Daily bump.
[official-gcc.git] / gcc / expmed.c
blob6327629d458fc734fbf26c16a9457e7307f52213
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2015 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "hash-set.h"
29 #include "machmode.h"
30 #include "vec.h"
31 #include "double-int.h"
32 #include "input.h"
33 #include "alias.h"
34 #include "symtab.h"
35 #include "wide-int.h"
36 #include "inchash.h"
37 #include "tree.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
40 #include "tm_p.h"
41 #include "flags.h"
42 #include "insn-config.h"
43 #include "hashtab.h"
44 #include "hard-reg-set.h"
45 #include "function.h"
46 #include "statistics.h"
47 #include "real.h"
48 #include "fixed-value.h"
49 #include "expmed.h"
50 #include "dojump.h"
51 #include "explow.h"
52 #include "calls.h"
53 #include "emit-rtl.h"
54 #include "varasm.h"
55 #include "stmt.h"
56 #include "expr.h"
57 #include "insn-codes.h"
58 #include "optabs.h"
59 #include "recog.h"
60 #include "langhooks.h"
61 #include "predict.h"
62 #include "basic-block.h"
63 #include "df.h"
64 #include "target.h"
66 struct target_expmed default_target_expmed;
67 #if SWITCHABLE_TARGET
68 struct target_expmed *this_target_expmed = &default_target_expmed;
69 #endif
71 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
72 unsigned HOST_WIDE_INT,
73 unsigned HOST_WIDE_INT,
74 unsigned HOST_WIDE_INT,
75 rtx);
76 static void store_fixed_bit_field_1 (rtx, unsigned HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT,
78 rtx);
79 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
80 unsigned HOST_WIDE_INT,
81 unsigned HOST_WIDE_INT,
82 unsigned HOST_WIDE_INT,
83 rtx);
84 static rtx extract_fixed_bit_field (machine_mode, rtx,
85 unsigned HOST_WIDE_INT,
86 unsigned HOST_WIDE_INT, rtx, int);
87 static rtx extract_fixed_bit_field_1 (machine_mode, rtx,
88 unsigned HOST_WIDE_INT,
89 unsigned HOST_WIDE_INT, rtx, int);
90 static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
91 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
92 unsigned HOST_WIDE_INT, int);
93 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
94 static rtx expand_smod_pow2 (machine_mode, rtx, HOST_WIDE_INT);
95 static rtx expand_sdiv_pow2 (machine_mode, rtx, HOST_WIDE_INT);
97 /* Return a constant integer mask value of mode MODE with BITSIZE ones
98 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
99 The mask is truncated if necessary to the width of mode MODE. The
100 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
102 static inline rtx
103 mask_rtx (machine_mode mode, int bitpos, int bitsize, bool complement)
105 return immed_wide_int_const
106 (wi::shifted_mask (bitpos, bitsize, complement,
107 GET_MODE_PRECISION (mode)), mode);
110 /* Test whether a value is zero of a power of two. */
111 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
112 (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
114 struct init_expmed_rtl
116 rtx reg;
117 rtx plus;
118 rtx neg;
119 rtx mult;
120 rtx sdiv;
121 rtx udiv;
122 rtx sdiv_32;
123 rtx smod_32;
124 rtx wide_mult;
125 rtx wide_lshr;
126 rtx wide_trunc;
127 rtx shift;
128 rtx shift_mult;
129 rtx shift_add;
130 rtx shift_sub0;
131 rtx shift_sub1;
132 rtx zext;
133 rtx trunc;
135 rtx pow2[MAX_BITS_PER_WORD];
136 rtx cint[MAX_BITS_PER_WORD];
139 static void
140 init_expmed_one_conv (struct init_expmed_rtl *all, machine_mode to_mode,
141 machine_mode from_mode, bool speed)
143 int to_size, from_size;
144 rtx which;
146 to_size = GET_MODE_PRECISION (to_mode);
147 from_size = GET_MODE_PRECISION (from_mode);
149 /* Most partial integers have a precision less than the "full"
150 integer it requires for storage. In case one doesn't, for
151 comparison purposes here, reduce the bit size by one in that
152 case. */
153 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
154 && exact_log2 (to_size) != -1)
155 to_size --;
156 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
157 && exact_log2 (from_size) != -1)
158 from_size --;
160 /* Assume cost of zero-extend and sign-extend is the same. */
161 which = (to_size < from_size ? all->trunc : all->zext);
163 PUT_MODE (all->reg, from_mode);
164 set_convert_cost (to_mode, from_mode, speed, set_src_cost (which, speed));
167 static void
168 init_expmed_one_mode (struct init_expmed_rtl *all,
169 machine_mode mode, int speed)
171 int m, n, mode_bitsize;
172 machine_mode mode_from;
174 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
176 PUT_MODE (all->reg, mode);
177 PUT_MODE (all->plus, mode);
178 PUT_MODE (all->neg, mode);
179 PUT_MODE (all->mult, mode);
180 PUT_MODE (all->sdiv, mode);
181 PUT_MODE (all->udiv, mode);
182 PUT_MODE (all->sdiv_32, mode);
183 PUT_MODE (all->smod_32, mode);
184 PUT_MODE (all->wide_trunc, mode);
185 PUT_MODE (all->shift, mode);
186 PUT_MODE (all->shift_mult, mode);
187 PUT_MODE (all->shift_add, mode);
188 PUT_MODE (all->shift_sub0, mode);
189 PUT_MODE (all->shift_sub1, mode);
190 PUT_MODE (all->zext, mode);
191 PUT_MODE (all->trunc, mode);
193 set_add_cost (speed, mode, set_src_cost (all->plus, speed));
194 set_neg_cost (speed, mode, set_src_cost (all->neg, speed));
195 set_mul_cost (speed, mode, set_src_cost (all->mult, speed));
196 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, speed));
197 set_udiv_cost (speed, mode, set_src_cost (all->udiv, speed));
199 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, speed)
200 <= 2 * add_cost (speed, mode)));
201 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, speed)
202 <= 4 * add_cost (speed, mode)));
204 set_shift_cost (speed, mode, 0, 0);
206 int cost = add_cost (speed, mode);
207 set_shiftadd_cost (speed, mode, 0, cost);
208 set_shiftsub0_cost (speed, mode, 0, cost);
209 set_shiftsub1_cost (speed, mode, 0, cost);
212 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
213 for (m = 1; m < n; m++)
215 XEXP (all->shift, 1) = all->cint[m];
216 XEXP (all->shift_mult, 1) = all->pow2[m];
218 set_shift_cost (speed, mode, m, set_src_cost (all->shift, speed));
219 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, speed));
220 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, speed));
221 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, speed));
224 if (SCALAR_INT_MODE_P (mode))
226 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
227 mode_from = (machine_mode)(mode_from + 1))
228 init_expmed_one_conv (all, mode, mode_from, speed);
230 if (GET_MODE_CLASS (mode) == MODE_INT)
232 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
233 if (wider_mode != VOIDmode)
235 PUT_MODE (all->zext, wider_mode);
236 PUT_MODE (all->wide_mult, wider_mode);
237 PUT_MODE (all->wide_lshr, wider_mode);
238 XEXP (all->wide_lshr, 1) = GEN_INT (mode_bitsize);
240 set_mul_widen_cost (speed, wider_mode,
241 set_src_cost (all->wide_mult, speed));
242 set_mul_highpart_cost (speed, mode,
243 set_src_cost (all->wide_trunc, speed));
248 void
249 init_expmed (void)
251 struct init_expmed_rtl all;
252 machine_mode mode = QImode;
253 int m, speed;
255 memset (&all, 0, sizeof all);
256 for (m = 1; m < MAX_BITS_PER_WORD; m++)
258 all.pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
259 all.cint[m] = GEN_INT (m);
262 /* Avoid using hard regs in ways which may be unsupported. */
263 all.reg = gen_rtx_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
264 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
265 all.neg = gen_rtx_NEG (mode, all.reg);
266 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
267 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
268 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
269 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
270 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
271 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
272 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
273 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
274 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
275 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
276 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
277 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
278 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
279 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
280 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
282 for (speed = 0; speed < 2; speed++)
284 crtl->maybe_hot_insn_p = speed;
285 set_zero_cost (speed, set_src_cost (const0_rtx, speed));
287 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
288 mode = (machine_mode)(mode + 1))
289 init_expmed_one_mode (&all, mode, speed);
291 if (MIN_MODE_PARTIAL_INT != VOIDmode)
292 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
293 mode = (machine_mode)(mode + 1))
294 init_expmed_one_mode (&all, mode, speed);
296 if (MIN_MODE_VECTOR_INT != VOIDmode)
297 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
298 mode = (machine_mode)(mode + 1))
299 init_expmed_one_mode (&all, mode, speed);
302 if (alg_hash_used_p ())
304 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
305 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
307 else
308 set_alg_hash_used_p (true);
309 default_rtl_profile ();
311 ggc_free (all.trunc);
312 ggc_free (all.shift_sub1);
313 ggc_free (all.shift_sub0);
314 ggc_free (all.shift_add);
315 ggc_free (all.shift_mult);
316 ggc_free (all.shift);
317 ggc_free (all.wide_trunc);
318 ggc_free (all.wide_lshr);
319 ggc_free (all.wide_mult);
320 ggc_free (all.zext);
321 ggc_free (all.smod_32);
322 ggc_free (all.sdiv_32);
323 ggc_free (all.udiv);
324 ggc_free (all.sdiv);
325 ggc_free (all.mult);
326 ggc_free (all.neg);
327 ggc_free (all.plus);
328 ggc_free (all.reg);
331 /* Return an rtx representing minus the value of X.
332 MODE is the intended mode of the result,
333 useful if X is a CONST_INT. */
336 negate_rtx (machine_mode mode, rtx x)
338 rtx result = simplify_unary_operation (NEG, mode, x, mode);
340 if (result == 0)
341 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
343 return result;
346 /* Adjust bitfield memory MEM so that it points to the first unit of mode
347 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
348 If MODE is BLKmode, return a reference to every byte in the bitfield.
349 Set *NEW_BITNUM to the bit position of the field within the new memory. */
351 static rtx
352 narrow_bit_field_mem (rtx mem, machine_mode mode,
353 unsigned HOST_WIDE_INT bitsize,
354 unsigned HOST_WIDE_INT bitnum,
355 unsigned HOST_WIDE_INT *new_bitnum)
357 if (mode == BLKmode)
359 *new_bitnum = bitnum % BITS_PER_UNIT;
360 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
361 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
362 / BITS_PER_UNIT);
363 return adjust_bitfield_address_size (mem, mode, offset, size);
365 else
367 unsigned int unit = GET_MODE_BITSIZE (mode);
368 *new_bitnum = bitnum % unit;
369 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
370 return adjust_bitfield_address (mem, mode, offset);
374 /* The caller wants to perform insertion or extraction PATTERN on a
375 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
376 BITREGION_START and BITREGION_END are as for store_bit_field
377 and FIELDMODE is the natural mode of the field.
379 Search for a mode that is compatible with the memory access
380 restrictions and (where applicable) with a register insertion or
381 extraction. Return the new memory on success, storing the adjusted
382 bit position in *NEW_BITNUM. Return null otherwise. */
384 static rtx
385 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
386 rtx op0, HOST_WIDE_INT bitsize,
387 HOST_WIDE_INT bitnum,
388 unsigned HOST_WIDE_INT bitregion_start,
389 unsigned HOST_WIDE_INT bitregion_end,
390 machine_mode fieldmode,
391 unsigned HOST_WIDE_INT *new_bitnum)
393 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
394 bitregion_end, MEM_ALIGN (op0),
395 MEM_VOLATILE_P (op0));
396 machine_mode best_mode;
397 if (iter.next_mode (&best_mode))
399 /* We can use a memory in BEST_MODE. See whether this is true for
400 any wider modes. All other things being equal, we prefer to
401 use the widest mode possible because it tends to expose more
402 CSE opportunities. */
403 if (!iter.prefer_smaller_modes ())
405 /* Limit the search to the mode required by the corresponding
406 register insertion or extraction instruction, if any. */
407 machine_mode limit_mode = word_mode;
408 extraction_insn insn;
409 if (get_best_reg_extraction_insn (&insn, pattern,
410 GET_MODE_BITSIZE (best_mode),
411 fieldmode))
412 limit_mode = insn.field_mode;
414 machine_mode wider_mode;
415 while (iter.next_mode (&wider_mode)
416 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
417 best_mode = wider_mode;
419 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
420 new_bitnum);
422 return NULL_RTX;
425 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
426 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
427 offset is then BITNUM / BITS_PER_UNIT. */
429 static bool
430 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
431 unsigned HOST_WIDE_INT bitsize,
432 machine_mode struct_mode)
434 if (BYTES_BIG_ENDIAN)
435 return (bitnum % BITS_PER_UNIT == 0
436 && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
437 || (bitnum + bitsize) % BITS_PER_WORD == 0));
438 else
439 return bitnum % BITS_PER_WORD == 0;
442 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
443 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
444 Return false if the access would touch memory outside the range
445 BITREGION_START to BITREGION_END for conformance to the C++ memory
446 model. */
448 static bool
449 strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
450 unsigned HOST_WIDE_INT bitnum,
451 machine_mode fieldmode,
452 unsigned HOST_WIDE_INT bitregion_start,
453 unsigned HOST_WIDE_INT bitregion_end)
455 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
457 /* -fstrict-volatile-bitfields must be enabled and we must have a
458 volatile MEM. */
459 if (!MEM_P (op0)
460 || !MEM_VOLATILE_P (op0)
461 || flag_strict_volatile_bitfields <= 0)
462 return false;
464 /* Non-integral modes likely only happen with packed structures.
465 Punt. */
466 if (!SCALAR_INT_MODE_P (fieldmode))
467 return false;
469 /* The bit size must not be larger than the field mode, and
470 the field mode must not be larger than a word. */
471 if (bitsize > modesize || modesize > BITS_PER_WORD)
472 return false;
474 /* Check for cases of unaligned fields that must be split. */
475 if (bitnum % modesize + bitsize > modesize)
476 return false;
478 /* The memory must be sufficiently aligned for a MODESIZE access.
479 This condition guarantees, that the memory access will not
480 touch anything after the end of the structure. */
481 if (MEM_ALIGN (op0) < modesize)
482 return false;
484 /* Check for cases where the C++ memory model applies. */
485 if (bitregion_end != 0
486 && (bitnum - bitnum % modesize < bitregion_start
487 || bitnum - bitnum % modesize + modesize - 1 > bitregion_end))
488 return false;
490 return true;
493 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
494 bit number BITNUM can be treated as a simple value of mode MODE. */
496 static bool
497 simple_mem_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
498 unsigned HOST_WIDE_INT bitnum, machine_mode mode)
500 return (MEM_P (op0)
501 && bitnum % BITS_PER_UNIT == 0
502 && bitsize == GET_MODE_BITSIZE (mode)
503 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
504 || (bitnum % GET_MODE_ALIGNMENT (mode) == 0
505 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
508 /* Try to use instruction INSV to store VALUE into a field of OP0.
509 BITSIZE and BITNUM are as for store_bit_field. */
511 static bool
512 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
513 unsigned HOST_WIDE_INT bitsize,
514 unsigned HOST_WIDE_INT bitnum,
515 rtx value)
517 struct expand_operand ops[4];
518 rtx value1;
519 rtx xop0 = op0;
520 rtx_insn *last = get_last_insn ();
521 bool copy_back = false;
523 machine_mode op_mode = insv->field_mode;
524 unsigned int unit = GET_MODE_BITSIZE (op_mode);
525 if (bitsize == 0 || bitsize > unit)
526 return false;
528 if (MEM_P (xop0))
529 /* Get a reference to the first byte of the field. */
530 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
531 &bitnum);
532 else
534 /* Convert from counting within OP0 to counting in OP_MODE. */
535 if (BYTES_BIG_ENDIAN)
536 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
538 /* If xop0 is a register, we need it in OP_MODE
539 to make it acceptable to the format of insv. */
540 if (GET_CODE (xop0) == SUBREG)
541 /* We can't just change the mode, because this might clobber op0,
542 and we will need the original value of op0 if insv fails. */
543 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
544 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
545 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
548 /* If the destination is a paradoxical subreg such that we need a
549 truncate to the inner mode, perform the insertion on a temporary and
550 truncate the result to the original destination. Note that we can't
551 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
552 X) 0)) is (reg:N X). */
553 if (GET_CODE (xop0) == SUBREG
554 && REG_P (SUBREG_REG (xop0))
555 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
556 op_mode))
558 rtx tem = gen_reg_rtx (op_mode);
559 emit_move_insn (tem, xop0);
560 xop0 = tem;
561 copy_back = true;
564 /* There are similar overflow check at the start of store_bit_field_1,
565 but that only check the situation where the field lies completely
566 outside the register, while there do have situation where the field
567 lies partialy in the register, we need to adjust bitsize for this
568 partial overflow situation. Without this fix, pr48335-2.c on big-endian
569 will broken on those arch support bit insert instruction, like arm, aarch64
570 etc. */
571 if (bitsize + bitnum > unit && bitnum < unit)
573 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
574 "destination object, data truncated into %wu-bit",
575 bitsize, unit - bitnum);
576 bitsize = unit - bitnum;
579 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
580 "backwards" from the size of the unit we are inserting into.
581 Otherwise, we count bits from the most significant on a
582 BYTES/BITS_BIG_ENDIAN machine. */
584 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
585 bitnum = unit - bitsize - bitnum;
587 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
588 value1 = value;
589 if (GET_MODE (value) != op_mode)
591 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
593 /* Optimization: Don't bother really extending VALUE
594 if it has all the bits we will actually use. However,
595 if we must narrow it, be sure we do it correctly. */
597 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
599 rtx tmp;
601 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
602 if (! tmp)
603 tmp = simplify_gen_subreg (op_mode,
604 force_reg (GET_MODE (value),
605 value1),
606 GET_MODE (value), 0);
607 value1 = tmp;
609 else
610 value1 = gen_lowpart (op_mode, value1);
612 else if (CONST_INT_P (value))
613 value1 = gen_int_mode (INTVAL (value), op_mode);
614 else
615 /* Parse phase is supposed to make VALUE's data type
616 match that of the component reference, which is a type
617 at least as wide as the field; so VALUE should have
618 a mode that corresponds to that type. */
619 gcc_assert (CONSTANT_P (value));
622 create_fixed_operand (&ops[0], xop0);
623 create_integer_operand (&ops[1], bitsize);
624 create_integer_operand (&ops[2], bitnum);
625 create_input_operand (&ops[3], value1, op_mode);
626 if (maybe_expand_insn (insv->icode, 4, ops))
628 if (copy_back)
629 convert_move (op0, xop0, true);
630 return true;
632 delete_insns_since (last);
633 return false;
636 /* A subroutine of store_bit_field, with the same arguments. Return true
637 if the operation could be implemented.
639 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
640 no other way of implementing the operation. If FALLBACK_P is false,
641 return false instead. */
643 static bool
644 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
645 unsigned HOST_WIDE_INT bitnum,
646 unsigned HOST_WIDE_INT bitregion_start,
647 unsigned HOST_WIDE_INT bitregion_end,
648 machine_mode fieldmode,
649 rtx value, bool fallback_p)
651 rtx op0 = str_rtx;
652 rtx orig_value;
654 while (GET_CODE (op0) == SUBREG)
656 /* The following line once was done only if WORDS_BIG_ENDIAN,
657 but I think that is a mistake. WORDS_BIG_ENDIAN is
658 meaningful at a much higher level; when structures are copied
659 between memory and regs, the higher-numbered regs
660 always get higher addresses. */
661 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
662 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
663 int byte_offset = 0;
665 /* Paradoxical subregs need special handling on big endian machines. */
666 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
668 int difference = inner_mode_size - outer_mode_size;
670 if (WORDS_BIG_ENDIAN)
671 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
672 if (BYTES_BIG_ENDIAN)
673 byte_offset += difference % UNITS_PER_WORD;
675 else
676 byte_offset = SUBREG_BYTE (op0);
678 bitnum += byte_offset * BITS_PER_UNIT;
679 op0 = SUBREG_REG (op0);
682 /* No action is needed if the target is a register and if the field
683 lies completely outside that register. This can occur if the source
684 code contains an out-of-bounds access to a small array. */
685 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
686 return true;
688 /* Use vec_set patterns for inserting parts of vectors whenever
689 available. */
690 if (VECTOR_MODE_P (GET_MODE (op0))
691 && !MEM_P (op0)
692 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
693 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
694 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
695 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
697 struct expand_operand ops[3];
698 machine_mode outermode = GET_MODE (op0);
699 machine_mode innermode = GET_MODE_INNER (outermode);
700 enum insn_code icode = optab_handler (vec_set_optab, outermode);
701 int pos = bitnum / GET_MODE_BITSIZE (innermode);
703 create_fixed_operand (&ops[0], op0);
704 create_input_operand (&ops[1], value, innermode);
705 create_integer_operand (&ops[2], pos);
706 if (maybe_expand_insn (icode, 3, ops))
707 return true;
710 /* If the target is a register, overwriting the entire object, or storing
711 a full-word or multi-word field can be done with just a SUBREG. */
712 if (!MEM_P (op0)
713 && bitsize == GET_MODE_BITSIZE (fieldmode)
714 && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
715 || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
717 /* Use the subreg machinery either to narrow OP0 to the required
718 words or to cope with mode punning between equal-sized modes.
719 In the latter case, use subreg on the rhs side, not lhs. */
720 rtx sub;
722 if (bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
724 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
725 if (sub)
727 emit_move_insn (op0, sub);
728 return true;
731 else
733 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
734 bitnum / BITS_PER_UNIT);
735 if (sub)
737 emit_move_insn (sub, value);
738 return true;
743 /* If the target is memory, storing any naturally aligned field can be
744 done with a simple store. For targets that support fast unaligned
745 memory, any naturally sized, unit aligned field can be done directly. */
746 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode))
748 op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
749 emit_move_insn (op0, value);
750 return true;
753 /* Make sure we are playing with integral modes. Pun with subregs
754 if we aren't. This must come after the entire register case above,
755 since that case is valid for any mode. The following cases are only
756 valid for integral modes. */
758 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
759 if (imode != GET_MODE (op0))
761 if (MEM_P (op0))
762 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
763 else
765 gcc_assert (imode != BLKmode);
766 op0 = gen_lowpart (imode, op0);
771 /* Storing an lsb-aligned field in a register
772 can be done with a movstrict instruction. */
774 if (!MEM_P (op0)
775 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
776 && bitsize == GET_MODE_BITSIZE (fieldmode)
777 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
779 struct expand_operand ops[2];
780 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
781 rtx arg0 = op0;
782 unsigned HOST_WIDE_INT subreg_off;
784 if (GET_CODE (arg0) == SUBREG)
786 /* Else we've got some float mode source being extracted into
787 a different float mode destination -- this combination of
788 subregs results in Severe Tire Damage. */
789 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
790 || GET_MODE_CLASS (fieldmode) == MODE_INT
791 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
792 arg0 = SUBREG_REG (arg0);
795 subreg_off = bitnum / BITS_PER_UNIT;
796 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
798 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
800 create_fixed_operand (&ops[0], arg0);
801 /* Shrink the source operand to FIELDMODE. */
802 create_convert_operand_to (&ops[1], value, fieldmode, false);
803 if (maybe_expand_insn (icode, 2, ops))
804 return true;
808 /* Handle fields bigger than a word. */
810 if (bitsize > BITS_PER_WORD)
812 /* Here we transfer the words of the field
813 in the order least significant first.
814 This is because the most significant word is the one which may
815 be less than full.
816 However, only do that if the value is not BLKmode. */
818 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
819 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
820 unsigned int i;
821 rtx_insn *last;
823 /* This is the mode we must force value to, so that there will be enough
824 subwords to extract. Note that fieldmode will often (always?) be
825 VOIDmode, because that is what store_field uses to indicate that this
826 is a bit field, but passing VOIDmode to operand_subword_force
827 is not allowed. */
828 fieldmode = GET_MODE (value);
829 if (fieldmode == VOIDmode)
830 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
832 last = get_last_insn ();
833 for (i = 0; i < nwords; i++)
835 /* If I is 0, use the low-order word in both field and target;
836 if I is 1, use the next to lowest word; and so on. */
837 unsigned int wordnum = (backwards
838 ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
839 - i - 1
840 : i);
841 unsigned int bit_offset = (backwards
842 ? MAX ((int) bitsize - ((int) i + 1)
843 * BITS_PER_WORD,
845 : (int) i * BITS_PER_WORD);
846 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
847 unsigned HOST_WIDE_INT new_bitsize =
848 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
850 /* If the remaining chunk doesn't have full wordsize we have
851 to make sure that for big endian machines the higher order
852 bits are used. */
853 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
854 value_word = simplify_expand_binop (word_mode, lshr_optab,
855 value_word,
856 GEN_INT (BITS_PER_WORD
857 - new_bitsize),
858 NULL_RTX, true,
859 OPTAB_LIB_WIDEN);
861 if (!store_bit_field_1 (op0, new_bitsize,
862 bitnum + bit_offset,
863 bitregion_start, bitregion_end,
864 word_mode,
865 value_word, fallback_p))
867 delete_insns_since (last);
868 return false;
871 return true;
874 /* If VALUE has a floating-point or complex mode, access it as an
875 integer of the corresponding size. This can occur on a machine
876 with 64 bit registers that uses SFmode for float. It can also
877 occur for unaligned float or complex fields. */
878 orig_value = value;
879 if (GET_MODE (value) != VOIDmode
880 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
881 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
883 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
884 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
887 /* If OP0 is a multi-word register, narrow it to the affected word.
888 If the region spans two words, defer to store_split_bit_field. */
889 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
891 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
892 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
893 gcc_assert (op0);
894 bitnum %= BITS_PER_WORD;
895 if (bitnum + bitsize > BITS_PER_WORD)
897 if (!fallback_p)
898 return false;
900 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
901 bitregion_end, value);
902 return true;
906 /* From here on we can assume that the field to be stored in fits
907 within a word. If the destination is a register, it too fits
908 in a word. */
910 extraction_insn insv;
911 if (!MEM_P (op0)
912 && get_best_reg_extraction_insn (&insv, EP_insv,
913 GET_MODE_BITSIZE (GET_MODE (op0)),
914 fieldmode)
915 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
916 return true;
918 /* If OP0 is a memory, try copying it to a register and seeing if a
919 cheap register alternative is available. */
920 if (MEM_P (op0))
922 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
923 fieldmode)
924 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
925 return true;
927 rtx_insn *last = get_last_insn ();
929 /* Try loading part of OP0 into a register, inserting the bitfield
930 into that, and then copying the result back to OP0. */
931 unsigned HOST_WIDE_INT bitpos;
932 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
933 bitregion_start, bitregion_end,
934 fieldmode, &bitpos);
935 if (xop0)
937 rtx tempreg = copy_to_reg (xop0);
938 if (store_bit_field_1 (tempreg, bitsize, bitpos,
939 bitregion_start, bitregion_end,
940 fieldmode, orig_value, false))
942 emit_move_insn (xop0, tempreg);
943 return true;
945 delete_insns_since (last);
949 if (!fallback_p)
950 return false;
952 store_fixed_bit_field (op0, bitsize, bitnum, bitregion_start,
953 bitregion_end, value);
954 return true;
957 /* Generate code to store value from rtx VALUE
958 into a bit-field within structure STR_RTX
959 containing BITSIZE bits starting at bit BITNUM.
961 BITREGION_START is bitpos of the first bitfield in this region.
962 BITREGION_END is the bitpos of the ending bitfield in this region.
963 These two fields are 0, if the C++ memory model does not apply,
964 or we are not interested in keeping track of bitfield regions.
966 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
968 void
969 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
970 unsigned HOST_WIDE_INT bitnum,
971 unsigned HOST_WIDE_INT bitregion_start,
972 unsigned HOST_WIDE_INT bitregion_end,
973 machine_mode fieldmode,
974 rtx value)
976 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
977 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, fieldmode,
978 bitregion_start, bitregion_end))
980 /* Storing of a full word can be done with a simple store.
981 We know here that the field can be accessed with one single
982 instruction. For targets that support unaligned memory,
983 an unaligned access may be necessary. */
984 if (bitsize == GET_MODE_BITSIZE (fieldmode))
986 str_rtx = adjust_bitfield_address (str_rtx, fieldmode,
987 bitnum / BITS_PER_UNIT);
988 gcc_assert (bitnum % BITS_PER_UNIT == 0);
989 emit_move_insn (str_rtx, value);
991 else
993 rtx temp;
995 str_rtx = narrow_bit_field_mem (str_rtx, fieldmode, bitsize, bitnum,
996 &bitnum);
997 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (fieldmode));
998 temp = copy_to_reg (str_rtx);
999 if (!store_bit_field_1 (temp, bitsize, bitnum, 0, 0,
1000 fieldmode, value, true))
1001 gcc_unreachable ();
1003 emit_move_insn (str_rtx, temp);
1006 return;
1009 /* Under the C++0x memory model, we must not touch bits outside the
1010 bit region. Adjust the address to start at the beginning of the
1011 bit region. */
1012 if (MEM_P (str_rtx) && bitregion_start > 0)
1014 machine_mode bestmode;
1015 HOST_WIDE_INT offset, size;
1017 gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
1019 offset = bitregion_start / BITS_PER_UNIT;
1020 bitnum -= bitregion_start;
1021 size = (bitnum + bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
1022 bitregion_end -= bitregion_start;
1023 bitregion_start = 0;
1024 bestmode = get_best_mode (bitsize, bitnum,
1025 bitregion_start, bitregion_end,
1026 MEM_ALIGN (str_rtx), VOIDmode,
1027 MEM_VOLATILE_P (str_rtx));
1028 str_rtx = adjust_bitfield_address_size (str_rtx, bestmode, offset, size);
1031 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1032 bitregion_start, bitregion_end,
1033 fieldmode, value, true))
1034 gcc_unreachable ();
1037 /* Use shifts and boolean operations to store VALUE into a bit field of
1038 width BITSIZE in OP0, starting at bit BITNUM. */
1040 static void
1041 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1042 unsigned HOST_WIDE_INT bitnum,
1043 unsigned HOST_WIDE_INT bitregion_start,
1044 unsigned HOST_WIDE_INT bitregion_end,
1045 rtx value)
1047 /* There is a case not handled here:
1048 a structure with a known alignment of just a halfword
1049 and a field split across two aligned halfwords within the structure.
1050 Or likewise a structure with a known alignment of just a byte
1051 and a field split across two bytes.
1052 Such cases are not supposed to be able to occur. */
1054 if (MEM_P (op0))
1056 machine_mode mode = GET_MODE (op0);
1057 if (GET_MODE_BITSIZE (mode) == 0
1058 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
1059 mode = word_mode;
1060 mode = get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1061 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
1063 if (mode == VOIDmode)
1065 /* The only way this should occur is if the field spans word
1066 boundaries. */
1067 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
1068 bitregion_end, value);
1069 return;
1072 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1075 store_fixed_bit_field_1 (op0, bitsize, bitnum, value);
1078 /* Helper function for store_fixed_bit_field, stores
1079 the bit field always using the MODE of OP0. */
1081 static void
1082 store_fixed_bit_field_1 (rtx op0, unsigned HOST_WIDE_INT bitsize,
1083 unsigned HOST_WIDE_INT bitnum,
1084 rtx value)
1086 machine_mode mode;
1087 rtx temp;
1088 int all_zero = 0;
1089 int all_one = 0;
1091 mode = GET_MODE (op0);
1092 gcc_assert (SCALAR_INT_MODE_P (mode));
1094 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1095 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1097 if (BYTES_BIG_ENDIAN)
1098 /* BITNUM is the distance between our msb
1099 and that of the containing datum.
1100 Convert it to the distance from the lsb. */
1101 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1103 /* Now BITNUM is always the distance between our lsb
1104 and that of OP0. */
1106 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1107 we must first convert its mode to MODE. */
1109 if (CONST_INT_P (value))
1111 unsigned HOST_WIDE_INT v = UINTVAL (value);
1113 if (bitsize < HOST_BITS_PER_WIDE_INT)
1114 v &= ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1;
1116 if (v == 0)
1117 all_zero = 1;
1118 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1119 && v == ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1)
1120 || (bitsize == HOST_BITS_PER_WIDE_INT
1121 && v == (unsigned HOST_WIDE_INT) -1))
1122 all_one = 1;
1124 value = lshift_value (mode, v, bitnum);
1126 else
1128 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
1129 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1131 if (GET_MODE (value) != mode)
1132 value = convert_to_mode (mode, value, 1);
1134 if (must_and)
1135 value = expand_binop (mode, and_optab, value,
1136 mask_rtx (mode, 0, bitsize, 0),
1137 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1138 if (bitnum > 0)
1139 value = expand_shift (LSHIFT_EXPR, mode, value,
1140 bitnum, NULL_RTX, 1);
1143 /* Now clear the chosen bits in OP0,
1144 except that if VALUE is -1 we need not bother. */
1145 /* We keep the intermediates in registers to allow CSE to combine
1146 consecutive bitfield assignments. */
1148 temp = force_reg (mode, op0);
1150 if (! all_one)
1152 temp = expand_binop (mode, and_optab, temp,
1153 mask_rtx (mode, bitnum, bitsize, 1),
1154 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1155 temp = force_reg (mode, temp);
1158 /* Now logical-or VALUE into OP0, unless it is zero. */
1160 if (! all_zero)
1162 temp = expand_binop (mode, ior_optab, temp, value,
1163 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1164 temp = force_reg (mode, temp);
1167 if (op0 != temp)
1169 op0 = copy_rtx (op0);
1170 emit_move_insn (op0, temp);
1174 /* Store a bit field that is split across multiple accessible memory objects.
1176 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1177 BITSIZE is the field width; BITPOS the position of its first bit
1178 (within the word).
1179 VALUE is the value to store.
1181 This does not yet handle fields wider than BITS_PER_WORD. */
1183 static void
1184 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1185 unsigned HOST_WIDE_INT bitpos,
1186 unsigned HOST_WIDE_INT bitregion_start,
1187 unsigned HOST_WIDE_INT bitregion_end,
1188 rtx value)
1190 unsigned int unit;
1191 unsigned int bitsdone = 0;
1193 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1194 much at a time. */
1195 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1196 unit = BITS_PER_WORD;
1197 else
1198 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1200 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1201 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1202 again, and we will mutually recurse forever. */
1203 if (MEM_P (op0) && GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1204 unit = MIN (unit, GET_MODE_BITSIZE (GET_MODE (op0)));
1206 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1207 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1208 that VALUE might be a floating-point constant. */
1209 if (CONSTANT_P (value) && !CONST_INT_P (value))
1211 rtx word = gen_lowpart_common (word_mode, value);
1213 if (word && (value != word))
1214 value = word;
1215 else
1216 value = gen_lowpart_common (word_mode,
1217 force_reg (GET_MODE (value) != VOIDmode
1218 ? GET_MODE (value)
1219 : word_mode, value));
1222 while (bitsdone < bitsize)
1224 unsigned HOST_WIDE_INT thissize;
1225 rtx part, word;
1226 unsigned HOST_WIDE_INT thispos;
1227 unsigned HOST_WIDE_INT offset;
1229 offset = (bitpos + bitsdone) / unit;
1230 thispos = (bitpos + bitsdone) % unit;
1232 /* When region of bytes we can touch is restricted, decrease
1233 UNIT close to the end of the region as needed. If op0 is a REG
1234 or SUBREG of REG, don't do this, as there can't be data races
1235 on a register and we can expand shorter code in some cases. */
1236 if (bitregion_end
1237 && unit > BITS_PER_UNIT
1238 && bitpos + bitsdone - thispos + unit > bitregion_end + 1
1239 && !REG_P (op0)
1240 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1242 unit = unit / 2;
1243 continue;
1246 /* THISSIZE must not overrun a word boundary. Otherwise,
1247 store_fixed_bit_field will call us again, and we will mutually
1248 recurse forever. */
1249 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1250 thissize = MIN (thissize, unit - thispos);
1252 if (BYTES_BIG_ENDIAN)
1254 /* Fetch successively less significant portions. */
1255 if (CONST_INT_P (value))
1256 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1257 >> (bitsize - bitsdone - thissize))
1258 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1259 else
1261 int total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1262 /* The args are chosen so that the last part includes the
1263 lsb. Give extract_bit_field the value it needs (with
1264 endianness compensation) to fetch the piece we want. */
1265 part = extract_fixed_bit_field (word_mode, value, thissize,
1266 total_bits - bitsize + bitsdone,
1267 NULL_RTX, 1);
1270 else
1272 /* Fetch successively more significant portions. */
1273 if (CONST_INT_P (value))
1274 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1275 >> bitsdone)
1276 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1277 else
1278 part = extract_fixed_bit_field (word_mode, value, thissize,
1279 bitsdone, NULL_RTX, 1);
1282 /* If OP0 is a register, then handle OFFSET here.
1284 When handling multiword bitfields, extract_bit_field may pass
1285 down a word_mode SUBREG of a larger REG for a bitfield that actually
1286 crosses a word boundary. Thus, for a SUBREG, we must find
1287 the current word starting from the base register. */
1288 if (GET_CODE (op0) == SUBREG)
1290 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD)
1291 + (offset * unit / BITS_PER_WORD);
1292 machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
1293 if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
1294 word = word_offset ? const0_rtx : op0;
1295 else
1296 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1297 GET_MODE (SUBREG_REG (op0)));
1298 offset &= BITS_PER_WORD / unit - 1;
1300 else if (REG_P (op0))
1302 machine_mode op0_mode = GET_MODE (op0);
1303 if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
1304 word = offset ? const0_rtx : op0;
1305 else
1306 word = operand_subword_force (op0, offset * unit / BITS_PER_WORD,
1307 GET_MODE (op0));
1308 offset &= BITS_PER_WORD / unit - 1;
1310 else
1311 word = op0;
1313 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1314 it is just an out-of-bounds access. Ignore it. */
1315 if (word != const0_rtx)
1316 store_fixed_bit_field (word, thissize, offset * unit + thispos,
1317 bitregion_start, bitregion_end, part);
1318 bitsdone += thissize;
1322 /* A subroutine of extract_bit_field_1 that converts return value X
1323 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1324 to extract_bit_field. */
1326 static rtx
1327 convert_extracted_bit_field (rtx x, machine_mode mode,
1328 machine_mode tmode, bool unsignedp)
1330 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1331 return x;
1333 /* If the x mode is not a scalar integral, first convert to the
1334 integer mode of that size and then access it as a floating-point
1335 value via a SUBREG. */
1336 if (!SCALAR_INT_MODE_P (tmode))
1338 machine_mode smode;
1340 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1341 x = convert_to_mode (smode, x, unsignedp);
1342 x = force_reg (smode, x);
1343 return gen_lowpart (tmode, x);
1346 return convert_to_mode (tmode, x, unsignedp);
1349 /* Try to use an ext(z)v pattern to extract a field from OP0.
1350 Return the extracted value on success, otherwise return null.
1351 EXT_MODE is the mode of the extraction and the other arguments
1352 are as for extract_bit_field. */
1354 static rtx
1355 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1356 unsigned HOST_WIDE_INT bitsize,
1357 unsigned HOST_WIDE_INT bitnum,
1358 int unsignedp, rtx target,
1359 machine_mode mode, machine_mode tmode)
1361 struct expand_operand ops[4];
1362 rtx spec_target = target;
1363 rtx spec_target_subreg = 0;
1364 machine_mode ext_mode = extv->field_mode;
1365 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1367 if (bitsize == 0 || unit < bitsize)
1368 return NULL_RTX;
1370 if (MEM_P (op0))
1371 /* Get a reference to the first byte of the field. */
1372 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1373 &bitnum);
1374 else
1376 /* Convert from counting within OP0 to counting in EXT_MODE. */
1377 if (BYTES_BIG_ENDIAN)
1378 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1380 /* If op0 is a register, we need it in EXT_MODE to make it
1381 acceptable to the format of ext(z)v. */
1382 if (GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1383 return NULL_RTX;
1384 if (REG_P (op0) && GET_MODE (op0) != ext_mode)
1385 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1388 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1389 "backwards" from the size of the unit we are extracting from.
1390 Otherwise, we count bits from the most significant on a
1391 BYTES/BITS_BIG_ENDIAN machine. */
1393 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1394 bitnum = unit - bitsize - bitnum;
1396 if (target == 0)
1397 target = spec_target = gen_reg_rtx (tmode);
1399 if (GET_MODE (target) != ext_mode)
1401 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1402 between the mode of the extraction (word_mode) and the target
1403 mode. Instead, create a temporary and use convert_move to set
1404 the target. */
1405 if (REG_P (target)
1406 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1408 target = gen_lowpart (ext_mode, target);
1409 if (GET_MODE_PRECISION (ext_mode)
1410 > GET_MODE_PRECISION (GET_MODE (spec_target)))
1411 spec_target_subreg = target;
1413 else
1414 target = gen_reg_rtx (ext_mode);
1417 create_output_operand (&ops[0], target, ext_mode);
1418 create_fixed_operand (&ops[1], op0);
1419 create_integer_operand (&ops[2], bitsize);
1420 create_integer_operand (&ops[3], bitnum);
1421 if (maybe_expand_insn (extv->icode, 4, ops))
1423 target = ops[0].value;
1424 if (target == spec_target)
1425 return target;
1426 if (target == spec_target_subreg)
1427 return spec_target;
1428 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1430 return NULL_RTX;
1433 /* A subroutine of extract_bit_field, with the same arguments.
1434 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1435 if we can find no other means of implementing the operation.
1436 if FALLBACK_P is false, return NULL instead. */
1438 static rtx
1439 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1440 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1441 machine_mode mode, machine_mode tmode,
1442 bool fallback_p)
1444 rtx op0 = str_rtx;
1445 machine_mode int_mode;
1446 machine_mode mode1;
1448 if (tmode == VOIDmode)
1449 tmode = mode;
1451 while (GET_CODE (op0) == SUBREG)
1453 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1454 op0 = SUBREG_REG (op0);
1457 /* If we have an out-of-bounds access to a register, just return an
1458 uninitialized register of the required mode. This can occur if the
1459 source code contains an out-of-bounds access to a small array. */
1460 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1461 return gen_reg_rtx (tmode);
1463 if (REG_P (op0)
1464 && mode == GET_MODE (op0)
1465 && bitnum == 0
1466 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1468 /* We're trying to extract a full register from itself. */
1469 return op0;
1472 /* See if we can get a better vector mode before extracting. */
1473 if (VECTOR_MODE_P (GET_MODE (op0))
1474 && !MEM_P (op0)
1475 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1477 machine_mode new_mode;
1479 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1480 new_mode = MIN_MODE_VECTOR_FLOAT;
1481 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1482 new_mode = MIN_MODE_VECTOR_FRACT;
1483 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1484 new_mode = MIN_MODE_VECTOR_UFRACT;
1485 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1486 new_mode = MIN_MODE_VECTOR_ACCUM;
1487 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1488 new_mode = MIN_MODE_VECTOR_UACCUM;
1489 else
1490 new_mode = MIN_MODE_VECTOR_INT;
1492 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1493 if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1494 && targetm.vector_mode_supported_p (new_mode))
1495 break;
1496 if (new_mode != VOIDmode)
1497 op0 = gen_lowpart (new_mode, op0);
1500 /* Use vec_extract patterns for extracting parts of vectors whenever
1501 available. */
1502 if (VECTOR_MODE_P (GET_MODE (op0))
1503 && !MEM_P (op0)
1504 && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1505 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1506 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1508 struct expand_operand ops[3];
1509 machine_mode outermode = GET_MODE (op0);
1510 machine_mode innermode = GET_MODE_INNER (outermode);
1511 enum insn_code icode = optab_handler (vec_extract_optab, outermode);
1512 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1514 create_output_operand (&ops[0], target, innermode);
1515 create_input_operand (&ops[1], op0, outermode);
1516 create_integer_operand (&ops[2], pos);
1517 if (maybe_expand_insn (icode, 3, ops))
1519 target = ops[0].value;
1520 if (GET_MODE (target) != mode)
1521 return gen_lowpart (tmode, target);
1522 return target;
1526 /* Make sure we are playing with integral modes. Pun with subregs
1527 if we aren't. */
1529 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1530 if (imode != GET_MODE (op0))
1532 if (MEM_P (op0))
1533 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
1534 else if (imode != BLKmode)
1536 op0 = gen_lowpart (imode, op0);
1538 /* If we got a SUBREG, force it into a register since we
1539 aren't going to be able to do another SUBREG on it. */
1540 if (GET_CODE (op0) == SUBREG)
1541 op0 = force_reg (imode, op0);
1543 else if (REG_P (op0))
1545 rtx reg, subreg;
1546 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1547 MODE_INT);
1548 reg = gen_reg_rtx (imode);
1549 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1550 emit_move_insn (subreg, op0);
1551 op0 = reg;
1552 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1554 else
1556 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
1557 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1558 emit_move_insn (mem, op0);
1559 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1564 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1565 If that's wrong, the solution is to test for it and set TARGET to 0
1566 if needed. */
1568 /* Get the mode of the field to use for atomic access or subreg
1569 conversion. */
1570 mode1 = mode;
1571 if (SCALAR_INT_MODE_P (tmode))
1573 machine_mode try_mode = mode_for_size (bitsize,
1574 GET_MODE_CLASS (tmode), 0);
1575 if (try_mode != BLKmode)
1576 mode1 = try_mode;
1578 gcc_assert (mode1 != BLKmode);
1580 /* Extraction of a full MODE1 value can be done with a subreg as long
1581 as the least significant bit of the value is the least significant
1582 bit of either OP0 or a word of OP0. */
1583 if (!MEM_P (op0)
1584 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1585 && bitsize == GET_MODE_BITSIZE (mode1)
1586 && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0)))
1588 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1589 bitnum / BITS_PER_UNIT);
1590 if (sub)
1591 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1594 /* Extraction of a full MODE1 value can be done with a load as long as
1595 the field is on a byte boundary and is sufficiently aligned. */
1596 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1))
1598 op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
1599 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1602 /* Handle fields bigger than a word. */
1604 if (bitsize > BITS_PER_WORD)
1606 /* Here we transfer the words of the field
1607 in the order least significant first.
1608 This is because the most significant word is the one which may
1609 be less than full. */
1611 unsigned int backwards = WORDS_BIG_ENDIAN;
1612 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1613 unsigned int i;
1614 rtx_insn *last;
1616 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1617 target = gen_reg_rtx (mode);
1619 /* Indicate for flow that the entire target reg is being set. */
1620 emit_clobber (target);
1622 last = get_last_insn ();
1623 for (i = 0; i < nwords; i++)
1625 /* If I is 0, use the low-order word in both field and target;
1626 if I is 1, use the next to lowest word; and so on. */
1627 /* Word number in TARGET to use. */
1628 unsigned int wordnum
1629 = (backwards
1630 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1631 : i);
1632 /* Offset from start of field in OP0. */
1633 unsigned int bit_offset = (backwards
1634 ? MAX ((int) bitsize - ((int) i + 1)
1635 * BITS_PER_WORD,
1637 : (int) i * BITS_PER_WORD);
1638 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1639 rtx result_part
1640 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1641 bitsize - i * BITS_PER_WORD),
1642 bitnum + bit_offset, 1, target_part,
1643 mode, word_mode, fallback_p);
1645 gcc_assert (target_part);
1646 if (!result_part)
1648 delete_insns_since (last);
1649 return NULL;
1652 if (result_part != target_part)
1653 emit_move_insn (target_part, result_part);
1656 if (unsignedp)
1658 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1659 need to be zero'd out. */
1660 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1662 unsigned int i, total_words;
1664 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1665 for (i = nwords; i < total_words; i++)
1666 emit_move_insn
1667 (operand_subword (target,
1668 backwards ? total_words - i - 1 : i,
1669 1, VOIDmode),
1670 const0_rtx);
1672 return target;
1675 /* Signed bit field: sign-extend with two arithmetic shifts. */
1676 target = expand_shift (LSHIFT_EXPR, mode, target,
1677 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1678 return expand_shift (RSHIFT_EXPR, mode, target,
1679 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1682 /* If OP0 is a multi-word register, narrow it to the affected word.
1683 If the region spans two words, defer to extract_split_bit_field. */
1684 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1686 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
1687 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1688 bitnum %= BITS_PER_WORD;
1689 if (bitnum + bitsize > BITS_PER_WORD)
1691 if (!fallback_p)
1692 return NULL_RTX;
1693 target = extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1694 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1698 /* From here on we know the desired field is smaller than a word.
1699 If OP0 is a register, it too fits within a word. */
1700 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1701 extraction_insn extv;
1702 if (!MEM_P (op0)
1703 /* ??? We could limit the structure size to the part of OP0 that
1704 contains the field, with appropriate checks for endianness
1705 and TRULY_NOOP_TRUNCATION. */
1706 && get_best_reg_extraction_insn (&extv, pattern,
1707 GET_MODE_BITSIZE (GET_MODE (op0)),
1708 tmode))
1710 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize, bitnum,
1711 unsignedp, target, mode,
1712 tmode);
1713 if (result)
1714 return result;
1717 /* If OP0 is a memory, try copying it to a register and seeing if a
1718 cheap register alternative is available. */
1719 if (MEM_P (op0))
1721 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1722 tmode))
1724 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize,
1725 bitnum, unsignedp,
1726 target, mode,
1727 tmode);
1728 if (result)
1729 return result;
1732 rtx_insn *last = get_last_insn ();
1734 /* Try loading part of OP0 into a register and extracting the
1735 bitfield from that. */
1736 unsigned HOST_WIDE_INT bitpos;
1737 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1738 0, 0, tmode, &bitpos);
1739 if (xop0)
1741 xop0 = copy_to_reg (xop0);
1742 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1743 unsignedp, target,
1744 mode, tmode, false);
1745 if (result)
1746 return result;
1747 delete_insns_since (last);
1751 if (!fallback_p)
1752 return NULL;
1754 /* Find a correspondingly-sized integer field, so we can apply
1755 shifts and masks to it. */
1756 int_mode = int_mode_for_mode (tmode);
1757 if (int_mode == BLKmode)
1758 int_mode = int_mode_for_mode (mode);
1759 /* Should probably push op0 out to memory and then do a load. */
1760 gcc_assert (int_mode != BLKmode);
1762 target = extract_fixed_bit_field (int_mode, op0, bitsize, bitnum,
1763 target, unsignedp);
1764 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1767 /* Generate code to extract a byte-field from STR_RTX
1768 containing BITSIZE bits, starting at BITNUM,
1769 and put it in TARGET if possible (if TARGET is nonzero).
1770 Regardless of TARGET, we return the rtx for where the value is placed.
1772 STR_RTX is the structure containing the byte (a REG or MEM).
1773 UNSIGNEDP is nonzero if this is an unsigned bit field.
1774 MODE is the natural mode of the field value once extracted.
1775 TMODE is the mode the caller would like the value to have;
1776 but the value may be returned with type MODE instead.
1778 If a TARGET is specified and we can store in it at no extra cost,
1779 we do so, and return TARGET.
1780 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1781 if they are equally easy. */
1784 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1785 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1786 machine_mode mode, machine_mode tmode)
1788 machine_mode mode1;
1790 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1791 if (GET_MODE_BITSIZE (GET_MODE (str_rtx)) > 0)
1792 mode1 = GET_MODE (str_rtx);
1793 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1794 mode1 = GET_MODE (target);
1795 else
1796 mode1 = tmode;
1798 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, mode1, 0, 0))
1800 /* Extraction of a full MODE1 value can be done with a simple load.
1801 We know here that the field can be accessed with one single
1802 instruction. For targets that support unaligned memory,
1803 an unaligned access may be necessary. */
1804 if (bitsize == GET_MODE_BITSIZE (mode1))
1806 rtx result = adjust_bitfield_address (str_rtx, mode1,
1807 bitnum / BITS_PER_UNIT);
1808 gcc_assert (bitnum % BITS_PER_UNIT == 0);
1809 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
1812 str_rtx = narrow_bit_field_mem (str_rtx, mode1, bitsize, bitnum,
1813 &bitnum);
1814 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (mode1));
1815 str_rtx = copy_to_reg (str_rtx);
1818 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1819 target, mode, tmode, true);
1822 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1823 from bit BITNUM of OP0.
1825 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1826 If TARGET is nonzero, attempts to store the value there
1827 and return TARGET, but this is not guaranteed.
1828 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1830 static rtx
1831 extract_fixed_bit_field (machine_mode tmode, rtx op0,
1832 unsigned HOST_WIDE_INT bitsize,
1833 unsigned HOST_WIDE_INT bitnum, rtx target,
1834 int unsignedp)
1836 if (MEM_P (op0))
1838 machine_mode mode
1839 = get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0), word_mode,
1840 MEM_VOLATILE_P (op0));
1842 if (mode == VOIDmode)
1843 /* The only way this should occur is if the field spans word
1844 boundaries. */
1845 return extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1847 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1850 return extract_fixed_bit_field_1 (tmode, op0, bitsize, bitnum,
1851 target, unsignedp);
1854 /* Helper function for extract_fixed_bit_field, extracts
1855 the bit field always using the MODE of OP0. */
1857 static rtx
1858 extract_fixed_bit_field_1 (machine_mode tmode, rtx op0,
1859 unsigned HOST_WIDE_INT bitsize,
1860 unsigned HOST_WIDE_INT bitnum, rtx target,
1861 int unsignedp)
1863 machine_mode mode = GET_MODE (op0);
1864 gcc_assert (SCALAR_INT_MODE_P (mode));
1866 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1867 for invalid input, such as extract equivalent of f5 from
1868 gcc.dg/pr48335-2.c. */
1870 if (BYTES_BIG_ENDIAN)
1871 /* BITNUM is the distance between our msb and that of OP0.
1872 Convert it to the distance from the lsb. */
1873 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1875 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1876 We have reduced the big-endian case to the little-endian case. */
1878 if (unsignedp)
1880 if (bitnum)
1882 /* If the field does not already start at the lsb,
1883 shift it so it does. */
1884 /* Maybe propagate the target for the shift. */
1885 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1886 if (tmode != mode)
1887 subtarget = 0;
1888 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
1890 /* Convert the value to the desired mode. */
1891 if (mode != tmode)
1892 op0 = convert_to_mode (tmode, op0, 1);
1894 /* Unless the msb of the field used to be the msb when we shifted,
1895 mask out the upper bits. */
1897 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
1898 return expand_binop (GET_MODE (op0), and_optab, op0,
1899 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1900 target, 1, OPTAB_LIB_WIDEN);
1901 return op0;
1904 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1905 then arithmetic-shift its lsb to the lsb of the word. */
1906 op0 = force_reg (mode, op0);
1908 /* Find the narrowest integer mode that contains the field. */
1910 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1911 mode = GET_MODE_WIDER_MODE (mode))
1912 if (GET_MODE_BITSIZE (mode) >= bitsize + bitnum)
1914 op0 = convert_to_mode (mode, op0, 0);
1915 break;
1918 if (mode != tmode)
1919 target = 0;
1921 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
1923 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
1924 /* Maybe propagate the target for the shift. */
1925 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1926 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1929 return expand_shift (RSHIFT_EXPR, mode, op0,
1930 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
1933 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1934 VALUE << BITPOS. */
1936 static rtx
1937 lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
1938 int bitpos)
1940 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
1943 /* Extract a bit field that is split across two words
1944 and return an RTX for the result.
1946 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1947 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1948 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1950 static rtx
1951 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1952 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1954 unsigned int unit;
1955 unsigned int bitsdone = 0;
1956 rtx result = NULL_RTX;
1957 int first = 1;
1959 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1960 much at a time. */
1961 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1962 unit = BITS_PER_WORD;
1963 else
1964 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1966 while (bitsdone < bitsize)
1968 unsigned HOST_WIDE_INT thissize;
1969 rtx part, word;
1970 unsigned HOST_WIDE_INT thispos;
1971 unsigned HOST_WIDE_INT offset;
1973 offset = (bitpos + bitsdone) / unit;
1974 thispos = (bitpos + bitsdone) % unit;
1976 /* THISSIZE must not overrun a word boundary. Otherwise,
1977 extract_fixed_bit_field will call us again, and we will mutually
1978 recurse forever. */
1979 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1980 thissize = MIN (thissize, unit - thispos);
1982 /* If OP0 is a register, then handle OFFSET here.
1984 When handling multiword bitfields, extract_bit_field may pass
1985 down a word_mode SUBREG of a larger REG for a bitfield that actually
1986 crosses a word boundary. Thus, for a SUBREG, we must find
1987 the current word starting from the base register. */
1988 if (GET_CODE (op0) == SUBREG)
1990 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1991 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1992 GET_MODE (SUBREG_REG (op0)));
1993 offset = 0;
1995 else if (REG_P (op0))
1997 word = operand_subword_force (op0, offset, GET_MODE (op0));
1998 offset = 0;
2000 else
2001 word = op0;
2003 /* Extract the parts in bit-counting order,
2004 whose meaning is determined by BYTES_PER_UNIT.
2005 OFFSET is in UNITs, and UNIT is in bits. */
2006 part = extract_fixed_bit_field (word_mode, word, thissize,
2007 offset * unit + thispos, 0, 1);
2008 bitsdone += thissize;
2010 /* Shift this part into place for the result. */
2011 if (BYTES_BIG_ENDIAN)
2013 if (bitsize != bitsdone)
2014 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2015 bitsize - bitsdone, 0, 1);
2017 else
2019 if (bitsdone != thissize)
2020 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2021 bitsdone - thissize, 0, 1);
2024 if (first)
2025 result = part;
2026 else
2027 /* Combine the parts with bitwise or. This works
2028 because we extracted each part as an unsigned bit field. */
2029 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2030 OPTAB_LIB_WIDEN);
2032 first = 0;
2035 /* Unsigned bit field: we are done. */
2036 if (unsignedp)
2037 return result;
2038 /* Signed bit field: sign-extend with two arithmetic shifts. */
2039 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2040 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2041 return expand_shift (RSHIFT_EXPR, word_mode, result,
2042 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2045 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2046 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2047 MODE, fill the upper bits with zeros. Fail if the layout of either
2048 mode is unknown (as for CC modes) or if the extraction would involve
2049 unprofitable mode punning. Return the value on success, otherwise
2050 return null.
2052 This is different from gen_lowpart* in these respects:
2054 - the returned value must always be considered an rvalue
2056 - when MODE is wider than SRC_MODE, the extraction involves
2057 a zero extension
2059 - when MODE is smaller than SRC_MODE, the extraction involves
2060 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2062 In other words, this routine performs a computation, whereas the
2063 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2064 operations. */
2067 extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2069 machine_mode int_mode, src_int_mode;
2071 if (mode == src_mode)
2072 return src;
2074 if (CONSTANT_P (src))
2076 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2077 fails, it will happily create (subreg (symbol_ref)) or similar
2078 invalid SUBREGs. */
2079 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2080 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2081 if (ret)
2082 return ret;
2084 if (GET_MODE (src) == VOIDmode
2085 || !validate_subreg (mode, src_mode, src, byte))
2086 return NULL_RTX;
2088 src = force_reg (GET_MODE (src), src);
2089 return gen_rtx_SUBREG (mode, src, byte);
2092 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2093 return NULL_RTX;
2095 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2096 && MODES_TIEABLE_P (mode, src_mode))
2098 rtx x = gen_lowpart_common (mode, src);
2099 if (x)
2100 return x;
2103 src_int_mode = int_mode_for_mode (src_mode);
2104 int_mode = int_mode_for_mode (mode);
2105 if (src_int_mode == BLKmode || int_mode == BLKmode)
2106 return NULL_RTX;
2108 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2109 return NULL_RTX;
2110 if (!MODES_TIEABLE_P (int_mode, mode))
2111 return NULL_RTX;
2113 src = gen_lowpart (src_int_mode, src);
2114 src = convert_modes (int_mode, src_int_mode, src, true);
2115 src = gen_lowpart (mode, src);
2116 return src;
2119 /* Add INC into TARGET. */
2121 void
2122 expand_inc (rtx target, rtx inc)
2124 rtx value = expand_binop (GET_MODE (target), add_optab,
2125 target, inc,
2126 target, 0, OPTAB_LIB_WIDEN);
2127 if (value != target)
2128 emit_move_insn (target, value);
2131 /* Subtract DEC from TARGET. */
2133 void
2134 expand_dec (rtx target, rtx dec)
2136 rtx value = expand_binop (GET_MODE (target), sub_optab,
2137 target, dec,
2138 target, 0, OPTAB_LIB_WIDEN);
2139 if (value != target)
2140 emit_move_insn (target, value);
2143 /* Output a shift instruction for expression code CODE,
2144 with SHIFTED being the rtx for the value to shift,
2145 and AMOUNT the rtx for the amount to shift by.
2146 Store the result in the rtx TARGET, if that is convenient.
2147 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2148 Return the rtx for where the value is. */
2150 static rtx
2151 expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2152 rtx amount, rtx target, int unsignedp)
2154 rtx op1, temp = 0;
2155 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2156 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2157 optab lshift_optab = ashl_optab;
2158 optab rshift_arith_optab = ashr_optab;
2159 optab rshift_uns_optab = lshr_optab;
2160 optab lrotate_optab = rotl_optab;
2161 optab rrotate_optab = rotr_optab;
2162 machine_mode op1_mode;
2163 machine_mode scalar_mode = mode;
2164 int attempt;
2165 bool speed = optimize_insn_for_speed_p ();
2167 if (VECTOR_MODE_P (mode))
2168 scalar_mode = GET_MODE_INNER (mode);
2169 op1 = amount;
2170 op1_mode = GET_MODE (op1);
2172 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2173 shift amount is a vector, use the vector/vector shift patterns. */
2174 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2176 lshift_optab = vashl_optab;
2177 rshift_arith_optab = vashr_optab;
2178 rshift_uns_optab = vlshr_optab;
2179 lrotate_optab = vrotl_optab;
2180 rrotate_optab = vrotr_optab;
2183 /* Previously detected shift-counts computed by NEGATE_EXPR
2184 and shifted in the other direction; but that does not work
2185 on all machines. */
2187 if (SHIFT_COUNT_TRUNCATED)
2189 if (CONST_INT_P (op1)
2190 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2191 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2192 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2193 % GET_MODE_BITSIZE (scalar_mode));
2194 else if (GET_CODE (op1) == SUBREG
2195 && subreg_lowpart_p (op1)
2196 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2197 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2198 op1 = SUBREG_REG (op1);
2201 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2202 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2203 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2204 amount instead. */
2205 if (rotate
2206 && CONST_INT_P (op1)
2207 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2208 GET_MODE_BITSIZE (scalar_mode) - 1))
2210 op1 = GEN_INT (GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2211 left = !left;
2212 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2215 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2216 Note that this is not the case for bigger values. For instance a rotation
2217 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2218 0x04030201 (bswapsi). */
2219 if (rotate
2220 && CONST_INT_P (op1)
2221 && INTVAL (op1) == BITS_PER_UNIT
2222 && GET_MODE_SIZE (scalar_mode) == 2
2223 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing)
2224 return expand_unop (HImode, bswap_optab, shifted, NULL_RTX,
2225 unsignedp);
2227 if (op1 == const0_rtx)
2228 return shifted;
2230 /* Check whether its cheaper to implement a left shift by a constant
2231 bit count by a sequence of additions. */
2232 if (code == LSHIFT_EXPR
2233 && CONST_INT_P (op1)
2234 && INTVAL (op1) > 0
2235 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2236 && INTVAL (op1) < MAX_BITS_PER_WORD
2237 && (shift_cost (speed, mode, INTVAL (op1))
2238 > INTVAL (op1) * add_cost (speed, mode))
2239 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2241 int i;
2242 for (i = 0; i < INTVAL (op1); i++)
2244 temp = force_reg (mode, shifted);
2245 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2246 unsignedp, OPTAB_LIB_WIDEN);
2248 return shifted;
2251 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2253 enum optab_methods methods;
2255 if (attempt == 0)
2256 methods = OPTAB_DIRECT;
2257 else if (attempt == 1)
2258 methods = OPTAB_WIDEN;
2259 else
2260 methods = OPTAB_LIB_WIDEN;
2262 if (rotate)
2264 /* Widening does not work for rotation. */
2265 if (methods == OPTAB_WIDEN)
2266 continue;
2267 else if (methods == OPTAB_LIB_WIDEN)
2269 /* If we have been unable to open-code this by a rotation,
2270 do it as the IOR of two shifts. I.e., to rotate A
2271 by N bits, compute
2272 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2273 where C is the bitsize of A.
2275 It is theoretically possible that the target machine might
2276 not be able to perform either shift and hence we would
2277 be making two libcalls rather than just the one for the
2278 shift (similarly if IOR could not be done). We will allow
2279 this extremely unlikely lossage to avoid complicating the
2280 code below. */
2282 rtx subtarget = target == shifted ? 0 : target;
2283 rtx new_amount, other_amount;
2284 rtx temp1;
2286 new_amount = op1;
2287 if (op1 == const0_rtx)
2288 return shifted;
2289 else if (CONST_INT_P (op1))
2290 other_amount = GEN_INT (GET_MODE_BITSIZE (scalar_mode)
2291 - INTVAL (op1));
2292 else
2294 other_amount
2295 = simplify_gen_unary (NEG, GET_MODE (op1),
2296 op1, GET_MODE (op1));
2297 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2298 other_amount
2299 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2300 gen_int_mode (mask, GET_MODE (op1)));
2303 shifted = force_reg (mode, shifted);
2305 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2306 mode, shifted, new_amount, 0, 1);
2307 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2308 mode, shifted, other_amount,
2309 subtarget, 1);
2310 return expand_binop (mode, ior_optab, temp, temp1, target,
2311 unsignedp, methods);
2314 temp = expand_binop (mode,
2315 left ? lrotate_optab : rrotate_optab,
2316 shifted, op1, target, unsignedp, methods);
2318 else if (unsignedp)
2319 temp = expand_binop (mode,
2320 left ? lshift_optab : rshift_uns_optab,
2321 shifted, op1, target, unsignedp, methods);
2323 /* Do arithmetic shifts.
2324 Also, if we are going to widen the operand, we can just as well
2325 use an arithmetic right-shift instead of a logical one. */
2326 if (temp == 0 && ! rotate
2327 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2329 enum optab_methods methods1 = methods;
2331 /* If trying to widen a log shift to an arithmetic shift,
2332 don't accept an arithmetic shift of the same size. */
2333 if (unsignedp)
2334 methods1 = OPTAB_MUST_WIDEN;
2336 /* Arithmetic shift */
2338 temp = expand_binop (mode,
2339 left ? lshift_optab : rshift_arith_optab,
2340 shifted, op1, target, unsignedp, methods1);
2343 /* We used to try extzv here for logical right shifts, but that was
2344 only useful for one machine, the VAX, and caused poor code
2345 generation there for lshrdi3, so the code was deleted and a
2346 define_expand for lshrsi3 was added to vax.md. */
2349 gcc_assert (temp);
2350 return temp;
2353 /* Output a shift instruction for expression code CODE,
2354 with SHIFTED being the rtx for the value to shift,
2355 and AMOUNT the amount to shift by.
2356 Store the result in the rtx TARGET, if that is convenient.
2357 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2358 Return the rtx for where the value is. */
2361 expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2362 int amount, rtx target, int unsignedp)
2364 return expand_shift_1 (code, mode,
2365 shifted, GEN_INT (amount), target, unsignedp);
2368 /* Output a shift instruction for expression code CODE,
2369 with SHIFTED being the rtx for the value to shift,
2370 and AMOUNT the tree for the amount to shift by.
2371 Store the result in the rtx TARGET, if that is convenient.
2372 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2373 Return the rtx for where the value is. */
2376 expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2377 tree amount, rtx target, int unsignedp)
2379 return expand_shift_1 (code, mode,
2380 shifted, expand_normal (amount), target, unsignedp);
2384 /* Indicates the type of fixup needed after a constant multiplication.
2385 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2386 the result should be negated, and ADD_VARIANT means that the
2387 multiplicand should be added to the result. */
2388 enum mult_variant {basic_variant, negate_variant, add_variant};
2390 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2391 const struct mult_cost *, machine_mode mode);
2392 static bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
2393 struct algorithm *, enum mult_variant *, int);
2394 static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2395 const struct algorithm *, enum mult_variant);
2396 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2397 static rtx extract_high_half (machine_mode, rtx);
2398 static rtx expmed_mult_highpart (machine_mode, rtx, rtx, rtx, int, int);
2399 static rtx expmed_mult_highpart_optab (machine_mode, rtx, rtx, rtx,
2400 int, int);
2401 /* Compute and return the best algorithm for multiplying by T.
2402 The algorithm must cost less than cost_limit
2403 If retval.cost >= COST_LIMIT, no algorithm was found and all
2404 other field of the returned struct are undefined.
2405 MODE is the machine mode of the multiplication. */
2407 static void
2408 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2409 const struct mult_cost *cost_limit, machine_mode mode)
2411 int m;
2412 struct algorithm *alg_in, *best_alg;
2413 struct mult_cost best_cost;
2414 struct mult_cost new_limit;
2415 int op_cost, op_latency;
2416 unsigned HOST_WIDE_INT orig_t = t;
2417 unsigned HOST_WIDE_INT q;
2418 int maxm, hash_index;
2419 bool cache_hit = false;
2420 enum alg_code cache_alg = alg_zero;
2421 bool speed = optimize_insn_for_speed_p ();
2422 machine_mode imode;
2423 struct alg_hash_entry *entry_ptr;
2425 /* Indicate that no algorithm is yet found. If no algorithm
2426 is found, this value will be returned and indicate failure. */
2427 alg_out->cost.cost = cost_limit->cost + 1;
2428 alg_out->cost.latency = cost_limit->latency + 1;
2430 if (cost_limit->cost < 0
2431 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2432 return;
2434 /* Be prepared for vector modes. */
2435 imode = GET_MODE_INNER (mode);
2436 if (imode == VOIDmode)
2437 imode = mode;
2439 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2441 /* Restrict the bits of "t" to the multiplication's mode. */
2442 t &= GET_MODE_MASK (imode);
2444 /* t == 1 can be done in zero cost. */
2445 if (t == 1)
2447 alg_out->ops = 1;
2448 alg_out->cost.cost = 0;
2449 alg_out->cost.latency = 0;
2450 alg_out->op[0] = alg_m;
2451 return;
2454 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2455 fail now. */
2456 if (t == 0)
2458 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2459 return;
2460 else
2462 alg_out->ops = 1;
2463 alg_out->cost.cost = zero_cost (speed);
2464 alg_out->cost.latency = zero_cost (speed);
2465 alg_out->op[0] = alg_zero;
2466 return;
2470 /* We'll be needing a couple extra algorithm structures now. */
2472 alg_in = XALLOCA (struct algorithm);
2473 best_alg = XALLOCA (struct algorithm);
2474 best_cost = *cost_limit;
2476 /* Compute the hash index. */
2477 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2479 /* See if we already know what to do for T. */
2480 entry_ptr = alg_hash_entry_ptr (hash_index);
2481 if (entry_ptr->t == t
2482 && entry_ptr->mode == mode
2483 && entry_ptr->mode == mode
2484 && entry_ptr->speed == speed
2485 && entry_ptr->alg != alg_unknown)
2487 cache_alg = entry_ptr->alg;
2489 if (cache_alg == alg_impossible)
2491 /* The cache tells us that it's impossible to synthesize
2492 multiplication by T within entry_ptr->cost. */
2493 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2494 /* COST_LIMIT is at least as restrictive as the one
2495 recorded in the hash table, in which case we have no
2496 hope of synthesizing a multiplication. Just
2497 return. */
2498 return;
2500 /* If we get here, COST_LIMIT is less restrictive than the
2501 one recorded in the hash table, so we may be able to
2502 synthesize a multiplication. Proceed as if we didn't
2503 have the cache entry. */
2505 else
2507 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2508 /* The cached algorithm shows that this multiplication
2509 requires more cost than COST_LIMIT. Just return. This
2510 way, we don't clobber this cache entry with
2511 alg_impossible but retain useful information. */
2512 return;
2514 cache_hit = true;
2516 switch (cache_alg)
2518 case alg_shift:
2519 goto do_alg_shift;
2521 case alg_add_t_m2:
2522 case alg_sub_t_m2:
2523 goto do_alg_addsub_t_m2;
2525 case alg_add_factor:
2526 case alg_sub_factor:
2527 goto do_alg_addsub_factor;
2529 case alg_add_t2_m:
2530 goto do_alg_add_t2_m;
2532 case alg_sub_t2_m:
2533 goto do_alg_sub_t2_m;
2535 default:
2536 gcc_unreachable ();
2541 /* If we have a group of zero bits at the low-order part of T, try
2542 multiplying by the remaining bits and then doing a shift. */
2544 if ((t & 1) == 0)
2546 do_alg_shift:
2547 m = floor_log2 (t & -t); /* m = number of low zero bits */
2548 if (m < maxm)
2550 q = t >> m;
2551 /* The function expand_shift will choose between a shift and
2552 a sequence of additions, so the observed cost is given as
2553 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2554 op_cost = m * add_cost (speed, mode);
2555 if (shift_cost (speed, mode, m) < op_cost)
2556 op_cost = shift_cost (speed, mode, m);
2557 new_limit.cost = best_cost.cost - op_cost;
2558 new_limit.latency = best_cost.latency - op_cost;
2559 synth_mult (alg_in, q, &new_limit, mode);
2561 alg_in->cost.cost += op_cost;
2562 alg_in->cost.latency += op_cost;
2563 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2565 best_cost = alg_in->cost;
2566 std::swap (alg_in, best_alg);
2567 best_alg->log[best_alg->ops] = m;
2568 best_alg->op[best_alg->ops] = alg_shift;
2571 /* See if treating ORIG_T as a signed number yields a better
2572 sequence. Try this sequence only for a negative ORIG_T
2573 as it would be useless for a non-negative ORIG_T. */
2574 if ((HOST_WIDE_INT) orig_t < 0)
2576 /* Shift ORIG_T as follows because a right shift of a
2577 negative-valued signed type is implementation
2578 defined. */
2579 q = ~(~orig_t >> m);
2580 /* The function expand_shift will choose between a shift
2581 and a sequence of additions, so the observed cost is
2582 given as MIN (m * add_cost(speed, mode),
2583 shift_cost(speed, mode, m)). */
2584 op_cost = m * add_cost (speed, mode);
2585 if (shift_cost (speed, mode, m) < op_cost)
2586 op_cost = shift_cost (speed, mode, m);
2587 new_limit.cost = best_cost.cost - op_cost;
2588 new_limit.latency = best_cost.latency - op_cost;
2589 synth_mult (alg_in, q, &new_limit, mode);
2591 alg_in->cost.cost += op_cost;
2592 alg_in->cost.latency += op_cost;
2593 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2595 best_cost = alg_in->cost;
2596 std::swap (alg_in, best_alg);
2597 best_alg->log[best_alg->ops] = m;
2598 best_alg->op[best_alg->ops] = alg_shift;
2602 if (cache_hit)
2603 goto done;
2606 /* If we have an odd number, add or subtract one. */
2607 if ((t & 1) != 0)
2609 unsigned HOST_WIDE_INT w;
2611 do_alg_addsub_t_m2:
2612 for (w = 1; (w & t) != 0; w <<= 1)
2614 /* If T was -1, then W will be zero after the loop. This is another
2615 case where T ends with ...111. Handling this with (T + 1) and
2616 subtract 1 produces slightly better code and results in algorithm
2617 selection much faster than treating it like the ...0111 case
2618 below. */
2619 if (w == 0
2620 || (w > 2
2621 /* Reject the case where t is 3.
2622 Thus we prefer addition in that case. */
2623 && t != 3))
2625 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2627 op_cost = add_cost (speed, mode);
2628 new_limit.cost = best_cost.cost - op_cost;
2629 new_limit.latency = best_cost.latency - op_cost;
2630 synth_mult (alg_in, t + 1, &new_limit, mode);
2632 alg_in->cost.cost += op_cost;
2633 alg_in->cost.latency += op_cost;
2634 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2636 best_cost = alg_in->cost;
2637 std::swap (alg_in, best_alg);
2638 best_alg->log[best_alg->ops] = 0;
2639 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2642 else
2644 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2646 op_cost = add_cost (speed, mode);
2647 new_limit.cost = best_cost.cost - op_cost;
2648 new_limit.latency = best_cost.latency - op_cost;
2649 synth_mult (alg_in, t - 1, &new_limit, mode);
2651 alg_in->cost.cost += op_cost;
2652 alg_in->cost.latency += op_cost;
2653 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2655 best_cost = alg_in->cost;
2656 std::swap (alg_in, best_alg);
2657 best_alg->log[best_alg->ops] = 0;
2658 best_alg->op[best_alg->ops] = alg_add_t_m2;
2662 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2663 quickly with a - a * n for some appropriate constant n. */
2664 m = exact_log2 (-orig_t + 1);
2665 if (m >= 0 && m < maxm)
2667 op_cost = shiftsub1_cost (speed, mode, m);
2668 new_limit.cost = best_cost.cost - op_cost;
2669 new_limit.latency = best_cost.latency - op_cost;
2670 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2671 &new_limit, mode);
2673 alg_in->cost.cost += op_cost;
2674 alg_in->cost.latency += op_cost;
2675 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2677 best_cost = alg_in->cost;
2678 std::swap (alg_in, best_alg);
2679 best_alg->log[best_alg->ops] = m;
2680 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2684 if (cache_hit)
2685 goto done;
2688 /* Look for factors of t of the form
2689 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2690 If we find such a factor, we can multiply by t using an algorithm that
2691 multiplies by q, shift the result by m and add/subtract it to itself.
2693 We search for large factors first and loop down, even if large factors
2694 are less probable than small; if we find a large factor we will find a
2695 good sequence quickly, and therefore be able to prune (by decreasing
2696 COST_LIMIT) the search. */
2698 do_alg_addsub_factor:
2699 for (m = floor_log2 (t - 1); m >= 2; m--)
2701 unsigned HOST_WIDE_INT d;
2703 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2704 if (t % d == 0 && t > d && m < maxm
2705 && (!cache_hit || cache_alg == alg_add_factor))
2707 /* If the target has a cheap shift-and-add instruction use
2708 that in preference to a shift insn followed by an add insn.
2709 Assume that the shift-and-add is "atomic" with a latency
2710 equal to its cost, otherwise assume that on superscalar
2711 hardware the shift may be executed concurrently with the
2712 earlier steps in the algorithm. */
2713 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2714 if (shiftadd_cost (speed, mode, m) < op_cost)
2716 op_cost = shiftadd_cost (speed, mode, m);
2717 op_latency = op_cost;
2719 else
2720 op_latency = add_cost (speed, mode);
2722 new_limit.cost = best_cost.cost - op_cost;
2723 new_limit.latency = best_cost.latency - op_latency;
2724 synth_mult (alg_in, t / d, &new_limit, mode);
2726 alg_in->cost.cost += op_cost;
2727 alg_in->cost.latency += op_latency;
2728 if (alg_in->cost.latency < op_cost)
2729 alg_in->cost.latency = op_cost;
2730 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2732 best_cost = alg_in->cost;
2733 std::swap (alg_in, best_alg);
2734 best_alg->log[best_alg->ops] = m;
2735 best_alg->op[best_alg->ops] = alg_add_factor;
2737 /* Other factors will have been taken care of in the recursion. */
2738 break;
2741 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2742 if (t % d == 0 && t > d && m < maxm
2743 && (!cache_hit || cache_alg == alg_sub_factor))
2745 /* If the target has a cheap shift-and-subtract insn use
2746 that in preference to a shift insn followed by a sub insn.
2747 Assume that the shift-and-sub is "atomic" with a latency
2748 equal to it's cost, otherwise assume that on superscalar
2749 hardware the shift may be executed concurrently with the
2750 earlier steps in the algorithm. */
2751 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2752 if (shiftsub0_cost (speed, mode, m) < op_cost)
2754 op_cost = shiftsub0_cost (speed, mode, m);
2755 op_latency = op_cost;
2757 else
2758 op_latency = add_cost (speed, mode);
2760 new_limit.cost = best_cost.cost - op_cost;
2761 new_limit.latency = best_cost.latency - op_latency;
2762 synth_mult (alg_in, t / d, &new_limit, mode);
2764 alg_in->cost.cost += op_cost;
2765 alg_in->cost.latency += op_latency;
2766 if (alg_in->cost.latency < op_cost)
2767 alg_in->cost.latency = op_cost;
2768 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2770 best_cost = alg_in->cost;
2771 std::swap (alg_in, best_alg);
2772 best_alg->log[best_alg->ops] = m;
2773 best_alg->op[best_alg->ops] = alg_sub_factor;
2775 break;
2778 if (cache_hit)
2779 goto done;
2781 /* Try shift-and-add (load effective address) instructions,
2782 i.e. do a*3, a*5, a*9. */
2783 if ((t & 1) != 0)
2785 do_alg_add_t2_m:
2786 q = t - 1;
2787 q = q & -q;
2788 m = exact_log2 (q);
2789 if (m >= 0 && m < maxm)
2791 op_cost = shiftadd_cost (speed, mode, m);
2792 new_limit.cost = best_cost.cost - op_cost;
2793 new_limit.latency = best_cost.latency - op_cost;
2794 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2796 alg_in->cost.cost += op_cost;
2797 alg_in->cost.latency += op_cost;
2798 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2800 best_cost = alg_in->cost;
2801 std::swap (alg_in, best_alg);
2802 best_alg->log[best_alg->ops] = m;
2803 best_alg->op[best_alg->ops] = alg_add_t2_m;
2806 if (cache_hit)
2807 goto done;
2809 do_alg_sub_t2_m:
2810 q = t + 1;
2811 q = q & -q;
2812 m = exact_log2 (q);
2813 if (m >= 0 && m < maxm)
2815 op_cost = shiftsub0_cost (speed, mode, m);
2816 new_limit.cost = best_cost.cost - op_cost;
2817 new_limit.latency = best_cost.latency - op_cost;
2818 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2820 alg_in->cost.cost += op_cost;
2821 alg_in->cost.latency += op_cost;
2822 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2824 best_cost = alg_in->cost;
2825 std::swap (alg_in, best_alg);
2826 best_alg->log[best_alg->ops] = m;
2827 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2830 if (cache_hit)
2831 goto done;
2834 done:
2835 /* If best_cost has not decreased, we have not found any algorithm. */
2836 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2838 /* We failed to find an algorithm. Record alg_impossible for
2839 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2840 we are asked to find an algorithm for T within the same or
2841 lower COST_LIMIT, we can immediately return to the
2842 caller. */
2843 entry_ptr->t = t;
2844 entry_ptr->mode = mode;
2845 entry_ptr->speed = speed;
2846 entry_ptr->alg = alg_impossible;
2847 entry_ptr->cost = *cost_limit;
2848 return;
2851 /* Cache the result. */
2852 if (!cache_hit)
2854 entry_ptr->t = t;
2855 entry_ptr->mode = mode;
2856 entry_ptr->speed = speed;
2857 entry_ptr->alg = best_alg->op[best_alg->ops];
2858 entry_ptr->cost.cost = best_cost.cost;
2859 entry_ptr->cost.latency = best_cost.latency;
2862 /* If we are getting a too long sequence for `struct algorithm'
2863 to record, make this search fail. */
2864 if (best_alg->ops == MAX_BITS_PER_WORD)
2865 return;
2867 /* Copy the algorithm from temporary space to the space at alg_out.
2868 We avoid using structure assignment because the majority of
2869 best_alg is normally undefined, and this is a critical function. */
2870 alg_out->ops = best_alg->ops + 1;
2871 alg_out->cost = best_cost;
2872 memcpy (alg_out->op, best_alg->op,
2873 alg_out->ops * sizeof *alg_out->op);
2874 memcpy (alg_out->log, best_alg->log,
2875 alg_out->ops * sizeof *alg_out->log);
2878 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2879 Try three variations:
2881 - a shift/add sequence based on VAL itself
2882 - a shift/add sequence based on -VAL, followed by a negation
2883 - a shift/add sequence based on VAL - 1, followed by an addition.
2885 Return true if the cheapest of these cost less than MULT_COST,
2886 describing the algorithm in *ALG and final fixup in *VARIANT. */
2888 static bool
2889 choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
2890 struct algorithm *alg, enum mult_variant *variant,
2891 int mult_cost)
2893 struct algorithm alg2;
2894 struct mult_cost limit;
2895 int op_cost;
2896 bool speed = optimize_insn_for_speed_p ();
2898 /* Fail quickly for impossible bounds. */
2899 if (mult_cost < 0)
2900 return false;
2902 /* Ensure that mult_cost provides a reasonable upper bound.
2903 Any constant multiplication can be performed with less
2904 than 2 * bits additions. */
2905 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
2906 if (mult_cost > op_cost)
2907 mult_cost = op_cost;
2909 *variant = basic_variant;
2910 limit.cost = mult_cost;
2911 limit.latency = mult_cost;
2912 synth_mult (alg, val, &limit, mode);
2914 /* This works only if the inverted value actually fits in an
2915 `unsigned int' */
2916 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
2918 op_cost = neg_cost (speed, mode);
2919 if (MULT_COST_LESS (&alg->cost, mult_cost))
2921 limit.cost = alg->cost.cost - op_cost;
2922 limit.latency = alg->cost.latency - op_cost;
2924 else
2926 limit.cost = mult_cost - op_cost;
2927 limit.latency = mult_cost - op_cost;
2930 synth_mult (&alg2, -val, &limit, mode);
2931 alg2.cost.cost += op_cost;
2932 alg2.cost.latency += op_cost;
2933 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2934 *alg = alg2, *variant = negate_variant;
2937 /* This proves very useful for division-by-constant. */
2938 op_cost = add_cost (speed, mode);
2939 if (MULT_COST_LESS (&alg->cost, mult_cost))
2941 limit.cost = alg->cost.cost - op_cost;
2942 limit.latency = alg->cost.latency - op_cost;
2944 else
2946 limit.cost = mult_cost - op_cost;
2947 limit.latency = mult_cost - op_cost;
2950 synth_mult (&alg2, val - 1, &limit, mode);
2951 alg2.cost.cost += op_cost;
2952 alg2.cost.latency += op_cost;
2953 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2954 *alg = alg2, *variant = add_variant;
2956 return MULT_COST_LESS (&alg->cost, mult_cost);
2959 /* A subroutine of expand_mult, used for constant multiplications.
2960 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2961 convenient. Use the shift/add sequence described by ALG and apply
2962 the final fixup specified by VARIANT. */
2964 static rtx
2965 expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
2966 rtx target, const struct algorithm *alg,
2967 enum mult_variant variant)
2969 HOST_WIDE_INT val_so_far;
2970 rtx_insn *insn;
2971 rtx accum, tem;
2972 int opno;
2973 machine_mode nmode;
2975 /* Avoid referencing memory over and over and invalid sharing
2976 on SUBREGs. */
2977 op0 = force_reg (mode, op0);
2979 /* ACCUM starts out either as OP0 or as a zero, depending on
2980 the first operation. */
2982 if (alg->op[0] == alg_zero)
2984 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
2985 val_so_far = 0;
2987 else if (alg->op[0] == alg_m)
2989 accum = copy_to_mode_reg (mode, op0);
2990 val_so_far = 1;
2992 else
2993 gcc_unreachable ();
2995 for (opno = 1; opno < alg->ops; opno++)
2997 int log = alg->log[opno];
2998 rtx shift_subtarget = optimize ? 0 : accum;
2999 rtx add_target
3000 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
3001 && !optimize)
3002 ? target : 0;
3003 rtx accum_target = optimize ? 0 : accum;
3004 rtx accum_inner;
3006 switch (alg->op[opno])
3008 case alg_shift:
3009 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3010 /* REG_EQUAL note will be attached to the following insn. */
3011 emit_move_insn (accum, tem);
3012 val_so_far <<= log;
3013 break;
3015 case alg_add_t_m2:
3016 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3017 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3018 add_target ? add_target : accum_target);
3019 val_so_far += (HOST_WIDE_INT) 1 << log;
3020 break;
3022 case alg_sub_t_m2:
3023 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3024 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3025 add_target ? add_target : accum_target);
3026 val_so_far -= (HOST_WIDE_INT) 1 << log;
3027 break;
3029 case alg_add_t2_m:
3030 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3031 log, shift_subtarget, 0);
3032 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3033 add_target ? add_target : accum_target);
3034 val_so_far = (val_so_far << log) + 1;
3035 break;
3037 case alg_sub_t2_m:
3038 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3039 log, shift_subtarget, 0);
3040 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3041 add_target ? add_target : accum_target);
3042 val_so_far = (val_so_far << log) - 1;
3043 break;
3045 case alg_add_factor:
3046 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3047 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3048 add_target ? add_target : accum_target);
3049 val_so_far += val_so_far << log;
3050 break;
3052 case alg_sub_factor:
3053 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3054 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3055 (add_target
3056 ? add_target : (optimize ? 0 : tem)));
3057 val_so_far = (val_so_far << log) - val_so_far;
3058 break;
3060 default:
3061 gcc_unreachable ();
3064 if (SCALAR_INT_MODE_P (mode))
3066 /* Write a REG_EQUAL note on the last insn so that we can cse
3067 multiplication sequences. Note that if ACCUM is a SUBREG,
3068 we've set the inner register and must properly indicate that. */
3069 tem = op0, nmode = mode;
3070 accum_inner = accum;
3071 if (GET_CODE (accum) == SUBREG)
3073 accum_inner = SUBREG_REG (accum);
3074 nmode = GET_MODE (accum_inner);
3075 tem = gen_lowpart (nmode, op0);
3078 insn = get_last_insn ();
3079 set_dst_reg_note (insn, REG_EQUAL,
3080 gen_rtx_MULT (nmode, tem,
3081 gen_int_mode (val_so_far, nmode)),
3082 accum_inner);
3086 if (variant == negate_variant)
3088 val_so_far = -val_so_far;
3089 accum = expand_unop (mode, neg_optab, accum, target, 0);
3091 else if (variant == add_variant)
3093 val_so_far = val_so_far + 1;
3094 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3097 /* Compare only the bits of val and val_so_far that are significant
3098 in the result mode, to avoid sign-/zero-extension confusion. */
3099 nmode = GET_MODE_INNER (mode);
3100 if (nmode == VOIDmode)
3101 nmode = mode;
3102 val &= GET_MODE_MASK (nmode);
3103 val_so_far &= GET_MODE_MASK (nmode);
3104 gcc_assert (val == val_so_far);
3106 return accum;
3109 /* Perform a multiplication and return an rtx for the result.
3110 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3111 TARGET is a suggestion for where to store the result (an rtx).
3113 We check specially for a constant integer as OP1.
3114 If you want this check for OP0 as well, then before calling
3115 you should swap the two operands if OP0 would be constant. */
3118 expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3119 int unsignedp)
3121 enum mult_variant variant;
3122 struct algorithm algorithm;
3123 rtx scalar_op1;
3124 int max_cost;
3125 bool speed = optimize_insn_for_speed_p ();
3126 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3128 if (CONSTANT_P (op0))
3129 std::swap (op0, op1);
3131 /* For vectors, there are several simplifications that can be made if
3132 all elements of the vector constant are identical. */
3133 scalar_op1 = op1;
3134 if (GET_CODE (op1) == CONST_VECTOR)
3136 int i, n = CONST_VECTOR_NUNITS (op1);
3137 scalar_op1 = CONST_VECTOR_ELT (op1, 0);
3138 for (i = 1; i < n; ++i)
3139 if (!rtx_equal_p (scalar_op1, CONST_VECTOR_ELT (op1, i)))
3140 goto skip_scalar;
3143 if (INTEGRAL_MODE_P (mode))
3145 rtx fake_reg;
3146 HOST_WIDE_INT coeff;
3147 bool is_neg;
3148 int mode_bitsize;
3150 if (op1 == CONST0_RTX (mode))
3151 return op1;
3152 if (op1 == CONST1_RTX (mode))
3153 return op0;
3154 if (op1 == CONSTM1_RTX (mode))
3155 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3156 op0, target, 0);
3158 if (do_trapv)
3159 goto skip_synth;
3161 /* If mode is integer vector mode, check if the backend supports
3162 vector lshift (by scalar or vector) at all. If not, we can't use
3163 synthetized multiply. */
3164 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3165 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3166 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3167 goto skip_synth;
3169 /* These are the operations that are potentially turned into
3170 a sequence of shifts and additions. */
3171 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3173 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3174 less than or equal in size to `unsigned int' this doesn't matter.
3175 If the mode is larger than `unsigned int', then synth_mult works
3176 only if the constant value exactly fits in an `unsigned int' without
3177 any truncation. This means that multiplying by negative values does
3178 not work; results are off by 2^32 on a 32 bit machine. */
3179 if (CONST_INT_P (scalar_op1))
3181 coeff = INTVAL (scalar_op1);
3182 is_neg = coeff < 0;
3184 #if TARGET_SUPPORTS_WIDE_INT
3185 else if (CONST_WIDE_INT_P (scalar_op1))
3186 #else
3187 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3188 #endif
3190 int shift = wi::exact_log2 (std::make_pair (scalar_op1, mode));
3191 /* Perfect power of 2 (other than 1, which is handled above). */
3192 if (shift > 0)
3193 return expand_shift (LSHIFT_EXPR, mode, op0,
3194 shift, target, unsignedp);
3195 else
3196 goto skip_synth;
3198 else
3199 goto skip_synth;
3201 /* We used to test optimize here, on the grounds that it's better to
3202 produce a smaller program when -O is not used. But this causes
3203 such a terrible slowdown sometimes that it seems better to always
3204 use synth_mult. */
3206 /* Special case powers of two. */
3207 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3208 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3209 return expand_shift (LSHIFT_EXPR, mode, op0,
3210 floor_log2 (coeff), target, unsignedp);
3212 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3214 /* Attempt to handle multiplication of DImode values by negative
3215 coefficients, by performing the multiplication by a positive
3216 multiplier and then inverting the result. */
3217 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3219 /* Its safe to use -coeff even for INT_MIN, as the
3220 result is interpreted as an unsigned coefficient.
3221 Exclude cost of op0 from max_cost to match the cost
3222 calculation of the synth_mult. */
3223 coeff = -(unsigned HOST_WIDE_INT) coeff;
3224 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed)
3225 - neg_cost (speed, mode));
3226 if (max_cost <= 0)
3227 goto skip_synth;
3229 /* Special case powers of two. */
3230 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3232 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3233 floor_log2 (coeff), target, unsignedp);
3234 return expand_unop (mode, neg_optab, temp, target, 0);
3237 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3238 max_cost))
3240 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3241 &algorithm, variant);
3242 return expand_unop (mode, neg_optab, temp, target, 0);
3244 goto skip_synth;
3247 /* Exclude cost of op0 from max_cost to match the cost
3248 calculation of the synth_mult. */
3249 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed);
3250 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3251 return expand_mult_const (mode, op0, coeff, target,
3252 &algorithm, variant);
3254 skip_synth:
3256 /* Expand x*2.0 as x+x. */
3257 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1))
3259 REAL_VALUE_TYPE d;
3260 REAL_VALUE_FROM_CONST_DOUBLE (d, scalar_op1);
3262 if (REAL_VALUES_EQUAL (d, dconst2))
3264 op0 = force_reg (GET_MODE (op0), op0);
3265 return expand_binop (mode, add_optab, op0, op0,
3266 target, unsignedp, OPTAB_LIB_WIDEN);
3269 skip_scalar:
3271 /* This used to use umul_optab if unsigned, but for non-widening multiply
3272 there is no difference between signed and unsigned. */
3273 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3274 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3275 gcc_assert (op0);
3276 return op0;
3279 /* Return a cost estimate for multiplying a register by the given
3280 COEFFicient in the given MODE and SPEED. */
3283 mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3285 int max_cost;
3286 struct algorithm algorithm;
3287 enum mult_variant variant;
3289 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3290 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg), speed);
3291 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3292 return algorithm.cost.cost;
3293 else
3294 return max_cost;
3297 /* Perform a widening multiplication and return an rtx for the result.
3298 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3299 TARGET is a suggestion for where to store the result (an rtx).
3300 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3301 or smul_widen_optab.
3303 We check specially for a constant integer as OP1, comparing the
3304 cost of a widening multiply against the cost of a sequence of shifts
3305 and adds. */
3308 expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3309 int unsignedp, optab this_optab)
3311 bool speed = optimize_insn_for_speed_p ();
3312 rtx cop1;
3314 if (CONST_INT_P (op1)
3315 && GET_MODE (op0) != VOIDmode
3316 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3317 this_optab == umul_widen_optab))
3318 && CONST_INT_P (cop1)
3319 && (INTVAL (cop1) >= 0
3320 || HWI_COMPUTABLE_MODE_P (mode)))
3322 HOST_WIDE_INT coeff = INTVAL (cop1);
3323 int max_cost;
3324 enum mult_variant variant;
3325 struct algorithm algorithm;
3327 if (coeff == 0)
3328 return CONST0_RTX (mode);
3330 /* Special case powers of two. */
3331 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3333 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3334 return expand_shift (LSHIFT_EXPR, mode, op0,
3335 floor_log2 (coeff), target, unsignedp);
3338 /* Exclude cost of op0 from max_cost to match the cost
3339 calculation of the synth_mult. */
3340 max_cost = mul_widen_cost (speed, mode);
3341 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3342 max_cost))
3344 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3345 return expand_mult_const (mode, op0, coeff, target,
3346 &algorithm, variant);
3349 return expand_binop (mode, this_optab, op0, op1, target,
3350 unsignedp, OPTAB_LIB_WIDEN);
3353 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3354 replace division by D, and put the least significant N bits of the result
3355 in *MULTIPLIER_PTR and return the most significant bit.
3357 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3358 needed precision is in PRECISION (should be <= N).
3360 PRECISION should be as small as possible so this function can choose
3361 multiplier more freely.
3363 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3364 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3366 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3367 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3369 unsigned HOST_WIDE_INT
3370 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3371 unsigned HOST_WIDE_INT *multiplier_ptr,
3372 int *post_shift_ptr, int *lgup_ptr)
3374 int lgup, post_shift;
3375 int pow, pow2;
3377 /* lgup = ceil(log2(divisor)); */
3378 lgup = ceil_log2 (d);
3380 gcc_assert (lgup <= n);
3382 pow = n + lgup;
3383 pow2 = n + lgup - precision;
3385 /* mlow = 2^(N + lgup)/d */
3386 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3387 wide_int mlow = wi::udiv_trunc (val, d);
3389 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3390 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3391 wide_int mhigh = wi::udiv_trunc (val, d);
3393 /* If precision == N, then mlow, mhigh exceed 2^N
3394 (but they do not exceed 2^(N+1)). */
3396 /* Reduce to lowest terms. */
3397 for (post_shift = lgup; post_shift > 0; post_shift--)
3399 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3400 HOST_BITS_PER_WIDE_INT);
3401 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3402 HOST_BITS_PER_WIDE_INT);
3403 if (ml_lo >= mh_lo)
3404 break;
3406 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3407 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3410 *post_shift_ptr = post_shift;
3411 *lgup_ptr = lgup;
3412 if (n < HOST_BITS_PER_WIDE_INT)
3414 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3415 *multiplier_ptr = mhigh.to_uhwi () & mask;
3416 return mhigh.to_uhwi () >= mask;
3418 else
3420 *multiplier_ptr = mhigh.to_uhwi ();
3421 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3425 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3426 congruent to 1 (mod 2**N). */
3428 static unsigned HOST_WIDE_INT
3429 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3431 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3433 /* The algorithm notes that the choice y = x satisfies
3434 x*y == 1 mod 2^3, since x is assumed odd.
3435 Each iteration doubles the number of bits of significance in y. */
3437 unsigned HOST_WIDE_INT mask;
3438 unsigned HOST_WIDE_INT y = x;
3439 int nbit = 3;
3441 mask = (n == HOST_BITS_PER_WIDE_INT
3442 ? ~(unsigned HOST_WIDE_INT) 0
3443 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3445 while (nbit < n)
3447 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3448 nbit *= 2;
3450 return y;
3453 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3454 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3455 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3456 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3457 become signed.
3459 The result is put in TARGET if that is convenient.
3461 MODE is the mode of operation. */
3464 expand_mult_highpart_adjust (machine_mode mode, rtx adj_operand, rtx op0,
3465 rtx op1, rtx target, int unsignedp)
3467 rtx tem;
3468 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3470 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3471 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3472 tem = expand_and (mode, tem, op1, NULL_RTX);
3473 adj_operand
3474 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3475 adj_operand);
3477 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3478 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3479 tem = expand_and (mode, tem, op0, NULL_RTX);
3480 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3481 target);
3483 return target;
3486 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3488 static rtx
3489 extract_high_half (machine_mode mode, rtx op)
3491 machine_mode wider_mode;
3493 if (mode == word_mode)
3494 return gen_highpart (mode, op);
3496 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3498 wider_mode = GET_MODE_WIDER_MODE (mode);
3499 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3500 GET_MODE_BITSIZE (mode), 0, 1);
3501 return convert_modes (mode, wider_mode, op, 0);
3504 /* Like expmed_mult_highpart, but only consider using a multiplication
3505 optab. OP1 is an rtx for the constant operand. */
3507 static rtx
3508 expmed_mult_highpart_optab (machine_mode mode, rtx op0, rtx op1,
3509 rtx target, int unsignedp, int max_cost)
3511 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3512 machine_mode wider_mode;
3513 optab moptab;
3514 rtx tem;
3515 int size;
3516 bool speed = optimize_insn_for_speed_p ();
3518 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3520 wider_mode = GET_MODE_WIDER_MODE (mode);
3521 size = GET_MODE_BITSIZE (mode);
3523 /* Firstly, try using a multiplication insn that only generates the needed
3524 high part of the product, and in the sign flavor of unsignedp. */
3525 if (mul_highpart_cost (speed, mode) < max_cost)
3527 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3528 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3529 unsignedp, OPTAB_DIRECT);
3530 if (tem)
3531 return tem;
3534 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3535 Need to adjust the result after the multiplication. */
3536 if (size - 1 < BITS_PER_WORD
3537 && (mul_highpart_cost (speed, mode)
3538 + 2 * shift_cost (speed, mode, size-1)
3539 + 4 * add_cost (speed, mode) < max_cost))
3541 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3542 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3543 unsignedp, OPTAB_DIRECT);
3544 if (tem)
3545 /* We used the wrong signedness. Adjust the result. */
3546 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3547 tem, unsignedp);
3550 /* Try widening multiplication. */
3551 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3552 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3553 && mul_widen_cost (speed, wider_mode) < max_cost)
3555 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3556 unsignedp, OPTAB_WIDEN);
3557 if (tem)
3558 return extract_high_half (mode, tem);
3561 /* Try widening the mode and perform a non-widening multiplication. */
3562 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3563 && size - 1 < BITS_PER_WORD
3564 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3565 < max_cost))
3567 rtx_insn *insns;
3568 rtx wop0, wop1;
3570 /* We need to widen the operands, for example to ensure the
3571 constant multiplier is correctly sign or zero extended.
3572 Use a sequence to clean-up any instructions emitted by
3573 the conversions if things don't work out. */
3574 start_sequence ();
3575 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3576 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3577 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3578 unsignedp, OPTAB_WIDEN);
3579 insns = get_insns ();
3580 end_sequence ();
3582 if (tem)
3584 emit_insn (insns);
3585 return extract_high_half (mode, tem);
3589 /* Try widening multiplication of opposite signedness, and adjust. */
3590 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3591 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3592 && size - 1 < BITS_PER_WORD
3593 && (mul_widen_cost (speed, wider_mode)
3594 + 2 * shift_cost (speed, mode, size-1)
3595 + 4 * add_cost (speed, mode) < max_cost))
3597 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3598 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3599 if (tem != 0)
3601 tem = extract_high_half (mode, tem);
3602 /* We used the wrong signedness. Adjust the result. */
3603 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3604 target, unsignedp);
3608 return 0;
3611 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3612 putting the high half of the result in TARGET if that is convenient,
3613 and return where the result is. If the operation can not be performed,
3614 0 is returned.
3616 MODE is the mode of operation and result.
3618 UNSIGNEDP nonzero means unsigned multiply.
3620 MAX_COST is the total allowed cost for the expanded RTL. */
3622 static rtx
3623 expmed_mult_highpart (machine_mode mode, rtx op0, rtx op1,
3624 rtx target, int unsignedp, int max_cost)
3626 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3627 unsigned HOST_WIDE_INT cnst1;
3628 int extra_cost;
3629 bool sign_adjust = false;
3630 enum mult_variant variant;
3631 struct algorithm alg;
3632 rtx tem;
3633 bool speed = optimize_insn_for_speed_p ();
3635 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3636 /* We can't support modes wider than HOST_BITS_PER_INT. */
3637 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3639 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3641 /* We can't optimize modes wider than BITS_PER_WORD.
3642 ??? We might be able to perform double-word arithmetic if
3643 mode == word_mode, however all the cost calculations in
3644 synth_mult etc. assume single-word operations. */
3645 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3646 return expmed_mult_highpart_optab (mode, op0, op1, target,
3647 unsignedp, max_cost);
3649 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3651 /* Check whether we try to multiply by a negative constant. */
3652 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3654 sign_adjust = true;
3655 extra_cost += add_cost (speed, mode);
3658 /* See whether shift/add multiplication is cheap enough. */
3659 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3660 max_cost - extra_cost))
3662 /* See whether the specialized multiplication optabs are
3663 cheaper than the shift/add version. */
3664 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3665 alg.cost.cost + extra_cost);
3666 if (tem)
3667 return tem;
3669 tem = convert_to_mode (wider_mode, op0, unsignedp);
3670 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3671 tem = extract_high_half (mode, tem);
3673 /* Adjust result for signedness. */
3674 if (sign_adjust)
3675 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3677 return tem;
3679 return expmed_mult_highpart_optab (mode, op0, op1, target,
3680 unsignedp, max_cost);
3684 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3686 static rtx
3687 expand_smod_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3689 rtx result, temp, shift;
3690 rtx_code_label *label;
3691 int logd;
3692 int prec = GET_MODE_PRECISION (mode);
3694 logd = floor_log2 (d);
3695 result = gen_reg_rtx (mode);
3697 /* Avoid conditional branches when they're expensive. */
3698 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3699 && optimize_insn_for_speed_p ())
3701 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3702 mode, 0, -1);
3703 if (signmask)
3705 HOST_WIDE_INT masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3706 signmask = force_reg (mode, signmask);
3707 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3709 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3710 which instruction sequence to use. If logical right shifts
3711 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3712 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3714 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3715 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3716 || (set_src_cost (temp, optimize_insn_for_speed_p ())
3717 > COSTS_N_INSNS (2)))
3719 temp = expand_binop (mode, xor_optab, op0, signmask,
3720 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3721 temp = expand_binop (mode, sub_optab, temp, signmask,
3722 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3723 temp = expand_binop (mode, and_optab, temp,
3724 gen_int_mode (masklow, mode),
3725 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3726 temp = expand_binop (mode, xor_optab, temp, signmask,
3727 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3728 temp = expand_binop (mode, sub_optab, temp, signmask,
3729 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3731 else
3733 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3734 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3735 signmask = force_reg (mode, signmask);
3737 temp = expand_binop (mode, add_optab, op0, signmask,
3738 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3739 temp = expand_binop (mode, and_optab, temp,
3740 gen_int_mode (masklow, mode),
3741 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3742 temp = expand_binop (mode, sub_optab, temp, signmask,
3743 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3745 return temp;
3749 /* Mask contains the mode's signbit and the significant bits of the
3750 modulus. By including the signbit in the operation, many targets
3751 can avoid an explicit compare operation in the following comparison
3752 against zero. */
3753 wide_int mask = wi::mask (logd, false, prec);
3754 mask = wi::set_bit (mask, prec - 1);
3756 temp = expand_binop (mode, and_optab, op0,
3757 immed_wide_int_const (mask, mode),
3758 result, 1, OPTAB_LIB_WIDEN);
3759 if (temp != result)
3760 emit_move_insn (result, temp);
3762 label = gen_label_rtx ();
3763 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3765 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3766 0, OPTAB_LIB_WIDEN);
3768 mask = wi::mask (logd, true, prec);
3769 temp = expand_binop (mode, ior_optab, temp,
3770 immed_wide_int_const (mask, mode),
3771 result, 1, OPTAB_LIB_WIDEN);
3772 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3773 0, OPTAB_LIB_WIDEN);
3774 if (temp != result)
3775 emit_move_insn (result, temp);
3776 emit_label (label);
3777 return result;
3780 /* Expand signed division of OP0 by a power of two D in mode MODE.
3781 This routine is only called for positive values of D. */
3783 static rtx
3784 expand_sdiv_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3786 rtx temp;
3787 rtx_code_label *label;
3788 int logd;
3790 logd = floor_log2 (d);
3792 if (d == 2
3793 && BRANCH_COST (optimize_insn_for_speed_p (),
3794 false) >= 1)
3796 temp = gen_reg_rtx (mode);
3797 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3798 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3799 0, OPTAB_LIB_WIDEN);
3800 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3803 #ifdef HAVE_conditional_move
3804 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3805 >= 2)
3807 rtx temp2;
3809 start_sequence ();
3810 temp2 = copy_to_mode_reg (mode, op0);
3811 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
3812 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3813 temp = force_reg (mode, temp);
3815 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3816 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3817 mode, temp, temp2, mode, 0);
3818 if (temp2)
3820 rtx_insn *seq = get_insns ();
3821 end_sequence ();
3822 emit_insn (seq);
3823 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
3825 end_sequence ();
3827 #endif
3829 if (BRANCH_COST (optimize_insn_for_speed_p (),
3830 false) >= 2)
3832 int ushift = GET_MODE_BITSIZE (mode) - logd;
3834 temp = gen_reg_rtx (mode);
3835 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3836 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
3837 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
3838 > COSTS_N_INSNS (1))
3839 temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
3840 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3841 else
3842 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3843 ushift, NULL_RTX, 1);
3844 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3845 0, OPTAB_LIB_WIDEN);
3846 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3849 label = gen_label_rtx ();
3850 temp = copy_to_mode_reg (mode, op0);
3851 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3852 expand_inc (temp, gen_int_mode (d - 1, mode));
3853 emit_label (label);
3854 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3857 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3858 if that is convenient, and returning where the result is.
3859 You may request either the quotient or the remainder as the result;
3860 specify REM_FLAG nonzero to get the remainder.
3862 CODE is the expression code for which kind of division this is;
3863 it controls how rounding is done. MODE is the machine mode to use.
3864 UNSIGNEDP nonzero means do unsigned division. */
3866 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3867 and then correct it by or'ing in missing high bits
3868 if result of ANDI is nonzero.
3869 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3870 This could optimize to a bfexts instruction.
3871 But C doesn't use these operations, so their optimizations are
3872 left for later. */
3873 /* ??? For modulo, we don't actually need the highpart of the first product,
3874 the low part will do nicely. And for small divisors, the second multiply
3875 can also be a low-part only multiply or even be completely left out.
3876 E.g. to calculate the remainder of a division by 3 with a 32 bit
3877 multiply, multiply with 0x55555556 and extract the upper two bits;
3878 the result is exact for inputs up to 0x1fffffff.
3879 The input range can be reduced by using cross-sum rules.
3880 For odd divisors >= 3, the following table gives right shift counts
3881 so that if a number is shifted by an integer multiple of the given
3882 amount, the remainder stays the same:
3883 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3884 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3885 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3886 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3887 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3889 Cross-sum rules for even numbers can be derived by leaving as many bits
3890 to the right alone as the divisor has zeros to the right.
3891 E.g. if x is an unsigned 32 bit number:
3892 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3896 expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
3897 rtx op0, rtx op1, rtx target, int unsignedp)
3899 machine_mode compute_mode;
3900 rtx tquotient;
3901 rtx quotient = 0, remainder = 0;
3902 rtx_insn *last;
3903 int size;
3904 rtx_insn *insn;
3905 optab optab1, optab2;
3906 int op1_is_constant, op1_is_pow2 = 0;
3907 int max_cost, extra_cost;
3908 static HOST_WIDE_INT last_div_const = 0;
3909 bool speed = optimize_insn_for_speed_p ();
3911 op1_is_constant = CONST_INT_P (op1);
3912 if (op1_is_constant)
3914 unsigned HOST_WIDE_INT ext_op1 = UINTVAL (op1);
3915 if (unsignedp)
3916 ext_op1 &= GET_MODE_MASK (mode);
3917 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3918 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3922 This is the structure of expand_divmod:
3924 First comes code to fix up the operands so we can perform the operations
3925 correctly and efficiently.
3927 Second comes a switch statement with code specific for each rounding mode.
3928 For some special operands this code emits all RTL for the desired
3929 operation, for other cases, it generates only a quotient and stores it in
3930 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3931 to indicate that it has not done anything.
3933 Last comes code that finishes the operation. If QUOTIENT is set and
3934 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3935 QUOTIENT is not set, it is computed using trunc rounding.
3937 We try to generate special code for division and remainder when OP1 is a
3938 constant. If |OP1| = 2**n we can use shifts and some other fast
3939 operations. For other values of OP1, we compute a carefully selected
3940 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3941 by m.
3943 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3944 half of the product. Different strategies for generating the product are
3945 implemented in expmed_mult_highpart.
3947 If what we actually want is the remainder, we generate that by another
3948 by-constant multiplication and a subtraction. */
3950 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3951 code below will malfunction if we are, so check here and handle
3952 the special case if so. */
3953 if (op1 == const1_rtx)
3954 return rem_flag ? const0_rtx : op0;
3956 /* When dividing by -1, we could get an overflow.
3957 negv_optab can handle overflows. */
3958 if (! unsignedp && op1 == constm1_rtx)
3960 if (rem_flag)
3961 return const0_rtx;
3962 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
3963 ? negv_optab : neg_optab, op0, target, 0);
3966 if (target
3967 /* Don't use the function value register as a target
3968 since we have to read it as well as write it,
3969 and function-inlining gets confused by this. */
3970 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3971 /* Don't clobber an operand while doing a multi-step calculation. */
3972 || ((rem_flag || op1_is_constant)
3973 && (reg_mentioned_p (target, op0)
3974 || (MEM_P (op0) && MEM_P (target))))
3975 || reg_mentioned_p (target, op1)
3976 || (MEM_P (op1) && MEM_P (target))))
3977 target = 0;
3979 /* Get the mode in which to perform this computation. Normally it will
3980 be MODE, but sometimes we can't do the desired operation in MODE.
3981 If so, pick a wider mode in which we can do the operation. Convert
3982 to that mode at the start to avoid repeated conversions.
3984 First see what operations we need. These depend on the expression
3985 we are evaluating. (We assume that divxx3 insns exist under the
3986 same conditions that modxx3 insns and that these insns don't normally
3987 fail. If these assumptions are not correct, we may generate less
3988 efficient code in some cases.)
3990 Then see if we find a mode in which we can open-code that operation
3991 (either a division, modulus, or shift). Finally, check for the smallest
3992 mode for which we can do the operation with a library call. */
3994 /* We might want to refine this now that we have division-by-constant
3995 optimization. Since expmed_mult_highpart tries so many variants, it is
3996 not straightforward to generalize this. Maybe we should make an array
3997 of possible modes in init_expmed? Save this for GCC 2.7. */
3999 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
4000 ? (unsignedp ? lshr_optab : ashr_optab)
4001 : (unsignedp ? udiv_optab : sdiv_optab));
4002 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
4003 ? optab1
4004 : (unsignedp ? udivmod_optab : sdivmod_optab));
4006 for (compute_mode = mode; compute_mode != VOIDmode;
4007 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
4008 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
4009 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
4010 break;
4012 if (compute_mode == VOIDmode)
4013 for (compute_mode = mode; compute_mode != VOIDmode;
4014 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
4015 if (optab_libfunc (optab1, compute_mode)
4016 || optab_libfunc (optab2, compute_mode))
4017 break;
4019 /* If we still couldn't find a mode, use MODE, but expand_binop will
4020 probably die. */
4021 if (compute_mode == VOIDmode)
4022 compute_mode = mode;
4024 if (target && GET_MODE (target) == compute_mode)
4025 tquotient = target;
4026 else
4027 tquotient = gen_reg_rtx (compute_mode);
4029 size = GET_MODE_BITSIZE (compute_mode);
4030 #if 0
4031 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4032 (mode), and thereby get better code when OP1 is a constant. Do that
4033 later. It will require going over all usages of SIZE below. */
4034 size = GET_MODE_BITSIZE (mode);
4035 #endif
4037 /* Only deduct something for a REM if the last divide done was
4038 for a different constant. Then set the constant of the last
4039 divide. */
4040 max_cost = (unsignedp
4041 ? udiv_cost (speed, compute_mode)
4042 : sdiv_cost (speed, compute_mode));
4043 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4044 && INTVAL (op1) == last_div_const))
4045 max_cost -= (mul_cost (speed, compute_mode)
4046 + add_cost (speed, compute_mode));
4048 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4050 /* Now convert to the best mode to use. */
4051 if (compute_mode != mode)
4053 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4054 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4056 /* convert_modes may have placed op1 into a register, so we
4057 must recompute the following. */
4058 op1_is_constant = CONST_INT_P (op1);
4059 op1_is_pow2 = (op1_is_constant
4060 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4061 || (! unsignedp
4062 && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1))))));
4065 /* If one of the operands is a volatile MEM, copy it into a register. */
4067 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4068 op0 = force_reg (compute_mode, op0);
4069 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4070 op1 = force_reg (compute_mode, op1);
4072 /* If we need the remainder or if OP1 is constant, we need to
4073 put OP0 in a register in case it has any queued subexpressions. */
4074 if (rem_flag || op1_is_constant)
4075 op0 = force_reg (compute_mode, op0);
4077 last = get_last_insn ();
4079 /* Promote floor rounding to trunc rounding for unsigned operations. */
4080 if (unsignedp)
4082 if (code == FLOOR_DIV_EXPR)
4083 code = TRUNC_DIV_EXPR;
4084 if (code == FLOOR_MOD_EXPR)
4085 code = TRUNC_MOD_EXPR;
4086 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4087 code = TRUNC_DIV_EXPR;
4090 if (op1 != const0_rtx)
4091 switch (code)
4093 case TRUNC_MOD_EXPR:
4094 case TRUNC_DIV_EXPR:
4095 if (op1_is_constant)
4097 if (unsignedp)
4099 unsigned HOST_WIDE_INT mh, ml;
4100 int pre_shift, post_shift;
4101 int dummy;
4102 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4103 & GET_MODE_MASK (compute_mode));
4105 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4107 pre_shift = floor_log2 (d);
4108 if (rem_flag)
4110 unsigned HOST_WIDE_INT mask
4111 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4112 remainder
4113 = expand_binop (compute_mode, and_optab, op0,
4114 gen_int_mode (mask, compute_mode),
4115 remainder, 1,
4116 OPTAB_LIB_WIDEN);
4117 if (remainder)
4118 return gen_lowpart (mode, remainder);
4120 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4121 pre_shift, tquotient, 1);
4123 else if (size <= HOST_BITS_PER_WIDE_INT)
4125 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4127 /* Most significant bit of divisor is set; emit an scc
4128 insn. */
4129 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4130 compute_mode, 1, 1);
4132 else
4134 /* Find a suitable multiplier and right shift count
4135 instead of multiplying with D. */
4137 mh = choose_multiplier (d, size, size,
4138 &ml, &post_shift, &dummy);
4140 /* If the suggested multiplier is more than SIZE bits,
4141 we can do better for even divisors, using an
4142 initial right shift. */
4143 if (mh != 0 && (d & 1) == 0)
4145 pre_shift = floor_log2 (d & -d);
4146 mh = choose_multiplier (d >> pre_shift, size,
4147 size - pre_shift,
4148 &ml, &post_shift, &dummy);
4149 gcc_assert (!mh);
4151 else
4152 pre_shift = 0;
4154 if (mh != 0)
4156 rtx t1, t2, t3, t4;
4158 if (post_shift - 1 >= BITS_PER_WORD)
4159 goto fail1;
4161 extra_cost
4162 = (shift_cost (speed, compute_mode, post_shift - 1)
4163 + shift_cost (speed, compute_mode, 1)
4164 + 2 * add_cost (speed, compute_mode));
4165 t1 = expmed_mult_highpart
4166 (compute_mode, op0,
4167 gen_int_mode (ml, compute_mode),
4168 NULL_RTX, 1, max_cost - extra_cost);
4169 if (t1 == 0)
4170 goto fail1;
4171 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4172 op0, t1),
4173 NULL_RTX);
4174 t3 = expand_shift (RSHIFT_EXPR, compute_mode,
4175 t2, 1, NULL_RTX, 1);
4176 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4177 t1, t3),
4178 NULL_RTX);
4179 quotient = expand_shift
4180 (RSHIFT_EXPR, compute_mode, t4,
4181 post_shift - 1, tquotient, 1);
4183 else
4185 rtx t1, t2;
4187 if (pre_shift >= BITS_PER_WORD
4188 || post_shift >= BITS_PER_WORD)
4189 goto fail1;
4191 t1 = expand_shift
4192 (RSHIFT_EXPR, compute_mode, op0,
4193 pre_shift, NULL_RTX, 1);
4194 extra_cost
4195 = (shift_cost (speed, compute_mode, pre_shift)
4196 + shift_cost (speed, compute_mode, post_shift));
4197 t2 = expmed_mult_highpart
4198 (compute_mode, t1,
4199 gen_int_mode (ml, compute_mode),
4200 NULL_RTX, 1, max_cost - extra_cost);
4201 if (t2 == 0)
4202 goto fail1;
4203 quotient = expand_shift
4204 (RSHIFT_EXPR, compute_mode, t2,
4205 post_shift, tquotient, 1);
4209 else /* Too wide mode to use tricky code */
4210 break;
4212 insn = get_last_insn ();
4213 if (insn != last)
4214 set_dst_reg_note (insn, REG_EQUAL,
4215 gen_rtx_UDIV (compute_mode, op0, op1),
4216 quotient);
4218 else /* TRUNC_DIV, signed */
4220 unsigned HOST_WIDE_INT ml;
4221 int lgup, post_shift;
4222 rtx mlr;
4223 HOST_WIDE_INT d = INTVAL (op1);
4224 unsigned HOST_WIDE_INT abs_d;
4226 /* Since d might be INT_MIN, we have to cast to
4227 unsigned HOST_WIDE_INT before negating to avoid
4228 undefined signed overflow. */
4229 abs_d = (d >= 0
4230 ? (unsigned HOST_WIDE_INT) d
4231 : - (unsigned HOST_WIDE_INT) d);
4233 /* n rem d = n rem -d */
4234 if (rem_flag && d < 0)
4236 d = abs_d;
4237 op1 = gen_int_mode (abs_d, compute_mode);
4240 if (d == 1)
4241 quotient = op0;
4242 else if (d == -1)
4243 quotient = expand_unop (compute_mode, neg_optab, op0,
4244 tquotient, 0);
4245 else if (HOST_BITS_PER_WIDE_INT >= size
4246 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4248 /* This case is not handled correctly below. */
4249 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4250 compute_mode, 1, 1);
4251 if (quotient == 0)
4252 goto fail1;
4254 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4255 && (rem_flag
4256 ? smod_pow2_cheap (speed, compute_mode)
4257 : sdiv_pow2_cheap (speed, compute_mode))
4258 /* We assume that cheap metric is true if the
4259 optab has an expander for this mode. */
4260 && ((optab_handler ((rem_flag ? smod_optab
4261 : sdiv_optab),
4262 compute_mode)
4263 != CODE_FOR_nothing)
4264 || (optab_handler (sdivmod_optab,
4265 compute_mode)
4266 != CODE_FOR_nothing)))
4268 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4270 if (rem_flag)
4272 remainder = expand_smod_pow2 (compute_mode, op0, d);
4273 if (remainder)
4274 return gen_lowpart (mode, remainder);
4277 if (sdiv_pow2_cheap (speed, compute_mode)
4278 && ((optab_handler (sdiv_optab, compute_mode)
4279 != CODE_FOR_nothing)
4280 || (optab_handler (sdivmod_optab, compute_mode)
4281 != CODE_FOR_nothing)))
4282 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4283 compute_mode, op0,
4284 gen_int_mode (abs_d,
4285 compute_mode),
4286 NULL_RTX, 0);
4287 else
4288 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4290 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4291 negate the quotient. */
4292 if (d < 0)
4294 insn = get_last_insn ();
4295 if (insn != last
4296 && abs_d < ((unsigned HOST_WIDE_INT) 1
4297 << (HOST_BITS_PER_WIDE_INT - 1)))
4298 set_dst_reg_note (insn, REG_EQUAL,
4299 gen_rtx_DIV (compute_mode, op0,
4300 gen_int_mode
4301 (abs_d,
4302 compute_mode)),
4303 quotient);
4305 quotient = expand_unop (compute_mode, neg_optab,
4306 quotient, quotient, 0);
4309 else if (size <= HOST_BITS_PER_WIDE_INT)
4311 choose_multiplier (abs_d, size, size - 1,
4312 &ml, &post_shift, &lgup);
4313 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4315 rtx t1, t2, t3;
4317 if (post_shift >= BITS_PER_WORD
4318 || size - 1 >= BITS_PER_WORD)
4319 goto fail1;
4321 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4322 + shift_cost (speed, compute_mode, size - 1)
4323 + add_cost (speed, compute_mode));
4324 t1 = expmed_mult_highpart
4325 (compute_mode, op0, gen_int_mode (ml, compute_mode),
4326 NULL_RTX, 0, max_cost - extra_cost);
4327 if (t1 == 0)
4328 goto fail1;
4329 t2 = expand_shift
4330 (RSHIFT_EXPR, compute_mode, t1,
4331 post_shift, NULL_RTX, 0);
4332 t3 = expand_shift
4333 (RSHIFT_EXPR, compute_mode, op0,
4334 size - 1, NULL_RTX, 0);
4335 if (d < 0)
4336 quotient
4337 = force_operand (gen_rtx_MINUS (compute_mode,
4338 t3, t2),
4339 tquotient);
4340 else
4341 quotient
4342 = force_operand (gen_rtx_MINUS (compute_mode,
4343 t2, t3),
4344 tquotient);
4346 else
4348 rtx t1, t2, t3, t4;
4350 if (post_shift >= BITS_PER_WORD
4351 || size - 1 >= BITS_PER_WORD)
4352 goto fail1;
4354 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4355 mlr = gen_int_mode (ml, compute_mode);
4356 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4357 + shift_cost (speed, compute_mode, size - 1)
4358 + 2 * add_cost (speed, compute_mode));
4359 t1 = expmed_mult_highpart (compute_mode, op0, mlr,
4360 NULL_RTX, 0,
4361 max_cost - extra_cost);
4362 if (t1 == 0)
4363 goto fail1;
4364 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4365 t1, op0),
4366 NULL_RTX);
4367 t3 = expand_shift
4368 (RSHIFT_EXPR, compute_mode, t2,
4369 post_shift, NULL_RTX, 0);
4370 t4 = expand_shift
4371 (RSHIFT_EXPR, compute_mode, op0,
4372 size - 1, NULL_RTX, 0);
4373 if (d < 0)
4374 quotient
4375 = force_operand (gen_rtx_MINUS (compute_mode,
4376 t4, t3),
4377 tquotient);
4378 else
4379 quotient
4380 = force_operand (gen_rtx_MINUS (compute_mode,
4381 t3, t4),
4382 tquotient);
4385 else /* Too wide mode to use tricky code */
4386 break;
4388 insn = get_last_insn ();
4389 if (insn != last)
4390 set_dst_reg_note (insn, REG_EQUAL,
4391 gen_rtx_DIV (compute_mode, op0, op1),
4392 quotient);
4394 break;
4396 fail1:
4397 delete_insns_since (last);
4398 break;
4400 case FLOOR_DIV_EXPR:
4401 case FLOOR_MOD_EXPR:
4402 /* We will come here only for signed operations. */
4403 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4405 unsigned HOST_WIDE_INT mh, ml;
4406 int pre_shift, lgup, post_shift;
4407 HOST_WIDE_INT d = INTVAL (op1);
4409 if (d > 0)
4411 /* We could just as easily deal with negative constants here,
4412 but it does not seem worth the trouble for GCC 2.6. */
4413 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4415 pre_shift = floor_log2 (d);
4416 if (rem_flag)
4418 unsigned HOST_WIDE_INT mask
4419 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4420 remainder = expand_binop
4421 (compute_mode, and_optab, op0,
4422 gen_int_mode (mask, compute_mode),
4423 remainder, 0, OPTAB_LIB_WIDEN);
4424 if (remainder)
4425 return gen_lowpart (mode, remainder);
4427 quotient = expand_shift
4428 (RSHIFT_EXPR, compute_mode, op0,
4429 pre_shift, tquotient, 0);
4431 else
4433 rtx t1, t2, t3, t4;
4435 mh = choose_multiplier (d, size, size - 1,
4436 &ml, &post_shift, &lgup);
4437 gcc_assert (!mh);
4439 if (post_shift < BITS_PER_WORD
4440 && size - 1 < BITS_PER_WORD)
4442 t1 = expand_shift
4443 (RSHIFT_EXPR, compute_mode, op0,
4444 size - 1, NULL_RTX, 0);
4445 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4446 NULL_RTX, 0, OPTAB_WIDEN);
4447 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4448 + shift_cost (speed, compute_mode, size - 1)
4449 + 2 * add_cost (speed, compute_mode));
4450 t3 = expmed_mult_highpart
4451 (compute_mode, t2, gen_int_mode (ml, compute_mode),
4452 NULL_RTX, 1, max_cost - extra_cost);
4453 if (t3 != 0)
4455 t4 = expand_shift
4456 (RSHIFT_EXPR, compute_mode, t3,
4457 post_shift, NULL_RTX, 1);
4458 quotient = expand_binop (compute_mode, xor_optab,
4459 t4, t1, tquotient, 0,
4460 OPTAB_WIDEN);
4465 else
4467 rtx nsign, t1, t2, t3, t4;
4468 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4469 op0, constm1_rtx), NULL_RTX);
4470 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4471 0, OPTAB_WIDEN);
4472 nsign = expand_shift
4473 (RSHIFT_EXPR, compute_mode, t2,
4474 size - 1, NULL_RTX, 0);
4475 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4476 NULL_RTX);
4477 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4478 NULL_RTX, 0);
4479 if (t4)
4481 rtx t5;
4482 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4483 NULL_RTX, 0);
4484 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4485 t4, t5),
4486 tquotient);
4491 if (quotient != 0)
4492 break;
4493 delete_insns_since (last);
4495 /* Try using an instruction that produces both the quotient and
4496 remainder, using truncation. We can easily compensate the quotient
4497 or remainder to get floor rounding, once we have the remainder.
4498 Notice that we compute also the final remainder value here,
4499 and return the result right away. */
4500 if (target == 0 || GET_MODE (target) != compute_mode)
4501 target = gen_reg_rtx (compute_mode);
4503 if (rem_flag)
4505 remainder
4506 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4507 quotient = gen_reg_rtx (compute_mode);
4509 else
4511 quotient
4512 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4513 remainder = gen_reg_rtx (compute_mode);
4516 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4517 quotient, remainder, 0))
4519 /* This could be computed with a branch-less sequence.
4520 Save that for later. */
4521 rtx tem;
4522 rtx_code_label *label = gen_label_rtx ();
4523 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4524 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4525 NULL_RTX, 0, OPTAB_WIDEN);
4526 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4527 expand_dec (quotient, const1_rtx);
4528 expand_inc (remainder, op1);
4529 emit_label (label);
4530 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4533 /* No luck with division elimination or divmod. Have to do it
4534 by conditionally adjusting op0 *and* the result. */
4536 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4537 rtx adjusted_op0;
4538 rtx tem;
4540 quotient = gen_reg_rtx (compute_mode);
4541 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4542 label1 = gen_label_rtx ();
4543 label2 = gen_label_rtx ();
4544 label3 = gen_label_rtx ();
4545 label4 = gen_label_rtx ();
4546 label5 = gen_label_rtx ();
4547 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4548 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4549 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4550 quotient, 0, OPTAB_LIB_WIDEN);
4551 if (tem != quotient)
4552 emit_move_insn (quotient, tem);
4553 emit_jump_insn (gen_jump (label5));
4554 emit_barrier ();
4555 emit_label (label1);
4556 expand_inc (adjusted_op0, const1_rtx);
4557 emit_jump_insn (gen_jump (label4));
4558 emit_barrier ();
4559 emit_label (label2);
4560 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4561 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4562 quotient, 0, OPTAB_LIB_WIDEN);
4563 if (tem != quotient)
4564 emit_move_insn (quotient, tem);
4565 emit_jump_insn (gen_jump (label5));
4566 emit_barrier ();
4567 emit_label (label3);
4568 expand_dec (adjusted_op0, const1_rtx);
4569 emit_label (label4);
4570 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4571 quotient, 0, OPTAB_LIB_WIDEN);
4572 if (tem != quotient)
4573 emit_move_insn (quotient, tem);
4574 expand_dec (quotient, const1_rtx);
4575 emit_label (label5);
4577 break;
4579 case CEIL_DIV_EXPR:
4580 case CEIL_MOD_EXPR:
4581 if (unsignedp)
4583 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4585 rtx t1, t2, t3;
4586 unsigned HOST_WIDE_INT d = INTVAL (op1);
4587 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4588 floor_log2 (d), tquotient, 1);
4589 t2 = expand_binop (compute_mode, and_optab, op0,
4590 gen_int_mode (d - 1, compute_mode),
4591 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4592 t3 = gen_reg_rtx (compute_mode);
4593 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4594 compute_mode, 1, 1);
4595 if (t3 == 0)
4597 rtx_code_label *lab;
4598 lab = gen_label_rtx ();
4599 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4600 expand_inc (t1, const1_rtx);
4601 emit_label (lab);
4602 quotient = t1;
4604 else
4605 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4606 t1, t3),
4607 tquotient);
4608 break;
4611 /* Try using an instruction that produces both the quotient and
4612 remainder, using truncation. We can easily compensate the
4613 quotient or remainder to get ceiling rounding, once we have the
4614 remainder. Notice that we compute also the final remainder
4615 value here, and return the result right away. */
4616 if (target == 0 || GET_MODE (target) != compute_mode)
4617 target = gen_reg_rtx (compute_mode);
4619 if (rem_flag)
4621 remainder = (REG_P (target)
4622 ? target : gen_reg_rtx (compute_mode));
4623 quotient = gen_reg_rtx (compute_mode);
4625 else
4627 quotient = (REG_P (target)
4628 ? target : gen_reg_rtx (compute_mode));
4629 remainder = gen_reg_rtx (compute_mode);
4632 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4633 remainder, 1))
4635 /* This could be computed with a branch-less sequence.
4636 Save that for later. */
4637 rtx_code_label *label = gen_label_rtx ();
4638 do_cmp_and_jump (remainder, const0_rtx, EQ,
4639 compute_mode, label);
4640 expand_inc (quotient, const1_rtx);
4641 expand_dec (remainder, op1);
4642 emit_label (label);
4643 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4646 /* No luck with division elimination or divmod. Have to do it
4647 by conditionally adjusting op0 *and* the result. */
4649 rtx_code_label *label1, *label2;
4650 rtx adjusted_op0, tem;
4652 quotient = gen_reg_rtx (compute_mode);
4653 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4654 label1 = gen_label_rtx ();
4655 label2 = gen_label_rtx ();
4656 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4657 compute_mode, label1);
4658 emit_move_insn (quotient, const0_rtx);
4659 emit_jump_insn (gen_jump (label2));
4660 emit_barrier ();
4661 emit_label (label1);
4662 expand_dec (adjusted_op0, const1_rtx);
4663 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4664 quotient, 1, OPTAB_LIB_WIDEN);
4665 if (tem != quotient)
4666 emit_move_insn (quotient, tem);
4667 expand_inc (quotient, const1_rtx);
4668 emit_label (label2);
4671 else /* signed */
4673 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4674 && INTVAL (op1) >= 0)
4676 /* This is extremely similar to the code for the unsigned case
4677 above. For 2.7 we should merge these variants, but for
4678 2.6.1 I don't want to touch the code for unsigned since that
4679 get used in C. The signed case will only be used by other
4680 languages (Ada). */
4682 rtx t1, t2, t3;
4683 unsigned HOST_WIDE_INT d = INTVAL (op1);
4684 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4685 floor_log2 (d), tquotient, 0);
4686 t2 = expand_binop (compute_mode, and_optab, op0,
4687 gen_int_mode (d - 1, compute_mode),
4688 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4689 t3 = gen_reg_rtx (compute_mode);
4690 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4691 compute_mode, 1, 1);
4692 if (t3 == 0)
4694 rtx_code_label *lab;
4695 lab = gen_label_rtx ();
4696 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4697 expand_inc (t1, const1_rtx);
4698 emit_label (lab);
4699 quotient = t1;
4701 else
4702 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4703 t1, t3),
4704 tquotient);
4705 break;
4708 /* Try using an instruction that produces both the quotient and
4709 remainder, using truncation. We can easily compensate the
4710 quotient or remainder to get ceiling rounding, once we have the
4711 remainder. Notice that we compute also the final remainder
4712 value here, and return the result right away. */
4713 if (target == 0 || GET_MODE (target) != compute_mode)
4714 target = gen_reg_rtx (compute_mode);
4715 if (rem_flag)
4717 remainder= (REG_P (target)
4718 ? target : gen_reg_rtx (compute_mode));
4719 quotient = gen_reg_rtx (compute_mode);
4721 else
4723 quotient = (REG_P (target)
4724 ? target : gen_reg_rtx (compute_mode));
4725 remainder = gen_reg_rtx (compute_mode);
4728 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4729 remainder, 0))
4731 /* This could be computed with a branch-less sequence.
4732 Save that for later. */
4733 rtx tem;
4734 rtx_code_label *label = gen_label_rtx ();
4735 do_cmp_and_jump (remainder, const0_rtx, EQ,
4736 compute_mode, label);
4737 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4738 NULL_RTX, 0, OPTAB_WIDEN);
4739 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4740 expand_inc (quotient, const1_rtx);
4741 expand_dec (remainder, op1);
4742 emit_label (label);
4743 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4746 /* No luck with division elimination or divmod. Have to do it
4747 by conditionally adjusting op0 *and* the result. */
4749 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4750 rtx adjusted_op0;
4751 rtx tem;
4753 quotient = gen_reg_rtx (compute_mode);
4754 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4755 label1 = gen_label_rtx ();
4756 label2 = gen_label_rtx ();
4757 label3 = gen_label_rtx ();
4758 label4 = gen_label_rtx ();
4759 label5 = gen_label_rtx ();
4760 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4761 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4762 compute_mode, label1);
4763 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4764 quotient, 0, OPTAB_LIB_WIDEN);
4765 if (tem != quotient)
4766 emit_move_insn (quotient, tem);
4767 emit_jump_insn (gen_jump (label5));
4768 emit_barrier ();
4769 emit_label (label1);
4770 expand_dec (adjusted_op0, const1_rtx);
4771 emit_jump_insn (gen_jump (label4));
4772 emit_barrier ();
4773 emit_label (label2);
4774 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4775 compute_mode, label3);
4776 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4777 quotient, 0, OPTAB_LIB_WIDEN);
4778 if (tem != quotient)
4779 emit_move_insn (quotient, tem);
4780 emit_jump_insn (gen_jump (label5));
4781 emit_barrier ();
4782 emit_label (label3);
4783 expand_inc (adjusted_op0, const1_rtx);
4784 emit_label (label4);
4785 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4786 quotient, 0, OPTAB_LIB_WIDEN);
4787 if (tem != quotient)
4788 emit_move_insn (quotient, tem);
4789 expand_inc (quotient, const1_rtx);
4790 emit_label (label5);
4793 break;
4795 case EXACT_DIV_EXPR:
4796 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4798 HOST_WIDE_INT d = INTVAL (op1);
4799 unsigned HOST_WIDE_INT ml;
4800 int pre_shift;
4801 rtx t1;
4803 pre_shift = floor_log2 (d & -d);
4804 ml = invert_mod2n (d >> pre_shift, size);
4805 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4806 pre_shift, NULL_RTX, unsignedp);
4807 quotient = expand_mult (compute_mode, t1,
4808 gen_int_mode (ml, compute_mode),
4809 NULL_RTX, 1);
4811 insn = get_last_insn ();
4812 set_dst_reg_note (insn, REG_EQUAL,
4813 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4814 compute_mode, op0, op1),
4815 quotient);
4817 break;
4819 case ROUND_DIV_EXPR:
4820 case ROUND_MOD_EXPR:
4821 if (unsignedp)
4823 rtx tem;
4824 rtx_code_label *label;
4825 label = gen_label_rtx ();
4826 quotient = gen_reg_rtx (compute_mode);
4827 remainder = gen_reg_rtx (compute_mode);
4828 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4830 rtx tem;
4831 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4832 quotient, 1, OPTAB_LIB_WIDEN);
4833 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4834 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4835 remainder, 1, OPTAB_LIB_WIDEN);
4837 tem = plus_constant (compute_mode, op1, -1);
4838 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
4839 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4840 expand_inc (quotient, const1_rtx);
4841 expand_dec (remainder, op1);
4842 emit_label (label);
4844 else
4846 rtx abs_rem, abs_op1, tem, mask;
4847 rtx_code_label *label;
4848 label = gen_label_rtx ();
4849 quotient = gen_reg_rtx (compute_mode);
4850 remainder = gen_reg_rtx (compute_mode);
4851 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4853 rtx tem;
4854 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4855 quotient, 0, OPTAB_LIB_WIDEN);
4856 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4857 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4858 remainder, 0, OPTAB_LIB_WIDEN);
4860 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4861 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4862 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4863 1, NULL_RTX, 1);
4864 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4865 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4866 NULL_RTX, 0, OPTAB_WIDEN);
4867 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4868 size - 1, NULL_RTX, 0);
4869 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4870 NULL_RTX, 0, OPTAB_WIDEN);
4871 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4872 NULL_RTX, 0, OPTAB_WIDEN);
4873 expand_inc (quotient, tem);
4874 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4875 NULL_RTX, 0, OPTAB_WIDEN);
4876 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4877 NULL_RTX, 0, OPTAB_WIDEN);
4878 expand_dec (remainder, tem);
4879 emit_label (label);
4881 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4883 default:
4884 gcc_unreachable ();
4887 if (quotient == 0)
4889 if (target && GET_MODE (target) != compute_mode)
4890 target = 0;
4892 if (rem_flag)
4894 /* Try to produce the remainder without producing the quotient.
4895 If we seem to have a divmod pattern that does not require widening,
4896 don't try widening here. We should really have a WIDEN argument
4897 to expand_twoval_binop, since what we'd really like to do here is
4898 1) try a mod insn in compute_mode
4899 2) try a divmod insn in compute_mode
4900 3) try a div insn in compute_mode and multiply-subtract to get
4901 remainder
4902 4) try the same things with widening allowed. */
4903 remainder
4904 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4905 op0, op1, target,
4906 unsignedp,
4907 ((optab_handler (optab2, compute_mode)
4908 != CODE_FOR_nothing)
4909 ? OPTAB_DIRECT : OPTAB_WIDEN));
4910 if (remainder == 0)
4912 /* No luck there. Can we do remainder and divide at once
4913 without a library call? */
4914 remainder = gen_reg_rtx (compute_mode);
4915 if (! expand_twoval_binop ((unsignedp
4916 ? udivmod_optab
4917 : sdivmod_optab),
4918 op0, op1,
4919 NULL_RTX, remainder, unsignedp))
4920 remainder = 0;
4923 if (remainder)
4924 return gen_lowpart (mode, remainder);
4927 /* Produce the quotient. Try a quotient insn, but not a library call.
4928 If we have a divmod in this mode, use it in preference to widening
4929 the div (for this test we assume it will not fail). Note that optab2
4930 is set to the one of the two optabs that the call below will use. */
4931 quotient
4932 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4933 op0, op1, rem_flag ? NULL_RTX : target,
4934 unsignedp,
4935 ((optab_handler (optab2, compute_mode)
4936 != CODE_FOR_nothing)
4937 ? OPTAB_DIRECT : OPTAB_WIDEN));
4939 if (quotient == 0)
4941 /* No luck there. Try a quotient-and-remainder insn,
4942 keeping the quotient alone. */
4943 quotient = gen_reg_rtx (compute_mode);
4944 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4945 op0, op1,
4946 quotient, NULL_RTX, unsignedp))
4948 quotient = 0;
4949 if (! rem_flag)
4950 /* Still no luck. If we are not computing the remainder,
4951 use a library call for the quotient. */
4952 quotient = sign_expand_binop (compute_mode,
4953 udiv_optab, sdiv_optab,
4954 op0, op1, target,
4955 unsignedp, OPTAB_LIB_WIDEN);
4960 if (rem_flag)
4962 if (target && GET_MODE (target) != compute_mode)
4963 target = 0;
4965 if (quotient == 0)
4967 /* No divide instruction either. Use library for remainder. */
4968 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4969 op0, op1, target,
4970 unsignedp, OPTAB_LIB_WIDEN);
4971 /* No remainder function. Try a quotient-and-remainder
4972 function, keeping the remainder. */
4973 if (!remainder)
4975 remainder = gen_reg_rtx (compute_mode);
4976 if (!expand_twoval_binop_libfunc
4977 (unsignedp ? udivmod_optab : sdivmod_optab,
4978 op0, op1,
4979 NULL_RTX, remainder,
4980 unsignedp ? UMOD : MOD))
4981 remainder = NULL_RTX;
4984 else
4986 /* We divided. Now finish doing X - Y * (X / Y). */
4987 remainder = expand_mult (compute_mode, quotient, op1,
4988 NULL_RTX, unsignedp);
4989 remainder = expand_binop (compute_mode, sub_optab, op0,
4990 remainder, target, unsignedp,
4991 OPTAB_LIB_WIDEN);
4995 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4998 /* Return a tree node with data type TYPE, describing the value of X.
4999 Usually this is an VAR_DECL, if there is no obvious better choice.
5000 X may be an expression, however we only support those expressions
5001 generated by loop.c. */
5003 tree
5004 make_tree (tree type, rtx x)
5006 tree t;
5008 switch (GET_CODE (x))
5010 case CONST_INT:
5011 case CONST_WIDE_INT:
5012 t = wide_int_to_tree (type, std::make_pair (x, TYPE_MODE (type)));
5013 return t;
5015 case CONST_DOUBLE:
5016 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5017 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5018 t = wide_int_to_tree (type,
5019 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5020 HOST_BITS_PER_WIDE_INT * 2));
5021 else
5023 REAL_VALUE_TYPE d;
5025 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
5026 t = build_real (type, d);
5029 return t;
5031 case CONST_VECTOR:
5033 int units = CONST_VECTOR_NUNITS (x);
5034 tree itype = TREE_TYPE (type);
5035 tree *elts;
5036 int i;
5038 /* Build a tree with vector elements. */
5039 elts = XALLOCAVEC (tree, units);
5040 for (i = units - 1; i >= 0; --i)
5042 rtx elt = CONST_VECTOR_ELT (x, i);
5043 elts[i] = make_tree (itype, elt);
5046 return build_vector (type, elts);
5049 case PLUS:
5050 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5051 make_tree (type, XEXP (x, 1)));
5053 case MINUS:
5054 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5055 make_tree (type, XEXP (x, 1)));
5057 case NEG:
5058 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5060 case MULT:
5061 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5062 make_tree (type, XEXP (x, 1)));
5064 case ASHIFT:
5065 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5066 make_tree (type, XEXP (x, 1)));
5068 case LSHIFTRT:
5069 t = unsigned_type_for (type);
5070 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5071 make_tree (t, XEXP (x, 0)),
5072 make_tree (type, XEXP (x, 1))));
5074 case ASHIFTRT:
5075 t = signed_type_for (type);
5076 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5077 make_tree (t, XEXP (x, 0)),
5078 make_tree (type, XEXP (x, 1))));
5080 case DIV:
5081 if (TREE_CODE (type) != REAL_TYPE)
5082 t = signed_type_for (type);
5083 else
5084 t = type;
5086 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5087 make_tree (t, XEXP (x, 0)),
5088 make_tree (t, XEXP (x, 1))));
5089 case UDIV:
5090 t = unsigned_type_for (type);
5091 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5092 make_tree (t, XEXP (x, 0)),
5093 make_tree (t, XEXP (x, 1))));
5095 case SIGN_EXTEND:
5096 case ZERO_EXTEND:
5097 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5098 GET_CODE (x) == ZERO_EXTEND);
5099 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5101 case CONST:
5102 return make_tree (type, XEXP (x, 0));
5104 case SYMBOL_REF:
5105 t = SYMBOL_REF_DECL (x);
5106 if (t)
5107 return fold_convert (type, build_fold_addr_expr (t));
5108 /* else fall through. */
5110 default:
5111 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5113 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5114 address mode to pointer mode. */
5115 if (POINTER_TYPE_P (type))
5116 x = convert_memory_address_addr_space
5117 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5119 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5120 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5121 t->decl_with_rtl.rtl = x;
5123 return t;
5127 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5128 and returning TARGET.
5130 If TARGET is 0, a pseudo-register or constant is returned. */
5133 expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5135 rtx tem = 0;
5137 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5138 tem = simplify_binary_operation (AND, mode, op0, op1);
5139 if (tem == 0)
5140 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5142 if (target == 0)
5143 target = tem;
5144 else if (tem != target)
5145 emit_move_insn (target, tem);
5146 return target;
5149 /* Helper function for emit_store_flag. */
5151 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5152 machine_mode mode, machine_mode compare_mode,
5153 int unsignedp, rtx x, rtx y, int normalizep,
5154 machine_mode target_mode)
5156 struct expand_operand ops[4];
5157 rtx op0, comparison, subtarget;
5158 rtx_insn *last;
5159 machine_mode result_mode = targetm.cstore_mode (icode);
5161 last = get_last_insn ();
5162 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5163 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5164 if (!x || !y)
5166 delete_insns_since (last);
5167 return NULL_RTX;
5170 if (target_mode == VOIDmode)
5171 target_mode = result_mode;
5172 if (!target)
5173 target = gen_reg_rtx (target_mode);
5175 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5177 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5178 create_fixed_operand (&ops[1], comparison);
5179 create_fixed_operand (&ops[2], x);
5180 create_fixed_operand (&ops[3], y);
5181 if (!maybe_expand_insn (icode, 4, ops))
5183 delete_insns_since (last);
5184 return NULL_RTX;
5186 subtarget = ops[0].value;
5188 /* If we are converting to a wider mode, first convert to
5189 TARGET_MODE, then normalize. This produces better combining
5190 opportunities on machines that have a SIGN_EXTRACT when we are
5191 testing a single bit. This mostly benefits the 68k.
5193 If STORE_FLAG_VALUE does not have the sign bit set when
5194 interpreted in MODE, we can do this conversion as unsigned, which
5195 is usually more efficient. */
5196 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5198 convert_move (target, subtarget,
5199 val_signbit_known_clear_p (result_mode,
5200 STORE_FLAG_VALUE));
5201 op0 = target;
5202 result_mode = target_mode;
5204 else
5205 op0 = subtarget;
5207 /* If we want to keep subexpressions around, don't reuse our last
5208 target. */
5209 if (optimize)
5210 subtarget = 0;
5212 /* Now normalize to the proper value in MODE. Sometimes we don't
5213 have to do anything. */
5214 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5216 /* STORE_FLAG_VALUE might be the most negative number, so write
5217 the comparison this way to avoid a compiler-time warning. */
5218 else if (- normalizep == STORE_FLAG_VALUE)
5219 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5221 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5222 it hard to use a value of just the sign bit due to ANSI integer
5223 constant typing rules. */
5224 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5225 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5226 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5227 normalizep == 1);
5228 else
5230 gcc_assert (STORE_FLAG_VALUE & 1);
5232 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5233 if (normalizep == -1)
5234 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5237 /* If we were converting to a smaller mode, do the conversion now. */
5238 if (target_mode != result_mode)
5240 convert_move (target, op0, 0);
5241 return target;
5243 else
5244 return op0;
5248 /* A subroutine of emit_store_flag only including "tricks" that do not
5249 need a recursive call. These are kept separate to avoid infinite
5250 loops. */
5252 static rtx
5253 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5254 machine_mode mode, int unsignedp, int normalizep,
5255 machine_mode target_mode)
5257 rtx subtarget;
5258 enum insn_code icode;
5259 machine_mode compare_mode;
5260 enum mode_class mclass;
5261 enum rtx_code scode;
5262 rtx tem;
5264 if (unsignedp)
5265 code = unsigned_condition (code);
5266 scode = swap_condition (code);
5268 /* If one operand is constant, make it the second one. Only do this
5269 if the other operand is not constant as well. */
5271 if (swap_commutative_operands_p (op0, op1))
5273 tem = op0;
5274 op0 = op1;
5275 op1 = tem;
5276 code = swap_condition (code);
5279 if (mode == VOIDmode)
5280 mode = GET_MODE (op0);
5282 /* For some comparisons with 1 and -1, we can convert this to
5283 comparisons with zero. This will often produce more opportunities for
5284 store-flag insns. */
5286 switch (code)
5288 case LT:
5289 if (op1 == const1_rtx)
5290 op1 = const0_rtx, code = LE;
5291 break;
5292 case LE:
5293 if (op1 == constm1_rtx)
5294 op1 = const0_rtx, code = LT;
5295 break;
5296 case GE:
5297 if (op1 == const1_rtx)
5298 op1 = const0_rtx, code = GT;
5299 break;
5300 case GT:
5301 if (op1 == constm1_rtx)
5302 op1 = const0_rtx, code = GE;
5303 break;
5304 case GEU:
5305 if (op1 == const1_rtx)
5306 op1 = const0_rtx, code = NE;
5307 break;
5308 case LTU:
5309 if (op1 == const1_rtx)
5310 op1 = const0_rtx, code = EQ;
5311 break;
5312 default:
5313 break;
5316 /* If we are comparing a double-word integer with zero or -1, we can
5317 convert the comparison into one involving a single word. */
5318 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5319 && GET_MODE_CLASS (mode) == MODE_INT
5320 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5322 if ((code == EQ || code == NE)
5323 && (op1 == const0_rtx || op1 == constm1_rtx))
5325 rtx op00, op01;
5327 /* Do a logical OR or AND of the two words and compare the
5328 result. */
5329 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5330 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5331 tem = expand_binop (word_mode,
5332 op1 == const0_rtx ? ior_optab : and_optab,
5333 op00, op01, NULL_RTX, unsignedp,
5334 OPTAB_DIRECT);
5336 if (tem != 0)
5337 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5338 unsignedp, normalizep);
5340 else if ((code == LT || code == GE) && op1 == const0_rtx)
5342 rtx op0h;
5344 /* If testing the sign bit, can just test on high word. */
5345 op0h = simplify_gen_subreg (word_mode, op0, mode,
5346 subreg_highpart_offset (word_mode,
5347 mode));
5348 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5349 unsignedp, normalizep);
5351 else
5352 tem = NULL_RTX;
5354 if (tem)
5356 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5357 return tem;
5358 if (!target)
5359 target = gen_reg_rtx (target_mode);
5361 convert_move (target, tem,
5362 !val_signbit_known_set_p (word_mode,
5363 (normalizep ? normalizep
5364 : STORE_FLAG_VALUE)));
5365 return target;
5369 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5370 complement of A (for GE) and shifting the sign bit to the low bit. */
5371 if (op1 == const0_rtx && (code == LT || code == GE)
5372 && GET_MODE_CLASS (mode) == MODE_INT
5373 && (normalizep || STORE_FLAG_VALUE == 1
5374 || val_signbit_p (mode, STORE_FLAG_VALUE)))
5376 subtarget = target;
5378 if (!target)
5379 target_mode = mode;
5381 /* If the result is to be wider than OP0, it is best to convert it
5382 first. If it is to be narrower, it is *incorrect* to convert it
5383 first. */
5384 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5386 op0 = convert_modes (target_mode, mode, op0, 0);
5387 mode = target_mode;
5390 if (target_mode != mode)
5391 subtarget = 0;
5393 if (code == GE)
5394 op0 = expand_unop (mode, one_cmpl_optab, op0,
5395 ((STORE_FLAG_VALUE == 1 || normalizep)
5396 ? 0 : subtarget), 0);
5398 if (STORE_FLAG_VALUE == 1 || normalizep)
5399 /* If we are supposed to produce a 0/1 value, we want to do
5400 a logical shift from the sign bit to the low-order bit; for
5401 a -1/0 value, we do an arithmetic shift. */
5402 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5403 GET_MODE_BITSIZE (mode) - 1,
5404 subtarget, normalizep != -1);
5406 if (mode != target_mode)
5407 op0 = convert_modes (target_mode, mode, op0, 0);
5409 return op0;
5412 mclass = GET_MODE_CLASS (mode);
5413 for (compare_mode = mode; compare_mode != VOIDmode;
5414 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5416 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5417 icode = optab_handler (cstore_optab, optab_mode);
5418 if (icode != CODE_FOR_nothing)
5420 do_pending_stack_adjust ();
5421 tem = emit_cstore (target, icode, code, mode, compare_mode,
5422 unsignedp, op0, op1, normalizep, target_mode);
5423 if (tem)
5424 return tem;
5426 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5428 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5429 unsignedp, op1, op0, normalizep, target_mode);
5430 if (tem)
5431 return tem;
5433 break;
5437 return 0;
5440 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5441 and storing in TARGET. Normally return TARGET.
5442 Return 0 if that cannot be done.
5444 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5445 it is VOIDmode, they cannot both be CONST_INT.
5447 UNSIGNEDP is for the case where we have to widen the operands
5448 to perform the operation. It says to use zero-extension.
5450 NORMALIZEP is 1 if we should convert the result to be either zero
5451 or one. Normalize is -1 if we should convert the result to be
5452 either zero or -1. If NORMALIZEP is zero, the result will be left
5453 "raw" out of the scc insn. */
5456 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5457 machine_mode mode, int unsignedp, int normalizep)
5459 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5460 enum rtx_code rcode;
5461 rtx subtarget;
5462 rtx tem, trueval;
5463 rtx_insn *last;
5465 /* If we compare constants, we shouldn't use a store-flag operation,
5466 but a constant load. We can get there via the vanilla route that
5467 usually generates a compare-branch sequence, but will in this case
5468 fold the comparison to a constant, and thus elide the branch. */
5469 if (CONSTANT_P (op0) && CONSTANT_P (op1))
5470 return NULL_RTX;
5472 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5473 target_mode);
5474 if (tem)
5475 return tem;
5477 /* If we reached here, we can't do this with a scc insn, however there
5478 are some comparisons that can be done in other ways. Don't do any
5479 of these cases if branches are very cheap. */
5480 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5481 return 0;
5483 /* See what we need to return. We can only return a 1, -1, or the
5484 sign bit. */
5486 if (normalizep == 0)
5488 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5489 normalizep = STORE_FLAG_VALUE;
5491 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5493 else
5494 return 0;
5497 last = get_last_insn ();
5499 /* If optimizing, use different pseudo registers for each insn, instead
5500 of reusing the same pseudo. This leads to better CSE, but slows
5501 down the compiler, since there are more pseudos */
5502 subtarget = (!optimize
5503 && (target_mode == mode)) ? target : NULL_RTX;
5504 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5506 /* For floating-point comparisons, try the reverse comparison or try
5507 changing the "orderedness" of the comparison. */
5508 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5510 enum rtx_code first_code;
5511 bool and_them;
5513 rcode = reverse_condition_maybe_unordered (code);
5514 if (can_compare_p (rcode, mode, ccp_store_flag)
5515 && (code == ORDERED || code == UNORDERED
5516 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5517 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5519 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5520 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5522 /* For the reverse comparison, use either an addition or a XOR. */
5523 if (want_add
5524 && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5525 optimize_insn_for_speed_p ()) == 0)
5527 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5528 STORE_FLAG_VALUE, target_mode);
5529 if (tem)
5530 return expand_binop (target_mode, add_optab, tem,
5531 gen_int_mode (normalizep, target_mode),
5532 target, 0, OPTAB_WIDEN);
5534 else if (!want_add
5535 && rtx_cost (trueval, XOR, 1,
5536 optimize_insn_for_speed_p ()) == 0)
5538 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5539 normalizep, target_mode);
5540 if (tem)
5541 return expand_binop (target_mode, xor_optab, tem, trueval,
5542 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5546 delete_insns_since (last);
5548 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5549 if (code == ORDERED || code == UNORDERED)
5550 return 0;
5552 and_them = split_comparison (code, mode, &first_code, &code);
5554 /* If there are no NaNs, the first comparison should always fall through.
5555 Effectively change the comparison to the other one. */
5556 if (!HONOR_NANS (mode))
5558 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5559 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5560 target_mode);
5563 #ifdef HAVE_conditional_move
5564 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5565 conditional move. */
5566 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5567 normalizep, target_mode);
5568 if (tem == 0)
5569 return 0;
5571 if (and_them)
5572 tem = emit_conditional_move (target, code, op0, op1, mode,
5573 tem, const0_rtx, GET_MODE (tem), 0);
5574 else
5575 tem = emit_conditional_move (target, code, op0, op1, mode,
5576 trueval, tem, GET_MODE (tem), 0);
5578 if (tem == 0)
5579 delete_insns_since (last);
5580 return tem;
5581 #else
5582 return 0;
5583 #endif
5586 /* The remaining tricks only apply to integer comparisons. */
5588 if (GET_MODE_CLASS (mode) != MODE_INT)
5589 return 0;
5591 /* If this is an equality comparison of integers, we can try to exclusive-or
5592 (or subtract) the two operands and use a recursive call to try the
5593 comparison with zero. Don't do any of these cases if branches are
5594 very cheap. */
5596 if ((code == EQ || code == NE) && op1 != const0_rtx)
5598 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5599 OPTAB_WIDEN);
5601 if (tem == 0)
5602 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5603 OPTAB_WIDEN);
5604 if (tem != 0)
5605 tem = emit_store_flag (target, code, tem, const0_rtx,
5606 mode, unsignedp, normalizep);
5607 if (tem != 0)
5608 return tem;
5610 delete_insns_since (last);
5613 /* For integer comparisons, try the reverse comparison. However, for
5614 small X and if we'd have anyway to extend, implementing "X != 0"
5615 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5616 rcode = reverse_condition (code);
5617 if (can_compare_p (rcode, mode, ccp_store_flag)
5618 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5619 && code == NE
5620 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5621 && op1 == const0_rtx))
5623 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5624 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5626 /* Again, for the reverse comparison, use either an addition or a XOR. */
5627 if (want_add
5628 && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5629 optimize_insn_for_speed_p ()) == 0)
5631 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5632 STORE_FLAG_VALUE, target_mode);
5633 if (tem != 0)
5634 tem = expand_binop (target_mode, add_optab, tem,
5635 gen_int_mode (normalizep, target_mode),
5636 target, 0, OPTAB_WIDEN);
5638 else if (!want_add
5639 && rtx_cost (trueval, XOR, 1,
5640 optimize_insn_for_speed_p ()) == 0)
5642 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5643 normalizep, target_mode);
5644 if (tem != 0)
5645 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5646 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5649 if (tem != 0)
5650 return tem;
5651 delete_insns_since (last);
5654 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5655 the constant zero. Reject all other comparisons at this point. Only
5656 do LE and GT if branches are expensive since they are expensive on
5657 2-operand machines. */
5659 if (op1 != const0_rtx
5660 || (code != EQ && code != NE
5661 && (BRANCH_COST (optimize_insn_for_speed_p (),
5662 false) <= 1 || (code != LE && code != GT))))
5663 return 0;
5665 /* Try to put the result of the comparison in the sign bit. Assume we can't
5666 do the necessary operation below. */
5668 tem = 0;
5670 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5671 the sign bit set. */
5673 if (code == LE)
5675 /* This is destructive, so SUBTARGET can't be OP0. */
5676 if (rtx_equal_p (subtarget, op0))
5677 subtarget = 0;
5679 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5680 OPTAB_WIDEN);
5681 if (tem)
5682 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5683 OPTAB_WIDEN);
5686 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5687 number of bits in the mode of OP0, minus one. */
5689 if (code == GT)
5691 if (rtx_equal_p (subtarget, op0))
5692 subtarget = 0;
5694 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5695 GET_MODE_BITSIZE (mode) - 1,
5696 subtarget, 0);
5697 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5698 OPTAB_WIDEN);
5701 if (code == EQ || code == NE)
5703 /* For EQ or NE, one way to do the comparison is to apply an operation
5704 that converts the operand into a positive number if it is nonzero
5705 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5706 for NE we negate. This puts the result in the sign bit. Then we
5707 normalize with a shift, if needed.
5709 Two operations that can do the above actions are ABS and FFS, so try
5710 them. If that doesn't work, and MODE is smaller than a full word,
5711 we can use zero-extension to the wider mode (an unsigned conversion)
5712 as the operation. */
5714 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5715 that is compensated by the subsequent overflow when subtracting
5716 one / negating. */
5718 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5719 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5720 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5721 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5722 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5724 tem = convert_modes (word_mode, mode, op0, 1);
5725 mode = word_mode;
5728 if (tem != 0)
5730 if (code == EQ)
5731 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5732 0, OPTAB_WIDEN);
5733 else
5734 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5737 /* If we couldn't do it that way, for NE we can "or" the two's complement
5738 of the value with itself. For EQ, we take the one's complement of
5739 that "or", which is an extra insn, so we only handle EQ if branches
5740 are expensive. */
5742 if (tem == 0
5743 && (code == NE
5744 || BRANCH_COST (optimize_insn_for_speed_p (),
5745 false) > 1))
5747 if (rtx_equal_p (subtarget, op0))
5748 subtarget = 0;
5750 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5751 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5752 OPTAB_WIDEN);
5754 if (tem && code == EQ)
5755 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5759 if (tem && normalizep)
5760 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5761 GET_MODE_BITSIZE (mode) - 1,
5762 subtarget, normalizep == 1);
5764 if (tem)
5766 if (!target)
5768 else if (GET_MODE (tem) != target_mode)
5770 convert_move (target, tem, 0);
5771 tem = target;
5773 else if (!subtarget)
5775 emit_move_insn (target, tem);
5776 tem = target;
5779 else
5780 delete_insns_since (last);
5782 return tem;
5785 /* Like emit_store_flag, but always succeeds. */
5788 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5789 machine_mode mode, int unsignedp, int normalizep)
5791 rtx tem;
5792 rtx_code_label *label;
5793 rtx trueval, falseval;
5795 /* First see if emit_store_flag can do the job. */
5796 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5797 if (tem != 0)
5798 return tem;
5800 if (!target)
5801 target = gen_reg_rtx (word_mode);
5803 /* If this failed, we have to do this with set/compare/jump/set code.
5804 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5805 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5806 if (code == NE
5807 && GET_MODE_CLASS (mode) == MODE_INT
5808 && REG_P (target)
5809 && op0 == target
5810 && op1 == const0_rtx)
5812 label = gen_label_rtx ();
5813 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
5814 mode, NULL_RTX, NULL_RTX, label, -1);
5815 emit_move_insn (target, trueval);
5816 emit_label (label);
5817 return target;
5820 if (!REG_P (target)
5821 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5822 target = gen_reg_rtx (GET_MODE (target));
5824 /* Jump in the right direction if the target cannot implement CODE
5825 but can jump on its reverse condition. */
5826 falseval = const0_rtx;
5827 if (! can_compare_p (code, mode, ccp_jump)
5828 && (! FLOAT_MODE_P (mode)
5829 || code == ORDERED || code == UNORDERED
5830 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5831 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5833 enum rtx_code rcode;
5834 if (FLOAT_MODE_P (mode))
5835 rcode = reverse_condition_maybe_unordered (code);
5836 else
5837 rcode = reverse_condition (code);
5839 /* Canonicalize to UNORDERED for the libcall. */
5840 if (can_compare_p (rcode, mode, ccp_jump)
5841 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5843 falseval = trueval;
5844 trueval = const0_rtx;
5845 code = rcode;
5849 emit_move_insn (target, trueval);
5850 label = gen_label_rtx ();
5851 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5852 NULL_RTX, label, -1);
5854 emit_move_insn (target, falseval);
5855 emit_label (label);
5857 return target;
5860 /* Perform possibly multi-word comparison and conditional jump to LABEL
5861 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5862 now a thin wrapper around do_compare_rtx_and_jump. */
5864 static void
5865 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
5866 rtx_code_label *label)
5868 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5869 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5870 NULL_RTX, NULL_RTX, label, -1);