == SSA_NAME
)
1810 add_equivalence (&vr_p
->equiv
, limit
);
1812 else if (cond_code
== NE_EXPR
)
1814 /* As described above, when LIMIT's range is an anti-range and
1815 this assertion is an inequality (NE_EXPR), then we cannot
1816 derive anything from the anti-range. For instance, if
1817 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1818 not imply that VAR's range is [0, 0]. So, in the case of
1819 anti-ranges, we just assert the inequality using LIMIT and
1822 If LIMIT_VR is a range, we can only use it to build a new
1823 anti-range if LIMIT_VR is a single-valued range. For
1824 instance, if LIMIT_VR is [0, 1], the predicate
1825 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1826 Rather, it means that for value 0 VAR should be ~[0, 0]
1827 and for value 1, VAR should be ~[1, 1]. We cannot
1828 represent these ranges.
1830 The only situation in which we can build a valid
1831 anti-range is when LIMIT_VR is a single-valued range
1832 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1833 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1835 && limit_vr
->type
== VR_RANGE
1836 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1838 min
= limit_vr
->min
;
1839 max
= limit_vr
->max
;
1843 /* In any other case, we cannot use LIMIT's range to build a
1844 valid anti-range. */
1848 /* If MIN and MAX cover the whole range for their type, then
1849 just use the original LIMIT. */
1850 if (INTEGRAL_TYPE_P (type
)
1851 && vrp_val_is_min (min
)
1852 && vrp_val_is_max (max
))
1855 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1856 min
, max
, vr_p
->equiv
);
1858 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1860 min
= TYPE_MIN_VALUE (type
);
1862 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1866 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1867 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1869 max
= limit_vr
->max
;
1872 /* If the maximum value forces us to be out of bounds, simply punt.
1873 It would be pointless to try and do anything more since this
1874 all should be optimized away above us. */
1875 if ((cond_code
== LT_EXPR
1876 && compare_values (max
, min
) == 0)
1877 || is_overflow_infinity (max
))
1878 set_value_range_to_varying (vr_p
);
1881 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1882 if (cond_code
== LT_EXPR
)
1884 if (TYPE_PRECISION (TREE_TYPE (max
)) == 1
1885 && !TYPE_UNSIGNED (TREE_TYPE (max
)))
1886 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (max
), max
,
1887 build_int_cst (TREE_TYPE (max
), -1));
1889 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (max
), max
,
1890 build_int_cst (TREE_TYPE (max
), 1));
1892 TREE_NO_WARNING (max
) = 1;
1895 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1898 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1900 max
= TYPE_MAX_VALUE (type
);
1902 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1906 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1907 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1909 min
= limit_vr
->min
;
1912 /* If the minimum value forces us to be out of bounds, simply punt.
1913 It would be pointless to try and do anything more since this
1914 all should be optimized away above us. */
1915 if ((cond_code
== GT_EXPR
1916 && compare_values (min
, max
) == 0)
1917 || is_overflow_infinity (min
))
1918 set_value_range_to_varying (vr_p
);
1921 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1922 if (cond_code
== GT_EXPR
)
1924 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
1925 && !TYPE_UNSIGNED (TREE_TYPE (min
)))
1926 min
= fold_build2 (MINUS_EXPR
, TREE_TYPE (min
), min
,
1927 build_int_cst (TREE_TYPE (min
), -1));
1929 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (min
), min
,
1930 build_int_cst (TREE_TYPE (min
), 1));
1932 TREE_NO_WARNING (min
) = 1;
1935 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1941 /* Finally intersect the new range with what we already know about var. */
1942 vrp_intersect_ranges (vr_p
, get_value_range (var
));
1946 /* Extract range information from SSA name VAR and store it in VR. If
1947 VAR has an interesting range, use it. Otherwise, create the
1948 range [VAR, VAR] and return it. This is useful in situations where
1949 we may have conditionals testing values of VARYING names. For
1956 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1960 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1962 value_range_t
*var_vr
= get_value_range (var
);
1964 if (var_vr
->type
!= VR_VARYING
)
1965 copy_value_range (vr
, var_vr
);
1967 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1969 add_equivalence (&vr
->equiv
, var
);
1973 /* Wrapper around int_const_binop. If the operation overflows and we
1974 are not using wrapping arithmetic, then adjust the result to be
1975 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1976 NULL_TREE if we need to use an overflow infinity representation but
1977 the type does not support it. */
1980 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1984 res
= int_const_binop (code
, val1
, val2
);
1986 /* If we are using unsigned arithmetic, operate symbolically
1987 on -INF and +INF as int_const_binop only handles signed overflow. */
1988 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1990 int checkz
= compare_values (res
, val1
);
1991 bool overflow
= false;
1993 /* Ensure that res = val1 [+*] val2 >= val1
1994 or that res = val1 - val2 <= val1. */
1995 if ((code
== PLUS_EXPR
1996 && !(checkz
== 1 || checkz
== 0))
1997 || (code
== MINUS_EXPR
1998 && !(checkz
== 0 || checkz
== -1)))
2002 /* Checking for multiplication overflow is done by dividing the
2003 output of the multiplication by the first input of the
2004 multiplication. If the result of that division operation is
2005 not equal to the second input of the multiplication, then the
2006 multiplication overflowed. */
2007 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
2009 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
2012 int check
= compare_values (tmp
, val2
);
2020 res
= copy_node (res
);
2021 TREE_OVERFLOW (res
) = 1;
2025 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
2026 /* If the singed operation wraps then int_const_binop has done
2027 everything we want. */
2029 /* Signed division of -1/0 overflows and by the time it gets here
2030 returns NULL_TREE. */
2033 else if ((TREE_OVERFLOW (res
)
2034 && !TREE_OVERFLOW (val1
)
2035 && !TREE_OVERFLOW (val2
))
2036 || is_overflow_infinity (val1
)
2037 || is_overflow_infinity (val2
))
2039 /* If the operation overflowed but neither VAL1 nor VAL2 are
2040 overflown, return -INF or +INF depending on the operation
2041 and the combination of signs of the operands. */
2042 int sgn1
= tree_int_cst_sgn (val1
);
2043 int sgn2
= tree_int_cst_sgn (val2
);
2045 if (needs_overflow_infinity (TREE_TYPE (res
))
2046 && !supports_overflow_infinity (TREE_TYPE (res
)))
2049 /* We have to punt on adding infinities of different signs,
2050 since we can't tell what the sign of the result should be.
2051 Likewise for subtracting infinities of the same sign. */
2052 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
2053 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
2054 && is_overflow_infinity (val1
)
2055 && is_overflow_infinity (val2
))
2058 /* Don't try to handle division or shifting of infinities. */
2059 if ((code
== TRUNC_DIV_EXPR
2060 || code
== FLOOR_DIV_EXPR
2061 || code
== CEIL_DIV_EXPR
2062 || code
== EXACT_DIV_EXPR
2063 || code
== ROUND_DIV_EXPR
2064 || code
== RSHIFT_EXPR
)
2065 && (is_overflow_infinity (val1
)
2066 || is_overflow_infinity (val2
)))
2069 /* Notice that we only need to handle the restricted set of
2070 operations handled by extract_range_from_binary_expr.
2071 Among them, only multiplication, addition and subtraction
2072 can yield overflow without overflown operands because we
2073 are working with integral types only... except in the
2074 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2075 for division too. */
2077 /* For multiplication, the sign of the overflow is given
2078 by the comparison of the signs of the operands. */
2079 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
2080 /* For addition, the operands must be of the same sign
2081 to yield an overflow. Its sign is therefore that
2082 of one of the operands, for example the first. For
2083 infinite operands X + -INF is negative, not positive. */
2084 || (code
== PLUS_EXPR
2086 ? !is_negative_overflow_infinity (val2
)
2087 : is_positive_overflow_infinity (val2
)))
2088 /* For subtraction, non-infinite operands must be of
2089 different signs to yield an overflow. Its sign is
2090 therefore that of the first operand or the opposite of
2091 that of the second operand. A first operand of 0 counts
2092 as positive here, for the corner case 0 - (-INF), which
2093 overflows, but must yield +INF. For infinite operands 0
2094 - INF is negative, not positive. */
2095 || (code
== MINUS_EXPR
2097 ? !is_positive_overflow_infinity (val2
)
2098 : is_negative_overflow_infinity (val2
)))
2099 /* We only get in here with positive shift count, so the
2100 overflow direction is the same as the sign of val1.
2101 Actually rshift does not overflow at all, but we only
2102 handle the case of shifting overflowed -INF and +INF. */
2103 || (code
== RSHIFT_EXPR
2105 /* For division, the only case is -INF / -1 = +INF. */
2106 || code
== TRUNC_DIV_EXPR
2107 || code
== FLOOR_DIV_EXPR
2108 || code
== CEIL_DIV_EXPR
2109 || code
== EXACT_DIV_EXPR
2110 || code
== ROUND_DIV_EXPR
)
2111 return (needs_overflow_infinity (TREE_TYPE (res
))
2112 ? positive_overflow_infinity (TREE_TYPE (res
))
2113 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
2115 return (needs_overflow_infinity (TREE_TYPE (res
))
2116 ? negative_overflow_infinity (TREE_TYPE (res
))
2117 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
2124 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
2125 bitmask if some bit is unset, it means for all numbers in the range
2126 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2127 bitmask if some bit is set, it means for all numbers in the range
2128 the bit is 1, otherwise it might be 0 or 1. */
2131 zero_nonzero_bits_from_vr (const tree expr_type
,
2133 wide_int
*may_be_nonzero
,
2134 wide_int
*must_be_nonzero
)
2136 *may_be_nonzero
= wi::minus_one (TYPE_PRECISION (expr_type
));
2137 *must_be_nonzero
= wi::zero (TYPE_PRECISION (expr_type
));
2138 if (!range_int_cst_p (vr
)
2139 || is_overflow_infinity (vr
->min
)
2140 || is_overflow_infinity (vr
->max
))
2143 if (range_int_cst_singleton_p (vr
))
2145 *may_be_nonzero
= vr
->min
;
2146 *must_be_nonzero
= *may_be_nonzero
;
2148 else if (tree_int_cst_sgn (vr
->min
) >= 0
2149 || tree_int_cst_sgn (vr
->max
) < 0)
2151 wide_int xor_mask
= wi::bit_xor (vr
->min
, vr
->max
);
2152 *may_be_nonzero
= wi::bit_or (vr
->min
, vr
->max
);
2153 *must_be_nonzero
= wi::bit_and (vr
->min
, vr
->max
);
2156 wide_int mask
= wi::mask (wi::floor_log2 (xor_mask
), false,
2157 may_be_nonzero
->get_precision ());
2158 *may_be_nonzero
= *may_be_nonzero
| mask
;
2159 *must_be_nonzero
= must_be_nonzero
->and_not (mask
);
2166 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2167 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2168 false otherwise. If *AR can be represented with a single range
2169 *VR1 will be VR_UNDEFINED. */
2172 ranges_from_anti_range (value_range_t
*ar
,
2173 value_range_t
*vr0
, value_range_t
*vr1
)
2175 tree type
= TREE_TYPE (ar
->min
);
2177 vr0
->type
= VR_UNDEFINED
;
2178 vr1
->type
= VR_UNDEFINED
;
2180 if (ar
->type
!= VR_ANTI_RANGE
2181 || TREE_CODE (ar
->min
) != INTEGER_CST
2182 || TREE_CODE (ar
->max
) != INTEGER_CST
2183 || !vrp_val_min (type
)
2184 || !vrp_val_max (type
))
2187 if (!vrp_val_is_min (ar
->min
))
2189 vr0
->type
= VR_RANGE
;
2190 vr0
->min
= vrp_val_min (type
);
2191 vr0
->max
= wide_int_to_tree (type
, wi::sub (ar
->min
, 1));
2193 if (!vrp_val_is_max (ar
->max
))
2195 vr1
->type
= VR_RANGE
;
2196 vr1
->min
= wide_int_to_tree (type
, wi::add (ar
->max
, 1));
2197 vr1
->max
= vrp_val_max (type
);
2199 if (vr0
->type
== VR_UNDEFINED
)
2202 vr1
->type
= VR_UNDEFINED
;
2205 return vr0
->type
!= VR_UNDEFINED
;
2208 /* Helper to extract a value-range *VR for a multiplicative operation
2212 extract_range_from_multiplicative_op_1 (value_range_t
*vr
,
2213 enum tree_code code
,
2214 value_range_t
*vr0
, value_range_t
*vr1
)
2216 enum value_range_type type
;
2223 /* Multiplications, divisions and shifts are a bit tricky to handle,
2224 depending on the mix of signs we have in the two ranges, we
2225 need to operate on different values to get the minimum and
2226 maximum values for the new range. One approach is to figure
2227 out all the variations of range combinations and do the
2230 However, this involves several calls to compare_values and it
2231 is pretty convoluted. It's simpler to do the 4 operations
2232 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2233 MAX1) and then figure the smallest and largest values to form
2235 gcc_assert (code
== MULT_EXPR
2236 || code
== TRUNC_DIV_EXPR
2237 || code
== FLOOR_DIV_EXPR
2238 || code
== CEIL_DIV_EXPR
2239 || code
== EXACT_DIV_EXPR
2240 || code
== ROUND_DIV_EXPR
2241 || code
== RSHIFT_EXPR
2242 || code
== LSHIFT_EXPR
);
2243 gcc_assert ((vr0
->type
== VR_RANGE
2244 || (code
== MULT_EXPR
&& vr0
->type
== VR_ANTI_RANGE
))
2245 && vr0
->type
== vr1
->type
);
2249 /* Compute the 4 cross operations. */
2251 val
[0] = vrp_int_const_binop (code
, vr0
->min
, vr1
->min
);
2252 if (val
[0] == NULL_TREE
)
2255 if (vr1
->max
== vr1
->min
)
2259 val
[1] = vrp_int_const_binop (code
, vr0
->min
, vr1
->max
);
2260 if (val
[1] == NULL_TREE
)
2264 if (vr0
->max
== vr0
->min
)
2268 val
[2] = vrp_int_const_binop (code
, vr0
->max
, vr1
->min
);
2269 if (val
[2] == NULL_TREE
)
2273 if (vr0
->min
== vr0
->max
|| vr1
->min
== vr1
->max
)
2277 val
[3] = vrp_int_const_binop (code
, vr0
->max
, vr1
->max
);
2278 if (val
[3] == NULL_TREE
)
2284 set_value_range_to_varying (vr
);
2288 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2292 for (i
= 1; i
< 4; i
++)
2294 if (!is_gimple_min_invariant (min
)
2295 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2296 || !is_gimple_min_invariant (max
)
2297 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2302 if (!is_gimple_min_invariant (val
[i
])
2303 || (TREE_OVERFLOW (val
[i
])
2304 && !is_overflow_infinity (val
[i
])))
2306 /* If we found an overflowed value, set MIN and MAX
2307 to it so that we set the resulting range to
2313 if (compare_values (val
[i
], min
) == -1)
2316 if (compare_values (val
[i
], max
) == 1)
2321 /* If either MIN or MAX overflowed, then set the resulting range to
2322 VARYING. But we do accept an overflow infinity
2324 if (min
== NULL_TREE
2325 || !is_gimple_min_invariant (min
)
2326 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2328 || !is_gimple_min_invariant (max
)
2329 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2331 set_value_range_to_varying (vr
);
2337 2) [-INF, +-INF(OVF)]
2338 3) [+-INF(OVF), +INF]
2339 4) [+-INF(OVF), +-INF(OVF)]
2340 We learn nothing when we have INF and INF(OVF) on both sides.
2341 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2343 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2344 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2346 set_value_range_to_varying (vr
);
2350 cmp
= compare_values (min
, max
);
2351 if (cmp
== -2 || cmp
== 1)
2353 /* If the new range has its limits swapped around (MIN > MAX),
2354 then the operation caused one of them to wrap around, mark
2355 the new range VARYING. */
2356 set_value_range_to_varying (vr
);
2359 set_value_range (vr
, type
, min
, max
, NULL
);
2362 /* Extract range information from a binary operation CODE based on
2363 the ranges of each of its operands *VR0 and *VR1 with resulting
2364 type EXPR_TYPE. The resulting range is stored in *VR. */
2367 extract_range_from_binary_expr_1 (value_range_t
*vr
,
2368 enum tree_code code
, tree expr_type
,
2369 value_range_t
*vr0_
, value_range_t
*vr1_
)
2371 value_range_t vr0
= *vr0_
, vr1
= *vr1_
;
2372 value_range_t vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
2373 enum value_range_type type
;
2374 tree min
= NULL_TREE
, max
= NULL_TREE
;
2377 if (!INTEGRAL_TYPE_P (expr_type
)
2378 && !POINTER_TYPE_P (expr_type
))
2380 set_value_range_to_varying (vr
);
2384 /* Not all binary expressions can be applied to ranges in a
2385 meaningful way. Handle only arithmetic operations. */
2386 if (code
!= PLUS_EXPR
2387 && code
!= MINUS_EXPR
2388 && code
!= POINTER_PLUS_EXPR
2389 && code
!= MULT_EXPR
2390 && code
!= TRUNC_DIV_EXPR
2391 && code
!= FLOOR_DIV_EXPR
2392 && code
!= CEIL_DIV_EXPR
2393 && code
!= EXACT_DIV_EXPR
2394 && code
!= ROUND_DIV_EXPR
2395 && code
!= TRUNC_MOD_EXPR
2396 && code
!= RSHIFT_EXPR
2397 && code
!= LSHIFT_EXPR
2400 && code
!= BIT_AND_EXPR
2401 && code
!= BIT_IOR_EXPR
2402 && code
!= BIT_XOR_EXPR
)
2404 set_value_range_to_varying (vr
);
2408 /* If both ranges are UNDEFINED, so is the result. */
2409 if (vr0
.type
== VR_UNDEFINED
&& vr1
.type
== VR_UNDEFINED
)
2411 set_value_range_to_undefined (vr
);
2414 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2415 code. At some point we may want to special-case operations that
2416 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2418 else if (vr0
.type
== VR_UNDEFINED
)
2419 set_value_range_to_varying (&vr0
);
2420 else if (vr1
.type
== VR_UNDEFINED
)
2421 set_value_range_to_varying (&vr1
);
2423 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2424 and express ~[] op X as ([]' op X) U ([]'' op X). */
2425 if (vr0
.type
== VR_ANTI_RANGE
2426 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
2428 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vrtem0
, vr1_
);
2429 if (vrtem1
.type
!= VR_UNDEFINED
)
2431 value_range_t vrres
= VR_INITIALIZER
;
2432 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2434 vrp_meet (vr
, &vrres
);
2438 /* Likewise for X op ~[]. */
2439 if (vr1
.type
== VR_ANTI_RANGE
2440 && ranges_from_anti_range (&vr1
, &vrtem0
, &vrtem1
))
2442 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, vr0_
, &vrtem0
);
2443 if (vrtem1
.type
!= VR_UNDEFINED
)
2445 value_range_t vrres
= VR_INITIALIZER
;
2446 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2448 vrp_meet (vr
, &vrres
);
2453 /* The type of the resulting value range defaults to VR0.TYPE. */
2456 /* Refuse to operate on VARYING ranges, ranges of different kinds
2457 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2458 because we may be able to derive a useful range even if one of
2459 the operands is VR_VARYING or symbolic range. Similarly for
2460 divisions, MIN/MAX and PLUS/MINUS.
2462 TODO, we may be able to derive anti-ranges in some cases. */
2463 if (code
!= BIT_AND_EXPR
2464 && code
!= BIT_IOR_EXPR
2465 && code
!= TRUNC_DIV_EXPR
2466 && code
!= FLOOR_DIV_EXPR
2467 && code
!= CEIL_DIV_EXPR
2468 && code
!= EXACT_DIV_EXPR
2469 && code
!= ROUND_DIV_EXPR
2470 && code
!= TRUNC_MOD_EXPR
2473 && code
!= PLUS_EXPR
2474 && code
!= MINUS_EXPR
2475 && code
!= RSHIFT_EXPR
2476 && (vr0
.type
== VR_VARYING
2477 || vr1
.type
== VR_VARYING
2478 || vr0
.type
!= vr1
.type
2479 || symbolic_range_p (&vr0
)
2480 || symbolic_range_p (&vr1
)))
2482 set_value_range_to_varying (vr
);
2486 /* Now evaluate the expression to determine the new range. */
2487 if (POINTER_TYPE_P (expr_type
))
2489 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2491 /* For MIN/MAX expressions with pointers, we only care about
2492 nullness, if both are non null, then the result is nonnull.
2493 If both are null, then the result is null. Otherwise they
2495 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2496 set_value_range_to_nonnull (vr
, expr_type
);
2497 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2498 set_value_range_to_null (vr
, expr_type
);
2500 set_value_range_to_varying (vr
);
2502 else if (code
== POINTER_PLUS_EXPR
)
2504 /* For pointer types, we are really only interested in asserting
2505 whether the expression evaluates to non-NULL. */
2506 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2507 set_value_range_to_nonnull (vr
, expr_type
);
2508 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2509 set_value_range_to_null (vr
, expr_type
);
2511 set_value_range_to_varying (vr
);
2513 else if (code
== BIT_AND_EXPR
)
2515 /* For pointer types, we are really only interested in asserting
2516 whether the expression evaluates to non-NULL. */
2517 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2518 set_value_range_to_nonnull (vr
, expr_type
);
2519 else if (range_is_null (&vr0
) || range_is_null (&vr1
))
2520 set_value_range_to_null (vr
, expr_type
);
2522 set_value_range_to_varying (vr
);
2525 set_value_range_to_varying (vr
);
2530 /* For integer ranges, apply the operation to each end of the
2531 range and see what we end up with. */
2532 if (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
2534 const bool minus_p
= (code
== MINUS_EXPR
);
2535 tree min_op0
= vr0
.min
;
2536 tree min_op1
= minus_p
? vr1
.max
: vr1
.min
;
2537 tree max_op0
= vr0
.max
;
2538 tree max_op1
= minus_p
? vr1
.min
: vr1
.max
;
2539 tree sym_min_op0
= NULL_TREE
;
2540 tree sym_min_op1
= NULL_TREE
;
2541 tree sym_max_op0
= NULL_TREE
;
2542 tree sym_max_op1
= NULL_TREE
;
2543 bool neg_min_op0
, neg_min_op1
, neg_max_op0
, neg_max_op1
;
2545 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2546 single-symbolic ranges, try to compute the precise resulting range,
2547 but only if we know that this resulting range will also be constant
2548 or single-symbolic. */
2549 if (vr0
.type
== VR_RANGE
&& vr1
.type
== VR_RANGE
2550 && (TREE_CODE (min_op0
) == INTEGER_CST
2552 = get_single_symbol (min_op0
, &neg_min_op0
, &min_op0
)))
2553 && (TREE_CODE (min_op1
) == INTEGER_CST
2555 = get_single_symbol (min_op1
, &neg_min_op1
, &min_op1
)))
2556 && (!(sym_min_op0
&& sym_min_op1
)
2557 || (sym_min_op0
== sym_min_op1
2558 && neg_min_op0
== (minus_p
? neg_min_op1
: !neg_min_op1
)))
2559 && (TREE_CODE (max_op0
) == INTEGER_CST
2561 = get_single_symbol (max_op0
, &neg_max_op0
, &max_op0
)))
2562 && (TREE_CODE (max_op1
) == INTEGER_CST
2564 = get_single_symbol (max_op1
, &neg_max_op1
, &max_op1
)))
2565 && (!(sym_max_op0
&& sym_max_op1
)
2566 || (sym_max_op0
== sym_max_op1
2567 && neg_max_op0
== (minus_p
? neg_max_op1
: !neg_max_op1
))))
2569 const signop sgn
= TYPE_SIGN (expr_type
);
2570 const unsigned int prec
= TYPE_PRECISION (expr_type
);
2571 wide_int type_min
, type_max
, wmin
, wmax
;
2575 /* Get the lower and upper bounds of the type. */
2576 if (TYPE_OVERFLOW_WRAPS (expr_type
))
2578 type_min
= wi::min_value (prec
, sgn
);
2579 type_max
= wi::max_value (prec
, sgn
);
2583 type_min
= vrp_val_min (expr_type
);
2584 type_max
= vrp_val_max (expr_type
);
2587 /* Combine the lower bounds, if any. */
2588 if (min_op0
&& min_op1
)
2592 wmin
= wi::sub (min_op0
, min_op1
);
2594 /* Check for overflow. */
2595 if (wi::cmp (0, min_op1
, sgn
)
2596 != wi::cmp (wmin
, min_op0
, sgn
))
2597 min_ovf
= wi::cmp (min_op0
, min_op1
, sgn
);
2601 wmin
= wi::add (min_op0
, min_op1
);
2603 /* Check for overflow. */
2604 if (wi::cmp (min_op1
, 0, sgn
)
2605 != wi::cmp (wmin
, min_op0
, sgn
))
2606 min_ovf
= wi::cmp (min_op0
, wmin
, sgn
);
2612 wmin
= minus_p
? wi::neg (min_op1
) : min_op1
;
2614 wmin
= wi::shwi (0, prec
);
2616 /* Combine the upper bounds, if any. */
2617 if (max_op0
&& max_op1
)
2621 wmax
= wi::sub (max_op0
, max_op1
);
2623 /* Check for overflow. */
2624 if (wi::cmp (0, max_op1
, sgn
)
2625 != wi::cmp (wmax
, max_op0
, sgn
))
2626 max_ovf
= wi::cmp (max_op0
, max_op1
, sgn
);
2630 wmax
= wi::add (max_op0
, max_op1
);
2632 if (wi::cmp (max_op1
, 0, sgn
)
2633 != wi::cmp (wmax
, max_op0
, sgn
))
2634 max_ovf
= wi::cmp (max_op0
, wmax
, sgn
);
2640 wmax
= minus_p
? wi::neg (max_op1
) : max_op1
;
2642 wmax
= wi::shwi (0, prec
);
2644 /* Check for type overflow. */
2647 if (wi::cmp (wmin
, type_min
, sgn
) == -1)
2649 else if (wi::cmp (wmin
, type_max
, sgn
) == 1)
2654 if (wi::cmp (wmax
, type_min
, sgn
) == -1)
2656 else if (wi::cmp (wmax
, type_max
, sgn
) == 1)
2660 /* If we have overflow for the constant part and the resulting
2661 range will be symbolic, drop to VR_VARYING. */
2662 if ((min_ovf
&& sym_min_op0
!= sym_min_op1
)
2663 || (max_ovf
&& sym_max_op0
!= sym_max_op1
))
2665 set_value_range_to_varying (vr
);
2669 if (TYPE_OVERFLOW_WRAPS (expr_type
))
2671 /* If overflow wraps, truncate the values and adjust the
2672 range kind and bounds appropriately. */
2673 wide_int tmin
= wide_int::from (wmin
, prec
, sgn
);
2674 wide_int tmax
= wide_int::from (wmax
, prec
, sgn
);
2675 if (min_ovf
== max_ovf
)
2677 /* No overflow or both overflow or underflow. The
2678 range kind stays VR_RANGE. */
2679 min
= wide_int_to_tree (expr_type
, tmin
);
2680 max
= wide_int_to_tree (expr_type
, tmax
);
2682 else if (min_ovf
== -1 && max_ovf
== 1)
2684 /* Underflow and overflow, drop to VR_VARYING. */
2685 set_value_range_to_varying (vr
);
2690 /* Min underflow or max overflow. The range kind
2691 changes to VR_ANTI_RANGE. */
2692 bool covers
= false;
2693 wide_int tem
= tmin
;
2694 gcc_assert ((min_ovf
== -1 && max_ovf
== 0)
2695 || (max_ovf
== 1 && min_ovf
== 0));
2696 type
= VR_ANTI_RANGE
;
2698 if (wi::cmp (tmin
, tmax
, sgn
) < 0)
2701 if (wi::cmp (tmax
, tem
, sgn
) > 0)
2703 /* If the anti-range would cover nothing, drop to varying.
2704 Likewise if the anti-range bounds are outside of the
2706 if (covers
|| wi::cmp (tmin
, tmax
, sgn
) > 0)
2708 set_value_range_to_varying (vr
);
2711 min
= wide_int_to_tree (expr_type
, tmin
);
2712 max
= wide_int_to_tree (expr_type
, tmax
);
2717 /* If overflow does not wrap, saturate to the types min/max
2721 if (needs_overflow_infinity (expr_type
)
2722 && supports_overflow_infinity (expr_type
))
2723 min
= negative_overflow_infinity (expr_type
);
2725 min
= wide_int_to_tree (expr_type
, type_min
);
2727 else if (min_ovf
== 1)
2729 if (needs_overflow_infinity (expr_type
)
2730 && supports_overflow_infinity (expr_type
))
2731 min
= positive_overflow_infinity (expr_type
);
2733 min
= wide_int_to_tree (expr_type
, type_max
);
2736 min
= wide_int_to_tree (expr_type
, wmin
);
2740 if (needs_overflow_infinity (expr_type
)
2741 && supports_overflow_infinity (expr_type
))
2742 max
= negative_overflow_infinity (expr_type
);
2744 max
= wide_int_to_tree (expr_type
, type_min
);
2746 else if (max_ovf
== 1)
2748 if (needs_overflow_infinity (expr_type
)
2749 && supports_overflow_infinity (expr_type
))
2750 max
= positive_overflow_infinity (expr_type
);
2752 max
= wide_int_to_tree (expr_type
, type_max
);
2755 max
= wide_int_to_tree (expr_type
, wmax
);
2758 if (needs_overflow_infinity (expr_type
)
2759 && supports_overflow_infinity (expr_type
))
2761 if ((min_op0
&& is_negative_overflow_infinity (min_op0
))
2764 ? is_positive_overflow_infinity (min_op1
)
2765 : is_negative_overflow_infinity (min_op1
))))
2766 min
= negative_overflow_infinity (expr_type
);
2767 if ((max_op0
&& is_positive_overflow_infinity (max_op0
))
2770 ? is_negative_overflow_infinity (max_op1
)
2771 : is_positive_overflow_infinity (max_op1
))))
2772 max
= positive_overflow_infinity (expr_type
);
2775 /* If the result lower bound is constant, we're done;
2776 otherwise, build the symbolic lower bound. */
2777 if (sym_min_op0
== sym_min_op1
)
2779 else if (sym_min_op0
)
2780 min
= build_symbolic_expr (expr_type
, sym_min_op0
,
2782 else if (sym_min_op1
)
2783 min
= build_symbolic_expr (expr_type
, sym_min_op1
,
2784 neg_min_op1
^ minus_p
, min
);
2786 /* Likewise for the upper bound. */
2787 if (sym_max_op0
== sym_max_op1
)
2789 else if (sym_max_op0
)
2790 max
= build_symbolic_expr (expr_type
, sym_max_op0
,
2792 else if (sym_max_op1
)
2793 max
= build_symbolic_expr (expr_type
, sym_max_op1
,
2794 neg_max_op1
^ minus_p
, max
);
2798 /* For other cases, for example if we have a PLUS_EXPR with two
2799 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2800 to compute a precise range for such a case.
2801 ??? General even mixed range kind operations can be expressed
2802 by for example transforming ~[3, 5] + [1, 2] to range-only
2803 operations and a union primitive:
2804 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2805 [-INF+1, 4] U [6, +INF(OVF)]
2806 though usually the union is not exactly representable with
2807 a single range or anti-range as the above is
2808 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2809 but one could use a scheme similar to equivalences for this. */
2810 set_value_range_to_varying (vr
);
2814 else if (code
== MIN_EXPR
2815 || code
== MAX_EXPR
)
2817 if (vr0
.type
== VR_RANGE
2818 && !symbolic_range_p (&vr0
))
2821 if (vr1
.type
== VR_RANGE
2822 && !symbolic_range_p (&vr1
))
2824 /* For operations that make the resulting range directly
2825 proportional to the original ranges, apply the operation to
2826 the same end of each range. */
2827 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2828 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2830 else if (code
== MIN_EXPR
)
2832 min
= vrp_val_min (expr_type
);
2835 else if (code
== MAX_EXPR
)
2838 max
= vrp_val_max (expr_type
);
2841 else if (vr1
.type
== VR_RANGE
2842 && !symbolic_range_p (&vr1
))
2845 if (code
== MIN_EXPR
)
2847 min
= vrp_val_min (expr_type
);
2850 else if (code
== MAX_EXPR
)
2853 max
= vrp_val_max (expr_type
);
2858 set_value_range_to_varying (vr
);
2862 else if (code
== MULT_EXPR
)
2864 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2865 drop to varying. This test requires 2*prec bits if both
2866 operands are signed and 2*prec + 2 bits if either is not. */
2868 signop sign
= TYPE_SIGN (expr_type
);
2869 unsigned int prec
= TYPE_PRECISION (expr_type
);
2871 if (range_int_cst_p (&vr0
)
2872 && range_int_cst_p (&vr1
)
2873 && TYPE_OVERFLOW_WRAPS (expr_type
))
2875 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION
* 2) vrp_int
;
2876 typedef generic_wide_int
2877 <wi::extended_tree
<WIDE_INT_MAX_PRECISION
* 2> > vrp_int_cst
;
2878 vrp_int sizem1
= wi::mask
<vrp_int
> (prec
, false);
2879 vrp_int size
= sizem1
+ 1;
2881 /* Extend the values using the sign of the result to PREC2.
2882 From here on out, everthing is just signed math no matter
2883 what the input types were. */
2884 vrp_int min0
= vrp_int_cst (vr0
.min
);
2885 vrp_int max0
= vrp_int_cst (vr0
.max
);
2886 vrp_int min1
= vrp_int_cst (vr1
.min
);
2887 vrp_int max1
= vrp_int_cst (vr1
.max
);
2888 /* Canonicalize the intervals. */
2889 if (sign
== UNSIGNED
)
2891 if (wi::ltu_p (size
, min0
+ max0
))
2897 if (wi::ltu_p (size
, min1
+ max1
))
2904 vrp_int prod0
= min0
* min1
;
2905 vrp_int prod1
= min0
* max1
;
2906 vrp_int prod2
= max0
* min1
;
2907 vrp_int prod3
= max0
* max1
;
2909 /* Sort the 4 products so that min is in prod0 and max is in
2911 /* min0min1 > max0max1 */
2912 if (wi::gts_p (prod0
, prod3
))
2914 vrp_int tmp
= prod3
;
2919 /* min0max1 > max0min1 */
2920 if (wi::gts_p (prod1
, prod2
))
2922 vrp_int tmp
= prod2
;
2927 if (wi::gts_p (prod0
, prod1
))
2929 vrp_int tmp
= prod1
;
2934 if (wi::gts_p (prod2
, prod3
))
2936 vrp_int tmp
= prod3
;
2941 /* diff = max - min. */
2942 prod2
= prod3
- prod0
;
2943 if (wi::geu_p (prod2
, sizem1
))
2945 /* the range covers all values. */
2946 set_value_range_to_varying (vr
);
2950 /* The following should handle the wrapping and selecting
2951 VR_ANTI_RANGE for us. */
2952 min
= wide_int_to_tree (expr_type
, prod0
);
2953 max
= wide_int_to_tree (expr_type
, prod3
);
2954 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
2958 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2959 drop to VR_VARYING. It would take more effort to compute a
2960 precise range for such a case. For example, if we have
2961 op0 == 65536 and op1 == 65536 with their ranges both being
2962 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2963 we cannot claim that the product is in ~[0,0]. Note that we
2964 are guaranteed to have vr0.type == vr1.type at this
2966 if (vr0
.type
== VR_ANTI_RANGE
2967 && !TYPE_OVERFLOW_UNDEFINED (expr_type
))
2969 set_value_range_to_varying (vr
);
2973 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2976 else if (code
== RSHIFT_EXPR
2977 || code
== LSHIFT_EXPR
)
2979 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2980 then drop to VR_VARYING. Outside of this range we get undefined
2981 behavior from the shift operation. We cannot even trust
2982 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2983 shifts, and the operation at the tree level may be widened. */
2984 if (range_int_cst_p (&vr1
)
2985 && compare_tree_int (vr1
.min
, 0) >= 0
2986 && compare_tree_int (vr1
.max
, TYPE_PRECISION (expr_type
)) == -1)
2988 if (code
== RSHIFT_EXPR
)
2990 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2991 useful ranges just from the shift count. E.g.
2992 x >> 63 for signed 64-bit x is always [-1, 0]. */
2993 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
2995 vr0
.type
= type
= VR_RANGE
;
2996 vr0
.min
= vrp_val_min (expr_type
);
2997 vr0
.max
= vrp_val_max (expr_type
);
2999 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
3002 /* We can map lshifts by constants to MULT_EXPR handling. */
3003 else if (code
== LSHIFT_EXPR
3004 && range_int_cst_singleton_p (&vr1
))
3006 bool saved_flag_wrapv
;
3007 value_range_t vr1p
= VR_INITIALIZER
;
3008 vr1p
.type
= VR_RANGE
;
3009 vr1p
.min
= (wide_int_to_tree
3011 wi::set_bit_in_zero (tree_to_shwi (vr1
.min
),
3012 TYPE_PRECISION (expr_type
))));
3013 vr1p
.max
= vr1p
.min
;
3014 /* We have to use a wrapping multiply though as signed overflow
3015 on lshifts is implementation defined in C89. */
3016 saved_flag_wrapv
= flag_wrapv
;
3018 extract_range_from_binary_expr_1 (vr
, MULT_EXPR
, expr_type
,
3020 flag_wrapv
= saved_flag_wrapv
;
3023 else if (code
== LSHIFT_EXPR
3024 && range_int_cst_p (&vr0
))
3026 int prec
= TYPE_PRECISION (expr_type
);
3027 int overflow_pos
= prec
;
3029 wide_int low_bound
, high_bound
;
3030 bool uns
= TYPE_UNSIGNED (expr_type
);
3031 bool in_bounds
= false;
3036 bound_shift
= overflow_pos
- tree_to_shwi (vr1
.max
);
3037 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
3038 overflow. However, for that to happen, vr1.max needs to be
3039 zero, which means vr1 is a singleton range of zero, which
3040 means it should be handled by the previous LSHIFT_EXPR
3042 wide_int bound
= wi::set_bit_in_zero (bound_shift
, prec
);
3043 wide_int complement
= ~(bound
- 1);
3048 high_bound
= complement
;
3049 if (wi::ltu_p (vr0
.max
, low_bound
))
3051 /* [5, 6] << [1, 2] == [10, 24]. */
3052 /* We're shifting out only zeroes, the value increases
3056 else if (wi::ltu_p (high_bound
, vr0
.min
))
3058 /* [0xffffff00, 0xffffffff] << [1, 2]
3059 == [0xfffffc00, 0xfffffffe]. */
3060 /* We're shifting out only ones, the value decreases
3067 /* [-1, 1] << [1, 2] == [-4, 4]. */
3068 low_bound
= complement
;
3070 if (wi::lts_p (vr0
.max
, high_bound
)
3071 && wi::lts_p (low_bound
, vr0
.min
))
3073 /* For non-negative numbers, we're shifting out only
3074 zeroes, the value increases monotonically.
3075 For negative numbers, we're shifting out only ones, the
3076 value decreases monotomically. */
3083 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
3088 set_value_range_to_varying (vr
);
3091 else if (code
== TRUNC_DIV_EXPR
3092 || code
== FLOOR_DIV_EXPR
3093 || code
== CEIL_DIV_EXPR
3094 || code
== EXACT_DIV_EXPR
3095 || code
== ROUND_DIV_EXPR
)
3097 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
3099 /* For division, if op1 has VR_RANGE but op0 does not, something
3100 can be deduced just from that range. Say [min, max] / [4, max]
3101 gives [min / 4, max / 4] range. */
3102 if (vr1
.type
== VR_RANGE
3103 && !symbolic_range_p (&vr1
)
3104 && range_includes_zero_p (vr1
.min
, vr1
.max
) == 0)
3106 vr0
.type
= type
= VR_RANGE
;
3107 vr0
.min
= vrp_val_min (expr_type
);
3108 vr0
.max
= vrp_val_max (expr_type
);
3112 set_value_range_to_varying (vr
);
3117 /* For divisions, if flag_non_call_exceptions is true, we must
3118 not eliminate a division by zero. */
3119 if (cfun
->can_throw_non_call_exceptions
3120 && (vr1
.type
!= VR_RANGE
3121 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
3123 set_value_range_to_varying (vr
);
3127 /* For divisions, if op0 is VR_RANGE, we can deduce a range
3128 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
3130 if (vr0
.type
== VR_RANGE
3131 && (vr1
.type
!= VR_RANGE
3132 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
3134 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
3139 if (TYPE_UNSIGNED (expr_type
)
3140 || value_range_nonnegative_p (&vr1
))
3142 /* For unsigned division or when divisor is known
3143 to be non-negative, the range has to cover
3144 all numbers from 0 to max for positive max
3145 and all numbers from min to 0 for negative min. */
3146 cmp
= compare_values (vr0
.max
, zero
);
3149 else if (cmp
== 0 || cmp
== 1)
3153 cmp
= compare_values (vr0
.min
, zero
);
3156 else if (cmp
== 0 || cmp
== -1)
3163 /* Otherwise the range is -max .. max or min .. -min
3164 depending on which bound is bigger in absolute value,
3165 as the division can change the sign. */
3166 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
3169 if (type
== VR_VARYING
)
3171 set_value_range_to_varying (vr
);
3177 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
3181 else if (code
== TRUNC_MOD_EXPR
)
3183 if (vr1
.type
!= VR_RANGE
3184 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0
3185 || vrp_val_is_min (vr1
.min
))
3187 set_value_range_to_varying (vr
);
3191 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
3192 max
= fold_unary_to_constant (ABS_EXPR
, expr_type
, vr1
.min
);
3193 if (tree_int_cst_lt (max
, vr1
.max
))
3195 max
= int_const_binop (MINUS_EXPR
, max
, build_int_cst (TREE_TYPE (max
), 1));
3196 /* If the dividend is non-negative the modulus will be
3197 non-negative as well. */
3198 if (TYPE_UNSIGNED (expr_type
)
3199 || value_range_nonnegative_p (&vr0
))
3200 min
= build_int_cst (TREE_TYPE (max
), 0);
3202 min
= fold_unary_to_constant (NEGATE_EXPR
, expr_type
, max
);
3204 else if (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
)
3206 bool int_cst_range0
, int_cst_range1
;
3207 wide_int may_be_nonzero0
, may_be_nonzero1
;
3208 wide_int must_be_nonzero0
, must_be_nonzero1
;
3210 int_cst_range0
= zero_nonzero_bits_from_vr (expr_type
, &vr0
,
3213 int_cst_range1
= zero_nonzero_bits_from_vr (expr_type
, &vr1
,
3218 if (code
== BIT_AND_EXPR
)
3220 min
= wide_int_to_tree (expr_type
,
3221 must_be_nonzero0
& must_be_nonzero1
);
3222 wide_int wmax
= may_be_nonzero0
& may_be_nonzero1
;
3223 /* If both input ranges contain only negative values we can
3224 truncate the result range maximum to the minimum of the
3225 input range maxima. */
3226 if (int_cst_range0
&& int_cst_range1
3227 && tree_int_cst_sgn (vr0
.max
) < 0
3228 && tree_int_cst_sgn (vr1
.max
) < 0)
3230 wmax
= wi::min (wmax
, vr0
.max
, TYPE_SIGN (expr_type
));
3231 wmax
= wi::min (wmax
, vr1
.max
, TYPE_SIGN (expr_type
));
3233 /* If either input range contains only non-negative values
3234 we can truncate the result range maximum to the respective
3235 maximum of the input range. */
3236 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.min
) >= 0)
3237 wmax
= wi::min (wmax
, vr0
.max
, TYPE_SIGN (expr_type
));
3238 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.min
) >= 0)
3239 wmax
= wi::min (wmax
, vr1
.max
, TYPE_SIGN (expr_type
));
3240 max
= wide_int_to_tree (expr_type
, wmax
);
3242 else if (code
== BIT_IOR_EXPR
)
3244 max
= wide_int_to_tree (expr_type
,
3245 may_be_nonzero0
| may_be_nonzero1
);
3246 wide_int wmin
= must_be_nonzero0
| must_be_nonzero1
;
3247 /* If the input ranges contain only positive values we can
3248 truncate the minimum of the result range to the maximum
3249 of the input range minima. */
3250 if (int_cst_range0
&& int_cst_range1
3251 && tree_int_cst_sgn (vr0
.min
) >= 0
3252 && tree_int_cst_sgn (vr1
.min
) >= 0)
3254 wmin
= wi::max (wmin
, vr0
.min
, TYPE_SIGN (expr_type
));
3255 wmin
= wi::max (wmin
, vr1
.min
, TYPE_SIGN (expr_type
));
3257 /* If either input range contains only negative values
3258 we can truncate the minimum of the result range to the
3259 respective minimum range. */
3260 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.max
) < 0)
3261 wmin
= wi::max (wmin
, vr0
.min
, TYPE_SIGN (expr_type
));
3262 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.max
) < 0)
3263 wmin
= wi::max (wmin
, vr1
.min
, TYPE_SIGN (expr_type
));
3264 min
= wide_int_to_tree (expr_type
, wmin
);
3266 else if (code
== BIT_XOR_EXPR
)
3268 wide_int result_zero_bits
= ((must_be_nonzero0
& must_be_nonzero1
)
3269 | ~(may_be_nonzero0
| may_be_nonzero1
));
3270 wide_int result_one_bits
3271 = (must_be_nonzero0
.and_not (may_be_nonzero1
)
3272 | must_be_nonzero1
.and_not (may_be_nonzero0
));
3273 max
= wide_int_to_tree (expr_type
, ~result_zero_bits
);
3274 min
= wide_int_to_tree (expr_type
, result_one_bits
);
3275 /* If the range has all positive or all negative values the
3276 result is better than VARYING. */
3277 if (tree_int_cst_sgn (min
) < 0
3278 || tree_int_cst_sgn (max
) >= 0)
3281 max
= min
= NULL_TREE
;
3287 /* If either MIN or MAX overflowed, then set the resulting range to
3288 VARYING. But we do accept an overflow infinity representation. */
3289 if (min
== NULL_TREE
3290 || (TREE_OVERFLOW_P (min
) && !is_overflow_infinity (min
))
3292 || (TREE_OVERFLOW_P (max
) && !is_overflow_infinity (max
)))
3294 set_value_range_to_varying (vr
);
3300 2) [-INF, +-INF(OVF)]
3301 3) [+-INF(OVF), +INF]
3302 4) [+-INF(OVF), +-INF(OVF)]
3303 We learn nothing when we have INF and INF(OVF) on both sides.
3304 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3306 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
3307 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
3309 set_value_range_to_varying (vr
);
3313 cmp
= compare_values (min
, max
);
3314 if (cmp
== -2 || cmp
== 1)
3316 /* If the new range has its limits swapped around (MIN > MAX),
3317 then the operation caused one of them to wrap around, mark
3318 the new range VARYING. */
3319 set_value_range_to_varying (vr
);
3322 set_value_range (vr
, type
, min
, max
, NULL
);
3325 /* Extract range information from a binary expression OP0 CODE OP1 based on
3326 the ranges of each of its operands with resulting type EXPR_TYPE.
3327 The resulting range is stored in *VR. */
3330 extract_range_from_binary_expr (value_range_t
*vr
,
3331 enum tree_code code
,
3332 tree expr_type
, tree op0
, tree op1
)
3334 value_range_t vr0
= VR_INITIALIZER
;
3335 value_range_t vr1
= VR_INITIALIZER
;
3337 /* Get value ranges for each operand. For constant operands, create
3338 a new value range with the operand to simplify processing. */
3339 if (TREE_CODE (op0
) == SSA_NAME
)
3340 vr0
= *(get_value_range (op0
));
3341 else if (is_gimple_min_invariant (op0
))
3342 set_value_range_to_value (&vr0
, op0
, NULL
);
3344 set_value_range_to_varying (&vr0
);
3346 if (TREE_CODE (op1
) == SSA_NAME
)
3347 vr1
= *(get_value_range (op1
));
3348 else if (is_gimple_min_invariant (op1
))
3349 set_value_range_to_value (&vr1
, op1
, NULL
);
3351 set_value_range_to_varying (&vr1
);
3353 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &vr1
);
3355 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3356 and based on the other operand, for example if it was deduced from a
3357 symbolic comparison. When a bound of the range of the first operand
3358 is invariant, we set the corresponding bound of the new range to INF
3359 in order to avoid recursing on the range of the second operand. */
3360 if (vr
->type
== VR_VARYING
3361 && (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
3362 && TREE_CODE (op1
) == SSA_NAME
3363 && vr0
.type
== VR_RANGE
3364 && symbolic_range_based_on_p (&vr0
, op1
))
3366 const bool minus_p
= (code
== MINUS_EXPR
);
3367 value_range_t n_vr1
= VR_INITIALIZER
;
3369 /* Try with VR0 and [-INF, OP1]. */
3370 if (is_gimple_min_invariant (minus_p
? vr0
.max
: vr0
.min
))
3371 set_value_range (&n_vr1
, VR_RANGE
, vrp_val_min (expr_type
), op1
, NULL
);
3373 /* Try with VR0 and [OP1, +INF]. */
3374 else if (is_gimple_min_invariant (minus_p
? vr0
.min
: vr0
.max
))
3375 set_value_range (&n_vr1
, VR_RANGE
, op1
, vrp_val_max (expr_type
), NULL
);
3377 /* Try with VR0 and [OP1, OP1]. */
3379 set_value_range (&n_vr1
, VR_RANGE
, op1
, op1
, NULL
);
3381 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &n_vr1
);
3384 if (vr
->type
== VR_VARYING
3385 && (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
3386 && TREE_CODE (op0
) == SSA_NAME
3387 && vr1
.type
== VR_RANGE
3388 && symbolic_range_based_on_p (&vr1
, op0
))
3390 const bool minus_p
= (code
== MINUS_EXPR
);
3391 value_range_t n_vr0
= VR_INITIALIZER
;
3393 /* Try with [-INF, OP0] and VR1. */
3394 if (is_gimple_min_invariant (minus_p
? vr1
.max
: vr1
.min
))
3395 set_value_range (&n_vr0
, VR_RANGE
, vrp_val_min (expr_type
), op0
, NULL
);
3397 /* Try with [OP0, +INF] and VR1. */
3398 else if (is_gimple_min_invariant (minus_p
? vr1
.min
: vr1
.max
))
3399 set_value_range (&n_vr0
, VR_RANGE
, op0
, vrp_val_max (expr_type
), NULL
);
3401 /* Try with [OP0, OP0] and VR1. */
3403 set_value_range (&n_vr0
, VR_RANGE
, op0
, op0
, NULL
);
3405 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &n_vr0
, &vr1
);
3409 /* Extract range information from a unary operation CODE based on
3410 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3411 The The resulting range is stored in *VR. */
3414 extract_range_from_unary_expr_1 (value_range_t
*vr
,
3415 enum tree_code code
, tree type
,
3416 value_range_t
*vr0_
, tree op0_type
)
3418 value_range_t vr0
= *vr0_
, vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
3420 /* VRP only operates on integral and pointer types. */
3421 if (!(INTEGRAL_TYPE_P (op0_type
)
3422 || POINTER_TYPE_P (op0_type
))
3423 || !(INTEGRAL_TYPE_P (type
)
3424 || POINTER_TYPE_P (type
)))
3426 set_value_range_to_varying (vr
);
3430 /* If VR0 is UNDEFINED, so is the result. */
3431 if (vr0
.type
== VR_UNDEFINED
)
3433 set_value_range_to_undefined (vr
);
3437 /* Handle operations that we express in terms of others. */
3438 if (code
== PAREN_EXPR
|| code
== OBJ_TYPE_REF
)
3440 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3441 copy_value_range (vr
, &vr0
);
3444 else if (code
== NEGATE_EXPR
)
3446 /* -X is simply 0 - X, so re-use existing code that also handles
3447 anti-ranges fine. */
3448 value_range_t zero
= VR_INITIALIZER
;
3449 set_value_range_to_value (&zero
, build_int_cst (type
, 0), NULL
);
3450 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
, type
, &zero
, &vr0
);
3453 else if (code
== BIT_NOT_EXPR
)
3455 /* ~X is simply -1 - X, so re-use existing code that also handles
3456 anti-ranges fine. */
3457 value_range_t minusone
= VR_INITIALIZER
;
3458 set_value_range_to_value (&minusone
, build_int_cst (type
, -1), NULL
);
3459 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
,
3460 type
, &minusone
, &vr0
);
3464 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3465 and express op ~[] as (op []') U (op []''). */
3466 if (vr0
.type
== VR_ANTI_RANGE
3467 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
3469 extract_range_from_unary_expr_1 (vr
, code
, type
, &vrtem0
, op0_type
);
3470 if (vrtem1
.type
!= VR_UNDEFINED
)
3472 value_range_t vrres
= VR_INITIALIZER
;
3473 extract_range_from_unary_expr_1 (&vrres
, code
, type
,
3475 vrp_meet (vr
, &vrres
);
3480 if (CONVERT_EXPR_CODE_P (code
))
3482 tree inner_type
= op0_type
;
3483 tree outer_type
= type
;
3485 /* If the expression evaluates to a pointer, we are only interested in
3486 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3487 if (POINTER_TYPE_P (type
))
3489 if (range_is_nonnull (&vr0
))
3490 set_value_range_to_nonnull (vr
, type
);
3491 else if (range_is_null (&vr0
))
3492 set_value_range_to_null (vr
, type
);
3494 set_value_range_to_varying (vr
);
3498 /* If VR0 is varying and we increase the type precision, assume
3499 a full range for the following transformation. */
3500 if (vr0
.type
== VR_VARYING
3501 && INTEGRAL_TYPE_P (inner_type
)
3502 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
3504 vr0
.type
= VR_RANGE
;
3505 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
3506 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
3509 /* If VR0 is a constant range or anti-range and the conversion is
3510 not truncating we can convert the min and max values and
3511 canonicalize the resulting range. Otherwise we can do the
3512 conversion if the size of the range is less than what the
3513 precision of the target type can represent and the range is
3514 not an anti-range. */
3515 if ((vr0
.type
== VR_RANGE
3516 || vr0
.type
== VR_ANTI_RANGE
)
3517 && TREE_CODE (vr0
.min
) == INTEGER_CST
3518 && TREE_CODE (vr0
.max
) == INTEGER_CST
3519 && (!is_overflow_infinity (vr0
.min
)
3520 || (vr0
.type
== VR_RANGE
3521 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3522 && needs_overflow_infinity (outer_type
)
3523 && supports_overflow_infinity (outer_type
)))
3524 && (!is_overflow_infinity (vr0
.max
)
3525 || (vr0
.type
== VR_RANGE
3526 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3527 && needs_overflow_infinity (outer_type
)
3528 && supports_overflow_infinity (outer_type
)))
3529 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
3530 || (vr0
.type
== VR_RANGE
3531 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
3532 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
),
3533 size_int (TYPE_PRECISION (outer_type
)))))))
3535 tree new_min
, new_max
;
3536 if (is_overflow_infinity (vr0
.min
))
3537 new_min
= negative_overflow_infinity (outer_type
);
3539 new_min
= force_fit_type (outer_type
, wi::to_widest (vr0
.min
),
3541 if (is_overflow_infinity (vr0
.max
))
3542 new_max
= positive_overflow_infinity (outer_type
);
3544 new_max
= force_fit_type (outer_type
, wi::to_widest (vr0
.max
),
3546 set_and_canonicalize_value_range (vr
, vr0
.type
,
3547 new_min
, new_max
, NULL
);
3551 set_value_range_to_varying (vr
);
3554 else if (code
== ABS_EXPR
)
3559 /* Pass through vr0 in the easy cases. */
3560 if (TYPE_UNSIGNED (type
)
3561 || value_range_nonnegative_p (&vr0
))
3563 copy_value_range (vr
, &vr0
);
3567 /* For the remaining varying or symbolic ranges we can't do anything
3569 if (vr0
.type
== VR_VARYING
3570 || symbolic_range_p (&vr0
))
3572 set_value_range_to_varying (vr
);
3576 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3578 if (!TYPE_OVERFLOW_UNDEFINED (type
)
3579 && ((vr0
.type
== VR_RANGE
3580 && vrp_val_is_min (vr0
.min
))
3581 || (vr0
.type
== VR_ANTI_RANGE
3582 && !vrp_val_is_min (vr0
.min
))))
3584 set_value_range_to_varying (vr
);
3588 /* ABS_EXPR may flip the range around, if the original range
3589 included negative values. */
3590 if (is_overflow_infinity (vr0
.min
))
3591 min
= positive_overflow_infinity (type
);
3592 else if (!vrp_val_is_min (vr0
.min
))
3593 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
3594 else if (!needs_overflow_infinity (type
))
3595 min
= TYPE_MAX_VALUE (type
);
3596 else if (supports_overflow_infinity (type
))
3597 min
= positive_overflow_infinity (type
);
3600 set_value_range_to_varying (vr
);
3604 if (is_overflow_infinity (vr0
.max
))
3605 max
= positive_overflow_infinity (type
);
3606 else if (!vrp_val_is_min (vr0
.max
))
3607 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
3608 else if (!needs_overflow_infinity (type
))
3609 max
= TYPE_MAX_VALUE (type
);
3610 else if (supports_overflow_infinity (type
)
3611 /* We shouldn't generate [+INF, +INF] as set_value_range
3612 doesn't like this and ICEs. */
3613 && !is_positive_overflow_infinity (min
))
3614 max
= positive_overflow_infinity (type
);
3617 set_value_range_to_varying (vr
);
3621 cmp
= compare_values (min
, max
);
3623 /* If a VR_ANTI_RANGEs contains zero, then we have
3624 ~[-INF, min(MIN, MAX)]. */
3625 if (vr0
.type
== VR_ANTI_RANGE
)
3627 if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3629 /* Take the lower of the two values. */
3633 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3634 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3635 flag_wrapv is set and the original anti-range doesn't include
3636 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3637 if (TYPE_OVERFLOW_WRAPS (type
))
3639 tree type_min_value
= TYPE_MIN_VALUE (type
);
3641 min
= (vr0
.min
!= type_min_value
3642 ? int_const_binop (PLUS_EXPR
, type_min_value
,
3643 build_int_cst (TREE_TYPE (type_min_value
), 1))
3648 if (overflow_infinity_range_p (&vr0
))
3649 min
= negative_overflow_infinity (type
);
3651 min
= TYPE_MIN_VALUE (type
);
3656 /* All else has failed, so create the range [0, INF], even for
3657 flag_wrapv since TYPE_MIN_VALUE is in the original
3659 vr0
.type
= VR_RANGE
;
3660 min
= build_int_cst (type
, 0);
3661 if (needs_overflow_infinity (type
))
3663 if (supports_overflow_infinity (type
))
3664 max
= positive_overflow_infinity (type
);
3667 set_value_range_to_varying (vr
);
3672 max
= TYPE_MAX_VALUE (type
);
3676 /* If the range contains zero then we know that the minimum value in the
3677 range will be zero. */
3678 else if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3682 min
= build_int_cst (type
, 0);
3686 /* If the range was reversed, swap MIN and MAX. */
3695 cmp
= compare_values (min
, max
);
3696 if (cmp
== -2 || cmp
== 1)
3698 /* If the new range has its limits swapped around (MIN > MAX),
3699 then the operation caused one of them to wrap around, mark
3700 the new range VARYING. */
3701 set_value_range_to_varying (vr
);
3704 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3708 /* For unhandled operations fall back to varying. */
3709 set_value_range_to_varying (vr
);
3714 /* Extract range information from a unary expression CODE OP0 based on
3715 the range of its operand with resulting type TYPE.
3716 The resulting range is stored in *VR. */
3719 extract_range_from_unary_expr (value_range_t
*vr
, enum tree_code code
,
3720 tree type
, tree op0
)
3722 value_range_t vr0
= VR_INITIALIZER
;
3724 /* Get value ranges for the operand. For constant operands, create
3725 a new value range with the operand to simplify processing. */
3726 if (TREE_CODE (op0
) == SSA_NAME
)
3727 vr0
= *(get_value_range (op0
));
3728 else if (is_gimple_min_invariant (op0
))
3729 set_value_range_to_value (&vr0
, op0
, NULL
);
3731 set_value_range_to_varying (&vr0
);
3733 extract_range_from_unary_expr_1 (vr
, code
, type
, &vr0
, TREE_TYPE (op0
));
3737 /* Extract range information from a conditional expression STMT based on
3738 the ranges of each of its operands and the expression code. */
3741 extract_range_from_cond_expr (value_range_t
*vr
, gassign
*stmt
)
3744 value_range_t vr0
= VR_INITIALIZER
;
3745 value_range_t vr1
= VR_INITIALIZER
;
3747 /* Get value ranges for each operand. For constant operands, create
3748 a new value range with the operand to simplify processing. */
3749 op0
= gimple_assign_rhs2 (stmt
);
3750 if (TREE_CODE (op0
) == SSA_NAME
)
3751 vr0
= *(get_value_range (op0
));
3752 else if (is_gimple_min_invariant (op0
))
3753 set_value_range_to_value (&vr0
, op0
, NULL
);
3755 set_value_range_to_varying (&vr0
);
3757 op1
= gimple_assign_rhs3 (stmt
);
3758 if (TREE_CODE (op1
) == SSA_NAME
)
3759 vr1
= *(get_value_range (op1
));
3760 else if (is_gimple_min_invariant (op1
))
3761 set_value_range_to_value (&vr1
, op1
, NULL
);
3763 set_value_range_to_varying (&vr1
);
3765 /* The resulting value range is the union of the operand ranges */
3766 copy_value_range (vr
, &vr0
);
3767 vrp_meet (vr
, &vr1
);
3771 /* Extract range information from a comparison expression EXPR based
3772 on the range of its operand and the expression code. */
3775 extract_range_from_comparison (value_range_t
*vr
, enum tree_code code
,
3776 tree type
, tree op0
, tree op1
)
3781 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3784 /* A disadvantage of using a special infinity as an overflow
3785 representation is that we lose the ability to record overflow
3786 when we don't have an infinity. So we have to ignore a result
3787 which relies on overflow. */
3789 if (val
&& !is_overflow_infinity (val
) && !sop
)
3791 /* Since this expression was found on the RHS of an assignment,
3792 its type may be different from _Bool. Convert VAL to EXPR's
3794 val
= fold_convert (type
, val
);
3795 if (is_gimple_min_invariant (val
))
3796 set_value_range_to_value (vr
, val
, vr
->equiv
);
3798 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3801 /* The result of a comparison is always true or false. */
3802 set_value_range_to_truthvalue (vr
, type
);
3805 /* Helper function for simplify_internal_call_using_ranges and
3806 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3807 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3808 always overflow. Set *OVF to true if it is known to always
3812 check_for_binary_op_overflow (enum tree_code subcode
, tree type
,
3813 tree op0
, tree op1
, bool *ovf
)
3815 value_range_t vr0
= VR_INITIALIZER
;
3816 value_range_t vr1
= VR_INITIALIZER
;
3817 if (TREE_CODE (op0
) == SSA_NAME
)
3818 vr0
= *get_value_range (op0
);
3819 else if (TREE_CODE (op0
) == INTEGER_CST
)
3820 set_value_range_to_value (&vr0
, op0
, NULL
);
3822 set_value_range_to_varying (&vr0
);
3824 if (TREE_CODE (op1
) == SSA_NAME
)
3825 vr1
= *get_value_range (op1
);
3826 else if (TREE_CODE (op1
) == INTEGER_CST
)
3827 set_value_range_to_value (&vr1
, op1
, NULL
);
3829 set_value_range_to_varying (&vr1
);
3831 if (!range_int_cst_p (&vr0
)
3832 || TREE_OVERFLOW (vr0
.min
)
3833 || TREE_OVERFLOW (vr0
.max
))
3835 vr0
.min
= vrp_val_min (TREE_TYPE (op0
));
3836 vr0
.max
= vrp_val_max (TREE_TYPE (op0
));
3838 if (!range_int_cst_p (&vr1
)
3839 || TREE_OVERFLOW (vr1
.min
)
3840 || TREE_OVERFLOW (vr1
.max
))
3842 vr1
.min
= vrp_val_min (TREE_TYPE (op1
));
3843 vr1
.max
= vrp_val_max (TREE_TYPE (op1
));
3845 *ovf
= arith_overflowed_p (subcode
, type
, vr0
.min
,
3846 subcode
== MINUS_EXPR
? vr1
.max
: vr1
.min
);
3847 if (arith_overflowed_p (subcode
, type
, vr0
.max
,
3848 subcode
== MINUS_EXPR
? vr1
.min
: vr1
.max
) != *ovf
)
3850 if (subcode
== MULT_EXPR
)
3852 if (arith_overflowed_p (subcode
, type
, vr0
.min
, vr1
.max
) != *ovf
3853 || arith_overflowed_p (subcode
, type
, vr0
.max
, vr1
.min
) != *ovf
)
3858 /* So far we found that there is an overflow on the boundaries.
3859 That doesn't prove that there is an overflow even for all values
3860 in between the boundaries. For that compute widest_int range
3861 of the result and see if it doesn't overlap the range of
3863 widest_int wmin
, wmax
;
3866 w
[0] = wi::to_widest (vr0
.min
);
3867 w
[1] = wi::to_widest (vr0
.max
);
3868 w
[2] = wi::to_widest (vr1
.min
);
3869 w
[3] = wi::to_widest (vr1
.max
);
3870 for (i
= 0; i
< 4; i
++)
3876 wt
= wi::add (w
[i
& 1], w
[2 + (i
& 2) / 2]);
3879 wt
= wi::sub (w
[i
& 1], w
[2 + (i
& 2) / 2]);
3882 wt
= wi::mul (w
[i
& 1], w
[2 + (i
& 2) / 2]);
3894 wmin
= wi::smin (wmin
, wt
);
3895 wmax
= wi::smax (wmax
, wt
);
3898 /* The result of op0 CODE op1 is known to be in range
3900 widest_int wtmin
= wi::to_widest (vrp_val_min (type
));
3901 widest_int wtmax
= wi::to_widest (vrp_val_max (type
));
3902 /* If all values in [wmin, wmax] are smaller than
3903 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3904 the arithmetic operation will always overflow. */
3905 if (wi::lts_p (wmax
, wtmin
) || wi::gts_p (wmin
, wtmax
))
3912 /* Try to derive a nonnegative or nonzero range out of STMT relying
3913 primarily on generic routines in fold in conjunction with range data.
3914 Store the result in *VR */
3917 extract_range_basic (value_range_t
*vr
, gimple stmt
)
3920 tree type
= gimple_expr_type (stmt
);
3922 if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
3924 tree fndecl
= gimple_call_fndecl (stmt
), arg
;
3925 int mini
, maxi
, zerov
= 0, prec
;
3927 switch (DECL_FUNCTION_CODE (fndecl
))
3929 case BUILT_IN_CONSTANT_P
:
3930 /* If the call is __builtin_constant_p and the argument is a
3931 function parameter resolve it to false. This avoids bogus
3932 array bound warnings.
3933 ??? We could do this as early as inlining is finished. */
3934 arg
= gimple_call_arg (stmt
, 0);
3935 if (TREE_CODE (arg
) == SSA_NAME
3936 && SSA_NAME_IS_DEFAULT_DEF (arg
)
3937 && TREE_CODE (SSA_NAME_VAR (arg
)) == PARM_DECL
)
3939 set_value_range_to_null (vr
, type
);
3943 /* Both __builtin_ffs* and __builtin_popcount return
3945 CASE_INT_FN (BUILT_IN_FFS
):
3946 CASE_INT_FN (BUILT_IN_POPCOUNT
):
3947 arg
= gimple_call_arg (stmt
, 0);
3948 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3951 if (TREE_CODE (arg
) == SSA_NAME
)
3953 value_range_t
*vr0
= get_value_range (arg
);
3954 /* If arg is non-zero, then ffs or popcount
3956 if (((vr0
->type
== VR_RANGE
3957 && range_includes_zero_p (vr0
->min
, vr0
->max
) == 0)
3958 || (vr0
->type
== VR_ANTI_RANGE
3959 && range_includes_zero_p (vr0
->min
, vr0
->max
) == 1))
3960 && !is_overflow_infinity (vr0
->min
)
3961 && !is_overflow_infinity (vr0
->max
))
3963 /* If some high bits are known to be zero,
3964 we can decrease the maximum. */
3965 if (vr0
->type
== VR_RANGE
3966 && TREE_CODE (vr0
->max
) == INTEGER_CST
3967 && !operand_less_p (vr0
->min
,
3968 build_zero_cst (TREE_TYPE (vr0
->min
)))
3969 && !is_overflow_infinity (vr0
->max
))
3970 maxi
= tree_floor_log2 (vr0
->max
) + 1;
3973 /* __builtin_parity* returns [0, 1]. */
3974 CASE_INT_FN (BUILT_IN_PARITY
):
3978 /* __builtin_c[lt]z* return [0, prec-1], except for
3979 when the argument is 0, but that is undefined behavior.
3980 On many targets where the CLZ RTL or optab value is defined
3981 for 0 the value is prec, so include that in the range
3983 CASE_INT_FN (BUILT_IN_CLZ
):
3984 arg
= gimple_call_arg (stmt
, 0);
3985 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3988 if (optab_handler (clz_optab
, TYPE_MODE (TREE_TYPE (arg
)))
3990 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg
)),
3992 /* Handle only the single common value. */
3994 /* Magic value to give up, unless vr0 proves
3997 if (TREE_CODE (arg
) == SSA_NAME
)
3999 value_range_t
*vr0
= get_value_range (arg
);
4000 /* From clz of VR_RANGE minimum we can compute
4002 if (vr0
->type
== VR_RANGE
4003 && TREE_CODE (vr0
->min
) == INTEGER_CST
4004 && !is_overflow_infinity (vr0
->min
))
4006 maxi
= prec
- 1 - tree_floor_log2 (vr0
->min
);
4010 else if (vr0
->type
== VR_ANTI_RANGE
4011 && integer_zerop (vr0
->min
)
4012 && !is_overflow_infinity (vr0
->min
))
4019 /* From clz of VR_RANGE maximum we can compute
4021 if (vr0
->type
== VR_RANGE
4022 && TREE_CODE (vr0
->max
) == INTEGER_CST
4023 && !is_overflow_infinity (vr0
->max
))
4025 mini
= prec
- 1 - tree_floor_log2 (vr0
->max
);
4033 /* __builtin_ctz* return [0, prec-1], except for
4034 when the argument is 0, but that is undefined behavior.
4035 If there is a ctz optab for this mode and
4036 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
4037 otherwise just assume 0 won't be seen. */
4038 CASE_INT_FN (BUILT_IN_CTZ
):
4039 arg
= gimple_call_arg (stmt
, 0);
4040 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
4043 if (optab_handler (ctz_optab
, TYPE_MODE (TREE_TYPE (arg
)))
4045 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg
)),
4048 /* Handle only the two common values. */
4051 else if (zerov
== prec
)
4054 /* Magic value to give up, unless vr0 proves
4058 if (TREE_CODE (arg
) == SSA_NAME
)
4060 value_range_t
*vr0
= get_value_range (arg
);
4061 /* If arg is non-zero, then use [0, prec - 1]. */
4062 if (((vr0
->type
== VR_RANGE
4063 && integer_nonzerop (vr0
->min
))
4064 || (vr0
->type
== VR_ANTI_RANGE
4065 && integer_zerop (vr0
->min
)))
4066 && !is_overflow_infinity (vr0
->min
))
4071 /* If some high bits are known to be zero,
4072 we can decrease the result maximum. */
4073 if (vr0
->type
== VR_RANGE
4074 && TREE_CODE (vr0
->max
) == INTEGER_CST
4075 && !is_overflow_infinity (vr0
->max
))
4077 maxi
= tree_floor_log2 (vr0
->max
);
4078 /* For vr0 [0, 0] give up. */
4086 /* __builtin_clrsb* returns [0, prec-1]. */
4087 CASE_INT_FN (BUILT_IN_CLRSB
):
4088 arg
= gimple_call_arg (stmt
, 0);
4089 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
4094 set_value_range (vr
, VR_RANGE
, build_int_cst (type
, mini
),
4095 build_int_cst (type
, maxi
), NULL
);
4101 else if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
4103 enum tree_code subcode
= ERROR_MARK
;
4104 switch (gimple_call_internal_fn (stmt
))
4106 case IFN_UBSAN_CHECK_ADD
:
4107 subcode
= PLUS_EXPR
;
4109 case IFN_UBSAN_CHECK_SUB
:
4110 subcode
= MINUS_EXPR
;
4112 case IFN_UBSAN_CHECK_MUL
:
4113 subcode
= MULT_EXPR
;
4118 if (subcode
!= ERROR_MARK
)
4120 bool saved_flag_wrapv
= flag_wrapv
;
4121 /* Pretend the arithmetics is wrapping. If there is
4122 any overflow, we'll complain, but will actually do
4123 wrapping operation. */
4125 extract_range_from_binary_expr (vr
, subcode
, type
,
4126 gimple_call_arg (stmt
, 0),
4127 gimple_call_arg (stmt
, 1));
4128 flag_wrapv
= saved_flag_wrapv
;
4130 /* If for both arguments vrp_valueize returned non-NULL,
4131 this should have been already folded and if not, it
4132 wasn't folded because of overflow. Avoid removing the
4133 UBSAN_CHECK_* calls in that case. */
4134 if (vr
->type
== VR_RANGE
4135 && (vr
->min
== vr
->max
4136 || operand_equal_p (vr
->min
, vr
->max
, 0)))
4137 set_value_range_to_varying (vr
);
4141 /* Handle extraction of the two results (result of arithmetics and
4142 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4143 internal function. */
4144 else if (is_gimple_assign (stmt
)
4145 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
4146 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
4147 && INTEGRAL_TYPE_P (type
))
4149 enum tree_code code
= gimple_assign_rhs_code (stmt
);
4150 tree op
= gimple_assign_rhs1 (stmt
);
4151 if (TREE_CODE (op
) == code
&& TREE_CODE (TREE_OPERAND (op
, 0)) == SSA_NAME
)
4153 gimple g
= SSA_NAME_DEF_STMT (TREE_OPERAND (op
, 0));
4154 if (is_gimple_call (g
) && gimple_call_internal_p (g
))
4156 enum tree_code subcode
= ERROR_MARK
;
4157 switch (gimple_call_internal_fn (g
))
4159 case IFN_ADD_OVERFLOW
:
4160 subcode
= PLUS_EXPR
;
4162 case IFN_SUB_OVERFLOW
:
4163 subcode
= MINUS_EXPR
;
4165 case IFN_MUL_OVERFLOW
:
4166 subcode
= MULT_EXPR
;
4171 if (subcode
!= ERROR_MARK
)
4173 tree op0
= gimple_call_arg (g
, 0);
4174 tree op1
= gimple_call_arg (g
, 1);
4175 if (code
== IMAGPART_EXPR
)
4178 if (check_for_binary_op_overflow (subcode
, type
,
4180 set_value_range_to_value (vr
,
4181 build_int_cst (type
, ovf
),
4184 set_value_range (vr
, VR_RANGE
, build_int_cst (type
, 0),
4185 build_int_cst (type
, 1), NULL
);
4187 else if (types_compatible_p (type
, TREE_TYPE (op0
))
4188 && types_compatible_p (type
, TREE_TYPE (op1
)))
4190 bool saved_flag_wrapv
= flag_wrapv
;
4191 /* Pretend the arithmetics is wrapping. If there is
4192 any overflow, IMAGPART_EXPR will be set. */
4194 extract_range_from_binary_expr (vr
, subcode
, type
,
4196 flag_wrapv
= saved_flag_wrapv
;
4200 value_range_t vr0
= VR_INITIALIZER
;
4201 value_range_t vr1
= VR_INITIALIZER
;
4202 bool saved_flag_wrapv
= flag_wrapv
;
4203 /* Pretend the arithmetics is wrapping. If there is
4204 any overflow, IMAGPART_EXPR will be set. */
4206 extract_range_from_unary_expr (&vr0
, NOP_EXPR
,
4208 extract_range_from_unary_expr (&vr1
, NOP_EXPR
,
4210 extract_range_from_binary_expr_1 (vr
, subcode
, type
,
4212 flag_wrapv
= saved_flag_wrapv
;
4219 if (INTEGRAL_TYPE_P (type
)
4220 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
4221 set_value_range_to_nonnegative (vr
, type
,
4222 sop
|| stmt_overflow_infinity (stmt
));
4223 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
4225 set_value_range_to_nonnull (vr
, type
);
4227 set_value_range_to_varying (vr
);
4231 /* Try to compute a useful range out of assignment STMT and store it
4235 extract_range_from_assignment (value_range_t
*vr
, gassign
*stmt
)
4237 enum tree_code code
= gimple_assign_rhs_code (stmt
);
4239 if (code
== ASSERT_EXPR
)
4240 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
4241 else if (code
== SSA_NAME
)
4242 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
4243 else if (TREE_CODE_CLASS (code
) == tcc_binary
)
4244 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
4245 gimple_expr_type (stmt
),
4246 gimple_assign_rhs1 (stmt
),
4247 gimple_assign_rhs2 (stmt
));
4248 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
4249 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
4250 gimple_expr_type (stmt
),
4251 gimple_assign_rhs1 (stmt
));
4252 else if (code
== COND_EXPR
)
4253 extract_range_from_cond_expr (vr
, stmt
);
4254 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4255 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
4256 gimple_expr_type (stmt
),
4257 gimple_assign_rhs1 (stmt
),
4258 gimple_assign_rhs2 (stmt
));
4259 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
4260 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
4261 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
4263 set_value_range_to_varying (vr
);
4265 if (vr
->type
== VR_VARYING
)
4266 extract_range_basic (vr
, stmt
);
4269 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4270 would be profitable to adjust VR using scalar evolution information
4271 for VAR. If so, update VR with the new limits. */
4274 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
,
4275 gimple stmt
, tree var
)
4277 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
, tem
;
4278 enum ev_direction dir
;
4280 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4281 better opportunities than a regular range, but I'm not sure. */
4282 if (vr
->type
== VR_ANTI_RANGE
)
4285 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
4287 /* Like in PR19590, scev can return a constant function. */
4288 if (is_gimple_min_invariant (chrec
))
4290 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
4294 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
4297 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
4298 tem
= op_with_constant_singleton_value_range (init
);
4301 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
4302 tem
= op_with_constant_singleton_value_range (step
);
4306 /* If STEP is symbolic, we can't know whether INIT will be the
4307 minimum or maximum value in the range. Also, unless INIT is
4308 a simple expression, compare_values and possibly other functions
4309 in tree-vrp won't be able to handle it. */
4310 if (step
== NULL_TREE
4311 || !is_gimple_min_invariant (step
)
4312 || !valid_value_p (init
))
4315 dir
= scev_direction (chrec
);
4316 if (/* Do not adjust ranges if we do not know whether the iv increases
4317 or decreases, ... */
4318 dir
== EV_DIR_UNKNOWN
4319 /* ... or if it may wrap. */
4320 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
4324 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4325 negative_overflow_infinity and positive_overflow_infinity,
4326 because we have concluded that the loop probably does not
4329 type
= TREE_TYPE (var
);
4330 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
4331 tmin
= lower_bound_in_type (type
, type
);
4333 tmin
= TYPE_MIN_VALUE (type
);
4334 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
4335 tmax
= upper_bound_in_type (type
, type
);
4337 tmax
= TYPE_MAX_VALUE (type
);
4339 /* Try to use estimated number of iterations for the loop to constrain the
4340 final value in the evolution. */
4341 if (TREE_CODE (step
) == INTEGER_CST
4342 && is_gimple_val (init
)
4343 && (TREE_CODE (init
) != SSA_NAME
4344 || get_value_range (init
)->type
== VR_RANGE
))
4348 /* We are only entering here for loop header PHI nodes, so using
4349 the number of latch executions is the correct thing to use. */
4350 if (max_loop_iterations (loop
, &nit
))
4352 value_range_t maxvr
= VR_INITIALIZER
;
4353 signop sgn
= TYPE_SIGN (TREE_TYPE (step
));
4356 widest_int wtmp
= wi::mul (wi::to_widest (step
), nit
, sgn
,
4358 /* If the multiplication overflowed we can't do a meaningful
4359 adjustment. Likewise if the result doesn't fit in the type
4360 of the induction variable. For a signed type we have to
4361 check whether the result has the expected signedness which
4362 is that of the step as number of iterations is unsigned. */
4364 && wi::fits_to_tree_p (wtmp
, TREE_TYPE (init
))
4366 || wi::gts_p (wtmp
, 0) == wi::gts_p (step
, 0)))
4368 tem
= wide_int_to_tree (TREE_TYPE (init
), wtmp
);
4369 extract_range_from_binary_expr (&maxvr
, PLUS_EXPR
,
4370 TREE_TYPE (init
), init
, tem
);
4371 /* Likewise if the addition did. */
4372 if (maxvr
.type
== VR_RANGE
)
4381 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
4386 /* For VARYING or UNDEFINED ranges, just about anything we get
4387 from scalar evolutions should be better. */
4389 if (dir
== EV_DIR_DECREASES
)
4394 else if (vr
->type
== VR_RANGE
)
4399 if (dir
== EV_DIR_DECREASES
)
4401 /* INIT is the maximum value. If INIT is lower than VR->MAX
4402 but no smaller than VR->MIN, set VR->MAX to INIT. */
4403 if (compare_values (init
, max
) == -1)
4406 /* According to the loop information, the variable does not
4407 overflow. If we think it does, probably because of an
4408 overflow due to arithmetic on a different INF value,
4410 if (is_negative_overflow_infinity (min
)
4411 || compare_values (min
, tmin
) == -1)
4417 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4418 if (compare_values (init
, min
) == 1)
4421 if (is_positive_overflow_infinity (max
)
4422 || compare_values (tmax
, max
) == -1)
4429 /* If we just created an invalid range with the minimum
4430 greater than the maximum, we fail conservatively.
4431 This should happen only in unreachable
4432 parts of code, or for invalid programs. */
4433 if (compare_values (min
, max
) == 1
4434 || (is_negative_overflow_infinity (min
)
4435 && is_positive_overflow_infinity (max
)))
4438 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
4442 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4444 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4445 all the values in the ranges.
4447 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4449 - Return NULL_TREE if it is not always possible to determine the
4450 value of the comparison.
4452 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4453 overflow infinity was used in the test. */
4457 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
4458 bool *strict_overflow_p
)
4460 /* VARYING or UNDEFINED ranges cannot be compared. */
4461 if (vr0
->type
== VR_VARYING
4462 || vr0
->type
== VR_UNDEFINED
4463 || vr1
->type
== VR_VARYING
4464 || vr1
->type
== VR_UNDEFINED
)
4467 /* Anti-ranges need to be handled separately. */
4468 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
4470 /* If both are anti-ranges, then we cannot compute any
4472 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
4475 /* These comparisons are never statically computable. */
4482 /* Equality can be computed only between a range and an
4483 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4484 if (vr0
->type
== VR_RANGE
)
4486 /* To simplify processing, make VR0 the anti-range. */
4487 value_range_t
*tmp
= vr0
;
4492 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
4494 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
4495 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
4496 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
4501 if (!usable_range_p (vr0
, strict_overflow_p
)
4502 || !usable_range_p (vr1
, strict_overflow_p
))
4505 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4506 operands around and change the comparison code. */
4507 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
4510 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
4516 if (comp
== EQ_EXPR
)
4518 /* Equality may only be computed if both ranges represent
4519 exactly one value. */
4520 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
4521 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
4523 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
4525 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
4527 if (cmp_min
== 0 && cmp_max
== 0)
4528 return boolean_true_node
;
4529 else if (cmp_min
!= -2 && cmp_max
!= -2)
4530 return boolean_false_node
;
4532 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4533 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
4534 strict_overflow_p
) == 1
4535 || compare_values_warnv (vr1
->min
, vr0
->max
,
4536 strict_overflow_p
) == 1)
4537 return boolean_false_node
;
4541 else if (comp
== NE_EXPR
)
4545 /* If VR0 is completely to the left or completely to the right
4546 of VR1, they are always different. Notice that we need to
4547 make sure that both comparisons yield similar results to
4548 avoid comparing values that cannot be compared at
4550 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
4551 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
4552 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
4553 return boolean_true_node
;
4555 /* If VR0 and VR1 represent a single value and are identical,
4557 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
4558 strict_overflow_p
) == 0
4559 && compare_values_warnv (vr1
->min
, vr1
->max
,
4560 strict_overflow_p
) == 0
4561 && compare_values_warnv (vr0
->min
, vr1
->min
,
4562 strict_overflow_p
) == 0
4563 && compare_values_warnv (vr0
->max
, vr1
->max
,
4564 strict_overflow_p
) == 0)
4565 return boolean_false_node
;
4567 /* Otherwise, they may or may not be different. */
4571 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
4575 /* If VR0 is to the left of VR1, return true. */
4576 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
4577 if ((comp
== LT_EXPR
&& tst
== -1)
4578 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
4580 if (overflow_infinity_range_p (vr0
)
4581 || overflow_infinity_range_p (vr1
))
4582 *strict_overflow_p
= true;
4583 return boolean_true_node
;
4586 /* If VR0 is to the right of VR1, return false. */
4587 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
4588 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
4589 || (comp
== LE_EXPR
&& tst
== 1))
4591 if (overflow_infinity_range_p (vr0
)
4592 || overflow_infinity_range_p (vr1
))
4593 *strict_overflow_p
= true;
4594 return boolean_false_node
;
4597 /* Otherwise, we don't know. */
4605 /* Given a value range VR, a value VAL and a comparison code COMP, return
4606 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4607 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4608 always returns false. Return NULL_TREE if it is not always
4609 possible to determine the value of the comparison. Also set
4610 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4611 infinity was used in the test. */
4614 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
4615 bool *strict_overflow_p
)
4617 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
4620 /* Anti-ranges need to be handled separately. */
4621 if (vr
->type
== VR_ANTI_RANGE
)
4623 /* For anti-ranges, the only predicates that we can compute at
4624 compile time are equality and inequality. */
4631 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4632 if (value_inside_range (val
, vr
->min
, vr
->max
) == 1)
4633 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
4638 if (!usable_range_p (vr
, strict_overflow_p
))
4641 if (comp
== EQ_EXPR
)
4643 /* EQ_EXPR may only be computed if VR represents exactly
4645 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
4647 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4649 return boolean_true_node
;
4650 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
4651 return boolean_false_node
;
4653 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
4654 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
4655 return boolean_false_node
;
4659 else if (comp
== NE_EXPR
)
4661 /* If VAL is not inside VR, then they are always different. */
4662 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
4663 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
4664 return boolean_true_node
;
4666 /* If VR represents exactly one value equal to VAL, then return
4668 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
4669 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
4670 return boolean_false_node
;
4672 /* Otherwise, they may or may not be different. */
4675 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
4679 /* If VR is to the left of VAL, return true. */
4680 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4681 if ((comp
== LT_EXPR
&& tst
== -1)
4682 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
4684 if (overflow_infinity_range_p (vr
))
4685 *strict_overflow_p
= true;
4686 return boolean_true_node
;
4689 /* If VR is to the right of VAL, return false. */
4690 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4691 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
4692 || (comp
== LE_EXPR
&& tst
== 1))
4694 if (overflow_infinity_range_p (vr
))
4695 *strict_overflow_p
= true;
4696 return boolean_false_node
;
4699 /* Otherwise, we don't know. */
4702 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
4706 /* If VR is to the right of VAL, return true. */
4707 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4708 if ((comp
== GT_EXPR
&& tst
== 1)
4709 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
4711 if (overflow_infinity_range_p (vr
))
4712 *strict_overflow_p
= true;
4713 return boolean_true_node
;
4716 /* If VR is to the left of VAL, return false. */
4717 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4718 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
4719 || (comp
== GE_EXPR
&& tst
== -1))
4721 if (overflow_infinity_range_p (vr
))
4722 *strict_overflow_p
= true;
4723 return boolean_false_node
;
4726 /* Otherwise, we don't know. */
4734 /* Debugging dumps. */
4736 void dump_value_range (FILE *, value_range_t
*);
4737 void debug_value_range (value_range_t
*);
4738 void dump_all_value_ranges (FILE *);
4739 void debug_all_value_ranges (void);
4740 void dump_vr_equiv (FILE *, bitmap
);
4741 void debug_vr_equiv (bitmap
);
4744 /* Dump value range VR to FILE. */
4747 dump_value_range (FILE *file
, value_range_t
*vr
)
4750 fprintf (file
, "[]");
4751 else if (vr
->type
== VR_UNDEFINED
)
4752 fprintf (file
, "UNDEFINED");
4753 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
4755 tree type
= TREE_TYPE (vr
->min
);
4757 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
4759 if (is_negative_overflow_infinity (vr
->min
))
4760 fprintf (file
, "-INF(OVF)");
4761 else if (INTEGRAL_TYPE_P (type
)
4762 && !TYPE_UNSIGNED (type
)
4763 && vrp_val_is_min (vr
->min
))
4764 fprintf (file
, "-INF");
4766 print_generic_expr (file
, vr
->min
, 0);
4768 fprintf (file
, ", ");
4770 if (is_positive_overflow_infinity (vr
->max
))
4771 fprintf (file
, "+INF(OVF)");
4772 else if (INTEGRAL_TYPE_P (type
)
4773 && vrp_val_is_max (vr
->max
))
4774 fprintf (file
, "+INF");
4776 print_generic_expr (file
, vr
->max
, 0);
4778 fprintf (file
, "]");
4785 fprintf (file
, " EQUIVALENCES: { ");
4787 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
4789 print_generic_expr (file
, ssa_name (i
), 0);
4790 fprintf (file
, " ");
4794 fprintf (file
, "} (%u elements)", c
);
4797 else if (vr
->type
== VR_VARYING
)
4798 fprintf (file
, "VARYING");
4800 fprintf (file
, "INVALID RANGE");
4804 /* Dump value range VR to stderr. */
4807 debug_value_range (value_range_t
*vr
)
4809 dump_value_range (stderr
, vr
);
4810 fprintf (stderr
, "\n");
4814 /* Dump value ranges of all SSA_NAMEs to FILE. */
4817 dump_all_value_ranges (FILE *file
)
4821 for (i
= 0; i
< num_vr_values
; i
++)
4825 print_generic_expr (file
, ssa_name (i
), 0);
4826 fprintf (file
, ": ");
4827 dump_value_range (file
, vr_value
[i
]);
4828 fprintf (file
, "\n");
4832 fprintf (file
, "\n");
4836 /* Dump all value ranges to stderr. */
4839 debug_all_value_ranges (void)
4841 dump_all_value_ranges (stderr
);
4845 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4846 create a new SSA name N and return the assertion assignment
4847 'N = ASSERT_EXPR <V, V OP W>'. */
4850 build_assert_expr_for (tree cond
, tree v
)
4855 gcc_assert (TREE_CODE (v
) == SSA_NAME
4856 && COMPARISON_CLASS_P (cond
));
4858 a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
4859 assertion
= gimple_build_assign (NULL_TREE
, a
);
4861 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4862 operand of the ASSERT_EXPR. Create it so the new name and the old one
4863 are registered in the replacement table so that we can fix the SSA web
4864 after adding all the ASSERT_EXPRs. */
4865 create_new_def_for (v
, assertion
, NULL
);
4871 /* Return false if EXPR is a predicate expression involving floating
4875 fp_predicate (gimple stmt
)
4877 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
4879 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
4882 /* If the range of values taken by OP can be inferred after STMT executes,
4883 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4884 describes the inferred range. Return true if a range could be
4888 infer_value_range (gimple stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
4891 *comp_code_p
= ERROR_MARK
;
4893 /* Do not attempt to infer anything in names that flow through
4895 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
4898 /* Similarly, don't infer anything from statements that may throw
4899 exceptions. ??? Relax this requirement? */
4900 if (stmt_could_throw_p (stmt
))
4903 /* If STMT is the last statement of a basic block with no normal
4904 successors, there is no point inferring anything about any of its
4905 operands. We would not be able to find a proper insertion point
4906 for the assertion, anyway. */
4907 if (stmt_ends_bb_p (stmt
))
4912 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
4913 if (!(e
->flags
& EDGE_ABNORMAL
))
4919 if (infer_nonnull_range (stmt
, op
, true, true))
4921 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
4922 *comp_code_p
= NE_EXPR
;
4930 void dump_asserts_for (FILE *, tree
);
4931 void debug_asserts_for (tree
);
4932 void dump_all_asserts (FILE *);
4933 void debug_all_asserts (void);
4935 /* Dump all the registered assertions for NAME to FILE. */
4938 dump_asserts_for (FILE *file
, tree name
)
4942 fprintf (file
, "Assertions to be inserted for ");
4943 print_generic_expr (file
, name
, 0);
4944 fprintf (file
, "\n");
4946 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4949 fprintf (file
, "\t");
4950 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
4951 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
4954 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
4955 loc
->e
->dest
->index
);
4956 dump_edge_info (file
, loc
->e
, dump_flags
, 0);
4958 fprintf (file
, "\n\tPREDICATE: ");
4959 print_generic_expr (file
, name
, 0);
4960 fprintf (file
, " %s ", get_tree_code_name (loc
->comp_code
));
4961 print_generic_expr (file
, loc
->val
, 0);
4962 fprintf (file
, "\n\n");
4966 fprintf (file
, "\n");
4970 /* Dump all the registered assertions for NAME to stderr. */
4973 debug_asserts_for (tree name
)
4975 dump_asserts_for (stderr
, name
);
4979 /* Dump all the registered assertions for all the names to FILE. */
4982 dump_all_asserts (FILE *file
)
4987 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
4988 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4989 dump_asserts_for (file
, ssa_name (i
));
4990 fprintf (file
, "\n");
4994 /* Dump all the registered assertions for all the names to stderr. */
4997 debug_all_asserts (void)
4999 dump_all_asserts (stderr
);
5003 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
5004 'EXPR COMP_CODE VAL' at a location that dominates block BB or
5005 E->DEST, then register this location as a possible insertion point
5006 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
5008 BB, E and SI provide the exact insertion point for the new
5009 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
5010 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
5011 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
5012 must not be NULL. */
5015 register_new_assert_for (tree name
, tree expr
,
5016 enum tree_code comp_code
,
5020 gimple_stmt_iterator si
)
5022 assert_locus_t n
, loc
, last_loc
;
5023 basic_block dest_bb
;
5025 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
5028 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
5029 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
5031 /* Never build an assert comparing against an integer constant with
5032 TREE_OVERFLOW set. This confuses our undefined overflow warning
5034 if (TREE_OVERFLOW_P (val
))
5035 val
= drop_tree_overflow (val
);
5037 /* The new assertion A will be inserted at BB or E. We need to
5038 determine if the new location is dominated by a previously
5039 registered location for A. If we are doing an edge insertion,
5040 assume that A will be inserted at E->DEST. Note that this is not
5043 If E is a critical edge, it will be split. But even if E is
5044 split, the new block will dominate the same set of blocks that
5047 The reverse, however, is not true, blocks dominated by E->DEST
5048 will not be dominated by the new block created to split E. So,
5049 if the insertion location is on a critical edge, we will not use
5050 the new location to move another assertion previously registered
5051 at a block dominated by E->DEST. */
5052 dest_bb
= (bb
) ? bb
: e
->dest
;
5054 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
5055 VAL at a block dominating DEST_BB, then we don't need to insert a new
5056 one. Similarly, if the same assertion already exists at a block
5057 dominated by DEST_BB and the new location is not on a critical
5058 edge, then update the existing location for the assertion (i.e.,
5059 move the assertion up in the dominance tree).
5061 Note, this is implemented as a simple linked list because there
5062 should not be more than a handful of assertions registered per
5063 name. If this becomes a performance problem, a table hashed by
5064 COMP_CODE and VAL could be implemented. */
5065 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
5069 if (loc
->comp_code
== comp_code
5071 || operand_equal_p (loc
->val
, val
, 0))
5072 && (loc
->expr
== expr
5073 || operand_equal_p (loc
->expr
, expr
, 0)))
5075 /* If E is not a critical edge and DEST_BB
5076 dominates the existing location for the assertion, move
5077 the assertion up in the dominance tree by updating its
5078 location information. */
5079 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
5080 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
5089 /* Update the last node of the list and move to the next one. */
5094 /* If we didn't find an assertion already registered for
5095 NAME COMP_CODE VAL, add a new one at the end of the list of
5096 assertions associated with NAME. */
5097 n
= XNEW (struct assert_locus_d
);
5101 n
->comp_code
= comp_code
;
5109 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
5111 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
5114 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5115 Extract a suitable test code and value and store them into *CODE_P and
5116 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5118 If no extraction was possible, return FALSE, otherwise return TRUE.
5120 If INVERT is true, then we invert the result stored into *CODE_P. */
5123 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
5124 tree cond_op0
, tree cond_op1
,
5125 bool invert
, enum tree_code
*code_p
,
5128 enum tree_code comp_code
;
5131 /* Otherwise, we have a comparison of the form NAME COMP VAL
5132 or VAL COMP NAME. */
5133 if (name
== cond_op1
)
5135 /* If the predicate is of the form VAL COMP NAME, flip
5136 COMP around because we need to register NAME as the
5137 first operand in the predicate. */
5138 comp_code
= swap_tree_comparison (cond_code
);
5143 /* The comparison is of the form NAME COMP VAL, so the
5144 comparison code remains unchanged. */
5145 comp_code
= cond_code
;
5149 /* Invert the comparison code as necessary. */
5151 comp_code
= invert_tree_comparison (comp_code
, 0);
5153 /* VRP does not handle float types. */
5154 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
5157 /* Do not register always-false predicates.
5158 FIXME: this works around a limitation in fold() when dealing with
5159 enumerations. Given 'enum { N1, N2 } x;', fold will not
5160 fold 'if (x > N2)' to 'if (0)'. */
5161 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
5162 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
5164 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
5165 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
5167 if (comp_code
== GT_EXPR
5169 || compare_values (val
, max
) == 0))
5172 if (comp_code
== LT_EXPR
5174 || compare_values (val
, min
) == 0))
5177 *code_p
= comp_code
;
5182 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5183 (otherwise return VAL). VAL and MASK must be zero-extended for
5184 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
5185 (to transform signed values into unsigned) and at the end xor
5189 masked_increment (const wide_int
&val_in
, const wide_int
&mask
,
5190 const wide_int
&sgnbit
, unsigned int prec
)
5192 wide_int bit
= wi::one (prec
), res
;
5195 wide_int val
= val_in
^ sgnbit
;
5196 for (i
= 0; i
< prec
; i
++, bit
+= bit
)
5199 if ((res
& bit
) == 0)
5202 res
= (val
+ bit
).and_not (res
);
5204 if (wi::gtu_p (res
, val
))
5205 return res
^ sgnbit
;
5207 return val
^ sgnbit
;
5210 /* Try to register an edge assertion for SSA name NAME on edge E for
5211 the condition COND contributing to the conditional jump pointed to by BSI.
5212 Invert the condition COND if INVERT is true. */
5215 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
5216 enum tree_code cond_code
,
5217 tree cond_op0
, tree cond_op1
, bool invert
)
5220 enum tree_code comp_code
;
5222 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
5225 invert
, &comp_code
, &val
))
5228 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5229 reachable from E. */
5230 if (live_on_edge (e
, name
)
5231 && !has_single_use (name
))
5232 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
5234 /* In the case of NAME <= CST and NAME being defined as
5235 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5236 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5237 This catches range and anti-range tests. */
5238 if ((comp_code
== LE_EXPR
5239 || comp_code
== GT_EXPR
)
5240 && TREE_CODE (val
) == INTEGER_CST
5241 && TYPE_UNSIGNED (TREE_TYPE (val
)))
5243 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5244 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
5246 /* Extract CST2 from the (optional) addition. */
5247 if (is_gimple_assign (def_stmt
)
5248 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
5250 name2
= gimple_assign_rhs1 (def_stmt
);
5251 cst2
= gimple_assign_rhs2 (def_stmt
);
5252 if (TREE_CODE (name2
) == SSA_NAME
5253 && TREE_CODE (cst2
) == INTEGER_CST
)
5254 def_stmt
= SSA_NAME_DEF_STMT (name2
);
5257 /* Extract NAME2 from the (optional) sign-changing cast. */
5258 if (gimple_assign_cast_p (def_stmt
))
5260 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
5261 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
5262 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
5263 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
5264 name3
= gimple_assign_rhs1 (def_stmt
);
5267 /* If name3 is used later, create an ASSERT_EXPR for it. */
5268 if (name3
!= NULL_TREE
5269 && TREE_CODE (name3
) == SSA_NAME
5270 && (cst2
== NULL_TREE
5271 || TREE_CODE (cst2
) == INTEGER_CST
)
5272 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
5273 && live_on_edge (e
, name3
)
5274 && !has_single_use (name3
))
5278 /* Build an expression for the range test. */
5279 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
5280 if (cst2
!= NULL_TREE
)
5281 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
5285 fprintf (dump_file
, "Adding assert for ");
5286 print_generic_expr (dump_file
, name3
, 0);
5287 fprintf (dump_file
, " from ");
5288 print_generic_expr (dump_file
, tmp
, 0);
5289 fprintf (dump_file
, "\n");
5292 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
5295 /* If name2 is used later, create an ASSERT_EXPR for it. */
5296 if (name2
!= NULL_TREE
5297 && TREE_CODE (name2
) == SSA_NAME
5298 && TREE_CODE (cst2
) == INTEGER_CST
5299 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5300 && live_on_edge (e
, name2
)
5301 && !has_single_use (name2
))
5305 /* Build an expression for the range test. */
5307 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
5308 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
5309 if (cst2
!= NULL_TREE
)
5310 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
5314 fprintf (dump_file
, "Adding assert for ");
5315 print_generic_expr (dump_file
, name2
, 0);
5316 fprintf (dump_file
, " from ");
5317 print_generic_expr (dump_file
, tmp
, 0);
5318 fprintf (dump_file
, "\n");
5321 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
5325 /* In the case of post-in/decrement tests like if (i++) ... and uses
5326 of the in/decremented value on the edge the extra name we want to
5327 assert for is not on the def chain of the name compared. Instead
5328 it is in the set of use stmts. */
5329 if ((comp_code
== NE_EXPR
5330 || comp_code
== EQ_EXPR
)
5331 && TREE_CODE (val
) == INTEGER_CST
)
5333 imm_use_iterator ui
;
5335 FOR_EACH_IMM_USE_STMT (use_stmt
, ui
, name
)
5337 /* Cut off to use-stmts that are in the predecessor. */
5338 if (gimple_bb (use_stmt
) != e
->src
)
5341 if (!is_gimple_assign (use_stmt
))
5344 enum tree_code code
= gimple_assign_rhs_code (use_stmt
);
5345 if (code
!= PLUS_EXPR
5346 && code
!= MINUS_EXPR
)
5349 tree cst
= gimple_assign_rhs2 (use_stmt
);
5350 if (TREE_CODE (cst
) != INTEGER_CST
)
5353 tree name2
= gimple_assign_lhs (use_stmt
);
5354 if (live_on_edge (e
, name2
))
5356 cst
= int_const_binop (code
, val
, cst
);
5357 register_new_assert_for (name2
, name2
, comp_code
, cst
,
5363 if (TREE_CODE_CLASS (comp_code
) == tcc_comparison
5364 && TREE_CODE (val
) == INTEGER_CST
)
5366 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5367 tree name2
= NULL_TREE
, names
[2], cst2
= NULL_TREE
;
5368 tree val2
= NULL_TREE
;
5369 unsigned int prec
= TYPE_PRECISION (TREE_TYPE (val
));
5370 wide_int mask
= wi::zero (prec
);
5371 unsigned int nprec
= prec
;
5372 enum tree_code rhs_code
= ERROR_MARK
;
5374 if (is_gimple_assign (def_stmt
))
5375 rhs_code
= gimple_assign_rhs_code (def_stmt
);
5377 /* Add asserts for NAME cmp CST and NAME being defined
5378 as NAME = (int) NAME2. */
5379 if (!TYPE_UNSIGNED (TREE_TYPE (val
))
5380 && (comp_code
== LE_EXPR
|| comp_code
== LT_EXPR
5381 || comp_code
== GT_EXPR
|| comp_code
== GE_EXPR
)
5382 && gimple_assign_cast_p (def_stmt
))
5384 name2
= gimple_assign_rhs1 (def_stmt
);
5385 if (CONVERT_EXPR_CODE_P (rhs_code
)
5386 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5387 && TYPE_UNSIGNED (TREE_TYPE (name2
))
5388 && prec
== TYPE_PRECISION (TREE_TYPE (name2
))
5389 && (comp_code
== LE_EXPR
|| comp_code
== GT_EXPR
5390 || !tree_int_cst_equal (val
,
5391 TYPE_MIN_VALUE (TREE_TYPE (val
))))
5392 && live_on_edge (e
, name2
)
5393 && !has_single_use (name2
))
5396 enum tree_code new_comp_code
= comp_code
;
5398 cst
= fold_convert (TREE_TYPE (name2
),
5399 TYPE_MIN_VALUE (TREE_TYPE (val
)));
5400 /* Build an expression for the range test. */
5401 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name2
), name2
, cst
);
5402 cst
= fold_build2 (PLUS_EXPR
, TREE_TYPE (name2
), cst
,
5403 fold_convert (TREE_TYPE (name2
), val
));
5404 if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
5406 new_comp_code
= comp_code
== LT_EXPR
? LE_EXPR
: GT_EXPR
;
5407 cst
= fold_build2 (MINUS_EXPR
, TREE_TYPE (name2
), cst
,
5408 build_int_cst (TREE_TYPE (name2
), 1));
5413 fprintf (dump_file
, "Adding assert for ");
5414 print_generic_expr (dump_file
, name2
, 0);
5415 fprintf (dump_file
, " from ");
5416 print_generic_expr (dump_file
, tmp
, 0);
5417 fprintf (dump_file
, "\n");
5420 register_new_assert_for (name2
, tmp
, new_comp_code
, cst
, NULL
,
5425 /* Add asserts for NAME cmp CST and NAME being defined as
5426 NAME = NAME2 >> CST2.
5428 Extract CST2 from the right shift. */
5429 if (rhs_code
== RSHIFT_EXPR
)
5431 name2
= gimple_assign_rhs1 (def_stmt
);
5432 cst2
= gimple_assign_rhs2 (def_stmt
);
5433 if (TREE_CODE (name2
) == SSA_NAME
5434 && tree_fits_uhwi_p (cst2
)
5435 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5436 && IN_RANGE (tree_to_uhwi (cst2
), 1, prec
- 1)
5437 && prec
== GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val
)))
5438 && live_on_edge (e
, name2
)
5439 && !has_single_use (name2
))
5441 mask
= wi::mask (tree_to_uhwi (cst2
), false, prec
);
5442 val2
= fold_binary (LSHIFT_EXPR
, TREE_TYPE (val
), val
, cst2
);
5445 if (val2
!= NULL_TREE
5446 && TREE_CODE (val2
) == INTEGER_CST
5447 && simple_cst_equal (fold_build2 (RSHIFT_EXPR
,
5451 enum tree_code new_comp_code
= comp_code
;
5455 if (comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
5457 if (!TYPE_UNSIGNED (TREE_TYPE (val
)))
5459 tree type
= build_nonstandard_integer_type (prec
, 1);
5460 tmp
= build1 (NOP_EXPR
, type
, name2
);
5461 val2
= fold_convert (type
, val2
);
5463 tmp
= fold_build2 (MINUS_EXPR
, TREE_TYPE (tmp
), tmp
, val2
);
5464 new_val
= wide_int_to_tree (TREE_TYPE (tmp
), mask
);
5465 new_comp_code
= comp_code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
5467 else if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
5470 = wi::min_value (prec
, TYPE_SIGN (TREE_TYPE (val
)));
5472 if (minval
== new_val
)
5473 new_val
= NULL_TREE
;
5478 = wi::max_value (prec
, TYPE_SIGN (TREE_TYPE (val
)));
5481 new_val
= NULL_TREE
;
5483 new_val
= wide_int_to_tree (TREE_TYPE (val2
), mask
);
5490 fprintf (dump_file
, "Adding assert for ");
5491 print_generic_expr (dump_file
, name2
, 0);
5492 fprintf (dump_file
, " from ");
5493 print_generic_expr (dump_file
, tmp
, 0);
5494 fprintf (dump_file
, "\n");
5497 register_new_assert_for (name2
, tmp
, new_comp_code
, new_val
,
5502 /* Add asserts for NAME cmp CST and NAME being defined as
5503 NAME = NAME2 & CST2.
5505 Extract CST2 from the and.
5508 NAME = (unsigned) NAME2;
5509 casts where NAME's type is unsigned and has smaller precision
5510 than NAME2's type as if it was NAME = NAME2 & MASK. */
5511 names
[0] = NULL_TREE
;
5512 names
[1] = NULL_TREE
;
5514 if (rhs_code
== BIT_AND_EXPR
5515 || (CONVERT_EXPR_CODE_P (rhs_code
)
5516 && TREE_CODE (TREE_TYPE (val
)) == INTEGER_TYPE
5517 && TYPE_UNSIGNED (TREE_TYPE (val
))
5518 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
5521 name2
= gimple_assign_rhs1 (def_stmt
);
5522 if (rhs_code
== BIT_AND_EXPR
)
5523 cst2
= gimple_assign_rhs2 (def_stmt
);
5526 cst2
= TYPE_MAX_VALUE (TREE_TYPE (val
));
5527 nprec
= TYPE_PRECISION (TREE_TYPE (name2
));
5529 if (TREE_CODE (name2
) == SSA_NAME
5530 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5531 && TREE_CODE (cst2
) == INTEGER_CST
5532 && !integer_zerop (cst2
)
5534 || TYPE_UNSIGNED (TREE_TYPE (val
))))
5536 gimple def_stmt2
= SSA_NAME_DEF_STMT (name2
);
5537 if (gimple_assign_cast_p (def_stmt2
))
5539 names
[1] = gimple_assign_rhs1 (def_stmt2
);
5540 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2
))
5541 || !INTEGRAL_TYPE_P (TREE_TYPE (names
[1]))
5542 || (TYPE_PRECISION (TREE_TYPE (name2
))
5543 != TYPE_PRECISION (TREE_TYPE (names
[1])))
5544 || !live_on_edge (e
, names
[1])
5545 || has_single_use (names
[1]))
5546 names
[1] = NULL_TREE
;
5548 if (live_on_edge (e
, name2
)
5549 && !has_single_use (name2
))
5553 if (names
[0] || names
[1])
5555 wide_int minv
, maxv
, valv
, cst2v
;
5556 wide_int tem
, sgnbit
;
5557 bool valid_p
= false, valn
, cst2n
;
5558 enum tree_code ccode
= comp_code
;
5560 valv
= wide_int::from (val
, nprec
, UNSIGNED
);
5561 cst2v
= wide_int::from (cst2
, nprec
, UNSIGNED
);
5562 valn
= wi::neg_p (valv
, TYPE_SIGN (TREE_TYPE (val
)));
5563 cst2n
= wi::neg_p (cst2v
, TYPE_SIGN (TREE_TYPE (val
)));
5564 /* If CST2 doesn't have most significant bit set,
5565 but VAL is negative, we have comparison like
5566 if ((x & 0x123) > -4) (always true). Just give up. */
5570 sgnbit
= wi::set_bit_in_zero (nprec
- 1, nprec
);
5572 sgnbit
= wi::zero (nprec
);
5573 minv
= valv
& cst2v
;
5577 /* Minimum unsigned value for equality is VAL & CST2
5578 (should be equal to VAL, otherwise we probably should
5579 have folded the comparison into false) and
5580 maximum unsigned value is VAL | ~CST2. */
5581 maxv
= valv
| ~cst2v
;
5586 tem
= valv
| ~cst2v
;
5587 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5591 sgnbit
= wi::zero (nprec
);
5594 /* If (VAL | ~CST2) is all ones, handle it as
5595 (X & CST2) < VAL. */
5600 sgnbit
= wi::zero (nprec
);
5603 if (!cst2n
&& wi::neg_p (cst2v
))
5604 sgnbit
= wi::set_bit_in_zero (nprec
- 1, nprec
);
5613 if (tem
== wi::mask (nprec
- 1, false, nprec
))
5619 sgnbit
= wi::zero (nprec
);
5624 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5625 is VAL and maximum unsigned value is ~0. For signed
5626 comparison, if CST2 doesn't have most significant bit
5627 set, handle it similarly. If CST2 has MSB set,
5628 the minimum is the same, and maximum is ~0U/2. */
5631 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5633 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5637 maxv
= wi::mask (nprec
- (cst2n
? 1 : 0), false, nprec
);
5643 /* Find out smallest MINV where MINV > VAL
5644 && (MINV & CST2) == MINV, if any. If VAL is signed and
5645 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5646 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5649 maxv
= wi::mask (nprec
- (cst2n
? 1 : 0), false, nprec
);
5654 /* Minimum unsigned value for <= is 0 and maximum
5655 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5656 Otherwise, find smallest VAL2 where VAL2 > VAL
5657 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5659 For signed comparison, if CST2 doesn't have most
5660 significant bit set, handle it similarly. If CST2 has
5661 MSB set, the maximum is the same and minimum is INT_MIN. */
5666 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5678 /* Minimum unsigned value for < is 0 and maximum
5679 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5680 Otherwise, find smallest VAL2 where VAL2 > VAL
5681 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5683 For signed comparison, if CST2 doesn't have most
5684 significant bit set, handle it similarly. If CST2 has
5685 MSB set, the maximum is the same and minimum is INT_MIN. */
5694 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5708 && (maxv
- minv
) != -1)
5710 tree tmp
, new_val
, type
;
5713 for (i
= 0; i
< 2; i
++)
5716 wide_int maxv2
= maxv
;
5718 type
= TREE_TYPE (names
[i
]);
5719 if (!TYPE_UNSIGNED (type
))
5721 type
= build_nonstandard_integer_type (nprec
, 1);
5722 tmp
= build1 (NOP_EXPR
, type
, names
[i
]);
5726 tmp
= build2 (PLUS_EXPR
, type
, tmp
,
5727 wide_int_to_tree (type
, -minv
));
5728 maxv2
= maxv
- minv
;
5730 new_val
= wide_int_to_tree (type
, maxv2
);
5734 fprintf (dump_file
, "Adding assert for ");
5735 print_generic_expr (dump_file
, names
[i
], 0);
5736 fprintf (dump_file
, " from ");
5737 print_generic_expr (dump_file
, tmp
, 0);
5738 fprintf (dump_file
, "\n");
5741 register_new_assert_for (names
[i
], tmp
, LE_EXPR
,
5742 new_val
, NULL
, e
, bsi
);
5749 /* OP is an operand of a truth value expression which is known to have
5750 a particular value. Register any asserts for OP and for any
5751 operands in OP's defining statement.
5753 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5754 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5757 register_edge_assert_for_1 (tree op
, enum tree_code code
,
5758 edge e
, gimple_stmt_iterator bsi
)
5762 enum tree_code rhs_code
;
5764 /* We only care about SSA_NAMEs. */
5765 if (TREE_CODE (op
) != SSA_NAME
)
5768 /* We know that OP will have a zero or nonzero value. If OP is used
5769 more than once go ahead and register an assert for OP. */
5770 if (live_on_edge (e
, op
)
5771 && !has_single_use (op
))
5773 val
= build_int_cst (TREE_TYPE (op
), 0);
5774 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
5777 /* Now look at how OP is set. If it's set from a comparison,
5778 a truth operation or some bit operations, then we may be able
5779 to register information about the operands of that assignment. */
5780 op_def
= SSA_NAME_DEF_STMT (op
);
5781 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
5784 rhs_code
= gimple_assign_rhs_code (op_def
);
5786 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
5788 bool invert
= (code
== EQ_EXPR
? true : false);
5789 tree op0
= gimple_assign_rhs1 (op_def
);
5790 tree op1
= gimple_assign_rhs2 (op_def
);
5792 if (TREE_CODE (op0
) == SSA_NAME
)
5793 register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
, invert
);
5794 if (TREE_CODE (op1
) == SSA_NAME
)
5795 register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
, invert
);
5797 else if ((code
== NE_EXPR
5798 && gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
)
5800 && gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
))
5802 /* Recurse on each operand. */
5803 tree op0
= gimple_assign_rhs1 (op_def
);
5804 tree op1
= gimple_assign_rhs2 (op_def
);
5805 if (TREE_CODE (op0
) == SSA_NAME
5806 && has_single_use (op0
))
5807 register_edge_assert_for_1 (op0
, code
, e
, bsi
);
5808 if (TREE_CODE (op1
) == SSA_NAME
5809 && has_single_use (op1
))
5810 register_edge_assert_for_1 (op1
, code
, e
, bsi
);
5812 else if (gimple_assign_rhs_code (op_def
) == BIT_NOT_EXPR
5813 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def
))) == 1)
5815 /* Recurse, flipping CODE. */
5816 code
= invert_tree_comparison (code
, false);
5817 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
), code
, e
, bsi
);
5819 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
5821 /* Recurse through the copy. */
5822 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
), code
, e
, bsi
);
5824 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
5826 /* Recurse through the type conversion, unless it is a narrowing
5827 conversion or conversion from non-integral type. */
5828 tree rhs
= gimple_assign_rhs1 (op_def
);
5829 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs
))
5830 && (TYPE_PRECISION (TREE_TYPE (rhs
))
5831 <= TYPE_PRECISION (TREE_TYPE (op
))))
5832 register_edge_assert_for_1 (rhs
, code
, e
, bsi
);
5836 /* Try to register an edge assertion for SSA name NAME on edge E for
5837 the condition COND contributing to the conditional jump pointed to by
5841 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
5842 enum tree_code cond_code
, tree cond_op0
,
5846 enum tree_code comp_code
;
5847 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
5849 /* Do not attempt to infer anything in names that flow through
5851 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
5854 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
5860 /* Register ASSERT_EXPRs for name. */
5861 register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
5862 cond_op1
, is_else_edge
);
5865 /* If COND is effectively an equality test of an SSA_NAME against
5866 the value zero or one, then we may be able to assert values
5867 for SSA_NAMEs which flow into COND. */
5869 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5870 statement of NAME we can assert both operands of the BIT_AND_EXPR
5871 have nonzero value. */
5872 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
5873 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
5875 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5877 if (is_gimple_assign (def_stmt
)
5878 && gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
)
5880 tree op0
= gimple_assign_rhs1 (def_stmt
);
5881 tree op1
= gimple_assign_rhs2 (def_stmt
);
5882 register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
5883 register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
5887 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5888 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5890 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
5891 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
5893 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5895 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5896 necessarily zero value, or if type-precision is one. */
5897 if (is_gimple_assign (def_stmt
)
5898 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
5899 && (TYPE_PRECISION (TREE_TYPE (name
)) == 1
5900 || comp_code
== EQ_EXPR
)))
5902 tree op0
= gimple_assign_rhs1 (def_stmt
);
5903 tree op1
= gimple_assign_rhs2 (def_stmt
);
5904 register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
5905 register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
5911 /* Determine whether the outgoing edges of BB should receive an
5912 ASSERT_EXPR for each of the operands of BB's LAST statement.
5913 The last statement of BB must be a COND_EXPR.
5915 If any of the sub-graphs rooted at BB have an interesting use of
5916 the predicate operands, an assert location node is added to the
5917 list of assertions for the corresponding operands. */
5920 find_conditional_asserts (basic_block bb
, gcond
*last
)
5922 gimple_stmt_iterator bsi
;
5928 bsi
= gsi_for_stmt (last
);
5930 /* Look for uses of the operands in each of the sub-graphs
5931 rooted at BB. We need to check each of the outgoing edges
5932 separately, so that we know what kind of ASSERT_EXPR to
5934 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5939 /* Register the necessary assertions for each operand in the
5940 conditional predicate. */
5941 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
5942 register_edge_assert_for (op
, e
, bsi
,
5943 gimple_cond_code (last
),
5944 gimple_cond_lhs (last
),
5945 gimple_cond_rhs (last
));
5955 /* Compare two case labels sorting first by the destination bb index
5956 and then by the case value. */
5959 compare_case_labels (const void *p1
, const void *p2
)
5961 const struct case_info
*ci1
= (const struct case_info
*) p1
;
5962 const struct case_info
*ci2
= (const struct case_info
*) p2
;
5963 int idx1
= ci1
->bb
->index
;
5964 int idx2
= ci2
->bb
->index
;
5968 else if (idx1
== idx2
)
5970 /* Make sure the default label is first in a group. */
5971 if (!CASE_LOW (ci1
->expr
))
5973 else if (!CASE_LOW (ci2
->expr
))
5976 return tree_int_cst_compare (CASE_LOW (ci1
->expr
),
5977 CASE_LOW (ci2
->expr
));
5983 /* Determine whether the outgoing edges of BB should receive an
5984 ASSERT_EXPR for each of the operands of BB's LAST statement.
5985 The last statement of BB must be a SWITCH_EXPR.
5987 If any of the sub-graphs rooted at BB have an interesting use of
5988 the predicate operands, an assert location node is added to the
5989 list of assertions for the corresponding operands. */
5992 find_switch_asserts (basic_block bb
, gswitch
*last
)
5994 gimple_stmt_iterator bsi
;
5997 struct case_info
*ci
;
5998 size_t n
= gimple_switch_num_labels (last
);
5999 #if GCC_VERSION >= 4000
6002 /* Work around GCC 3.4 bug (PR 37086). */
6003 volatile unsigned int idx
;
6006 bsi
= gsi_for_stmt (last
);
6007 op
= gimple_switch_index (last
);
6008 if (TREE_CODE (op
) != SSA_NAME
)
6011 /* Build a vector of case labels sorted by destination label. */
6012 ci
= XNEWVEC (struct case_info
, n
);
6013 for (idx
= 0; idx
< n
; ++idx
)
6015 ci
[idx
].expr
= gimple_switch_label (last
, idx
);
6016 ci
[idx
].bb
= label_to_block (CASE_LABEL (ci
[idx
].expr
));
6018 qsort (ci
, n
, sizeof (struct case_info
), compare_case_labels
);
6020 for (idx
= 0; idx
< n
; ++idx
)
6023 tree cl
= ci
[idx
].expr
;
6024 basic_block cbb
= ci
[idx
].bb
;
6026 min
= CASE_LOW (cl
);
6027 max
= CASE_HIGH (cl
);
6029 /* If there are multiple case labels with the same destination
6030 we need to combine them to a single value range for the edge. */
6031 if (idx
+ 1 < n
&& cbb
== ci
[idx
+ 1].bb
)
6033 /* Skip labels until the last of the group. */
6036 } while (idx
< n
&& cbb
== ci
[idx
].bb
);
6039 /* Pick up the maximum of the case label range. */
6040 if (CASE_HIGH (ci
[idx
].expr
))
6041 max
= CASE_HIGH (ci
[idx
].expr
);
6043 max
= CASE_LOW (ci
[idx
].expr
);
6046 /* Nothing to do if the range includes the default label until we
6047 can register anti-ranges. */
6048 if (min
== NULL_TREE
)
6051 /* Find the edge to register the assert expr on. */
6052 e
= find_edge (bb
, cbb
);
6054 /* Register the necessary assertions for the operand in the
6056 register_edge_assert_for (op
, e
, bsi
,
6057 max
? GE_EXPR
: EQ_EXPR
,
6058 op
, fold_convert (TREE_TYPE (op
), min
));
6060 register_edge_assert_for (op
, e
, bsi
, LE_EXPR
, op
,
6061 fold_convert (TREE_TYPE (op
), max
));
6068 /* Traverse all the statements in block BB looking for statements that
6069 may generate useful assertions for the SSA names in their operand.
6070 If a statement produces a useful assertion A for name N_i, then the
6071 list of assertions already generated for N_i is scanned to
6072 determine if A is actually needed.
6074 If N_i already had the assertion A at a location dominating the
6075 current location, then nothing needs to be done. Otherwise, the
6076 new location for A is recorded instead.
6078 1- For every statement S in BB, all the variables used by S are
6079 added to bitmap FOUND_IN_SUBGRAPH.
6081 2- If statement S uses an operand N in a way that exposes a known
6082 value range for N, then if N was not already generated by an
6083 ASSERT_EXPR, create a new assert location for N. For instance,
6084 if N is a pointer and the statement dereferences it, we can
6085 assume that N is not NULL.
6087 3- COND_EXPRs are a special case of #2. We can derive range
6088 information from the predicate but need to insert different
6089 ASSERT_EXPRs for each of the sub-graphs rooted at the
6090 conditional block. If the last statement of BB is a conditional
6091 expression of the form 'X op Y', then
6093 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6095 b) If the conditional is the only entry point to the sub-graph
6096 corresponding to the THEN_CLAUSE, recurse into it. On
6097 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6098 an ASSERT_EXPR is added for the corresponding variable.
6100 c) Repeat step (b) on the ELSE_CLAUSE.
6102 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6111 In this case, an assertion on the THEN clause is useful to
6112 determine that 'a' is always 9 on that edge. However, an assertion
6113 on the ELSE clause would be unnecessary.
6115 4- If BB does not end in a conditional expression, then we recurse
6116 into BB's dominator children.
6118 At the end of the recursive traversal, every SSA name will have a
6119 list of locations where ASSERT_EXPRs should be added. When a new
6120 location for name N is found, it is registered by calling
6121 register_new_assert_for. That function keeps track of all the
6122 registered assertions to prevent adding unnecessary assertions.
6123 For instance, if a pointer P_4 is dereferenced more than once in a
6124 dominator tree, only the location dominating all the dereference of
6125 P_4 will receive an ASSERT_EXPR. */
6128 find_assert_locations_1 (basic_block bb
, sbitmap live
)
6132 last
= last_stmt (bb
);
6134 /* If BB's last statement is a conditional statement involving integer
6135 operands, determine if we need to add ASSERT_EXPRs. */
6137 && gimple_code (last
) == GIMPLE_COND
6138 && !fp_predicate (last
)
6139 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
6140 find_conditional_asserts (bb
, as_a
<gcond
*> (last
));
6142 /* If BB's last statement is a switch statement involving integer
6143 operands, determine if we need to add ASSERT_EXPRs. */
6145 && gimple_code (last
) == GIMPLE_SWITCH
6146 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
6147 find_switch_asserts (bb
, as_a
<gswitch
*> (last
));
6149 /* Traverse all the statements in BB marking used names and looking
6150 for statements that may infer assertions for their used operands. */
6151 for (gimple_stmt_iterator si
= gsi_last_bb (bb
); !gsi_end_p (si
);
6158 stmt
= gsi_stmt (si
);
6160 if (is_gimple_debug (stmt
))
6163 /* See if we can derive an assertion for any of STMT's operands. */
6164 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
6167 enum tree_code comp_code
;
6169 /* If op is not live beyond this stmt, do not bother to insert
6171 if (!bitmap_bit_p (live
, SSA_NAME_VERSION (op
)))
6174 /* If OP is used in such a way that we can infer a value
6175 range for it, and we don't find a previous assertion for
6176 it, create a new assertion location node for OP. */
6177 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
6179 /* If we are able to infer a nonzero value range for OP,
6180 then walk backwards through the use-def chain to see if OP
6181 was set via a typecast.
6183 If so, then we can also infer a nonzero value range
6184 for the operand of the NOP_EXPR. */
6185 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
6188 gimple def_stmt
= SSA_NAME_DEF_STMT (t
);
6190 while (is_gimple_assign (def_stmt
)
6191 && CONVERT_EXPR_CODE_P
6192 (gimple_assign_rhs_code (def_stmt
))
6194 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
6196 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
6198 t
= gimple_assign_rhs1 (def_stmt
);
6199 def_stmt
= SSA_NAME_DEF_STMT (t
);
6201 /* Note we want to register the assert for the
6202 operand of the NOP_EXPR after SI, not after the
6204 if (! has_single_use (t
))
6205 register_new_assert_for (t
, t
, comp_code
, value
,
6210 register_new_assert_for (op
, op
, comp_code
, value
, bb
, NULL
, si
);
6215 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
6216 bitmap_set_bit (live
, SSA_NAME_VERSION (op
));
6217 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_DEF
)
6218 bitmap_clear_bit (live
, SSA_NAME_VERSION (op
));
6221 /* Traverse all PHI nodes in BB, updating live. */
6222 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
6225 use_operand_p arg_p
;
6227 gphi
*phi
= si
.phi ();
6228 tree res
= gimple_phi_result (phi
);
6230 if (virtual_operand_p (res
))
6233 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
6235 tree arg
= USE_FROM_PTR (arg_p
);
6236 if (TREE_CODE (arg
) == SSA_NAME
)
6237 bitmap_set_bit (live
, SSA_NAME_VERSION (arg
));
6240 bitmap_clear_bit (live
, SSA_NAME_VERSION (res
));
6244 /* Do an RPO walk over the function computing SSA name liveness
6245 on-the-fly and deciding on assert expressions to insert. */
6248 find_assert_locations (void)
6250 int *rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6251 int *bb_rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6252 int *last_rpo
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
6255 live
= XCNEWVEC (sbitmap
, last_basic_block_for_fn (cfun
));
6256 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
6257 for (i
= 0; i
< rpo_cnt
; ++i
)
6260 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6261 the order we compute liveness and insert asserts we otherwise
6262 fail to insert asserts into the loop latch. */
6264 FOR_EACH_LOOP (loop
, 0)
6266 i
= loop
->latch
->index
;
6267 unsigned int j
= single_succ_edge (loop
->latch
)->dest_idx
;
6268 for (gphi_iterator gsi
= gsi_start_phis (loop
->header
);
6269 !gsi_end_p (gsi
); gsi_next (&gsi
))
6271 gphi
*phi
= gsi
.phi ();
6272 if (virtual_operand_p (gimple_phi_result (phi
)))
6274 tree arg
= gimple_phi_arg_def (phi
, j
);
6275 if (TREE_CODE (arg
) == SSA_NAME
)
6277 if (live
[i
] == NULL
)
6279 live
[i
] = sbitmap_alloc (num_ssa_names
);
6280 bitmap_clear (live
[i
]);
6282 bitmap_set_bit (live
[i
], SSA_NAME_VERSION (arg
));
6287 for (i
= rpo_cnt
- 1; i
>= 0; --i
)
6289 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
6295 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
6296 bitmap_clear (live
[rpo
[i
]]);
6299 /* Process BB and update the live information with uses in
6301 find_assert_locations_1 (bb
, live
[rpo
[i
]]);
6303 /* Merge liveness into the predecessor blocks and free it. */
6304 if (!bitmap_empty_p (live
[rpo
[i
]]))
6307 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6309 int pred
= e
->src
->index
;
6310 if ((e
->flags
& EDGE_DFS_BACK
) || pred
== ENTRY_BLOCK
)
6315 live
[pred
] = sbitmap_alloc (num_ssa_names
);
6316 bitmap_clear (live
[pred
]);
6318 bitmap_ior (live
[pred
], live
[pred
], live
[rpo
[i
]]);
6320 if (bb_rpo
[pred
] < pred_rpo
)
6321 pred_rpo
= bb_rpo
[pred
];
6324 /* Record the RPO number of the last visited block that needs
6325 live information from this block. */
6326 last_rpo
[rpo
[i
]] = pred_rpo
;
6330 sbitmap_free (live
[rpo
[i
]]);
6331 live
[rpo
[i
]] = NULL
;
6334 /* We can free all successors live bitmaps if all their
6335 predecessors have been visited already. */
6336 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6337 if (last_rpo
[e
->dest
->index
] == i
6338 && live
[e
->dest
->index
])
6340 sbitmap_free (live
[e
->dest
->index
]);
6341 live
[e
->dest
->index
] = NULL
;
6346 XDELETEVEC (bb_rpo
);
6347 XDELETEVEC (last_rpo
);
6348 for (i
= 0; i
< last_basic_block_for_fn (cfun
); ++i
)
6350 sbitmap_free (live
[i
]);
6354 /* Create an ASSERT_EXPR for NAME and insert it in the location
6355 indicated by LOC. Return true if we made any edge insertions. */
6358 process_assert_insertions_for (tree name
, assert_locus_t loc
)
6360 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6367 /* If we have X <=> X do not insert an assert expr for that. */
6368 if (loc
->expr
== loc
->val
)
6371 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
6372 assert_stmt
= build_assert_expr_for (cond
, name
);
6375 /* We have been asked to insert the assertion on an edge. This
6376 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6377 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
6378 || (gimple_code (gsi_stmt (loc
->si
))
6381 gsi_insert_on_edge (loc
->e
, assert_stmt
);
6385 /* Otherwise, we can insert right after LOC->SI iff the
6386 statement must not be the last statement in the block. */
6387 stmt
= gsi_stmt (loc
->si
);
6388 if (!stmt_ends_bb_p (stmt
))
6390 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
6394 /* If STMT must be the last statement in BB, we can only insert new
6395 assertions on the non-abnormal edge out of BB. Note that since
6396 STMT is not control flow, there may only be one non-abnormal edge
6398 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
6399 if (!(e
->flags
& EDGE_ABNORMAL
))
6401 gsi_insert_on_edge (e
, assert_stmt
);
6409 /* Process all the insertions registered for every name N_i registered
6410 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6411 found in ASSERTS_FOR[i]. */
6414 process_assert_insertions (void)
6418 bool update_edges_p
= false;
6419 int num_asserts
= 0;
6421 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6422 dump_all_asserts (dump_file
);
6424 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
6426 assert_locus_t loc
= asserts_for
[i
];
6431 assert_locus_t next
= loc
->next
;
6432 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
6440 gsi_commit_edge_inserts ();
6442 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
6447 /* Traverse the flowgraph looking for conditional jumps to insert range
6448 expressions. These range expressions are meant to provide information
6449 to optimizations that need to reason in terms of value ranges. They
6450 will not be expanded into RTL. For instance, given:
6459 this pass will transform the code into:
6465 x = ASSERT_EXPR <x, x < y>
6470 y = ASSERT_EXPR <y, x >= y>
6474 The idea is that once copy and constant propagation have run, other
6475 optimizations will be able to determine what ranges of values can 'x'
6476 take in different paths of the code, simply by checking the reaching
6477 definition of 'x'. */
6480 insert_range_assertions (void)
6482 need_assert_for
= BITMAP_ALLOC (NULL
);
6483 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
6485 calculate_dominance_info (CDI_DOMINATORS
);
6487 find_assert_locations ();
6488 if (!bitmap_empty_p (need_assert_for
))
6490 process_assert_insertions ();
6491 update_ssa (TODO_update_ssa_no_phi
);
6494 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6496 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
6497 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
6501 BITMAP_FREE (need_assert_for
);
6504 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6505 and "struct" hacks. If VRP can determine that the
6506 array subscript is a constant, check if it is outside valid
6507 range. If the array subscript is a RANGE, warn if it is
6508 non-overlapping with valid range.
6509 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6512 check_array_ref (location_t location
, tree ref
, bool ignore_off_by_one
)
6514 value_range_t
* vr
= NULL
;
6515 tree low_sub
, up_sub
;
6516 tree low_bound
, up_bound
, up_bound_p1
;
6519 if (TREE_NO_WARNING (ref
))
6522 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
6523 up_bound
= array_ref_up_bound (ref
);
6525 /* Can not check flexible arrays. */
6527 || TREE_CODE (up_bound
) != INTEGER_CST
)
6530 /* Accesses to trailing arrays via pointers may access storage
6531 beyond the types array bounds. */
6532 base
= get_base_address (ref
);
6533 if ((warn_array_bounds
< 2)
6534 && base
&& TREE_CODE (base
) == MEM_REF
)
6536 tree cref
, next
= NULL_TREE
;
6538 if (TREE_CODE (TREE_OPERAND (ref
, 0)) != COMPONENT_REF
)
6541 cref
= TREE_OPERAND (ref
, 0);
6542 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref
, 0))) == RECORD_TYPE
)
6543 for (next
= DECL_CHAIN (TREE_OPERAND (cref
, 1));
6544 next
&& TREE_CODE (next
) != FIELD_DECL
;
6545 next
= DECL_CHAIN (next
))
6548 /* If this is the last field in a struct type or a field in a
6549 union type do not warn. */
6554 low_bound
= array_ref_low_bound (ref
);
6555 up_bound_p1
= int_const_binop (PLUS_EXPR
, up_bound
,
6556 build_int_cst (TREE_TYPE (up_bound
), 1));
6558 if (TREE_CODE (low_sub
) == SSA_NAME
)
6560 vr
= get_value_range (low_sub
);
6561 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
6563 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
6564 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
6568 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
6570 if (TREE_CODE (up_sub
) == INTEGER_CST
6571 && tree_int_cst_lt (up_bound
, up_sub
)
6572 && TREE_CODE (low_sub
) == INTEGER_CST
6573 && tree_int_cst_lt (low_sub
, low_bound
))
6575 warning_at (location
, OPT_Warray_bounds
,
6576 "array subscript is outside array bounds");
6577 TREE_NO_WARNING (ref
) = 1;
6580 else if (TREE_CODE (up_sub
) == INTEGER_CST
6581 && (ignore_off_by_one
6582 ? (tree_int_cst_lt (up_bound
, up_sub
)
6583 && !tree_int_cst_equal (up_bound_p1
, up_sub
))
6584 : (tree_int_cst_lt (up_bound
, up_sub
)
6585 || tree_int_cst_equal (up_bound_p1
, up_sub
))))
6587 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6589 fprintf (dump_file
, "Array bound warning for ");
6590 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
6591 fprintf (dump_file
, "\n");
6593 warning_at (location
, OPT_Warray_bounds
,
6594 "array subscript is above array bounds");
6595 TREE_NO_WARNING (ref
) = 1;
6597 else if (TREE_CODE (low_sub
) == INTEGER_CST
6598 && tree_int_cst_lt (low_sub
, low_bound
))
6600 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6602 fprintf (dump_file
, "Array bound warning for ");
6603 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
6604 fprintf (dump_file
, "\n");
6606 warning_at (location
, OPT_Warray_bounds
,
6607 "array subscript is below array bounds");
6608 TREE_NO_WARNING (ref
) = 1;
6612 /* Searches if the expr T, located at LOCATION computes
6613 address of an ARRAY_REF, and call check_array_ref on it. */
6616 search_for_addr_array (tree t
, location_t location
)
6618 while (TREE_CODE (t
) == SSA_NAME
)
6620 gimple g
= SSA_NAME_DEF_STMT (t
);
6622 if (gimple_code (g
) != GIMPLE_ASSIGN
)
6625 if (get_gimple_rhs_class (gimple_assign_rhs_code (g
))
6626 != GIMPLE_SINGLE_RHS
)
6629 t
= gimple_assign_rhs1 (g
);
6633 /* We are only interested in addresses of ARRAY_REF's. */
6634 if (TREE_CODE (t
) != ADDR_EXPR
)
6637 /* Check each ARRAY_REFs in the reference chain. */
6640 if (TREE_CODE (t
) == ARRAY_REF
)
6641 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
6643 t
= TREE_OPERAND (t
, 0);
6645 while (handled_component_p (t
));
6647 if (TREE_CODE (t
) == MEM_REF
6648 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
6649 && !TREE_NO_WARNING (t
))
6651 tree tem
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
6652 tree low_bound
, up_bound
, el_sz
;
6654 if (TREE_CODE (TREE_TYPE (tem
)) != ARRAY_TYPE
6655 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem
))) == ARRAY_TYPE
6656 || !TYPE_DOMAIN (TREE_TYPE (tem
)))
6659 low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6660 up_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6661 el_sz
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem
)));
6663 || TREE_CODE (low_bound
) != INTEGER_CST
6665 || TREE_CODE (up_bound
) != INTEGER_CST
6667 || TREE_CODE (el_sz
) != INTEGER_CST
)
6670 idx
= mem_ref_offset (t
);
6671 idx
= wi::sdiv_trunc (idx
, wi::to_offset (el_sz
));
6672 if (wi::lts_p (idx
, 0))
6674 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6676 fprintf (dump_file
, "Array bound warning for ");
6677 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, t
);
6678 fprintf (dump_file
, "\n");
6680 warning_at (location
, OPT_Warray_bounds
,
6681 "array subscript is below array bounds");
6682 TREE_NO_WARNING (t
) = 1;
6684 else if (wi::gts_p (idx
, (wi::to_offset (up_bound
)
6685 - wi::to_offset (low_bound
) + 1)))
6687 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6689 fprintf (dump_file
, "Array bound warning for ");
6690 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, t
);
6691 fprintf (dump_file
, "\n");
6693 warning_at (location
, OPT_Warray_bounds
,
6694 "array subscript is above array bounds");
6695 TREE_NO_WARNING (t
) = 1;
6700 /* walk_tree() callback that checks if *TP is
6701 an ARRAY_REF inside an ADDR_EXPR (in which an array
6702 subscript one outside the valid range is allowed). Call
6703 check_array_ref for each ARRAY_REF found. The location is
6707 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
6710 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6711 location_t location
;
6713 if (EXPR_HAS_LOCATION (t
))
6714 location
= EXPR_LOCATION (t
);
6717 location_t
*locp
= (location_t
*) wi
->info
;
6721 *walk_subtree
= TRUE
;
6723 if (TREE_CODE (t
) == ARRAY_REF
)
6724 check_array_ref (location
, t
, false /*ignore_off_by_one*/);
6726 if (TREE_CODE (t
) == MEM_REF
6727 || (TREE_CODE (t
) == RETURN_EXPR
&& TREE_OPERAND (t
, 0)))
6728 search_for_addr_array (TREE_OPERAND (t
, 0), location
);
6730 if (TREE_CODE (t
) == ADDR_EXPR
)
6731 *walk_subtree
= FALSE
;
6736 /* Walk over all statements of all reachable BBs and call check_array_bounds
6740 check_all_array_refs (void)
6743 gimple_stmt_iterator si
;
6745 FOR_EACH_BB_FN (bb
, cfun
)
6749 bool executable
= false;
6751 /* Skip blocks that were found to be unreachable. */
6752 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6753 executable
|= !!(e
->flags
& EDGE_EXECUTABLE
);
6757 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6759 gimple stmt
= gsi_stmt (si
);
6760 struct walk_stmt_info wi
;
6761 if (!gimple_has_location (stmt
))
6764 if (is_gimple_call (stmt
))
6767 size_t n
= gimple_call_num_args (stmt
);
6768 for (i
= 0; i
< n
; i
++)
6770 tree arg
= gimple_call_arg (stmt
, i
);
6771 search_for_addr_array (arg
, gimple_location (stmt
));
6776 memset (&wi
, 0, sizeof (wi
));
6777 wi
.info
= CONST_CAST (void *, (const void *)
6778 gimple_location_ptr (stmt
));
6780 walk_gimple_op (gsi_stmt (si
),
6788 /* Return true if all imm uses of VAR are either in STMT, or
6789 feed (optionally through a chain of single imm uses) GIMPLE_COND
6790 in basic block COND_BB. */
6793 all_imm_uses_in_stmt_or_feed_cond (tree var
, gimple stmt
, basic_block cond_bb
)
6795 use_operand_p use_p
, use2_p
;
6796 imm_use_iterator iter
;
6798 FOR_EACH_IMM_USE_FAST (use_p
, iter
, var
)
6799 if (USE_STMT (use_p
) != stmt
)
6801 gimple use_stmt
= USE_STMT (use_p
), use_stmt2
;
6802 if (is_gimple_debug (use_stmt
))
6804 while (is_gimple_assign (use_stmt
)
6805 && TREE_CODE (gimple_assign_lhs (use_stmt
)) == SSA_NAME
6806 && single_imm_use (gimple_assign_lhs (use_stmt
),
6807 &use2_p
, &use_stmt2
))
6808 use_stmt
= use_stmt2
;
6809 if (gimple_code (use_stmt
) != GIMPLE_COND
6810 || gimple_bb (use_stmt
) != cond_bb
)
6823 __builtin_unreachable ();
6825 x_5 = ASSERT_EXPR <x_3, ...>;
6826 If x_3 has no other immediate uses (checked by caller),
6827 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6828 from the non-zero bitmask. */
6831 maybe_set_nonzero_bits (basic_block bb
, tree var
)
6833 edge e
= single_pred_edge (bb
);
6834 basic_block cond_bb
= e
->src
;
6835 gimple stmt
= last_stmt (cond_bb
);
6839 || gimple_code (stmt
) != GIMPLE_COND
6840 || gimple_cond_code (stmt
) != ((e
->flags
& EDGE_TRUE_VALUE
)
6841 ? EQ_EXPR
: NE_EXPR
)
6842 || TREE_CODE (gimple_cond_lhs (stmt
)) != SSA_NAME
6843 || !integer_zerop (gimple_cond_rhs (stmt
)))
6846 stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt
));
6847 if (!is_gimple_assign (stmt
)
6848 || gimple_assign_rhs_code (stmt
) != BIT_AND_EXPR
6849 || TREE_CODE (gimple_assign_rhs2 (stmt
)) != INTEGER_CST
)
6851 if (gimple_assign_rhs1 (stmt
) != var
)
6855 if (TREE_CODE (gimple_assign_rhs1 (stmt
)) != SSA_NAME
)
6857 stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
6858 if (!gimple_assign_cast_p (stmt2
)
6859 || gimple_assign_rhs1 (stmt2
) != var
6860 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2
))
6861 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt
)))
6862 != TYPE_PRECISION (TREE_TYPE (var
))))
6865 cst
= gimple_assign_rhs2 (stmt
);
6866 set_nonzero_bits (var
, wi::bit_and_not (get_nonzero_bits (var
), cst
));
6869 /* Convert range assertion expressions into the implied copies and
6870 copy propagate away the copies. Doing the trivial copy propagation
6871 here avoids the need to run the full copy propagation pass after
6874 FIXME, this will eventually lead to copy propagation removing the
6875 names that had useful range information attached to them. For
6876 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6877 then N_i will have the range [3, +INF].
6879 However, by converting the assertion into the implied copy
6880 operation N_i = N_j, we will then copy-propagate N_j into the uses
6881 of N_i and lose the range information. We may want to hold on to
6882 ASSERT_EXPRs a little while longer as the ranges could be used in
6883 things like jump threading.
6885 The problem with keeping ASSERT_EXPRs around is that passes after
6886 VRP need to handle them appropriately.
6888 Another approach would be to make the range information a first
6889 class property of the SSA_NAME so that it can be queried from
6890 any pass. This is made somewhat more complex by the need for
6891 multiple ranges to be associated with one SSA_NAME. */
6894 remove_range_assertions (void)
6897 gimple_stmt_iterator si
;
6898 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6899 a basic block preceeded by GIMPLE_COND branching to it and
6900 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6903 /* Note that the BSI iterator bump happens at the bottom of the
6904 loop and no bump is necessary if we're removing the statement
6905 referenced by the current BSI. */
6906 FOR_EACH_BB_FN (bb
, cfun
)
6907 for (si
= gsi_after_labels (bb
), is_unreachable
= -1; !gsi_end_p (si
);)
6909 gimple stmt
= gsi_stmt (si
);
6912 if (is_gimple_assign (stmt
)
6913 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
6915 tree lhs
= gimple_assign_lhs (stmt
);
6916 tree rhs
= gimple_assign_rhs1 (stmt
);
6918 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
6919 use_operand_p use_p
;
6920 imm_use_iterator iter
;
6922 gcc_assert (cond
!= boolean_false_node
);
6924 var
= ASSERT_EXPR_VAR (rhs
);
6925 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
6927 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
6928 && SSA_NAME_RANGE_INFO (lhs
))
6930 if (is_unreachable
== -1)
6933 if (single_pred_p (bb
)
6934 && assert_unreachable_fallthru_edge_p
6935 (single_pred_edge (bb
)))
6939 if (x_7 >= 10 && x_7 < 20)
6940 __builtin_unreachable ();
6941 x_8 = ASSERT_EXPR <x_7, ...>;
6942 if the only uses of x_7 are in the ASSERT_EXPR and
6943 in the condition. In that case, we can copy the
6944 range info from x_8 computed in this pass also
6947 && all_imm_uses_in_stmt_or_feed_cond (var
, stmt
,
6950 set_range_info (var
, SSA_NAME_RANGE_TYPE (lhs
),
6951 SSA_NAME_RANGE_INFO (lhs
)->get_min (),
6952 SSA_NAME_RANGE_INFO (lhs
)->get_max ());
6953 maybe_set_nonzero_bits (bb
, var
);
6957 /* Propagate the RHS into every use of the LHS. */
6958 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
6959 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
6960 SET_USE (use_p
, var
);
6962 /* And finally, remove the copy, it is not needed. */
6963 gsi_remove (&si
, true);
6964 release_defs (stmt
);
6968 if (!is_gimple_debug (gsi_stmt (si
)))
6976 /* Return true if STMT is interesting for VRP. */
6979 stmt_interesting_for_vrp (gimple stmt
)
6981 if (gimple_code (stmt
) == GIMPLE_PHI
)
6983 tree res
= gimple_phi_result (stmt
);
6984 return (!virtual_operand_p (res
)
6985 && (INTEGRAL_TYPE_P (TREE_TYPE (res
))
6986 || POINTER_TYPE_P (TREE_TYPE (res
))));
6988 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
6990 tree lhs
= gimple_get_lhs (stmt
);
6992 /* In general, assignments with virtual operands are not useful
6993 for deriving ranges, with the obvious exception of calls to
6994 builtin functions. */
6995 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
6996 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
6997 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
6998 && (is_gimple_call (stmt
)
6999 || !gimple_vuse (stmt
)))
7001 else if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
7002 switch (gimple_call_internal_fn (stmt
))
7004 case IFN_ADD_OVERFLOW
:
7005 case IFN_SUB_OVERFLOW
:
7006 case IFN_MUL_OVERFLOW
:
7007 /* These internal calls return _Complex integer type,
7008 but are interesting to VRP nevertheless. */
7009 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
7016 else if (gimple_code (stmt
) == GIMPLE_COND
7017 || gimple_code (stmt
) == GIMPLE_SWITCH
)
7024 /* Initialize local data structures for VRP. */
7027 vrp_initialize (void)
7031 values_propagated
= false;
7032 num_vr_values
= num_ssa_names
;
7033 vr_value
= XCNEWVEC (value_range_t
*, num_vr_values
);
7034 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
7036 FOR_EACH_BB_FN (bb
, cfun
)
7038 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
7041 gphi
*phi
= si
.phi ();
7042 if (!stmt_interesting_for_vrp (phi
))
7044 tree lhs
= PHI_RESULT (phi
);
7045 set_value_range_to_varying (get_value_range (lhs
));
7046 prop_set_simulate_again (phi
, false);
7049 prop_set_simulate_again (phi
, true);
7052 for (gimple_stmt_iterator si
= gsi_start_bb (bb
); !gsi_end_p (si
);
7055 gimple stmt
= gsi_stmt (si
);
7057 /* If the statement is a control insn, then we do not
7058 want to avoid simulating the statement once. Failure
7059 to do so means that those edges will never get added. */
7060 if (stmt_ends_bb_p (stmt
))
7061 prop_set_simulate_again (stmt
, true);
7062 else if (!stmt_interesting_for_vrp (stmt
))
7066 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
7067 set_value_range_to_varying (get_value_range (def
));
7068 prop_set_simulate_again (stmt
, false);
7071 prop_set_simulate_again (stmt
, true);
7076 /* Return the singleton value-range for NAME or NAME. */
7079 vrp_valueize (tree name
)
7081 if (TREE_CODE (name
) == SSA_NAME
)
7083 value_range_t
*vr
= get_value_range (name
);
7084 if (vr
->type
== VR_RANGE
7085 && (vr
->min
== vr
->max
7086 || operand_equal_p (vr
->min
, vr
->max
, 0)))
7092 /* Return the singleton value-range for NAME if that is a constant
7093 but signal to not follow SSA edges. */
7096 vrp_valueize_1 (tree name
)
7098 if (TREE_CODE (name
) == SSA_NAME
)
7100 /* If the definition may be simulated again we cannot follow
7101 this SSA edge as the SSA propagator does not necessarily
7102 re-visit the use. */
7103 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
7104 if (!gimple_nop_p (def_stmt
)
7105 && prop_simulate_again_p (def_stmt
))
7107 value_range_t
*vr
= get_value_range (name
);
7108 if (range_int_cst_singleton_p (vr
))
7114 /* Visit assignment STMT. If it produces an interesting range, record
7115 the SSA name in *OUTPUT_P. */
7117 static enum ssa_prop_result
7118 vrp_visit_assignment_or_call (gimple stmt
, tree
*output_p
)
7122 enum gimple_code code
= gimple_code (stmt
);
7123 lhs
= gimple_get_lhs (stmt
);
7125 /* We only keep track of ranges in integral and pointer types. */
7126 if (TREE_CODE (lhs
) == SSA_NAME
7127 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
7128 /* It is valid to have NULL MIN/MAX values on a type. See
7129 build_range_type. */
7130 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
7131 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
7132 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
7134 value_range_t new_vr
= VR_INITIALIZER
;
7136 /* Try folding the statement to a constant first. */
7137 tree tem
= gimple_fold_stmt_to_constant_1 (stmt
, vrp_valueize
,
7139 if (tem
&& is_gimple_min_invariant (tem
))
7140 set_value_range_to_value (&new_vr
, tem
, NULL
);
7141 /* Then dispatch to value-range extracting functions. */
7142 else if (code
== GIMPLE_CALL
)
7143 extract_range_basic (&new_vr
, stmt
);
7145 extract_range_from_assignment (&new_vr
, as_a
<gassign
*> (stmt
));
7147 if (update_value_range (lhs
, &new_vr
))
7151 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7153 fprintf (dump_file
, "Found new range for ");
7154 print_generic_expr (dump_file
, lhs
, 0);
7155 fprintf (dump_file
, ": ");
7156 dump_value_range (dump_file
, &new_vr
);
7157 fprintf (dump_file
, "\n");
7160 if (new_vr
.type
== VR_VARYING
)
7161 return SSA_PROP_VARYING
;
7163 return SSA_PROP_INTERESTING
;
7166 return SSA_PROP_NOT_INTERESTING
;
7168 else if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
7169 switch (gimple_call_internal_fn (stmt
))
7171 case IFN_ADD_OVERFLOW
:
7172 case IFN_SUB_OVERFLOW
:
7173 case IFN_MUL_OVERFLOW
:
7174 /* These internal calls return _Complex integer type,
7175 which VRP does not track, but the immediate uses
7176 thereof might be interesting. */
7177 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
7179 imm_use_iterator iter
;
7180 use_operand_p use_p
;
7181 enum ssa_prop_result res
= SSA_PROP_VARYING
;
7183 set_value_range_to_varying (get_value_range (lhs
));
7185 FOR_EACH_IMM_USE_FAST (use_p
, iter
, lhs
)
7187 gimple use_stmt
= USE_STMT (use_p
);
7188 if (!is_gimple_assign (use_stmt
))
7190 enum tree_code rhs_code
= gimple_assign_rhs_code (use_stmt
);
7191 if (rhs_code
!= REALPART_EXPR
&& rhs_code
!= IMAGPART_EXPR
)
7193 tree rhs1
= gimple_assign_rhs1 (use_stmt
);
7194 tree use_lhs
= gimple_assign_lhs (use_stmt
);
7195 if (TREE_CODE (rhs1
) != rhs_code
7196 || TREE_OPERAND (rhs1
, 0) != lhs
7197 || TREE_CODE (use_lhs
) != SSA_NAME
7198 || !stmt_interesting_for_vrp (use_stmt
)
7199 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs
))
7200 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs
))
7201 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs
))))
7204 /* If there is a change in the value range for any of the
7205 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
7206 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
7207 or IMAGPART_EXPR immediate uses, but none of them have
7208 a change in their value ranges, return
7209 SSA_PROP_NOT_INTERESTING. If there are no
7210 {REAL,IMAG}PART_EXPR uses at all,
7211 return SSA_PROP_VARYING. */
7212 value_range_t new_vr
= VR_INITIALIZER
;
7213 extract_range_basic (&new_vr
, use_stmt
);
7214 value_range_t
*old_vr
= get_value_range (use_lhs
);
7215 if (old_vr
->type
!= new_vr
.type
7216 || !vrp_operand_equal_p (old_vr
->min
, new_vr
.min
)
7217 || !vrp_operand_equal_p (old_vr
->max
, new_vr
.max
)
7218 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
.equiv
))
7219 res
= SSA_PROP_INTERESTING
;
7221 res
= SSA_PROP_NOT_INTERESTING
;
7222 BITMAP_FREE (new_vr
.equiv
);
7223 if (res
== SSA_PROP_INTERESTING
)
7237 /* Every other statement produces no useful ranges. */
7238 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
7239 set_value_range_to_varying (get_value_range (def
));
7241 return SSA_PROP_VARYING
;
7244 /* Helper that gets the value range of the SSA_NAME with version I
7245 or a symbolic range containing the SSA_NAME only if the value range
7246 is varying or undefined. */
7248 static inline value_range_t
7249 get_vr_for_comparison (int i
)
7251 value_range_t vr
= *get_value_range (ssa_name (i
));
7253 /* If name N_i does not have a valid range, use N_i as its own
7254 range. This allows us to compare against names that may
7255 have N_i in their ranges. */
7256 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
7259 vr
.min
= ssa_name (i
);
7260 vr
.max
= ssa_name (i
);
7266 /* Compare all the value ranges for names equivalent to VAR with VAL
7267 using comparison code COMP. Return the same value returned by
7268 compare_range_with_value, including the setting of
7269 *STRICT_OVERFLOW_P. */
7272 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
7273 bool *strict_overflow_p
)
7279 int used_strict_overflow
;
7281 value_range_t equiv_vr
;
7283 /* Get the set of equivalences for VAR. */
7284 e
= get_value_range (var
)->equiv
;
7286 /* Start at -1. Set it to 0 if we do a comparison without relying
7287 on overflow, or 1 if all comparisons rely on overflow. */
7288 used_strict_overflow
= -1;
7290 /* Compare vars' value range with val. */
7291 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
7293 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
7295 used_strict_overflow
= sop
? 1 : 0;
7297 /* If the equiv set is empty we have done all work we need to do. */
7301 && used_strict_overflow
> 0)
7302 *strict_overflow_p
= true;
7306 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
7308 equiv_vr
= get_vr_for_comparison (i
);
7310 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
7313 /* If we get different answers from different members
7314 of the equivalence set this check must be in a dead
7315 code region. Folding it to a trap representation
7316 would be correct here. For now just return don't-know. */
7326 used_strict_overflow
= 0;
7327 else if (used_strict_overflow
< 0)
7328 used_strict_overflow
= 1;
7333 && used_strict_overflow
> 0)
7334 *strict_overflow_p
= true;
7340 /* Given a comparison code COMP and names N1 and N2, compare all the
7341 ranges equivalent to N1 against all the ranges equivalent to N2
7342 to determine the value of N1 COMP N2. Return the same value
7343 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7344 whether we relied on an overflow infinity in the comparison. */
7348 compare_names (enum tree_code comp
, tree n1
, tree n2
,
7349 bool *strict_overflow_p
)
7353 bitmap_iterator bi1
, bi2
;
7355 int used_strict_overflow
;
7356 static bitmap_obstack
*s_obstack
= NULL
;
7357 static bitmap s_e1
= NULL
, s_e2
= NULL
;
7359 /* Compare the ranges of every name equivalent to N1 against the
7360 ranges of every name equivalent to N2. */
7361 e1
= get_value_range (n1
)->equiv
;
7362 e2
= get_value_range (n2
)->equiv
;
7364 /* Use the fake bitmaps if e1 or e2 are not available. */
7365 if (s_obstack
== NULL
)
7367 s_obstack
= XNEW (bitmap_obstack
);
7368 bitmap_obstack_initialize (s_obstack
);
7369 s_e1
= BITMAP_ALLOC (s_obstack
);
7370 s_e2
= BITMAP_ALLOC (s_obstack
);
7377 /* Add N1 and N2 to their own set of equivalences to avoid
7378 duplicating the body of the loop just to check N1 and N2
7380 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
7381 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
7383 /* If the equivalence sets have a common intersection, then the two
7384 names can be compared without checking their ranges. */
7385 if (bitmap_intersect_p (e1
, e2
))
7387 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7388 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7390 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
7392 : boolean_false_node
;
7395 /* Start at -1. Set it to 0 if we do a comparison without relying
7396 on overflow, or 1 if all comparisons rely on overflow. */
7397 used_strict_overflow
= -1;
7399 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7400 N2 to their own set of equivalences to avoid duplicating the body
7401 of the loop just to check N1 and N2 ranges. */
7402 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
7404 value_range_t vr1
= get_vr_for_comparison (i1
);
7406 t
= retval
= NULL_TREE
;
7407 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
7411 value_range_t vr2
= get_vr_for_comparison (i2
);
7413 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
7416 /* If we get different answers from different members
7417 of the equivalence set this check must be in a dead
7418 code region. Folding it to a trap representation
7419 would be correct here. For now just return don't-know. */
7423 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7424 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7430 used_strict_overflow
= 0;
7431 else if (used_strict_overflow
< 0)
7432 used_strict_overflow
= 1;
7438 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7439 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7440 if (used_strict_overflow
> 0)
7441 *strict_overflow_p
= true;
7446 /* None of the equivalent ranges are useful in computing this
7448 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7449 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7453 /* Helper function for vrp_evaluate_conditional_warnv. */
7456 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
7458 bool * strict_overflow_p
)
7460 value_range_t
*vr0
, *vr1
;
7462 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
7463 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
7465 tree res
= NULL_TREE
;
7467 res
= compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
7469 res
= compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
7471 res
= (compare_range_with_value
7472 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
7476 /* Helper function for vrp_evaluate_conditional_warnv. */
7479 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
7480 tree op1
, bool use_equiv_p
,
7481 bool *strict_overflow_p
, bool *only_ranges
)
7485 *only_ranges
= true;
7487 /* We only deal with integral and pointer types. */
7488 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7489 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
7495 && (ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
7496 (code
, op0
, op1
, strict_overflow_p
)))
7498 *only_ranges
= false;
7499 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
7500 return compare_names (code
, op0
, op1
, strict_overflow_p
);
7501 else if (TREE_CODE (op0
) == SSA_NAME
)
7502 return compare_name_with_value (code
, op0
, op1
, strict_overflow_p
);
7503 else if (TREE_CODE (op1
) == SSA_NAME
)
7504 return (compare_name_with_value
7505 (swap_tree_comparison (code
), op1
, op0
, strict_overflow_p
));
7508 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code
, op0
, op1
,
7513 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7514 information. Return NULL if the conditional can not be evaluated.
7515 The ranges of all the names equivalent with the operands in COND
7516 will be used when trying to compute the value. If the result is
7517 based on undefined signed overflow, issue a warning if
7521 vrp_evaluate_conditional (enum tree_code code
, tree op0
, tree op1
, gimple stmt
)
7527 /* Some passes and foldings leak constants with overflow flag set
7528 into the IL. Avoid doing wrong things with these and bail out. */
7529 if ((TREE_CODE (op0
) == INTEGER_CST
7530 && TREE_OVERFLOW (op0
))
7531 || (TREE_CODE (op1
) == INTEGER_CST
7532 && TREE_OVERFLOW (op1
)))
7536 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
7541 enum warn_strict_overflow_code wc
;
7542 const char* warnmsg
;
7544 if (is_gimple_min_invariant (ret
))
7546 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
7547 warnmsg
= G_("assuming signed overflow does not occur when "
7548 "simplifying conditional to constant");
7552 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
7553 warnmsg
= G_("assuming signed overflow does not occur when "
7554 "simplifying conditional");
7557 if (issue_strict_overflow_warning (wc
))
7559 location_t location
;
7561 if (!gimple_has_location (stmt
))
7562 location
= input_location
;
7564 location
= gimple_location (stmt
);
7565 warning_at (location
, OPT_Wstrict_overflow
, "%s", warnmsg
);
7569 if (warn_type_limits
7570 && ret
&& only_ranges
7571 && TREE_CODE_CLASS (code
) == tcc_comparison
7572 && TREE_CODE (op0
) == SSA_NAME
)
7574 /* If the comparison is being folded and the operand on the LHS
7575 is being compared against a constant value that is outside of
7576 the natural range of OP0's type, then the predicate will
7577 always fold regardless of the value of OP0. If -Wtype-limits
7578 was specified, emit a warning. */
7579 tree type
= TREE_TYPE (op0
);
7580 value_range_t
*vr0
= get_value_range (op0
);
7582 if (vr0
->type
== VR_RANGE
7583 && INTEGRAL_TYPE_P (type
)
7584 && vrp_val_is_min (vr0
->min
)
7585 && vrp_val_is_max (vr0
->max
)
7586 && is_gimple_min_invariant (op1
))
7588 location_t location
;
7590 if (!gimple_has_location (stmt
))
7591 location
= input_location
;
7593 location
= gimple_location (stmt
);
7595 warning_at (location
, OPT_Wtype_limits
,
7597 ? G_("comparison always false "
7598 "due to limited range of data type")
7599 : G_("comparison always true "
7600 "due to limited range of data type"));
7608 /* Visit conditional statement STMT. If we can determine which edge
7609 will be taken out of STMT's basic block, record it in
7610 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7611 SSA_PROP_VARYING. */
7613 static enum ssa_prop_result
7614 vrp_visit_cond_stmt (gcond
*stmt
, edge
*taken_edge_p
)
7619 *taken_edge_p
= NULL
;
7621 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7626 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
7627 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7628 fprintf (dump_file
, "\nWith known ranges\n");
7630 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
7632 fprintf (dump_file
, "\t");
7633 print_generic_expr (dump_file
, use
, 0);
7634 fprintf (dump_file
, ": ");
7635 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
7638 fprintf (dump_file
, "\n");
7641 /* Compute the value of the predicate COND by checking the known
7642 ranges of each of its operands.
7644 Note that we cannot evaluate all the equivalent ranges here
7645 because those ranges may not yet be final and with the current
7646 propagation strategy, we cannot determine when the value ranges
7647 of the names in the equivalence set have changed.
7649 For instance, given the following code fragment
7653 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7657 Assume that on the first visit to i_14, i_5 has the temporary
7658 range [8, 8] because the second argument to the PHI function is
7659 not yet executable. We derive the range ~[0, 0] for i_14 and the
7660 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7661 the first time, since i_14 is equivalent to the range [8, 8], we
7662 determine that the predicate is always false.
7664 On the next round of propagation, i_13 is determined to be
7665 VARYING, which causes i_5 to drop down to VARYING. So, another
7666 visit to i_14 is scheduled. In this second visit, we compute the
7667 exact same range and equivalence set for i_14, namely ~[0, 0] and
7668 { i_5 }. But we did not have the previous range for i_5
7669 registered, so vrp_visit_assignment thinks that the range for
7670 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7671 is not visited again, which stops propagation from visiting
7672 statements in the THEN clause of that if().
7674 To properly fix this we would need to keep the previous range
7675 value for the names in the equivalence set. This way we would've
7676 discovered that from one visit to the other i_5 changed from
7677 range [8, 8] to VR_VARYING.
7679 However, fixing this apparent limitation may not be worth the
7680 additional checking. Testing on several code bases (GCC, DLV,
7681 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7682 4 more predicates folded in SPEC. */
7685 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
7686 gimple_cond_lhs (stmt
),
7687 gimple_cond_rhs (stmt
),
7692 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
7695 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7697 "\nIgnoring predicate evaluation because "
7698 "it assumes that signed overflow is undefined");
7703 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7705 fprintf (dump_file
, "\nPredicate evaluates to: ");
7706 if (val
== NULL_TREE
)
7707 fprintf (dump_file
, "DON'T KNOW\n");
7709 print_generic_stmt (dump_file
, val
, 0);
7712 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
7715 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7716 that includes the value VAL. The search is restricted to the range
7717 [START_IDX, n - 1] where n is the size of VEC.
7719 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7722 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7723 it is placed in IDX and false is returned.
7725 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7729 find_case_label_index (gswitch
*stmt
, size_t start_idx
, tree val
, size_t *idx
)
7731 size_t n
= gimple_switch_num_labels (stmt
);
7734 /* Find case label for minimum of the value range or the next one.
7735 At each iteration we are searching in [low, high - 1]. */
7737 for (low
= start_idx
, high
= n
; high
!= low
; )
7741 /* Note that i != high, so we never ask for n. */
7742 size_t i
= (high
+ low
) / 2;
7743 t
= gimple_switch_label (stmt
, i
);
7745 /* Cache the result of comparing CASE_LOW and val. */
7746 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
7750 /* Ranges cannot be empty. */
7759 if (CASE_HIGH (t
) != NULL
7760 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
7772 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7773 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7774 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7775 then MAX_IDX < MIN_IDX.
7776 Returns true if the default label is not needed. */
7779 find_case_label_range (gswitch
*stmt
, tree min
, tree max
, size_t *min_idx
,
7783 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
7784 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
7788 && max_take_default
)
7790 /* Only the default case label reached.
7791 Return an empty range. */
7798 bool take_default
= min_take_default
|| max_take_default
;
7802 if (max_take_default
)
7805 /* If the case label range is continuous, we do not need
7806 the default case label. Verify that. */
7807 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
7808 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
7809 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
7810 for (k
= i
+ 1; k
<= j
; ++k
)
7812 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
7813 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
)))
7815 take_default
= true;
7819 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
7820 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
7825 return !take_default
;
7829 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7830 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7831 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7832 Returns true if the default label is not needed. */
7835 find_case_label_ranges (gswitch
*stmt
, value_range_t
*vr
, size_t *min_idx1
,
7836 size_t *max_idx1
, size_t *min_idx2
,
7840 unsigned int n
= gimple_switch_num_labels (stmt
);
7842 tree case_low
, case_high
;
7843 tree min
= vr
->min
, max
= vr
->max
;
7845 gcc_checking_assert (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
);
7847 take_default
= !find_case_label_range (stmt
, min
, max
, &i
, &j
);
7849 /* Set second range to emtpy. */
7853 if (vr
->type
== VR_RANGE
)
7857 return !take_default
;
7860 /* Set first range to all case labels. */
7867 /* Make sure all the values of case labels [i , j] are contained in
7868 range [MIN, MAX]. */
7869 case_low
= CASE_LOW (gimple_switch_label (stmt
, i
));
7870 case_high
= CASE_HIGH (gimple_switch_label (stmt
, j
));
7871 if (tree_int_cst_compare (case_low
, min
) < 0)
7873 if (case_high
!= NULL_TREE
7874 && tree_int_cst_compare (max
, case_high
) < 0)
7880 /* If the range spans case labels [i, j], the corresponding anti-range spans
7881 the labels [1, i - 1] and [j + 1, n - 1]. */
7907 /* Visit switch statement STMT. If we can determine which edge
7908 will be taken out of STMT's basic block, record it in
7909 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7910 SSA_PROP_VARYING. */
7912 static enum ssa_prop_result
7913 vrp_visit_switch_stmt (gswitch
*stmt
, edge
*taken_edge_p
)
7917 size_t i
= 0, j
= 0, k
, l
;
7920 *taken_edge_p
= NULL
;
7921 op
= gimple_switch_index (stmt
);
7922 if (TREE_CODE (op
) != SSA_NAME
)
7923 return SSA_PROP_VARYING
;
7925 vr
= get_value_range (op
);
7926 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7928 fprintf (dump_file
, "\nVisiting switch expression with operand ");
7929 print_generic_expr (dump_file
, op
, 0);
7930 fprintf (dump_file
, " with known range ");
7931 dump_value_range (dump_file
, vr
);
7932 fprintf (dump_file
, "\n");
7935 if ((vr
->type
!= VR_RANGE
7936 && vr
->type
!= VR_ANTI_RANGE
)
7937 || symbolic_range_p (vr
))
7938 return SSA_PROP_VARYING
;
7940 /* Find the single edge that is taken from the switch expression. */
7941 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
7943 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7947 gcc_assert (take_default
);
7948 val
= gimple_switch_default_label (stmt
);
7952 /* Check if labels with index i to j and maybe the default label
7953 are all reaching the same label. */
7955 val
= gimple_switch_label (stmt
, i
);
7957 && CASE_LABEL (gimple_switch_default_label (stmt
))
7958 != CASE_LABEL (val
))
7960 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7961 fprintf (dump_file
, " not a single destination for this "
7963 return SSA_PROP_VARYING
;
7965 for (++i
; i
<= j
; ++i
)
7967 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
7969 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7970 fprintf (dump_file
, " not a single destination for this "
7972 return SSA_PROP_VARYING
;
7977 if (CASE_LABEL (gimple_switch_label (stmt
, k
)) != CASE_LABEL (val
))
7979 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7980 fprintf (dump_file
, " not a single destination for this "
7982 return SSA_PROP_VARYING
;
7987 *taken_edge_p
= find_edge (gimple_bb (stmt
),
7988 label_to_block (CASE_LABEL (val
)));
7990 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7992 fprintf (dump_file
, " will take edge to ");
7993 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
7996 return SSA_PROP_INTERESTING
;
8000 /* Evaluate statement STMT. If the statement produces a useful range,
8001 return SSA_PROP_INTERESTING and record the SSA name with the
8002 interesting range into *OUTPUT_P.
8004 If STMT is a conditional branch and we can determine its truth
8005 value, the taken edge is recorded in *TAKEN_EDGE_P.
8007 If STMT produces a varying value, return SSA_PROP_VARYING. */
8009 static enum ssa_prop_result
8010 vrp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
8015 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8017 fprintf (dump_file
, "\nVisiting statement:\n");
8018 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
8021 if (!stmt_interesting_for_vrp (stmt
))
8022 gcc_assert (stmt_ends_bb_p (stmt
));
8023 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
8024 return vrp_visit_assignment_or_call (stmt
, output_p
);
8025 else if (gimple_code (stmt
) == GIMPLE_COND
)
8026 return vrp_visit_cond_stmt (as_a
<gcond
*> (stmt
), taken_edge_p
);
8027 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
8028 return vrp_visit_switch_stmt (as_a
<gswitch
*> (stmt
), taken_edge_p
);
8030 /* All other statements produce nothing of interest for VRP, so mark
8031 their outputs varying and prevent further simulation. */
8032 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
8033 set_value_range_to_varying (get_value_range (def
));
8035 return SSA_PROP_VARYING
;
8038 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8039 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8040 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8041 possible such range. The resulting range is not canonicalized. */
8044 union_ranges (enum value_range_type
*vr0type
,
8045 tree
*vr0min
, tree
*vr0max
,
8046 enum value_range_type vr1type
,
8047 tree vr1min
, tree vr1max
)
8049 bool mineq
= operand_equal_p (*vr0min
, vr1min
, 0);
8050 bool maxeq
= operand_equal_p (*vr0max
, vr1max
, 0);
8052 /* [] is vr0, () is vr1 in the following classification comments. */
8056 if (*vr0type
== vr1type
)
8057 /* Nothing to do for equal ranges. */
8059 else if ((*vr0type
== VR_RANGE
8060 && vr1type
== VR_ANTI_RANGE
)
8061 || (*vr0type
== VR_ANTI_RANGE
8062 && vr1type
== VR_RANGE
))
8064 /* For anti-range with range union the result is varying. */
8070 else if (operand_less_p (*vr0max
, vr1min
) == 1
8071 || operand_less_p (vr1max
, *vr0min
) == 1)
8073 /* [ ] ( ) or ( ) [ ]
8074 If the ranges have an empty intersection, result of the union
8075 operation is the anti-range or if both are anti-ranges
8077 if (*vr0type
== VR_ANTI_RANGE
8078 && vr1type
== VR_ANTI_RANGE
)
8080 else if (*vr0type
== VR_ANTI_RANGE
8081 && vr1type
== VR_RANGE
)
8083 else if (*vr0type
== VR_RANGE
8084 && vr1type
== VR_ANTI_RANGE
)
8090 else if (*vr0type
== VR_RANGE
8091 && vr1type
== VR_RANGE
)
8093 /* The result is the convex hull of both ranges. */
8094 if (operand_less_p (*vr0max
, vr1min
) == 1)
8096 /* If the result can be an anti-range, create one. */
8097 if (TREE_CODE (*vr0max
) == INTEGER_CST
8098 && TREE_CODE (vr1min
) == INTEGER_CST
8099 && vrp_val_is_min (*vr0min
)
8100 && vrp_val_is_max (vr1max
))
8102 tree min
= int_const_binop (PLUS_EXPR
,
8104 build_int_cst (TREE_TYPE (*vr0max
), 1));
8105 tree max
= int_const_binop (MINUS_EXPR
,
8107 build_int_cst (TREE_TYPE (vr1min
), 1));
8108 if (!operand_less_p (max
, min
))
8110 *vr0type
= VR_ANTI_RANGE
;
8122 /* If the result can be an anti-range, create one. */
8123 if (TREE_CODE (vr1max
) == INTEGER_CST
8124 && TREE_CODE (*vr0min
) == INTEGER_CST
8125 && vrp_val_is_min (vr1min
)
8126 && vrp_val_is_max (*vr0max
))
8128 tree min
= int_const_binop (PLUS_EXPR
,
8130 build_int_cst (TREE_TYPE (vr1max
), 1));
8131 tree max
= int_const_binop (MINUS_EXPR
,
8133 build_int_cst (TREE_TYPE (*vr0min
), 1));
8134 if (!operand_less_p (max
, min
))
8136 *vr0type
= VR_ANTI_RANGE
;
8150 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
8151 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
8153 /* [ ( ) ] or [( ) ] or [ ( )] */
8154 if (*vr0type
== VR_RANGE
8155 && vr1type
== VR_RANGE
)
8157 else if (*vr0type
== VR_ANTI_RANGE
8158 && vr1type
== VR_ANTI_RANGE
)
8164 else if (*vr0type
== VR_ANTI_RANGE
8165 && vr1type
== VR_RANGE
)
8167 /* Arbitrarily choose the right or left gap. */
8168 if (!mineq
&& TREE_CODE (vr1min
) == INTEGER_CST
)
8169 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8170 build_int_cst (TREE_TYPE (vr1min
), 1));
8171 else if (!maxeq
&& TREE_CODE (vr1max
) == INTEGER_CST
)
8172 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8173 build_int_cst (TREE_TYPE (vr1max
), 1));
8177 else if (*vr0type
== VR_RANGE
8178 && vr1type
== VR_ANTI_RANGE
)
8179 /* The result covers everything. */
8184 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
8185 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
8187 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8188 if (*vr0type
== VR_RANGE
8189 && vr1type
== VR_RANGE
)
8195 else if (*vr0type
== VR_ANTI_RANGE
8196 && vr1type
== VR_ANTI_RANGE
)
8198 else if (*vr0type
== VR_RANGE
8199 && vr1type
== VR_ANTI_RANGE
)
8201 *vr0type
= VR_ANTI_RANGE
;
8202 if (!mineq
&& TREE_CODE (*vr0min
) == INTEGER_CST
)
8204 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8205 build_int_cst (TREE_TYPE (*vr0min
), 1));
8208 else if (!maxeq
&& TREE_CODE (*vr0max
) == INTEGER_CST
)
8210 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8211 build_int_cst (TREE_TYPE (*vr0max
), 1));
8217 else if (*vr0type
== VR_ANTI_RANGE
8218 && vr1type
== VR_RANGE
)
8219 /* The result covers everything. */
8224 else if ((operand_less_p (vr1min
, *vr0max
) == 1
8225 || operand_equal_p (vr1min
, *vr0max
, 0))
8226 && operand_less_p (*vr0min
, vr1min
) == 1
8227 && operand_less_p (*vr0max
, vr1max
) == 1)
8229 /* [ ( ] ) or [ ]( ) */
8230 if (*vr0type
== VR_RANGE
8231 && vr1type
== VR_RANGE
)
8233 else if (*vr0type
== VR_ANTI_RANGE
8234 && vr1type
== VR_ANTI_RANGE
)
8236 else if (*vr0type
== VR_ANTI_RANGE
8237 && vr1type
== VR_RANGE
)
8239 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8240 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8241 build_int_cst (TREE_TYPE (vr1min
), 1));
8245 else if (*vr0type
== VR_RANGE
8246 && vr1type
== VR_ANTI_RANGE
)
8248 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8251 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8252 build_int_cst (TREE_TYPE (*vr0max
), 1));
8261 else if ((operand_less_p (*vr0min
, vr1max
) == 1
8262 || operand_equal_p (*vr0min
, vr1max
, 0))
8263 && operand_less_p (vr1min
, *vr0min
) == 1
8264 && operand_less_p (vr1max
, *vr0max
) == 1)
8266 /* ( [ ) ] or ( )[ ] */
8267 if (*vr0type
== VR_RANGE
8268 && vr1type
== VR_RANGE
)
8270 else if (*vr0type
== VR_ANTI_RANGE
8271 && vr1type
== VR_ANTI_RANGE
)
8273 else if (*vr0type
== VR_ANTI_RANGE
8274 && vr1type
== VR_RANGE
)
8276 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8277 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8278 build_int_cst (TREE_TYPE (vr1max
), 1));
8282 else if (*vr0type
== VR_RANGE
8283 && vr1type
== VR_ANTI_RANGE
)
8285 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8289 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8290 build_int_cst (TREE_TYPE (*vr0min
), 1));
8304 *vr0type
= VR_VARYING
;
8305 *vr0min
= NULL_TREE
;
8306 *vr0max
= NULL_TREE
;
8309 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8310 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8311 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8312 possible such range. The resulting range is not canonicalized. */
8315 intersect_ranges (enum value_range_type
*vr0type
,
8316 tree
*vr0min
, tree
*vr0max
,
8317 enum value_range_type vr1type
,
8318 tree vr1min
, tree vr1max
)
8320 bool mineq
= operand_equal_p (*vr0min
, vr1min
, 0);
8321 bool maxeq
= operand_equal_p (*vr0max
, vr1max
, 0);
8323 /* [] is vr0, () is vr1 in the following classification comments. */
8327 if (*vr0type
== vr1type
)
8328 /* Nothing to do for equal ranges. */
8330 else if ((*vr0type
== VR_RANGE
8331 && vr1type
== VR_ANTI_RANGE
)
8332 || (*vr0type
== VR_ANTI_RANGE
8333 && vr1type
== VR_RANGE
))
8335 /* For anti-range with range intersection the result is empty. */
8336 *vr0type
= VR_UNDEFINED
;
8337 *vr0min
= NULL_TREE
;
8338 *vr0max
= NULL_TREE
;
8343 else if (operand_less_p (*vr0max
, vr1min
) == 1
8344 || operand_less_p (vr1max
, *vr0min
) == 1)
8346 /* [ ] ( ) or ( ) [ ]
8347 If the ranges have an empty intersection, the result of the
8348 intersect operation is the range for intersecting an
8349 anti-range with a range or empty when intersecting two ranges. */
8350 if (*vr0type
== VR_RANGE
8351 && vr1type
== VR_ANTI_RANGE
)
8353 else if (*vr0type
== VR_ANTI_RANGE
8354 && vr1type
== VR_RANGE
)
8360 else if (*vr0type
== VR_RANGE
8361 && vr1type
== VR_RANGE
)
8363 *vr0type
= VR_UNDEFINED
;
8364 *vr0min
= NULL_TREE
;
8365 *vr0max
= NULL_TREE
;
8367 else if (*vr0type
== VR_ANTI_RANGE
8368 && vr1type
== VR_ANTI_RANGE
)
8370 /* If the anti-ranges are adjacent to each other merge them. */
8371 if (TREE_CODE (*vr0max
) == INTEGER_CST
8372 && TREE_CODE (vr1min
) == INTEGER_CST
8373 && operand_less_p (*vr0max
, vr1min
) == 1
8374 && integer_onep (int_const_binop (MINUS_EXPR
,
8377 else if (TREE_CODE (vr1max
) == INTEGER_CST
8378 && TREE_CODE (*vr0min
) == INTEGER_CST
8379 && operand_less_p (vr1max
, *vr0min
) == 1
8380 && integer_onep (int_const_binop (MINUS_EXPR
,
8383 /* Else arbitrarily take VR0. */
8386 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
8387 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
8389 /* [ ( ) ] or [( ) ] or [ ( )] */
8390 if (*vr0type
== VR_RANGE
8391 && vr1type
== VR_RANGE
)
8393 /* If both are ranges the result is the inner one. */
8398 else if (*vr0type
== VR_RANGE
8399 && vr1type
== VR_ANTI_RANGE
)
8401 /* Choose the right gap if the left one is empty. */
8404 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8405 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8406 build_int_cst (TREE_TYPE (vr1max
), 1));
8410 /* Choose the left gap if the right one is empty. */
8413 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8414 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8415 build_int_cst (TREE_TYPE (vr1min
), 1));
8419 /* Choose the anti-range if the range is effectively varying. */
8420 else if (vrp_val_is_min (*vr0min
)
8421 && vrp_val_is_max (*vr0max
))
8427 /* Else choose the range. */
8429 else if (*vr0type
== VR_ANTI_RANGE
8430 && vr1type
== VR_ANTI_RANGE
)
8431 /* If both are anti-ranges the result is the outer one. */
8433 else if (*vr0type
== VR_ANTI_RANGE
8434 && vr1type
== VR_RANGE
)
8436 /* The intersection is empty. */
8437 *vr0type
= VR_UNDEFINED
;
8438 *vr0min
= NULL_TREE
;
8439 *vr0max
= NULL_TREE
;
8444 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
8445 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
8447 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8448 if (*vr0type
== VR_RANGE
8449 && vr1type
== VR_RANGE
)
8450 /* Choose the inner range. */
8452 else if (*vr0type
== VR_ANTI_RANGE
8453 && vr1type
== VR_RANGE
)
8455 /* Choose the right gap if the left is empty. */
8458 *vr0type
= VR_RANGE
;
8459 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8460 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8461 build_int_cst (TREE_TYPE (*vr0max
), 1));
8466 /* Choose the left gap if the right is empty. */
8469 *vr0type
= VR_RANGE
;
8470 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8471 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8472 build_int_cst (TREE_TYPE (*vr0min
), 1));
8477 /* Choose the anti-range if the range is effectively varying. */
8478 else if (vrp_val_is_min (vr1min
)
8479 && vrp_val_is_max (vr1max
))
8481 /* Else choose the range. */
8489 else if (*vr0type
== VR_ANTI_RANGE
8490 && vr1type
== VR_ANTI_RANGE
)
8492 /* If both are anti-ranges the result is the outer one. */
8497 else if (vr1type
== VR_ANTI_RANGE
8498 && *vr0type
== VR_RANGE
)
8500 /* The intersection is empty. */
8501 *vr0type
= VR_UNDEFINED
;
8502 *vr0min
= NULL_TREE
;
8503 *vr0max
= NULL_TREE
;
8508 else if ((operand_less_p (vr1min
, *vr0max
) == 1
8509 || operand_equal_p (vr1min
, *vr0max
, 0))
8510 && operand_less_p (*vr0min
, vr1min
) == 1)
8512 /* [ ( ] ) or [ ]( ) */
8513 if (*vr0type
== VR_ANTI_RANGE
8514 && vr1type
== VR_ANTI_RANGE
)
8516 else if (*vr0type
== VR_RANGE
8517 && vr1type
== VR_RANGE
)
8519 else if (*vr0type
== VR_RANGE
8520 && vr1type
== VR_ANTI_RANGE
)
8522 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8523 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8524 build_int_cst (TREE_TYPE (vr1min
), 1));
8528 else if (*vr0type
== VR_ANTI_RANGE
8529 && vr1type
== VR_RANGE
)
8531 *vr0type
= VR_RANGE
;
8532 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8533 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8534 build_int_cst (TREE_TYPE (*vr0max
), 1));
8542 else if ((operand_less_p (*vr0min
, vr1max
) == 1
8543 || operand_equal_p (*vr0min
, vr1max
, 0))
8544 && operand_less_p (vr1min
, *vr0min
) == 1)
8546 /* ( [ ) ] or ( )[ ] */
8547 if (*vr0type
== VR_ANTI_RANGE
8548 && vr1type
== VR_ANTI_RANGE
)
8550 else if (*vr0type
== VR_RANGE
8551 && vr1type
== VR_RANGE
)
8553 else if (*vr0type
== VR_RANGE
8554 && vr1type
== VR_ANTI_RANGE
)
8556 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8557 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8558 build_int_cst (TREE_TYPE (vr1max
), 1));
8562 else if (*vr0type
== VR_ANTI_RANGE
8563 && vr1type
== VR_RANGE
)
8565 *vr0type
= VR_RANGE
;
8566 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8567 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8568 build_int_cst (TREE_TYPE (*vr0min
), 1));
8577 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8578 result for the intersection. That's always a conservative
8579 correct estimate. */
8585 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8586 in *VR0. This may not be the smallest possible such range. */
8589 vrp_intersect_ranges_1 (value_range_t
*vr0
, value_range_t
*vr1
)
8591 value_range_t saved
;
8593 /* If either range is VR_VARYING the other one wins. */
8594 if (vr1
->type
== VR_VARYING
)
8596 if (vr0
->type
== VR_VARYING
)
8598 copy_value_range (vr0
, vr1
);
8602 /* When either range is VR_UNDEFINED the resulting range is
8603 VR_UNDEFINED, too. */
8604 if (vr0
->type
== VR_UNDEFINED
)
8606 if (vr1
->type
== VR_UNDEFINED
)
8608 set_value_range_to_undefined (vr0
);
8612 /* Save the original vr0 so we can return it as conservative intersection
8613 result when our worker turns things to varying. */
8615 intersect_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
8616 vr1
->type
, vr1
->min
, vr1
->max
);
8617 /* Make sure to canonicalize the result though as the inversion of a
8618 VR_RANGE can still be a VR_RANGE. */
8619 set_and_canonicalize_value_range (vr0
, vr0
->type
,
8620 vr0
->min
, vr0
->max
, vr0
->equiv
);
8621 /* If that failed, use the saved original VR0. */
8622 if (vr0
->type
== VR_VARYING
)
8627 /* If the result is VR_UNDEFINED there is no need to mess with
8628 the equivalencies. */
8629 if (vr0
->type
== VR_UNDEFINED
)
8632 /* The resulting set of equivalences for range intersection is the union of
8634 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
8635 bitmap_ior_into (vr0
->equiv
, vr1
->equiv
);
8636 else if (vr1
->equiv
&& !vr0
->equiv
)
8637 bitmap_copy (vr0
->equiv
, vr1
->equiv
);
8641 vrp_intersect_ranges (value_range_t
*vr0
, value_range_t
*vr1
)
8643 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8645 fprintf (dump_file
, "Intersecting\n ");
8646 dump_value_range (dump_file
, vr0
);
8647 fprintf (dump_file
, "\nand\n ");
8648 dump_value_range (dump_file
, vr1
);
8649 fprintf (dump_file
, "\n");
8651 vrp_intersect_ranges_1 (vr0
, vr1
);
8652 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8654 fprintf (dump_file
, "to\n ");
8655 dump_value_range (dump_file
, vr0
);
8656 fprintf (dump_file
, "\n");
8660 /* Meet operation for value ranges. Given two value ranges VR0 and
8661 VR1, store in VR0 a range that contains both VR0 and VR1. This
8662 may not be the smallest possible such range. */
8665 vrp_meet_1 (value_range_t
*vr0
, value_range_t
*vr1
)
8667 value_range_t saved
;
8669 if (vr0
->type
== VR_UNDEFINED
)
8671 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr1
->equiv
);
8675 if (vr1
->type
== VR_UNDEFINED
)
8677 /* VR0 already has the resulting range. */
8681 if (vr0
->type
== VR_VARYING
)
8683 /* Nothing to do. VR0 already has the resulting range. */
8687 if (vr1
->type
== VR_VARYING
)
8689 set_value_range_to_varying (vr0
);
8694 union_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
8695 vr1
->type
, vr1
->min
, vr1
->max
);
8696 if (vr0
->type
== VR_VARYING
)
8698 /* Failed to find an efficient meet. Before giving up and setting
8699 the result to VARYING, see if we can at least derive a useful
8700 anti-range. FIXME, all this nonsense about distinguishing
8701 anti-ranges from ranges is necessary because of the odd
8702 semantics of range_includes_zero_p and friends. */
8703 if (((saved
.type
== VR_RANGE
8704 && range_includes_zero_p (saved
.min
, saved
.max
) == 0)
8705 || (saved
.type
== VR_ANTI_RANGE
8706 && range_includes_zero_p (saved
.min
, saved
.max
) == 1))
8707 && ((vr1
->type
== VR_RANGE
8708 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 0)
8709 || (vr1
->type
== VR_ANTI_RANGE
8710 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 1)))
8712 set_value_range_to_nonnull (vr0
, TREE_TYPE (saved
.min
));
8714 /* Since this meet operation did not result from the meeting of
8715 two equivalent names, VR0 cannot have any equivalences. */
8717 bitmap_clear (vr0
->equiv
);
8721 set_value_range_to_varying (vr0
);
8724 set_and_canonicalize_value_range (vr0
, vr0
->type
, vr0
->min
, vr0
->max
,
8726 if (vr0
->type
== VR_VARYING
)
8729 /* The resulting set of equivalences is always the intersection of
8731 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
8732 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
8733 else if (vr0
->equiv
&& !vr1
->equiv
)
8734 bitmap_clear (vr0
->equiv
);
8738 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
8740 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8742 fprintf (dump_file
, "Meeting\n ");
8743 dump_value_range (dump_file
, vr0
);
8744 fprintf (dump_file
, "\nand\n ");
8745 dump_value_range (dump_file
, vr1
);
8746 fprintf (dump_file
, "\n");
8748 vrp_meet_1 (vr0
, vr1
);
8749 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8751 fprintf (dump_file
, "to\n ");
8752 dump_value_range (dump_file
, vr0
);
8753 fprintf (dump_file
, "\n");
8758 /* Visit all arguments for PHI node PHI that flow through executable
8759 edges. If a valid value range can be derived from all the incoming
8760 value ranges, set a new range for the LHS of PHI. */
8762 static enum ssa_prop_result
8763 vrp_visit_phi_node (gphi
*phi
)
8766 tree lhs
= PHI_RESULT (phi
);
8767 value_range_t
*lhs_vr
= get_value_range (lhs
);
8768 value_range_t vr_result
= VR_INITIALIZER
;
8770 int edges
, old_edges
;
8773 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8775 fprintf (dump_file
, "\nVisiting PHI node: ");
8776 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
8780 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
8782 edge e
= gimple_phi_arg_edge (phi
, i
);
8784 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8787 " Argument #%d (%d -> %d %sexecutable)\n",
8788 (int) i
, e
->src
->index
, e
->dest
->index
,
8789 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
8792 if (e
->flags
& EDGE_EXECUTABLE
)
8794 tree arg
= PHI_ARG_DEF (phi
, i
);
8795 value_range_t vr_arg
;
8799 if (TREE_CODE (arg
) == SSA_NAME
)
8801 vr_arg
= *(get_value_range (arg
));
8802 /* Do not allow equivalences or symbolic ranges to leak in from
8803 backedges. That creates invalid equivalencies.
8804 See PR53465 and PR54767. */
8805 if (e
->flags
& EDGE_DFS_BACK
)
8807 if (vr_arg
.type
== VR_RANGE
8808 || vr_arg
.type
== VR_ANTI_RANGE
)
8810 vr_arg
.equiv
= NULL
;
8811 if (symbolic_range_p (&vr_arg
))
8813 vr_arg
.type
= VR_VARYING
;
8814 vr_arg
.min
= NULL_TREE
;
8815 vr_arg
.max
= NULL_TREE
;
8821 /* If the non-backedge arguments range is VR_VARYING then
8822 we can still try recording a simple equivalence. */
8823 if (vr_arg
.type
== VR_VARYING
)
8825 vr_arg
.type
= VR_RANGE
;
8828 vr_arg
.equiv
= NULL
;
8834 if (TREE_OVERFLOW_P (arg
))
8835 arg
= drop_tree_overflow (arg
);
8837 vr_arg
.type
= VR_RANGE
;
8840 vr_arg
.equiv
= NULL
;
8843 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8845 fprintf (dump_file
, "\t");
8846 print_generic_expr (dump_file
, arg
, dump_flags
);
8847 fprintf (dump_file
, ": ");
8848 dump_value_range (dump_file
, &vr_arg
);
8849 fprintf (dump_file
, "\n");
8853 copy_value_range (&vr_result
, &vr_arg
);
8855 vrp_meet (&vr_result
, &vr_arg
);
8858 if (vr_result
.type
== VR_VARYING
)
8863 if (vr_result
.type
== VR_VARYING
)
8865 else if (vr_result
.type
== VR_UNDEFINED
)
8868 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
8869 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
8871 /* To prevent infinite iterations in the algorithm, derive ranges
8872 when the new value is slightly bigger or smaller than the
8873 previous one. We don't do this if we have seen a new executable
8874 edge; this helps us avoid an overflow infinity for conditionals
8875 which are not in a loop. If the old value-range was VR_UNDEFINED
8876 use the updated range and iterate one more time. */
8878 && gimple_phi_num_args (phi
) > 1
8879 && edges
== old_edges
8880 && lhs_vr
->type
!= VR_UNDEFINED
)
8882 /* Compare old and new ranges, fall back to varying if the
8883 values are not comparable. */
8884 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
8887 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
8891 /* For non VR_RANGE or for pointers fall back to varying if
8892 the range changed. */
8893 if ((lhs_vr
->type
!= VR_RANGE
|| vr_result
.type
!= VR_RANGE
8894 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
8895 && (cmp_min
!= 0 || cmp_max
!= 0))
8898 /* If the new minimum is larger than than the previous one
8899 retain the old value. If the new minimum value is smaller
8900 than the previous one and not -INF go all the way to -INF + 1.
8901 In the first case, to avoid infinite bouncing between different
8902 minimums, and in the other case to avoid iterating millions of
8903 times to reach -INF. Going to -INF + 1 also lets the following
8904 iteration compute whether there will be any overflow, at the
8905 expense of one additional iteration. */
8907 vr_result
.min
= lhs_vr
->min
;
8908 else if (cmp_min
> 0
8909 && !vrp_val_is_min (vr_result
.min
))
8911 = int_const_binop (PLUS_EXPR
,
8912 vrp_val_min (TREE_TYPE (vr_result
.min
)),
8913 build_int_cst (TREE_TYPE (vr_result
.min
), 1));
8915 /* Similarly for the maximum value. */
8917 vr_result
.max
= lhs_vr
->max
;
8918 else if (cmp_max
< 0
8919 && !vrp_val_is_max (vr_result
.max
))
8921 = int_const_binop (MINUS_EXPR
,
8922 vrp_val_max (TREE_TYPE (vr_result
.min
)),
8923 build_int_cst (TREE_TYPE (vr_result
.min
), 1));
8925 /* If we dropped either bound to +-INF then if this is a loop
8926 PHI node SCEV may known more about its value-range. */
8927 if ((cmp_min
> 0 || cmp_min
< 0
8928 || cmp_max
< 0 || cmp_max
> 0)
8929 && (l
= loop_containing_stmt (phi
))
8930 && l
->header
== gimple_bb (phi
))
8931 adjust_range_with_scev (&vr_result
, l
, phi
, lhs
);
8933 /* If we will end up with a (-INF, +INF) range, set it to
8934 VARYING. Same if the previous max value was invalid for
8935 the type and we end up with vr_result.min > vr_result.max. */
8936 if ((vrp_val_is_max (vr_result
.max
)
8937 && vrp_val_is_min (vr_result
.min
))
8938 || compare_values (vr_result
.min
,
8943 /* If the new range is different than the previous value, keep
8946 if (update_value_range (lhs
, &vr_result
))
8948 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8950 fprintf (dump_file
, "Found new range for ");
8951 print_generic_expr (dump_file
, lhs
, 0);
8952 fprintf (dump_file
, ": ");
8953 dump_value_range (dump_file
, &vr_result
);
8954 fprintf (dump_file
, "\n");
8957 if (vr_result
.type
== VR_VARYING
)
8958 return SSA_PROP_VARYING
;
8960 return SSA_PROP_INTERESTING
;
8963 /* Nothing changed, don't add outgoing edges. */
8964 return SSA_PROP_NOT_INTERESTING
;
8966 /* No match found. Set the LHS to VARYING. */
8968 set_value_range_to_varying (lhs_vr
);
8969 return SSA_PROP_VARYING
;
8972 /* Simplify boolean operations if the source is known
8973 to be already a boolean. */
8975 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
8977 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
8979 bool need_conversion
;
8981 /* We handle only !=/== case here. */
8982 gcc_assert (rhs_code
== EQ_EXPR
|| rhs_code
== NE_EXPR
);
8984 op0
= gimple_assign_rhs1 (stmt
);
8985 if (!op_with_boolean_value_range_p (op0
))
8988 op1
= gimple_assign_rhs2 (stmt
);
8989 if (!op_with_boolean_value_range_p (op1
))
8992 /* Reduce number of cases to handle to NE_EXPR. As there is no
8993 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8994 if (rhs_code
== EQ_EXPR
)
8996 if (TREE_CODE (op1
) == INTEGER_CST
)
8997 op1
= int_const_binop (BIT_XOR_EXPR
, op1
,
8998 build_int_cst (TREE_TYPE (op1
), 1));
9003 lhs
= gimple_assign_lhs (stmt
);
9005 = !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (op0
));
9007 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
9009 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
9010 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1
9011 && TYPE_PRECISION (TREE_TYPE (lhs
)) > 1)
9014 /* For A != 0 we can substitute A itself. */
9015 if (integer_zerop (op1
))
9016 gimple_assign_set_rhs_with_ops (gsi
,
9018 ? NOP_EXPR
: TREE_CODE (op0
), op0
);
9019 /* For A != B we substitute A ^ B. Either with conversion. */
9020 else if (need_conversion
)
9022 tree tem
= make_ssa_name (TREE_TYPE (op0
));
9024 = gimple_build_assign (tem
, BIT_XOR_EXPR
, op0
, op1
);
9025 gsi_insert_before (gsi
, newop
, GSI_SAME_STMT
);
9026 gimple_assign_set_rhs_with_ops (gsi
, NOP_EXPR
, tem
);
9030 gimple_assign_set_rhs_with_ops (gsi
, BIT_XOR_EXPR
, op0
, op1
);
9031 update_stmt (gsi_stmt (*gsi
));
9036 /* Simplify a division or modulo operator to a right shift or
9037 bitwise and if the first operand is unsigned or is greater
9038 than zero and the second operand is an exact power of two.
9039 For TRUNC_MOD_EXPR op0 % op1 with constant op1, optimize it
9040 into just op0 if op0's range is known to be a subset of
9041 [-op1 + 1, op1 - 1] for signed and [0, op1 - 1] for unsigned
9045 simplify_div_or_mod_using_ranges (gimple stmt
)
9047 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
9049 tree op0
= gimple_assign_rhs1 (stmt
);
9050 tree op1
= gimple_assign_rhs2 (stmt
);
9051 value_range_t
*vr
= get_value_range (op0
);
9053 if (rhs_code
== TRUNC_MOD_EXPR
9054 && TREE_CODE (op1
) == INTEGER_CST
9055 && tree_int_cst_sgn (op1
) == 1
9056 && range_int_cst_p (vr
)
9057 && tree_int_cst_lt (vr
->max
, op1
))
9059 if (TYPE_UNSIGNED (TREE_TYPE (op0
))
9060 || tree_int_cst_sgn (vr
->min
) >= 0
9061 || tree_int_cst_lt (fold_unary (NEGATE_EXPR
, TREE_TYPE (op1
), op1
),
9064 /* If op0 already has the range op0 % op1 has,
9065 then TRUNC_MOD_EXPR won't change anything. */
9066 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
9067 gimple_assign_set_rhs_from_tree (&gsi
, op0
);
9073 if (!integer_pow2p (op1
))
9076 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
9078 val
= integer_one_node
;
9084 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
9088 && integer_onep (val
)
9089 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
9091 location_t location
;
9093 if (!gimple_has_location (stmt
))
9094 location
= input_location
;
9096 location
= gimple_location (stmt
);
9097 warning_at (location
, OPT_Wstrict_overflow
,
9098 "assuming signed overflow does not occur when "
9099 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9103 if (val
&& integer_onep (val
))
9107 if (rhs_code
== TRUNC_DIV_EXPR
)
9109 t
= build_int_cst (integer_type_node
, tree_log2 (op1
));
9110 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
9111 gimple_assign_set_rhs1 (stmt
, op0
);
9112 gimple_assign_set_rhs2 (stmt
, t
);
9116 t
= build_int_cst (TREE_TYPE (op1
), 1);
9117 t
= int_const_binop (MINUS_EXPR
, op1
, t
);
9118 t
= fold_convert (TREE_TYPE (op0
), t
);
9120 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
9121 gimple_assign_set_rhs1 (stmt
, op0
);
9122 gimple_assign_set_rhs2 (stmt
, t
);
9132 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9133 ABS_EXPR. If the operand is <= 0, then simplify the
9134 ABS_EXPR into a NEGATE_EXPR. */
9137 simplify_abs_using_ranges (gimple stmt
)
9140 tree op
= gimple_assign_rhs1 (stmt
);
9141 tree type
= TREE_TYPE (op
);
9142 value_range_t
*vr
= get_value_range (op
);
9144 if (TYPE_UNSIGNED (type
))
9146 val
= integer_zero_node
;
9152 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
9156 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
9161 if (integer_zerop (val
))
9162 val
= integer_one_node
;
9163 else if (integer_onep (val
))
9164 val
= integer_zero_node
;
9169 && (integer_onep (val
) || integer_zerop (val
)))
9171 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
9173 location_t location
;
9175 if (!gimple_has_location (stmt
))
9176 location
= input_location
;
9178 location
= gimple_location (stmt
);
9179 warning_at (location
, OPT_Wstrict_overflow
,
9180 "assuming signed overflow does not occur when "
9181 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9184 gimple_assign_set_rhs1 (stmt
, op
);
9185 if (integer_onep (val
))
9186 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
9188 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
9197 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9198 If all the bits that are being cleared by & are already
9199 known to be zero from VR, or all the bits that are being
9200 set by | are already known to be one from VR, the bit
9201 operation is redundant. */
9204 simplify_bit_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
9206 tree op0
= gimple_assign_rhs1 (stmt
);
9207 tree op1
= gimple_assign_rhs2 (stmt
);
9208 tree op
= NULL_TREE
;
9209 value_range_t vr0
= VR_INITIALIZER
;
9210 value_range_t vr1
= VR_INITIALIZER
;
9211 wide_int may_be_nonzero0
, may_be_nonzero1
;
9212 wide_int must_be_nonzero0
, must_be_nonzero1
;
9215 if (TREE_CODE (op0
) == SSA_NAME
)
9216 vr0
= *(get_value_range (op0
));
9217 else if (is_gimple_min_invariant (op0
))
9218 set_value_range_to_value (&vr0
, op0
, NULL
);
9222 if (TREE_CODE (op1
) == SSA_NAME
)
9223 vr1
= *(get_value_range (op1
));
9224 else if (is_gimple_min_invariant (op1
))
9225 set_value_range_to_value (&vr1
, op1
, NULL
);
9229 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0
), &vr0
, &may_be_nonzero0
,
9232 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1
), &vr1
, &may_be_nonzero1
,
9236 switch (gimple_assign_rhs_code (stmt
))
9239 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
9245 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
9253 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
9259 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
9270 if (op
== NULL_TREE
)
9273 gimple_assign_set_rhs_with_ops (gsi
, TREE_CODE (op
), op
);
9274 update_stmt (gsi_stmt (*gsi
));
9278 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9279 a known value range VR.
9281 If there is one and only one value which will satisfy the
9282 conditional, then return that value. Else return NULL.
9284 If signed overflow must be undefined for the value to satisfy
9285 the conditional, then set *STRICT_OVERFLOW_P to true. */
9288 test_for_singularity (enum tree_code cond_code
, tree op0
,
9289 tree op1
, value_range_t
*vr
,
9290 bool *strict_overflow_p
)
9295 /* Extract minimum/maximum values which satisfy the
9296 the conditional as it was written. */
9297 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
9299 /* This should not be negative infinity; there is no overflow
9301 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
9304 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
9306 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
9307 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
9309 TREE_NO_WARNING (max
) = 1;
9312 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
9314 /* This should not be positive infinity; there is no overflow
9316 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
9319 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
9321 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
9322 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
9324 TREE_NO_WARNING (min
) = 1;
9328 /* Now refine the minimum and maximum values using any
9329 value range information we have for op0. */
9332 if (compare_values (vr
->min
, min
) == 1)
9334 if (compare_values (vr
->max
, max
) == -1)
9337 /* If the new min/max values have converged to a single value,
9338 then there is only one value which can satisfy the condition,
9339 return that value. */
9340 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
9342 if ((cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
9343 && is_overflow_infinity (vr
->max
))
9344 *strict_overflow_p
= true;
9345 if ((cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
9346 && is_overflow_infinity (vr
->min
))
9347 *strict_overflow_p
= true;
9355 /* Return whether the value range *VR fits in an integer type specified
9356 by PRECISION and UNSIGNED_P. */
9359 range_fits_type_p (value_range_t
*vr
, unsigned dest_precision
, signop dest_sgn
)
9362 unsigned src_precision
;
9366 /* We can only handle integral and pointer types. */
9367 src_type
= TREE_TYPE (vr
->min
);
9368 if (!INTEGRAL_TYPE_P (src_type
)
9369 && !POINTER_TYPE_P (src_type
))
9372 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9373 and so is an identity transform. */
9374 src_precision
= TYPE_PRECISION (TREE_TYPE (vr
->min
));
9375 src_sgn
= TYPE_SIGN (src_type
);
9376 if ((src_precision
< dest_precision
9377 && !(dest_sgn
== UNSIGNED
&& src_sgn
== SIGNED
))
9378 || (src_precision
== dest_precision
&& src_sgn
== dest_sgn
))
9381 /* Now we can only handle ranges with constant bounds. */
9382 if (vr
->type
!= VR_RANGE
9383 || TREE_CODE (vr
->min
) != INTEGER_CST
9384 || TREE_CODE (vr
->max
) != INTEGER_CST
)
9387 /* For sign changes, the MSB of the wide_int has to be clear.
9388 An unsigned value with its MSB set cannot be represented by
9389 a signed wide_int, while a negative value cannot be represented
9390 by an unsigned wide_int. */
9391 if (src_sgn
!= dest_sgn
9392 && (wi::lts_p (vr
->min
, 0) || wi::lts_p (vr
->max
, 0)))
9395 /* Then we can perform the conversion on both ends and compare
9396 the result for equality. */
9397 tem
= wi::ext (wi::to_widest (vr
->min
), dest_precision
, dest_sgn
);
9398 if (tem
!= wi::to_widest (vr
->min
))
9400 tem
= wi::ext (wi::to_widest (vr
->max
), dest_precision
, dest_sgn
);
9401 if (tem
!= wi::to_widest (vr
->max
))
9407 /* Simplify a conditional using a relational operator to an equality
9408 test if the range information indicates only one value can satisfy
9409 the original conditional. */
9412 simplify_cond_using_ranges (gcond
*stmt
)
9414 tree op0
= gimple_cond_lhs (stmt
);
9415 tree op1
= gimple_cond_rhs (stmt
);
9416 enum tree_code cond_code
= gimple_cond_code (stmt
);
9418 if (cond_code
!= NE_EXPR
9419 && cond_code
!= EQ_EXPR
9420 && TREE_CODE (op0
) == SSA_NAME
9421 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
9422 && is_gimple_min_invariant (op1
))
9424 value_range_t
*vr
= get_value_range (op0
);
9426 /* If we have range information for OP0, then we might be
9427 able to simplify this conditional. */
9428 if (vr
->type
== VR_RANGE
)
9430 enum warn_strict_overflow_code wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
9432 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
, &sop
);
9435 && (!sop
|| TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
))))
9439 fprintf (dump_file
, "Simplified relational ");
9440 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9441 fprintf (dump_file
, " into ");
9444 gimple_cond_set_code (stmt
, EQ_EXPR
);
9445 gimple_cond_set_lhs (stmt
, op0
);
9446 gimple_cond_set_rhs (stmt
, new_tree
);
9452 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9453 fprintf (dump_file
, "\n");
9456 if (sop
&& issue_strict_overflow_warning (wc
))
9458 location_t location
= input_location
;
9459 if (gimple_has_location (stmt
))
9460 location
= gimple_location (stmt
);
9462 warning_at (location
, OPT_Wstrict_overflow
,
9463 "assuming signed overflow does not occur when "
9464 "simplifying conditional");
9470 /* Try again after inverting the condition. We only deal
9471 with integral types here, so no need to worry about
9472 issues with inverting FP comparisons. */
9474 new_tree
= test_for_singularity
9475 (invert_tree_comparison (cond_code
, false),
9476 op0
, op1
, vr
, &sop
);
9479 && (!sop
|| TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
))))
9483 fprintf (dump_file
, "Simplified relational ");
9484 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9485 fprintf (dump_file
, " into ");
9488 gimple_cond_set_code (stmt
, NE_EXPR
);
9489 gimple_cond_set_lhs (stmt
, op0
);
9490 gimple_cond_set_rhs (stmt
, new_tree
);
9496 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9497 fprintf (dump_file
, "\n");
9500 if (sop
&& issue_strict_overflow_warning (wc
))
9502 location_t location
= input_location
;
9503 if (gimple_has_location (stmt
))
9504 location
= gimple_location (stmt
);
9506 warning_at (location
, OPT_Wstrict_overflow
,
9507 "assuming signed overflow does not occur when "
9508 "simplifying conditional");
9516 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9517 see if OP0 was set by a type conversion where the source of
9518 the conversion is another SSA_NAME with a range that fits
9519 into the range of OP0's type.
9521 If so, the conversion is redundant as the earlier SSA_NAME can be
9522 used for the comparison directly if we just massage the constant in the
9524 if (TREE_CODE (op0
) == SSA_NAME
9525 && TREE_CODE (op1
) == INTEGER_CST
)
9527 gimple def_stmt
= SSA_NAME_DEF_STMT (op0
);
9530 if (!is_gimple_assign (def_stmt
)
9531 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
9534 innerop
= gimple_assign_rhs1 (def_stmt
);
9536 if (TREE_CODE (innerop
) == SSA_NAME
9537 && !POINTER_TYPE_P (TREE_TYPE (innerop
)))
9539 value_range_t
*vr
= get_value_range (innerop
);
9541 if (range_int_cst_p (vr
)
9542 && range_fits_type_p (vr
,
9543 TYPE_PRECISION (TREE_TYPE (op0
)),
9544 TYPE_SIGN (TREE_TYPE (op0
)))
9545 && int_fits_type_p (op1
, TREE_TYPE (innerop
))
9546 /* The range must not have overflowed, or if it did overflow
9547 we must not be wrapping/trapping overflow and optimizing
9548 with strict overflow semantics. */
9549 && ((!is_negative_overflow_infinity (vr
->min
)
9550 && !is_positive_overflow_infinity (vr
->max
))
9551 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop
))))
9553 /* If the range overflowed and the user has asked for warnings
9554 when strict overflow semantics were used to optimize code,
9555 issue an appropriate warning. */
9556 if (cond_code
!= EQ_EXPR
&& cond_code
!= NE_EXPR
9557 && (is_negative_overflow_infinity (vr
->min
)
9558 || is_positive_overflow_infinity (vr
->max
))
9559 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL
))
9561 location_t location
;
9563 if (!gimple_has_location (stmt
))
9564 location
= input_location
;
9566 location
= gimple_location (stmt
);
9567 warning_at (location
, OPT_Wstrict_overflow
,
9568 "assuming signed overflow does not occur when "
9569 "simplifying conditional");
9572 tree newconst
= fold_convert (TREE_TYPE (innerop
), op1
);
9573 gimple_cond_set_lhs (stmt
, innerop
);
9574 gimple_cond_set_rhs (stmt
, newconst
);
9583 /* Simplify a switch statement using the value range of the switch
9587 simplify_switch_using_ranges (gswitch
*stmt
)
9589 tree op
= gimple_switch_index (stmt
);
9594 size_t i
= 0, j
= 0, n
, n2
;
9597 size_t k
= 1, l
= 0;
9599 if (TREE_CODE (op
) == SSA_NAME
)
9601 vr
= get_value_range (op
);
9603 /* We can only handle integer ranges. */
9604 if ((vr
->type
!= VR_RANGE
9605 && vr
->type
!= VR_ANTI_RANGE
)
9606 || symbolic_range_p (vr
))
9609 /* Find case label for min/max of the value range. */
9610 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
9612 else if (TREE_CODE (op
) == INTEGER_CST
)
9614 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
9628 n
= gimple_switch_num_labels (stmt
);
9630 /* Bail out if this is just all edges taken. */
9636 /* Build a new vector of taken case labels. */
9637 vec2
= make_tree_vec (j
- i
+ 1 + l
- k
+ 1 + (int)take_default
);
9640 /* Add the default edge, if necessary. */
9642 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
9644 for (; i
<= j
; ++i
, ++n2
)
9645 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
9647 for (; k
<= l
; ++k
, ++n2
)
9648 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, k
);
9650 /* Mark needed edges. */
9651 for (i
= 0; i
< n2
; ++i
)
9653 e
= find_edge (gimple_bb (stmt
),
9654 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
9655 e
->aux
= (void *)-1;
9658 /* Queue not needed edges for later removal. */
9659 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
9661 if (e
->aux
== (void *)-1)
9667 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
9669 fprintf (dump_file
, "removing unreachable case label\n");
9671 to_remove_edges
.safe_push (e
);
9672 e
->flags
&= ~EDGE_EXECUTABLE
;
9675 /* And queue an update for the stmt. */
9678 to_update_switch_stmts
.safe_push (su
);
9682 /* Simplify an integral conversion from an SSA name in STMT. */
9685 simplify_conversion_using_ranges (gimple stmt
)
9687 tree innerop
, middleop
, finaltype
;
9689 value_range_t
*innervr
;
9690 signop inner_sgn
, middle_sgn
, final_sgn
;
9691 unsigned inner_prec
, middle_prec
, final_prec
;
9692 widest_int innermin
, innermed
, innermax
, middlemin
, middlemed
, middlemax
;
9694 finaltype
= TREE_TYPE (gimple_assign_lhs (stmt
));
9695 if (!INTEGRAL_TYPE_P (finaltype
))
9697 middleop
= gimple_assign_rhs1 (stmt
);
9698 def_stmt
= SSA_NAME_DEF_STMT (middleop
);
9699 if (!is_gimple_assign (def_stmt
)
9700 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
9702 innerop
= gimple_assign_rhs1 (def_stmt
);
9703 if (TREE_CODE (innerop
) != SSA_NAME
9704 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop
))
9707 /* Get the value-range of the inner operand. */
9708 innervr
= get_value_range (innerop
);
9709 if (innervr
->type
!= VR_RANGE
9710 || TREE_CODE (innervr
->min
) != INTEGER_CST
9711 || TREE_CODE (innervr
->max
) != INTEGER_CST
)
9714 /* Simulate the conversion chain to check if the result is equal if
9715 the middle conversion is removed. */
9716 innermin
= wi::to_widest (innervr
->min
);
9717 innermax
= wi::to_widest (innervr
->max
);
9719 inner_prec
= TYPE_PRECISION (TREE_TYPE (innerop
));
9720 middle_prec
= TYPE_PRECISION (TREE_TYPE (middleop
));
9721 final_prec
= TYPE_PRECISION (finaltype
);
9723 /* If the first conversion is not injective, the second must not
9725 if (wi::gtu_p (innermax
- innermin
,
9726 wi::mask
<widest_int
> (middle_prec
, false))
9727 && middle_prec
< final_prec
)
9729 /* We also want a medium value so that we can track the effect that
9730 narrowing conversions with sign change have. */
9731 inner_sgn
= TYPE_SIGN (TREE_TYPE (innerop
));
9732 if (inner_sgn
== UNSIGNED
)
9733 innermed
= wi::shifted_mask
<widest_int
> (1, inner_prec
- 1, false);
9736 if (wi::cmp (innermin
, innermed
, inner_sgn
) >= 0
9737 || wi::cmp (innermed
, innermax
, inner_sgn
) >= 0)
9738 innermed
= innermin
;
9740 middle_sgn
= TYPE_SIGN (TREE_TYPE (middleop
));
9741 middlemin
= wi::ext (innermin
, middle_prec
, middle_sgn
);
9742 middlemed
= wi::ext (innermed
, middle_prec
, middle_sgn
);
9743 middlemax
= wi::ext (innermax
, middle_prec
, middle_sgn
);
9745 /* Require that the final conversion applied to both the original
9746 and the intermediate range produces the same result. */
9747 final_sgn
= TYPE_SIGN (finaltype
);
9748 if (wi::ext (middlemin
, final_prec
, final_sgn
)
9749 != wi::ext (innermin
, final_prec
, final_sgn
)
9750 || wi::ext (middlemed
, final_prec
, final_sgn
)
9751 != wi::ext (innermed
, final_prec
, final_sgn
)
9752 || wi::ext (middlemax
, final_prec
, final_sgn
)
9753 != wi::ext (innermax
, final_prec
, final_sgn
))
9756 gimple_assign_set_rhs1 (stmt
, innerop
);
9761 /* Simplify a conversion from integral SSA name to float in STMT. */
9764 simplify_float_conversion_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
9766 tree rhs1
= gimple_assign_rhs1 (stmt
);
9767 value_range_t
*vr
= get_value_range (rhs1
);
9768 machine_mode fltmode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
)));
9773 /* We can only handle constant ranges. */
9774 if (vr
->type
!= VR_RANGE
9775 || TREE_CODE (vr
->min
) != INTEGER_CST
9776 || TREE_CODE (vr
->max
) != INTEGER_CST
)
9779 /* First check if we can use a signed type in place of an unsigned. */
9780 if (TYPE_UNSIGNED (TREE_TYPE (rhs1
))
9781 && (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)), 0)
9782 != CODE_FOR_nothing
)
9783 && range_fits_type_p (vr
, TYPE_PRECISION (TREE_TYPE (rhs1
)), SIGNED
))
9784 mode
= TYPE_MODE (TREE_TYPE (rhs1
));
9785 /* If we can do the conversion in the current input mode do nothing. */
9786 else if (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)),
9787 TYPE_UNSIGNED (TREE_TYPE (rhs1
))) != CODE_FOR_nothing
)
9789 /* Otherwise search for a mode we can use, starting from the narrowest
9790 integer mode available. */
9793 mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
9796 /* If we cannot do a signed conversion to float from mode
9797 or if the value-range does not fit in the signed type
9798 try with a wider mode. */
9799 if (can_float_p (fltmode
, mode
, 0) != CODE_FOR_nothing
9800 && range_fits_type_p (vr
, GET_MODE_PRECISION (mode
), SIGNED
))
9803 mode
= GET_MODE_WIDER_MODE (mode
);
9804 /* But do not widen the input. Instead leave that to the
9805 optabs expansion code. */
9806 if (GET_MODE_PRECISION (mode
) > TYPE_PRECISION (TREE_TYPE (rhs1
)))
9809 while (mode
!= VOIDmode
);
9810 if (mode
== VOIDmode
)
9814 /* It works, insert a truncation or sign-change before the
9815 float conversion. */
9816 tem
= make_ssa_name (build_nonstandard_integer_type
9817 (GET_MODE_PRECISION (mode
), 0));
9818 conv
= gimple_build_assign (tem
, NOP_EXPR
, rhs1
);
9819 gsi_insert_before (gsi
, conv
, GSI_SAME_STMT
);
9820 gimple_assign_set_rhs1 (stmt
, tem
);
9826 /* Simplify an internal fn call using ranges if possible. */
9829 simplify_internal_call_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
9831 enum tree_code subcode
;
9832 bool is_ubsan
= false;
9834 switch (gimple_call_internal_fn (stmt
))
9836 case IFN_UBSAN_CHECK_ADD
:
9837 subcode
= PLUS_EXPR
;
9840 case IFN_UBSAN_CHECK_SUB
:
9841 subcode
= MINUS_EXPR
;
9844 case IFN_UBSAN_CHECK_MUL
:
9845 subcode
= MULT_EXPR
;
9848 case IFN_ADD_OVERFLOW
:
9849 subcode
= PLUS_EXPR
;
9851 case IFN_SUB_OVERFLOW
:
9852 subcode
= MINUS_EXPR
;
9854 case IFN_MUL_OVERFLOW
:
9855 subcode
= MULT_EXPR
;
9861 tree op0
= gimple_call_arg (stmt
, 0);
9862 tree op1
= gimple_call_arg (stmt
, 1);
9865 type
= TREE_TYPE (op0
);
9866 else if (gimple_call_lhs (stmt
) == NULL_TREE
)
9869 type
= TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt
)));
9870 if (!check_for_binary_op_overflow (subcode
, type
, op0
, op1
, &ovf
)
9871 || (is_ubsan
&& ovf
))
9875 location_t loc
= gimple_location (stmt
);
9877 g
= gimple_build_assign (gimple_call_lhs (stmt
), subcode
, op0
, op1
);
9880 int prec
= TYPE_PRECISION (type
);
9883 || !useless_type_conversion_p (type
, TREE_TYPE (op0
))
9884 || !useless_type_conversion_p (type
, TREE_TYPE (op1
)))
9885 utype
= build_nonstandard_integer_type (prec
, 1);
9886 if (TREE_CODE (op0
) == INTEGER_CST
)
9887 op0
= fold_convert (utype
, op0
);
9888 else if (!useless_type_conversion_p (utype
, TREE_TYPE (op0
)))
9890 g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, op0
);
9891 gimple_set_location (g
, loc
);
9892 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
9893 op0
= gimple_assign_lhs (g
);
9895 if (TREE_CODE (op1
) == INTEGER_CST
)
9896 op1
= fold_convert (utype
, op1
);
9897 else if (!useless_type_conversion_p (utype
, TREE_TYPE (op1
)))
9899 g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, op1
);
9900 gimple_set_location (g
, loc
);
9901 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
9902 op1
= gimple_assign_lhs (g
);
9904 g
= gimple_build_assign (make_ssa_name (utype
), subcode
, op0
, op1
);
9905 gimple_set_location (g
, loc
);
9906 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
9909 g
= gimple_build_assign (make_ssa_name (type
), NOP_EXPR
,
9910 gimple_assign_lhs (g
));
9911 gimple_set_location (g
, loc
);
9912 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
9914 g
= gimple_build_assign (gimple_call_lhs (stmt
), COMPLEX_EXPR
,
9915 gimple_assign_lhs (g
),
9916 build_int_cst (type
, ovf
));
9918 gimple_set_location (g
, loc
);
9919 gsi_replace (gsi
, g
, false);
9923 /* Simplify STMT using ranges if possible. */
9926 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
9928 gimple stmt
= gsi_stmt (*gsi
);
9929 if (is_gimple_assign (stmt
))
9931 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
9932 tree rhs1
= gimple_assign_rhs1 (stmt
);
9938 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9939 if the RHS is zero or one, and the LHS are known to be boolean
9941 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9942 return simplify_truth_ops_using_ranges (gsi
, stmt
);
9945 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9946 and BIT_AND_EXPR respectively if the first operand is greater
9947 than zero and the second operand is an exact power of two.
9948 Also optimize TRUNC_MOD_EXPR away if the second operand is
9949 constant and the first operand already has the right value
9951 case TRUNC_DIV_EXPR
:
9952 case TRUNC_MOD_EXPR
:
9953 if (TREE_CODE (rhs1
) == SSA_NAME
9954 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9955 return simplify_div_or_mod_using_ranges (stmt
);
9958 /* Transform ABS (X) into X or -X as appropriate. */
9960 if (TREE_CODE (rhs1
) == SSA_NAME
9961 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9962 return simplify_abs_using_ranges (stmt
);
9967 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9968 if all the bits being cleared are already cleared or
9969 all the bits being set are already set. */
9970 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9971 return simplify_bit_ops_using_ranges (gsi
, stmt
);
9975 if (TREE_CODE (rhs1
) == SSA_NAME
9976 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9977 return simplify_conversion_using_ranges (stmt
);
9981 if (TREE_CODE (rhs1
) == SSA_NAME
9982 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9983 return simplify_float_conversion_using_ranges (gsi
, stmt
);
9990 else if (gimple_code (stmt
) == GIMPLE_COND
)
9991 return simplify_cond_using_ranges (as_a
<gcond
*> (stmt
));
9992 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
9993 return simplify_switch_using_ranges (as_a
<gswitch
*> (stmt
));
9994 else if (is_gimple_call (stmt
)
9995 && gimple_call_internal_p (stmt
))
9996 return simplify_internal_call_using_ranges (gsi
, stmt
);
10001 /* If the statement pointed by SI has a predicate whose value can be
10002 computed using the value range information computed by VRP, compute
10003 its value and return true. Otherwise, return false. */
10006 fold_predicate_in (gimple_stmt_iterator
*si
)
10008 bool assignment_p
= false;
10010 gimple stmt
= gsi_stmt (*si
);
10012 if (is_gimple_assign (stmt
)
10013 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
10015 assignment_p
= true;
10016 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
10017 gimple_assign_rhs1 (stmt
),
10018 gimple_assign_rhs2 (stmt
),
10021 else if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
10022 val
= vrp_evaluate_conditional (gimple_cond_code (cond_stmt
),
10023 gimple_cond_lhs (cond_stmt
),
10024 gimple_cond_rhs (cond_stmt
),
10032 val
= fold_convert (gimple_expr_type (stmt
), val
);
10036 fprintf (dump_file
, "Folding predicate ");
10037 print_gimple_expr (dump_file
, stmt
, 0, 0);
10038 fprintf (dump_file
, " to ");
10039 print_generic_expr (dump_file
, val
, 0);
10040 fprintf (dump_file
, "\n");
10043 if (is_gimple_assign (stmt
))
10044 gimple_assign_set_rhs_from_tree (si
, val
);
10047 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
10048 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
10049 if (integer_zerop (val
))
10050 gimple_cond_make_false (cond_stmt
);
10051 else if (integer_onep (val
))
10052 gimple_cond_make_true (cond_stmt
);
10054 gcc_unreachable ();
10063 /* Callback for substitute_and_fold folding the stmt at *SI. */
10066 vrp_fold_stmt (gimple_stmt_iterator
*si
)
10068 if (fold_predicate_in (si
))
10071 return simplify_stmt_using_ranges (si
);
10074 /* Stack of dest,src equivalency pairs that need to be restored after
10075 each attempt to thread a block's incoming edge to an outgoing edge.
10077 A NULL entry is used to mark the end of pairs which need to be
10079 static vec
<tree
> equiv_stack
;
10081 /* A trivial wrapper so that we can present the generic jump threading
10082 code with a simple API for simplifying statements. STMT is the
10083 statement we want to simplify, WITHIN_STMT provides the location
10084 for any overflow warnings. */
10087 simplify_stmt_for_jump_threading (gimple stmt
, gimple within_stmt
)
10089 if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
10090 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt
),
10091 gimple_cond_lhs (cond_stmt
),
10092 gimple_cond_rhs (cond_stmt
),
10095 if (gassign
*assign_stmt
= dyn_cast
<gassign
*> (stmt
))
10097 value_range_t new_vr
= VR_INITIALIZER
;
10098 tree lhs
= gimple_assign_lhs (assign_stmt
);
10100 if (TREE_CODE (lhs
) == SSA_NAME
10101 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
10102 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
10104 extract_range_from_assignment (&new_vr
, assign_stmt
);
10105 if (range_int_cst_singleton_p (&new_vr
))
10113 /* Blocks which have more than one predecessor and more than
10114 one successor present jump threading opportunities, i.e.,
10115 when the block is reached from a specific predecessor, we
10116 may be able to determine which of the outgoing edges will
10117 be traversed. When this optimization applies, we are able
10118 to avoid conditionals at runtime and we may expose secondary
10119 optimization opportunities.
10121 This routine is effectively a driver for the generic jump
10122 threading code. It basically just presents the generic code
10123 with edges that may be suitable for jump threading.
10125 Unlike DOM, we do not iterate VRP if jump threading was successful.
10126 While iterating may expose new opportunities for VRP, it is expected
10127 those opportunities would be very limited and the compile time cost
10128 to expose those opportunities would be significant.
10130 As jump threading opportunities are discovered, they are registered
10131 for later realization. */
10134 identify_jump_threads (void)
10141 /* Ugh. When substituting values earlier in this pass we can
10142 wipe the dominance information. So rebuild the dominator
10143 information as we need it within the jump threading code. */
10144 calculate_dominance_info (CDI_DOMINATORS
);
10146 /* We do not allow VRP information to be used for jump threading
10147 across a back edge in the CFG. Otherwise it becomes too
10148 difficult to avoid eliminating loop exit tests. Of course
10149 EDGE_DFS_BACK is not accurate at this time so we have to
10151 mark_dfs_back_edges ();
10153 /* Do not thread across edges we are about to remove. Just marking
10154 them as EDGE_DFS_BACK will do. */
10155 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
10156 e
->flags
|= EDGE_DFS_BACK
;
10158 /* Allocate our unwinder stack to unwind any temporary equivalences
10159 that might be recorded. */
10160 equiv_stack
.create (20);
10162 /* To avoid lots of silly node creation, we create a single
10163 conditional and just modify it in-place when attempting to
10165 dummy
= gimple_build_cond (EQ_EXPR
,
10166 integer_zero_node
, integer_zero_node
,
10169 /* Walk through all the blocks finding those which present a
10170 potential jump threading opportunity. We could set this up
10171 as a dominator walker and record data during the walk, but
10172 I doubt it's worth the effort for the classes of jump
10173 threading opportunities we are trying to identify at this
10174 point in compilation. */
10175 FOR_EACH_BB_FN (bb
, cfun
)
10179 /* If the generic jump threading code does not find this block
10180 interesting, then there is nothing to do. */
10181 if (! potentially_threadable_block (bb
))
10184 last
= last_stmt (bb
);
10186 /* We're basically looking for a switch or any kind of conditional with
10187 integral or pointer type arguments. Note the type of the second
10188 argument will be the same as the first argument, so no need to
10189 check it explicitly.
10191 We also handle the case where there are no statements in the
10192 block. This come up with forwarder blocks that are not
10193 optimized away because they lead to a loop header. But we do
10194 want to thread through them as we can sometimes thread to the
10195 loop exit which is obviously profitable. */
10197 || gimple_code (last
) == GIMPLE_SWITCH
10198 || (gimple_code (last
) == GIMPLE_COND
10199 && TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
10200 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
10201 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
))))
10202 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
10203 || is_gimple_min_invariant (gimple_cond_rhs (last
)))))
10207 /* We've got a block with multiple predecessors and multiple
10208 successors which also ends in a suitable conditional or
10209 switch statement. For each predecessor, see if we can thread
10210 it to a specific successor. */
10211 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
10213 /* Do not thread across back edges or abnormal edges
10215 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
10218 thread_across_edge (dummy
, e
, true, &equiv_stack
,
10219 simplify_stmt_for_jump_threading
);
10224 /* We do not actually update the CFG or SSA graphs at this point as
10225 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10226 handle ASSERT_EXPRs gracefully. */
10229 /* We identified all the jump threading opportunities earlier, but could
10230 not transform the CFG at that time. This routine transforms the
10231 CFG and arranges for the dominator tree to be rebuilt if necessary.
10233 Note the SSA graph update will occur during the normal TODO
10234 processing by the pass manager. */
10236 finalize_jump_threads (void)
10238 thread_through_all_blocks (false);
10239 equiv_stack
.release ();
10243 /* Traverse all the blocks folding conditionals with known ranges. */
10246 vrp_finalize (void)
10250 values_propagated
= true;
10254 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
10255 dump_all_value_ranges (dump_file
);
10256 fprintf (dump_file
, "\n");
10259 substitute_and_fold (op_with_constant_singleton_value_range
,
10260 vrp_fold_stmt
, false);
10262 if (warn_array_bounds
&& first_pass_instance
)
10263 check_all_array_refs ();
10265 /* We must identify jump threading opportunities before we release
10266 the datastructures built by VRP. */
10267 identify_jump_threads ();
10269 /* Set value range to non pointer SSA_NAMEs. */
10270 for (i
= 0; i
< num_vr_values
; i
++)
10273 tree name
= ssa_name (i
);
10276 || POINTER_TYPE_P (TREE_TYPE (name
))
10277 || (vr_value
[i
]->type
== VR_VARYING
)
10278 || (vr_value
[i
]->type
== VR_UNDEFINED
))
10281 if ((TREE_CODE (vr_value
[i
]->min
) == INTEGER_CST
)
10282 && (TREE_CODE (vr_value
[i
]->max
) == INTEGER_CST
)
10283 && (vr_value
[i
]->type
== VR_RANGE
10284 || vr_value
[i
]->type
== VR_ANTI_RANGE
))
10285 set_range_info (name
, vr_value
[i
]->type
, vr_value
[i
]->min
,
10289 /* Free allocated memory. */
10290 for (i
= 0; i
< num_vr_values
; i
++)
10293 BITMAP_FREE (vr_value
[i
]->equiv
);
10294 free (vr_value
[i
]);
10298 free (vr_phi_edge_counts
);
10300 /* So that we can distinguish between VRP data being available
10301 and not available. */
10303 vr_phi_edge_counts
= NULL
;
10307 /* Main entry point to VRP (Value Range Propagation). This pass is
10308 loosely based on J. R. C. Patterson, ``Accurate Static Branch
10309 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
10310 Programming Language Design and Implementation, pp. 67-78, 1995.
10311 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
10313 This is essentially an SSA-CCP pass modified to deal with ranges
10314 instead of constants.
10316 While propagating ranges, we may find that two or more SSA name
10317 have equivalent, though distinct ranges. For instance,
10320 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
10322 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
10326 In the code above, pointer p_5 has range [q_2, q_2], but from the
10327 code we can also determine that p_5 cannot be NULL and, if q_2 had
10328 a non-varying range, p_5's range should also be compatible with it.
10330 These equivalences are created by two expressions: ASSERT_EXPR and
10331 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
10332 result of another assertion, then we can use the fact that p_5 and
10333 p_4 are equivalent when evaluating p_5's range.
10335 Together with value ranges, we also propagate these equivalences
10336 between names so that we can take advantage of information from
10337 multiple ranges when doing final replacement. Note that this
10338 equivalency relation is transitive but not symmetric.
10340 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
10341 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
10342 in contexts where that assertion does not hold (e.g., in line 6).
10344 TODO, the main difference between this pass and Patterson's is that
10345 we do not propagate edge probabilities. We only compute whether
10346 edges can be taken or not. That is, instead of having a spectrum
10347 of jump probabilities between 0 and 1, we only deal with 0, 1 and
10348 DON'T KNOW. In the future, it may be worthwhile to propagate
10349 probabilities to aid branch prediction. */
10351 static unsigned int
10358 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
10359 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
10360 scev_initialize ();
10362 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
10363 Inserting assertions may split edges which will invalidate
10365 insert_range_assertions ();
10367 to_remove_edges
.create (10);
10368 to_update_switch_stmts
.create (5);
10369 threadedge_initialize_values ();
10371 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
10372 mark_dfs_back_edges ();
10375 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
10378 free_numbers_of_iterations_estimates ();
10380 /* ASSERT_EXPRs must be removed before finalizing jump threads
10381 as finalizing jump threads calls the CFG cleanup code which
10382 does not properly handle ASSERT_EXPRs. */
10383 remove_range_assertions ();
10385 /* If we exposed any new variables, go ahead and put them into
10386 SSA form now, before we handle jump threading. This simplifies
10387 interactions between rewriting of _DECL nodes into SSA form
10388 and rewriting SSA_NAME nodes into SSA form after block
10389 duplication and CFG manipulation. */
10390 update_ssa (TODO_update_ssa
);
10392 finalize_jump_threads ();
10394 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
10395 CFG in a broken state and requires a cfg_cleanup run. */
10396 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
10398 /* Update SWITCH_EXPR case label vector. */
10399 FOR_EACH_VEC_ELT (to_update_switch_stmts
, i
, su
)
10402 size_t n
= TREE_VEC_LENGTH (su
->vec
);
10404 gimple_switch_set_num_labels (su
->stmt
, n
);
10405 for (j
= 0; j
< n
; j
++)
10406 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
10407 /* As we may have replaced the default label with a regular one
10408 make sure to make it a real default label again. This ensures
10409 optimal expansion. */
10410 label
= gimple_switch_label (su
->stmt
, 0);
10411 CASE_LOW (label
) = NULL_TREE
;
10412 CASE_HIGH (label
) = NULL_TREE
;
10415 if (to_remove_edges
.length () > 0)
10417 free_dominance_info (CDI_DOMINATORS
);
10418 loops_state_set (LOOPS_NEED_FIXUP
);
10421 to_remove_edges
.release ();
10422 to_update_switch_stmts
.release ();
10423 threadedge_finalize_values ();
10426 loop_optimizer_finalize ();
10432 const pass_data pass_data_vrp
=
10434 GIMPLE_PASS
, /* type */
10436 OPTGROUP_NONE
, /* optinfo_flags */
10437 TV_TREE_VRP
, /* tv_id */
10438 PROP_ssa
, /* properties_required */
10439 0, /* properties_provided */
10440 0, /* properties_destroyed */
10441 0, /* todo_flags_start */
10442 ( TODO_cleanup_cfg
| TODO_update_ssa
), /* todo_flags_finish */
10445 class pass_vrp
: public gimple_opt_pass
10448 pass_vrp (gcc::context
*ctxt
)
10449 : gimple_opt_pass (pass_data_vrp
, ctxt
)
10452 /* opt_pass methods: */
10453 opt_pass
* clone () { return new pass_vrp (m_ctxt
); }
10454 virtual bool gate (function
*) { return flag_tree_vrp
!= 0; }
10455 virtual unsigned int execute (function
*) { return execute_vrp (); }
10457 }; // class pass_vrp
10459 } // anon namespace
10462 make_pass_vrp (gcc::context
*ctxt
)
10464 return new pass_vrp (ctxt
);