Daily bump.
[official-gcc.git] / gcc / dwarf2out.c
blob60d6e00e9f3030a03ada6de749eb77c698bf5e7d
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 Contributed by Gary Funck (gary@intrepid.com).
4 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
5 Extensively modified by Jason Merrill (jason@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* TODO: Emit .debug_line header even when there are no functions, since
24 the file numbers are used by .debug_info. Alternately, leave
25 out locations for types and decls.
26 Avoid talking about ctors and op= for PODs.
27 Factor out common prologue sequences into multiple CIEs. */
29 /* The first part of this file deals with the DWARF 2 frame unwind
30 information, which is also used by the GCC efficient exception handling
31 mechanism. The second part, controlled only by an #ifdef
32 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
33 information. */
35 /* DWARF2 Abbreviation Glossary:
37 CFA = Canonical Frame Address
38 a fixed address on the stack which identifies a call frame.
39 We define it to be the value of SP just before the call insn.
40 The CFA register and offset, which may change during the course
41 of the function, are used to calculate its value at runtime.
43 CFI = Call Frame Instruction
44 an instruction for the DWARF2 abstract machine
46 CIE = Common Information Entry
47 information describing information common to one or more FDEs
49 DIE = Debugging Information Entry
51 FDE = Frame Description Entry
52 information describing the stack call frame, in particular,
53 how to restore registers
55 DW_CFA_... = DWARF2 CFA call frame instruction
56 DW_TAG_... = DWARF2 DIE tag */
58 #include "config.h"
59 #include "system.h"
60 #include "coretypes.h"
61 #include "tm.h"
62 #include "rtl.h"
63 #include "hash-set.h"
64 #include "machmode.h"
65 #include "vec.h"
66 #include "double-int.h"
67 #include "input.h"
68 #include "alias.h"
69 #include "symtab.h"
70 #include "wide-int.h"
71 #include "inchash.h"
72 #include "real.h"
73 #include "tree.h"
74 #include "fold-const.h"
75 #include "stringpool.h"
76 #include "stor-layout.h"
77 #include "varasm.h"
78 #include "hashtab.h"
79 #include "hard-reg-set.h"
80 #include "function.h"
81 #include "emit-rtl.h"
82 #include "hash-table.h"
83 #include "version.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "rtlhash.h"
87 #include "insn-config.h"
88 #include "reload.h"
89 #include "output.h"
90 #include "statistics.h"
91 #include "fixed-value.h"
92 #include "expmed.h"
93 #include "dojump.h"
94 #include "explow.h"
95 #include "calls.h"
96 #include "stmt.h"
97 #include "expr.h"
98 #include "except.h"
99 #include "dwarf2.h"
100 #include "dwarf2out.h"
101 #include "dwarf2asm.h"
102 #include "toplev.h"
103 #include "md5.h"
104 #include "tm_p.h"
105 #include "diagnostic.h"
106 #include "tree-pretty-print.h"
107 #include "debug.h"
108 #include "target.h"
109 #include "common/common-target.h"
110 #include "langhooks.h"
111 #include "hash-map.h"
112 #include "is-a.h"
113 #include "plugin-api.h"
114 #include "ipa-ref.h"
115 #include "cgraph.h"
116 #include "ira.h"
117 #include "lra.h"
118 #include "dumpfile.h"
119 #include "opts.h"
120 #include "tree-dfa.h"
121 #include "gdb/gdb-index.h"
122 #include "rtl-iter.h"
124 static void dwarf2out_source_line (unsigned int, const char *, int, bool);
125 static rtx_insn *last_var_location_insn;
126 static rtx_insn *cached_next_real_insn;
127 static void dwarf2out_decl (tree);
129 #ifdef VMS_DEBUGGING_INFO
130 int vms_file_stats_name (const char *, long long *, long *, char *, int *);
132 /* Define this macro to be a nonzero value if the directory specifications
133 which are output in the debug info should end with a separator. */
134 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1
135 /* Define this macro to evaluate to a nonzero value if GCC should refrain
136 from generating indirect strings in DWARF2 debug information, for instance
137 if your target is stuck with an old version of GDB that is unable to
138 process them properly or uses VMS Debug. */
139 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1
140 #else
141 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0
142 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0
143 #endif
145 /* ??? Poison these here until it can be done generically. They've been
146 totally replaced in this file; make sure it stays that way. */
147 #undef DWARF2_UNWIND_INFO
148 #undef DWARF2_FRAME_INFO
149 #if (GCC_VERSION >= 3000)
150 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
151 #endif
153 /* The size of the target's pointer type. */
154 #ifndef PTR_SIZE
155 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
156 #endif
158 /* Array of RTXes referenced by the debugging information, which therefore
159 must be kept around forever. */
160 static GTY(()) vec<rtx, va_gc> *used_rtx_array;
162 /* A pointer to the base of a list of incomplete types which might be
163 completed at some later time. incomplete_types_list needs to be a
164 vec<tree, va_gc> *because we want to tell the garbage collector about
165 it. */
166 static GTY(()) vec<tree, va_gc> *incomplete_types;
168 /* A pointer to the base of a table of references to declaration
169 scopes. This table is a display which tracks the nesting
170 of declaration scopes at the current scope and containing
171 scopes. This table is used to find the proper place to
172 define type declaration DIE's. */
173 static GTY(()) vec<tree, va_gc> *decl_scope_table;
175 /* Pointers to various DWARF2 sections. */
176 static GTY(()) section *debug_info_section;
177 static GTY(()) section *debug_skeleton_info_section;
178 static GTY(()) section *debug_abbrev_section;
179 static GTY(()) section *debug_skeleton_abbrev_section;
180 static GTY(()) section *debug_aranges_section;
181 static GTY(()) section *debug_addr_section;
182 static GTY(()) section *debug_macinfo_section;
183 static GTY(()) section *debug_line_section;
184 static GTY(()) section *debug_skeleton_line_section;
185 static GTY(()) section *debug_loc_section;
186 static GTY(()) section *debug_pubnames_section;
187 static GTY(()) section *debug_pubtypes_section;
188 static GTY(()) section *debug_str_section;
189 static GTY(()) section *debug_str_dwo_section;
190 static GTY(()) section *debug_str_offsets_section;
191 static GTY(()) section *debug_ranges_section;
192 static GTY(()) section *debug_frame_section;
194 /* Maximum size (in bytes) of an artificially generated label. */
195 #define MAX_ARTIFICIAL_LABEL_BYTES 30
197 /* According to the (draft) DWARF 3 specification, the initial length
198 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
199 bytes are 0xffffffff, followed by the length stored in the next 8
200 bytes.
202 However, the SGI/MIPS ABI uses an initial length which is equal to
203 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
205 #ifndef DWARF_INITIAL_LENGTH_SIZE
206 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
207 #endif
209 /* Round SIZE up to the nearest BOUNDARY. */
210 #define DWARF_ROUND(SIZE,BOUNDARY) \
211 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
213 /* CIE identifier. */
214 #if HOST_BITS_PER_WIDE_INT >= 64
215 #define DWARF_CIE_ID \
216 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
217 #else
218 #define DWARF_CIE_ID DW_CIE_ID
219 #endif
222 /* A vector for a table that contains frame description
223 information for each routine. */
224 #define NOT_INDEXED (-1U)
225 #define NO_INDEX_ASSIGNED (-2U)
227 static GTY(()) vec<dw_fde_ref, va_gc> *fde_vec;
229 struct GTY((for_user)) indirect_string_node {
230 const char *str;
231 unsigned int refcount;
232 enum dwarf_form form;
233 char *label;
234 unsigned int index;
237 struct indirect_string_hasher : ggc_hasher<indirect_string_node *>
239 typedef const char *compare_type;
241 static hashval_t hash (indirect_string_node *);
242 static bool equal (indirect_string_node *, const char *);
245 static GTY (()) hash_table<indirect_string_hasher> *debug_str_hash;
247 /* With split_debug_info, both the comp_dir and dwo_name go in the
248 main object file, rather than the dwo, similar to the force_direct
249 parameter elsewhere but with additional complications:
251 1) The string is needed in both the main object file and the dwo.
252 That is, the comp_dir and dwo_name will appear in both places.
254 2) Strings can use three forms: DW_FORM_string, DW_FORM_strp or
255 DW_FORM_GNU_str_index.
257 3) GCC chooses the form to use late, depending on the size and
258 reference count.
260 Rather than forcing the all debug string handling functions and
261 callers to deal with these complications, simply use a separate,
262 special-cased string table for any attribute that should go in the
263 main object file. This limits the complexity to just the places
264 that need it. */
266 static GTY (()) hash_table<indirect_string_hasher> *skeleton_debug_str_hash;
268 static GTY(()) int dw2_string_counter;
270 /* True if the compilation unit places functions in more than one section. */
271 static GTY(()) bool have_multiple_function_sections = false;
273 /* Whether the default text and cold text sections have been used at all. */
275 static GTY(()) bool text_section_used = false;
276 static GTY(()) bool cold_text_section_used = false;
278 /* The default cold text section. */
279 static GTY(()) section *cold_text_section;
281 /* The DIE for C++14 'auto' in a function return type. */
282 static GTY(()) dw_die_ref auto_die;
284 /* The DIE for C++14 'decltype(auto)' in a function return type. */
285 static GTY(()) dw_die_ref decltype_auto_die;
287 /* Forward declarations for functions defined in this file. */
289 static char *stripattributes (const char *);
290 static void output_call_frame_info (int);
291 static void dwarf2out_note_section_used (void);
293 /* Personality decl of current unit. Used only when assembler does not support
294 personality CFI. */
295 static GTY(()) rtx current_unit_personality;
297 /* Data and reference forms for relocatable data. */
298 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
299 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
301 #ifndef DEBUG_FRAME_SECTION
302 #define DEBUG_FRAME_SECTION ".debug_frame"
303 #endif
305 #ifndef FUNC_BEGIN_LABEL
306 #define FUNC_BEGIN_LABEL "LFB"
307 #endif
309 #ifndef FUNC_END_LABEL
310 #define FUNC_END_LABEL "LFE"
311 #endif
313 #ifndef PROLOGUE_END_LABEL
314 #define PROLOGUE_END_LABEL "LPE"
315 #endif
317 #ifndef EPILOGUE_BEGIN_LABEL
318 #define EPILOGUE_BEGIN_LABEL "LEB"
319 #endif
321 #ifndef FRAME_BEGIN_LABEL
322 #define FRAME_BEGIN_LABEL "Lframe"
323 #endif
324 #define CIE_AFTER_SIZE_LABEL "LSCIE"
325 #define CIE_END_LABEL "LECIE"
326 #define FDE_LABEL "LSFDE"
327 #define FDE_AFTER_SIZE_LABEL "LASFDE"
328 #define FDE_END_LABEL "LEFDE"
329 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
330 #define LINE_NUMBER_END_LABEL "LELT"
331 #define LN_PROLOG_AS_LABEL "LASLTP"
332 #define LN_PROLOG_END_LABEL "LELTP"
333 #define DIE_LABEL_PREFIX "DW"
335 /* Match the base name of a file to the base name of a compilation unit. */
337 static int
338 matches_main_base (const char *path)
340 /* Cache the last query. */
341 static const char *last_path = NULL;
342 static int last_match = 0;
343 if (path != last_path)
345 const char *base;
346 int length = base_of_path (path, &base);
347 last_path = path;
348 last_match = (length == main_input_baselength
349 && memcmp (base, main_input_basename, length) == 0);
351 return last_match;
354 #ifdef DEBUG_DEBUG_STRUCT
356 static int
357 dump_struct_debug (tree type, enum debug_info_usage usage,
358 enum debug_struct_file criterion, int generic,
359 int matches, int result)
361 /* Find the type name. */
362 tree type_decl = TYPE_STUB_DECL (type);
363 tree t = type_decl;
364 const char *name = 0;
365 if (TREE_CODE (t) == TYPE_DECL)
366 t = DECL_NAME (t);
367 if (t)
368 name = IDENTIFIER_POINTER (t);
370 fprintf (stderr, " struct %d %s %s %s %s %d %p %s\n",
371 criterion,
372 DECL_IN_SYSTEM_HEADER (type_decl) ? "sys" : "usr",
373 matches ? "bas" : "hdr",
374 generic ? "gen" : "ord",
375 usage == DINFO_USAGE_DFN ? ";" :
376 usage == DINFO_USAGE_DIR_USE ? "." : "*",
377 result,
378 (void*) type_decl, name);
379 return result;
381 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
382 dump_struct_debug (type, usage, criterion, generic, matches, result)
384 #else
386 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
387 (result)
389 #endif
391 /* Get the number of HOST_WIDE_INTs needed to represent the precision
392 of the number. */
394 static unsigned int
395 get_full_len (const wide_int &op)
397 return ((op.get_precision () + HOST_BITS_PER_WIDE_INT - 1)
398 / HOST_BITS_PER_WIDE_INT);
401 static bool
402 should_emit_struct_debug (tree type, enum debug_info_usage usage)
404 enum debug_struct_file criterion;
405 tree type_decl;
406 bool generic = lang_hooks.types.generic_p (type);
408 if (generic)
409 criterion = debug_struct_generic[usage];
410 else
411 criterion = debug_struct_ordinary[usage];
413 if (criterion == DINFO_STRUCT_FILE_NONE)
414 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
415 if (criterion == DINFO_STRUCT_FILE_ANY)
416 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
418 type_decl = TYPE_STUB_DECL (TYPE_MAIN_VARIANT (type));
420 if (type_decl != NULL)
422 if (criterion == DINFO_STRUCT_FILE_SYS && DECL_IN_SYSTEM_HEADER (type_decl))
423 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
425 if (matches_main_base (DECL_SOURCE_FILE (type_decl)))
426 return DUMP_GSTRUCT (type, usage, criterion, generic, true, true);
429 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
432 /* Return a pointer to a copy of the section string name S with all
433 attributes stripped off, and an asterisk prepended (for assemble_name). */
435 static inline char *
436 stripattributes (const char *s)
438 char *stripped = XNEWVEC (char, strlen (s) + 2);
439 char *p = stripped;
441 *p++ = '*';
443 while (*s && *s != ',')
444 *p++ = *s++;
446 *p = '\0';
447 return stripped;
450 /* Switch [BACK] to eh_frame_section. If we don't have an eh_frame_section,
451 switch to the data section instead, and write out a synthetic start label
452 for collect2 the first time around. */
454 static void
455 switch_to_eh_frame_section (bool back)
457 tree label;
459 #ifdef EH_FRAME_SECTION_NAME
460 if (eh_frame_section == 0)
462 int flags;
464 if (EH_TABLES_CAN_BE_READ_ONLY)
466 int fde_encoding;
467 int per_encoding;
468 int lsda_encoding;
470 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
471 /*global=*/0);
472 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
473 /*global=*/1);
474 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
475 /*global=*/0);
476 flags = ((! flag_pic
477 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
478 && (fde_encoding & 0x70) != DW_EH_PE_aligned
479 && (per_encoding & 0x70) != DW_EH_PE_absptr
480 && (per_encoding & 0x70) != DW_EH_PE_aligned
481 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
482 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
483 ? 0 : SECTION_WRITE);
485 else
486 flags = SECTION_WRITE;
487 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
489 #endif /* EH_FRAME_SECTION_NAME */
491 if (eh_frame_section)
492 switch_to_section (eh_frame_section);
493 else
495 /* We have no special eh_frame section. Put the information in
496 the data section and emit special labels to guide collect2. */
497 switch_to_section (data_section);
499 if (!back)
501 label = get_file_function_name ("F");
502 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
503 targetm.asm_out.globalize_label (asm_out_file,
504 IDENTIFIER_POINTER (label));
505 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
510 /* Switch [BACK] to the eh or debug frame table section, depending on
511 FOR_EH. */
513 static void
514 switch_to_frame_table_section (int for_eh, bool back)
516 if (for_eh)
517 switch_to_eh_frame_section (back);
518 else
520 if (!debug_frame_section)
521 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
522 SECTION_DEBUG, NULL);
523 switch_to_section (debug_frame_section);
527 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
529 enum dw_cfi_oprnd_type
530 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
532 switch (cfi)
534 case DW_CFA_nop:
535 case DW_CFA_GNU_window_save:
536 case DW_CFA_remember_state:
537 case DW_CFA_restore_state:
538 return dw_cfi_oprnd_unused;
540 case DW_CFA_set_loc:
541 case DW_CFA_advance_loc1:
542 case DW_CFA_advance_loc2:
543 case DW_CFA_advance_loc4:
544 case DW_CFA_MIPS_advance_loc8:
545 return dw_cfi_oprnd_addr;
547 case DW_CFA_offset:
548 case DW_CFA_offset_extended:
549 case DW_CFA_def_cfa:
550 case DW_CFA_offset_extended_sf:
551 case DW_CFA_def_cfa_sf:
552 case DW_CFA_restore:
553 case DW_CFA_restore_extended:
554 case DW_CFA_undefined:
555 case DW_CFA_same_value:
556 case DW_CFA_def_cfa_register:
557 case DW_CFA_register:
558 case DW_CFA_expression:
559 return dw_cfi_oprnd_reg_num;
561 case DW_CFA_def_cfa_offset:
562 case DW_CFA_GNU_args_size:
563 case DW_CFA_def_cfa_offset_sf:
564 return dw_cfi_oprnd_offset;
566 case DW_CFA_def_cfa_expression:
567 return dw_cfi_oprnd_loc;
569 default:
570 gcc_unreachable ();
574 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
576 enum dw_cfi_oprnd_type
577 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
579 switch (cfi)
581 case DW_CFA_def_cfa:
582 case DW_CFA_def_cfa_sf:
583 case DW_CFA_offset:
584 case DW_CFA_offset_extended_sf:
585 case DW_CFA_offset_extended:
586 return dw_cfi_oprnd_offset;
588 case DW_CFA_register:
589 return dw_cfi_oprnd_reg_num;
591 case DW_CFA_expression:
592 return dw_cfi_oprnd_loc;
594 default:
595 return dw_cfi_oprnd_unused;
599 /* Output one FDE. */
601 static void
602 output_fde (dw_fde_ref fde, bool for_eh, bool second,
603 char *section_start_label, int fde_encoding, char *augmentation,
604 bool any_lsda_needed, int lsda_encoding)
606 const char *begin, *end;
607 static unsigned int j;
608 char l1[20], l2[20];
610 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, for_eh,
611 /* empty */ 0);
612 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL,
613 for_eh + j);
614 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + j);
615 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + j);
616 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
617 dw2_asm_output_data (4, 0xffffffff, "Initial length escape value"
618 " indicating 64-bit DWARF extension");
619 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
620 "FDE Length");
621 ASM_OUTPUT_LABEL (asm_out_file, l1);
623 if (for_eh)
624 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
625 else
626 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
627 debug_frame_section, "FDE CIE offset");
629 begin = second ? fde->dw_fde_second_begin : fde->dw_fde_begin;
630 end = second ? fde->dw_fde_second_end : fde->dw_fde_end;
632 if (for_eh)
634 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, begin);
635 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
636 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref, false,
637 "FDE initial location");
638 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
639 end, begin, "FDE address range");
641 else
643 dw2_asm_output_addr (DWARF2_ADDR_SIZE, begin, "FDE initial location");
644 dw2_asm_output_delta (DWARF2_ADDR_SIZE, end, begin, "FDE address range");
647 if (augmentation[0])
649 if (any_lsda_needed)
651 int size = size_of_encoded_value (lsda_encoding);
653 if (lsda_encoding == DW_EH_PE_aligned)
655 int offset = ( 4 /* Length */
656 + 4 /* CIE offset */
657 + 2 * size_of_encoded_value (fde_encoding)
658 + 1 /* Augmentation size */ );
659 int pad = -offset & (PTR_SIZE - 1);
661 size += pad;
662 gcc_assert (size_of_uleb128 (size) == 1);
665 dw2_asm_output_data_uleb128 (size, "Augmentation size");
667 if (fde->uses_eh_lsda)
669 ASM_GENERATE_INTERNAL_LABEL (l1, second ? "LLSDAC" : "LLSDA",
670 fde->funcdef_number);
671 dw2_asm_output_encoded_addr_rtx (lsda_encoding,
672 gen_rtx_SYMBOL_REF (Pmode, l1),
673 false,
674 "Language Specific Data Area");
676 else
678 if (lsda_encoding == DW_EH_PE_aligned)
679 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
680 dw2_asm_output_data (size_of_encoded_value (lsda_encoding), 0,
681 "Language Specific Data Area (none)");
684 else
685 dw2_asm_output_data_uleb128 (0, "Augmentation size");
688 /* Loop through the Call Frame Instructions associated with this FDE. */
689 fde->dw_fde_current_label = begin;
691 size_t from, until, i;
693 from = 0;
694 until = vec_safe_length (fde->dw_fde_cfi);
696 if (fde->dw_fde_second_begin == NULL)
698 else if (!second)
699 until = fde->dw_fde_switch_cfi_index;
700 else
701 from = fde->dw_fde_switch_cfi_index;
703 for (i = from; i < until; i++)
704 output_cfi ((*fde->dw_fde_cfi)[i], fde, for_eh);
707 /* If we are to emit a ref/link from function bodies to their frame tables,
708 do it now. This is typically performed to make sure that tables
709 associated with functions are dragged with them and not discarded in
710 garbage collecting links. We need to do this on a per function basis to
711 cope with -ffunction-sections. */
713 #ifdef ASM_OUTPUT_DWARF_TABLE_REF
714 /* Switch to the function section, emit the ref to the tables, and
715 switch *back* into the table section. */
716 switch_to_section (function_section (fde->decl));
717 ASM_OUTPUT_DWARF_TABLE_REF (section_start_label);
718 switch_to_frame_table_section (for_eh, true);
719 #endif
721 /* Pad the FDE out to an address sized boundary. */
722 ASM_OUTPUT_ALIGN (asm_out_file,
723 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
724 ASM_OUTPUT_LABEL (asm_out_file, l2);
726 j += 2;
729 /* Return true if frame description entry FDE is needed for EH. */
731 static bool
732 fde_needed_for_eh_p (dw_fde_ref fde)
734 if (flag_asynchronous_unwind_tables)
735 return true;
737 if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde->decl))
738 return true;
740 if (fde->uses_eh_lsda)
741 return true;
743 /* If exceptions are enabled, we have collected nothrow info. */
744 if (flag_exceptions && (fde->all_throwers_are_sibcalls || fde->nothrow))
745 return false;
747 return true;
750 /* Output the call frame information used to record information
751 that relates to calculating the frame pointer, and records the
752 location of saved registers. */
754 static void
755 output_call_frame_info (int for_eh)
757 unsigned int i;
758 dw_fde_ref fde;
759 dw_cfi_ref cfi;
760 char l1[20], l2[20], section_start_label[20];
761 bool any_lsda_needed = false;
762 char augmentation[6];
763 int augmentation_size;
764 int fde_encoding = DW_EH_PE_absptr;
765 int per_encoding = DW_EH_PE_absptr;
766 int lsda_encoding = DW_EH_PE_absptr;
767 int return_reg;
768 rtx personality = NULL;
769 int dw_cie_version;
771 /* Don't emit a CIE if there won't be any FDEs. */
772 if (!fde_vec)
773 return;
775 /* Nothing to do if the assembler's doing it all. */
776 if (dwarf2out_do_cfi_asm ())
777 return;
779 /* If we don't have any functions we'll want to unwind out of, don't emit
780 any EH unwind information. If we make FDEs linkonce, we may have to
781 emit an empty label for an FDE that wouldn't otherwise be emitted. We
782 want to avoid having an FDE kept around when the function it refers to
783 is discarded. Example where this matters: a primary function template
784 in C++ requires EH information, an explicit specialization doesn't. */
785 if (for_eh)
787 bool any_eh_needed = false;
789 FOR_EACH_VEC_ELT (*fde_vec, i, fde)
791 if (fde->uses_eh_lsda)
792 any_eh_needed = any_lsda_needed = true;
793 else if (fde_needed_for_eh_p (fde))
794 any_eh_needed = true;
795 else if (TARGET_USES_WEAK_UNWIND_INFO)
796 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, 1, 1);
799 if (!any_eh_needed)
800 return;
803 /* We're going to be generating comments, so turn on app. */
804 if (flag_debug_asm)
805 app_enable ();
807 /* Switch to the proper frame section, first time. */
808 switch_to_frame_table_section (for_eh, false);
810 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
811 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
813 /* Output the CIE. */
814 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
815 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
816 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
817 dw2_asm_output_data (4, 0xffffffff,
818 "Initial length escape value indicating 64-bit DWARF extension");
819 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
820 "Length of Common Information Entry");
821 ASM_OUTPUT_LABEL (asm_out_file, l1);
823 /* Now that the CIE pointer is PC-relative for EH,
824 use 0 to identify the CIE. */
825 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
826 (for_eh ? 0 : DWARF_CIE_ID),
827 "CIE Identifier Tag");
829 /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to
830 use CIE version 1, unless that would produce incorrect results
831 due to overflowing the return register column. */
832 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
833 dw_cie_version = 1;
834 if (return_reg >= 256 || dwarf_version > 2)
835 dw_cie_version = 3;
836 dw2_asm_output_data (1, dw_cie_version, "CIE Version");
838 augmentation[0] = 0;
839 augmentation_size = 0;
841 personality = current_unit_personality;
842 if (for_eh)
844 char *p;
846 /* Augmentation:
847 z Indicates that a uleb128 is present to size the
848 augmentation section.
849 L Indicates the encoding (and thus presence) of
850 an LSDA pointer in the FDE augmentation.
851 R Indicates a non-default pointer encoding for
852 FDE code pointers.
853 P Indicates the presence of an encoding + language
854 personality routine in the CIE augmentation. */
856 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
857 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
858 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
860 p = augmentation + 1;
861 if (personality)
863 *p++ = 'P';
864 augmentation_size += 1 + size_of_encoded_value (per_encoding);
865 assemble_external_libcall (personality);
867 if (any_lsda_needed)
869 *p++ = 'L';
870 augmentation_size += 1;
872 if (fde_encoding != DW_EH_PE_absptr)
874 *p++ = 'R';
875 augmentation_size += 1;
877 if (p > augmentation + 1)
879 augmentation[0] = 'z';
880 *p = '\0';
883 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
884 if (personality && per_encoding == DW_EH_PE_aligned)
886 int offset = ( 4 /* Length */
887 + 4 /* CIE Id */
888 + 1 /* CIE version */
889 + strlen (augmentation) + 1 /* Augmentation */
890 + size_of_uleb128 (1) /* Code alignment */
891 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
892 + 1 /* RA column */
893 + 1 /* Augmentation size */
894 + 1 /* Personality encoding */ );
895 int pad = -offset & (PTR_SIZE - 1);
897 augmentation_size += pad;
899 /* Augmentations should be small, so there's scarce need to
900 iterate for a solution. Die if we exceed one uleb128 byte. */
901 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
905 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
906 if (dw_cie_version >= 4)
908 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "CIE Address Size");
909 dw2_asm_output_data (1, 0, "CIE Segment Size");
911 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
912 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
913 "CIE Data Alignment Factor");
915 if (dw_cie_version == 1)
916 dw2_asm_output_data (1, return_reg, "CIE RA Column");
917 else
918 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
920 if (augmentation[0])
922 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
923 if (personality)
925 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
926 eh_data_format_name (per_encoding));
927 dw2_asm_output_encoded_addr_rtx (per_encoding,
928 personality,
929 true, NULL);
932 if (any_lsda_needed)
933 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
934 eh_data_format_name (lsda_encoding));
936 if (fde_encoding != DW_EH_PE_absptr)
937 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
938 eh_data_format_name (fde_encoding));
941 FOR_EACH_VEC_ELT (*cie_cfi_vec, i, cfi)
942 output_cfi (cfi, NULL, for_eh);
944 /* Pad the CIE out to an address sized boundary. */
945 ASM_OUTPUT_ALIGN (asm_out_file,
946 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
947 ASM_OUTPUT_LABEL (asm_out_file, l2);
949 /* Loop through all of the FDE's. */
950 FOR_EACH_VEC_ELT (*fde_vec, i, fde)
952 unsigned int k;
954 /* Don't emit EH unwind info for leaf functions that don't need it. */
955 if (for_eh && !fde_needed_for_eh_p (fde))
956 continue;
958 for (k = 0; k < (fde->dw_fde_second_begin ? 2 : 1); k++)
959 output_fde (fde, for_eh, k, section_start_label, fde_encoding,
960 augmentation, any_lsda_needed, lsda_encoding);
963 if (for_eh && targetm.terminate_dw2_eh_frame_info)
964 dw2_asm_output_data (4, 0, "End of Table");
966 /* Turn off app to make assembly quicker. */
967 if (flag_debug_asm)
968 app_disable ();
971 /* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed. */
973 static void
974 dwarf2out_do_cfi_startproc (bool second)
976 int enc;
977 rtx ref;
978 rtx personality = get_personality_function (current_function_decl);
980 fprintf (asm_out_file, "\t.cfi_startproc\n");
982 if (personality)
984 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
985 ref = personality;
987 /* ??? The GAS support isn't entirely consistent. We have to
988 handle indirect support ourselves, but PC-relative is done
989 in the assembler. Further, the assembler can't handle any
990 of the weirder relocation types. */
991 if (enc & DW_EH_PE_indirect)
992 ref = dw2_force_const_mem (ref, true);
994 fprintf (asm_out_file, "\t.cfi_personality %#x,", enc);
995 output_addr_const (asm_out_file, ref);
996 fputc ('\n', asm_out_file);
999 if (crtl->uses_eh_lsda)
1001 char lab[20];
1003 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1004 ASM_GENERATE_INTERNAL_LABEL (lab, second ? "LLSDAC" : "LLSDA",
1005 current_function_funcdef_no);
1006 ref = gen_rtx_SYMBOL_REF (Pmode, lab);
1007 SYMBOL_REF_FLAGS (ref) = SYMBOL_FLAG_LOCAL;
1009 if (enc & DW_EH_PE_indirect)
1010 ref = dw2_force_const_mem (ref, true);
1012 fprintf (asm_out_file, "\t.cfi_lsda %#x,", enc);
1013 output_addr_const (asm_out_file, ref);
1014 fputc ('\n', asm_out_file);
1018 /* Allocate CURRENT_FDE. Immediately initialize all we can, noting that
1019 this allocation may be done before pass_final. */
1021 dw_fde_ref
1022 dwarf2out_alloc_current_fde (void)
1024 dw_fde_ref fde;
1026 fde = ggc_cleared_alloc<dw_fde_node> ();
1027 fde->decl = current_function_decl;
1028 fde->funcdef_number = current_function_funcdef_no;
1029 fde->fde_index = vec_safe_length (fde_vec);
1030 fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
1031 fde->uses_eh_lsda = crtl->uses_eh_lsda;
1032 fde->nothrow = crtl->nothrow;
1033 fde->drap_reg = INVALID_REGNUM;
1034 fde->vdrap_reg = INVALID_REGNUM;
1036 /* Record the FDE associated with this function. */
1037 cfun->fde = fde;
1038 vec_safe_push (fde_vec, fde);
1040 return fde;
1043 /* Output a marker (i.e. a label) for the beginning of a function, before
1044 the prologue. */
1046 void
1047 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
1048 const char *file ATTRIBUTE_UNUSED)
1050 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1051 char * dup_label;
1052 dw_fde_ref fde;
1053 section *fnsec;
1054 bool do_frame;
1056 current_function_func_begin_label = NULL;
1058 do_frame = dwarf2out_do_frame ();
1060 /* ??? current_function_func_begin_label is also used by except.c for
1061 call-site information. We must emit this label if it might be used. */
1062 if (!do_frame
1063 && (!flag_exceptions
1064 || targetm_common.except_unwind_info (&global_options) == UI_SJLJ))
1065 return;
1067 fnsec = function_section (current_function_decl);
1068 switch_to_section (fnsec);
1069 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
1070 current_function_funcdef_no);
1071 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
1072 current_function_funcdef_no);
1073 dup_label = xstrdup (label);
1074 current_function_func_begin_label = dup_label;
1076 /* We can elide the fde allocation if we're not emitting debug info. */
1077 if (!do_frame)
1078 return;
1080 /* Cater to the various TARGET_ASM_OUTPUT_MI_THUNK implementations that
1081 emit insns as rtx but bypass the bulk of rest_of_compilation, which
1082 would include pass_dwarf2_frame. If we've not created the FDE yet,
1083 do so now. */
1084 fde = cfun->fde;
1085 if (fde == NULL)
1086 fde = dwarf2out_alloc_current_fde ();
1088 /* Initialize the bits of CURRENT_FDE that were not available earlier. */
1089 fde->dw_fde_begin = dup_label;
1090 fde->dw_fde_current_label = dup_label;
1091 fde->in_std_section = (fnsec == text_section
1092 || (cold_text_section && fnsec == cold_text_section));
1094 /* We only want to output line number information for the genuine dwarf2
1095 prologue case, not the eh frame case. */
1096 #ifdef DWARF2_DEBUGGING_INFO
1097 if (file)
1098 dwarf2out_source_line (line, file, 0, true);
1099 #endif
1101 if (dwarf2out_do_cfi_asm ())
1102 dwarf2out_do_cfi_startproc (false);
1103 else
1105 rtx personality = get_personality_function (current_function_decl);
1106 if (!current_unit_personality)
1107 current_unit_personality = personality;
1109 /* We cannot keep a current personality per function as without CFI
1110 asm, at the point where we emit the CFI data, there is no current
1111 function anymore. */
1112 if (personality && current_unit_personality != personality)
1113 sorry ("multiple EH personalities are supported only with assemblers "
1114 "supporting .cfi_personality directive");
1118 /* Output a marker (i.e. a label) for the end of the generated code
1119 for a function prologue. This gets called *after* the prologue code has
1120 been generated. */
1122 void
1123 dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED,
1124 const char *file ATTRIBUTE_UNUSED)
1126 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1128 /* Output a label to mark the endpoint of the code generated for this
1129 function. */
1130 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
1131 current_function_funcdef_no);
1132 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, PROLOGUE_END_LABEL,
1133 current_function_funcdef_no);
1134 cfun->fde->dw_fde_vms_end_prologue = xstrdup (label);
1137 /* Output a marker (i.e. a label) for the beginning of the generated code
1138 for a function epilogue. This gets called *before* the prologue code has
1139 been generated. */
1141 void
1142 dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1143 const char *file ATTRIBUTE_UNUSED)
1145 dw_fde_ref fde = cfun->fde;
1146 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1148 if (fde->dw_fde_vms_begin_epilogue)
1149 return;
1151 /* Output a label to mark the endpoint of the code generated for this
1152 function. */
1153 ASM_GENERATE_INTERNAL_LABEL (label, EPILOGUE_BEGIN_LABEL,
1154 current_function_funcdef_no);
1155 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, EPILOGUE_BEGIN_LABEL,
1156 current_function_funcdef_no);
1157 fde->dw_fde_vms_begin_epilogue = xstrdup (label);
1160 /* Output a marker (i.e. a label) for the absolute end of the generated code
1161 for a function definition. This gets called *after* the epilogue code has
1162 been generated. */
1164 void
1165 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1166 const char *file ATTRIBUTE_UNUSED)
1168 dw_fde_ref fde;
1169 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1171 last_var_location_insn = NULL;
1172 cached_next_real_insn = NULL;
1174 if (dwarf2out_do_cfi_asm ())
1175 fprintf (asm_out_file, "\t.cfi_endproc\n");
1177 /* Output a label to mark the endpoint of the code generated for this
1178 function. */
1179 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
1180 current_function_funcdef_no);
1181 ASM_OUTPUT_LABEL (asm_out_file, label);
1182 fde = cfun->fde;
1183 gcc_assert (fde != NULL);
1184 if (fde->dw_fde_second_begin == NULL)
1185 fde->dw_fde_end = xstrdup (label);
1188 void
1189 dwarf2out_frame_finish (void)
1191 /* Output call frame information. */
1192 if (targetm.debug_unwind_info () == UI_DWARF2)
1193 output_call_frame_info (0);
1195 /* Output another copy for the unwinder. */
1196 if ((flag_unwind_tables || flag_exceptions)
1197 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
1198 output_call_frame_info (1);
1201 /* Note that the current function section is being used for code. */
1203 static void
1204 dwarf2out_note_section_used (void)
1206 section *sec = current_function_section ();
1207 if (sec == text_section)
1208 text_section_used = true;
1209 else if (sec == cold_text_section)
1210 cold_text_section_used = true;
1213 static void var_location_switch_text_section (void);
1214 static void set_cur_line_info_table (section *);
1216 void
1217 dwarf2out_switch_text_section (void)
1219 section *sect;
1220 dw_fde_ref fde = cfun->fde;
1222 gcc_assert (cfun && fde && fde->dw_fde_second_begin == NULL);
1224 if (!in_cold_section_p)
1226 fde->dw_fde_end = crtl->subsections.cold_section_end_label;
1227 fde->dw_fde_second_begin = crtl->subsections.hot_section_label;
1228 fde->dw_fde_second_end = crtl->subsections.hot_section_end_label;
1230 else
1232 fde->dw_fde_end = crtl->subsections.hot_section_end_label;
1233 fde->dw_fde_second_begin = crtl->subsections.cold_section_label;
1234 fde->dw_fde_second_end = crtl->subsections.cold_section_end_label;
1236 have_multiple_function_sections = true;
1238 /* There is no need to mark used sections when not debugging. */
1239 if (cold_text_section != NULL)
1240 dwarf2out_note_section_used ();
1242 if (dwarf2out_do_cfi_asm ())
1243 fprintf (asm_out_file, "\t.cfi_endproc\n");
1245 /* Now do the real section switch. */
1246 sect = current_function_section ();
1247 switch_to_section (sect);
1249 fde->second_in_std_section
1250 = (sect == text_section
1251 || (cold_text_section && sect == cold_text_section));
1253 if (dwarf2out_do_cfi_asm ())
1254 dwarf2out_do_cfi_startproc (true);
1256 var_location_switch_text_section ();
1258 if (cold_text_section != NULL)
1259 set_cur_line_info_table (sect);
1262 /* And now, the subset of the debugging information support code necessary
1263 for emitting location expressions. */
1265 /* Data about a single source file. */
1266 struct GTY((for_user)) dwarf_file_data {
1267 const char * filename;
1268 int emitted_number;
1271 typedef struct GTY(()) deferred_locations_struct
1273 tree variable;
1274 dw_die_ref die;
1275 } deferred_locations;
1278 static GTY(()) vec<deferred_locations, va_gc> *deferred_locations_list;
1281 /* Describe an entry into the .debug_addr section. */
1283 enum ate_kind {
1284 ate_kind_rtx,
1285 ate_kind_rtx_dtprel,
1286 ate_kind_label
1289 typedef struct GTY((for_user)) addr_table_entry_struct {
1290 enum ate_kind kind;
1291 unsigned int refcount;
1292 unsigned int index;
1293 union addr_table_entry_struct_union
1295 rtx GTY ((tag ("0"))) rtl;
1296 char * GTY ((tag ("1"))) label;
1298 GTY ((desc ("%1.kind"))) addr;
1300 addr_table_entry;
1302 /* Location lists are ranges + location descriptions for that range,
1303 so you can track variables that are in different places over
1304 their entire life. */
1305 typedef struct GTY(()) dw_loc_list_struct {
1306 dw_loc_list_ref dw_loc_next;
1307 const char *begin; /* Label and addr_entry for start of range */
1308 addr_table_entry *begin_entry;
1309 const char *end; /* Label for end of range */
1310 char *ll_symbol; /* Label for beginning of location list.
1311 Only on head of list */
1312 const char *section; /* Section this loclist is relative to */
1313 dw_loc_descr_ref expr;
1314 hashval_t hash;
1315 /* True if all addresses in this and subsequent lists are known to be
1316 resolved. */
1317 bool resolved_addr;
1318 /* True if this list has been replaced by dw_loc_next. */
1319 bool replaced;
1320 bool emitted;
1321 /* True if the range should be emitted even if begin and end
1322 are the same. */
1323 bool force;
1324 } dw_loc_list_node;
1326 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
1328 /* Convert a DWARF stack opcode into its string name. */
1330 static const char *
1331 dwarf_stack_op_name (unsigned int op)
1333 const char *name = get_DW_OP_name (op);
1335 if (name != NULL)
1336 return name;
1338 return "OP_<unknown>";
1341 /* Return a pointer to a newly allocated location description. Location
1342 descriptions are simple expression terms that can be strung
1343 together to form more complicated location (address) descriptions. */
1345 static inline dw_loc_descr_ref
1346 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
1347 unsigned HOST_WIDE_INT oprnd2)
1349 dw_loc_descr_ref descr = ggc_cleared_alloc<dw_loc_descr_node> ();
1351 descr->dw_loc_opc = op;
1352 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
1353 descr->dw_loc_oprnd1.val_entry = NULL;
1354 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
1355 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
1356 descr->dw_loc_oprnd2.val_entry = NULL;
1357 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
1359 return descr;
1362 /* Return a pointer to a newly allocated location description for
1363 REG and OFFSET. */
1365 static inline dw_loc_descr_ref
1366 new_reg_loc_descr (unsigned int reg, unsigned HOST_WIDE_INT offset)
1368 if (reg <= 31)
1369 return new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + reg),
1370 offset, 0);
1371 else
1372 return new_loc_descr (DW_OP_bregx, reg, offset);
1375 /* Add a location description term to a location description expression. */
1377 static inline void
1378 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
1380 dw_loc_descr_ref *d;
1382 /* Find the end of the chain. */
1383 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
1386 *d = descr;
1389 /* Compare two location operands for exact equality. */
1391 static bool
1392 dw_val_equal_p (dw_val_node *a, dw_val_node *b)
1394 if (a->val_class != b->val_class)
1395 return false;
1396 switch (a->val_class)
1398 case dw_val_class_none:
1399 return true;
1400 case dw_val_class_addr:
1401 return rtx_equal_p (a->v.val_addr, b->v.val_addr);
1403 case dw_val_class_offset:
1404 case dw_val_class_unsigned_const:
1405 case dw_val_class_const:
1406 case dw_val_class_range_list:
1407 case dw_val_class_lineptr:
1408 case dw_val_class_macptr:
1409 /* These are all HOST_WIDE_INT, signed or unsigned. */
1410 return a->v.val_unsigned == b->v.val_unsigned;
1412 case dw_val_class_loc:
1413 return a->v.val_loc == b->v.val_loc;
1414 case dw_val_class_loc_list:
1415 return a->v.val_loc_list == b->v.val_loc_list;
1416 case dw_val_class_die_ref:
1417 return a->v.val_die_ref.die == b->v.val_die_ref.die;
1418 case dw_val_class_fde_ref:
1419 return a->v.val_fde_index == b->v.val_fde_index;
1420 case dw_val_class_lbl_id:
1421 case dw_val_class_high_pc:
1422 return strcmp (a->v.val_lbl_id, b->v.val_lbl_id) == 0;
1423 case dw_val_class_str:
1424 return a->v.val_str == b->v.val_str;
1425 case dw_val_class_flag:
1426 return a->v.val_flag == b->v.val_flag;
1427 case dw_val_class_file:
1428 return a->v.val_file == b->v.val_file;
1429 case dw_val_class_decl_ref:
1430 return a->v.val_decl_ref == b->v.val_decl_ref;
1432 case dw_val_class_const_double:
1433 return (a->v.val_double.high == b->v.val_double.high
1434 && a->v.val_double.low == b->v.val_double.low);
1436 case dw_val_class_wide_int:
1437 return *a->v.val_wide == *b->v.val_wide;
1439 case dw_val_class_vec:
1441 size_t a_len = a->v.val_vec.elt_size * a->v.val_vec.length;
1442 size_t b_len = b->v.val_vec.elt_size * b->v.val_vec.length;
1444 return (a_len == b_len
1445 && !memcmp (a->v.val_vec.array, b->v.val_vec.array, a_len));
1448 case dw_val_class_data8:
1449 return memcmp (a->v.val_data8, b->v.val_data8, 8) == 0;
1451 case dw_val_class_vms_delta:
1452 return (!strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1)
1453 && !strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1));
1455 gcc_unreachable ();
1458 /* Compare two location atoms for exact equality. */
1460 static bool
1461 loc_descr_equal_p_1 (dw_loc_descr_ref a, dw_loc_descr_ref b)
1463 if (a->dw_loc_opc != b->dw_loc_opc)
1464 return false;
1466 /* ??? This is only ever set for DW_OP_constNu, for N equal to the
1467 address size, but since we always allocate cleared storage it
1468 should be zero for other types of locations. */
1469 if (a->dtprel != b->dtprel)
1470 return false;
1472 return (dw_val_equal_p (&a->dw_loc_oprnd1, &b->dw_loc_oprnd1)
1473 && dw_val_equal_p (&a->dw_loc_oprnd2, &b->dw_loc_oprnd2));
1476 /* Compare two complete location expressions for exact equality. */
1478 bool
1479 loc_descr_equal_p (dw_loc_descr_ref a, dw_loc_descr_ref b)
1481 while (1)
1483 if (a == b)
1484 return true;
1485 if (a == NULL || b == NULL)
1486 return false;
1487 if (!loc_descr_equal_p_1 (a, b))
1488 return false;
1490 a = a->dw_loc_next;
1491 b = b->dw_loc_next;
1496 /* Add a constant OFFSET to a location expression. */
1498 static void
1499 loc_descr_plus_const (dw_loc_descr_ref *list_head, HOST_WIDE_INT offset)
1501 dw_loc_descr_ref loc;
1502 HOST_WIDE_INT *p;
1504 gcc_assert (*list_head != NULL);
1506 if (!offset)
1507 return;
1509 /* Find the end of the chain. */
1510 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
1513 p = NULL;
1514 if (loc->dw_loc_opc == DW_OP_fbreg
1515 || (loc->dw_loc_opc >= DW_OP_breg0 && loc->dw_loc_opc <= DW_OP_breg31))
1516 p = &loc->dw_loc_oprnd1.v.val_int;
1517 else if (loc->dw_loc_opc == DW_OP_bregx)
1518 p = &loc->dw_loc_oprnd2.v.val_int;
1520 /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its
1521 offset. Don't optimize if an signed integer overflow would happen. */
1522 if (p != NULL
1523 && ((offset > 0 && *p <= INTTYPE_MAXIMUM (HOST_WIDE_INT) - offset)
1524 || (offset < 0 && *p >= INTTYPE_MINIMUM (HOST_WIDE_INT) - offset)))
1525 *p += offset;
1527 else if (offset > 0)
1528 loc->dw_loc_next = new_loc_descr (DW_OP_plus_uconst, offset, 0);
1530 else
1532 loc->dw_loc_next = int_loc_descriptor (-offset);
1533 add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_minus, 0, 0));
1537 /* Add a constant OFFSET to a location list. */
1539 static void
1540 loc_list_plus_const (dw_loc_list_ref list_head, HOST_WIDE_INT offset)
1542 dw_loc_list_ref d;
1543 for (d = list_head; d != NULL; d = d->dw_loc_next)
1544 loc_descr_plus_const (&d->expr, offset);
1547 #define DWARF_REF_SIZE \
1548 (dwarf_version == 2 ? DWARF2_ADDR_SIZE : DWARF_OFFSET_SIZE)
1550 static unsigned long int get_base_type_offset (dw_die_ref);
1552 /* Return the size of a location descriptor. */
1554 static unsigned long
1555 size_of_loc_descr (dw_loc_descr_ref loc)
1557 unsigned long size = 1;
1559 switch (loc->dw_loc_opc)
1561 case DW_OP_addr:
1562 size += DWARF2_ADDR_SIZE;
1563 break;
1564 case DW_OP_GNU_addr_index:
1565 case DW_OP_GNU_const_index:
1566 gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
1567 size += size_of_uleb128 (loc->dw_loc_oprnd1.val_entry->index);
1568 break;
1569 case DW_OP_const1u:
1570 case DW_OP_const1s:
1571 size += 1;
1572 break;
1573 case DW_OP_const2u:
1574 case DW_OP_const2s:
1575 size += 2;
1576 break;
1577 case DW_OP_const4u:
1578 case DW_OP_const4s:
1579 size += 4;
1580 break;
1581 case DW_OP_const8u:
1582 case DW_OP_const8s:
1583 size += 8;
1584 break;
1585 case DW_OP_constu:
1586 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1587 break;
1588 case DW_OP_consts:
1589 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1590 break;
1591 case DW_OP_pick:
1592 size += 1;
1593 break;
1594 case DW_OP_plus_uconst:
1595 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1596 break;
1597 case DW_OP_skip:
1598 case DW_OP_bra:
1599 size += 2;
1600 break;
1601 case DW_OP_breg0:
1602 case DW_OP_breg1:
1603 case DW_OP_breg2:
1604 case DW_OP_breg3:
1605 case DW_OP_breg4:
1606 case DW_OP_breg5:
1607 case DW_OP_breg6:
1608 case DW_OP_breg7:
1609 case DW_OP_breg8:
1610 case DW_OP_breg9:
1611 case DW_OP_breg10:
1612 case DW_OP_breg11:
1613 case DW_OP_breg12:
1614 case DW_OP_breg13:
1615 case DW_OP_breg14:
1616 case DW_OP_breg15:
1617 case DW_OP_breg16:
1618 case DW_OP_breg17:
1619 case DW_OP_breg18:
1620 case DW_OP_breg19:
1621 case DW_OP_breg20:
1622 case DW_OP_breg21:
1623 case DW_OP_breg22:
1624 case DW_OP_breg23:
1625 case DW_OP_breg24:
1626 case DW_OP_breg25:
1627 case DW_OP_breg26:
1628 case DW_OP_breg27:
1629 case DW_OP_breg28:
1630 case DW_OP_breg29:
1631 case DW_OP_breg30:
1632 case DW_OP_breg31:
1633 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1634 break;
1635 case DW_OP_regx:
1636 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1637 break;
1638 case DW_OP_fbreg:
1639 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1640 break;
1641 case DW_OP_bregx:
1642 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1643 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1644 break;
1645 case DW_OP_piece:
1646 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1647 break;
1648 case DW_OP_bit_piece:
1649 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1650 size += size_of_uleb128 (loc->dw_loc_oprnd2.v.val_unsigned);
1651 break;
1652 case DW_OP_deref_size:
1653 case DW_OP_xderef_size:
1654 size += 1;
1655 break;
1656 case DW_OP_call2:
1657 size += 2;
1658 break;
1659 case DW_OP_call4:
1660 size += 4;
1661 break;
1662 case DW_OP_call_ref:
1663 size += DWARF_REF_SIZE;
1664 break;
1665 case DW_OP_implicit_value:
1666 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1667 + loc->dw_loc_oprnd1.v.val_unsigned;
1668 break;
1669 case DW_OP_GNU_implicit_pointer:
1670 size += DWARF_REF_SIZE + size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1671 break;
1672 case DW_OP_GNU_entry_value:
1674 unsigned long op_size = size_of_locs (loc->dw_loc_oprnd1.v.val_loc);
1675 size += size_of_uleb128 (op_size) + op_size;
1676 break;
1678 case DW_OP_GNU_const_type:
1680 unsigned long o
1681 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1682 size += size_of_uleb128 (o) + 1;
1683 switch (loc->dw_loc_oprnd2.val_class)
1685 case dw_val_class_vec:
1686 size += loc->dw_loc_oprnd2.v.val_vec.length
1687 * loc->dw_loc_oprnd2.v.val_vec.elt_size;
1688 break;
1689 case dw_val_class_const:
1690 size += HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT;
1691 break;
1692 case dw_val_class_const_double:
1693 size += HOST_BITS_PER_DOUBLE_INT / BITS_PER_UNIT;
1694 break;
1695 case dw_val_class_wide_int:
1696 size += (get_full_len (*loc->dw_loc_oprnd2.v.val_wide)
1697 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
1698 break;
1699 default:
1700 gcc_unreachable ();
1702 break;
1704 case DW_OP_GNU_regval_type:
1706 unsigned long o
1707 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1708 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1709 + size_of_uleb128 (o);
1711 break;
1712 case DW_OP_GNU_deref_type:
1714 unsigned long o
1715 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1716 size += 1 + size_of_uleb128 (o);
1718 break;
1719 case DW_OP_GNU_convert:
1720 case DW_OP_GNU_reinterpret:
1721 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
1722 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1723 else
1725 unsigned long o
1726 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1727 size += size_of_uleb128 (o);
1729 break;
1730 case DW_OP_GNU_parameter_ref:
1731 size += 4;
1732 break;
1733 default:
1734 break;
1737 return size;
1740 /* Return the size of a series of location descriptors. */
1742 unsigned long
1743 size_of_locs (dw_loc_descr_ref loc)
1745 dw_loc_descr_ref l;
1746 unsigned long size;
1748 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
1749 field, to avoid writing to a PCH file. */
1750 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1752 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
1753 break;
1754 size += size_of_loc_descr (l);
1756 if (! l)
1757 return size;
1759 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1761 l->dw_loc_addr = size;
1762 size += size_of_loc_descr (l);
1765 return size;
1768 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
1769 static void get_ref_die_offset_label (char *, dw_die_ref);
1770 static unsigned long int get_ref_die_offset (dw_die_ref);
1772 /* Output location description stack opcode's operands (if any).
1773 The for_eh_or_skip parameter controls whether register numbers are
1774 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
1775 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
1776 info). This should be suppressed for the cases that have not been converted
1777 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
1779 static void
1780 output_loc_operands (dw_loc_descr_ref loc, int for_eh_or_skip)
1782 dw_val_ref val1 = &loc->dw_loc_oprnd1;
1783 dw_val_ref val2 = &loc->dw_loc_oprnd2;
1785 switch (loc->dw_loc_opc)
1787 #ifdef DWARF2_DEBUGGING_INFO
1788 case DW_OP_const2u:
1789 case DW_OP_const2s:
1790 dw2_asm_output_data (2, val1->v.val_int, NULL);
1791 break;
1792 case DW_OP_const4u:
1793 if (loc->dtprel)
1795 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
1796 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 4,
1797 val1->v.val_addr);
1798 fputc ('\n', asm_out_file);
1799 break;
1801 /* FALLTHRU */
1802 case DW_OP_const4s:
1803 dw2_asm_output_data (4, val1->v.val_int, NULL);
1804 break;
1805 case DW_OP_const8u:
1806 if (loc->dtprel)
1808 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
1809 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 8,
1810 val1->v.val_addr);
1811 fputc ('\n', asm_out_file);
1812 break;
1814 /* FALLTHRU */
1815 case DW_OP_const8s:
1816 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
1817 dw2_asm_output_data (8, val1->v.val_int, NULL);
1818 break;
1819 case DW_OP_skip:
1820 case DW_OP_bra:
1822 int offset;
1824 gcc_assert (val1->val_class == dw_val_class_loc);
1825 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
1827 dw2_asm_output_data (2, offset, NULL);
1829 break;
1830 case DW_OP_implicit_value:
1831 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1832 switch (val2->val_class)
1834 case dw_val_class_const:
1835 dw2_asm_output_data (val1->v.val_unsigned, val2->v.val_int, NULL);
1836 break;
1837 case dw_val_class_vec:
1839 unsigned int elt_size = val2->v.val_vec.elt_size;
1840 unsigned int len = val2->v.val_vec.length;
1841 unsigned int i;
1842 unsigned char *p;
1844 if (elt_size > sizeof (HOST_WIDE_INT))
1846 elt_size /= 2;
1847 len *= 2;
1849 for (i = 0, p = val2->v.val_vec.array;
1850 i < len;
1851 i++, p += elt_size)
1852 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
1853 "fp or vector constant word %u", i);
1855 break;
1856 case dw_val_class_const_double:
1858 unsigned HOST_WIDE_INT first, second;
1860 if (WORDS_BIG_ENDIAN)
1862 first = val2->v.val_double.high;
1863 second = val2->v.val_double.low;
1865 else
1867 first = val2->v.val_double.low;
1868 second = val2->v.val_double.high;
1870 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1871 first, NULL);
1872 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1873 second, NULL);
1875 break;
1876 case dw_val_class_wide_int:
1878 int i;
1879 int len = get_full_len (*val2->v.val_wide);
1880 if (WORDS_BIG_ENDIAN)
1881 for (i = len - 1; i >= 0; --i)
1882 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1883 val2->v.val_wide->elt (i), NULL);
1884 else
1885 for (i = 0; i < len; ++i)
1886 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1887 val2->v.val_wide->elt (i), NULL);
1889 break;
1890 case dw_val_class_addr:
1891 gcc_assert (val1->v.val_unsigned == DWARF2_ADDR_SIZE);
1892 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val2->v.val_addr, NULL);
1893 break;
1894 default:
1895 gcc_unreachable ();
1897 break;
1898 #else
1899 case DW_OP_const2u:
1900 case DW_OP_const2s:
1901 case DW_OP_const4u:
1902 case DW_OP_const4s:
1903 case DW_OP_const8u:
1904 case DW_OP_const8s:
1905 case DW_OP_skip:
1906 case DW_OP_bra:
1907 case DW_OP_implicit_value:
1908 /* We currently don't make any attempt to make sure these are
1909 aligned properly like we do for the main unwind info, so
1910 don't support emitting things larger than a byte if we're
1911 only doing unwinding. */
1912 gcc_unreachable ();
1913 #endif
1914 case DW_OP_const1u:
1915 case DW_OP_const1s:
1916 dw2_asm_output_data (1, val1->v.val_int, NULL);
1917 break;
1918 case DW_OP_constu:
1919 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1920 break;
1921 case DW_OP_consts:
1922 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
1923 break;
1924 case DW_OP_pick:
1925 dw2_asm_output_data (1, val1->v.val_int, NULL);
1926 break;
1927 case DW_OP_plus_uconst:
1928 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1929 break;
1930 case DW_OP_breg0:
1931 case DW_OP_breg1:
1932 case DW_OP_breg2:
1933 case DW_OP_breg3:
1934 case DW_OP_breg4:
1935 case DW_OP_breg5:
1936 case DW_OP_breg6:
1937 case DW_OP_breg7:
1938 case DW_OP_breg8:
1939 case DW_OP_breg9:
1940 case DW_OP_breg10:
1941 case DW_OP_breg11:
1942 case DW_OP_breg12:
1943 case DW_OP_breg13:
1944 case DW_OP_breg14:
1945 case DW_OP_breg15:
1946 case DW_OP_breg16:
1947 case DW_OP_breg17:
1948 case DW_OP_breg18:
1949 case DW_OP_breg19:
1950 case DW_OP_breg20:
1951 case DW_OP_breg21:
1952 case DW_OP_breg22:
1953 case DW_OP_breg23:
1954 case DW_OP_breg24:
1955 case DW_OP_breg25:
1956 case DW_OP_breg26:
1957 case DW_OP_breg27:
1958 case DW_OP_breg28:
1959 case DW_OP_breg29:
1960 case DW_OP_breg30:
1961 case DW_OP_breg31:
1962 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
1963 break;
1964 case DW_OP_regx:
1966 unsigned r = val1->v.val_unsigned;
1967 if (for_eh_or_skip >= 0)
1968 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
1969 gcc_assert (size_of_uleb128 (r)
1970 == size_of_uleb128 (val1->v.val_unsigned));
1971 dw2_asm_output_data_uleb128 (r, NULL);
1973 break;
1974 case DW_OP_fbreg:
1975 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
1976 break;
1977 case DW_OP_bregx:
1979 unsigned r = val1->v.val_unsigned;
1980 if (for_eh_or_skip >= 0)
1981 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
1982 gcc_assert (size_of_uleb128 (r)
1983 == size_of_uleb128 (val1->v.val_unsigned));
1984 dw2_asm_output_data_uleb128 (r, NULL);
1985 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
1987 break;
1988 case DW_OP_piece:
1989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1990 break;
1991 case DW_OP_bit_piece:
1992 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1993 dw2_asm_output_data_uleb128 (val2->v.val_unsigned, NULL);
1994 break;
1995 case DW_OP_deref_size:
1996 case DW_OP_xderef_size:
1997 dw2_asm_output_data (1, val1->v.val_int, NULL);
1998 break;
2000 case DW_OP_addr:
2001 if (loc->dtprel)
2003 if (targetm.asm_out.output_dwarf_dtprel)
2005 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
2006 DWARF2_ADDR_SIZE,
2007 val1->v.val_addr);
2008 fputc ('\n', asm_out_file);
2010 else
2011 gcc_unreachable ();
2013 else
2015 #ifdef DWARF2_DEBUGGING_INFO
2016 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2017 #else
2018 gcc_unreachable ();
2019 #endif
2021 break;
2023 case DW_OP_GNU_addr_index:
2024 case DW_OP_GNU_const_index:
2025 gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
2026 dw2_asm_output_data_uleb128 (loc->dw_loc_oprnd1.val_entry->index,
2027 "(index into .debug_addr)");
2028 break;
2030 case DW_OP_GNU_implicit_pointer:
2032 char label[MAX_ARTIFICIAL_LABEL_BYTES
2033 + HOST_BITS_PER_WIDE_INT / 2 + 2];
2034 gcc_assert (val1->val_class == dw_val_class_die_ref);
2035 get_ref_die_offset_label (label, val1->v.val_die_ref.die);
2036 dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL);
2037 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2039 break;
2041 case DW_OP_GNU_entry_value:
2042 dw2_asm_output_data_uleb128 (size_of_locs (val1->v.val_loc), NULL);
2043 output_loc_sequence (val1->v.val_loc, for_eh_or_skip);
2044 break;
2046 case DW_OP_GNU_const_type:
2048 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die), l;
2049 gcc_assert (o);
2050 dw2_asm_output_data_uleb128 (o, NULL);
2051 switch (val2->val_class)
2053 case dw_val_class_const:
2054 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2055 dw2_asm_output_data (1, l, NULL);
2056 dw2_asm_output_data (l, val2->v.val_int, NULL);
2057 break;
2058 case dw_val_class_vec:
2060 unsigned int elt_size = val2->v.val_vec.elt_size;
2061 unsigned int len = val2->v.val_vec.length;
2062 unsigned int i;
2063 unsigned char *p;
2065 l = len * elt_size;
2066 dw2_asm_output_data (1, l, NULL);
2067 if (elt_size > sizeof (HOST_WIDE_INT))
2069 elt_size /= 2;
2070 len *= 2;
2072 for (i = 0, p = val2->v.val_vec.array;
2073 i < len;
2074 i++, p += elt_size)
2075 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
2076 "fp or vector constant word %u", i);
2078 break;
2079 case dw_val_class_const_double:
2081 unsigned HOST_WIDE_INT first, second;
2082 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2084 dw2_asm_output_data (1, 2 * l, NULL);
2085 if (WORDS_BIG_ENDIAN)
2087 first = val2->v.val_double.high;
2088 second = val2->v.val_double.low;
2090 else
2092 first = val2->v.val_double.low;
2093 second = val2->v.val_double.high;
2095 dw2_asm_output_data (l, first, NULL);
2096 dw2_asm_output_data (l, second, NULL);
2098 break;
2099 case dw_val_class_wide_int:
2101 int i;
2102 int len = get_full_len (*val2->v.val_wide);
2103 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2105 dw2_asm_output_data (1, len * l, NULL);
2106 if (WORDS_BIG_ENDIAN)
2107 for (i = len - 1; i >= 0; --i)
2108 dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
2109 else
2110 for (i = 0; i < len; ++i)
2111 dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
2113 break;
2114 default:
2115 gcc_unreachable ();
2118 break;
2119 case DW_OP_GNU_regval_type:
2121 unsigned r = val1->v.val_unsigned;
2122 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2123 gcc_assert (o);
2124 if (for_eh_or_skip >= 0)
2126 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2127 gcc_assert (size_of_uleb128 (r)
2128 == size_of_uleb128 (val1->v.val_unsigned));
2130 dw2_asm_output_data_uleb128 (r, NULL);
2131 dw2_asm_output_data_uleb128 (o, NULL);
2133 break;
2134 case DW_OP_GNU_deref_type:
2136 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2137 gcc_assert (o);
2138 dw2_asm_output_data (1, val1->v.val_int, NULL);
2139 dw2_asm_output_data_uleb128 (o, NULL);
2141 break;
2142 case DW_OP_GNU_convert:
2143 case DW_OP_GNU_reinterpret:
2144 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
2145 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2146 else
2148 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die);
2149 gcc_assert (o);
2150 dw2_asm_output_data_uleb128 (o, NULL);
2152 break;
2154 case DW_OP_GNU_parameter_ref:
2156 unsigned long o;
2157 gcc_assert (val1->val_class == dw_val_class_die_ref);
2158 o = get_ref_die_offset (val1->v.val_die_ref.die);
2159 dw2_asm_output_data (4, o, NULL);
2161 break;
2163 default:
2164 /* Other codes have no operands. */
2165 break;
2169 /* Output a sequence of location operations.
2170 The for_eh_or_skip parameter controls whether register numbers are
2171 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
2172 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
2173 info). This should be suppressed for the cases that have not been converted
2174 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
2176 void
2177 output_loc_sequence (dw_loc_descr_ref loc, int for_eh_or_skip)
2179 for (; loc != NULL; loc = loc->dw_loc_next)
2181 enum dwarf_location_atom opc = loc->dw_loc_opc;
2182 /* Output the opcode. */
2183 if (for_eh_or_skip >= 0
2184 && opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2186 unsigned r = (opc - DW_OP_breg0);
2187 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2188 gcc_assert (r <= 31);
2189 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2191 else if (for_eh_or_skip >= 0
2192 && opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2194 unsigned r = (opc - DW_OP_reg0);
2195 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2196 gcc_assert (r <= 31);
2197 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2200 dw2_asm_output_data (1, opc,
2201 "%s", dwarf_stack_op_name (opc));
2203 /* Output the operand(s) (if any). */
2204 output_loc_operands (loc, for_eh_or_skip);
2208 /* Output location description stack opcode's operands (if any).
2209 The output is single bytes on a line, suitable for .cfi_escape. */
2211 static void
2212 output_loc_operands_raw (dw_loc_descr_ref loc)
2214 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2215 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2217 switch (loc->dw_loc_opc)
2219 case DW_OP_addr:
2220 case DW_OP_GNU_addr_index:
2221 case DW_OP_GNU_const_index:
2222 case DW_OP_implicit_value:
2223 /* We cannot output addresses in .cfi_escape, only bytes. */
2224 gcc_unreachable ();
2226 case DW_OP_const1u:
2227 case DW_OP_const1s:
2228 case DW_OP_pick:
2229 case DW_OP_deref_size:
2230 case DW_OP_xderef_size:
2231 fputc (',', asm_out_file);
2232 dw2_asm_output_data_raw (1, val1->v.val_int);
2233 break;
2235 case DW_OP_const2u:
2236 case DW_OP_const2s:
2237 fputc (',', asm_out_file);
2238 dw2_asm_output_data_raw (2, val1->v.val_int);
2239 break;
2241 case DW_OP_const4u:
2242 case DW_OP_const4s:
2243 fputc (',', asm_out_file);
2244 dw2_asm_output_data_raw (4, val1->v.val_int);
2245 break;
2247 case DW_OP_const8u:
2248 case DW_OP_const8s:
2249 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
2250 fputc (',', asm_out_file);
2251 dw2_asm_output_data_raw (8, val1->v.val_int);
2252 break;
2254 case DW_OP_skip:
2255 case DW_OP_bra:
2257 int offset;
2259 gcc_assert (val1->val_class == dw_val_class_loc);
2260 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2262 fputc (',', asm_out_file);
2263 dw2_asm_output_data_raw (2, offset);
2265 break;
2267 case DW_OP_regx:
2269 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2270 gcc_assert (size_of_uleb128 (r)
2271 == size_of_uleb128 (val1->v.val_unsigned));
2272 fputc (',', asm_out_file);
2273 dw2_asm_output_data_uleb128_raw (r);
2275 break;
2277 case DW_OP_constu:
2278 case DW_OP_plus_uconst:
2279 case DW_OP_piece:
2280 fputc (',', asm_out_file);
2281 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2282 break;
2284 case DW_OP_bit_piece:
2285 fputc (',', asm_out_file);
2286 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2287 dw2_asm_output_data_uleb128_raw (val2->v.val_unsigned);
2288 break;
2290 case DW_OP_consts:
2291 case DW_OP_breg0:
2292 case DW_OP_breg1:
2293 case DW_OP_breg2:
2294 case DW_OP_breg3:
2295 case DW_OP_breg4:
2296 case DW_OP_breg5:
2297 case DW_OP_breg6:
2298 case DW_OP_breg7:
2299 case DW_OP_breg8:
2300 case DW_OP_breg9:
2301 case DW_OP_breg10:
2302 case DW_OP_breg11:
2303 case DW_OP_breg12:
2304 case DW_OP_breg13:
2305 case DW_OP_breg14:
2306 case DW_OP_breg15:
2307 case DW_OP_breg16:
2308 case DW_OP_breg17:
2309 case DW_OP_breg18:
2310 case DW_OP_breg19:
2311 case DW_OP_breg20:
2312 case DW_OP_breg21:
2313 case DW_OP_breg22:
2314 case DW_OP_breg23:
2315 case DW_OP_breg24:
2316 case DW_OP_breg25:
2317 case DW_OP_breg26:
2318 case DW_OP_breg27:
2319 case DW_OP_breg28:
2320 case DW_OP_breg29:
2321 case DW_OP_breg30:
2322 case DW_OP_breg31:
2323 case DW_OP_fbreg:
2324 fputc (',', asm_out_file);
2325 dw2_asm_output_data_sleb128_raw (val1->v.val_int);
2326 break;
2328 case DW_OP_bregx:
2330 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2331 gcc_assert (size_of_uleb128 (r)
2332 == size_of_uleb128 (val1->v.val_unsigned));
2333 fputc (',', asm_out_file);
2334 dw2_asm_output_data_uleb128_raw (r);
2335 fputc (',', asm_out_file);
2336 dw2_asm_output_data_sleb128_raw (val2->v.val_int);
2338 break;
2340 case DW_OP_GNU_implicit_pointer:
2341 case DW_OP_GNU_entry_value:
2342 case DW_OP_GNU_const_type:
2343 case DW_OP_GNU_regval_type:
2344 case DW_OP_GNU_deref_type:
2345 case DW_OP_GNU_convert:
2346 case DW_OP_GNU_reinterpret:
2347 case DW_OP_GNU_parameter_ref:
2348 gcc_unreachable ();
2349 break;
2351 default:
2352 /* Other codes have no operands. */
2353 break;
2357 void
2358 output_loc_sequence_raw (dw_loc_descr_ref loc)
2360 while (1)
2362 enum dwarf_location_atom opc = loc->dw_loc_opc;
2363 /* Output the opcode. */
2364 if (opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2366 unsigned r = (opc - DW_OP_breg0);
2367 r = DWARF2_FRAME_REG_OUT (r, 1);
2368 gcc_assert (r <= 31);
2369 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2371 else if (opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2373 unsigned r = (opc - DW_OP_reg0);
2374 r = DWARF2_FRAME_REG_OUT (r, 1);
2375 gcc_assert (r <= 31);
2376 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2378 /* Output the opcode. */
2379 fprintf (asm_out_file, "%#x", opc);
2380 output_loc_operands_raw (loc);
2382 if (!loc->dw_loc_next)
2383 break;
2384 loc = loc->dw_loc_next;
2386 fputc (',', asm_out_file);
2390 /* This function builds a dwarf location descriptor sequence from a
2391 dw_cfa_location, adding the given OFFSET to the result of the
2392 expression. */
2394 struct dw_loc_descr_node *
2395 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
2397 struct dw_loc_descr_node *head, *tmp;
2399 offset += cfa->offset;
2401 if (cfa->indirect)
2403 head = new_reg_loc_descr (cfa->reg, cfa->base_offset);
2404 head->dw_loc_oprnd1.val_class = dw_val_class_const;
2405 head->dw_loc_oprnd1.val_entry = NULL;
2406 tmp = new_loc_descr (DW_OP_deref, 0, 0);
2407 add_loc_descr (&head, tmp);
2408 if (offset != 0)
2410 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
2411 add_loc_descr (&head, tmp);
2414 else
2415 head = new_reg_loc_descr (cfa->reg, offset);
2417 return head;
2420 /* This function builds a dwarf location descriptor sequence for
2421 the address at OFFSET from the CFA when stack is aligned to
2422 ALIGNMENT byte. */
2424 struct dw_loc_descr_node *
2425 build_cfa_aligned_loc (dw_cfa_location *cfa,
2426 HOST_WIDE_INT offset, HOST_WIDE_INT alignment)
2428 struct dw_loc_descr_node *head;
2429 unsigned int dwarf_fp
2430 = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2432 /* When CFA is defined as FP+OFFSET, emulate stack alignment. */
2433 if (cfa->reg == HARD_FRAME_POINTER_REGNUM && cfa->indirect == 0)
2435 head = new_reg_loc_descr (dwarf_fp, 0);
2436 add_loc_descr (&head, int_loc_descriptor (alignment));
2437 add_loc_descr (&head, new_loc_descr (DW_OP_and, 0, 0));
2438 loc_descr_plus_const (&head, offset);
2440 else
2441 head = new_reg_loc_descr (dwarf_fp, offset);
2442 return head;
2445 /* And now, the support for symbolic debugging information. */
2447 /* .debug_str support. */
2449 static void dwarf2out_init (const char *);
2450 static void dwarf2out_finish (const char *);
2451 static void dwarf2out_assembly_start (void);
2452 static void dwarf2out_define (unsigned int, const char *);
2453 static void dwarf2out_undef (unsigned int, const char *);
2454 static void dwarf2out_start_source_file (unsigned, const char *);
2455 static void dwarf2out_end_source_file (unsigned);
2456 static void dwarf2out_function_decl (tree);
2457 static void dwarf2out_begin_block (unsigned, unsigned);
2458 static void dwarf2out_end_block (unsigned, unsigned);
2459 static bool dwarf2out_ignore_block (const_tree);
2460 static void dwarf2out_global_decl (tree);
2461 static void dwarf2out_type_decl (tree, int);
2462 static void dwarf2out_imported_module_or_decl (tree, tree, tree, bool);
2463 static void dwarf2out_imported_module_or_decl_1 (tree, tree, tree,
2464 dw_die_ref);
2465 static void dwarf2out_abstract_function (tree);
2466 static void dwarf2out_var_location (rtx_insn *);
2467 static void dwarf2out_begin_function (tree);
2468 static void dwarf2out_end_function (unsigned int);
2469 static void dwarf2out_set_name (tree, tree);
2471 /* The debug hooks structure. */
2473 const struct gcc_debug_hooks dwarf2_debug_hooks =
2475 dwarf2out_init,
2476 dwarf2out_finish,
2477 dwarf2out_assembly_start,
2478 dwarf2out_define,
2479 dwarf2out_undef,
2480 dwarf2out_start_source_file,
2481 dwarf2out_end_source_file,
2482 dwarf2out_begin_block,
2483 dwarf2out_end_block,
2484 dwarf2out_ignore_block,
2485 dwarf2out_source_line,
2486 dwarf2out_begin_prologue,
2487 #if VMS_DEBUGGING_INFO
2488 dwarf2out_vms_end_prologue,
2489 dwarf2out_vms_begin_epilogue,
2490 #else
2491 debug_nothing_int_charstar,
2492 debug_nothing_int_charstar,
2493 #endif
2494 dwarf2out_end_epilogue,
2495 dwarf2out_begin_function,
2496 dwarf2out_end_function, /* end_function */
2497 dwarf2out_function_decl, /* function_decl */
2498 dwarf2out_global_decl,
2499 dwarf2out_type_decl, /* type_decl */
2500 dwarf2out_imported_module_or_decl,
2501 debug_nothing_tree, /* deferred_inline_function */
2502 /* The DWARF 2 backend tries to reduce debugging bloat by not
2503 emitting the abstract description of inline functions until
2504 something tries to reference them. */
2505 dwarf2out_abstract_function, /* outlining_inline_function */
2506 debug_nothing_rtx_code_label, /* label */
2507 debug_nothing_int, /* handle_pch */
2508 dwarf2out_var_location,
2509 dwarf2out_switch_text_section,
2510 dwarf2out_set_name,
2511 1, /* start_end_main_source_file */
2512 TYPE_SYMTAB_IS_DIE /* tree_type_symtab_field */
2515 /* NOTE: In the comments in this file, many references are made to
2516 "Debugging Information Entries". This term is abbreviated as `DIE'
2517 throughout the remainder of this file. */
2519 /* An internal representation of the DWARF output is built, and then
2520 walked to generate the DWARF debugging info. The walk of the internal
2521 representation is done after the entire program has been compiled.
2522 The types below are used to describe the internal representation. */
2524 /* Whether to put type DIEs into their own section .debug_types instead
2525 of making them part of the .debug_info section. Only supported for
2526 Dwarf V4 or higher and the user didn't disable them through
2527 -fno-debug-types-section. It is more efficient to put them in a
2528 separate comdat sections since the linker will then be able to
2529 remove duplicates. But not all tools support .debug_types sections
2530 yet. */
2532 #define use_debug_types (dwarf_version >= 4 && flag_debug_types_section)
2534 /* Various DIE's use offsets relative to the beginning of the
2535 .debug_info section to refer to each other. */
2537 typedef long int dw_offset;
2539 /* Define typedefs here to avoid circular dependencies. */
2541 typedef struct dw_attr_struct *dw_attr_ref;
2542 typedef struct dw_line_info_struct *dw_line_info_ref;
2543 typedef struct pubname_struct *pubname_ref;
2544 typedef struct dw_ranges_struct *dw_ranges_ref;
2545 typedef struct dw_ranges_by_label_struct *dw_ranges_by_label_ref;
2546 typedef struct comdat_type_struct *comdat_type_node_ref;
2548 /* The entries in the line_info table more-or-less mirror the opcodes
2549 that are used in the real dwarf line table. Arrays of these entries
2550 are collected per section when DWARF2_ASM_LINE_DEBUG_INFO is not
2551 supported. */
2553 enum dw_line_info_opcode {
2554 /* Emit DW_LNE_set_address; the operand is the label index. */
2555 LI_set_address,
2557 /* Emit a row to the matrix with the given line. This may be done
2558 via any combination of DW_LNS_copy, DW_LNS_advance_line, and
2559 special opcodes. */
2560 LI_set_line,
2562 /* Emit a DW_LNS_set_file. */
2563 LI_set_file,
2565 /* Emit a DW_LNS_set_column. */
2566 LI_set_column,
2568 /* Emit a DW_LNS_negate_stmt; the operand is ignored. */
2569 LI_negate_stmt,
2571 /* Emit a DW_LNS_set_prologue_end/epilogue_begin; the operand is ignored. */
2572 LI_set_prologue_end,
2573 LI_set_epilogue_begin,
2575 /* Emit a DW_LNE_set_discriminator. */
2576 LI_set_discriminator
2579 typedef struct GTY(()) dw_line_info_struct {
2580 enum dw_line_info_opcode opcode;
2581 unsigned int val;
2582 } dw_line_info_entry;
2585 typedef struct GTY(()) dw_line_info_table_struct {
2586 /* The label that marks the end of this section. */
2587 const char *end_label;
2589 /* The values for the last row of the matrix, as collected in the table.
2590 These are used to minimize the changes to the next row. */
2591 unsigned int file_num;
2592 unsigned int line_num;
2593 unsigned int column_num;
2594 int discrim_num;
2595 bool is_stmt;
2596 bool in_use;
2598 vec<dw_line_info_entry, va_gc> *entries;
2599 } dw_line_info_table;
2601 typedef dw_line_info_table *dw_line_info_table_p;
2604 /* Each DIE attribute has a field specifying the attribute kind,
2605 a link to the next attribute in the chain, and an attribute value.
2606 Attributes are typically linked below the DIE they modify. */
2608 typedef struct GTY(()) dw_attr_struct {
2609 enum dwarf_attribute dw_attr;
2610 dw_val_node dw_attr_val;
2612 dw_attr_node;
2615 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
2616 The children of each node form a circular list linked by
2617 die_sib. die_child points to the node *before* the "first" child node. */
2619 typedef struct GTY((chain_circular ("%h.die_sib"), for_user)) die_struct {
2620 union die_symbol_or_type_node
2622 const char * GTY ((tag ("0"))) die_symbol;
2623 comdat_type_node_ref GTY ((tag ("1"))) die_type_node;
2625 GTY ((desc ("%0.comdat_type_p"))) die_id;
2626 vec<dw_attr_node, va_gc> *die_attr;
2627 dw_die_ref die_parent;
2628 dw_die_ref die_child;
2629 dw_die_ref die_sib;
2630 dw_die_ref die_definition; /* ref from a specification to its definition */
2631 dw_offset die_offset;
2632 unsigned long die_abbrev;
2633 int die_mark;
2634 unsigned int decl_id;
2635 enum dwarf_tag die_tag;
2636 /* Die is used and must not be pruned as unused. */
2637 BOOL_BITFIELD die_perennial_p : 1;
2638 BOOL_BITFIELD comdat_type_p : 1; /* DIE has a type signature */
2639 /* Lots of spare bits. */
2641 die_node;
2643 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
2644 #define FOR_EACH_CHILD(die, c, expr) do { \
2645 c = die->die_child; \
2646 if (c) do { \
2647 c = c->die_sib; \
2648 expr; \
2649 } while (c != die->die_child); \
2650 } while (0)
2652 /* The pubname structure */
2654 typedef struct GTY(()) pubname_struct {
2655 dw_die_ref die;
2656 const char *name;
2658 pubname_entry;
2661 struct GTY(()) dw_ranges_struct {
2662 /* If this is positive, it's a block number, otherwise it's a
2663 bitwise-negated index into dw_ranges_by_label. */
2664 int num;
2667 /* A structure to hold a macinfo entry. */
2669 typedef struct GTY(()) macinfo_struct {
2670 unsigned char code;
2671 unsigned HOST_WIDE_INT lineno;
2672 const char *info;
2674 macinfo_entry;
2677 struct GTY(()) dw_ranges_by_label_struct {
2678 const char *begin;
2679 const char *end;
2682 /* The comdat type node structure. */
2683 typedef struct GTY(()) comdat_type_struct
2685 dw_die_ref root_die;
2686 dw_die_ref type_die;
2687 dw_die_ref skeleton_die;
2688 char signature[DWARF_TYPE_SIGNATURE_SIZE];
2689 struct comdat_type_struct *next;
2691 comdat_type_node;
2693 /* The limbo die list structure. */
2694 typedef struct GTY(()) limbo_die_struct {
2695 dw_die_ref die;
2696 tree created_for;
2697 struct limbo_die_struct *next;
2699 limbo_die_node;
2701 typedef struct skeleton_chain_struct
2703 dw_die_ref old_die;
2704 dw_die_ref new_die;
2705 struct skeleton_chain_struct *parent;
2707 skeleton_chain_node;
2709 /* Define a macro which returns nonzero for a TYPE_DECL which was
2710 implicitly generated for a type.
2712 Note that, unlike the C front-end (which generates a NULL named
2713 TYPE_DECL node for each complete tagged type, each array type,
2714 and each function type node created) the C++ front-end generates
2715 a _named_ TYPE_DECL node for each tagged type node created.
2716 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
2717 generate a DW_TAG_typedef DIE for them. Likewise with the Ada
2718 front-end, but for each type, tagged or not. */
2720 #define TYPE_DECL_IS_STUB(decl) \
2721 (DECL_NAME (decl) == NULL_TREE \
2722 || (DECL_ARTIFICIAL (decl) \
2723 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
2724 /* This is necessary for stub decls that \
2725 appear in nested inline functions. */ \
2726 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
2727 && (decl_ultimate_origin (decl) \
2728 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
2730 /* Information concerning the compilation unit's programming
2731 language, and compiler version. */
2733 /* Fixed size portion of the DWARF compilation unit header. */
2734 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
2735 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
2737 /* Fixed size portion of the DWARF comdat type unit header. */
2738 #define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \
2739 (DWARF_COMPILE_UNIT_HEADER_SIZE + DWARF_TYPE_SIGNATURE_SIZE \
2740 + DWARF_OFFSET_SIZE)
2742 /* Fixed size portion of public names info. */
2743 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
2745 /* Fixed size portion of the address range info. */
2746 #define DWARF_ARANGES_HEADER_SIZE \
2747 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
2748 DWARF2_ADDR_SIZE * 2) \
2749 - DWARF_INITIAL_LENGTH_SIZE)
2751 /* Size of padding portion in the address range info. It must be
2752 aligned to twice the pointer size. */
2753 #define DWARF_ARANGES_PAD_SIZE \
2754 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
2755 DWARF2_ADDR_SIZE * 2) \
2756 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
2758 /* Use assembler line directives if available. */
2759 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
2760 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
2761 #define DWARF2_ASM_LINE_DEBUG_INFO 1
2762 #else
2763 #define DWARF2_ASM_LINE_DEBUG_INFO 0
2764 #endif
2765 #endif
2767 /* Minimum line offset in a special line info. opcode.
2768 This value was chosen to give a reasonable range of values. */
2769 #define DWARF_LINE_BASE -10
2771 /* First special line opcode - leave room for the standard opcodes. */
2772 #define DWARF_LINE_OPCODE_BASE ((int)DW_LNS_set_isa + 1)
2774 /* Range of line offsets in a special line info. opcode. */
2775 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
2777 /* Flag that indicates the initial value of the is_stmt_start flag.
2778 In the present implementation, we do not mark any lines as
2779 the beginning of a source statement, because that information
2780 is not made available by the GCC front-end. */
2781 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
2783 /* Maximum number of operations per instruction bundle. */
2784 #ifndef DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
2785 #define DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN 1
2786 #endif
2788 /* This location is used by calc_die_sizes() to keep track
2789 the offset of each DIE within the .debug_info section. */
2790 static unsigned long next_die_offset;
2792 /* Record the root of the DIE's built for the current compilation unit. */
2793 static GTY(()) dw_die_ref single_comp_unit_die;
2795 /* A list of type DIEs that have been separated into comdat sections. */
2796 static GTY(()) comdat_type_node *comdat_type_list;
2798 /* A list of DIEs with a NULL parent waiting to be relocated. */
2799 static GTY(()) limbo_die_node *limbo_die_list;
2801 /* A list of DIEs for which we may have to generate
2802 DW_AT_{,MIPS_}linkage_name once their DECL_ASSEMBLER_NAMEs are set. */
2803 static GTY(()) limbo_die_node *deferred_asm_name;
2805 struct dwarf_file_hasher : ggc_hasher<dwarf_file_data *>
2807 typedef const char *compare_type;
2809 static hashval_t hash (dwarf_file_data *);
2810 static bool equal (dwarf_file_data *, const char *);
2813 /* Filenames referenced by this compilation unit. */
2814 static GTY(()) hash_table<dwarf_file_hasher> *file_table;
2816 struct decl_die_hasher : ggc_hasher<die_node *>
2818 typedef tree compare_type;
2820 static hashval_t hash (die_node *);
2821 static bool equal (die_node *, tree);
2823 /* A hash table of references to DIE's that describe declarations.
2824 The key is a DECL_UID() which is a unique number identifying each decl. */
2825 static GTY (()) hash_table<decl_die_hasher> *decl_die_table;
2827 struct block_die_hasher : ggc_hasher<die_struct *>
2829 static hashval_t hash (die_struct *);
2830 static bool equal (die_struct *, die_struct *);
2833 /* A hash table of references to DIE's that describe COMMON blocks.
2834 The key is DECL_UID() ^ die_parent. */
2835 static GTY (()) hash_table<block_die_hasher> *common_block_die_table;
2837 typedef struct GTY(()) die_arg_entry_struct {
2838 dw_die_ref die;
2839 tree arg;
2840 } die_arg_entry;
2843 /* Node of the variable location list. */
2844 struct GTY ((chain_next ("%h.next"))) var_loc_node {
2845 /* Either NOTE_INSN_VAR_LOCATION, or, for SRA optimized variables,
2846 EXPR_LIST chain. For small bitsizes, bitsize is encoded
2847 in mode of the EXPR_LIST node and first EXPR_LIST operand
2848 is either NOTE_INSN_VAR_LOCATION for a piece with a known
2849 location or NULL for padding. For larger bitsizes,
2850 mode is 0 and first operand is a CONCAT with bitsize
2851 as first CONCAT operand and NOTE_INSN_VAR_LOCATION resp.
2852 NULL as second operand. */
2853 rtx GTY (()) loc;
2854 const char * GTY (()) label;
2855 struct var_loc_node * GTY (()) next;
2858 /* Variable location list. */
2859 struct GTY ((for_user)) var_loc_list_def {
2860 struct var_loc_node * GTY (()) first;
2862 /* Pointer to the last but one or last element of the
2863 chained list. If the list is empty, both first and
2864 last are NULL, if the list contains just one node
2865 or the last node certainly is not redundant, it points
2866 to the last node, otherwise points to the last but one.
2867 Do not mark it for GC because it is marked through the chain. */
2868 struct var_loc_node * GTY ((skip ("%h"))) last;
2870 /* Pointer to the last element before section switch,
2871 if NULL, either sections weren't switched or first
2872 is after section switch. */
2873 struct var_loc_node * GTY ((skip ("%h"))) last_before_switch;
2875 /* DECL_UID of the variable decl. */
2876 unsigned int decl_id;
2878 typedef struct var_loc_list_def var_loc_list;
2880 /* Call argument location list. */
2881 struct GTY ((chain_next ("%h.next"))) call_arg_loc_node {
2882 rtx GTY (()) call_arg_loc_note;
2883 const char * GTY (()) label;
2884 tree GTY (()) block;
2885 bool tail_call_p;
2886 rtx GTY (()) symbol_ref;
2887 struct call_arg_loc_node * GTY (()) next;
2891 struct decl_loc_hasher : ggc_hasher<var_loc_list *>
2893 typedef const_tree compare_type;
2895 static hashval_t hash (var_loc_list *);
2896 static bool equal (var_loc_list *, const_tree);
2899 /* Table of decl location linked lists. */
2900 static GTY (()) hash_table<decl_loc_hasher> *decl_loc_table;
2902 /* Head and tail of call_arg_loc chain. */
2903 static GTY (()) struct call_arg_loc_node *call_arg_locations;
2904 static struct call_arg_loc_node *call_arg_loc_last;
2906 /* Number of call sites in the current function. */
2907 static int call_site_count = -1;
2908 /* Number of tail call sites in the current function. */
2909 static int tail_call_site_count = -1;
2911 /* Vector mapping block numbers to DW_TAG_{lexical_block,inlined_subroutine}
2912 DIEs. */
2913 static vec<dw_die_ref> block_map;
2915 /* A cached location list. */
2916 struct GTY ((for_user)) cached_dw_loc_list_def {
2917 /* The DECL_UID of the decl that this entry describes. */
2918 unsigned int decl_id;
2920 /* The cached location list. */
2921 dw_loc_list_ref loc_list;
2923 typedef struct cached_dw_loc_list_def cached_dw_loc_list;
2925 struct dw_loc_list_hasher : ggc_hasher<cached_dw_loc_list *>
2928 typedef const_tree compare_type;
2930 static hashval_t hash (cached_dw_loc_list *);
2931 static bool equal (cached_dw_loc_list *, const_tree);
2934 /* Table of cached location lists. */
2935 static GTY (()) hash_table<dw_loc_list_hasher> *cached_dw_loc_list_table;
2937 /* A pointer to the base of a list of references to DIE's that
2938 are uniquely identified by their tag, presence/absence of
2939 children DIE's, and list of attribute/value pairs. */
2940 static GTY((length ("abbrev_die_table_allocated")))
2941 dw_die_ref *abbrev_die_table;
2943 /* Number of elements currently allocated for abbrev_die_table. */
2944 static GTY(()) unsigned abbrev_die_table_allocated;
2946 /* Number of elements in type_die_table currently in use. */
2947 static GTY(()) unsigned abbrev_die_table_in_use;
2949 /* Size (in elements) of increments by which we may expand the
2950 abbrev_die_table. */
2951 #define ABBREV_DIE_TABLE_INCREMENT 256
2953 /* A global counter for generating labels for line number data. */
2954 static unsigned int line_info_label_num;
2956 /* The current table to which we should emit line number information
2957 for the current function. This will be set up at the beginning of
2958 assembly for the function. */
2959 static dw_line_info_table *cur_line_info_table;
2961 /* The two default tables of line number info. */
2962 static GTY(()) dw_line_info_table *text_section_line_info;
2963 static GTY(()) dw_line_info_table *cold_text_section_line_info;
2965 /* The set of all non-default tables of line number info. */
2966 static GTY(()) vec<dw_line_info_table_p, va_gc> *separate_line_info;
2968 /* A flag to tell pubnames/types export if there is an info section to
2969 refer to. */
2970 static bool info_section_emitted;
2972 /* A pointer to the base of a table that contains a list of publicly
2973 accessible names. */
2974 static GTY (()) vec<pubname_entry, va_gc> *pubname_table;
2976 /* A pointer to the base of a table that contains a list of publicly
2977 accessible types. */
2978 static GTY (()) vec<pubname_entry, va_gc> *pubtype_table;
2980 /* A pointer to the base of a table that contains a list of macro
2981 defines/undefines (and file start/end markers). */
2982 static GTY (()) vec<macinfo_entry, va_gc> *macinfo_table;
2984 /* True if .debug_macinfo or .debug_macros section is going to be
2985 emitted. */
2986 #define have_macinfo \
2987 (debug_info_level >= DINFO_LEVEL_VERBOSE \
2988 && !macinfo_table->is_empty ())
2990 /* Array of dies for which we should generate .debug_ranges info. */
2991 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
2993 /* Number of elements currently allocated for ranges_table. */
2994 static GTY(()) unsigned ranges_table_allocated;
2996 /* Number of elements in ranges_table currently in use. */
2997 static GTY(()) unsigned ranges_table_in_use;
2999 /* Array of pairs of labels referenced in ranges_table. */
3000 static GTY ((length ("ranges_by_label_allocated")))
3001 dw_ranges_by_label_ref ranges_by_label;
3003 /* Number of elements currently allocated for ranges_by_label. */
3004 static GTY(()) unsigned ranges_by_label_allocated;
3006 /* Number of elements in ranges_by_label currently in use. */
3007 static GTY(()) unsigned ranges_by_label_in_use;
3009 /* Size (in elements) of increments by which we may expand the
3010 ranges_table. */
3011 #define RANGES_TABLE_INCREMENT 64
3013 /* Whether we have location lists that need outputting */
3014 static GTY(()) bool have_location_lists;
3016 /* Unique label counter. */
3017 static GTY(()) unsigned int loclabel_num;
3019 /* Unique label counter for point-of-call tables. */
3020 static GTY(()) unsigned int poc_label_num;
3022 /* The last file entry emitted by maybe_emit_file(). */
3023 static GTY(()) struct dwarf_file_data * last_emitted_file;
3025 /* Number of internal labels generated by gen_internal_sym(). */
3026 static GTY(()) int label_num;
3028 /* Cached result of previous call to lookup_filename. */
3029 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
3031 static GTY(()) vec<die_arg_entry, va_gc> *tmpl_value_parm_die_table;
3033 /* Instances of generic types for which we need to generate debug
3034 info that describe their generic parameters and arguments. That
3035 generation needs to happen once all types are properly laid out so
3036 we do it at the end of compilation. */
3037 static GTY(()) vec<tree, va_gc> *generic_type_instances;
3039 /* Offset from the "steady-state frame pointer" to the frame base,
3040 within the current function. */
3041 static HOST_WIDE_INT frame_pointer_fb_offset;
3042 static bool frame_pointer_fb_offset_valid;
3044 static vec<dw_die_ref> base_types;
3046 /* Flags to represent a set of attribute classes for attributes that represent
3047 a scalar value (bounds, pointers, ...). */
3048 enum dw_scalar_form
3050 dw_scalar_form_constant = 0x01,
3051 dw_scalar_form_exprloc = 0x02,
3052 dw_scalar_form_reference = 0x04
3055 /* Forward declarations for functions defined in this file. */
3057 static int is_pseudo_reg (const_rtx);
3058 static tree type_main_variant (tree);
3059 static int is_tagged_type (const_tree);
3060 static const char *dwarf_tag_name (unsigned);
3061 static const char *dwarf_attr_name (unsigned);
3062 static const char *dwarf_form_name (unsigned);
3063 static tree decl_ultimate_origin (const_tree);
3064 static tree decl_class_context (tree);
3065 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3066 static inline enum dw_val_class AT_class (dw_attr_ref);
3067 static inline unsigned int AT_index (dw_attr_ref);
3068 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3069 static inline unsigned AT_flag (dw_attr_ref);
3070 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3071 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3072 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3073 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3074 static void add_AT_double (dw_die_ref, enum dwarf_attribute,
3075 HOST_WIDE_INT, unsigned HOST_WIDE_INT);
3076 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3077 unsigned int, unsigned char *);
3078 static void add_AT_data8 (dw_die_ref, enum dwarf_attribute, unsigned char *);
3079 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3080 static inline const char *AT_string (dw_attr_ref);
3081 static enum dwarf_form AT_string_form (dw_attr_ref);
3082 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3083 static void add_AT_specification (dw_die_ref, dw_die_ref);
3084 static inline dw_die_ref AT_ref (dw_attr_ref);
3085 static inline int AT_ref_external (dw_attr_ref);
3086 static inline void set_AT_ref_external (dw_attr_ref, int);
3087 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3088 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3089 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3090 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3091 dw_loc_list_ref);
3092 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3093 static addr_table_entry *add_addr_table_entry (void *, enum ate_kind);
3094 static void remove_addr_table_entry (addr_table_entry *);
3095 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx, bool);
3096 static inline rtx AT_addr (dw_attr_ref);
3097 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3098 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
3099 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
3100 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3101 unsigned HOST_WIDE_INT);
3102 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3103 unsigned long, bool);
3104 static inline const char *AT_lbl (dw_attr_ref);
3105 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3106 static const char *get_AT_low_pc (dw_die_ref);
3107 static const char *get_AT_hi_pc (dw_die_ref);
3108 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3109 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3110 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3111 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3112 static bool is_cxx (void);
3113 static bool is_fortran (void);
3114 static bool is_ada (void);
3115 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3116 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3117 static void add_child_die (dw_die_ref, dw_die_ref);
3118 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3119 static dw_die_ref lookup_type_die (tree);
3120 static dw_die_ref strip_naming_typedef (tree, dw_die_ref);
3121 static dw_die_ref lookup_type_die_strip_naming_typedef (tree);
3122 static void equate_type_number_to_die (tree, dw_die_ref);
3123 static dw_die_ref lookup_decl_die (tree);
3124 static var_loc_list *lookup_decl_loc (const_tree);
3125 static void equate_decl_number_to_die (tree, dw_die_ref);
3126 static struct var_loc_node *add_var_loc_to_decl (tree, rtx, const char *);
3127 static void print_spaces (FILE *);
3128 static void print_die (dw_die_ref, FILE *);
3129 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3130 static dw_die_ref pop_compile_unit (dw_die_ref);
3131 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3132 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3133 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3134 static void checksum_sleb128 (HOST_WIDE_INT, struct md5_ctx *);
3135 static void checksum_uleb128 (unsigned HOST_WIDE_INT, struct md5_ctx *);
3136 static void loc_checksum_ordered (dw_loc_descr_ref, struct md5_ctx *);
3137 static void attr_checksum_ordered (enum dwarf_tag, dw_attr_ref,
3138 struct md5_ctx *, int *);
3139 struct checksum_attributes;
3140 static void collect_checksum_attributes (struct checksum_attributes *, dw_die_ref);
3141 static void die_checksum_ordered (dw_die_ref, struct md5_ctx *, int *);
3142 static void checksum_die_context (dw_die_ref, struct md5_ctx *);
3143 static void generate_type_signature (dw_die_ref, comdat_type_node *);
3144 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3145 static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
3146 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3147 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3148 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3149 static void compute_section_prefix (dw_die_ref);
3150 static int is_type_die (dw_die_ref);
3151 static int is_comdat_die (dw_die_ref);
3152 static int is_symbol_die (dw_die_ref);
3153 static inline bool is_template_instantiation (dw_die_ref);
3154 static void assign_symbol_names (dw_die_ref);
3155 static void break_out_includes (dw_die_ref);
3156 static int is_declaration_die (dw_die_ref);
3157 static int should_move_die_to_comdat (dw_die_ref);
3158 static dw_die_ref clone_as_declaration (dw_die_ref);
3159 static dw_die_ref clone_die (dw_die_ref);
3160 static dw_die_ref clone_tree (dw_die_ref);
3161 static dw_die_ref copy_declaration_context (dw_die_ref, dw_die_ref);
3162 static void generate_skeleton_ancestor_tree (skeleton_chain_node *);
3163 static void generate_skeleton_bottom_up (skeleton_chain_node *);
3164 static dw_die_ref generate_skeleton (dw_die_ref);
3165 static dw_die_ref remove_child_or_replace_with_skeleton (dw_die_ref,
3166 dw_die_ref,
3167 dw_die_ref);
3168 static void break_out_comdat_types (dw_die_ref);
3169 static void copy_decls_for_unworthy_types (dw_die_ref);
3171 static void add_sibling_attributes (dw_die_ref);
3172 static void output_location_lists (dw_die_ref);
3173 static int constant_size (unsigned HOST_WIDE_INT);
3174 static unsigned long size_of_die (dw_die_ref);
3175 static void calc_die_sizes (dw_die_ref);
3176 static void calc_base_type_die_sizes (void);
3177 static void mark_dies (dw_die_ref);
3178 static void unmark_dies (dw_die_ref);
3179 static void unmark_all_dies (dw_die_ref);
3180 static unsigned long size_of_pubnames (vec<pubname_entry, va_gc> *);
3181 static unsigned long size_of_aranges (void);
3182 static enum dwarf_form value_format (dw_attr_ref);
3183 static void output_value_format (dw_attr_ref);
3184 static void output_abbrev_section (void);
3185 static void output_die_abbrevs (unsigned long, dw_die_ref);
3186 static void output_die_symbol (dw_die_ref);
3187 static void output_die (dw_die_ref);
3188 static void output_compilation_unit_header (void);
3189 static void output_comp_unit (dw_die_ref, int);
3190 static void output_comdat_type_unit (comdat_type_node *);
3191 static const char *dwarf2_name (tree, int);
3192 static void add_pubname (tree, dw_die_ref);
3193 static void add_enumerator_pubname (const char *, dw_die_ref);
3194 static void add_pubname_string (const char *, dw_die_ref);
3195 static void add_pubtype (tree, dw_die_ref);
3196 static void output_pubnames (vec<pubname_entry, va_gc> *);
3197 static void output_aranges (unsigned long);
3198 static unsigned int add_ranges_num (int);
3199 static unsigned int add_ranges (const_tree);
3200 static void add_ranges_by_labels (dw_die_ref, const char *, const char *,
3201 bool *, bool);
3202 static void output_ranges (void);
3203 static dw_line_info_table *new_line_info_table (void);
3204 static void output_line_info (bool);
3205 static void output_file_names (void);
3206 static dw_die_ref base_type_die (tree);
3207 static int is_base_type (tree);
3208 static dw_die_ref subrange_type_die (tree, tree, tree, dw_die_ref);
3209 static int decl_quals (const_tree);
3210 static dw_die_ref modified_type_die (tree, int, dw_die_ref);
3211 static dw_die_ref generic_parameter_die (tree, tree, bool, dw_die_ref);
3212 static dw_die_ref template_parameter_pack_die (tree, tree, dw_die_ref);
3213 static int type_is_enum (const_tree);
3214 static unsigned int dbx_reg_number (const_rtx);
3215 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
3216 static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
3217 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
3218 enum var_init_status);
3219 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
3220 enum var_init_status);
3221 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT,
3222 enum var_init_status);
3223 static int is_based_loc (const_rtx);
3224 static bool resolve_one_addr (rtx *);
3225 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
3226 enum var_init_status);
3227 static dw_loc_descr_ref loc_descriptor (rtx, machine_mode mode,
3228 enum var_init_status);
3229 struct loc_descr_context;
3230 static dw_loc_list_ref loc_list_from_tree (tree, int,
3231 const struct loc_descr_context *);
3232 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int,
3233 const struct loc_descr_context *);
3234 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3235 static tree field_type (const_tree);
3236 static unsigned int simple_type_align_in_bits (const_tree);
3237 static unsigned int simple_decl_align_in_bits (const_tree);
3238 static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
3239 static HOST_WIDE_INT field_byte_offset (const_tree);
3240 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3241 dw_loc_list_ref);
3242 static void add_data_member_location_attribute (dw_die_ref, tree);
3243 static bool add_const_value_attribute (dw_die_ref, rtx);
3244 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3245 static void insert_wide_int (const wide_int &, unsigned char *, int);
3246 static void insert_float (const_rtx, unsigned char *);
3247 static rtx rtl_for_decl_location (tree);
3248 static bool add_location_or_const_value_attribute (dw_die_ref, tree, bool,
3249 enum dwarf_attribute);
3250 static bool tree_add_const_value_attribute (dw_die_ref, tree);
3251 static bool tree_add_const_value_attribute_for_decl (dw_die_ref, tree);
3252 static void add_name_attribute (dw_die_ref, const char *);
3253 static void add_gnat_descriptive_type_attribute (dw_die_ref, tree, dw_die_ref);
3254 static void add_comp_dir_attribute (dw_die_ref);
3255 static void add_scalar_info (dw_die_ref, enum dwarf_attribute, tree, int,
3256 const struct loc_descr_context *);
3257 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree,
3258 const struct loc_descr_context *);
3259 static void add_subscript_info (dw_die_ref, tree, bool);
3260 static void add_byte_size_attribute (dw_die_ref, tree);
3261 static void add_bit_offset_attribute (dw_die_ref, tree);
3262 static void add_bit_size_attribute (dw_die_ref, tree);
3263 static void add_prototyped_attribute (dw_die_ref, tree);
3264 static dw_die_ref add_abstract_origin_attribute (dw_die_ref, tree);
3265 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3266 static void add_src_coords_attributes (dw_die_ref, tree);
3267 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3268 static void push_decl_scope (tree);
3269 static void pop_decl_scope (void);
3270 static dw_die_ref scope_die_for (tree, dw_die_ref);
3271 static inline int local_scope_p (dw_die_ref);
3272 static inline int class_scope_p (dw_die_ref);
3273 static inline int class_or_namespace_scope_p (dw_die_ref);
3274 static void add_type_attribute (dw_die_ref, tree, int, dw_die_ref);
3275 static void add_calling_convention_attribute (dw_die_ref, tree);
3276 static const char *type_tag (const_tree);
3277 static tree member_declared_type (const_tree);
3278 #if 0
3279 static const char *decl_start_label (tree);
3280 #endif
3281 static void gen_array_type_die (tree, dw_die_ref);
3282 static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
3283 #if 0
3284 static void gen_entry_point_die (tree, dw_die_ref);
3285 #endif
3286 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3287 static dw_die_ref gen_formal_parameter_die (tree, tree, bool, dw_die_ref);
3288 static dw_die_ref gen_formal_parameter_pack_die (tree, tree, dw_die_ref, tree*);
3289 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3290 static void gen_formal_types_die (tree, dw_die_ref);
3291 static void gen_subprogram_die (tree, dw_die_ref);
3292 static void gen_variable_die (tree, tree, dw_die_ref);
3293 static void gen_const_die (tree, dw_die_ref);
3294 static void gen_label_die (tree, dw_die_ref);
3295 static void gen_lexical_block_die (tree, dw_die_ref);
3296 static void gen_inlined_subroutine_die (tree, dw_die_ref);
3297 static void gen_field_die (tree, dw_die_ref);
3298 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3299 static dw_die_ref gen_compile_unit_die (const char *);
3300 static void gen_inheritance_die (tree, tree, dw_die_ref);
3301 static void gen_member_die (tree, dw_die_ref);
3302 static void gen_struct_or_union_type_die (tree, dw_die_ref,
3303 enum debug_info_usage);
3304 static void gen_subroutine_type_die (tree, dw_die_ref);
3305 static void gen_typedef_die (tree, dw_die_ref);
3306 static void gen_type_die (tree, dw_die_ref);
3307 static void gen_block_die (tree, dw_die_ref);
3308 static void decls_for_scope (tree, dw_die_ref);
3309 static inline int is_redundant_typedef (const_tree);
3310 static bool is_naming_typedef_decl (const_tree);
3311 static inline dw_die_ref get_context_die (tree);
3312 static void gen_namespace_die (tree, dw_die_ref);
3313 static dw_die_ref gen_namelist_decl (tree, dw_die_ref, tree);
3314 static dw_die_ref gen_decl_die (tree, tree, dw_die_ref);
3315 static dw_die_ref force_decl_die (tree);
3316 static dw_die_ref force_type_die (tree);
3317 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3318 static dw_die_ref declare_in_namespace (tree, dw_die_ref);
3319 static struct dwarf_file_data * lookup_filename (const char *);
3320 static void retry_incomplete_types (void);
3321 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3322 static void gen_generic_params_dies (tree);
3323 static void gen_tagged_type_die (tree, dw_die_ref, enum debug_info_usage);
3324 static void gen_type_die_with_usage (tree, dw_die_ref, enum debug_info_usage);
3325 static void splice_child_die (dw_die_ref, dw_die_ref);
3326 static int file_info_cmp (const void *, const void *);
3327 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3328 const char *, const char *);
3329 static void output_loc_list (dw_loc_list_ref);
3330 static char *gen_internal_sym (const char *);
3331 static bool want_pubnames (void);
3333 static void prune_unmark_dies (dw_die_ref);
3334 static void prune_unused_types_mark_generic_parms_dies (dw_die_ref);
3335 static void prune_unused_types_mark (dw_die_ref, int);
3336 static void prune_unused_types_walk (dw_die_ref);
3337 static void prune_unused_types_walk_attribs (dw_die_ref);
3338 static void prune_unused_types_prune (dw_die_ref);
3339 static void prune_unused_types (void);
3340 static int maybe_emit_file (struct dwarf_file_data *fd);
3341 static inline const char *AT_vms_delta1 (dw_attr_ref);
3342 static inline const char *AT_vms_delta2 (dw_attr_ref);
3343 static inline void add_AT_vms_delta (dw_die_ref, enum dwarf_attribute,
3344 const char *, const char *);
3345 static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref, tree);
3346 static void gen_remaining_tmpl_value_param_die_attribute (void);
3347 static bool generic_type_p (tree);
3348 static void schedule_generic_params_dies_gen (tree t);
3349 static void gen_scheduled_generic_parms_dies (void);
3351 static const char *comp_dir_string (void);
3353 static void hash_loc_operands (dw_loc_descr_ref, inchash::hash &);
3355 /* enum for tracking thread-local variables whose address is really an offset
3356 relative to the TLS pointer, which will need link-time relocation, but will
3357 not need relocation by the DWARF consumer. */
3359 enum dtprel_bool
3361 dtprel_false = 0,
3362 dtprel_true = 1
3365 /* Return the operator to use for an address of a variable. For dtprel_true, we
3366 use DW_OP_const*. For regular variables, which need both link-time
3367 relocation and consumer-level relocation (e.g., to account for shared objects
3368 loaded at a random address), we use DW_OP_addr*. */
3370 static inline enum dwarf_location_atom
3371 dw_addr_op (enum dtprel_bool dtprel)
3373 if (dtprel == dtprel_true)
3374 return (dwarf_split_debug_info ? DW_OP_GNU_const_index
3375 : (DWARF2_ADDR_SIZE == 4 ? DW_OP_const4u : DW_OP_const8u));
3376 else
3377 return dwarf_split_debug_info ? DW_OP_GNU_addr_index : DW_OP_addr;
3380 /* Return a pointer to a newly allocated address location description. If
3381 dwarf_split_debug_info is true, then record the address with the appropriate
3382 relocation. */
3383 static inline dw_loc_descr_ref
3384 new_addr_loc_descr (rtx addr, enum dtprel_bool dtprel)
3386 dw_loc_descr_ref ref = new_loc_descr (dw_addr_op (dtprel), 0, 0);
3388 ref->dw_loc_oprnd1.val_class = dw_val_class_addr;
3389 ref->dw_loc_oprnd1.v.val_addr = addr;
3390 ref->dtprel = dtprel;
3391 if (dwarf_split_debug_info)
3392 ref->dw_loc_oprnd1.val_entry
3393 = add_addr_table_entry (addr,
3394 dtprel ? ate_kind_rtx_dtprel : ate_kind_rtx);
3395 else
3396 ref->dw_loc_oprnd1.val_entry = NULL;
3398 return ref;
3401 /* Section names used to hold DWARF debugging information. */
3403 #ifndef DEBUG_INFO_SECTION
3404 #define DEBUG_INFO_SECTION ".debug_info"
3405 #endif
3406 #ifndef DEBUG_DWO_INFO_SECTION
3407 #define DEBUG_DWO_INFO_SECTION ".debug_info.dwo"
3408 #endif
3409 #ifndef DEBUG_ABBREV_SECTION
3410 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3411 #endif
3412 #ifndef DEBUG_DWO_ABBREV_SECTION
3413 #define DEBUG_DWO_ABBREV_SECTION ".debug_abbrev.dwo"
3414 #endif
3415 #ifndef DEBUG_ARANGES_SECTION
3416 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3417 #endif
3418 #ifndef DEBUG_ADDR_SECTION
3419 #define DEBUG_ADDR_SECTION ".debug_addr"
3420 #endif
3421 #ifndef DEBUG_NORM_MACINFO_SECTION
3422 #define DEBUG_NORM_MACINFO_SECTION ".debug_macinfo"
3423 #endif
3424 #ifndef DEBUG_DWO_MACINFO_SECTION
3425 #define DEBUG_DWO_MACINFO_SECTION ".debug_macinfo.dwo"
3426 #endif
3427 #ifndef DEBUG_MACINFO_SECTION
3428 #define DEBUG_MACINFO_SECTION \
3429 (!dwarf_split_debug_info \
3430 ? (DEBUG_NORM_MACINFO_SECTION) : (DEBUG_DWO_MACINFO_SECTION))
3431 #endif
3432 #ifndef DEBUG_NORM_MACRO_SECTION
3433 #define DEBUG_NORM_MACRO_SECTION ".debug_macro"
3434 #endif
3435 #ifndef DEBUG_DWO_MACRO_SECTION
3436 #define DEBUG_DWO_MACRO_SECTION ".debug_macro.dwo"
3437 #endif
3438 #ifndef DEBUG_MACRO_SECTION
3439 #define DEBUG_MACRO_SECTION \
3440 (!dwarf_split_debug_info \
3441 ? (DEBUG_NORM_MACRO_SECTION) : (DEBUG_DWO_MACRO_SECTION))
3442 #endif
3443 #ifndef DEBUG_LINE_SECTION
3444 #define DEBUG_LINE_SECTION ".debug_line"
3445 #endif
3446 #ifndef DEBUG_DWO_LINE_SECTION
3447 #define DEBUG_DWO_LINE_SECTION ".debug_line.dwo"
3448 #endif
3449 #ifndef DEBUG_LOC_SECTION
3450 #define DEBUG_LOC_SECTION ".debug_loc"
3451 #endif
3452 #ifndef DEBUG_DWO_LOC_SECTION
3453 #define DEBUG_DWO_LOC_SECTION ".debug_loc.dwo"
3454 #endif
3455 #ifndef DEBUG_PUBNAMES_SECTION
3456 #define DEBUG_PUBNAMES_SECTION \
3457 ((debug_generate_pub_sections == 2) \
3458 ? ".debug_gnu_pubnames" : ".debug_pubnames")
3459 #endif
3460 #ifndef DEBUG_PUBTYPES_SECTION
3461 #define DEBUG_PUBTYPES_SECTION \
3462 ((debug_generate_pub_sections == 2) \
3463 ? ".debug_gnu_pubtypes" : ".debug_pubtypes")
3464 #endif
3465 #define DEBUG_NORM_STR_OFFSETS_SECTION ".debug_str_offsets"
3466 #define DEBUG_DWO_STR_OFFSETS_SECTION ".debug_str_offsets.dwo"
3467 #ifndef DEBUG_STR_OFFSETS_SECTION
3468 #define DEBUG_STR_OFFSETS_SECTION \
3469 (!dwarf_split_debug_info \
3470 ? (DEBUG_NORM_STR_OFFSETS_SECTION) : (DEBUG_DWO_STR_OFFSETS_SECTION))
3471 #endif
3472 #ifndef DEBUG_STR_DWO_SECTION
3473 #define DEBUG_STR_DWO_SECTION ".debug_str.dwo"
3474 #endif
3475 #ifndef DEBUG_STR_SECTION
3476 #define DEBUG_STR_SECTION ".debug_str"
3477 #endif
3478 #ifndef DEBUG_RANGES_SECTION
3479 #define DEBUG_RANGES_SECTION ".debug_ranges"
3480 #endif
3482 /* Standard ELF section names for compiled code and data. */
3483 #ifndef TEXT_SECTION_NAME
3484 #define TEXT_SECTION_NAME ".text"
3485 #endif
3487 /* Section flags for .debug_macinfo/.debug_macro section. */
3488 #define DEBUG_MACRO_SECTION_FLAGS \
3489 (dwarf_split_debug_info ? SECTION_DEBUG | SECTION_EXCLUDE : SECTION_DEBUG)
3491 /* Section flags for .debug_str section. */
3492 #define DEBUG_STR_SECTION_FLAGS \
3493 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
3494 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3495 : SECTION_DEBUG)
3497 /* Section flags for .debug_str.dwo section. */
3498 #define DEBUG_STR_DWO_SECTION_FLAGS (SECTION_DEBUG | SECTION_EXCLUDE)
3500 /* Labels we insert at beginning sections we can reference instead of
3501 the section names themselves. */
3503 #ifndef TEXT_SECTION_LABEL
3504 #define TEXT_SECTION_LABEL "Ltext"
3505 #endif
3506 #ifndef COLD_TEXT_SECTION_LABEL
3507 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
3508 #endif
3509 #ifndef DEBUG_LINE_SECTION_LABEL
3510 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3511 #endif
3512 #ifndef DEBUG_SKELETON_LINE_SECTION_LABEL
3513 #define DEBUG_SKELETON_LINE_SECTION_LABEL "Lskeleton_debug_line"
3514 #endif
3515 #ifndef DEBUG_INFO_SECTION_LABEL
3516 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3517 #endif
3518 #ifndef DEBUG_SKELETON_INFO_SECTION_LABEL
3519 #define DEBUG_SKELETON_INFO_SECTION_LABEL "Lskeleton_debug_info"
3520 #endif
3521 #ifndef DEBUG_ABBREV_SECTION_LABEL
3522 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3523 #endif
3524 #ifndef DEBUG_SKELETON_ABBREV_SECTION_LABEL
3525 #define DEBUG_SKELETON_ABBREV_SECTION_LABEL "Lskeleton_debug_abbrev"
3526 #endif
3527 #ifndef DEBUG_ADDR_SECTION_LABEL
3528 #define DEBUG_ADDR_SECTION_LABEL "Ldebug_addr"
3529 #endif
3530 #ifndef DEBUG_LOC_SECTION_LABEL
3531 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3532 #endif
3533 #ifndef DEBUG_RANGES_SECTION_LABEL
3534 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3535 #endif
3536 #ifndef DEBUG_MACINFO_SECTION_LABEL
3537 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3538 #endif
3539 #ifndef DEBUG_MACRO_SECTION_LABEL
3540 #define DEBUG_MACRO_SECTION_LABEL "Ldebug_macro"
3541 #endif
3542 #define SKELETON_COMP_DIE_ABBREV 1
3543 #define SKELETON_TYPE_DIE_ABBREV 2
3545 /* Definitions of defaults for formats and names of various special
3546 (artificial) labels which may be generated within this file (when the -g
3547 options is used and DWARF2_DEBUGGING_INFO is in effect.
3548 If necessary, these may be overridden from within the tm.h file, but
3549 typically, overriding these defaults is unnecessary. */
3551 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3552 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3553 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3554 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3555 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3556 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3557 static char debug_skeleton_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3558 static char debug_skeleton_abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3559 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3560 static char debug_addr_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3561 static char debug_skeleton_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3562 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3563 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3564 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3566 #ifndef TEXT_END_LABEL
3567 #define TEXT_END_LABEL "Letext"
3568 #endif
3569 #ifndef COLD_END_LABEL
3570 #define COLD_END_LABEL "Letext_cold"
3571 #endif
3572 #ifndef BLOCK_BEGIN_LABEL
3573 #define BLOCK_BEGIN_LABEL "LBB"
3574 #endif
3575 #ifndef BLOCK_END_LABEL
3576 #define BLOCK_END_LABEL "LBE"
3577 #endif
3578 #ifndef LINE_CODE_LABEL
3579 #define LINE_CODE_LABEL "LM"
3580 #endif
3583 /* Return the root of the DIE's built for the current compilation unit. */
3584 static dw_die_ref
3585 comp_unit_die (void)
3587 if (!single_comp_unit_die)
3588 single_comp_unit_die = gen_compile_unit_die (NULL);
3589 return single_comp_unit_die;
3592 /* We allow a language front-end to designate a function that is to be
3593 called to "demangle" any name before it is put into a DIE. */
3595 static const char *(*demangle_name_func) (const char *);
3597 void
3598 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3600 demangle_name_func = func;
3603 /* Test if rtl node points to a pseudo register. */
3605 static inline int
3606 is_pseudo_reg (const_rtx rtl)
3608 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3609 || (GET_CODE (rtl) == SUBREG
3610 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3613 /* Return a reference to a type, with its const and volatile qualifiers
3614 removed. */
3616 static inline tree
3617 type_main_variant (tree type)
3619 type = TYPE_MAIN_VARIANT (type);
3621 /* ??? There really should be only one main variant among any group of
3622 variants of a given type (and all of the MAIN_VARIANT values for all
3623 members of the group should point to that one type) but sometimes the C
3624 front-end messes this up for array types, so we work around that bug
3625 here. */
3626 if (TREE_CODE (type) == ARRAY_TYPE)
3627 while (type != TYPE_MAIN_VARIANT (type))
3628 type = TYPE_MAIN_VARIANT (type);
3630 return type;
3633 /* Return nonzero if the given type node represents a tagged type. */
3635 static inline int
3636 is_tagged_type (const_tree type)
3638 enum tree_code code = TREE_CODE (type);
3640 return (code == RECORD_TYPE || code == UNION_TYPE
3641 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3644 /* Set label to debug_info_section_label + die_offset of a DIE reference. */
3646 static void
3647 get_ref_die_offset_label (char *label, dw_die_ref ref)
3649 sprintf (label, "%s+%ld", debug_info_section_label, ref->die_offset);
3652 /* Return die_offset of a DIE reference to a base type. */
3654 static unsigned long int
3655 get_base_type_offset (dw_die_ref ref)
3657 if (ref->die_offset)
3658 return ref->die_offset;
3659 if (comp_unit_die ()->die_abbrev)
3661 calc_base_type_die_sizes ();
3662 gcc_assert (ref->die_offset);
3664 return ref->die_offset;
3667 /* Return die_offset of a DIE reference other than base type. */
3669 static unsigned long int
3670 get_ref_die_offset (dw_die_ref ref)
3672 gcc_assert (ref->die_offset);
3673 return ref->die_offset;
3676 /* Convert a DIE tag into its string name. */
3678 static const char *
3679 dwarf_tag_name (unsigned int tag)
3681 const char *name = get_DW_TAG_name (tag);
3683 if (name != NULL)
3684 return name;
3686 return "DW_TAG_<unknown>";
3689 /* Convert a DWARF attribute code into its string name. */
3691 static const char *
3692 dwarf_attr_name (unsigned int attr)
3694 const char *name;
3696 switch (attr)
3698 #if VMS_DEBUGGING_INFO
3699 case DW_AT_HP_prologue:
3700 return "DW_AT_HP_prologue";
3701 #else
3702 case DW_AT_MIPS_loop_unroll_factor:
3703 return "DW_AT_MIPS_loop_unroll_factor";
3704 #endif
3706 #if VMS_DEBUGGING_INFO
3707 case DW_AT_HP_epilogue:
3708 return "DW_AT_HP_epilogue";
3709 #else
3710 case DW_AT_MIPS_stride:
3711 return "DW_AT_MIPS_stride";
3712 #endif
3715 name = get_DW_AT_name (attr);
3717 if (name != NULL)
3718 return name;
3720 return "DW_AT_<unknown>";
3723 /* Convert a DWARF value form code into its string name. */
3725 static const char *
3726 dwarf_form_name (unsigned int form)
3728 const char *name = get_DW_FORM_name (form);
3730 if (name != NULL)
3731 return name;
3733 return "DW_FORM_<unknown>";
3736 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
3737 instance of an inlined instance of a decl which is local to an inline
3738 function, so we have to trace all of the way back through the origin chain
3739 to find out what sort of node actually served as the original seed for the
3740 given block. */
3742 static tree
3743 decl_ultimate_origin (const_tree decl)
3745 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
3746 return NULL_TREE;
3748 /* DECL_ABSTRACT_ORIGIN can point to itself; ignore that if
3749 we're trying to output the abstract instance of this function. */
3750 if (DECL_ABSTRACT_P (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
3751 return NULL_TREE;
3753 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
3754 most distant ancestor, this should never happen. */
3755 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
3757 return DECL_ABSTRACT_ORIGIN (decl);
3760 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
3761 of a virtual function may refer to a base class, so we check the 'this'
3762 parameter. */
3764 static tree
3765 decl_class_context (tree decl)
3767 tree context = NULL_TREE;
3769 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
3770 context = DECL_CONTEXT (decl);
3771 else
3772 context = TYPE_MAIN_VARIANT
3773 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
3775 if (context && !TYPE_P (context))
3776 context = NULL_TREE;
3778 return context;
3781 /* Add an attribute/value pair to a DIE. */
3783 static inline void
3784 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
3786 /* Maybe this should be an assert? */
3787 if (die == NULL)
3788 return;
3790 vec_safe_reserve (die->die_attr, 1);
3791 vec_safe_push (die->die_attr, *attr);
3794 static inline enum dw_val_class
3795 AT_class (dw_attr_ref a)
3797 return a->dw_attr_val.val_class;
3800 /* Return the index for any attribute that will be referenced with a
3801 DW_FORM_GNU_addr_index or DW_FORM_GNU_str_index. String indices
3802 are stored in dw_attr_val.v.val_str for reference counting
3803 pruning. */
3805 static inline unsigned int
3806 AT_index (dw_attr_ref a)
3808 if (AT_class (a) == dw_val_class_str)
3809 return a->dw_attr_val.v.val_str->index;
3810 else if (a->dw_attr_val.val_entry != NULL)
3811 return a->dw_attr_val.val_entry->index;
3812 return NOT_INDEXED;
3815 /* Add a flag value attribute to a DIE. */
3817 static inline void
3818 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
3820 dw_attr_node attr;
3822 attr.dw_attr = attr_kind;
3823 attr.dw_attr_val.val_class = dw_val_class_flag;
3824 attr.dw_attr_val.val_entry = NULL;
3825 attr.dw_attr_val.v.val_flag = flag;
3826 add_dwarf_attr (die, &attr);
3829 static inline unsigned
3830 AT_flag (dw_attr_ref a)
3832 gcc_assert (a && AT_class (a) == dw_val_class_flag);
3833 return a->dw_attr_val.v.val_flag;
3836 /* Add a signed integer attribute value to a DIE. */
3838 static inline void
3839 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
3841 dw_attr_node attr;
3843 attr.dw_attr = attr_kind;
3844 attr.dw_attr_val.val_class = dw_val_class_const;
3845 attr.dw_attr_val.val_entry = NULL;
3846 attr.dw_attr_val.v.val_int = int_val;
3847 add_dwarf_attr (die, &attr);
3850 static inline HOST_WIDE_INT
3851 AT_int (dw_attr_ref a)
3853 gcc_assert (a && AT_class (a) == dw_val_class_const);
3854 return a->dw_attr_val.v.val_int;
3857 /* Add an unsigned integer attribute value to a DIE. */
3859 static inline void
3860 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
3861 unsigned HOST_WIDE_INT unsigned_val)
3863 dw_attr_node attr;
3865 attr.dw_attr = attr_kind;
3866 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
3867 attr.dw_attr_val.val_entry = NULL;
3868 attr.dw_attr_val.v.val_unsigned = unsigned_val;
3869 add_dwarf_attr (die, &attr);
3872 static inline unsigned HOST_WIDE_INT
3873 AT_unsigned (dw_attr_ref a)
3875 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
3876 return a->dw_attr_val.v.val_unsigned;
3879 /* Add an unsigned wide integer attribute value to a DIE. */
3881 static inline void
3882 add_AT_wide (dw_die_ref die, enum dwarf_attribute attr_kind,
3883 const wide_int& w)
3885 dw_attr_node attr;
3887 attr.dw_attr = attr_kind;
3888 attr.dw_attr_val.val_class = dw_val_class_wide_int;
3889 attr.dw_attr_val.val_entry = NULL;
3890 attr.dw_attr_val.v.val_wide = ggc_alloc<wide_int> ();
3891 *attr.dw_attr_val.v.val_wide = w;
3892 add_dwarf_attr (die, &attr);
3895 /* Add an unsigned double integer attribute value to a DIE. */
3897 static inline void
3898 add_AT_double (dw_die_ref die, enum dwarf_attribute attr_kind,
3899 HOST_WIDE_INT high, unsigned HOST_WIDE_INT low)
3901 dw_attr_node attr;
3903 attr.dw_attr = attr_kind;
3904 attr.dw_attr_val.val_class = dw_val_class_const_double;
3905 attr.dw_attr_val.val_entry = NULL;
3906 attr.dw_attr_val.v.val_double.high = high;
3907 attr.dw_attr_val.v.val_double.low = low;
3908 add_dwarf_attr (die, &attr);
3911 /* Add a floating point attribute value to a DIE and return it. */
3913 static inline void
3914 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
3915 unsigned int length, unsigned int elt_size, unsigned char *array)
3917 dw_attr_node attr;
3919 attr.dw_attr = attr_kind;
3920 attr.dw_attr_val.val_class = dw_val_class_vec;
3921 attr.dw_attr_val.val_entry = NULL;
3922 attr.dw_attr_val.v.val_vec.length = length;
3923 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
3924 attr.dw_attr_val.v.val_vec.array = array;
3925 add_dwarf_attr (die, &attr);
3928 /* Add an 8-byte data attribute value to a DIE. */
3930 static inline void
3931 add_AT_data8 (dw_die_ref die, enum dwarf_attribute attr_kind,
3932 unsigned char data8[8])
3934 dw_attr_node attr;
3936 attr.dw_attr = attr_kind;
3937 attr.dw_attr_val.val_class = dw_val_class_data8;
3938 attr.dw_attr_val.val_entry = NULL;
3939 memcpy (attr.dw_attr_val.v.val_data8, data8, 8);
3940 add_dwarf_attr (die, &attr);
3943 /* Add DW_AT_low_pc and DW_AT_high_pc to a DIE. When using
3944 dwarf_split_debug_info, address attributes in dies destined for the
3945 final executable have force_direct set to avoid using indexed
3946 references. */
3948 static inline void
3949 add_AT_low_high_pc (dw_die_ref die, const char *lbl_low, const char *lbl_high,
3950 bool force_direct)
3952 dw_attr_node attr;
3953 char * lbl_id;
3955 lbl_id = xstrdup (lbl_low);
3956 attr.dw_attr = DW_AT_low_pc;
3957 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
3958 attr.dw_attr_val.v.val_lbl_id = lbl_id;
3959 if (dwarf_split_debug_info && !force_direct)
3960 attr.dw_attr_val.val_entry
3961 = add_addr_table_entry (lbl_id, ate_kind_label);
3962 else
3963 attr.dw_attr_val.val_entry = NULL;
3964 add_dwarf_attr (die, &attr);
3966 attr.dw_attr = DW_AT_high_pc;
3967 if (dwarf_version < 4)
3968 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
3969 else
3970 attr.dw_attr_val.val_class = dw_val_class_high_pc;
3971 lbl_id = xstrdup (lbl_high);
3972 attr.dw_attr_val.v.val_lbl_id = lbl_id;
3973 if (attr.dw_attr_val.val_class == dw_val_class_lbl_id
3974 && dwarf_split_debug_info && !force_direct)
3975 attr.dw_attr_val.val_entry
3976 = add_addr_table_entry (lbl_id, ate_kind_label);
3977 else
3978 attr.dw_attr_val.val_entry = NULL;
3979 add_dwarf_attr (die, &attr);
3982 /* Hash and equality functions for debug_str_hash. */
3984 hashval_t
3985 indirect_string_hasher::hash (indirect_string_node *x)
3987 return htab_hash_string (x->str);
3990 bool
3991 indirect_string_hasher::equal (indirect_string_node *x1, const char *x2)
3993 return strcmp (x1->str, x2) == 0;
3996 /* Add STR to the given string hash table. */
3998 static struct indirect_string_node *
3999 find_AT_string_in_table (const char *str,
4000 hash_table<indirect_string_hasher> *table)
4002 struct indirect_string_node *node;
4004 indirect_string_node **slot
4005 = table->find_slot_with_hash (str, htab_hash_string (str), INSERT);
4006 if (*slot == NULL)
4008 node = ggc_cleared_alloc<indirect_string_node> ();
4009 node->str = ggc_strdup (str);
4010 *slot = node;
4012 else
4013 node = *slot;
4015 node->refcount++;
4016 return node;
4019 /* Add STR to the indirect string hash table. */
4021 static struct indirect_string_node *
4022 find_AT_string (const char *str)
4024 if (! debug_str_hash)
4025 debug_str_hash = hash_table<indirect_string_hasher>::create_ggc (10);
4027 return find_AT_string_in_table (str, debug_str_hash);
4030 /* Add a string attribute value to a DIE. */
4032 static inline void
4033 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4035 dw_attr_node attr;
4036 struct indirect_string_node *node;
4038 node = find_AT_string (str);
4040 attr.dw_attr = attr_kind;
4041 attr.dw_attr_val.val_class = dw_val_class_str;
4042 attr.dw_attr_val.val_entry = NULL;
4043 attr.dw_attr_val.v.val_str = node;
4044 add_dwarf_attr (die, &attr);
4047 static inline const char *
4048 AT_string (dw_attr_ref a)
4050 gcc_assert (a && AT_class (a) == dw_val_class_str);
4051 return a->dw_attr_val.v.val_str->str;
4054 /* Call this function directly to bypass AT_string_form's logic to put
4055 the string inline in the die. */
4057 static void
4058 set_indirect_string (struct indirect_string_node *node)
4060 char label[32];
4061 /* Already indirect is a no op. */
4062 if (node->form == DW_FORM_strp || node->form == DW_FORM_GNU_str_index)
4064 gcc_assert (node->label);
4065 return;
4067 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4068 ++dw2_string_counter;
4069 node->label = xstrdup (label);
4071 if (!dwarf_split_debug_info)
4073 node->form = DW_FORM_strp;
4074 node->index = NOT_INDEXED;
4076 else
4078 node->form = DW_FORM_GNU_str_index;
4079 node->index = NO_INDEX_ASSIGNED;
4083 /* Find out whether a string should be output inline in DIE
4084 or out-of-line in .debug_str section. */
4086 static enum dwarf_form
4087 find_string_form (struct indirect_string_node *node)
4089 unsigned int len;
4091 if (node->form)
4092 return node->form;
4094 len = strlen (node->str) + 1;
4096 /* If the string is shorter or equal to the size of the reference, it is
4097 always better to put it inline. */
4098 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4099 return node->form = DW_FORM_string;
4101 /* If we cannot expect the linker to merge strings in .debug_str
4102 section, only put it into .debug_str if it is worth even in this
4103 single module. */
4104 if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
4105 || ((debug_str_section->common.flags & SECTION_MERGE) == 0
4106 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len))
4107 return node->form = DW_FORM_string;
4109 set_indirect_string (node);
4111 return node->form;
4114 /* Find out whether the string referenced from the attribute should be
4115 output inline in DIE or out-of-line in .debug_str section. */
4117 static enum dwarf_form
4118 AT_string_form (dw_attr_ref a)
4120 gcc_assert (a && AT_class (a) == dw_val_class_str);
4121 return find_string_form (a->dw_attr_val.v.val_str);
4124 /* Add a DIE reference attribute value to a DIE. */
4126 static inline void
4127 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4129 dw_attr_node attr;
4131 #ifdef ENABLE_CHECKING
4132 gcc_assert (targ_die != NULL);
4133 #else
4134 /* With LTO we can end up trying to reference something we didn't create
4135 a DIE for. Avoid crashing later on a NULL referenced DIE. */
4136 if (targ_die == NULL)
4137 return;
4138 #endif
4140 attr.dw_attr = attr_kind;
4141 attr.dw_attr_val.val_class = dw_val_class_die_ref;
4142 attr.dw_attr_val.val_entry = NULL;
4143 attr.dw_attr_val.v.val_die_ref.die = targ_die;
4144 attr.dw_attr_val.v.val_die_ref.external = 0;
4145 add_dwarf_attr (die, &attr);
4148 /* Change DIE reference REF to point to NEW_DIE instead. */
4150 static inline void
4151 change_AT_die_ref (dw_attr_ref ref, dw_die_ref new_die)
4153 gcc_assert (ref->dw_attr_val.val_class == dw_val_class_die_ref);
4154 ref->dw_attr_val.v.val_die_ref.die = new_die;
4155 ref->dw_attr_val.v.val_die_ref.external = 0;
4158 /* Add an AT_specification attribute to a DIE, and also make the back
4159 pointer from the specification to the definition. */
4161 static inline void
4162 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4164 add_AT_die_ref (die, DW_AT_specification, targ_die);
4165 gcc_assert (!targ_die->die_definition);
4166 targ_die->die_definition = die;
4169 static inline dw_die_ref
4170 AT_ref (dw_attr_ref a)
4172 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4173 return a->dw_attr_val.v.val_die_ref.die;
4176 static inline int
4177 AT_ref_external (dw_attr_ref a)
4179 if (a && AT_class (a) == dw_val_class_die_ref)
4180 return a->dw_attr_val.v.val_die_ref.external;
4182 return 0;
4185 static inline void
4186 set_AT_ref_external (dw_attr_ref a, int i)
4188 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4189 a->dw_attr_val.v.val_die_ref.external = i;
4192 /* Add an FDE reference attribute value to a DIE. */
4194 static inline void
4195 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4197 dw_attr_node attr;
4199 attr.dw_attr = attr_kind;
4200 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
4201 attr.dw_attr_val.val_entry = NULL;
4202 attr.dw_attr_val.v.val_fde_index = targ_fde;
4203 add_dwarf_attr (die, &attr);
4206 /* Add a location description attribute value to a DIE. */
4208 static inline void
4209 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4211 dw_attr_node attr;
4213 attr.dw_attr = attr_kind;
4214 attr.dw_attr_val.val_class = dw_val_class_loc;
4215 attr.dw_attr_val.val_entry = NULL;
4216 attr.dw_attr_val.v.val_loc = loc;
4217 add_dwarf_attr (die, &attr);
4220 static inline dw_loc_descr_ref
4221 AT_loc (dw_attr_ref a)
4223 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4224 return a->dw_attr_val.v.val_loc;
4227 static inline void
4228 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4230 dw_attr_node attr;
4232 attr.dw_attr = attr_kind;
4233 attr.dw_attr_val.val_class = dw_val_class_loc_list;
4234 attr.dw_attr_val.val_entry = NULL;
4235 attr.dw_attr_val.v.val_loc_list = loc_list;
4236 add_dwarf_attr (die, &attr);
4237 have_location_lists = true;
4240 static inline dw_loc_list_ref
4241 AT_loc_list (dw_attr_ref a)
4243 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4244 return a->dw_attr_val.v.val_loc_list;
4247 static inline dw_loc_list_ref *
4248 AT_loc_list_ptr (dw_attr_ref a)
4250 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4251 return &a->dw_attr_val.v.val_loc_list;
4254 struct addr_hasher : ggc_hasher<addr_table_entry *>
4256 static hashval_t hash (addr_table_entry *);
4257 static bool equal (addr_table_entry *, addr_table_entry *);
4260 /* Table of entries into the .debug_addr section. */
4262 static GTY (()) hash_table<addr_hasher> *addr_index_table;
4264 /* Hash an address_table_entry. */
4266 hashval_t
4267 addr_hasher::hash (addr_table_entry *a)
4269 inchash::hash hstate;
4270 switch (a->kind)
4272 case ate_kind_rtx:
4273 hstate.add_int (0);
4274 break;
4275 case ate_kind_rtx_dtprel:
4276 hstate.add_int (1);
4277 break;
4278 case ate_kind_label:
4279 return htab_hash_string (a->addr.label);
4280 default:
4281 gcc_unreachable ();
4283 inchash::add_rtx (a->addr.rtl, hstate);
4284 return hstate.end ();
4287 /* Determine equality for two address_table_entries. */
4289 bool
4290 addr_hasher::equal (addr_table_entry *a1, addr_table_entry *a2)
4292 if (a1->kind != a2->kind)
4293 return 0;
4294 switch (a1->kind)
4296 case ate_kind_rtx:
4297 case ate_kind_rtx_dtprel:
4298 return rtx_equal_p (a1->addr.rtl, a2->addr.rtl);
4299 case ate_kind_label:
4300 return strcmp (a1->addr.label, a2->addr.label) == 0;
4301 default:
4302 gcc_unreachable ();
4306 /* Initialize an addr_table_entry. */
4308 void
4309 init_addr_table_entry (addr_table_entry *e, enum ate_kind kind, void *addr)
4311 e->kind = kind;
4312 switch (kind)
4314 case ate_kind_rtx:
4315 case ate_kind_rtx_dtprel:
4316 e->addr.rtl = (rtx) addr;
4317 break;
4318 case ate_kind_label:
4319 e->addr.label = (char *) addr;
4320 break;
4322 e->refcount = 0;
4323 e->index = NO_INDEX_ASSIGNED;
4326 /* Add attr to the address table entry to the table. Defer setting an
4327 index until output time. */
4329 static addr_table_entry *
4330 add_addr_table_entry (void *addr, enum ate_kind kind)
4332 addr_table_entry *node;
4333 addr_table_entry finder;
4335 gcc_assert (dwarf_split_debug_info);
4336 if (! addr_index_table)
4337 addr_index_table = hash_table<addr_hasher>::create_ggc (10);
4338 init_addr_table_entry (&finder, kind, addr);
4339 addr_table_entry **slot = addr_index_table->find_slot (&finder, INSERT);
4341 if (*slot == HTAB_EMPTY_ENTRY)
4343 node = ggc_cleared_alloc<addr_table_entry> ();
4344 init_addr_table_entry (node, kind, addr);
4345 *slot = node;
4347 else
4348 node = *slot;
4350 node->refcount++;
4351 return node;
4354 /* Remove an entry from the addr table by decrementing its refcount.
4355 Strictly, decrementing the refcount would be enough, but the
4356 assertion that the entry is actually in the table has found
4357 bugs. */
4359 static void
4360 remove_addr_table_entry (addr_table_entry *entry)
4362 gcc_assert (dwarf_split_debug_info && addr_index_table);
4363 /* After an index is assigned, the table is frozen. */
4364 gcc_assert (entry->refcount > 0 && entry->index == NO_INDEX_ASSIGNED);
4365 entry->refcount--;
4368 /* Given a location list, remove all addresses it refers to from the
4369 address_table. */
4371 static void
4372 remove_loc_list_addr_table_entries (dw_loc_descr_ref descr)
4374 for (; descr; descr = descr->dw_loc_next)
4375 if (descr->dw_loc_oprnd1.val_entry != NULL)
4377 gcc_assert (descr->dw_loc_oprnd1.val_entry->index == NO_INDEX_ASSIGNED);
4378 remove_addr_table_entry (descr->dw_loc_oprnd1.val_entry);
4382 /* A helper function for dwarf2out_finish called through
4383 htab_traverse. Assign an addr_table_entry its index. All entries
4384 must be collected into the table when this function is called,
4385 because the indexing code relies on htab_traverse to traverse nodes
4386 in the same order for each run. */
4389 index_addr_table_entry (addr_table_entry **h, unsigned int *index)
4391 addr_table_entry *node = *h;
4393 /* Don't index unreferenced nodes. */
4394 if (node->refcount == 0)
4395 return 1;
4397 gcc_assert (node->index == NO_INDEX_ASSIGNED);
4398 node->index = *index;
4399 *index += 1;
4401 return 1;
4404 /* Add an address constant attribute value to a DIE. When using
4405 dwarf_split_debug_info, address attributes in dies destined for the
4406 final executable should be direct references--setting the parameter
4407 force_direct ensures this behavior. */
4409 static inline void
4410 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr,
4411 bool force_direct)
4413 dw_attr_node attr;
4415 attr.dw_attr = attr_kind;
4416 attr.dw_attr_val.val_class = dw_val_class_addr;
4417 attr.dw_attr_val.v.val_addr = addr;
4418 if (dwarf_split_debug_info && !force_direct)
4419 attr.dw_attr_val.val_entry = add_addr_table_entry (addr, ate_kind_rtx);
4420 else
4421 attr.dw_attr_val.val_entry = NULL;
4422 add_dwarf_attr (die, &attr);
4425 /* Get the RTX from to an address DIE attribute. */
4427 static inline rtx
4428 AT_addr (dw_attr_ref a)
4430 gcc_assert (a && AT_class (a) == dw_val_class_addr);
4431 return a->dw_attr_val.v.val_addr;
4434 /* Add a file attribute value to a DIE. */
4436 static inline void
4437 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
4438 struct dwarf_file_data *fd)
4440 dw_attr_node attr;
4442 attr.dw_attr = attr_kind;
4443 attr.dw_attr_val.val_class = dw_val_class_file;
4444 attr.dw_attr_val.val_entry = NULL;
4445 attr.dw_attr_val.v.val_file = fd;
4446 add_dwarf_attr (die, &attr);
4449 /* Get the dwarf_file_data from a file DIE attribute. */
4451 static inline struct dwarf_file_data *
4452 AT_file (dw_attr_ref a)
4454 gcc_assert (a && AT_class (a) == dw_val_class_file);
4455 return a->dw_attr_val.v.val_file;
4458 /* Add a vms delta attribute value to a DIE. */
4460 static inline void
4461 add_AT_vms_delta (dw_die_ref die, enum dwarf_attribute attr_kind,
4462 const char *lbl1, const char *lbl2)
4464 dw_attr_node attr;
4466 attr.dw_attr = attr_kind;
4467 attr.dw_attr_val.val_class = dw_val_class_vms_delta;
4468 attr.dw_attr_val.val_entry = NULL;
4469 attr.dw_attr_val.v.val_vms_delta.lbl1 = xstrdup (lbl1);
4470 attr.dw_attr_val.v.val_vms_delta.lbl2 = xstrdup (lbl2);
4471 add_dwarf_attr (die, &attr);
4474 /* Add a label identifier attribute value to a DIE. */
4476 static inline void
4477 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind,
4478 const char *lbl_id)
4480 dw_attr_node attr;
4482 attr.dw_attr = attr_kind;
4483 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4484 attr.dw_attr_val.val_entry = NULL;
4485 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4486 if (dwarf_split_debug_info)
4487 attr.dw_attr_val.val_entry
4488 = add_addr_table_entry (attr.dw_attr_val.v.val_lbl_id,
4489 ate_kind_label);
4490 add_dwarf_attr (die, &attr);
4493 /* Add a section offset attribute value to a DIE, an offset into the
4494 debug_line section. */
4496 static inline void
4497 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4498 const char *label)
4500 dw_attr_node attr;
4502 attr.dw_attr = attr_kind;
4503 attr.dw_attr_val.val_class = dw_val_class_lineptr;
4504 attr.dw_attr_val.val_entry = NULL;
4505 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4506 add_dwarf_attr (die, &attr);
4509 /* Add a section offset attribute value to a DIE, an offset into the
4510 debug_macinfo section. */
4512 static inline void
4513 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4514 const char *label)
4516 dw_attr_node attr;
4518 attr.dw_attr = attr_kind;
4519 attr.dw_attr_val.val_class = dw_val_class_macptr;
4520 attr.dw_attr_val.val_entry = NULL;
4521 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4522 add_dwarf_attr (die, &attr);
4525 /* Add an offset attribute value to a DIE. */
4527 static inline void
4528 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4529 unsigned HOST_WIDE_INT offset)
4531 dw_attr_node attr;
4533 attr.dw_attr = attr_kind;
4534 attr.dw_attr_val.val_class = dw_val_class_offset;
4535 attr.dw_attr_val.val_entry = NULL;
4536 attr.dw_attr_val.v.val_offset = offset;
4537 add_dwarf_attr (die, &attr);
4540 /* Add a range_list attribute value to a DIE. When using
4541 dwarf_split_debug_info, address attributes in dies destined for the
4542 final executable should be direct references--setting the parameter
4543 force_direct ensures this behavior. */
4545 #define UNRELOCATED_OFFSET ((addr_table_entry *) 1)
4546 #define RELOCATED_OFFSET (NULL)
4548 static void
4549 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4550 long unsigned int offset, bool force_direct)
4552 dw_attr_node attr;
4554 attr.dw_attr = attr_kind;
4555 attr.dw_attr_val.val_class = dw_val_class_range_list;
4556 /* For the range_list attribute, use val_entry to store whether the
4557 offset should follow split-debug-info or normal semantics. This
4558 value is read in output_range_list_offset. */
4559 if (dwarf_split_debug_info && !force_direct)
4560 attr.dw_attr_val.val_entry = UNRELOCATED_OFFSET;
4561 else
4562 attr.dw_attr_val.val_entry = RELOCATED_OFFSET;
4563 attr.dw_attr_val.v.val_offset = offset;
4564 add_dwarf_attr (die, &attr);
4567 /* Return the start label of a delta attribute. */
4569 static inline const char *
4570 AT_vms_delta1 (dw_attr_ref a)
4572 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4573 return a->dw_attr_val.v.val_vms_delta.lbl1;
4576 /* Return the end label of a delta attribute. */
4578 static inline const char *
4579 AT_vms_delta2 (dw_attr_ref a)
4581 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4582 return a->dw_attr_val.v.val_vms_delta.lbl2;
4585 static inline const char *
4586 AT_lbl (dw_attr_ref a)
4588 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
4589 || AT_class (a) == dw_val_class_lineptr
4590 || AT_class (a) == dw_val_class_macptr
4591 || AT_class (a) == dw_val_class_high_pc));
4592 return a->dw_attr_val.v.val_lbl_id;
4595 /* Get the attribute of type attr_kind. */
4597 static dw_attr_ref
4598 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4600 dw_attr_ref a;
4601 unsigned ix;
4602 dw_die_ref spec = NULL;
4604 if (! die)
4605 return NULL;
4607 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
4608 if (a->dw_attr == attr_kind)
4609 return a;
4610 else if (a->dw_attr == DW_AT_specification
4611 || a->dw_attr == DW_AT_abstract_origin)
4612 spec = AT_ref (a);
4614 if (spec)
4615 return get_AT (spec, attr_kind);
4617 return NULL;
4620 /* Returns the parent of the declaration of DIE. */
4622 static dw_die_ref
4623 get_die_parent (dw_die_ref die)
4625 dw_die_ref t;
4627 if (!die)
4628 return NULL;
4630 if ((t = get_AT_ref (die, DW_AT_abstract_origin))
4631 || (t = get_AT_ref (die, DW_AT_specification)))
4632 die = t;
4634 return die->die_parent;
4637 /* Return the "low pc" attribute value, typically associated with a subprogram
4638 DIE. Return null if the "low pc" attribute is either not present, or if it
4639 cannot be represented as an assembler label identifier. */
4641 static inline const char *
4642 get_AT_low_pc (dw_die_ref die)
4644 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4646 return a ? AT_lbl (a) : NULL;
4649 /* Return the "high pc" attribute value, typically associated with a subprogram
4650 DIE. Return null if the "high pc" attribute is either not present, or if it
4651 cannot be represented as an assembler label identifier. */
4653 static inline const char *
4654 get_AT_hi_pc (dw_die_ref die)
4656 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4658 return a ? AT_lbl (a) : NULL;
4661 /* Return the value of the string attribute designated by ATTR_KIND, or
4662 NULL if it is not present. */
4664 static inline const char *
4665 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4667 dw_attr_ref a = get_AT (die, attr_kind);
4669 return a ? AT_string (a) : NULL;
4672 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4673 if it is not present. */
4675 static inline int
4676 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4678 dw_attr_ref a = get_AT (die, attr_kind);
4680 return a ? AT_flag (a) : 0;
4683 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4684 if it is not present. */
4686 static inline unsigned
4687 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4689 dw_attr_ref a = get_AT (die, attr_kind);
4691 return a ? AT_unsigned (a) : 0;
4694 static inline dw_die_ref
4695 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4697 dw_attr_ref a = get_AT (die, attr_kind);
4699 return a ? AT_ref (a) : NULL;
4702 static inline struct dwarf_file_data *
4703 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
4705 dw_attr_ref a = get_AT (die, attr_kind);
4707 return a ? AT_file (a) : NULL;
4710 /* Return TRUE if the language is C++. */
4712 static inline bool
4713 is_cxx (void)
4715 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4717 return (lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus
4718 || lang == DW_LANG_C_plus_plus_11 || lang == DW_LANG_C_plus_plus_14);
4721 /* Return TRUE if the language is Java. */
4723 static inline bool
4724 is_java (void)
4726 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4728 return lang == DW_LANG_Java;
4731 /* Return TRUE if the language is Fortran. */
4733 static inline bool
4734 is_fortran (void)
4736 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4738 return (lang == DW_LANG_Fortran77
4739 || lang == DW_LANG_Fortran90
4740 || lang == DW_LANG_Fortran95
4741 || lang == DW_LANG_Fortran03
4742 || lang == DW_LANG_Fortran08);
4745 /* Return TRUE if the language is Ada. */
4747 static inline bool
4748 is_ada (void)
4750 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4752 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
4755 /* Remove the specified attribute if present. */
4757 static void
4758 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4760 dw_attr_ref a;
4761 unsigned ix;
4763 if (! die)
4764 return;
4766 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
4767 if (a->dw_attr == attr_kind)
4769 if (AT_class (a) == dw_val_class_str)
4770 if (a->dw_attr_val.v.val_str->refcount)
4771 a->dw_attr_val.v.val_str->refcount--;
4773 /* vec::ordered_remove should help reduce the number of abbrevs
4774 that are needed. */
4775 die->die_attr->ordered_remove (ix);
4776 return;
4780 /* Remove CHILD from its parent. PREV must have the property that
4781 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
4783 static void
4784 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
4786 gcc_assert (child->die_parent == prev->die_parent);
4787 gcc_assert (prev->die_sib == child);
4788 if (prev == child)
4790 gcc_assert (child->die_parent->die_child == child);
4791 prev = NULL;
4793 else
4794 prev->die_sib = child->die_sib;
4795 if (child->die_parent->die_child == child)
4796 child->die_parent->die_child = prev;
4799 /* Replace OLD_CHILD with NEW_CHILD. PREV must have the property that
4800 PREV->DIE_SIB == OLD_CHILD. Does not alter OLD_CHILD. */
4802 static void
4803 replace_child (dw_die_ref old_child, dw_die_ref new_child, dw_die_ref prev)
4805 dw_die_ref parent = old_child->die_parent;
4807 gcc_assert (parent == prev->die_parent);
4808 gcc_assert (prev->die_sib == old_child);
4810 new_child->die_parent = parent;
4811 if (prev == old_child)
4813 gcc_assert (parent->die_child == old_child);
4814 new_child->die_sib = new_child;
4816 else
4818 prev->die_sib = new_child;
4819 new_child->die_sib = old_child->die_sib;
4821 if (old_child->die_parent->die_child == old_child)
4822 old_child->die_parent->die_child = new_child;
4825 /* Move all children from OLD_PARENT to NEW_PARENT. */
4827 static void
4828 move_all_children (dw_die_ref old_parent, dw_die_ref new_parent)
4830 dw_die_ref c;
4831 new_parent->die_child = old_parent->die_child;
4832 old_parent->die_child = NULL;
4833 FOR_EACH_CHILD (new_parent, c, c->die_parent = new_parent);
4836 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
4837 matches TAG. */
4839 static void
4840 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
4842 dw_die_ref c;
4844 c = die->die_child;
4845 if (c) do {
4846 dw_die_ref prev = c;
4847 c = c->die_sib;
4848 while (c->die_tag == tag)
4850 remove_child_with_prev (c, prev);
4851 /* Might have removed every child. */
4852 if (c == c->die_sib)
4853 return;
4854 c = c->die_sib;
4856 } while (c != die->die_child);
4859 /* Add a CHILD_DIE as the last child of DIE. */
4861 static void
4862 add_child_die (dw_die_ref die, dw_die_ref child_die)
4864 /* FIXME this should probably be an assert. */
4865 if (! die || ! child_die)
4866 return;
4867 gcc_assert (die != child_die);
4869 child_die->die_parent = die;
4870 if (die->die_child)
4872 child_die->die_sib = die->die_child->die_sib;
4873 die->die_child->die_sib = child_die;
4875 else
4876 child_die->die_sib = child_die;
4877 die->die_child = child_die;
4880 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
4881 is the specification, to the end of PARENT's list of children.
4882 This is done by removing and re-adding it. */
4884 static void
4885 splice_child_die (dw_die_ref parent, dw_die_ref child)
4887 dw_die_ref p;
4889 /* We want the declaration DIE from inside the class, not the
4890 specification DIE at toplevel. */
4891 if (child->die_parent != parent)
4893 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
4895 if (tmp)
4896 child = tmp;
4899 gcc_assert (child->die_parent == parent
4900 || (child->die_parent
4901 == get_AT_ref (parent, DW_AT_specification)));
4903 for (p = child->die_parent->die_child; ; p = p->die_sib)
4904 if (p->die_sib == child)
4906 remove_child_with_prev (child, p);
4907 break;
4910 add_child_die (parent, child);
4913 /* Return a pointer to a newly created DIE node. */
4915 static inline dw_die_ref
4916 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
4918 dw_die_ref die = ggc_cleared_alloc<die_node> ();
4920 die->die_tag = tag_value;
4922 if (parent_die != NULL)
4923 add_child_die (parent_die, die);
4924 else
4926 limbo_die_node *limbo_node;
4928 limbo_node = ggc_cleared_alloc<limbo_die_node> ();
4929 limbo_node->die = die;
4930 limbo_node->created_for = t;
4931 limbo_node->next = limbo_die_list;
4932 limbo_die_list = limbo_node;
4935 return die;
4938 /* Return the DIE associated with the given type specifier. */
4940 static inline dw_die_ref
4941 lookup_type_die (tree type)
4943 return TYPE_SYMTAB_DIE (type);
4946 /* Given a TYPE_DIE representing the type TYPE, if TYPE is an
4947 anonymous type named by the typedef TYPE_DIE, return the DIE of the
4948 anonymous type instead the one of the naming typedef. */
4950 static inline dw_die_ref
4951 strip_naming_typedef (tree type, dw_die_ref type_die)
4953 if (type
4954 && TREE_CODE (type) == RECORD_TYPE
4955 && type_die
4956 && type_die->die_tag == DW_TAG_typedef
4957 && is_naming_typedef_decl (TYPE_NAME (type)))
4958 type_die = get_AT_ref (type_die, DW_AT_type);
4959 return type_die;
4962 /* Like lookup_type_die, but if type is an anonymous type named by a
4963 typedef[1], return the DIE of the anonymous type instead the one of
4964 the naming typedef. This is because in gen_typedef_die, we did
4965 equate the anonymous struct named by the typedef with the DIE of
4966 the naming typedef. So by default, lookup_type_die on an anonymous
4967 struct yields the DIE of the naming typedef.
4969 [1]: Read the comment of is_naming_typedef_decl to learn about what
4970 a naming typedef is. */
4972 static inline dw_die_ref
4973 lookup_type_die_strip_naming_typedef (tree type)
4975 dw_die_ref die = lookup_type_die (type);
4976 return strip_naming_typedef (type, die);
4979 /* Equate a DIE to a given type specifier. */
4981 static inline void
4982 equate_type_number_to_die (tree type, dw_die_ref type_die)
4984 TYPE_SYMTAB_DIE (type) = type_die;
4987 /* Returns a hash value for X (which really is a die_struct). */
4989 inline hashval_t
4990 decl_die_hasher::hash (die_node *x)
4992 return (hashval_t) x->decl_id;
4995 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
4997 inline bool
4998 decl_die_hasher::equal (die_node *x, tree y)
5000 return (x->decl_id == DECL_UID (y));
5003 /* Return the DIE associated with a given declaration. */
5005 static inline dw_die_ref
5006 lookup_decl_die (tree decl)
5008 return decl_die_table->find_with_hash (decl, DECL_UID (decl));
5011 /* Returns a hash value for X (which really is a var_loc_list). */
5013 inline hashval_t
5014 decl_loc_hasher::hash (var_loc_list *x)
5016 return (hashval_t) x->decl_id;
5019 /* Return nonzero if decl_id of var_loc_list X is the same as
5020 UID of decl *Y. */
5022 inline bool
5023 decl_loc_hasher::equal (var_loc_list *x, const_tree y)
5025 return (x->decl_id == DECL_UID (y));
5028 /* Return the var_loc list associated with a given declaration. */
5030 static inline var_loc_list *
5031 lookup_decl_loc (const_tree decl)
5033 if (!decl_loc_table)
5034 return NULL;
5035 return decl_loc_table->find_with_hash (decl, DECL_UID (decl));
5038 /* Returns a hash value for X (which really is a cached_dw_loc_list_list). */
5040 inline hashval_t
5041 dw_loc_list_hasher::hash (cached_dw_loc_list *x)
5043 return (hashval_t) x->decl_id;
5046 /* Return nonzero if decl_id of cached_dw_loc_list X is the same as
5047 UID of decl *Y. */
5049 inline bool
5050 dw_loc_list_hasher::equal (cached_dw_loc_list *x, const_tree y)
5052 return (x->decl_id == DECL_UID (y));
5055 /* Equate a DIE to a particular declaration. */
5057 static void
5058 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5060 unsigned int decl_id = DECL_UID (decl);
5062 *decl_die_table->find_slot_with_hash (decl, decl_id, INSERT) = decl_die;
5063 decl_die->decl_id = decl_id;
5066 /* Return how many bits covers PIECE EXPR_LIST. */
5068 static HOST_WIDE_INT
5069 decl_piece_bitsize (rtx piece)
5071 int ret = (int) GET_MODE (piece);
5072 if (ret)
5073 return ret;
5074 gcc_assert (GET_CODE (XEXP (piece, 0)) == CONCAT
5075 && CONST_INT_P (XEXP (XEXP (piece, 0), 0)));
5076 return INTVAL (XEXP (XEXP (piece, 0), 0));
5079 /* Return pointer to the location of location note in PIECE EXPR_LIST. */
5081 static rtx *
5082 decl_piece_varloc_ptr (rtx piece)
5084 if ((int) GET_MODE (piece))
5085 return &XEXP (piece, 0);
5086 else
5087 return &XEXP (XEXP (piece, 0), 1);
5090 /* Create an EXPR_LIST for location note LOC_NOTE covering BITSIZE bits.
5091 Next is the chain of following piece nodes. */
5093 static rtx_expr_list *
5094 decl_piece_node (rtx loc_note, HOST_WIDE_INT bitsize, rtx next)
5096 if (bitsize > 0 && bitsize <= (int) MAX_MACHINE_MODE)
5097 return alloc_EXPR_LIST (bitsize, loc_note, next);
5098 else
5099 return alloc_EXPR_LIST (0, gen_rtx_CONCAT (VOIDmode,
5100 GEN_INT (bitsize),
5101 loc_note), next);
5104 /* Return rtx that should be stored into loc field for
5105 LOC_NOTE and BITPOS/BITSIZE. */
5107 static rtx
5108 construct_piece_list (rtx loc_note, HOST_WIDE_INT bitpos,
5109 HOST_WIDE_INT bitsize)
5111 if (bitsize != -1)
5113 loc_note = decl_piece_node (loc_note, bitsize, NULL_RTX);
5114 if (bitpos != 0)
5115 loc_note = decl_piece_node (NULL_RTX, bitpos, loc_note);
5117 return loc_note;
5120 /* This function either modifies location piece list *DEST in
5121 place (if SRC and INNER is NULL), or copies location piece list
5122 *SRC to *DEST while modifying it. Location BITPOS is modified
5123 to contain LOC_NOTE, any pieces overlapping it are removed resp.
5124 not copied and if needed some padding around it is added.
5125 When modifying in place, DEST should point to EXPR_LIST where
5126 earlier pieces cover PIECE_BITPOS bits, when copying SRC points
5127 to the start of the whole list and INNER points to the EXPR_LIST
5128 where earlier pieces cover PIECE_BITPOS bits. */
5130 static void
5131 adjust_piece_list (rtx *dest, rtx *src, rtx *inner,
5132 HOST_WIDE_INT bitpos, HOST_WIDE_INT piece_bitpos,
5133 HOST_WIDE_INT bitsize, rtx loc_note)
5135 HOST_WIDE_INT diff;
5136 bool copy = inner != NULL;
5138 if (copy)
5140 /* First copy all nodes preceding the current bitpos. */
5141 while (src != inner)
5143 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5144 decl_piece_bitsize (*src), NULL_RTX);
5145 dest = &XEXP (*dest, 1);
5146 src = &XEXP (*src, 1);
5149 /* Add padding if needed. */
5150 if (bitpos != piece_bitpos)
5152 *dest = decl_piece_node (NULL_RTX, bitpos - piece_bitpos,
5153 copy ? NULL_RTX : *dest);
5154 dest = &XEXP (*dest, 1);
5156 else if (*dest && decl_piece_bitsize (*dest) == bitsize)
5158 gcc_assert (!copy);
5159 /* A piece with correct bitpos and bitsize already exist,
5160 just update the location for it and return. */
5161 *decl_piece_varloc_ptr (*dest) = loc_note;
5162 return;
5164 /* Add the piece that changed. */
5165 *dest = decl_piece_node (loc_note, bitsize, copy ? NULL_RTX : *dest);
5166 dest = &XEXP (*dest, 1);
5167 /* Skip over pieces that overlap it. */
5168 diff = bitpos - piece_bitpos + bitsize;
5169 if (!copy)
5170 src = dest;
5171 while (diff > 0 && *src)
5173 rtx piece = *src;
5174 diff -= decl_piece_bitsize (piece);
5175 if (copy)
5176 src = &XEXP (piece, 1);
5177 else
5179 *src = XEXP (piece, 1);
5180 free_EXPR_LIST_node (piece);
5183 /* Add padding if needed. */
5184 if (diff < 0 && *src)
5186 if (!copy)
5187 dest = src;
5188 *dest = decl_piece_node (NULL_RTX, -diff, copy ? NULL_RTX : *dest);
5189 dest = &XEXP (*dest, 1);
5191 if (!copy)
5192 return;
5193 /* Finally copy all nodes following it. */
5194 while (*src)
5196 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5197 decl_piece_bitsize (*src), NULL_RTX);
5198 dest = &XEXP (*dest, 1);
5199 src = &XEXP (*src, 1);
5203 /* Add a variable location node to the linked list for DECL. */
5205 static struct var_loc_node *
5206 add_var_loc_to_decl (tree decl, rtx loc_note, const char *label)
5208 unsigned int decl_id;
5209 var_loc_list *temp;
5210 struct var_loc_node *loc = NULL;
5211 HOST_WIDE_INT bitsize = -1, bitpos = -1;
5213 if (TREE_CODE (decl) == VAR_DECL
5214 && DECL_HAS_DEBUG_EXPR_P (decl))
5216 tree realdecl = DECL_DEBUG_EXPR (decl);
5217 if (handled_component_p (realdecl)
5218 || (TREE_CODE (realdecl) == MEM_REF
5219 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5221 HOST_WIDE_INT maxsize;
5222 tree innerdecl;
5223 innerdecl
5224 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize, &maxsize);
5225 if (!DECL_P (innerdecl)
5226 || DECL_IGNORED_P (innerdecl)
5227 || TREE_STATIC (innerdecl)
5228 || bitsize <= 0
5229 || bitpos + bitsize > 256
5230 || bitsize != maxsize)
5231 return NULL;
5232 decl = innerdecl;
5236 decl_id = DECL_UID (decl);
5237 var_loc_list **slot
5238 = decl_loc_table->find_slot_with_hash (decl, decl_id, INSERT);
5239 if (*slot == NULL)
5241 temp = ggc_cleared_alloc<var_loc_list> ();
5242 temp->decl_id = decl_id;
5243 *slot = temp;
5245 else
5246 temp = *slot;
5248 /* For PARM_DECLs try to keep around the original incoming value,
5249 even if that means we'll emit a zero-range .debug_loc entry. */
5250 if (temp->last
5251 && temp->first == temp->last
5252 && TREE_CODE (decl) == PARM_DECL
5253 && NOTE_P (temp->first->loc)
5254 && NOTE_VAR_LOCATION_DECL (temp->first->loc) == decl
5255 && DECL_INCOMING_RTL (decl)
5256 && NOTE_VAR_LOCATION_LOC (temp->first->loc)
5257 && GET_CODE (NOTE_VAR_LOCATION_LOC (temp->first->loc))
5258 == GET_CODE (DECL_INCOMING_RTL (decl))
5259 && prev_real_insn (temp->first->loc) == NULL_RTX
5260 && (bitsize != -1
5261 || !rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->first->loc),
5262 NOTE_VAR_LOCATION_LOC (loc_note))
5263 || (NOTE_VAR_LOCATION_STATUS (temp->first->loc)
5264 != NOTE_VAR_LOCATION_STATUS (loc_note))))
5266 loc = ggc_cleared_alloc<var_loc_node> ();
5267 temp->first->next = loc;
5268 temp->last = loc;
5269 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5271 else if (temp->last)
5273 struct var_loc_node *last = temp->last, *unused = NULL;
5274 rtx *piece_loc = NULL, last_loc_note;
5275 HOST_WIDE_INT piece_bitpos = 0;
5276 if (last->next)
5278 last = last->next;
5279 gcc_assert (last->next == NULL);
5281 if (bitsize != -1 && GET_CODE (last->loc) == EXPR_LIST)
5283 piece_loc = &last->loc;
5286 HOST_WIDE_INT cur_bitsize = decl_piece_bitsize (*piece_loc);
5287 if (piece_bitpos + cur_bitsize > bitpos)
5288 break;
5289 piece_bitpos += cur_bitsize;
5290 piece_loc = &XEXP (*piece_loc, 1);
5292 while (*piece_loc);
5294 /* TEMP->LAST here is either pointer to the last but one or
5295 last element in the chained list, LAST is pointer to the
5296 last element. */
5297 if (label && strcmp (last->label, label) == 0)
5299 /* For SRA optimized variables if there weren't any real
5300 insns since last note, just modify the last node. */
5301 if (piece_loc != NULL)
5303 adjust_piece_list (piece_loc, NULL, NULL,
5304 bitpos, piece_bitpos, bitsize, loc_note);
5305 return NULL;
5307 /* If the last note doesn't cover any instructions, remove it. */
5308 if (temp->last != last)
5310 temp->last->next = NULL;
5311 unused = last;
5312 last = temp->last;
5313 gcc_assert (strcmp (last->label, label) != 0);
5315 else
5317 gcc_assert (temp->first == temp->last
5318 || (temp->first->next == temp->last
5319 && TREE_CODE (decl) == PARM_DECL));
5320 memset (temp->last, '\0', sizeof (*temp->last));
5321 temp->last->loc = construct_piece_list (loc_note, bitpos, bitsize);
5322 return temp->last;
5325 if (bitsize == -1 && NOTE_P (last->loc))
5326 last_loc_note = last->loc;
5327 else if (piece_loc != NULL
5328 && *piece_loc != NULL_RTX
5329 && piece_bitpos == bitpos
5330 && decl_piece_bitsize (*piece_loc) == bitsize)
5331 last_loc_note = *decl_piece_varloc_ptr (*piece_loc);
5332 else
5333 last_loc_note = NULL_RTX;
5334 /* If the current location is the same as the end of the list,
5335 and either both or neither of the locations is uninitialized,
5336 we have nothing to do. */
5337 if (last_loc_note == NULL_RTX
5338 || (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (last_loc_note),
5339 NOTE_VAR_LOCATION_LOC (loc_note)))
5340 || ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
5341 != NOTE_VAR_LOCATION_STATUS (loc_note))
5342 && ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
5343 == VAR_INIT_STATUS_UNINITIALIZED)
5344 || (NOTE_VAR_LOCATION_STATUS (loc_note)
5345 == VAR_INIT_STATUS_UNINITIALIZED))))
5347 /* Add LOC to the end of list and update LAST. If the last
5348 element of the list has been removed above, reuse its
5349 memory for the new node, otherwise allocate a new one. */
5350 if (unused)
5352 loc = unused;
5353 memset (loc, '\0', sizeof (*loc));
5355 else
5356 loc = ggc_cleared_alloc<var_loc_node> ();
5357 if (bitsize == -1 || piece_loc == NULL)
5358 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5359 else
5360 adjust_piece_list (&loc->loc, &last->loc, piece_loc,
5361 bitpos, piece_bitpos, bitsize, loc_note);
5362 last->next = loc;
5363 /* Ensure TEMP->LAST will point either to the new last but one
5364 element of the chain, or to the last element in it. */
5365 if (last != temp->last)
5366 temp->last = last;
5368 else if (unused)
5369 ggc_free (unused);
5371 else
5373 loc = ggc_cleared_alloc<var_loc_node> ();
5374 temp->first = loc;
5375 temp->last = loc;
5376 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5378 return loc;
5381 /* Keep track of the number of spaces used to indent the
5382 output of the debugging routines that print the structure of
5383 the DIE internal representation. */
5384 static int print_indent;
5386 /* Indent the line the number of spaces given by print_indent. */
5388 static inline void
5389 print_spaces (FILE *outfile)
5391 fprintf (outfile, "%*s", print_indent, "");
5394 /* Print a type signature in hex. */
5396 static inline void
5397 print_signature (FILE *outfile, char *sig)
5399 int i;
5401 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
5402 fprintf (outfile, "%02x", sig[i] & 0xff);
5405 static void print_loc_descr (dw_loc_descr_ref, FILE *);
5407 /* Print the value associated to the VAL DWARF value node to OUTFILE. If
5408 RECURSE, output location descriptor operations. */
5410 static void
5411 print_dw_val (dw_val_node *val, bool recurse, FILE *outfile)
5413 switch (val->val_class)
5415 case dw_val_class_addr:
5416 fprintf (outfile, "address");
5417 break;
5418 case dw_val_class_offset:
5419 fprintf (outfile, "offset");
5420 break;
5421 case dw_val_class_loc:
5422 fprintf (outfile, "location descriptor");
5423 if (val->v.val_loc == NULL)
5424 fprintf (outfile, " -> <null>\n");
5425 else if (recurse)
5427 fprintf (outfile, ":\n");
5428 print_indent += 4;
5429 print_loc_descr (val->v.val_loc, outfile);
5430 print_indent -= 4;
5432 else
5433 fprintf (outfile, " (%p)\n", (void *) val->v.val_loc);
5434 break;
5435 case dw_val_class_loc_list:
5436 fprintf (outfile, "location list -> label:%s",
5437 val->v.val_loc_list->ll_symbol);
5438 break;
5439 case dw_val_class_range_list:
5440 fprintf (outfile, "range list");
5441 break;
5442 case dw_val_class_const:
5443 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, val->v.val_int);
5444 break;
5445 case dw_val_class_unsigned_const:
5446 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, val->v.val_unsigned);
5447 break;
5448 case dw_val_class_const_double:
5449 fprintf (outfile, "constant ("HOST_WIDE_INT_PRINT_DEC","\
5450 HOST_WIDE_INT_PRINT_UNSIGNED")",
5451 val->v.val_double.high,
5452 val->v.val_double.low);
5453 break;
5454 case dw_val_class_wide_int:
5456 int i = val->v.val_wide->get_len ();
5457 fprintf (outfile, "constant (");
5458 gcc_assert (i > 0);
5459 if (val->v.val_wide->elt (i - 1) == 0)
5460 fprintf (outfile, "0x");
5461 fprintf (outfile, HOST_WIDE_INT_PRINT_HEX,
5462 val->v.val_wide->elt (--i));
5463 while (--i >= 0)
5464 fprintf (outfile, HOST_WIDE_INT_PRINT_PADDED_HEX,
5465 val->v.val_wide->elt (i));
5466 fprintf (outfile, ")");
5467 break;
5469 case dw_val_class_vec:
5470 fprintf (outfile, "floating-point or vector constant");
5471 break;
5472 case dw_val_class_flag:
5473 fprintf (outfile, "%u", val->v.val_flag);
5474 break;
5475 case dw_val_class_die_ref:
5476 if (val->v.val_die_ref.die != NULL)
5478 dw_die_ref die = val->v.val_die_ref.die;
5480 if (die->comdat_type_p)
5482 fprintf (outfile, "die -> signature: ");
5483 print_signature (outfile,
5484 die->die_id.die_type_node->signature);
5486 else if (die->die_id.die_symbol)
5487 fprintf (outfile, "die -> label: %s", die->die_id.die_symbol);
5488 else
5489 fprintf (outfile, "die -> %ld", die->die_offset);
5490 fprintf (outfile, " (%p)", (void *) die);
5492 else
5493 fprintf (outfile, "die -> <null>");
5494 break;
5495 case dw_val_class_vms_delta:
5496 fprintf (outfile, "delta: @slotcount(%s-%s)",
5497 val->v.val_vms_delta.lbl2, val->v.val_vms_delta.lbl1);
5498 break;
5499 case dw_val_class_lbl_id:
5500 case dw_val_class_lineptr:
5501 case dw_val_class_macptr:
5502 case dw_val_class_high_pc:
5503 fprintf (outfile, "label: %s", val->v.val_lbl_id);
5504 break;
5505 case dw_val_class_str:
5506 if (val->v.val_str->str != NULL)
5507 fprintf (outfile, "\"%s\"", val->v.val_str->str);
5508 else
5509 fprintf (outfile, "<null>");
5510 break;
5511 case dw_val_class_file:
5512 fprintf (outfile, "\"%s\" (%d)", val->v.val_file->filename,
5513 val->v.val_file->emitted_number);
5514 break;
5515 case dw_val_class_data8:
5517 int i;
5519 for (i = 0; i < 8; i++)
5520 fprintf (outfile, "%02x", val->v.val_data8[i]);
5521 break;
5523 default:
5524 break;
5528 /* Likewise, for a DIE attribute. */
5530 static void
5531 print_attribute (dw_attr_ref a, bool recurse, FILE *outfile)
5533 print_dw_val (&a->dw_attr_val, recurse, outfile);
5537 /* Print the list of operands in the LOC location description to OUTFILE. This
5538 routine is a debugging aid only. */
5540 static void
5541 print_loc_descr (dw_loc_descr_ref loc, FILE *outfile)
5543 dw_loc_descr_ref l = loc;
5545 if (loc == NULL)
5547 print_spaces (outfile);
5548 fprintf (outfile, "<null>\n");
5549 return;
5552 for (l = loc; l != NULL; l = l->dw_loc_next)
5554 print_spaces (outfile);
5555 fprintf (outfile, "(%p) %s",
5556 (void *) l,
5557 dwarf_stack_op_name (l->dw_loc_opc));
5558 if (l->dw_loc_oprnd1.val_class != dw_val_class_none)
5560 fprintf (outfile, " ");
5561 print_dw_val (&l->dw_loc_oprnd1, false, outfile);
5563 if (l->dw_loc_oprnd2.val_class != dw_val_class_none)
5565 fprintf (outfile, ", ");
5566 print_dw_val (&l->dw_loc_oprnd2, false, outfile);
5568 fprintf (outfile, "\n");
5572 /* Print the information associated with a given DIE, and its children.
5573 This routine is a debugging aid only. */
5575 static void
5576 print_die (dw_die_ref die, FILE *outfile)
5578 dw_attr_ref a;
5579 dw_die_ref c;
5580 unsigned ix;
5582 print_spaces (outfile);
5583 fprintf (outfile, "DIE %4ld: %s (%p)\n",
5584 die->die_offset, dwarf_tag_name (die->die_tag),
5585 (void*) die);
5586 print_spaces (outfile);
5587 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5588 fprintf (outfile, " offset: %ld", die->die_offset);
5589 fprintf (outfile, " mark: %d\n", die->die_mark);
5591 if (die->comdat_type_p)
5593 print_spaces (outfile);
5594 fprintf (outfile, " signature: ");
5595 print_signature (outfile, die->die_id.die_type_node->signature);
5596 fprintf (outfile, "\n");
5599 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5601 print_spaces (outfile);
5602 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5604 print_attribute (a, true, outfile);
5605 fprintf (outfile, "\n");
5608 if (die->die_child != NULL)
5610 print_indent += 4;
5611 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5612 print_indent -= 4;
5614 if (print_indent == 0)
5615 fprintf (outfile, "\n");
5618 /* Print the list of operations in the LOC location description. */
5620 DEBUG_FUNCTION void
5621 debug_dwarf_loc_descr (dw_loc_descr_ref loc)
5623 print_loc_descr (loc, stderr);
5626 /* Print the information collected for a given DIE. */
5628 DEBUG_FUNCTION void
5629 debug_dwarf_die (dw_die_ref die)
5631 print_die (die, stderr);
5634 DEBUG_FUNCTION void
5635 debug (die_struct &ref)
5637 print_die (&ref, stderr);
5640 DEBUG_FUNCTION void
5641 debug (die_struct *ptr)
5643 if (ptr)
5644 debug (*ptr);
5645 else
5646 fprintf (stderr, "<nil>\n");
5650 /* Print all DWARF information collected for the compilation unit.
5651 This routine is a debugging aid only. */
5653 DEBUG_FUNCTION void
5654 debug_dwarf (void)
5656 print_indent = 0;
5657 print_die (comp_unit_die (), stderr);
5660 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5661 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5662 DIE that marks the start of the DIEs for this include file. */
5664 static dw_die_ref
5665 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5667 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5668 dw_die_ref new_unit = gen_compile_unit_die (filename);
5670 new_unit->die_sib = old_unit;
5671 return new_unit;
5674 /* Close an include-file CU and reopen the enclosing one. */
5676 static dw_die_ref
5677 pop_compile_unit (dw_die_ref old_unit)
5679 dw_die_ref new_unit = old_unit->die_sib;
5681 old_unit->die_sib = NULL;
5682 return new_unit;
5685 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5686 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
5687 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5689 /* Calculate the checksum of a location expression. */
5691 static inline void
5692 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5694 int tem;
5695 inchash::hash hstate;
5696 hashval_t hash;
5698 tem = (loc->dtprel << 8) | ((unsigned int) loc->dw_loc_opc);
5699 CHECKSUM (tem);
5700 hash_loc_operands (loc, hstate);
5701 hash = hstate.end();
5702 CHECKSUM (hash);
5705 /* Calculate the checksum of an attribute. */
5707 static void
5708 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5710 dw_loc_descr_ref loc;
5711 rtx r;
5713 CHECKSUM (at->dw_attr);
5715 /* We don't care that this was compiled with a different compiler
5716 snapshot; if the output is the same, that's what matters. */
5717 if (at->dw_attr == DW_AT_producer)
5718 return;
5720 switch (AT_class (at))
5722 case dw_val_class_const:
5723 CHECKSUM (at->dw_attr_val.v.val_int);
5724 break;
5725 case dw_val_class_unsigned_const:
5726 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5727 break;
5728 case dw_val_class_const_double:
5729 CHECKSUM (at->dw_attr_val.v.val_double);
5730 break;
5731 case dw_val_class_wide_int:
5732 CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
5733 get_full_len (*at->dw_attr_val.v.val_wide)
5734 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
5735 break;
5736 case dw_val_class_vec:
5737 CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
5738 (at->dw_attr_val.v.val_vec.length
5739 * at->dw_attr_val.v.val_vec.elt_size));
5740 break;
5741 case dw_val_class_flag:
5742 CHECKSUM (at->dw_attr_val.v.val_flag);
5743 break;
5744 case dw_val_class_str:
5745 CHECKSUM_STRING (AT_string (at));
5746 break;
5748 case dw_val_class_addr:
5749 r = AT_addr (at);
5750 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5751 CHECKSUM_STRING (XSTR (r, 0));
5752 break;
5754 case dw_val_class_offset:
5755 CHECKSUM (at->dw_attr_val.v.val_offset);
5756 break;
5758 case dw_val_class_loc:
5759 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5760 loc_checksum (loc, ctx);
5761 break;
5763 case dw_val_class_die_ref:
5764 die_checksum (AT_ref (at), ctx, mark);
5765 break;
5767 case dw_val_class_fde_ref:
5768 case dw_val_class_vms_delta:
5769 case dw_val_class_lbl_id:
5770 case dw_val_class_lineptr:
5771 case dw_val_class_macptr:
5772 case dw_val_class_high_pc:
5773 break;
5775 case dw_val_class_file:
5776 CHECKSUM_STRING (AT_file (at)->filename);
5777 break;
5779 case dw_val_class_data8:
5780 CHECKSUM (at->dw_attr_val.v.val_data8);
5781 break;
5783 default:
5784 break;
5788 /* Calculate the checksum of a DIE. */
5790 static void
5791 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5793 dw_die_ref c;
5794 dw_attr_ref a;
5795 unsigned ix;
5797 /* To avoid infinite recursion. */
5798 if (die->die_mark)
5800 CHECKSUM (die->die_mark);
5801 return;
5803 die->die_mark = ++(*mark);
5805 CHECKSUM (die->die_tag);
5807 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5808 attr_checksum (a, ctx, mark);
5810 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
5813 #undef CHECKSUM
5814 #undef CHECKSUM_BLOCK
5815 #undef CHECKSUM_STRING
5817 /* For DWARF-4 types, include the trailing NULL when checksumming strings. */
5818 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5819 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
5820 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx)
5821 #define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx)
5822 #define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx)
5823 #define CHECKSUM_ATTR(FOO) \
5824 if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark)
5826 /* Calculate the checksum of a number in signed LEB128 format. */
5828 static void
5829 checksum_sleb128 (HOST_WIDE_INT value, struct md5_ctx *ctx)
5831 unsigned char byte;
5832 bool more;
5834 while (1)
5836 byte = (value & 0x7f);
5837 value >>= 7;
5838 more = !((value == 0 && (byte & 0x40) == 0)
5839 || (value == -1 && (byte & 0x40) != 0));
5840 if (more)
5841 byte |= 0x80;
5842 CHECKSUM (byte);
5843 if (!more)
5844 break;
5848 /* Calculate the checksum of a number in unsigned LEB128 format. */
5850 static void
5851 checksum_uleb128 (unsigned HOST_WIDE_INT value, struct md5_ctx *ctx)
5853 while (1)
5855 unsigned char byte = (value & 0x7f);
5856 value >>= 7;
5857 if (value != 0)
5858 /* More bytes to follow. */
5859 byte |= 0x80;
5860 CHECKSUM (byte);
5861 if (value == 0)
5862 break;
5866 /* Checksum the context of the DIE. This adds the names of any
5867 surrounding namespaces or structures to the checksum. */
5869 static void
5870 checksum_die_context (dw_die_ref die, struct md5_ctx *ctx)
5872 const char *name;
5873 dw_die_ref spec;
5874 int tag = die->die_tag;
5876 if (tag != DW_TAG_namespace
5877 && tag != DW_TAG_structure_type
5878 && tag != DW_TAG_class_type)
5879 return;
5881 name = get_AT_string (die, DW_AT_name);
5883 spec = get_AT_ref (die, DW_AT_specification);
5884 if (spec != NULL)
5885 die = spec;
5887 if (die->die_parent != NULL)
5888 checksum_die_context (die->die_parent, ctx);
5890 CHECKSUM_ULEB128 ('C');
5891 CHECKSUM_ULEB128 (tag);
5892 if (name != NULL)
5893 CHECKSUM_STRING (name);
5896 /* Calculate the checksum of a location expression. */
5898 static inline void
5899 loc_checksum_ordered (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5901 /* Special case for lone DW_OP_plus_uconst: checksum as if the location
5902 were emitted as a DW_FORM_sdata instead of a location expression. */
5903 if (loc->dw_loc_opc == DW_OP_plus_uconst && loc->dw_loc_next == NULL)
5905 CHECKSUM_ULEB128 (DW_FORM_sdata);
5906 CHECKSUM_SLEB128 ((HOST_WIDE_INT) loc->dw_loc_oprnd1.v.val_unsigned);
5907 return;
5910 /* Otherwise, just checksum the raw location expression. */
5911 while (loc != NULL)
5913 inchash::hash hstate;
5914 hashval_t hash;
5916 CHECKSUM_ULEB128 (loc->dtprel);
5917 CHECKSUM_ULEB128 (loc->dw_loc_opc);
5918 hash_loc_operands (loc, hstate);
5919 hash = hstate.end ();
5920 CHECKSUM (hash);
5921 loc = loc->dw_loc_next;
5925 /* Calculate the checksum of an attribute. */
5927 static void
5928 attr_checksum_ordered (enum dwarf_tag tag, dw_attr_ref at,
5929 struct md5_ctx *ctx, int *mark)
5931 dw_loc_descr_ref loc;
5932 rtx r;
5934 if (AT_class (at) == dw_val_class_die_ref)
5936 dw_die_ref target_die = AT_ref (at);
5938 /* For pointer and reference types, we checksum only the (qualified)
5939 name of the target type (if there is a name). For friend entries,
5940 we checksum only the (qualified) name of the target type or function.
5941 This allows the checksum to remain the same whether the target type
5942 is complete or not. */
5943 if ((at->dw_attr == DW_AT_type
5944 && (tag == DW_TAG_pointer_type
5945 || tag == DW_TAG_reference_type
5946 || tag == DW_TAG_rvalue_reference_type
5947 || tag == DW_TAG_ptr_to_member_type))
5948 || (at->dw_attr == DW_AT_friend
5949 && tag == DW_TAG_friend))
5951 dw_attr_ref name_attr = get_AT (target_die, DW_AT_name);
5953 if (name_attr != NULL)
5955 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
5957 if (decl == NULL)
5958 decl = target_die;
5959 CHECKSUM_ULEB128 ('N');
5960 CHECKSUM_ULEB128 (at->dw_attr);
5961 if (decl->die_parent != NULL)
5962 checksum_die_context (decl->die_parent, ctx);
5963 CHECKSUM_ULEB128 ('E');
5964 CHECKSUM_STRING (AT_string (name_attr));
5965 return;
5969 /* For all other references to another DIE, we check to see if the
5970 target DIE has already been visited. If it has, we emit a
5971 backward reference; if not, we descend recursively. */
5972 if (target_die->die_mark > 0)
5974 CHECKSUM_ULEB128 ('R');
5975 CHECKSUM_ULEB128 (at->dw_attr);
5976 CHECKSUM_ULEB128 (target_die->die_mark);
5978 else
5980 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
5982 if (decl == NULL)
5983 decl = target_die;
5984 target_die->die_mark = ++(*mark);
5985 CHECKSUM_ULEB128 ('T');
5986 CHECKSUM_ULEB128 (at->dw_attr);
5987 if (decl->die_parent != NULL)
5988 checksum_die_context (decl->die_parent, ctx);
5989 die_checksum_ordered (target_die, ctx, mark);
5991 return;
5994 CHECKSUM_ULEB128 ('A');
5995 CHECKSUM_ULEB128 (at->dw_attr);
5997 switch (AT_class (at))
5999 case dw_val_class_const:
6000 CHECKSUM_ULEB128 (DW_FORM_sdata);
6001 CHECKSUM_SLEB128 (at->dw_attr_val.v.val_int);
6002 break;
6004 case dw_val_class_unsigned_const:
6005 CHECKSUM_ULEB128 (DW_FORM_sdata);
6006 CHECKSUM_SLEB128 ((int) at->dw_attr_val.v.val_unsigned);
6007 break;
6009 case dw_val_class_const_double:
6010 CHECKSUM_ULEB128 (DW_FORM_block);
6011 CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_double));
6012 CHECKSUM (at->dw_attr_val.v.val_double);
6013 break;
6015 case dw_val_class_wide_int:
6016 CHECKSUM_ULEB128 (DW_FORM_block);
6017 CHECKSUM_ULEB128 (get_full_len (*at->dw_attr_val.v.val_wide)
6018 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
6019 CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
6020 get_full_len (*at->dw_attr_val.v.val_wide)
6021 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
6022 break;
6024 case dw_val_class_vec:
6025 CHECKSUM_ULEB128 (DW_FORM_block);
6026 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_vec.length
6027 * at->dw_attr_val.v.val_vec.elt_size);
6028 CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
6029 (at->dw_attr_val.v.val_vec.length
6030 * at->dw_attr_val.v.val_vec.elt_size));
6031 break;
6033 case dw_val_class_flag:
6034 CHECKSUM_ULEB128 (DW_FORM_flag);
6035 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_flag ? 1 : 0);
6036 break;
6038 case dw_val_class_str:
6039 CHECKSUM_ULEB128 (DW_FORM_string);
6040 CHECKSUM_STRING (AT_string (at));
6041 break;
6043 case dw_val_class_addr:
6044 r = AT_addr (at);
6045 gcc_assert (GET_CODE (r) == SYMBOL_REF);
6046 CHECKSUM_ULEB128 (DW_FORM_string);
6047 CHECKSUM_STRING (XSTR (r, 0));
6048 break;
6050 case dw_val_class_offset:
6051 CHECKSUM_ULEB128 (DW_FORM_sdata);
6052 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_offset);
6053 break;
6055 case dw_val_class_loc:
6056 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6057 loc_checksum_ordered (loc, ctx);
6058 break;
6060 case dw_val_class_fde_ref:
6061 case dw_val_class_lbl_id:
6062 case dw_val_class_lineptr:
6063 case dw_val_class_macptr:
6064 case dw_val_class_high_pc:
6065 break;
6067 case dw_val_class_file:
6068 CHECKSUM_ULEB128 (DW_FORM_string);
6069 CHECKSUM_STRING (AT_file (at)->filename);
6070 break;
6072 case dw_val_class_data8:
6073 CHECKSUM (at->dw_attr_val.v.val_data8);
6074 break;
6076 default:
6077 break;
6081 struct checksum_attributes
6083 dw_attr_ref at_name;
6084 dw_attr_ref at_type;
6085 dw_attr_ref at_friend;
6086 dw_attr_ref at_accessibility;
6087 dw_attr_ref at_address_class;
6088 dw_attr_ref at_allocated;
6089 dw_attr_ref at_artificial;
6090 dw_attr_ref at_associated;
6091 dw_attr_ref at_binary_scale;
6092 dw_attr_ref at_bit_offset;
6093 dw_attr_ref at_bit_size;
6094 dw_attr_ref at_bit_stride;
6095 dw_attr_ref at_byte_size;
6096 dw_attr_ref at_byte_stride;
6097 dw_attr_ref at_const_value;
6098 dw_attr_ref at_containing_type;
6099 dw_attr_ref at_count;
6100 dw_attr_ref at_data_location;
6101 dw_attr_ref at_data_member_location;
6102 dw_attr_ref at_decimal_scale;
6103 dw_attr_ref at_decimal_sign;
6104 dw_attr_ref at_default_value;
6105 dw_attr_ref at_digit_count;
6106 dw_attr_ref at_discr;
6107 dw_attr_ref at_discr_list;
6108 dw_attr_ref at_discr_value;
6109 dw_attr_ref at_encoding;
6110 dw_attr_ref at_endianity;
6111 dw_attr_ref at_explicit;
6112 dw_attr_ref at_is_optional;
6113 dw_attr_ref at_location;
6114 dw_attr_ref at_lower_bound;
6115 dw_attr_ref at_mutable;
6116 dw_attr_ref at_ordering;
6117 dw_attr_ref at_picture_string;
6118 dw_attr_ref at_prototyped;
6119 dw_attr_ref at_small;
6120 dw_attr_ref at_segment;
6121 dw_attr_ref at_string_length;
6122 dw_attr_ref at_threads_scaled;
6123 dw_attr_ref at_upper_bound;
6124 dw_attr_ref at_use_location;
6125 dw_attr_ref at_use_UTF8;
6126 dw_attr_ref at_variable_parameter;
6127 dw_attr_ref at_virtuality;
6128 dw_attr_ref at_visibility;
6129 dw_attr_ref at_vtable_elem_location;
6132 /* Collect the attributes that we will want to use for the checksum. */
6134 static void
6135 collect_checksum_attributes (struct checksum_attributes *attrs, dw_die_ref die)
6137 dw_attr_ref a;
6138 unsigned ix;
6140 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6142 switch (a->dw_attr)
6144 case DW_AT_name:
6145 attrs->at_name = a;
6146 break;
6147 case DW_AT_type:
6148 attrs->at_type = a;
6149 break;
6150 case DW_AT_friend:
6151 attrs->at_friend = a;
6152 break;
6153 case DW_AT_accessibility:
6154 attrs->at_accessibility = a;
6155 break;
6156 case DW_AT_address_class:
6157 attrs->at_address_class = a;
6158 break;
6159 case DW_AT_allocated:
6160 attrs->at_allocated = a;
6161 break;
6162 case DW_AT_artificial:
6163 attrs->at_artificial = a;
6164 break;
6165 case DW_AT_associated:
6166 attrs->at_associated = a;
6167 break;
6168 case DW_AT_binary_scale:
6169 attrs->at_binary_scale = a;
6170 break;
6171 case DW_AT_bit_offset:
6172 attrs->at_bit_offset = a;
6173 break;
6174 case DW_AT_bit_size:
6175 attrs->at_bit_size = a;
6176 break;
6177 case DW_AT_bit_stride:
6178 attrs->at_bit_stride = a;
6179 break;
6180 case DW_AT_byte_size:
6181 attrs->at_byte_size = a;
6182 break;
6183 case DW_AT_byte_stride:
6184 attrs->at_byte_stride = a;
6185 break;
6186 case DW_AT_const_value:
6187 attrs->at_const_value = a;
6188 break;
6189 case DW_AT_containing_type:
6190 attrs->at_containing_type = a;
6191 break;
6192 case DW_AT_count:
6193 attrs->at_count = a;
6194 break;
6195 case DW_AT_data_location:
6196 attrs->at_data_location = a;
6197 break;
6198 case DW_AT_data_member_location:
6199 attrs->at_data_member_location = a;
6200 break;
6201 case DW_AT_decimal_scale:
6202 attrs->at_decimal_scale = a;
6203 break;
6204 case DW_AT_decimal_sign:
6205 attrs->at_decimal_sign = a;
6206 break;
6207 case DW_AT_default_value:
6208 attrs->at_default_value = a;
6209 break;
6210 case DW_AT_digit_count:
6211 attrs->at_digit_count = a;
6212 break;
6213 case DW_AT_discr:
6214 attrs->at_discr = a;
6215 break;
6216 case DW_AT_discr_list:
6217 attrs->at_discr_list = a;
6218 break;
6219 case DW_AT_discr_value:
6220 attrs->at_discr_value = a;
6221 break;
6222 case DW_AT_encoding:
6223 attrs->at_encoding = a;
6224 break;
6225 case DW_AT_endianity:
6226 attrs->at_endianity = a;
6227 break;
6228 case DW_AT_explicit:
6229 attrs->at_explicit = a;
6230 break;
6231 case DW_AT_is_optional:
6232 attrs->at_is_optional = a;
6233 break;
6234 case DW_AT_location:
6235 attrs->at_location = a;
6236 break;
6237 case DW_AT_lower_bound:
6238 attrs->at_lower_bound = a;
6239 break;
6240 case DW_AT_mutable:
6241 attrs->at_mutable = a;
6242 break;
6243 case DW_AT_ordering:
6244 attrs->at_ordering = a;
6245 break;
6246 case DW_AT_picture_string:
6247 attrs->at_picture_string = a;
6248 break;
6249 case DW_AT_prototyped:
6250 attrs->at_prototyped = a;
6251 break;
6252 case DW_AT_small:
6253 attrs->at_small = a;
6254 break;
6255 case DW_AT_segment:
6256 attrs->at_segment = a;
6257 break;
6258 case DW_AT_string_length:
6259 attrs->at_string_length = a;
6260 break;
6261 case DW_AT_threads_scaled:
6262 attrs->at_threads_scaled = a;
6263 break;
6264 case DW_AT_upper_bound:
6265 attrs->at_upper_bound = a;
6266 break;
6267 case DW_AT_use_location:
6268 attrs->at_use_location = a;
6269 break;
6270 case DW_AT_use_UTF8:
6271 attrs->at_use_UTF8 = a;
6272 break;
6273 case DW_AT_variable_parameter:
6274 attrs->at_variable_parameter = a;
6275 break;
6276 case DW_AT_virtuality:
6277 attrs->at_virtuality = a;
6278 break;
6279 case DW_AT_visibility:
6280 attrs->at_visibility = a;
6281 break;
6282 case DW_AT_vtable_elem_location:
6283 attrs->at_vtable_elem_location = a;
6284 break;
6285 default:
6286 break;
6291 /* Calculate the checksum of a DIE, using an ordered subset of attributes. */
6293 static void
6294 die_checksum_ordered (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6296 dw_die_ref c;
6297 dw_die_ref decl;
6298 struct checksum_attributes attrs;
6300 CHECKSUM_ULEB128 ('D');
6301 CHECKSUM_ULEB128 (die->die_tag);
6303 memset (&attrs, 0, sizeof (attrs));
6305 decl = get_AT_ref (die, DW_AT_specification);
6306 if (decl != NULL)
6307 collect_checksum_attributes (&attrs, decl);
6308 collect_checksum_attributes (&attrs, die);
6310 CHECKSUM_ATTR (attrs.at_name);
6311 CHECKSUM_ATTR (attrs.at_accessibility);
6312 CHECKSUM_ATTR (attrs.at_address_class);
6313 CHECKSUM_ATTR (attrs.at_allocated);
6314 CHECKSUM_ATTR (attrs.at_artificial);
6315 CHECKSUM_ATTR (attrs.at_associated);
6316 CHECKSUM_ATTR (attrs.at_binary_scale);
6317 CHECKSUM_ATTR (attrs.at_bit_offset);
6318 CHECKSUM_ATTR (attrs.at_bit_size);
6319 CHECKSUM_ATTR (attrs.at_bit_stride);
6320 CHECKSUM_ATTR (attrs.at_byte_size);
6321 CHECKSUM_ATTR (attrs.at_byte_stride);
6322 CHECKSUM_ATTR (attrs.at_const_value);
6323 CHECKSUM_ATTR (attrs.at_containing_type);
6324 CHECKSUM_ATTR (attrs.at_count);
6325 CHECKSUM_ATTR (attrs.at_data_location);
6326 CHECKSUM_ATTR (attrs.at_data_member_location);
6327 CHECKSUM_ATTR (attrs.at_decimal_scale);
6328 CHECKSUM_ATTR (attrs.at_decimal_sign);
6329 CHECKSUM_ATTR (attrs.at_default_value);
6330 CHECKSUM_ATTR (attrs.at_digit_count);
6331 CHECKSUM_ATTR (attrs.at_discr);
6332 CHECKSUM_ATTR (attrs.at_discr_list);
6333 CHECKSUM_ATTR (attrs.at_discr_value);
6334 CHECKSUM_ATTR (attrs.at_encoding);
6335 CHECKSUM_ATTR (attrs.at_endianity);
6336 CHECKSUM_ATTR (attrs.at_explicit);
6337 CHECKSUM_ATTR (attrs.at_is_optional);
6338 CHECKSUM_ATTR (attrs.at_location);
6339 CHECKSUM_ATTR (attrs.at_lower_bound);
6340 CHECKSUM_ATTR (attrs.at_mutable);
6341 CHECKSUM_ATTR (attrs.at_ordering);
6342 CHECKSUM_ATTR (attrs.at_picture_string);
6343 CHECKSUM_ATTR (attrs.at_prototyped);
6344 CHECKSUM_ATTR (attrs.at_small);
6345 CHECKSUM_ATTR (attrs.at_segment);
6346 CHECKSUM_ATTR (attrs.at_string_length);
6347 CHECKSUM_ATTR (attrs.at_threads_scaled);
6348 CHECKSUM_ATTR (attrs.at_upper_bound);
6349 CHECKSUM_ATTR (attrs.at_use_location);
6350 CHECKSUM_ATTR (attrs.at_use_UTF8);
6351 CHECKSUM_ATTR (attrs.at_variable_parameter);
6352 CHECKSUM_ATTR (attrs.at_virtuality);
6353 CHECKSUM_ATTR (attrs.at_visibility);
6354 CHECKSUM_ATTR (attrs.at_vtable_elem_location);
6355 CHECKSUM_ATTR (attrs.at_type);
6356 CHECKSUM_ATTR (attrs.at_friend);
6358 /* Checksum the child DIEs. */
6359 c = die->die_child;
6360 if (c) do {
6361 dw_attr_ref name_attr;
6363 c = c->die_sib;
6364 name_attr = get_AT (c, DW_AT_name);
6365 if (is_template_instantiation (c))
6367 /* Ignore instantiations of member type and function templates. */
6369 else if (name_attr != NULL
6370 && (is_type_die (c) || c->die_tag == DW_TAG_subprogram))
6372 /* Use a shallow checksum for named nested types and member
6373 functions. */
6374 CHECKSUM_ULEB128 ('S');
6375 CHECKSUM_ULEB128 (c->die_tag);
6376 CHECKSUM_STRING (AT_string (name_attr));
6378 else
6380 /* Use a deep checksum for other children. */
6381 /* Mark this DIE so it gets processed when unmarking. */
6382 if (c->die_mark == 0)
6383 c->die_mark = -1;
6384 die_checksum_ordered (c, ctx, mark);
6386 } while (c != die->die_child);
6388 CHECKSUM_ULEB128 (0);
6391 /* Add a type name and tag to a hash. */
6392 static void
6393 die_odr_checksum (int tag, const char *name, md5_ctx *ctx)
6395 CHECKSUM_ULEB128 (tag);
6396 CHECKSUM_STRING (name);
6399 #undef CHECKSUM
6400 #undef CHECKSUM_STRING
6401 #undef CHECKSUM_ATTR
6402 #undef CHECKSUM_LEB128
6403 #undef CHECKSUM_ULEB128
6405 /* Generate the type signature for DIE. This is computed by generating an
6406 MD5 checksum over the DIE's tag, its relevant attributes, and its
6407 children. Attributes that are references to other DIEs are processed
6408 by recursion, using the MARK field to prevent infinite recursion.
6409 If the DIE is nested inside a namespace or another type, we also
6410 need to include that context in the signature. The lower 64 bits
6411 of the resulting MD5 checksum comprise the signature. */
6413 static void
6414 generate_type_signature (dw_die_ref die, comdat_type_node *type_node)
6416 int mark;
6417 const char *name;
6418 unsigned char checksum[16];
6419 struct md5_ctx ctx;
6420 dw_die_ref decl;
6421 dw_die_ref parent;
6423 name = get_AT_string (die, DW_AT_name);
6424 decl = get_AT_ref (die, DW_AT_specification);
6425 parent = get_die_parent (die);
6427 /* First, compute a signature for just the type name (and its surrounding
6428 context, if any. This is stored in the type unit DIE for link-time
6429 ODR (one-definition rule) checking. */
6431 if (is_cxx () && name != NULL)
6433 md5_init_ctx (&ctx);
6435 /* Checksum the names of surrounding namespaces and structures. */
6436 if (parent != NULL)
6437 checksum_die_context (parent, &ctx);
6439 /* Checksum the current DIE. */
6440 die_odr_checksum (die->die_tag, name, &ctx);
6441 md5_finish_ctx (&ctx, checksum);
6443 add_AT_data8 (type_node->root_die, DW_AT_GNU_odr_signature, &checksum[8]);
6446 /* Next, compute the complete type signature. */
6448 md5_init_ctx (&ctx);
6449 mark = 1;
6450 die->die_mark = mark;
6452 /* Checksum the names of surrounding namespaces and structures. */
6453 if (parent != NULL)
6454 checksum_die_context (parent, &ctx);
6456 /* Checksum the DIE and its children. */
6457 die_checksum_ordered (die, &ctx, &mark);
6458 unmark_all_dies (die);
6459 md5_finish_ctx (&ctx, checksum);
6461 /* Store the signature in the type node and link the type DIE and the
6462 type node together. */
6463 memcpy (type_node->signature, &checksum[16 - DWARF_TYPE_SIGNATURE_SIZE],
6464 DWARF_TYPE_SIGNATURE_SIZE);
6465 die->comdat_type_p = true;
6466 die->die_id.die_type_node = type_node;
6467 type_node->type_die = die;
6469 /* If the DIE is a specification, link its declaration to the type node
6470 as well. */
6471 if (decl != NULL)
6473 decl->comdat_type_p = true;
6474 decl->die_id.die_type_node = type_node;
6478 /* Do the location expressions look same? */
6479 static inline int
6480 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6482 return loc1->dw_loc_opc == loc2->dw_loc_opc
6483 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6484 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6487 /* Do the values look the same? */
6488 static int
6489 same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
6491 dw_loc_descr_ref loc1, loc2;
6492 rtx r1, r2;
6494 if (v1->val_class != v2->val_class)
6495 return 0;
6497 switch (v1->val_class)
6499 case dw_val_class_const:
6500 return v1->v.val_int == v2->v.val_int;
6501 case dw_val_class_unsigned_const:
6502 return v1->v.val_unsigned == v2->v.val_unsigned;
6503 case dw_val_class_const_double:
6504 return v1->v.val_double.high == v2->v.val_double.high
6505 && v1->v.val_double.low == v2->v.val_double.low;
6506 case dw_val_class_wide_int:
6507 return *v1->v.val_wide == *v2->v.val_wide;
6508 case dw_val_class_vec:
6509 if (v1->v.val_vec.length != v2->v.val_vec.length
6510 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6511 return 0;
6512 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6513 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6514 return 0;
6515 return 1;
6516 case dw_val_class_flag:
6517 return v1->v.val_flag == v2->v.val_flag;
6518 case dw_val_class_str:
6519 return !strcmp (v1->v.val_str->str, v2->v.val_str->str);
6521 case dw_val_class_addr:
6522 r1 = v1->v.val_addr;
6523 r2 = v2->v.val_addr;
6524 if (GET_CODE (r1) != GET_CODE (r2))
6525 return 0;
6526 return !rtx_equal_p (r1, r2);
6528 case dw_val_class_offset:
6529 return v1->v.val_offset == v2->v.val_offset;
6531 case dw_val_class_loc:
6532 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6533 loc1 && loc2;
6534 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6535 if (!same_loc_p (loc1, loc2, mark))
6536 return 0;
6537 return !loc1 && !loc2;
6539 case dw_val_class_die_ref:
6540 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6542 case dw_val_class_fde_ref:
6543 case dw_val_class_vms_delta:
6544 case dw_val_class_lbl_id:
6545 case dw_val_class_lineptr:
6546 case dw_val_class_macptr:
6547 case dw_val_class_high_pc:
6548 return 1;
6550 case dw_val_class_file:
6551 return v1->v.val_file == v2->v.val_file;
6553 case dw_val_class_data8:
6554 return !memcmp (v1->v.val_data8, v2->v.val_data8, 8);
6556 default:
6557 return 1;
6561 /* Do the attributes look the same? */
6563 static int
6564 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6566 if (at1->dw_attr != at2->dw_attr)
6567 return 0;
6569 /* We don't care that this was compiled with a different compiler
6570 snapshot; if the output is the same, that's what matters. */
6571 if (at1->dw_attr == DW_AT_producer)
6572 return 1;
6574 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6577 /* Do the dies look the same? */
6579 static int
6580 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6582 dw_die_ref c1, c2;
6583 dw_attr_ref a1;
6584 unsigned ix;
6586 /* To avoid infinite recursion. */
6587 if (die1->die_mark)
6588 return die1->die_mark == die2->die_mark;
6589 die1->die_mark = die2->die_mark = ++(*mark);
6591 if (die1->die_tag != die2->die_tag)
6592 return 0;
6594 if (vec_safe_length (die1->die_attr) != vec_safe_length (die2->die_attr))
6595 return 0;
6597 FOR_EACH_VEC_SAFE_ELT (die1->die_attr, ix, a1)
6598 if (!same_attr_p (a1, &(*die2->die_attr)[ix], mark))
6599 return 0;
6601 c1 = die1->die_child;
6602 c2 = die2->die_child;
6603 if (! c1)
6605 if (c2)
6606 return 0;
6608 else
6609 for (;;)
6611 if (!same_die_p (c1, c2, mark))
6612 return 0;
6613 c1 = c1->die_sib;
6614 c2 = c2->die_sib;
6615 if (c1 == die1->die_child)
6617 if (c2 == die2->die_child)
6618 break;
6619 else
6620 return 0;
6624 return 1;
6627 /* Do the dies look the same? Wrapper around same_die_p. */
6629 static int
6630 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6632 int mark = 0;
6633 int ret = same_die_p (die1, die2, &mark);
6635 unmark_all_dies (die1);
6636 unmark_all_dies (die2);
6638 return ret;
6641 /* The prefix to attach to symbols on DIEs in the current comdat debug
6642 info section. */
6643 static const char *comdat_symbol_id;
6645 /* The index of the current symbol within the current comdat CU. */
6646 static unsigned int comdat_symbol_number;
6648 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6649 children, and set comdat_symbol_id accordingly. */
6651 static void
6652 compute_section_prefix (dw_die_ref unit_die)
6654 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6655 const char *base = die_name ? lbasename (die_name) : "anonymous";
6656 char *name = XALLOCAVEC (char, strlen (base) + 64);
6657 char *p;
6658 int i, mark;
6659 unsigned char checksum[16];
6660 struct md5_ctx ctx;
6662 /* Compute the checksum of the DIE, then append part of it as hex digits to
6663 the name filename of the unit. */
6665 md5_init_ctx (&ctx);
6666 mark = 0;
6667 die_checksum (unit_die, &ctx, &mark);
6668 unmark_all_dies (unit_die);
6669 md5_finish_ctx (&ctx, checksum);
6671 sprintf (name, "%s.", base);
6672 clean_symbol_name (name);
6674 p = name + strlen (name);
6675 for (i = 0; i < 4; i++)
6677 sprintf (p, "%.2x", checksum[i]);
6678 p += 2;
6681 comdat_symbol_id = unit_die->die_id.die_symbol = xstrdup (name);
6682 comdat_symbol_number = 0;
6685 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6687 static int
6688 is_type_die (dw_die_ref die)
6690 switch (die->die_tag)
6692 case DW_TAG_array_type:
6693 case DW_TAG_class_type:
6694 case DW_TAG_interface_type:
6695 case DW_TAG_enumeration_type:
6696 case DW_TAG_pointer_type:
6697 case DW_TAG_reference_type:
6698 case DW_TAG_rvalue_reference_type:
6699 case DW_TAG_string_type:
6700 case DW_TAG_structure_type:
6701 case DW_TAG_subroutine_type:
6702 case DW_TAG_union_type:
6703 case DW_TAG_ptr_to_member_type:
6704 case DW_TAG_set_type:
6705 case DW_TAG_subrange_type:
6706 case DW_TAG_base_type:
6707 case DW_TAG_const_type:
6708 case DW_TAG_file_type:
6709 case DW_TAG_packed_type:
6710 case DW_TAG_volatile_type:
6711 case DW_TAG_typedef:
6712 return 1;
6713 default:
6714 return 0;
6718 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6719 Basically, we want to choose the bits that are likely to be shared between
6720 compilations (types) and leave out the bits that are specific to individual
6721 compilations (functions). */
6723 static int
6724 is_comdat_die (dw_die_ref c)
6726 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6727 we do for stabs. The advantage is a greater likelihood of sharing between
6728 objects that don't include headers in the same order (and therefore would
6729 put the base types in a different comdat). jason 8/28/00 */
6731 if (c->die_tag == DW_TAG_base_type)
6732 return 0;
6734 if (c->die_tag == DW_TAG_pointer_type
6735 || c->die_tag == DW_TAG_reference_type
6736 || c->die_tag == DW_TAG_rvalue_reference_type
6737 || c->die_tag == DW_TAG_const_type
6738 || c->die_tag == DW_TAG_volatile_type)
6740 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6742 return t ? is_comdat_die (t) : 0;
6745 return is_type_die (c);
6748 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6749 compilation unit. */
6751 static int
6752 is_symbol_die (dw_die_ref c)
6754 return (is_type_die (c)
6755 || is_declaration_die (c)
6756 || c->die_tag == DW_TAG_namespace
6757 || c->die_tag == DW_TAG_module);
6760 /* Returns true iff C is a compile-unit DIE. */
6762 static inline bool
6763 is_cu_die (dw_die_ref c)
6765 return c && c->die_tag == DW_TAG_compile_unit;
6768 /* Returns true iff C is a unit DIE of some sort. */
6770 static inline bool
6771 is_unit_die (dw_die_ref c)
6773 return c && (c->die_tag == DW_TAG_compile_unit
6774 || c->die_tag == DW_TAG_partial_unit
6775 || c->die_tag == DW_TAG_type_unit);
6778 /* Returns true iff C is a namespace DIE. */
6780 static inline bool
6781 is_namespace_die (dw_die_ref c)
6783 return c && c->die_tag == DW_TAG_namespace;
6786 /* Returns true iff C is a class or structure DIE. */
6788 static inline bool
6789 is_class_die (dw_die_ref c)
6791 return c && (c->die_tag == DW_TAG_class_type
6792 || c->die_tag == DW_TAG_structure_type);
6795 /* Return non-zero if this DIE is a template parameter. */
6797 static inline bool
6798 is_template_parameter (dw_die_ref die)
6800 switch (die->die_tag)
6802 case DW_TAG_template_type_param:
6803 case DW_TAG_template_value_param:
6804 case DW_TAG_GNU_template_template_param:
6805 case DW_TAG_GNU_template_parameter_pack:
6806 return true;
6807 default:
6808 return false;
6812 /* Return non-zero if this DIE represents a template instantiation. */
6814 static inline bool
6815 is_template_instantiation (dw_die_ref die)
6817 dw_die_ref c;
6819 if (!is_type_die (die) && die->die_tag != DW_TAG_subprogram)
6820 return false;
6821 FOR_EACH_CHILD (die, c, if (is_template_parameter (c)) return true);
6822 return false;
6825 static char *
6826 gen_internal_sym (const char *prefix)
6828 char buf[256];
6830 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6831 return xstrdup (buf);
6834 /* Assign symbols to all worthy DIEs under DIE. */
6836 static void
6837 assign_symbol_names (dw_die_ref die)
6839 dw_die_ref c;
6841 if (is_symbol_die (die) && !die->comdat_type_p)
6843 if (comdat_symbol_id)
6845 char *p = XALLOCAVEC (char, strlen (comdat_symbol_id) + 64);
6847 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6848 comdat_symbol_id, comdat_symbol_number++);
6849 die->die_id.die_symbol = xstrdup (p);
6851 else
6852 die->die_id.die_symbol = gen_internal_sym ("LDIE");
6855 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6858 struct cu_hash_table_entry
6860 dw_die_ref cu;
6861 unsigned min_comdat_num, max_comdat_num;
6862 struct cu_hash_table_entry *next;
6865 /* Helpers to manipulate hash table of CUs. */
6867 struct cu_hash_table_entry_hasher
6869 typedef cu_hash_table_entry value_type;
6870 typedef die_struct compare_type;
6871 static inline hashval_t hash (const value_type *);
6872 static inline bool equal (const value_type *, const compare_type *);
6873 static inline void remove (value_type *);
6876 inline hashval_t
6877 cu_hash_table_entry_hasher::hash (const value_type *entry)
6879 return htab_hash_string (entry->cu->die_id.die_symbol);
6882 inline bool
6883 cu_hash_table_entry_hasher::equal (const value_type *entry1,
6884 const compare_type *entry2)
6886 return !strcmp (entry1->cu->die_id.die_symbol, entry2->die_id.die_symbol);
6889 inline void
6890 cu_hash_table_entry_hasher::remove (value_type *entry)
6892 struct cu_hash_table_entry *next;
6894 while (entry)
6896 next = entry->next;
6897 free (entry);
6898 entry = next;
6902 typedef hash_table<cu_hash_table_entry_hasher> cu_hash_type;
6904 /* Check whether we have already seen this CU and set up SYM_NUM
6905 accordingly. */
6906 static int
6907 check_duplicate_cu (dw_die_ref cu, cu_hash_type *htable, unsigned int *sym_num)
6909 struct cu_hash_table_entry dummy;
6910 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6912 dummy.max_comdat_num = 0;
6914 slot = htable->find_slot_with_hash (cu,
6915 htab_hash_string (cu->die_id.die_symbol),
6916 INSERT);
6917 entry = *slot;
6919 for (; entry; last = entry, entry = entry->next)
6921 if (same_die_p_wrap (cu, entry->cu))
6922 break;
6925 if (entry)
6927 *sym_num = entry->min_comdat_num;
6928 return 1;
6931 entry = XCNEW (struct cu_hash_table_entry);
6932 entry->cu = cu;
6933 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6934 entry->next = *slot;
6935 *slot = entry;
6937 return 0;
6940 /* Record SYM_NUM to record of CU in HTABLE. */
6941 static void
6942 record_comdat_symbol_number (dw_die_ref cu, cu_hash_type *htable,
6943 unsigned int sym_num)
6945 struct cu_hash_table_entry **slot, *entry;
6947 slot = htable->find_slot_with_hash (cu,
6948 htab_hash_string (cu->die_id.die_symbol),
6949 NO_INSERT);
6950 entry = *slot;
6952 entry->max_comdat_num = sym_num;
6955 /* Traverse the DIE (which is always comp_unit_die), and set up
6956 additional compilation units for each of the include files we see
6957 bracketed by BINCL/EINCL. */
6959 static void
6960 break_out_includes (dw_die_ref die)
6962 dw_die_ref c;
6963 dw_die_ref unit = NULL;
6964 limbo_die_node *node, **pnode;
6966 c = die->die_child;
6967 if (c) do {
6968 dw_die_ref prev = c;
6969 c = c->die_sib;
6970 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6971 || (unit && is_comdat_die (c)))
6973 dw_die_ref next = c->die_sib;
6975 /* This DIE is for a secondary CU; remove it from the main one. */
6976 remove_child_with_prev (c, prev);
6978 if (c->die_tag == DW_TAG_GNU_BINCL)
6979 unit = push_new_compile_unit (unit, c);
6980 else if (c->die_tag == DW_TAG_GNU_EINCL)
6981 unit = pop_compile_unit (unit);
6982 else
6983 add_child_die (unit, c);
6984 c = next;
6985 if (c == die->die_child)
6986 break;
6988 } while (c != die->die_child);
6990 #if 0
6991 /* We can only use this in debugging, since the frontend doesn't check
6992 to make sure that we leave every include file we enter. */
6993 gcc_assert (!unit);
6994 #endif
6996 assign_symbol_names (die);
6997 cu_hash_type cu_hash_table (10);
6998 for (node = limbo_die_list, pnode = &limbo_die_list;
6999 node;
7000 node = node->next)
7002 int is_dupl;
7004 compute_section_prefix (node->die);
7005 is_dupl = check_duplicate_cu (node->die, &cu_hash_table,
7006 &comdat_symbol_number);
7007 assign_symbol_names (node->die);
7008 if (is_dupl)
7009 *pnode = node->next;
7010 else
7012 pnode = &node->next;
7013 record_comdat_symbol_number (node->die, &cu_hash_table,
7014 comdat_symbol_number);
7019 /* Return non-zero if this DIE is a declaration. */
7021 static int
7022 is_declaration_die (dw_die_ref die)
7024 dw_attr_ref a;
7025 unsigned ix;
7027 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7028 if (a->dw_attr == DW_AT_declaration)
7029 return 1;
7031 return 0;
7034 /* Return non-zero if this DIE is nested inside a subprogram. */
7036 static int
7037 is_nested_in_subprogram (dw_die_ref die)
7039 dw_die_ref decl = get_AT_ref (die, DW_AT_specification);
7041 if (decl == NULL)
7042 decl = die;
7043 return local_scope_p (decl);
7046 /* Return non-zero if this DIE contains a defining declaration of a
7047 subprogram. */
7049 static int
7050 contains_subprogram_definition (dw_die_ref die)
7052 dw_die_ref c;
7054 if (die->die_tag == DW_TAG_subprogram && ! is_declaration_die (die))
7055 return 1;
7056 FOR_EACH_CHILD (die, c, if (contains_subprogram_definition (c)) return 1);
7057 return 0;
7060 /* Return non-zero if this is a type DIE that should be moved to a
7061 COMDAT .debug_types section. */
7063 static int
7064 should_move_die_to_comdat (dw_die_ref die)
7066 switch (die->die_tag)
7068 case DW_TAG_class_type:
7069 case DW_TAG_structure_type:
7070 case DW_TAG_enumeration_type:
7071 case DW_TAG_union_type:
7072 /* Don't move declarations, inlined instances, types nested in a
7073 subprogram, or types that contain subprogram definitions. */
7074 if (is_declaration_die (die)
7075 || get_AT (die, DW_AT_abstract_origin)
7076 || is_nested_in_subprogram (die)
7077 || contains_subprogram_definition (die))
7078 return 0;
7079 return 1;
7080 case DW_TAG_array_type:
7081 case DW_TAG_interface_type:
7082 case DW_TAG_pointer_type:
7083 case DW_TAG_reference_type:
7084 case DW_TAG_rvalue_reference_type:
7085 case DW_TAG_string_type:
7086 case DW_TAG_subroutine_type:
7087 case DW_TAG_ptr_to_member_type:
7088 case DW_TAG_set_type:
7089 case DW_TAG_subrange_type:
7090 case DW_TAG_base_type:
7091 case DW_TAG_const_type:
7092 case DW_TAG_file_type:
7093 case DW_TAG_packed_type:
7094 case DW_TAG_volatile_type:
7095 case DW_TAG_typedef:
7096 default:
7097 return 0;
7101 /* Make a clone of DIE. */
7103 static dw_die_ref
7104 clone_die (dw_die_ref die)
7106 dw_die_ref clone;
7107 dw_attr_ref a;
7108 unsigned ix;
7110 clone = ggc_cleared_alloc<die_node> ();
7111 clone->die_tag = die->die_tag;
7113 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7114 add_dwarf_attr (clone, a);
7116 return clone;
7119 /* Make a clone of the tree rooted at DIE. */
7121 static dw_die_ref
7122 clone_tree (dw_die_ref die)
7124 dw_die_ref c;
7125 dw_die_ref clone = clone_die (die);
7127 FOR_EACH_CHILD (die, c, add_child_die (clone, clone_tree (c)));
7129 return clone;
7132 /* Make a clone of DIE as a declaration. */
7134 static dw_die_ref
7135 clone_as_declaration (dw_die_ref die)
7137 dw_die_ref clone;
7138 dw_die_ref decl;
7139 dw_attr_ref a;
7140 unsigned ix;
7142 /* If the DIE is already a declaration, just clone it. */
7143 if (is_declaration_die (die))
7144 return clone_die (die);
7146 /* If the DIE is a specification, just clone its declaration DIE. */
7147 decl = get_AT_ref (die, DW_AT_specification);
7148 if (decl != NULL)
7150 clone = clone_die (decl);
7151 if (die->comdat_type_p)
7152 add_AT_die_ref (clone, DW_AT_signature, die);
7153 return clone;
7156 clone = ggc_cleared_alloc<die_node> ();
7157 clone->die_tag = die->die_tag;
7159 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7161 /* We don't want to copy over all attributes.
7162 For example we don't want DW_AT_byte_size because otherwise we will no
7163 longer have a declaration and GDB will treat it as a definition. */
7165 switch (a->dw_attr)
7167 case DW_AT_abstract_origin:
7168 case DW_AT_artificial:
7169 case DW_AT_containing_type:
7170 case DW_AT_external:
7171 case DW_AT_name:
7172 case DW_AT_type:
7173 case DW_AT_virtuality:
7174 case DW_AT_linkage_name:
7175 case DW_AT_MIPS_linkage_name:
7176 add_dwarf_attr (clone, a);
7177 break;
7178 case DW_AT_byte_size:
7179 default:
7180 break;
7184 if (die->comdat_type_p)
7185 add_AT_die_ref (clone, DW_AT_signature, die);
7187 add_AT_flag (clone, DW_AT_declaration, 1);
7188 return clone;
7192 /* Structure to map a DIE in one CU to its copy in a comdat type unit. */
7194 struct decl_table_entry
7196 dw_die_ref orig;
7197 dw_die_ref copy;
7200 /* Helpers to manipulate hash table of copied declarations. */
7202 /* Hashtable helpers. */
7204 struct decl_table_entry_hasher : typed_free_remove <decl_table_entry>
7206 typedef decl_table_entry value_type;
7207 typedef die_struct compare_type;
7208 static inline hashval_t hash (const value_type *);
7209 static inline bool equal (const value_type *, const compare_type *);
7212 inline hashval_t
7213 decl_table_entry_hasher::hash (const value_type *entry)
7215 return htab_hash_pointer (entry->orig);
7218 inline bool
7219 decl_table_entry_hasher::equal (const value_type *entry1,
7220 const compare_type *entry2)
7222 return entry1->orig == entry2;
7225 typedef hash_table<decl_table_entry_hasher> decl_hash_type;
7227 /* Copy DIE and its ancestors, up to, but not including, the compile unit
7228 or type unit entry, to a new tree. Adds the new tree to UNIT and returns
7229 a pointer to the copy of DIE. If DECL_TABLE is provided, it is used
7230 to check if the ancestor has already been copied into UNIT. */
7232 static dw_die_ref
7233 copy_ancestor_tree (dw_die_ref unit, dw_die_ref die,
7234 decl_hash_type *decl_table)
7236 dw_die_ref parent = die->die_parent;
7237 dw_die_ref new_parent = unit;
7238 dw_die_ref copy;
7239 decl_table_entry **slot = NULL;
7240 struct decl_table_entry *entry = NULL;
7242 if (decl_table)
7244 /* Check if the entry has already been copied to UNIT. */
7245 slot = decl_table->find_slot_with_hash (die, htab_hash_pointer (die),
7246 INSERT);
7247 if (*slot != HTAB_EMPTY_ENTRY)
7249 entry = *slot;
7250 return entry->copy;
7253 /* Record in DECL_TABLE that DIE has been copied to UNIT. */
7254 entry = XCNEW (struct decl_table_entry);
7255 entry->orig = die;
7256 entry->copy = NULL;
7257 *slot = entry;
7260 if (parent != NULL)
7262 dw_die_ref spec = get_AT_ref (parent, DW_AT_specification);
7263 if (spec != NULL)
7264 parent = spec;
7265 if (!is_unit_die (parent))
7266 new_parent = copy_ancestor_tree (unit, parent, decl_table);
7269 copy = clone_as_declaration (die);
7270 add_child_die (new_parent, copy);
7272 if (decl_table)
7274 /* Record the pointer to the copy. */
7275 entry->copy = copy;
7278 return copy;
7280 /* Copy the declaration context to the new type unit DIE. This includes
7281 any surrounding namespace or type declarations. If the DIE has an
7282 AT_specification attribute, it also includes attributes and children
7283 attached to the specification, and returns a pointer to the original
7284 parent of the declaration DIE. Returns NULL otherwise. */
7286 static dw_die_ref
7287 copy_declaration_context (dw_die_ref unit, dw_die_ref die)
7289 dw_die_ref decl;
7290 dw_die_ref new_decl;
7291 dw_die_ref orig_parent = NULL;
7293 decl = get_AT_ref (die, DW_AT_specification);
7294 if (decl == NULL)
7295 decl = die;
7296 else
7298 unsigned ix;
7299 dw_die_ref c;
7300 dw_attr_ref a;
7302 /* The original DIE will be changed to a declaration, and must
7303 be moved to be a child of the original declaration DIE. */
7304 orig_parent = decl->die_parent;
7306 /* Copy the type node pointer from the new DIE to the original
7307 declaration DIE so we can forward references later. */
7308 decl->comdat_type_p = true;
7309 decl->die_id.die_type_node = die->die_id.die_type_node;
7311 remove_AT (die, DW_AT_specification);
7313 FOR_EACH_VEC_SAFE_ELT (decl->die_attr, ix, a)
7315 if (a->dw_attr != DW_AT_name
7316 && a->dw_attr != DW_AT_declaration
7317 && a->dw_attr != DW_AT_external)
7318 add_dwarf_attr (die, a);
7321 FOR_EACH_CHILD (decl, c, add_child_die (die, clone_tree (c)));
7324 if (decl->die_parent != NULL
7325 && !is_unit_die (decl->die_parent))
7327 new_decl = copy_ancestor_tree (unit, decl, NULL);
7328 if (new_decl != NULL)
7330 remove_AT (new_decl, DW_AT_signature);
7331 add_AT_specification (die, new_decl);
7335 return orig_parent;
7338 /* Generate the skeleton ancestor tree for the given NODE, then clone
7339 the DIE and add the clone into the tree. */
7341 static void
7342 generate_skeleton_ancestor_tree (skeleton_chain_node *node)
7344 if (node->new_die != NULL)
7345 return;
7347 node->new_die = clone_as_declaration (node->old_die);
7349 if (node->parent != NULL)
7351 generate_skeleton_ancestor_tree (node->parent);
7352 add_child_die (node->parent->new_die, node->new_die);
7356 /* Generate a skeleton tree of DIEs containing any declarations that are
7357 found in the original tree. We traverse the tree looking for declaration
7358 DIEs, and construct the skeleton from the bottom up whenever we find one. */
7360 static void
7361 generate_skeleton_bottom_up (skeleton_chain_node *parent)
7363 skeleton_chain_node node;
7364 dw_die_ref c;
7365 dw_die_ref first;
7366 dw_die_ref prev = NULL;
7367 dw_die_ref next = NULL;
7369 node.parent = parent;
7371 first = c = parent->old_die->die_child;
7372 if (c)
7373 next = c->die_sib;
7374 if (c) do {
7375 if (prev == NULL || prev->die_sib == c)
7376 prev = c;
7377 c = next;
7378 next = (c == first ? NULL : c->die_sib);
7379 node.old_die = c;
7380 node.new_die = NULL;
7381 if (is_declaration_die (c))
7383 if (is_template_instantiation (c))
7385 /* Instantiated templates do not need to be cloned into the
7386 type unit. Just move the DIE and its children back to
7387 the skeleton tree (in the main CU). */
7388 remove_child_with_prev (c, prev);
7389 add_child_die (parent->new_die, c);
7390 c = prev;
7392 else
7394 /* Clone the existing DIE, move the original to the skeleton
7395 tree (which is in the main CU), and put the clone, with
7396 all the original's children, where the original came from
7397 (which is about to be moved to the type unit). */
7398 dw_die_ref clone = clone_die (c);
7399 move_all_children (c, clone);
7401 /* If the original has a DW_AT_object_pointer attribute,
7402 it would now point to a child DIE just moved to the
7403 cloned tree, so we need to remove that attribute from
7404 the original. */
7405 remove_AT (c, DW_AT_object_pointer);
7407 replace_child (c, clone, prev);
7408 generate_skeleton_ancestor_tree (parent);
7409 add_child_die (parent->new_die, c);
7410 node.new_die = c;
7411 c = clone;
7414 generate_skeleton_bottom_up (&node);
7415 } while (next != NULL);
7418 /* Wrapper function for generate_skeleton_bottom_up. */
7420 static dw_die_ref
7421 generate_skeleton (dw_die_ref die)
7423 skeleton_chain_node node;
7425 node.old_die = die;
7426 node.new_die = NULL;
7427 node.parent = NULL;
7429 /* If this type definition is nested inside another type,
7430 and is not an instantiation of a template, always leave
7431 at least a declaration in its place. */
7432 if (die->die_parent != NULL
7433 && is_type_die (die->die_parent)
7434 && !is_template_instantiation (die))
7435 node.new_die = clone_as_declaration (die);
7437 generate_skeleton_bottom_up (&node);
7438 return node.new_die;
7441 /* Remove the CHILD DIE from its parent, possibly replacing it with a cloned
7442 declaration. The original DIE is moved to a new compile unit so that
7443 existing references to it follow it to the new location. If any of the
7444 original DIE's descendants is a declaration, we need to replace the
7445 original DIE with a skeleton tree and move the declarations back into the
7446 skeleton tree. */
7448 static dw_die_ref
7449 remove_child_or_replace_with_skeleton (dw_die_ref unit, dw_die_ref child,
7450 dw_die_ref prev)
7452 dw_die_ref skeleton, orig_parent;
7454 /* Copy the declaration context to the type unit DIE. If the returned
7455 ORIG_PARENT is not NULL, the skeleton needs to be added as a child of
7456 that DIE. */
7457 orig_parent = copy_declaration_context (unit, child);
7459 skeleton = generate_skeleton (child);
7460 if (skeleton == NULL)
7461 remove_child_with_prev (child, prev);
7462 else
7464 skeleton->comdat_type_p = true;
7465 skeleton->die_id.die_type_node = child->die_id.die_type_node;
7467 /* If the original DIE was a specification, we need to put
7468 the skeleton under the parent DIE of the declaration.
7469 This leaves the original declaration in the tree, but
7470 it will be pruned later since there are no longer any
7471 references to it. */
7472 if (orig_parent != NULL)
7474 remove_child_with_prev (child, prev);
7475 add_child_die (orig_parent, skeleton);
7477 else
7478 replace_child (child, skeleton, prev);
7481 return skeleton;
7484 /* Traverse the DIE and set up additional .debug_types sections for each
7485 type worthy of being placed in a COMDAT section. */
7487 static void
7488 break_out_comdat_types (dw_die_ref die)
7490 dw_die_ref c;
7491 dw_die_ref first;
7492 dw_die_ref prev = NULL;
7493 dw_die_ref next = NULL;
7494 dw_die_ref unit = NULL;
7496 first = c = die->die_child;
7497 if (c)
7498 next = c->die_sib;
7499 if (c) do {
7500 if (prev == NULL || prev->die_sib == c)
7501 prev = c;
7502 c = next;
7503 next = (c == first ? NULL : c->die_sib);
7504 if (should_move_die_to_comdat (c))
7506 dw_die_ref replacement;
7507 comdat_type_node_ref type_node;
7509 /* Break out nested types into their own type units. */
7510 break_out_comdat_types (c);
7512 /* Create a new type unit DIE as the root for the new tree, and
7513 add it to the list of comdat types. */
7514 unit = new_die (DW_TAG_type_unit, NULL, NULL);
7515 add_AT_unsigned (unit, DW_AT_language,
7516 get_AT_unsigned (comp_unit_die (), DW_AT_language));
7517 type_node = ggc_cleared_alloc<comdat_type_node> ();
7518 type_node->root_die = unit;
7519 type_node->next = comdat_type_list;
7520 comdat_type_list = type_node;
7522 /* Generate the type signature. */
7523 generate_type_signature (c, type_node);
7525 /* Copy the declaration context, attributes, and children of the
7526 declaration into the new type unit DIE, then remove this DIE
7527 from the main CU (or replace it with a skeleton if necessary). */
7528 replacement = remove_child_or_replace_with_skeleton (unit, c, prev);
7529 type_node->skeleton_die = replacement;
7531 /* Add the DIE to the new compunit. */
7532 add_child_die (unit, c);
7534 if (replacement != NULL)
7535 c = replacement;
7537 else if (c->die_tag == DW_TAG_namespace
7538 || c->die_tag == DW_TAG_class_type
7539 || c->die_tag == DW_TAG_structure_type
7540 || c->die_tag == DW_TAG_union_type)
7542 /* Look for nested types that can be broken out. */
7543 break_out_comdat_types (c);
7545 } while (next != NULL);
7548 /* Like clone_tree, but copy DW_TAG_subprogram DIEs as declarations.
7549 Enter all the cloned children into the hash table decl_table. */
7551 static dw_die_ref
7552 clone_tree_partial (dw_die_ref die, decl_hash_type *decl_table)
7554 dw_die_ref c;
7555 dw_die_ref clone;
7556 struct decl_table_entry *entry;
7557 decl_table_entry **slot;
7559 if (die->die_tag == DW_TAG_subprogram)
7560 clone = clone_as_declaration (die);
7561 else
7562 clone = clone_die (die);
7564 slot = decl_table->find_slot_with_hash (die,
7565 htab_hash_pointer (die), INSERT);
7567 /* Assert that DIE isn't in the hash table yet. If it would be there
7568 before, the ancestors would be necessarily there as well, therefore
7569 clone_tree_partial wouldn't be called. */
7570 gcc_assert (*slot == HTAB_EMPTY_ENTRY);
7572 entry = XCNEW (struct decl_table_entry);
7573 entry->orig = die;
7574 entry->copy = clone;
7575 *slot = entry;
7577 if (die->die_tag != DW_TAG_subprogram)
7578 FOR_EACH_CHILD (die, c,
7579 add_child_die (clone, clone_tree_partial (c, decl_table)));
7581 return clone;
7584 /* Walk the DIE and its children, looking for references to incomplete
7585 or trivial types that are unmarked (i.e., that are not in the current
7586 type_unit). */
7588 static void
7589 copy_decls_walk (dw_die_ref unit, dw_die_ref die, decl_hash_type *decl_table)
7591 dw_die_ref c;
7592 dw_attr_ref a;
7593 unsigned ix;
7595 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7597 if (AT_class (a) == dw_val_class_die_ref)
7599 dw_die_ref targ = AT_ref (a);
7600 decl_table_entry **slot;
7601 struct decl_table_entry *entry;
7603 if (targ->die_mark != 0 || targ->comdat_type_p)
7604 continue;
7606 slot = decl_table->find_slot_with_hash (targ,
7607 htab_hash_pointer (targ),
7608 INSERT);
7610 if (*slot != HTAB_EMPTY_ENTRY)
7612 /* TARG has already been copied, so we just need to
7613 modify the reference to point to the copy. */
7614 entry = *slot;
7615 a->dw_attr_val.v.val_die_ref.die = entry->copy;
7617 else
7619 dw_die_ref parent = unit;
7620 dw_die_ref copy = clone_die (targ);
7622 /* Record in DECL_TABLE that TARG has been copied.
7623 Need to do this now, before the recursive call,
7624 because DECL_TABLE may be expanded and SLOT
7625 would no longer be a valid pointer. */
7626 entry = XCNEW (struct decl_table_entry);
7627 entry->orig = targ;
7628 entry->copy = copy;
7629 *slot = entry;
7631 /* If TARG is not a declaration DIE, we need to copy its
7632 children. */
7633 if (!is_declaration_die (targ))
7635 FOR_EACH_CHILD (
7636 targ, c,
7637 add_child_die (copy,
7638 clone_tree_partial (c, decl_table)));
7641 /* Make sure the cloned tree is marked as part of the
7642 type unit. */
7643 mark_dies (copy);
7645 /* If TARG has surrounding context, copy its ancestor tree
7646 into the new type unit. */
7647 if (targ->die_parent != NULL
7648 && !is_unit_die (targ->die_parent))
7649 parent = copy_ancestor_tree (unit, targ->die_parent,
7650 decl_table);
7652 add_child_die (parent, copy);
7653 a->dw_attr_val.v.val_die_ref.die = copy;
7655 /* Make sure the newly-copied DIE is walked. If it was
7656 installed in a previously-added context, it won't
7657 get visited otherwise. */
7658 if (parent != unit)
7660 /* Find the highest point of the newly-added tree,
7661 mark each node along the way, and walk from there. */
7662 parent->die_mark = 1;
7663 while (parent->die_parent
7664 && parent->die_parent->die_mark == 0)
7666 parent = parent->die_parent;
7667 parent->die_mark = 1;
7669 copy_decls_walk (unit, parent, decl_table);
7675 FOR_EACH_CHILD (die, c, copy_decls_walk (unit, c, decl_table));
7678 /* Copy declarations for "unworthy" types into the new comdat section.
7679 Incomplete types, modified types, and certain other types aren't broken
7680 out into comdat sections of their own, so they don't have a signature,
7681 and we need to copy the declaration into the same section so that we
7682 don't have an external reference. */
7684 static void
7685 copy_decls_for_unworthy_types (dw_die_ref unit)
7687 mark_dies (unit);
7688 decl_hash_type decl_table (10);
7689 copy_decls_walk (unit, unit, &decl_table);
7690 unmark_dies (unit);
7693 /* Traverse the DIE and add a sibling attribute if it may have the
7694 effect of speeding up access to siblings. To save some space,
7695 avoid generating sibling attributes for DIE's without children. */
7697 static void
7698 add_sibling_attributes (dw_die_ref die)
7700 dw_die_ref c;
7702 if (! die->die_child)
7703 return;
7705 if (die->die_parent && die != die->die_parent->die_child)
7706 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
7708 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
7711 /* Output all location lists for the DIE and its children. */
7713 static void
7714 output_location_lists (dw_die_ref die)
7716 dw_die_ref c;
7717 dw_attr_ref a;
7718 unsigned ix;
7720 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7721 if (AT_class (a) == dw_val_class_loc_list)
7722 output_loc_list (AT_loc_list (a));
7724 FOR_EACH_CHILD (die, c, output_location_lists (c));
7727 /* We want to limit the number of external references, because they are
7728 larger than local references: a relocation takes multiple words, and
7729 even a sig8 reference is always eight bytes, whereas a local reference
7730 can be as small as one byte (though DW_FORM_ref is usually 4 in GCC).
7731 So if we encounter multiple external references to the same type DIE, we
7732 make a local typedef stub for it and redirect all references there.
7734 This is the element of the hash table for keeping track of these
7735 references. */
7737 struct external_ref
7739 dw_die_ref type;
7740 dw_die_ref stub;
7741 unsigned n_refs;
7744 /* Hashtable helpers. */
7746 struct external_ref_hasher : typed_free_remove <external_ref>
7748 typedef external_ref value_type;
7749 typedef external_ref compare_type;
7750 static inline hashval_t hash (const value_type *);
7751 static inline bool equal (const value_type *, const compare_type *);
7754 inline hashval_t
7755 external_ref_hasher::hash (const value_type *r)
7757 dw_die_ref die = r->type;
7758 hashval_t h = 0;
7760 /* We can't use the address of the DIE for hashing, because
7761 that will make the order of the stub DIEs non-deterministic. */
7762 if (! die->comdat_type_p)
7763 /* We have a symbol; use it to compute a hash. */
7764 h = htab_hash_string (die->die_id.die_symbol);
7765 else
7767 /* We have a type signature; use a subset of the bits as the hash.
7768 The 8-byte signature is at least as large as hashval_t. */
7769 comdat_type_node_ref type_node = die->die_id.die_type_node;
7770 memcpy (&h, type_node->signature, sizeof (h));
7772 return h;
7775 inline bool
7776 external_ref_hasher::equal (const value_type *r1, const compare_type *r2)
7778 return r1->type == r2->type;
7781 typedef hash_table<external_ref_hasher> external_ref_hash_type;
7783 /* Return a pointer to the external_ref for references to DIE. */
7785 static struct external_ref *
7786 lookup_external_ref (external_ref_hash_type *map, dw_die_ref die)
7788 struct external_ref ref, *ref_p;
7789 external_ref **slot;
7791 ref.type = die;
7792 slot = map->find_slot (&ref, INSERT);
7793 if (*slot != HTAB_EMPTY_ENTRY)
7794 return *slot;
7796 ref_p = XCNEW (struct external_ref);
7797 ref_p->type = die;
7798 *slot = ref_p;
7799 return ref_p;
7802 /* Subroutine of optimize_external_refs, below.
7804 If we see a type skeleton, record it as our stub. If we see external
7805 references, remember how many we've seen. */
7807 static void
7808 optimize_external_refs_1 (dw_die_ref die, external_ref_hash_type *map)
7810 dw_die_ref c;
7811 dw_attr_ref a;
7812 unsigned ix;
7813 struct external_ref *ref_p;
7815 if (is_type_die (die)
7816 && (c = get_AT_ref (die, DW_AT_signature)))
7818 /* This is a local skeleton; use it for local references. */
7819 ref_p = lookup_external_ref (map, c);
7820 ref_p->stub = die;
7823 /* Scan the DIE references, and remember any that refer to DIEs from
7824 other CUs (i.e. those which are not marked). */
7825 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7826 if (AT_class (a) == dw_val_class_die_ref
7827 && (c = AT_ref (a))->die_mark == 0
7828 && is_type_die (c))
7830 ref_p = lookup_external_ref (map, c);
7831 ref_p->n_refs++;
7834 FOR_EACH_CHILD (die, c, optimize_external_refs_1 (c, map));
7837 /* htab_traverse callback function for optimize_external_refs, below. SLOT
7838 points to an external_ref, DATA is the CU we're processing. If we don't
7839 already have a local stub, and we have multiple refs, build a stub. */
7842 dwarf2_build_local_stub (external_ref **slot, dw_die_ref data)
7844 struct external_ref *ref_p = *slot;
7846 if (ref_p->stub == NULL && ref_p->n_refs > 1 && !dwarf_strict)
7848 /* We have multiple references to this type, so build a small stub.
7849 Both of these forms are a bit dodgy from the perspective of the
7850 DWARF standard, since technically they should have names. */
7851 dw_die_ref cu = data;
7852 dw_die_ref type = ref_p->type;
7853 dw_die_ref stub = NULL;
7855 if (type->comdat_type_p)
7857 /* If we refer to this type via sig8, use AT_signature. */
7858 stub = new_die (type->die_tag, cu, NULL_TREE);
7859 add_AT_die_ref (stub, DW_AT_signature, type);
7861 else
7863 /* Otherwise, use a typedef with no name. */
7864 stub = new_die (DW_TAG_typedef, cu, NULL_TREE);
7865 add_AT_die_ref (stub, DW_AT_type, type);
7868 stub->die_mark++;
7869 ref_p->stub = stub;
7871 return 1;
7874 /* DIE is a unit; look through all the DIE references to see if there are
7875 any external references to types, and if so, create local stubs for
7876 them which will be applied in build_abbrev_table. This is useful because
7877 references to local DIEs are smaller. */
7879 static external_ref_hash_type *
7880 optimize_external_refs (dw_die_ref die)
7882 external_ref_hash_type *map = new external_ref_hash_type (10);
7883 optimize_external_refs_1 (die, map);
7884 map->traverse <dw_die_ref, dwarf2_build_local_stub> (die);
7885 return map;
7888 /* The format of each DIE (and its attribute value pairs) is encoded in an
7889 abbreviation table. This routine builds the abbreviation table and assigns
7890 a unique abbreviation id for each abbreviation entry. The children of each
7891 die are visited recursively. */
7893 static void
7894 build_abbrev_table (dw_die_ref die, external_ref_hash_type *extern_map)
7896 unsigned long abbrev_id;
7897 unsigned int n_alloc;
7898 dw_die_ref c;
7899 dw_attr_ref a;
7900 unsigned ix;
7902 /* Scan the DIE references, and replace any that refer to
7903 DIEs from other CUs (i.e. those which are not marked) with
7904 the local stubs we built in optimize_external_refs. */
7905 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7906 if (AT_class (a) == dw_val_class_die_ref
7907 && (c = AT_ref (a))->die_mark == 0)
7909 struct external_ref *ref_p;
7910 gcc_assert (AT_ref (a)->comdat_type_p || AT_ref (a)->die_id.die_symbol);
7912 ref_p = lookup_external_ref (extern_map, c);
7913 if (ref_p->stub && ref_p->stub != die)
7914 change_AT_die_ref (a, ref_p->stub);
7915 else
7916 /* We aren't changing this reference, so mark it external. */
7917 set_AT_ref_external (a, 1);
7920 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
7922 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
7923 dw_attr_ref die_a, abbrev_a;
7924 unsigned ix;
7925 bool ok = true;
7927 if (abbrev->die_tag != die->die_tag)
7928 continue;
7929 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
7930 continue;
7932 if (vec_safe_length (abbrev->die_attr) != vec_safe_length (die->die_attr))
7933 continue;
7935 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, die_a)
7937 abbrev_a = &(*abbrev->die_attr)[ix];
7938 if ((abbrev_a->dw_attr != die_a->dw_attr)
7939 || (value_format (abbrev_a) != value_format (die_a)))
7941 ok = false;
7942 break;
7945 if (ok)
7946 break;
7949 if (abbrev_id >= abbrev_die_table_in_use)
7951 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
7953 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
7954 abbrev_die_table = GGC_RESIZEVEC (dw_die_ref, abbrev_die_table,
7955 n_alloc);
7957 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
7958 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
7959 abbrev_die_table_allocated = n_alloc;
7962 ++abbrev_die_table_in_use;
7963 abbrev_die_table[abbrev_id] = die;
7966 die->die_abbrev = abbrev_id;
7967 FOR_EACH_CHILD (die, c, build_abbrev_table (c, extern_map));
7970 /* Return the power-of-two number of bytes necessary to represent VALUE. */
7972 static int
7973 constant_size (unsigned HOST_WIDE_INT value)
7975 int log;
7977 if (value == 0)
7978 log = 0;
7979 else
7980 log = floor_log2 (value);
7982 log = log / 8;
7983 log = 1 << (floor_log2 (log) + 1);
7985 return log;
7988 /* Return the size of a DIE as it is represented in the
7989 .debug_info section. */
7991 static unsigned long
7992 size_of_die (dw_die_ref die)
7994 unsigned long size = 0;
7995 dw_attr_ref a;
7996 unsigned ix;
7997 enum dwarf_form form;
7999 size += size_of_uleb128 (die->die_abbrev);
8000 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8002 switch (AT_class (a))
8004 case dw_val_class_addr:
8005 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8007 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8008 size += size_of_uleb128 (AT_index (a));
8010 else
8011 size += DWARF2_ADDR_SIZE;
8012 break;
8013 case dw_val_class_offset:
8014 size += DWARF_OFFSET_SIZE;
8015 break;
8016 case dw_val_class_loc:
8018 unsigned long lsize = size_of_locs (AT_loc (a));
8020 /* Block length. */
8021 if (dwarf_version >= 4)
8022 size += size_of_uleb128 (lsize);
8023 else
8024 size += constant_size (lsize);
8025 size += lsize;
8027 break;
8028 case dw_val_class_loc_list:
8029 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8031 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8032 size += size_of_uleb128 (AT_index (a));
8034 else
8035 size += DWARF_OFFSET_SIZE;
8036 break;
8037 case dw_val_class_range_list:
8038 size += DWARF_OFFSET_SIZE;
8039 break;
8040 case dw_val_class_const:
8041 size += size_of_sleb128 (AT_int (a));
8042 break;
8043 case dw_val_class_unsigned_const:
8045 int csize = constant_size (AT_unsigned (a));
8046 if (dwarf_version == 3
8047 && a->dw_attr == DW_AT_data_member_location
8048 && csize >= 4)
8049 size += size_of_uleb128 (AT_unsigned (a));
8050 else
8051 size += csize;
8053 break;
8054 case dw_val_class_const_double:
8055 size += HOST_BITS_PER_DOUBLE_INT / HOST_BITS_PER_CHAR;
8056 if (HOST_BITS_PER_WIDE_INT >= 64)
8057 size++; /* block */
8058 break;
8059 case dw_val_class_wide_int:
8060 size += (get_full_len (*a->dw_attr_val.v.val_wide)
8061 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
8062 if (get_full_len (*a->dw_attr_val.v.val_wide) * HOST_BITS_PER_WIDE_INT
8063 > 64)
8064 size++; /* block */
8065 break;
8066 case dw_val_class_vec:
8067 size += constant_size (a->dw_attr_val.v.val_vec.length
8068 * a->dw_attr_val.v.val_vec.elt_size)
8069 + a->dw_attr_val.v.val_vec.length
8070 * a->dw_attr_val.v.val_vec.elt_size; /* block */
8071 break;
8072 case dw_val_class_flag:
8073 if (dwarf_version >= 4)
8074 /* Currently all add_AT_flag calls pass in 1 as last argument,
8075 so DW_FORM_flag_present can be used. If that ever changes,
8076 we'll need to use DW_FORM_flag and have some optimization
8077 in build_abbrev_table that will change those to
8078 DW_FORM_flag_present if it is set to 1 in all DIEs using
8079 the same abbrev entry. */
8080 gcc_assert (a->dw_attr_val.v.val_flag == 1);
8081 else
8082 size += 1;
8083 break;
8084 case dw_val_class_die_ref:
8085 if (AT_ref_external (a))
8087 /* In DWARF4, we use DW_FORM_ref_sig8; for earlier versions
8088 we use DW_FORM_ref_addr. In DWARF2, DW_FORM_ref_addr
8089 is sized by target address length, whereas in DWARF3
8090 it's always sized as an offset. */
8091 if (use_debug_types)
8092 size += DWARF_TYPE_SIGNATURE_SIZE;
8093 else if (dwarf_version == 2)
8094 size += DWARF2_ADDR_SIZE;
8095 else
8096 size += DWARF_OFFSET_SIZE;
8098 else
8099 size += DWARF_OFFSET_SIZE;
8100 break;
8101 case dw_val_class_fde_ref:
8102 size += DWARF_OFFSET_SIZE;
8103 break;
8104 case dw_val_class_lbl_id:
8105 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8107 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8108 size += size_of_uleb128 (AT_index (a));
8110 else
8111 size += DWARF2_ADDR_SIZE;
8112 break;
8113 case dw_val_class_lineptr:
8114 case dw_val_class_macptr:
8115 size += DWARF_OFFSET_SIZE;
8116 break;
8117 case dw_val_class_str:
8118 form = AT_string_form (a);
8119 if (form == DW_FORM_strp)
8120 size += DWARF_OFFSET_SIZE;
8121 else if (form == DW_FORM_GNU_str_index)
8122 size += size_of_uleb128 (AT_index (a));
8123 else
8124 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
8125 break;
8126 case dw_val_class_file:
8127 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
8128 break;
8129 case dw_val_class_data8:
8130 size += 8;
8131 break;
8132 case dw_val_class_vms_delta:
8133 size += DWARF_OFFSET_SIZE;
8134 break;
8135 case dw_val_class_high_pc:
8136 size += DWARF2_ADDR_SIZE;
8137 break;
8138 default:
8139 gcc_unreachable ();
8143 return size;
8146 /* Size the debugging information associated with a given DIE. Visits the
8147 DIE's children recursively. Updates the global variable next_die_offset, on
8148 each time through. Uses the current value of next_die_offset to update the
8149 die_offset field in each DIE. */
8151 static void
8152 calc_die_sizes (dw_die_ref die)
8154 dw_die_ref c;
8156 gcc_assert (die->die_offset == 0
8157 || (unsigned long int) die->die_offset == next_die_offset);
8158 die->die_offset = next_die_offset;
8159 next_die_offset += size_of_die (die);
8161 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
8163 if (die->die_child != NULL)
8164 /* Count the null byte used to terminate sibling lists. */
8165 next_die_offset += 1;
8168 /* Size just the base type children at the start of the CU.
8169 This is needed because build_abbrev needs to size locs
8170 and sizing of type based stack ops needs to know die_offset
8171 values for the base types. */
8173 static void
8174 calc_base_type_die_sizes (void)
8176 unsigned long die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
8177 unsigned int i;
8178 dw_die_ref base_type;
8179 #if ENABLE_ASSERT_CHECKING
8180 dw_die_ref prev = comp_unit_die ()->die_child;
8181 #endif
8183 die_offset += size_of_die (comp_unit_die ());
8184 for (i = 0; base_types.iterate (i, &base_type); i++)
8186 #if ENABLE_ASSERT_CHECKING
8187 gcc_assert (base_type->die_offset == 0
8188 && prev->die_sib == base_type
8189 && base_type->die_child == NULL
8190 && base_type->die_abbrev);
8191 prev = base_type;
8192 #endif
8193 base_type->die_offset = die_offset;
8194 die_offset += size_of_die (base_type);
8198 /* Set the marks for a die and its children. We do this so
8199 that we know whether or not a reference needs to use FORM_ref_addr; only
8200 DIEs in the same CU will be marked. We used to clear out the offset
8201 and use that as the flag, but ran into ordering problems. */
8203 static void
8204 mark_dies (dw_die_ref die)
8206 dw_die_ref c;
8208 gcc_assert (!die->die_mark);
8210 die->die_mark = 1;
8211 FOR_EACH_CHILD (die, c, mark_dies (c));
8214 /* Clear the marks for a die and its children. */
8216 static void
8217 unmark_dies (dw_die_ref die)
8219 dw_die_ref c;
8221 if (! use_debug_types)
8222 gcc_assert (die->die_mark);
8224 die->die_mark = 0;
8225 FOR_EACH_CHILD (die, c, unmark_dies (c));
8228 /* Clear the marks for a die, its children and referred dies. */
8230 static void
8231 unmark_all_dies (dw_die_ref die)
8233 dw_die_ref c;
8234 dw_attr_ref a;
8235 unsigned ix;
8237 if (!die->die_mark)
8238 return;
8239 die->die_mark = 0;
8241 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
8243 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8244 if (AT_class (a) == dw_val_class_die_ref)
8245 unmark_all_dies (AT_ref (a));
8248 /* Calculate if the entry should appear in the final output file. It may be
8249 from a pruned a type. */
8251 static bool
8252 include_pubname_in_output (vec<pubname_entry, va_gc> *table, pubname_entry *p)
8254 /* By limiting gnu pubnames to definitions only, gold can generate a
8255 gdb index without entries for declarations, which don't include
8256 enough information to be useful. */
8257 if (debug_generate_pub_sections == 2 && is_declaration_die (p->die))
8258 return false;
8260 if (table == pubname_table)
8262 /* Enumerator names are part of the pubname table, but the
8263 parent DW_TAG_enumeration_type die may have been pruned.
8264 Don't output them if that is the case. */
8265 if (p->die->die_tag == DW_TAG_enumerator &&
8266 (p->die->die_parent == NULL
8267 || !p->die->die_parent->die_perennial_p))
8268 return false;
8270 /* Everything else in the pubname table is included. */
8271 return true;
8274 /* The pubtypes table shouldn't include types that have been
8275 pruned. */
8276 return (p->die->die_offset != 0
8277 || !flag_eliminate_unused_debug_types);
8280 /* Return the size of the .debug_pubnames or .debug_pubtypes table
8281 generated for the compilation unit. */
8283 static unsigned long
8284 size_of_pubnames (vec<pubname_entry, va_gc> *names)
8286 unsigned long size;
8287 unsigned i;
8288 pubname_ref p;
8289 int space_for_flags = (debug_generate_pub_sections == 2) ? 1 : 0;
8291 size = DWARF_PUBNAMES_HEADER_SIZE;
8292 FOR_EACH_VEC_ELT (*names, i, p)
8293 if (include_pubname_in_output (names, p))
8294 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1 + space_for_flags;
8296 size += DWARF_OFFSET_SIZE;
8297 return size;
8300 /* Return the size of the information in the .debug_aranges section. */
8302 static unsigned long
8303 size_of_aranges (void)
8305 unsigned long size;
8307 size = DWARF_ARANGES_HEADER_SIZE;
8309 /* Count the address/length pair for this compilation unit. */
8310 if (text_section_used)
8311 size += 2 * DWARF2_ADDR_SIZE;
8312 if (cold_text_section_used)
8313 size += 2 * DWARF2_ADDR_SIZE;
8314 if (have_multiple_function_sections)
8316 unsigned fde_idx;
8317 dw_fde_ref fde;
8319 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
8321 if (DECL_IGNORED_P (fde->decl))
8322 continue;
8323 if (!fde->in_std_section)
8324 size += 2 * DWARF2_ADDR_SIZE;
8325 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
8326 size += 2 * DWARF2_ADDR_SIZE;
8330 /* Count the two zero words used to terminated the address range table. */
8331 size += 2 * DWARF2_ADDR_SIZE;
8332 return size;
8335 /* Select the encoding of an attribute value. */
8337 static enum dwarf_form
8338 value_format (dw_attr_ref a)
8340 switch (AT_class (a))
8342 case dw_val_class_addr:
8343 /* Only very few attributes allow DW_FORM_addr. */
8344 switch (a->dw_attr)
8346 case DW_AT_low_pc:
8347 case DW_AT_high_pc:
8348 case DW_AT_entry_pc:
8349 case DW_AT_trampoline:
8350 return (AT_index (a) == NOT_INDEXED
8351 ? DW_FORM_addr : DW_FORM_GNU_addr_index);
8352 default:
8353 break;
8355 switch (DWARF2_ADDR_SIZE)
8357 case 1:
8358 return DW_FORM_data1;
8359 case 2:
8360 return DW_FORM_data2;
8361 case 4:
8362 return DW_FORM_data4;
8363 case 8:
8364 return DW_FORM_data8;
8365 default:
8366 gcc_unreachable ();
8368 case dw_val_class_range_list:
8369 case dw_val_class_loc_list:
8370 if (dwarf_version >= 4)
8371 return DW_FORM_sec_offset;
8372 /* FALLTHRU */
8373 case dw_val_class_vms_delta:
8374 case dw_val_class_offset:
8375 switch (DWARF_OFFSET_SIZE)
8377 case 4:
8378 return DW_FORM_data4;
8379 case 8:
8380 return DW_FORM_data8;
8381 default:
8382 gcc_unreachable ();
8384 case dw_val_class_loc:
8385 if (dwarf_version >= 4)
8386 return DW_FORM_exprloc;
8387 switch (constant_size (size_of_locs (AT_loc (a))))
8389 case 1:
8390 return DW_FORM_block1;
8391 case 2:
8392 return DW_FORM_block2;
8393 case 4:
8394 return DW_FORM_block4;
8395 default:
8396 gcc_unreachable ();
8398 case dw_val_class_const:
8399 return DW_FORM_sdata;
8400 case dw_val_class_unsigned_const:
8401 switch (constant_size (AT_unsigned (a)))
8403 case 1:
8404 return DW_FORM_data1;
8405 case 2:
8406 return DW_FORM_data2;
8407 case 4:
8408 /* In DWARF3 DW_AT_data_member_location with
8409 DW_FORM_data4 or DW_FORM_data8 is a loclistptr, not
8410 constant, so we need to use DW_FORM_udata if we need
8411 a large constant. */
8412 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
8413 return DW_FORM_udata;
8414 return DW_FORM_data4;
8415 case 8:
8416 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
8417 return DW_FORM_udata;
8418 return DW_FORM_data8;
8419 default:
8420 gcc_unreachable ();
8422 case dw_val_class_const_double:
8423 switch (HOST_BITS_PER_WIDE_INT)
8425 case 8:
8426 return DW_FORM_data2;
8427 case 16:
8428 return DW_FORM_data4;
8429 case 32:
8430 return DW_FORM_data8;
8431 case 64:
8432 default:
8433 return DW_FORM_block1;
8435 case dw_val_class_wide_int:
8436 switch (get_full_len (*a->dw_attr_val.v.val_wide) * HOST_BITS_PER_WIDE_INT)
8438 case 8:
8439 return DW_FORM_data1;
8440 case 16:
8441 return DW_FORM_data2;
8442 case 32:
8443 return DW_FORM_data4;
8444 case 64:
8445 return DW_FORM_data8;
8446 default:
8447 return DW_FORM_block1;
8449 case dw_val_class_vec:
8450 switch (constant_size (a->dw_attr_val.v.val_vec.length
8451 * a->dw_attr_val.v.val_vec.elt_size))
8453 case 1:
8454 return DW_FORM_block1;
8455 case 2:
8456 return DW_FORM_block2;
8457 case 4:
8458 return DW_FORM_block4;
8459 default:
8460 gcc_unreachable ();
8462 case dw_val_class_flag:
8463 if (dwarf_version >= 4)
8465 /* Currently all add_AT_flag calls pass in 1 as last argument,
8466 so DW_FORM_flag_present can be used. If that ever changes,
8467 we'll need to use DW_FORM_flag and have some optimization
8468 in build_abbrev_table that will change those to
8469 DW_FORM_flag_present if it is set to 1 in all DIEs using
8470 the same abbrev entry. */
8471 gcc_assert (a->dw_attr_val.v.val_flag == 1);
8472 return DW_FORM_flag_present;
8474 return DW_FORM_flag;
8475 case dw_val_class_die_ref:
8476 if (AT_ref_external (a))
8477 return use_debug_types ? DW_FORM_ref_sig8 : DW_FORM_ref_addr;
8478 else
8479 return DW_FORM_ref;
8480 case dw_val_class_fde_ref:
8481 return DW_FORM_data;
8482 case dw_val_class_lbl_id:
8483 return (AT_index (a) == NOT_INDEXED
8484 ? DW_FORM_addr : DW_FORM_GNU_addr_index);
8485 case dw_val_class_lineptr:
8486 case dw_val_class_macptr:
8487 return dwarf_version >= 4 ? DW_FORM_sec_offset : DW_FORM_data;
8488 case dw_val_class_str:
8489 return AT_string_form (a);
8490 case dw_val_class_file:
8491 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
8493 case 1:
8494 return DW_FORM_data1;
8495 case 2:
8496 return DW_FORM_data2;
8497 case 4:
8498 return DW_FORM_data4;
8499 default:
8500 gcc_unreachable ();
8503 case dw_val_class_data8:
8504 return DW_FORM_data8;
8506 case dw_val_class_high_pc:
8507 switch (DWARF2_ADDR_SIZE)
8509 case 1:
8510 return DW_FORM_data1;
8511 case 2:
8512 return DW_FORM_data2;
8513 case 4:
8514 return DW_FORM_data4;
8515 case 8:
8516 return DW_FORM_data8;
8517 default:
8518 gcc_unreachable ();
8521 default:
8522 gcc_unreachable ();
8526 /* Output the encoding of an attribute value. */
8528 static void
8529 output_value_format (dw_attr_ref a)
8531 enum dwarf_form form = value_format (a);
8533 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
8536 /* Given a die and id, produce the appropriate abbreviations. */
8538 static void
8539 output_die_abbrevs (unsigned long abbrev_id, dw_die_ref abbrev)
8541 unsigned ix;
8542 dw_attr_ref a_attr;
8544 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
8545 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
8546 dwarf_tag_name (abbrev->die_tag));
8548 if (abbrev->die_child != NULL)
8549 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
8550 else
8551 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
8553 for (ix = 0; vec_safe_iterate (abbrev->die_attr, ix, &a_attr); ix++)
8555 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
8556 dwarf_attr_name (a_attr->dw_attr));
8557 output_value_format (a_attr);
8560 dw2_asm_output_data (1, 0, NULL);
8561 dw2_asm_output_data (1, 0, NULL);
8565 /* Output the .debug_abbrev section which defines the DIE abbreviation
8566 table. */
8568 static void
8569 output_abbrev_section (void)
8571 unsigned long abbrev_id;
8573 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
8574 output_die_abbrevs (abbrev_id, abbrev_die_table[abbrev_id]);
8576 /* Terminate the table. */
8577 dw2_asm_output_data (1, 0, NULL);
8580 /* Output a symbol we can use to refer to this DIE from another CU. */
8582 static inline void
8583 output_die_symbol (dw_die_ref die)
8585 const char *sym = die->die_id.die_symbol;
8587 gcc_assert (!die->comdat_type_p);
8589 if (sym == 0)
8590 return;
8592 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
8593 /* We make these global, not weak; if the target doesn't support
8594 .linkonce, it doesn't support combining the sections, so debugging
8595 will break. */
8596 targetm.asm_out.globalize_label (asm_out_file, sym);
8598 ASM_OUTPUT_LABEL (asm_out_file, sym);
8601 /* Return a new location list, given the begin and end range, and the
8602 expression. */
8604 static inline dw_loc_list_ref
8605 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
8606 const char *section)
8608 dw_loc_list_ref retlist = ggc_cleared_alloc<dw_loc_list_node> ();
8610 retlist->begin = begin;
8611 retlist->begin_entry = NULL;
8612 retlist->end = end;
8613 retlist->expr = expr;
8614 retlist->section = section;
8616 return retlist;
8619 /* Generate a new internal symbol for this location list node, if it
8620 hasn't got one yet. */
8622 static inline void
8623 gen_llsym (dw_loc_list_ref list)
8625 gcc_assert (!list->ll_symbol);
8626 list->ll_symbol = gen_internal_sym ("LLST");
8629 /* Output the location list given to us. */
8631 static void
8632 output_loc_list (dw_loc_list_ref list_head)
8634 dw_loc_list_ref curr = list_head;
8636 if (list_head->emitted)
8637 return;
8638 list_head->emitted = true;
8640 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
8642 /* Walk the location list, and output each range + expression. */
8643 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
8645 unsigned long size;
8646 /* Don't output an entry that starts and ends at the same address. */
8647 if (strcmp (curr->begin, curr->end) == 0 && !curr->force)
8648 continue;
8649 size = size_of_locs (curr->expr);
8650 /* If the expression is too large, drop it on the floor. We could
8651 perhaps put it into DW_TAG_dwarf_procedure and refer to that
8652 in the expression, but >= 64KB expressions for a single value
8653 in a single range are unlikely very useful. */
8654 if (size > 0xffff)
8655 continue;
8656 if (dwarf_split_debug_info)
8658 dw2_asm_output_data (1, DW_LLE_GNU_start_length_entry,
8659 "Location list start/length entry (%s)",
8660 list_head->ll_symbol);
8661 dw2_asm_output_data_uleb128 (curr->begin_entry->index,
8662 "Location list range start index (%s)",
8663 curr->begin);
8664 /* The length field is 4 bytes. If we ever need to support
8665 an 8-byte length, we can add a new DW_LLE code or fall back
8666 to DW_LLE_GNU_start_end_entry. */
8667 dw2_asm_output_delta (4, curr->end, curr->begin,
8668 "Location list range length (%s)",
8669 list_head->ll_symbol);
8671 else if (!have_multiple_function_sections)
8673 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
8674 "Location list begin address (%s)",
8675 list_head->ll_symbol);
8676 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
8677 "Location list end address (%s)",
8678 list_head->ll_symbol);
8680 else
8682 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
8683 "Location list begin address (%s)",
8684 list_head->ll_symbol);
8685 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
8686 "Location list end address (%s)",
8687 list_head->ll_symbol);
8690 /* Output the block length for this list of location operations. */
8691 gcc_assert (size <= 0xffff);
8692 dw2_asm_output_data (2, size, "%s", "Location expression size");
8694 output_loc_sequence (curr->expr, -1);
8697 if (dwarf_split_debug_info)
8698 dw2_asm_output_data (1, DW_LLE_GNU_end_of_list_entry,
8699 "Location list terminator (%s)",
8700 list_head->ll_symbol);
8701 else
8703 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
8704 "Location list terminator begin (%s)",
8705 list_head->ll_symbol);
8706 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
8707 "Location list terminator end (%s)",
8708 list_head->ll_symbol);
8712 /* Output a range_list offset into the debug_range section. Emit a
8713 relocated reference if val_entry is NULL, otherwise, emit an
8714 indirect reference. */
8716 static void
8717 output_range_list_offset (dw_attr_ref a)
8719 const char *name = dwarf_attr_name (a->dw_attr);
8721 if (a->dw_attr_val.val_entry == RELOCATED_OFFSET)
8723 char *p = strchr (ranges_section_label, '\0');
8724 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX, a->dw_attr_val.v.val_offset);
8725 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
8726 debug_ranges_section, "%s", name);
8727 *p = '\0';
8729 else
8730 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
8731 "%s (offset from %s)", name, ranges_section_label);
8734 /* Output the offset into the debug_loc section. */
8736 static void
8737 output_loc_list_offset (dw_attr_ref a)
8739 char *sym = AT_loc_list (a)->ll_symbol;
8741 gcc_assert (sym);
8742 if (dwarf_split_debug_info)
8743 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym, loc_section_label,
8744 "%s", dwarf_attr_name (a->dw_attr));
8745 else
8746 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
8747 "%s", dwarf_attr_name (a->dw_attr));
8750 /* Output an attribute's index or value appropriately. */
8752 static void
8753 output_attr_index_or_value (dw_attr_ref a)
8755 const char *name = dwarf_attr_name (a->dw_attr);
8757 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8759 dw2_asm_output_data_uleb128 (AT_index (a), "%s", name);
8760 return;
8762 switch (AT_class (a))
8764 case dw_val_class_addr:
8765 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
8766 break;
8767 case dw_val_class_high_pc:
8768 case dw_val_class_lbl_id:
8769 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
8770 break;
8771 case dw_val_class_loc_list:
8772 output_loc_list_offset (a);
8773 break;
8774 default:
8775 gcc_unreachable ();
8779 /* Output a type signature. */
8781 static inline void
8782 output_signature (const char *sig, const char *name)
8784 int i;
8786 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
8787 dw2_asm_output_data (1, sig[i], i == 0 ? "%s" : NULL, name);
8790 /* Output the DIE and its attributes. Called recursively to generate
8791 the definitions of each child DIE. */
8793 static void
8794 output_die (dw_die_ref die)
8796 dw_attr_ref a;
8797 dw_die_ref c;
8798 unsigned long size;
8799 unsigned ix;
8801 /* If someone in another CU might refer to us, set up a symbol for
8802 them to point to. */
8803 if (! die->comdat_type_p && die->die_id.die_symbol)
8804 output_die_symbol (die);
8806 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (%#lx) %s)",
8807 (unsigned long)die->die_offset,
8808 dwarf_tag_name (die->die_tag));
8810 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8812 const char *name = dwarf_attr_name (a->dw_attr);
8814 switch (AT_class (a))
8816 case dw_val_class_addr:
8817 output_attr_index_or_value (a);
8818 break;
8820 case dw_val_class_offset:
8821 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
8822 "%s", name);
8823 break;
8825 case dw_val_class_range_list:
8826 output_range_list_offset (a);
8827 break;
8829 case dw_val_class_loc:
8830 size = size_of_locs (AT_loc (a));
8832 /* Output the block length for this list of location operations. */
8833 if (dwarf_version >= 4)
8834 dw2_asm_output_data_uleb128 (size, "%s", name);
8835 else
8836 dw2_asm_output_data (constant_size (size), size, "%s", name);
8838 output_loc_sequence (AT_loc (a), -1);
8839 break;
8841 case dw_val_class_const:
8842 /* ??? It would be slightly more efficient to use a scheme like is
8843 used for unsigned constants below, but gdb 4.x does not sign
8844 extend. Gdb 5.x does sign extend. */
8845 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
8846 break;
8848 case dw_val_class_unsigned_const:
8850 int csize = constant_size (AT_unsigned (a));
8851 if (dwarf_version == 3
8852 && a->dw_attr == DW_AT_data_member_location
8853 && csize >= 4)
8854 dw2_asm_output_data_uleb128 (AT_unsigned (a), "%s", name);
8855 else
8856 dw2_asm_output_data (csize, AT_unsigned (a), "%s", name);
8858 break;
8860 case dw_val_class_const_double:
8862 unsigned HOST_WIDE_INT first, second;
8864 if (HOST_BITS_PER_WIDE_INT >= 64)
8865 dw2_asm_output_data (1,
8866 HOST_BITS_PER_DOUBLE_INT
8867 / HOST_BITS_PER_CHAR,
8868 NULL);
8870 if (WORDS_BIG_ENDIAN)
8872 first = a->dw_attr_val.v.val_double.high;
8873 second = a->dw_attr_val.v.val_double.low;
8875 else
8877 first = a->dw_attr_val.v.val_double.low;
8878 second = a->dw_attr_val.v.val_double.high;
8881 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
8882 first, "%s", name);
8883 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
8884 second, NULL);
8886 break;
8888 case dw_val_class_wide_int:
8890 int i;
8891 int len = get_full_len (*a->dw_attr_val.v.val_wide);
8892 int l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
8893 if (len * HOST_BITS_PER_WIDE_INT > 64)
8894 dw2_asm_output_data (1, get_full_len (*a->dw_attr_val.v.val_wide) * l,
8895 NULL);
8897 if (WORDS_BIG_ENDIAN)
8898 for (i = len - 1; i >= 0; --i)
8900 dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
8901 "%s", name);
8902 name = NULL;
8904 else
8905 for (i = 0; i < len; ++i)
8907 dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
8908 "%s", name);
8909 name = NULL;
8912 break;
8914 case dw_val_class_vec:
8916 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
8917 unsigned int len = a->dw_attr_val.v.val_vec.length;
8918 unsigned int i;
8919 unsigned char *p;
8921 dw2_asm_output_data (constant_size (len * elt_size),
8922 len * elt_size, "%s", name);
8923 if (elt_size > sizeof (HOST_WIDE_INT))
8925 elt_size /= 2;
8926 len *= 2;
8928 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
8929 i < len;
8930 i++, p += elt_size)
8931 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
8932 "fp or vector constant word %u", i);
8933 break;
8936 case dw_val_class_flag:
8937 if (dwarf_version >= 4)
8939 /* Currently all add_AT_flag calls pass in 1 as last argument,
8940 so DW_FORM_flag_present can be used. If that ever changes,
8941 we'll need to use DW_FORM_flag and have some optimization
8942 in build_abbrev_table that will change those to
8943 DW_FORM_flag_present if it is set to 1 in all DIEs using
8944 the same abbrev entry. */
8945 gcc_assert (AT_flag (a) == 1);
8946 if (flag_debug_asm)
8947 fprintf (asm_out_file, "\t\t\t%s %s\n",
8948 ASM_COMMENT_START, name);
8949 break;
8951 dw2_asm_output_data (1, AT_flag (a), "%s", name);
8952 break;
8954 case dw_val_class_loc_list:
8955 output_attr_index_or_value (a);
8956 break;
8958 case dw_val_class_die_ref:
8959 if (AT_ref_external (a))
8961 if (AT_ref (a)->comdat_type_p)
8963 comdat_type_node_ref type_node =
8964 AT_ref (a)->die_id.die_type_node;
8966 gcc_assert (type_node);
8967 output_signature (type_node->signature, name);
8969 else
8971 const char *sym = AT_ref (a)->die_id.die_symbol;
8972 int size;
8974 gcc_assert (sym);
8975 /* In DWARF2, DW_FORM_ref_addr is sized by target address
8976 length, whereas in DWARF3 it's always sized as an
8977 offset. */
8978 if (dwarf_version == 2)
8979 size = DWARF2_ADDR_SIZE;
8980 else
8981 size = DWARF_OFFSET_SIZE;
8982 dw2_asm_output_offset (size, sym, debug_info_section, "%s",
8983 name);
8986 else
8988 gcc_assert (AT_ref (a)->die_offset);
8989 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
8990 "%s", name);
8992 break;
8994 case dw_val_class_fde_ref:
8996 char l1[20];
8998 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
8999 a->dw_attr_val.v.val_fde_index * 2);
9000 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
9001 "%s", name);
9003 break;
9005 case dw_val_class_vms_delta:
9006 #ifdef ASM_OUTPUT_DWARF_VMS_DELTA
9007 dw2_asm_output_vms_delta (DWARF_OFFSET_SIZE,
9008 AT_vms_delta2 (a), AT_vms_delta1 (a),
9009 "%s", name);
9010 #else
9011 dw2_asm_output_delta (DWARF_OFFSET_SIZE,
9012 AT_vms_delta2 (a), AT_vms_delta1 (a),
9013 "%s", name);
9014 #endif
9015 break;
9017 case dw_val_class_lbl_id:
9018 output_attr_index_or_value (a);
9019 break;
9021 case dw_val_class_lineptr:
9022 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
9023 debug_line_section, "%s", name);
9024 break;
9026 case dw_val_class_macptr:
9027 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
9028 debug_macinfo_section, "%s", name);
9029 break;
9031 case dw_val_class_str:
9032 if (a->dw_attr_val.v.val_str->form == DW_FORM_strp)
9033 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
9034 a->dw_attr_val.v.val_str->label,
9035 debug_str_section,
9036 "%s: \"%s\"", name, AT_string (a));
9037 else if (a->dw_attr_val.v.val_str->form == DW_FORM_GNU_str_index)
9038 dw2_asm_output_data_uleb128 (AT_index (a),
9039 "%s: \"%s\"", name, AT_string (a));
9040 else
9041 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
9042 break;
9044 case dw_val_class_file:
9046 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
9048 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
9049 a->dw_attr_val.v.val_file->filename);
9050 break;
9053 case dw_val_class_data8:
9055 int i;
9057 for (i = 0; i < 8; i++)
9058 dw2_asm_output_data (1, a->dw_attr_val.v.val_data8[i],
9059 i == 0 ? "%s" : NULL, name);
9060 break;
9063 case dw_val_class_high_pc:
9064 dw2_asm_output_delta (DWARF2_ADDR_SIZE, AT_lbl (a),
9065 get_AT_low_pc (die), "DW_AT_high_pc");
9066 break;
9068 default:
9069 gcc_unreachable ();
9073 FOR_EACH_CHILD (die, c, output_die (c));
9075 /* Add null byte to terminate sibling list. */
9076 if (die->die_child != NULL)
9077 dw2_asm_output_data (1, 0, "end of children of DIE %#lx",
9078 (unsigned long) die->die_offset);
9081 /* Output the compilation unit that appears at the beginning of the
9082 .debug_info section, and precedes the DIE descriptions. */
9084 static void
9085 output_compilation_unit_header (void)
9087 /* We don't support actual DWARFv5 units yet, we just use some
9088 DWARFv5 draft DIE tags in DWARFv4 format. */
9089 int ver = dwarf_version < 5 ? dwarf_version : 4;
9091 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9092 dw2_asm_output_data (4, 0xffffffff,
9093 "Initial length escape value indicating 64-bit DWARF extension");
9094 dw2_asm_output_data (DWARF_OFFSET_SIZE,
9095 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
9096 "Length of Compilation Unit Info");
9097 dw2_asm_output_data (2, ver, "DWARF version number");
9098 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
9099 debug_abbrev_section,
9100 "Offset Into Abbrev. Section");
9101 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
9104 /* Output the compilation unit DIE and its children. */
9106 static void
9107 output_comp_unit (dw_die_ref die, int output_if_empty)
9109 const char *secname, *oldsym;
9110 char *tmp;
9112 /* Unless we are outputting main CU, we may throw away empty ones. */
9113 if (!output_if_empty && die->die_child == NULL)
9114 return;
9116 /* Even if there are no children of this DIE, we must output the information
9117 about the compilation unit. Otherwise, on an empty translation unit, we
9118 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
9119 will then complain when examining the file. First mark all the DIEs in
9120 this CU so we know which get local refs. */
9121 mark_dies (die);
9123 external_ref_hash_type *extern_map = optimize_external_refs (die);
9125 build_abbrev_table (die, extern_map);
9127 delete extern_map;
9129 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
9130 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
9131 calc_die_sizes (die);
9133 oldsym = die->die_id.die_symbol;
9134 if (oldsym)
9136 tmp = XALLOCAVEC (char, strlen (oldsym) + 24);
9138 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
9139 secname = tmp;
9140 die->die_id.die_symbol = NULL;
9141 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
9143 else
9145 switch_to_section (debug_info_section);
9146 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
9147 info_section_emitted = true;
9150 /* Output debugging information. */
9151 output_compilation_unit_header ();
9152 output_die (die);
9154 /* Leave the marks on the main CU, so we can check them in
9155 output_pubnames. */
9156 if (oldsym)
9158 unmark_dies (die);
9159 die->die_id.die_symbol = oldsym;
9163 /* Whether to generate the DWARF accelerator tables in .debug_pubnames
9164 and .debug_pubtypes. This is configured per-target, but can be
9165 overridden by the -gpubnames or -gno-pubnames options. */
9167 static inline bool
9168 want_pubnames (void)
9170 if (debug_info_level <= DINFO_LEVEL_TERSE)
9171 return false;
9172 if (debug_generate_pub_sections != -1)
9173 return debug_generate_pub_sections;
9174 return targetm.want_debug_pub_sections;
9177 /* Add the DW_AT_GNU_pubnames and DW_AT_GNU_pubtypes attributes. */
9179 static void
9180 add_AT_pubnames (dw_die_ref die)
9182 if (want_pubnames ())
9183 add_AT_flag (die, DW_AT_GNU_pubnames, 1);
9186 /* Add a string attribute value to a skeleton DIE. */
9188 static inline void
9189 add_skeleton_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind,
9190 const char *str)
9192 dw_attr_node attr;
9193 struct indirect_string_node *node;
9195 if (! skeleton_debug_str_hash)
9196 skeleton_debug_str_hash
9197 = hash_table<indirect_string_hasher>::create_ggc (10);
9199 node = find_AT_string_in_table (str, skeleton_debug_str_hash);
9200 find_string_form (node);
9201 if (node->form == DW_FORM_GNU_str_index)
9202 node->form = DW_FORM_strp;
9204 attr.dw_attr = attr_kind;
9205 attr.dw_attr_val.val_class = dw_val_class_str;
9206 attr.dw_attr_val.val_entry = NULL;
9207 attr.dw_attr_val.v.val_str = node;
9208 add_dwarf_attr (die, &attr);
9211 /* Helper function to generate top-level dies for skeleton debug_info and
9212 debug_types. */
9214 static void
9215 add_top_level_skeleton_die_attrs (dw_die_ref die)
9217 const char *dwo_file_name = concat (aux_base_name, ".dwo", NULL);
9218 const char *comp_dir = comp_dir_string ();
9220 add_skeleton_AT_string (die, DW_AT_GNU_dwo_name, dwo_file_name);
9221 if (comp_dir != NULL)
9222 add_skeleton_AT_string (die, DW_AT_comp_dir, comp_dir);
9223 add_AT_pubnames (die);
9224 add_AT_lineptr (die, DW_AT_GNU_addr_base, debug_addr_section_label);
9227 /* Output skeleton debug sections that point to the dwo file. */
9229 static void
9230 output_skeleton_debug_sections (dw_die_ref comp_unit)
9232 /* We don't support actual DWARFv5 units yet, we just use some
9233 DWARFv5 draft DIE tags in DWARFv4 format. */
9234 int ver = dwarf_version < 5 ? dwarf_version : 4;
9236 /* These attributes will be found in the full debug_info section. */
9237 remove_AT (comp_unit, DW_AT_producer);
9238 remove_AT (comp_unit, DW_AT_language);
9240 switch_to_section (debug_skeleton_info_section);
9241 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_info_section_label);
9243 /* Produce the skeleton compilation-unit header. This one differs enough from
9244 a normal CU header that it's better not to call output_compilation_unit
9245 header. */
9246 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9247 dw2_asm_output_data (4, 0xffffffff,
9248 "Initial length escape value indicating 64-bit DWARF extension");
9250 dw2_asm_output_data (DWARF_OFFSET_SIZE,
9251 DWARF_COMPILE_UNIT_HEADER_SIZE
9252 - DWARF_INITIAL_LENGTH_SIZE
9253 + size_of_die (comp_unit),
9254 "Length of Compilation Unit Info");
9255 dw2_asm_output_data (2, ver, "DWARF version number");
9256 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_abbrev_section_label,
9257 debug_abbrev_section,
9258 "Offset Into Abbrev. Section");
9259 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
9261 comp_unit->die_abbrev = SKELETON_COMP_DIE_ABBREV;
9262 output_die (comp_unit);
9264 /* Build the skeleton debug_abbrev section. */
9265 switch_to_section (debug_skeleton_abbrev_section);
9266 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_abbrev_section_label);
9268 output_die_abbrevs (SKELETON_COMP_DIE_ABBREV, comp_unit);
9270 dw2_asm_output_data (1, 0, "end of skeleton .debug_abbrev");
9273 /* Output a comdat type unit DIE and its children. */
9275 static void
9276 output_comdat_type_unit (comdat_type_node *node)
9278 const char *secname;
9279 char *tmp;
9280 int i;
9281 #if defined (OBJECT_FORMAT_ELF)
9282 tree comdat_key;
9283 #endif
9285 /* First mark all the DIEs in this CU so we know which get local refs. */
9286 mark_dies (node->root_die);
9288 external_ref_hash_type *extern_map = optimize_external_refs (node->root_die);
9290 build_abbrev_table (node->root_die, extern_map);
9292 delete extern_map;
9293 extern_map = NULL;
9295 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
9296 next_die_offset = DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE;
9297 calc_die_sizes (node->root_die);
9299 #if defined (OBJECT_FORMAT_ELF)
9300 if (!dwarf_split_debug_info)
9301 secname = ".debug_types";
9302 else
9303 secname = ".debug_types.dwo";
9305 tmp = XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE * 2);
9306 sprintf (tmp, "wt.");
9307 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
9308 sprintf (tmp + 3 + i * 2, "%02x", node->signature[i] & 0xff);
9309 comdat_key = get_identifier (tmp);
9310 targetm.asm_out.named_section (secname,
9311 SECTION_DEBUG | SECTION_LINKONCE,
9312 comdat_key);
9313 #else
9314 tmp = XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE * 2);
9315 sprintf (tmp, ".gnu.linkonce.wt.");
9316 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
9317 sprintf (tmp + 17 + i * 2, "%02x", node->signature[i] & 0xff);
9318 secname = tmp;
9319 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
9320 #endif
9322 /* Output debugging information. */
9323 output_compilation_unit_header ();
9324 output_signature (node->signature, "Type Signature");
9325 dw2_asm_output_data (DWARF_OFFSET_SIZE, node->type_die->die_offset,
9326 "Offset to Type DIE");
9327 output_die (node->root_die);
9329 unmark_dies (node->root_die);
9332 /* Return the DWARF2/3 pubname associated with a decl. */
9334 static const char *
9335 dwarf2_name (tree decl, int scope)
9337 if (DECL_NAMELESS (decl))
9338 return NULL;
9339 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
9342 /* Add a new entry to .debug_pubnames if appropriate. */
9344 static void
9345 add_pubname_string (const char *str, dw_die_ref die)
9347 pubname_entry e;
9349 e.die = die;
9350 e.name = xstrdup (str);
9351 vec_safe_push (pubname_table, e);
9354 static void
9355 add_pubname (tree decl, dw_die_ref die)
9357 if (!want_pubnames ())
9358 return;
9360 /* Don't add items to the table when we expect that the consumer will have
9361 just read the enclosing die. For example, if the consumer is looking at a
9362 class_member, it will either be inside the class already, or will have just
9363 looked up the class to find the member. Either way, searching the class is
9364 faster than searching the index. */
9365 if ((TREE_PUBLIC (decl) && !class_scope_p (die->die_parent))
9366 || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
9368 const char *name = dwarf2_name (decl, 1);
9370 if (name)
9371 add_pubname_string (name, die);
9375 /* Add an enumerator to the pubnames section. */
9377 static void
9378 add_enumerator_pubname (const char *scope_name, dw_die_ref die)
9380 pubname_entry e;
9382 gcc_assert (scope_name);
9383 e.name = concat (scope_name, get_AT_string (die, DW_AT_name), NULL);
9384 e.die = die;
9385 vec_safe_push (pubname_table, e);
9388 /* Add a new entry to .debug_pubtypes if appropriate. */
9390 static void
9391 add_pubtype (tree decl, dw_die_ref die)
9393 pubname_entry e;
9395 if (!want_pubnames ())
9396 return;
9398 if ((TREE_PUBLIC (decl)
9399 || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
9400 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
9402 tree scope = NULL;
9403 const char *scope_name = "";
9404 const char *sep = is_cxx () ? "::" : ".";
9405 const char *name;
9407 scope = TYPE_P (decl) ? TYPE_CONTEXT (decl) : NULL;
9408 if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
9410 scope_name = lang_hooks.dwarf_name (scope, 1);
9411 if (scope_name != NULL && scope_name[0] != '\0')
9412 scope_name = concat (scope_name, sep, NULL);
9413 else
9414 scope_name = "";
9417 if (TYPE_P (decl))
9418 name = type_tag (decl);
9419 else
9420 name = lang_hooks.dwarf_name (decl, 1);
9422 /* If we don't have a name for the type, there's no point in adding
9423 it to the table. */
9424 if (name != NULL && name[0] != '\0')
9426 e.die = die;
9427 e.name = concat (scope_name, name, NULL);
9428 vec_safe_push (pubtype_table, e);
9431 /* Although it might be more consistent to add the pubinfo for the
9432 enumerators as their dies are created, they should only be added if the
9433 enum type meets the criteria above. So rather than re-check the parent
9434 enum type whenever an enumerator die is created, just output them all
9435 here. This isn't protected by the name conditional because anonymous
9436 enums don't have names. */
9437 if (die->die_tag == DW_TAG_enumeration_type)
9439 dw_die_ref c;
9441 FOR_EACH_CHILD (die, c, add_enumerator_pubname (scope_name, c));
9446 /* Output a single entry in the pubnames table. */
9448 static void
9449 output_pubname (dw_offset die_offset, pubname_entry *entry)
9451 dw_die_ref die = entry->die;
9452 int is_static = get_AT_flag (die, DW_AT_external) ? 0 : 1;
9454 dw2_asm_output_data (DWARF_OFFSET_SIZE, die_offset, "DIE offset");
9456 if (debug_generate_pub_sections == 2)
9458 /* This logic follows gdb's method for determining the value of the flag
9459 byte. */
9460 uint32_t flags = GDB_INDEX_SYMBOL_KIND_NONE;
9461 switch (die->die_tag)
9463 case DW_TAG_typedef:
9464 case DW_TAG_base_type:
9465 case DW_TAG_subrange_type:
9466 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
9467 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
9468 break;
9469 case DW_TAG_enumerator:
9470 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9471 GDB_INDEX_SYMBOL_KIND_VARIABLE);
9472 if (!is_cxx () && !is_java ())
9473 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
9474 break;
9475 case DW_TAG_subprogram:
9476 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9477 GDB_INDEX_SYMBOL_KIND_FUNCTION);
9478 if (!is_ada ())
9479 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
9480 break;
9481 case DW_TAG_constant:
9482 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9483 GDB_INDEX_SYMBOL_KIND_VARIABLE);
9484 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
9485 break;
9486 case DW_TAG_variable:
9487 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9488 GDB_INDEX_SYMBOL_KIND_VARIABLE);
9489 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
9490 break;
9491 case DW_TAG_namespace:
9492 case DW_TAG_imported_declaration:
9493 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
9494 break;
9495 case DW_TAG_class_type:
9496 case DW_TAG_interface_type:
9497 case DW_TAG_structure_type:
9498 case DW_TAG_union_type:
9499 case DW_TAG_enumeration_type:
9500 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
9501 if (!is_cxx () && !is_java ())
9502 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
9503 break;
9504 default:
9505 /* An unusual tag. Leave the flag-byte empty. */
9506 break;
9508 dw2_asm_output_data (1, flags >> GDB_INDEX_CU_BITSIZE,
9509 "GDB-index flags");
9512 dw2_asm_output_nstring (entry->name, -1, "external name");
9516 /* Output the public names table used to speed up access to externally
9517 visible names; or the public types table used to find type definitions. */
9519 static void
9520 output_pubnames (vec<pubname_entry, va_gc> *names)
9522 unsigned i;
9523 unsigned long pubnames_length = size_of_pubnames (names);
9524 pubname_ref pub;
9526 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9527 dw2_asm_output_data (4, 0xffffffff,
9528 "Initial length escape value indicating 64-bit DWARF extension");
9529 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length, "Pub Info Length");
9531 /* Version number for pubnames/pubtypes is independent of dwarf version. */
9532 dw2_asm_output_data (2, 2, "DWARF Version");
9534 if (dwarf_split_debug_info)
9535 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_info_section_label,
9536 debug_skeleton_info_section,
9537 "Offset of Compilation Unit Info");
9538 else
9539 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
9540 debug_info_section,
9541 "Offset of Compilation Unit Info");
9542 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
9543 "Compilation Unit Length");
9545 FOR_EACH_VEC_ELT (*names, i, pub)
9547 if (include_pubname_in_output (names, pub))
9549 dw_offset die_offset = pub->die->die_offset;
9551 /* We shouldn't see pubnames for DIEs outside of the main CU. */
9552 if (names == pubname_table && pub->die->die_tag != DW_TAG_enumerator)
9553 gcc_assert (pub->die->die_mark);
9555 /* If we're putting types in their own .debug_types sections,
9556 the .debug_pubtypes table will still point to the compile
9557 unit (not the type unit), so we want to use the offset of
9558 the skeleton DIE (if there is one). */
9559 if (pub->die->comdat_type_p && names == pubtype_table)
9561 comdat_type_node_ref type_node = pub->die->die_id.die_type_node;
9563 if (type_node != NULL)
9564 die_offset = (type_node->skeleton_die != NULL
9565 ? type_node->skeleton_die->die_offset
9566 : comp_unit_die ()->die_offset);
9569 output_pubname (die_offset, pub);
9573 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
9576 /* Output public names and types tables if necessary. */
9578 static void
9579 output_pubtables (void)
9581 if (!want_pubnames () || !info_section_emitted)
9582 return;
9584 switch_to_section (debug_pubnames_section);
9585 output_pubnames (pubname_table);
9586 /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2.
9587 It shouldn't hurt to emit it always, since pure DWARF2 consumers
9588 simply won't look for the section. */
9589 switch_to_section (debug_pubtypes_section);
9590 output_pubnames (pubtype_table);
9594 /* Output the information that goes into the .debug_aranges table.
9595 Namely, define the beginning and ending address range of the
9596 text section generated for this compilation unit. */
9598 static void
9599 output_aranges (unsigned long aranges_length)
9601 unsigned i;
9603 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9604 dw2_asm_output_data (4, 0xffffffff,
9605 "Initial length escape value indicating 64-bit DWARF extension");
9606 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
9607 "Length of Address Ranges Info");
9608 /* Version number for aranges is still 2, even up to DWARF5. */
9609 dw2_asm_output_data (2, 2, "DWARF Version");
9610 if (dwarf_split_debug_info)
9611 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_info_section_label,
9612 debug_skeleton_info_section,
9613 "Offset of Compilation Unit Info");
9614 else
9615 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
9616 debug_info_section,
9617 "Offset of Compilation Unit Info");
9618 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
9619 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
9621 /* We need to align to twice the pointer size here. */
9622 if (DWARF_ARANGES_PAD_SIZE)
9624 /* Pad using a 2 byte words so that padding is correct for any
9625 pointer size. */
9626 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
9627 2 * DWARF2_ADDR_SIZE);
9628 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
9629 dw2_asm_output_data (2, 0, NULL);
9632 /* It is necessary not to output these entries if the sections were
9633 not used; if the sections were not used, the length will be 0 and
9634 the address may end up as 0 if the section is discarded by ld
9635 --gc-sections, leaving an invalid (0, 0) entry that can be
9636 confused with the terminator. */
9637 if (text_section_used)
9639 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
9640 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
9641 text_section_label, "Length");
9643 if (cold_text_section_used)
9645 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
9646 "Address");
9647 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
9648 cold_text_section_label, "Length");
9651 if (have_multiple_function_sections)
9653 unsigned fde_idx;
9654 dw_fde_ref fde;
9656 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
9658 if (DECL_IGNORED_P (fde->decl))
9659 continue;
9660 if (!fde->in_std_section)
9662 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
9663 "Address");
9664 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_end,
9665 fde->dw_fde_begin, "Length");
9667 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
9669 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_second_begin,
9670 "Address");
9671 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_second_end,
9672 fde->dw_fde_second_begin, "Length");
9677 /* Output the terminator words. */
9678 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
9679 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
9682 /* Add a new entry to .debug_ranges. Return the offset at which it
9683 was placed. */
9685 static unsigned int
9686 add_ranges_num (int num)
9688 unsigned int in_use = ranges_table_in_use;
9690 if (in_use == ranges_table_allocated)
9692 ranges_table_allocated += RANGES_TABLE_INCREMENT;
9693 ranges_table = GGC_RESIZEVEC (struct dw_ranges_struct, ranges_table,
9694 ranges_table_allocated);
9695 memset (ranges_table + ranges_table_in_use, 0,
9696 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
9699 ranges_table[in_use].num = num;
9700 ranges_table_in_use = in_use + 1;
9702 return in_use * 2 * DWARF2_ADDR_SIZE;
9705 /* Add a new entry to .debug_ranges corresponding to a block, or a
9706 range terminator if BLOCK is NULL. */
9708 static unsigned int
9709 add_ranges (const_tree block)
9711 return add_ranges_num (block ? BLOCK_NUMBER (block) : 0);
9714 /* Add a new entry to .debug_ranges corresponding to a pair of labels.
9715 When using dwarf_split_debug_info, address attributes in dies destined
9716 for the final executable should be direct references--setting the
9717 parameter force_direct ensures this behavior. */
9719 static void
9720 add_ranges_by_labels (dw_die_ref die, const char *begin, const char *end,
9721 bool *added, bool force_direct)
9723 unsigned int in_use = ranges_by_label_in_use;
9724 unsigned int offset;
9726 if (in_use == ranges_by_label_allocated)
9728 ranges_by_label_allocated += RANGES_TABLE_INCREMENT;
9729 ranges_by_label = GGC_RESIZEVEC (struct dw_ranges_by_label_struct,
9730 ranges_by_label,
9731 ranges_by_label_allocated);
9732 memset (ranges_by_label + ranges_by_label_in_use, 0,
9733 RANGES_TABLE_INCREMENT
9734 * sizeof (struct dw_ranges_by_label_struct));
9737 ranges_by_label[in_use].begin = begin;
9738 ranges_by_label[in_use].end = end;
9739 ranges_by_label_in_use = in_use + 1;
9741 offset = add_ranges_num (-(int)in_use - 1);
9742 if (!*added)
9744 add_AT_range_list (die, DW_AT_ranges, offset, force_direct);
9745 *added = true;
9749 static void
9750 output_ranges (void)
9752 unsigned i;
9753 static const char *const start_fmt = "Offset %#x";
9754 const char *fmt = start_fmt;
9756 for (i = 0; i < ranges_table_in_use; i++)
9758 int block_num = ranges_table[i].num;
9760 if (block_num > 0)
9762 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
9763 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
9765 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
9766 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
9768 /* If all code is in the text section, then the compilation
9769 unit base address defaults to DW_AT_low_pc, which is the
9770 base of the text section. */
9771 if (!have_multiple_function_sections)
9773 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
9774 text_section_label,
9775 fmt, i * 2 * DWARF2_ADDR_SIZE);
9776 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
9777 text_section_label, NULL);
9780 /* Otherwise, the compilation unit base address is zero,
9781 which allows us to use absolute addresses, and not worry
9782 about whether the target supports cross-section
9783 arithmetic. */
9784 else
9786 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
9787 fmt, i * 2 * DWARF2_ADDR_SIZE);
9788 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
9791 fmt = NULL;
9794 /* Negative block_num stands for an index into ranges_by_label. */
9795 else if (block_num < 0)
9797 int lab_idx = - block_num - 1;
9799 if (!have_multiple_function_sections)
9801 gcc_unreachable ();
9802 #if 0
9803 /* If we ever use add_ranges_by_labels () for a single
9804 function section, all we have to do is to take out
9805 the #if 0 above. */
9806 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
9807 ranges_by_label[lab_idx].begin,
9808 text_section_label,
9809 fmt, i * 2 * DWARF2_ADDR_SIZE);
9810 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
9811 ranges_by_label[lab_idx].end,
9812 text_section_label, NULL);
9813 #endif
9815 else
9817 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
9818 ranges_by_label[lab_idx].begin,
9819 fmt, i * 2 * DWARF2_ADDR_SIZE);
9820 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
9821 ranges_by_label[lab_idx].end,
9822 NULL);
9825 else
9827 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
9828 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
9829 fmt = start_fmt;
9834 /* Data structure containing information about input files. */
9835 struct file_info
9837 const char *path; /* Complete file name. */
9838 const char *fname; /* File name part. */
9839 int length; /* Length of entire string. */
9840 struct dwarf_file_data * file_idx; /* Index in input file table. */
9841 int dir_idx; /* Index in directory table. */
9844 /* Data structure containing information about directories with source
9845 files. */
9846 struct dir_info
9848 const char *path; /* Path including directory name. */
9849 int length; /* Path length. */
9850 int prefix; /* Index of directory entry which is a prefix. */
9851 int count; /* Number of files in this directory. */
9852 int dir_idx; /* Index of directory used as base. */
9855 /* Callback function for file_info comparison. We sort by looking at
9856 the directories in the path. */
9858 static int
9859 file_info_cmp (const void *p1, const void *p2)
9861 const struct file_info *const s1 = (const struct file_info *) p1;
9862 const struct file_info *const s2 = (const struct file_info *) p2;
9863 const unsigned char *cp1;
9864 const unsigned char *cp2;
9866 /* Take care of file names without directories. We need to make sure that
9867 we return consistent values to qsort since some will get confused if
9868 we return the same value when identical operands are passed in opposite
9869 orders. So if neither has a directory, return 0 and otherwise return
9870 1 or -1 depending on which one has the directory. */
9871 if ((s1->path == s1->fname || s2->path == s2->fname))
9872 return (s2->path == s2->fname) - (s1->path == s1->fname);
9874 cp1 = (const unsigned char *) s1->path;
9875 cp2 = (const unsigned char *) s2->path;
9877 while (1)
9879 ++cp1;
9880 ++cp2;
9881 /* Reached the end of the first path? If so, handle like above. */
9882 if ((cp1 == (const unsigned char *) s1->fname)
9883 || (cp2 == (const unsigned char *) s2->fname))
9884 return ((cp2 == (const unsigned char *) s2->fname)
9885 - (cp1 == (const unsigned char *) s1->fname));
9887 /* Character of current path component the same? */
9888 else if (*cp1 != *cp2)
9889 return *cp1 - *cp2;
9893 struct file_name_acquire_data
9895 struct file_info *files;
9896 int used_files;
9897 int max_files;
9900 /* Traversal function for the hash table. */
9903 file_name_acquire (dwarf_file_data **slot, file_name_acquire_data *fnad)
9905 struct dwarf_file_data *d = *slot;
9906 struct file_info *fi;
9907 const char *f;
9909 gcc_assert (fnad->max_files >= d->emitted_number);
9911 if (! d->emitted_number)
9912 return 1;
9914 gcc_assert (fnad->max_files != fnad->used_files);
9916 fi = fnad->files + fnad->used_files++;
9918 /* Skip all leading "./". */
9919 f = d->filename;
9920 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
9921 f += 2;
9923 /* Create a new array entry. */
9924 fi->path = f;
9925 fi->length = strlen (f);
9926 fi->file_idx = d;
9928 /* Search for the file name part. */
9929 f = strrchr (f, DIR_SEPARATOR);
9930 #if defined (DIR_SEPARATOR_2)
9932 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
9934 if (g != NULL)
9936 if (f == NULL || f < g)
9937 f = g;
9940 #endif
9942 fi->fname = f == NULL ? fi->path : f + 1;
9943 return 1;
9946 /* Output the directory table and the file name table. We try to minimize
9947 the total amount of memory needed. A heuristic is used to avoid large
9948 slowdowns with many input files. */
9950 static void
9951 output_file_names (void)
9953 struct file_name_acquire_data fnad;
9954 int numfiles;
9955 struct file_info *files;
9956 struct dir_info *dirs;
9957 int *saved;
9958 int *savehere;
9959 int *backmap;
9960 int ndirs;
9961 int idx_offset;
9962 int i;
9964 if (!last_emitted_file)
9966 dw2_asm_output_data (1, 0, "End directory table");
9967 dw2_asm_output_data (1, 0, "End file name table");
9968 return;
9971 numfiles = last_emitted_file->emitted_number;
9973 /* Allocate the various arrays we need. */
9974 files = XALLOCAVEC (struct file_info, numfiles);
9975 dirs = XALLOCAVEC (struct dir_info, numfiles);
9977 fnad.files = files;
9978 fnad.used_files = 0;
9979 fnad.max_files = numfiles;
9980 file_table->traverse<file_name_acquire_data *, file_name_acquire> (&fnad);
9981 gcc_assert (fnad.used_files == fnad.max_files);
9983 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
9985 /* Find all the different directories used. */
9986 dirs[0].path = files[0].path;
9987 dirs[0].length = files[0].fname - files[0].path;
9988 dirs[0].prefix = -1;
9989 dirs[0].count = 1;
9990 dirs[0].dir_idx = 0;
9991 files[0].dir_idx = 0;
9992 ndirs = 1;
9994 for (i = 1; i < numfiles; i++)
9995 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
9996 && memcmp (dirs[ndirs - 1].path, files[i].path,
9997 dirs[ndirs - 1].length) == 0)
9999 /* Same directory as last entry. */
10000 files[i].dir_idx = ndirs - 1;
10001 ++dirs[ndirs - 1].count;
10003 else
10005 int j;
10007 /* This is a new directory. */
10008 dirs[ndirs].path = files[i].path;
10009 dirs[ndirs].length = files[i].fname - files[i].path;
10010 dirs[ndirs].count = 1;
10011 dirs[ndirs].dir_idx = ndirs;
10012 files[i].dir_idx = ndirs;
10014 /* Search for a prefix. */
10015 dirs[ndirs].prefix = -1;
10016 for (j = 0; j < ndirs; j++)
10017 if (dirs[j].length < dirs[ndirs].length
10018 && dirs[j].length > 1
10019 && (dirs[ndirs].prefix == -1
10020 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
10021 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
10022 dirs[ndirs].prefix = j;
10024 ++ndirs;
10027 /* Now to the actual work. We have to find a subset of the directories which
10028 allow expressing the file name using references to the directory table
10029 with the least amount of characters. We do not do an exhaustive search
10030 where we would have to check out every combination of every single
10031 possible prefix. Instead we use a heuristic which provides nearly optimal
10032 results in most cases and never is much off. */
10033 saved = XALLOCAVEC (int, ndirs);
10034 savehere = XALLOCAVEC (int, ndirs);
10036 memset (saved, '\0', ndirs * sizeof (saved[0]));
10037 for (i = 0; i < ndirs; i++)
10039 int j;
10040 int total;
10042 /* We can always save some space for the current directory. But this
10043 does not mean it will be enough to justify adding the directory. */
10044 savehere[i] = dirs[i].length;
10045 total = (savehere[i] - saved[i]) * dirs[i].count;
10047 for (j = i + 1; j < ndirs; j++)
10049 savehere[j] = 0;
10050 if (saved[j] < dirs[i].length)
10052 /* Determine whether the dirs[i] path is a prefix of the
10053 dirs[j] path. */
10054 int k;
10056 k = dirs[j].prefix;
10057 while (k != -1 && k != (int) i)
10058 k = dirs[k].prefix;
10060 if (k == (int) i)
10062 /* Yes it is. We can possibly save some memory by
10063 writing the filenames in dirs[j] relative to
10064 dirs[i]. */
10065 savehere[j] = dirs[i].length;
10066 total += (savehere[j] - saved[j]) * dirs[j].count;
10071 /* Check whether we can save enough to justify adding the dirs[i]
10072 directory. */
10073 if (total > dirs[i].length + 1)
10075 /* It's worthwhile adding. */
10076 for (j = i; j < ndirs; j++)
10077 if (savehere[j] > 0)
10079 /* Remember how much we saved for this directory so far. */
10080 saved[j] = savehere[j];
10082 /* Remember the prefix directory. */
10083 dirs[j].dir_idx = i;
10088 /* Emit the directory name table. */
10089 idx_offset = dirs[0].length > 0 ? 1 : 0;
10090 for (i = 1 - idx_offset; i < ndirs; i++)
10091 dw2_asm_output_nstring (dirs[i].path,
10092 dirs[i].length
10093 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
10094 "Directory Entry: %#x", i + idx_offset);
10096 dw2_asm_output_data (1, 0, "End directory table");
10098 /* We have to emit them in the order of emitted_number since that's
10099 used in the debug info generation. To do this efficiently we
10100 generate a back-mapping of the indices first. */
10101 backmap = XALLOCAVEC (int, numfiles);
10102 for (i = 0; i < numfiles; i++)
10103 backmap[files[i].file_idx->emitted_number - 1] = i;
10105 /* Now write all the file names. */
10106 for (i = 0; i < numfiles; i++)
10108 int file_idx = backmap[i];
10109 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
10111 #ifdef VMS_DEBUGGING_INFO
10112 #define MAX_VMS_VERSION_LEN 6 /* ";32768" */
10114 /* Setting these fields can lead to debugger miscomparisons,
10115 but VMS Debug requires them to be set correctly. */
10117 int ver;
10118 long long cdt;
10119 long siz;
10120 int maxfilelen = strlen (files[file_idx].path)
10121 + dirs[dir_idx].length
10122 + MAX_VMS_VERSION_LEN + 1;
10123 char *filebuf = XALLOCAVEC (char, maxfilelen);
10125 vms_file_stats_name (files[file_idx].path, 0, 0, 0, &ver);
10126 snprintf (filebuf, maxfilelen, "%s;%d",
10127 files[file_idx].path + dirs[dir_idx].length, ver);
10129 dw2_asm_output_nstring
10130 (filebuf, -1, "File Entry: %#x", (unsigned) i + 1);
10132 /* Include directory index. */
10133 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
10135 /* Modification time. */
10136 dw2_asm_output_data_uleb128
10137 ((vms_file_stats_name (files[file_idx].path, &cdt, 0, 0, 0) == 0)
10138 ? cdt : 0,
10139 NULL);
10141 /* File length in bytes. */
10142 dw2_asm_output_data_uleb128
10143 ((vms_file_stats_name (files[file_idx].path, 0, &siz, 0, 0) == 0)
10144 ? siz : 0,
10145 NULL);
10146 #else
10147 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
10148 "File Entry: %#x", (unsigned) i + 1);
10150 /* Include directory index. */
10151 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
10153 /* Modification time. */
10154 dw2_asm_output_data_uleb128 (0, NULL);
10156 /* File length in bytes. */
10157 dw2_asm_output_data_uleb128 (0, NULL);
10158 #endif /* VMS_DEBUGGING_INFO */
10161 dw2_asm_output_data (1, 0, "End file name table");
10165 /* Output one line number table into the .debug_line section. */
10167 static void
10168 output_one_line_info_table (dw_line_info_table *table)
10170 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
10171 unsigned int current_line = 1;
10172 bool current_is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
10173 dw_line_info_entry *ent;
10174 size_t i;
10176 FOR_EACH_VEC_SAFE_ELT (table->entries, i, ent)
10178 switch (ent->opcode)
10180 case LI_set_address:
10181 /* ??? Unfortunately, we have little choice here currently, and
10182 must always use the most general form. GCC does not know the
10183 address delta itself, so we can't use DW_LNS_advance_pc. Many
10184 ports do have length attributes which will give an upper bound
10185 on the address range. We could perhaps use length attributes
10186 to determine when it is safe to use DW_LNS_fixed_advance_pc. */
10187 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, ent->val);
10189 /* This can handle any delta. This takes
10190 4+DWARF2_ADDR_SIZE bytes. */
10191 dw2_asm_output_data (1, 0, "set address %s", line_label);
10192 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
10193 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
10194 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
10195 break;
10197 case LI_set_line:
10198 if (ent->val == current_line)
10200 /* We still need to start a new row, so output a copy insn. */
10201 dw2_asm_output_data (1, DW_LNS_copy,
10202 "copy line %u", current_line);
10204 else
10206 int line_offset = ent->val - current_line;
10207 int line_delta = line_offset - DWARF_LINE_BASE;
10209 current_line = ent->val;
10210 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
10212 /* This can handle deltas from -10 to 234, using the current
10213 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.
10214 This takes 1 byte. */
10215 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
10216 "line %u", current_line);
10218 else
10220 /* This can handle any delta. This takes at least 4 bytes,
10221 depending on the value being encoded. */
10222 dw2_asm_output_data (1, DW_LNS_advance_line,
10223 "advance to line %u", current_line);
10224 dw2_asm_output_data_sleb128 (line_offset, NULL);
10225 dw2_asm_output_data (1, DW_LNS_copy, NULL);
10228 break;
10230 case LI_set_file:
10231 dw2_asm_output_data (1, DW_LNS_set_file, "set file %u", ent->val);
10232 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
10233 break;
10235 case LI_set_column:
10236 dw2_asm_output_data (1, DW_LNS_set_column, "column %u", ent->val);
10237 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
10238 break;
10240 case LI_negate_stmt:
10241 current_is_stmt = !current_is_stmt;
10242 dw2_asm_output_data (1, DW_LNS_negate_stmt,
10243 "is_stmt %d", current_is_stmt);
10244 break;
10246 case LI_set_prologue_end:
10247 dw2_asm_output_data (1, DW_LNS_set_prologue_end,
10248 "set prologue end");
10249 break;
10251 case LI_set_epilogue_begin:
10252 dw2_asm_output_data (1, DW_LNS_set_epilogue_begin,
10253 "set epilogue begin");
10254 break;
10256 case LI_set_discriminator:
10257 dw2_asm_output_data (1, 0, "discriminator %u", ent->val);
10258 dw2_asm_output_data_uleb128 (1 + size_of_uleb128 (ent->val), NULL);
10259 dw2_asm_output_data (1, DW_LNE_set_discriminator, NULL);
10260 dw2_asm_output_data_uleb128 (ent->val, NULL);
10261 break;
10265 /* Emit debug info for the address of the end of the table. */
10266 dw2_asm_output_data (1, 0, "set address %s", table->end_label);
10267 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
10268 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
10269 dw2_asm_output_addr (DWARF2_ADDR_SIZE, table->end_label, NULL);
10271 dw2_asm_output_data (1, 0, "end sequence");
10272 dw2_asm_output_data_uleb128 (1, NULL);
10273 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
10276 /* Output the source line number correspondence information. This
10277 information goes into the .debug_line section. */
10279 static void
10280 output_line_info (bool prologue_only)
10282 char l1[20], l2[20], p1[20], p2[20];
10283 /* We don't support DWARFv5 line tables yet. */
10284 int ver = dwarf_version < 5 ? dwarf_version : 4;
10285 bool saw_one = false;
10286 int opc;
10288 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
10289 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
10290 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
10291 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
10293 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10294 dw2_asm_output_data (4, 0xffffffff,
10295 "Initial length escape value indicating 64-bit DWARF extension");
10296 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
10297 "Length of Source Line Info");
10298 ASM_OUTPUT_LABEL (asm_out_file, l1);
10300 dw2_asm_output_data (2, ver, "DWARF Version");
10301 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
10302 ASM_OUTPUT_LABEL (asm_out_file, p1);
10304 /* Define the architecture-dependent minimum instruction length (in bytes).
10305 In this implementation of DWARF, this field is used for information
10306 purposes only. Since GCC generates assembly language, we have no
10307 a priori knowledge of how many instruction bytes are generated for each
10308 source line, and therefore can use only the DW_LNE_set_address and
10309 DW_LNS_fixed_advance_pc line information commands. Accordingly, we fix
10310 this as '1', which is "correct enough" for all architectures,
10311 and don't let the target override. */
10312 dw2_asm_output_data (1, 1, "Minimum Instruction Length");
10314 if (ver >= 4)
10315 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN,
10316 "Maximum Operations Per Instruction");
10317 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
10318 "Default is_stmt_start flag");
10319 dw2_asm_output_data (1, DWARF_LINE_BASE,
10320 "Line Base Value (Special Opcodes)");
10321 dw2_asm_output_data (1, DWARF_LINE_RANGE,
10322 "Line Range Value (Special Opcodes)");
10323 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
10324 "Special Opcode Base");
10326 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
10328 int n_op_args;
10329 switch (opc)
10331 case DW_LNS_advance_pc:
10332 case DW_LNS_advance_line:
10333 case DW_LNS_set_file:
10334 case DW_LNS_set_column:
10335 case DW_LNS_fixed_advance_pc:
10336 case DW_LNS_set_isa:
10337 n_op_args = 1;
10338 break;
10339 default:
10340 n_op_args = 0;
10341 break;
10344 dw2_asm_output_data (1, n_op_args, "opcode: %#x has %d args",
10345 opc, n_op_args);
10348 /* Write out the information about the files we use. */
10349 output_file_names ();
10350 ASM_OUTPUT_LABEL (asm_out_file, p2);
10351 if (prologue_only)
10353 /* Output the marker for the end of the line number info. */
10354 ASM_OUTPUT_LABEL (asm_out_file, l2);
10355 return;
10358 if (separate_line_info)
10360 dw_line_info_table *table;
10361 size_t i;
10363 FOR_EACH_VEC_ELT (*separate_line_info, i, table)
10364 if (table->in_use)
10366 output_one_line_info_table (table);
10367 saw_one = true;
10370 if (cold_text_section_line_info && cold_text_section_line_info->in_use)
10372 output_one_line_info_table (cold_text_section_line_info);
10373 saw_one = true;
10376 /* ??? Some Darwin linkers crash on a .debug_line section with no
10377 sequences. Further, merely a DW_LNE_end_sequence entry is not
10378 sufficient -- the address column must also be initialized.
10379 Make sure to output at least one set_address/end_sequence pair,
10380 choosing .text since that section is always present. */
10381 if (text_section_line_info->in_use || !saw_one)
10382 output_one_line_info_table (text_section_line_info);
10384 /* Output the marker for the end of the line number info. */
10385 ASM_OUTPUT_LABEL (asm_out_file, l2);
10388 /* Given a pointer to a tree node for some base type, return a pointer to
10389 a DIE that describes the given type.
10391 This routine must only be called for GCC type nodes that correspond to
10392 Dwarf base (fundamental) types. */
10394 static dw_die_ref
10395 base_type_die (tree type)
10397 dw_die_ref base_type_result;
10398 enum dwarf_type encoding;
10400 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
10401 return 0;
10403 /* If this is a subtype that should not be emitted as a subrange type,
10404 use the base type. See subrange_type_for_debug_p. */
10405 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
10406 type = TREE_TYPE (type);
10408 switch (TREE_CODE (type))
10410 case INTEGER_TYPE:
10411 if ((dwarf_version >= 4 || !dwarf_strict)
10412 && TYPE_NAME (type)
10413 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10414 && DECL_IS_BUILTIN (TYPE_NAME (type))
10415 && DECL_NAME (TYPE_NAME (type)))
10417 const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
10418 if (strcmp (name, "char16_t") == 0
10419 || strcmp (name, "char32_t") == 0)
10421 encoding = DW_ATE_UTF;
10422 break;
10425 if (TYPE_STRING_FLAG (type))
10427 if (TYPE_UNSIGNED (type))
10428 encoding = DW_ATE_unsigned_char;
10429 else
10430 encoding = DW_ATE_signed_char;
10432 else if (TYPE_UNSIGNED (type))
10433 encoding = DW_ATE_unsigned;
10434 else
10435 encoding = DW_ATE_signed;
10436 break;
10438 case REAL_TYPE:
10439 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
10441 if (dwarf_version >= 3 || !dwarf_strict)
10442 encoding = DW_ATE_decimal_float;
10443 else
10444 encoding = DW_ATE_lo_user;
10446 else
10447 encoding = DW_ATE_float;
10448 break;
10450 case FIXED_POINT_TYPE:
10451 if (!(dwarf_version >= 3 || !dwarf_strict))
10452 encoding = DW_ATE_lo_user;
10453 else if (TYPE_UNSIGNED (type))
10454 encoding = DW_ATE_unsigned_fixed;
10455 else
10456 encoding = DW_ATE_signed_fixed;
10457 break;
10459 /* Dwarf2 doesn't know anything about complex ints, so use
10460 a user defined type for it. */
10461 case COMPLEX_TYPE:
10462 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
10463 encoding = DW_ATE_complex_float;
10464 else
10465 encoding = DW_ATE_lo_user;
10466 break;
10468 case BOOLEAN_TYPE:
10469 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
10470 encoding = DW_ATE_boolean;
10471 break;
10473 default:
10474 /* No other TREE_CODEs are Dwarf fundamental types. */
10475 gcc_unreachable ();
10478 base_type_result = new_die (DW_TAG_base_type, comp_unit_die (), type);
10480 add_AT_unsigned (base_type_result, DW_AT_byte_size,
10481 int_size_in_bytes (type));
10482 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
10483 add_pubtype (type, base_type_result);
10485 return base_type_result;
10488 /* A C++ function with deduced return type can have a TEMPLATE_TYPE_PARM
10489 named 'auto' in its type: return true for it, false otherwise. */
10491 static inline bool
10492 is_cxx_auto (tree type)
10494 if (is_cxx ())
10496 tree name = TYPE_IDENTIFIER (type);
10497 if (name == get_identifier ("auto")
10498 || name == get_identifier ("decltype(auto)"))
10499 return true;
10501 return false;
10504 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
10505 given input type is a Dwarf "fundamental" type. Otherwise return null. */
10507 static inline int
10508 is_base_type (tree type)
10510 switch (TREE_CODE (type))
10512 case ERROR_MARK:
10513 case VOID_TYPE:
10514 case INTEGER_TYPE:
10515 case REAL_TYPE:
10516 case FIXED_POINT_TYPE:
10517 case COMPLEX_TYPE:
10518 case BOOLEAN_TYPE:
10519 case POINTER_BOUNDS_TYPE:
10520 return 1;
10522 case ARRAY_TYPE:
10523 case RECORD_TYPE:
10524 case UNION_TYPE:
10525 case QUAL_UNION_TYPE:
10526 case ENUMERAL_TYPE:
10527 case FUNCTION_TYPE:
10528 case METHOD_TYPE:
10529 case POINTER_TYPE:
10530 case REFERENCE_TYPE:
10531 case NULLPTR_TYPE:
10532 case OFFSET_TYPE:
10533 case LANG_TYPE:
10534 case VECTOR_TYPE:
10535 return 0;
10537 default:
10538 if (is_cxx_auto (type))
10539 return 0;
10540 gcc_unreachable ();
10543 return 0;
10546 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
10547 node, return the size in bits for the type if it is a constant, or else
10548 return the alignment for the type if the type's size is not constant, or
10549 else return BITS_PER_WORD if the type actually turns out to be an
10550 ERROR_MARK node. */
10552 static inline unsigned HOST_WIDE_INT
10553 simple_type_size_in_bits (const_tree type)
10555 if (TREE_CODE (type) == ERROR_MARK)
10556 return BITS_PER_WORD;
10557 else if (TYPE_SIZE (type) == NULL_TREE)
10558 return 0;
10559 else if (tree_fits_uhwi_p (TYPE_SIZE (type)))
10560 return tree_to_uhwi (TYPE_SIZE (type));
10561 else
10562 return TYPE_ALIGN (type);
10565 /* Similarly, but return an offset_int instead of UHWI. */
10567 static inline offset_int
10568 offset_int_type_size_in_bits (const_tree type)
10570 if (TREE_CODE (type) == ERROR_MARK)
10571 return BITS_PER_WORD;
10572 else if (TYPE_SIZE (type) == NULL_TREE)
10573 return 0;
10574 else if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
10575 return wi::to_offset (TYPE_SIZE (type));
10576 else
10577 return TYPE_ALIGN (type);
10580 /* Given a pointer to a tree node for a subrange type, return a pointer
10581 to a DIE that describes the given type. */
10583 static dw_die_ref
10584 subrange_type_die (tree type, tree low, tree high, dw_die_ref context_die)
10586 dw_die_ref subrange_die;
10587 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
10589 if (context_die == NULL)
10590 context_die = comp_unit_die ();
10592 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
10594 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
10596 /* The size of the subrange type and its base type do not match,
10597 so we need to generate a size attribute for the subrange type. */
10598 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
10601 if (low)
10602 add_bound_info (subrange_die, DW_AT_lower_bound, low, NULL);
10603 if (high)
10604 add_bound_info (subrange_die, DW_AT_upper_bound, high, NULL);
10606 return subrange_die;
10609 /* Returns the (const and/or volatile) cv_qualifiers associated with
10610 the decl node. This will normally be augmented with the
10611 cv_qualifiers of the underlying type in add_type_attribute. */
10613 static int
10614 decl_quals (const_tree decl)
10616 return ((TREE_READONLY (decl)
10617 ? TYPE_QUAL_CONST : TYPE_UNQUALIFIED)
10618 | (TREE_THIS_VOLATILE (decl)
10619 ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED));
10622 /* Determine the TYPE whose qualifiers match the largest strict subset
10623 of the given TYPE_QUALS, and return its qualifiers. Ignore all
10624 qualifiers outside QUAL_MASK. */
10626 static int
10627 get_nearest_type_subqualifiers (tree type, int type_quals, int qual_mask)
10629 tree t;
10630 int best_rank = 0, best_qual = 0, max_rank;
10632 type_quals &= qual_mask;
10633 max_rank = popcount_hwi (type_quals) - 1;
10635 for (t = TYPE_MAIN_VARIANT (type); t && best_rank < max_rank;
10636 t = TYPE_NEXT_VARIANT (t))
10638 int q = TYPE_QUALS (t) & qual_mask;
10640 if ((q & type_quals) == q && q != type_quals
10641 && check_base_type (t, type))
10643 int rank = popcount_hwi (q);
10645 if (rank > best_rank)
10647 best_rank = rank;
10648 best_qual = q;
10653 return best_qual;
10656 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
10657 entry that chains various modifiers in front of the given type. */
10659 static dw_die_ref
10660 modified_type_die (tree type, int cv_quals, dw_die_ref context_die)
10662 enum tree_code code = TREE_CODE (type);
10663 dw_die_ref mod_type_die;
10664 dw_die_ref sub_die = NULL;
10665 tree item_type = NULL;
10666 tree qualified_type;
10667 tree name, low, high;
10668 dw_die_ref mod_scope;
10669 /* Only these cv-qualifiers are currently handled. */
10670 const int cv_qual_mask = (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE
10671 | TYPE_QUAL_RESTRICT | TYPE_QUAL_ATOMIC);
10673 if (code == ERROR_MARK)
10674 return NULL;
10676 cv_quals &= cv_qual_mask;
10678 /* Don't emit DW_TAG_restrict_type for DWARFv2, since it is a type
10679 tag modifier (and not an attribute) old consumers won't be able
10680 to handle it. */
10681 if (dwarf_version < 3)
10682 cv_quals &= ~TYPE_QUAL_RESTRICT;
10684 /* Likewise for DW_TAG_atomic_type for DWARFv5. */
10685 if (dwarf_version < 5)
10686 cv_quals &= ~TYPE_QUAL_ATOMIC;
10688 /* See if we already have the appropriately qualified variant of
10689 this type. */
10690 qualified_type = get_qualified_type (type, cv_quals);
10692 if (qualified_type == sizetype
10693 && TYPE_NAME (qualified_type)
10694 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL)
10696 tree t = TREE_TYPE (TYPE_NAME (qualified_type));
10698 gcc_checking_assert (TREE_CODE (t) == INTEGER_TYPE
10699 && TYPE_PRECISION (t)
10700 == TYPE_PRECISION (qualified_type)
10701 && TYPE_UNSIGNED (t)
10702 == TYPE_UNSIGNED (qualified_type));
10703 qualified_type = t;
10706 /* If we do, then we can just use its DIE, if it exists. */
10707 if (qualified_type)
10709 mod_type_die = lookup_type_die (qualified_type);
10710 if (mod_type_die)
10711 return mod_type_die;
10714 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
10716 /* Handle C typedef types. */
10717 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name)
10718 && !DECL_ARTIFICIAL (name))
10720 tree dtype = TREE_TYPE (name);
10722 if (qualified_type == dtype)
10724 /* For a named type, use the typedef. */
10725 gen_type_die (qualified_type, context_die);
10726 return lookup_type_die (qualified_type);
10728 else
10730 int dquals = TYPE_QUALS_NO_ADDR_SPACE (dtype);
10731 dquals &= cv_qual_mask;
10732 if ((dquals & ~cv_quals) != TYPE_UNQUALIFIED
10733 || (cv_quals == dquals && DECL_ORIGINAL_TYPE (name) != type))
10734 /* cv-unqualified version of named type. Just use
10735 the unnamed type to which it refers. */
10736 return modified_type_die (DECL_ORIGINAL_TYPE (name),
10737 cv_quals, context_die);
10738 /* Else cv-qualified version of named type; fall through. */
10742 mod_scope = scope_die_for (type, context_die);
10744 if (cv_quals)
10746 struct qual_info { int q; enum dwarf_tag t; };
10747 static const struct qual_info qual_info[] =
10749 { TYPE_QUAL_ATOMIC, DW_TAG_atomic_type },
10750 { TYPE_QUAL_RESTRICT, DW_TAG_restrict_type },
10751 { TYPE_QUAL_VOLATILE, DW_TAG_volatile_type },
10752 { TYPE_QUAL_CONST, DW_TAG_const_type },
10754 int sub_quals;
10755 unsigned i;
10757 /* Determine a lesser qualified type that most closely matches
10758 this one. Then generate DW_TAG_* entries for the remaining
10759 qualifiers. */
10760 sub_quals = get_nearest_type_subqualifiers (type, cv_quals,
10761 cv_qual_mask);
10762 mod_type_die = modified_type_die (type, sub_quals, context_die);
10764 for (i = 0; i < sizeof (qual_info) / sizeof (qual_info[0]); i++)
10765 if (qual_info[i].q & cv_quals & ~sub_quals)
10767 dw_die_ref d = new_die (qual_info[i].t, mod_scope, type);
10768 if (mod_type_die)
10769 add_AT_die_ref (d, DW_AT_type, mod_type_die);
10770 mod_type_die = d;
10773 else if (code == POINTER_TYPE)
10775 mod_type_die = new_die (DW_TAG_pointer_type, mod_scope, type);
10776 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
10777 simple_type_size_in_bits (type) / BITS_PER_UNIT);
10778 item_type = TREE_TYPE (type);
10779 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (item_type)))
10780 add_AT_unsigned (mod_type_die, DW_AT_address_class,
10781 TYPE_ADDR_SPACE (item_type));
10783 else if (code == REFERENCE_TYPE)
10785 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
10786 mod_type_die = new_die (DW_TAG_rvalue_reference_type, mod_scope,
10787 type);
10788 else
10789 mod_type_die = new_die (DW_TAG_reference_type, mod_scope, type);
10790 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
10791 simple_type_size_in_bits (type) / BITS_PER_UNIT);
10792 item_type = TREE_TYPE (type);
10793 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (item_type)))
10794 add_AT_unsigned (mod_type_die, DW_AT_address_class,
10795 TYPE_ADDR_SPACE (item_type));
10797 else if (code == INTEGER_TYPE
10798 && TREE_TYPE (type) != NULL_TREE
10799 && subrange_type_for_debug_p (type, &low, &high))
10801 mod_type_die = subrange_type_die (type, low, high, context_die);
10802 item_type = TREE_TYPE (type);
10804 else if (is_base_type (type))
10805 mod_type_die = base_type_die (type);
10806 else
10808 gen_type_die (type, context_die);
10810 /* We have to get the type_main_variant here (and pass that to the
10811 `lookup_type_die' routine) because the ..._TYPE node we have
10812 might simply be a *copy* of some original type node (where the
10813 copy was created to help us keep track of typedef names) and
10814 that copy might have a different TYPE_UID from the original
10815 ..._TYPE node. */
10816 if (TREE_CODE (type) != VECTOR_TYPE)
10817 return lookup_type_die (type_main_variant (type));
10818 else
10819 /* Vectors have the debugging information in the type,
10820 not the main variant. */
10821 return lookup_type_die (type);
10824 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
10825 don't output a DW_TAG_typedef, since there isn't one in the
10826 user's program; just attach a DW_AT_name to the type.
10827 Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type
10828 if the base type already has the same name. */
10829 if (name
10830 && ((TREE_CODE (name) != TYPE_DECL
10831 && (qualified_type == TYPE_MAIN_VARIANT (type)
10832 || (cv_quals == TYPE_UNQUALIFIED)))
10833 || (TREE_CODE (name) == TYPE_DECL
10834 && TREE_TYPE (name) == qualified_type
10835 && DECL_NAME (name))))
10837 if (TREE_CODE (name) == TYPE_DECL)
10838 /* Could just call add_name_and_src_coords_attributes here,
10839 but since this is a builtin type it doesn't have any
10840 useful source coordinates anyway. */
10841 name = DECL_NAME (name);
10842 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
10844 /* This probably indicates a bug. */
10845 else if (mod_type_die && mod_type_die->die_tag == DW_TAG_base_type)
10847 name = TYPE_IDENTIFIER (type);
10848 add_name_attribute (mod_type_die,
10849 name ? IDENTIFIER_POINTER (name) : "__unknown__");
10852 if (qualified_type)
10853 equate_type_number_to_die (qualified_type, mod_type_die);
10855 if (item_type)
10856 /* We must do this after the equate_type_number_to_die call, in case
10857 this is a recursive type. This ensures that the modified_type_die
10858 recursion will terminate even if the type is recursive. Recursive
10859 types are possible in Ada. */
10860 sub_die = modified_type_die (item_type,
10861 TYPE_QUALS_NO_ADDR_SPACE (item_type),
10862 context_die);
10864 if (sub_die != NULL)
10865 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
10867 add_gnat_descriptive_type_attribute (mod_type_die, type, context_die);
10868 if (TYPE_ARTIFICIAL (type))
10869 add_AT_flag (mod_type_die, DW_AT_artificial, 1);
10871 return mod_type_die;
10874 /* Generate DIEs for the generic parameters of T.
10875 T must be either a generic type or a generic function.
10876 See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more. */
10878 static void
10879 gen_generic_params_dies (tree t)
10881 tree parms, args;
10882 int parms_num, i;
10883 dw_die_ref die = NULL;
10884 int non_default;
10886 if (!t || (TYPE_P (t) && !COMPLETE_TYPE_P (t)))
10887 return;
10889 if (TYPE_P (t))
10890 die = lookup_type_die (t);
10891 else if (DECL_P (t))
10892 die = lookup_decl_die (t);
10894 gcc_assert (die);
10896 parms = lang_hooks.get_innermost_generic_parms (t);
10897 if (!parms)
10898 /* T has no generic parameter. It means T is neither a generic type
10899 or function. End of story. */
10900 return;
10902 parms_num = TREE_VEC_LENGTH (parms);
10903 args = lang_hooks.get_innermost_generic_args (t);
10904 if (TREE_CHAIN (args) && TREE_CODE (TREE_CHAIN (args)) == INTEGER_CST)
10905 non_default = int_cst_value (TREE_CHAIN (args));
10906 else
10907 non_default = TREE_VEC_LENGTH (args);
10908 for (i = 0; i < parms_num; i++)
10910 tree parm, arg, arg_pack_elems;
10911 dw_die_ref parm_die;
10913 parm = TREE_VEC_ELT (parms, i);
10914 arg = TREE_VEC_ELT (args, i);
10915 arg_pack_elems = lang_hooks.types.get_argument_pack_elems (arg);
10916 gcc_assert (parm && TREE_VALUE (parm) && arg);
10918 if (parm && TREE_VALUE (parm) && arg)
10920 /* If PARM represents a template parameter pack,
10921 emit a DW_TAG_GNU_template_parameter_pack DIE, followed
10922 by DW_TAG_template_*_parameter DIEs for the argument
10923 pack elements of ARG. Note that ARG would then be
10924 an argument pack. */
10925 if (arg_pack_elems)
10926 parm_die = template_parameter_pack_die (TREE_VALUE (parm),
10927 arg_pack_elems,
10928 die);
10929 else
10930 parm_die = generic_parameter_die (TREE_VALUE (parm), arg,
10931 true /* emit name */, die);
10932 if (i >= non_default)
10933 add_AT_flag (parm_die, DW_AT_default_value, 1);
10938 /* Create and return a DIE for PARM which should be
10939 the representation of a generic type parameter.
10940 For instance, in the C++ front end, PARM would be a template parameter.
10941 ARG is the argument to PARM.
10942 EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the
10943 name of the PARM.
10944 PARENT_DIE is the parent DIE which the new created DIE should be added to,
10945 as a child node. */
10947 static dw_die_ref
10948 generic_parameter_die (tree parm, tree arg,
10949 bool emit_name_p,
10950 dw_die_ref parent_die)
10952 dw_die_ref tmpl_die = NULL;
10953 const char *name = NULL;
10955 if (!parm || !DECL_NAME (parm) || !arg)
10956 return NULL;
10958 /* We support non-type generic parameters and arguments,
10959 type generic parameters and arguments, as well as
10960 generic generic parameters (a.k.a. template template parameters in C++)
10961 and arguments. */
10962 if (TREE_CODE (parm) == PARM_DECL)
10963 /* PARM is a nontype generic parameter */
10964 tmpl_die = new_die (DW_TAG_template_value_param, parent_die, parm);
10965 else if (TREE_CODE (parm) == TYPE_DECL)
10966 /* PARM is a type generic parameter. */
10967 tmpl_die = new_die (DW_TAG_template_type_param, parent_die, parm);
10968 else if (lang_hooks.decls.generic_generic_parameter_decl_p (parm))
10969 /* PARM is a generic generic parameter.
10970 Its DIE is a GNU extension. It shall have a
10971 DW_AT_name attribute to represent the name of the template template
10972 parameter, and a DW_AT_GNU_template_name attribute to represent the
10973 name of the template template argument. */
10974 tmpl_die = new_die (DW_TAG_GNU_template_template_param,
10975 parent_die, parm);
10976 else
10977 gcc_unreachable ();
10979 if (tmpl_die)
10981 tree tmpl_type;
10983 /* If PARM is a generic parameter pack, it means we are
10984 emitting debug info for a template argument pack element.
10985 In other terms, ARG is a template argument pack element.
10986 In that case, we don't emit any DW_AT_name attribute for
10987 the die. */
10988 if (emit_name_p)
10990 name = IDENTIFIER_POINTER (DECL_NAME (parm));
10991 gcc_assert (name);
10992 add_AT_string (tmpl_die, DW_AT_name, name);
10995 if (!lang_hooks.decls.generic_generic_parameter_decl_p (parm))
10997 /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter
10998 TMPL_DIE should have a child DW_AT_type attribute that is set
10999 to the type of the argument to PARM, which is ARG.
11000 If PARM is a type generic parameter, TMPL_DIE should have a
11001 child DW_AT_type that is set to ARG. */
11002 tmpl_type = TYPE_P (arg) ? arg : TREE_TYPE (arg);
11003 add_type_attribute (tmpl_die, tmpl_type,
11004 (TREE_THIS_VOLATILE (tmpl_type)
11005 ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED),
11006 parent_die);
11008 else
11010 /* So TMPL_DIE is a DIE representing a
11011 a generic generic template parameter, a.k.a template template
11012 parameter in C++ and arg is a template. */
11014 /* The DW_AT_GNU_template_name attribute of the DIE must be set
11015 to the name of the argument. */
11016 name = dwarf2_name (TYPE_P (arg) ? TYPE_NAME (arg) : arg, 1);
11017 if (name)
11018 add_AT_string (tmpl_die, DW_AT_GNU_template_name, name);
11021 if (TREE_CODE (parm) == PARM_DECL)
11022 /* So PARM is a non-type generic parameter.
11023 DWARF3 5.6.8 says we must set a DW_AT_const_value child
11024 attribute of TMPL_DIE which value represents the value
11025 of ARG.
11026 We must be careful here:
11027 The value of ARG might reference some function decls.
11028 We might currently be emitting debug info for a generic
11029 type and types are emitted before function decls, we don't
11030 know if the function decls referenced by ARG will actually be
11031 emitted after cgraph computations.
11032 So must defer the generation of the DW_AT_const_value to
11033 after cgraph is ready. */
11034 append_entry_to_tmpl_value_parm_die_table (tmpl_die, arg);
11037 return tmpl_die;
11040 /* Generate and return a DW_TAG_GNU_template_parameter_pack DIE representing.
11041 PARM_PACK must be a template parameter pack. The returned DIE
11042 will be child DIE of PARENT_DIE. */
11044 static dw_die_ref
11045 template_parameter_pack_die (tree parm_pack,
11046 tree parm_pack_args,
11047 dw_die_ref parent_die)
11049 dw_die_ref die;
11050 int j;
11052 gcc_assert (parent_die && parm_pack);
11054 die = new_die (DW_TAG_GNU_template_parameter_pack, parent_die, parm_pack);
11055 add_name_and_src_coords_attributes (die, parm_pack);
11056 for (j = 0; j < TREE_VEC_LENGTH (parm_pack_args); j++)
11057 generic_parameter_die (parm_pack,
11058 TREE_VEC_ELT (parm_pack_args, j),
11059 false /* Don't emit DW_AT_name */,
11060 die);
11061 return die;
11064 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
11065 an enumerated type. */
11067 static inline int
11068 type_is_enum (const_tree type)
11070 return TREE_CODE (type) == ENUMERAL_TYPE;
11073 /* Return the DBX register number described by a given RTL node. */
11075 static unsigned int
11076 dbx_reg_number (const_rtx rtl)
11078 unsigned regno = REGNO (rtl);
11080 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
11082 #ifdef LEAF_REG_REMAP
11083 if (crtl->uses_only_leaf_regs)
11085 int leaf_reg = LEAF_REG_REMAP (regno);
11086 if (leaf_reg != -1)
11087 regno = (unsigned) leaf_reg;
11089 #endif
11091 regno = DBX_REGISTER_NUMBER (regno);
11092 gcc_assert (regno != INVALID_REGNUM);
11093 return regno;
11096 /* Optionally add a DW_OP_piece term to a location description expression.
11097 DW_OP_piece is only added if the location description expression already
11098 doesn't end with DW_OP_piece. */
11100 static void
11101 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
11103 dw_loc_descr_ref loc;
11105 if (*list_head != NULL)
11107 /* Find the end of the chain. */
11108 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
11111 if (loc->dw_loc_opc != DW_OP_piece)
11112 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
11116 /* Return a location descriptor that designates a machine register or
11117 zero if there is none. */
11119 static dw_loc_descr_ref
11120 reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
11122 rtx regs;
11124 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
11125 return 0;
11127 /* We only use "frame base" when we're sure we're talking about the
11128 post-prologue local stack frame. We do this by *not* running
11129 register elimination until this point, and recognizing the special
11130 argument pointer and soft frame pointer rtx's.
11131 Use DW_OP_fbreg offset DW_OP_stack_value in this case. */
11132 if ((rtl == arg_pointer_rtx || rtl == frame_pointer_rtx)
11133 && eliminate_regs (rtl, VOIDmode, NULL_RTX) != rtl)
11135 dw_loc_descr_ref result = NULL;
11137 if (dwarf_version >= 4 || !dwarf_strict)
11139 result = mem_loc_descriptor (rtl, GET_MODE (rtl), VOIDmode,
11140 initialized);
11141 if (result)
11142 add_loc_descr (&result,
11143 new_loc_descr (DW_OP_stack_value, 0, 0));
11145 return result;
11148 regs = targetm.dwarf_register_span (rtl);
11150 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
11151 return multiple_reg_loc_descriptor (rtl, regs, initialized);
11152 else
11154 unsigned int dbx_regnum = dbx_reg_number (rtl);
11155 if (dbx_regnum == IGNORED_DWARF_REGNUM)
11156 return 0;
11157 return one_reg_loc_descriptor (dbx_regnum, initialized);
11161 /* Return a location descriptor that designates a machine register for
11162 a given hard register number. */
11164 static dw_loc_descr_ref
11165 one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
11167 dw_loc_descr_ref reg_loc_descr;
11169 if (regno <= 31)
11170 reg_loc_descr
11171 = new_loc_descr ((enum dwarf_location_atom) (DW_OP_reg0 + regno), 0, 0);
11172 else
11173 reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);
11175 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
11176 add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
11178 return reg_loc_descr;
11181 /* Given an RTL of a register, return a location descriptor that
11182 designates a value that spans more than one register. */
11184 static dw_loc_descr_ref
11185 multiple_reg_loc_descriptor (rtx rtl, rtx regs,
11186 enum var_init_status initialized)
11188 int size, i;
11189 dw_loc_descr_ref loc_result = NULL;
11191 /* Simple, contiguous registers. */
11192 if (regs == NULL_RTX)
11194 unsigned reg = REGNO (rtl);
11195 int nregs;
11197 #ifdef LEAF_REG_REMAP
11198 if (crtl->uses_only_leaf_regs)
11200 int leaf_reg = LEAF_REG_REMAP (reg);
11201 if (leaf_reg != -1)
11202 reg = (unsigned) leaf_reg;
11204 #endif
11206 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
11207 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
11209 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
11211 loc_result = NULL;
11212 while (nregs--)
11214 dw_loc_descr_ref t;
11216 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg),
11217 VAR_INIT_STATUS_INITIALIZED);
11218 add_loc_descr (&loc_result, t);
11219 add_loc_descr_op_piece (&loc_result, size);
11220 ++reg;
11222 return loc_result;
11225 /* Now onto stupid register sets in non contiguous locations. */
11227 gcc_assert (GET_CODE (regs) == PARALLEL);
11229 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
11230 loc_result = NULL;
11232 for (i = 0; i < XVECLEN (regs, 0); ++i)
11234 dw_loc_descr_ref t;
11236 t = one_reg_loc_descriptor (dbx_reg_number (XVECEXP (regs, 0, i)),
11237 VAR_INIT_STATUS_INITIALIZED);
11238 add_loc_descr (&loc_result, t);
11239 add_loc_descr_op_piece (&loc_result, size);
11242 if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
11243 add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
11244 return loc_result;
11247 static unsigned long size_of_int_loc_descriptor (HOST_WIDE_INT);
11249 /* Return a location descriptor that designates a constant i,
11250 as a compound operation from constant (i >> shift), constant shift
11251 and DW_OP_shl. */
11253 static dw_loc_descr_ref
11254 int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
11256 dw_loc_descr_ref ret = int_loc_descriptor (i >> shift);
11257 add_loc_descr (&ret, int_loc_descriptor (shift));
11258 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
11259 return ret;
11262 /* Return a location descriptor that designates a constant. */
11264 static dw_loc_descr_ref
11265 int_loc_descriptor (HOST_WIDE_INT i)
11267 enum dwarf_location_atom op;
11269 /* Pick the smallest representation of a constant, rather than just
11270 defaulting to the LEB encoding. */
11271 if (i >= 0)
11273 int clz = clz_hwi (i);
11274 int ctz = ctz_hwi (i);
11275 if (i <= 31)
11276 op = (enum dwarf_location_atom) (DW_OP_lit0 + i);
11277 else if (i <= 0xff)
11278 op = DW_OP_const1u;
11279 else if (i <= 0xffff)
11280 op = DW_OP_const2u;
11281 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
11282 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
11283 /* DW_OP_litX DW_OP_litY DW_OP_shl takes just 3 bytes and
11284 DW_OP_litX DW_OP_const1u Y DW_OP_shl takes just 4 bytes,
11285 while DW_OP_const4u is 5 bytes. */
11286 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 5);
11287 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
11288 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
11289 /* DW_OP_const1u X DW_OP_litY DW_OP_shl takes just 4 bytes,
11290 while DW_OP_const4u is 5 bytes. */
11291 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
11292 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
11293 op = DW_OP_const4u;
11294 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
11295 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
11296 /* DW_OP_const1u X DW_OP_const1u Y DW_OP_shl takes just 5 bytes,
11297 while DW_OP_constu of constant >= 0x100000000 takes at least
11298 6 bytes. */
11299 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
11300 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
11301 && clz + 16 + (size_of_uleb128 (i) > 5 ? 255 : 31)
11302 >= HOST_BITS_PER_WIDE_INT)
11303 /* DW_OP_const2u X DW_OP_litY DW_OP_shl takes just 5 bytes,
11304 DW_OP_const2u X DW_OP_const1u Y DW_OP_shl takes 6 bytes,
11305 while DW_OP_constu takes in this case at least 6 bytes. */
11306 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 16);
11307 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
11308 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
11309 && size_of_uleb128 (i) > 6)
11310 /* DW_OP_const4u X DW_OP_litY DW_OP_shl takes just 7 bytes. */
11311 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 32);
11312 else
11313 op = DW_OP_constu;
11315 else
11317 if (i >= -0x80)
11318 op = DW_OP_const1s;
11319 else if (i >= -0x8000)
11320 op = DW_OP_const2s;
11321 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
11323 if (size_of_int_loc_descriptor (i) < 5)
11325 dw_loc_descr_ref ret = int_loc_descriptor (-i);
11326 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
11327 return ret;
11329 op = DW_OP_const4s;
11331 else
11333 if (size_of_int_loc_descriptor (i)
11334 < (unsigned long) 1 + size_of_sleb128 (i))
11336 dw_loc_descr_ref ret = int_loc_descriptor (-i);
11337 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
11338 return ret;
11340 op = DW_OP_consts;
11344 return new_loc_descr (op, i, 0);
11347 /* Return size_of_locs (int_shift_loc_descriptor (i, shift))
11348 without actually allocating it. */
11350 static unsigned long
11351 size_of_int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
11353 return size_of_int_loc_descriptor (i >> shift)
11354 + size_of_int_loc_descriptor (shift)
11355 + 1;
11358 /* Return size_of_locs (int_loc_descriptor (i)) without
11359 actually allocating it. */
11361 static unsigned long
11362 size_of_int_loc_descriptor (HOST_WIDE_INT i)
11364 unsigned long s;
11366 if (i >= 0)
11368 int clz, ctz;
11369 if (i <= 31)
11370 return 1;
11371 else if (i <= 0xff)
11372 return 2;
11373 else if (i <= 0xffff)
11374 return 3;
11375 clz = clz_hwi (i);
11376 ctz = ctz_hwi (i);
11377 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
11378 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
11379 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
11380 - clz - 5);
11381 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
11382 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
11383 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
11384 - clz - 8);
11385 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
11386 return 5;
11387 s = size_of_uleb128 ((unsigned HOST_WIDE_INT) i);
11388 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
11389 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
11390 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
11391 - clz - 8);
11392 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
11393 && clz + 16 + (s > 5 ? 255 : 31) >= HOST_BITS_PER_WIDE_INT)
11394 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
11395 - clz - 16);
11396 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
11397 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
11398 && s > 6)
11399 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
11400 - clz - 32);
11401 else
11402 return 1 + s;
11404 else
11406 if (i >= -0x80)
11407 return 2;
11408 else if (i >= -0x8000)
11409 return 3;
11410 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
11412 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
11414 s = size_of_int_loc_descriptor (-i) + 1;
11415 if (s < 5)
11416 return s;
11418 return 5;
11420 else
11422 unsigned long r = 1 + size_of_sleb128 (i);
11423 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
11425 s = size_of_int_loc_descriptor (-i) + 1;
11426 if (s < r)
11427 return s;
11429 return r;
11434 /* Return loc description representing "address" of integer value.
11435 This can appear only as toplevel expression. */
11437 static dw_loc_descr_ref
11438 address_of_int_loc_descriptor (int size, HOST_WIDE_INT i)
11440 int litsize;
11441 dw_loc_descr_ref loc_result = NULL;
11443 if (!(dwarf_version >= 4 || !dwarf_strict))
11444 return NULL;
11446 litsize = size_of_int_loc_descriptor (i);
11447 /* Determine if DW_OP_stack_value or DW_OP_implicit_value
11448 is more compact. For DW_OP_stack_value we need:
11449 litsize + 1 (DW_OP_stack_value)
11450 and for DW_OP_implicit_value:
11451 1 (DW_OP_implicit_value) + 1 (length) + size. */
11452 if ((int) DWARF2_ADDR_SIZE >= size && litsize + 1 <= 1 + 1 + size)
11454 loc_result = int_loc_descriptor (i);
11455 add_loc_descr (&loc_result,
11456 new_loc_descr (DW_OP_stack_value, 0, 0));
11457 return loc_result;
11460 loc_result = new_loc_descr (DW_OP_implicit_value,
11461 size, 0);
11462 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
11463 loc_result->dw_loc_oprnd2.v.val_int = i;
11464 return loc_result;
11467 /* Return a location descriptor that designates a base+offset location. */
11469 static dw_loc_descr_ref
11470 based_loc_descr (rtx reg, HOST_WIDE_INT offset,
11471 enum var_init_status initialized)
11473 unsigned int regno;
11474 dw_loc_descr_ref result;
11475 dw_fde_ref fde = cfun->fde;
11477 /* We only use "frame base" when we're sure we're talking about the
11478 post-prologue local stack frame. We do this by *not* running
11479 register elimination until this point, and recognizing the special
11480 argument pointer and soft frame pointer rtx's. */
11481 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
11483 rtx elim = (ira_use_lra_p
11484 ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
11485 : eliminate_regs (reg, VOIDmode, NULL_RTX));
11487 if (elim != reg)
11489 if (GET_CODE (elim) == PLUS)
11491 offset += INTVAL (XEXP (elim, 1));
11492 elim = XEXP (elim, 0);
11494 gcc_assert ((SUPPORTS_STACK_ALIGNMENT
11495 && (elim == hard_frame_pointer_rtx
11496 || elim == stack_pointer_rtx))
11497 || elim == (frame_pointer_needed
11498 ? hard_frame_pointer_rtx
11499 : stack_pointer_rtx));
11501 /* If drap register is used to align stack, use frame
11502 pointer + offset to access stack variables. If stack
11503 is aligned without drap, use stack pointer + offset to
11504 access stack variables. */
11505 if (crtl->stack_realign_tried
11506 && reg == frame_pointer_rtx)
11508 int base_reg
11509 = DWARF_FRAME_REGNUM ((fde && fde->drap_reg != INVALID_REGNUM)
11510 ? HARD_FRAME_POINTER_REGNUM
11511 : REGNO (elim));
11512 return new_reg_loc_descr (base_reg, offset);
11515 gcc_assert (frame_pointer_fb_offset_valid);
11516 offset += frame_pointer_fb_offset;
11517 return new_loc_descr (DW_OP_fbreg, offset, 0);
11521 regno = REGNO (reg);
11522 #ifdef LEAF_REG_REMAP
11523 if (crtl->uses_only_leaf_regs)
11525 int leaf_reg = LEAF_REG_REMAP (regno);
11526 if (leaf_reg != -1)
11527 regno = (unsigned) leaf_reg;
11529 #endif
11530 regno = DWARF_FRAME_REGNUM (regno);
11532 if (!optimize && fde
11533 && (fde->drap_reg == regno || fde->vdrap_reg == regno))
11535 /* Use cfa+offset to represent the location of arguments passed
11536 on the stack when drap is used to align stack.
11537 Only do this when not optimizing, for optimized code var-tracking
11538 is supposed to track where the arguments live and the register
11539 used as vdrap or drap in some spot might be used for something
11540 else in other part of the routine. */
11541 return new_loc_descr (DW_OP_fbreg, offset, 0);
11544 if (regno <= 31)
11545 result = new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + regno),
11546 offset, 0);
11547 else
11548 result = new_loc_descr (DW_OP_bregx, regno, offset);
11550 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
11551 add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
11553 return result;
11556 /* Return true if this RTL expression describes a base+offset calculation. */
11558 static inline int
11559 is_based_loc (const_rtx rtl)
11561 return (GET_CODE (rtl) == PLUS
11562 && ((REG_P (XEXP (rtl, 0))
11563 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
11564 && CONST_INT_P (XEXP (rtl, 1)))));
11567 /* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0)
11568 failed. */
11570 static dw_loc_descr_ref
11571 tls_mem_loc_descriptor (rtx mem)
11573 tree base;
11574 dw_loc_descr_ref loc_result;
11576 if (MEM_EXPR (mem) == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
11577 return NULL;
11579 base = get_base_address (MEM_EXPR (mem));
11580 if (base == NULL
11581 || TREE_CODE (base) != VAR_DECL
11582 || !DECL_THREAD_LOCAL_P (base))
11583 return NULL;
11585 loc_result = loc_descriptor_from_tree (MEM_EXPR (mem), 1, NULL);
11586 if (loc_result == NULL)
11587 return NULL;
11589 if (MEM_OFFSET (mem))
11590 loc_descr_plus_const (&loc_result, MEM_OFFSET (mem));
11592 return loc_result;
11595 /* Output debug info about reason why we failed to expand expression as dwarf
11596 expression. */
11598 static void
11599 expansion_failed (tree expr, rtx rtl, char const *reason)
11601 if (dump_file && (dump_flags & TDF_DETAILS))
11603 fprintf (dump_file, "Failed to expand as dwarf: ");
11604 if (expr)
11605 print_generic_expr (dump_file, expr, dump_flags);
11606 if (rtl)
11608 fprintf (dump_file, "\n");
11609 print_rtl (dump_file, rtl);
11611 fprintf (dump_file, "\nReason: %s\n", reason);
11615 /* Helper function for const_ok_for_output. */
11617 static bool
11618 const_ok_for_output_1 (rtx rtl)
11620 if (GET_CODE (rtl) == UNSPEC)
11622 /* If delegitimize_address couldn't do anything with the UNSPEC, assume
11623 we can't express it in the debug info. */
11624 #ifdef ENABLE_CHECKING
11625 /* Don't complain about TLS UNSPECs, those are just too hard to
11626 delegitimize. Note this could be a non-decl SYMBOL_REF such as
11627 one in a constant pool entry, so testing SYMBOL_REF_TLS_MODEL
11628 rather than DECL_THREAD_LOCAL_P is not just an optimization. */
11629 if (XVECLEN (rtl, 0) == 0
11630 || GET_CODE (XVECEXP (rtl, 0, 0)) != SYMBOL_REF
11631 || SYMBOL_REF_TLS_MODEL (XVECEXP (rtl, 0, 0)) == TLS_MODEL_NONE)
11632 inform (current_function_decl
11633 ? DECL_SOURCE_LOCATION (current_function_decl)
11634 : UNKNOWN_LOCATION,
11635 #if NUM_UNSPEC_VALUES > 0
11636 "non-delegitimized UNSPEC %s (%d) found in variable location",
11637 ((XINT (rtl, 1) >= 0 && XINT (rtl, 1) < NUM_UNSPEC_VALUES)
11638 ? unspec_strings[XINT (rtl, 1)] : "unknown"),
11639 XINT (rtl, 1));
11640 #else
11641 "non-delegitimized UNSPEC %d found in variable location",
11642 XINT (rtl, 1));
11643 #endif
11644 #endif
11645 expansion_failed (NULL_TREE, rtl,
11646 "UNSPEC hasn't been delegitimized.\n");
11647 return false;
11650 if (targetm.const_not_ok_for_debug_p (rtl))
11652 expansion_failed (NULL_TREE, rtl,
11653 "Expression rejected for debug by the backend.\n");
11654 return false;
11657 /* FIXME: Refer to PR60655. It is possible for simplification
11658 of rtl expressions in var tracking to produce such expressions.
11659 We should really identify / validate expressions
11660 enclosed in CONST that can be handled by assemblers on various
11661 targets and only handle legitimate cases here. */
11662 if (GET_CODE (rtl) != SYMBOL_REF)
11664 if (GET_CODE (rtl) == NOT)
11665 return false;
11666 return true;
11669 if (CONSTANT_POOL_ADDRESS_P (rtl))
11671 bool marked;
11672 get_pool_constant_mark (rtl, &marked);
11673 /* If all references to this pool constant were optimized away,
11674 it was not output and thus we can't represent it. */
11675 if (!marked)
11677 expansion_failed (NULL_TREE, rtl,
11678 "Constant was removed from constant pool.\n");
11679 return false;
11683 if (SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
11684 return false;
11686 /* Avoid references to external symbols in debug info, on several targets
11687 the linker might even refuse to link when linking a shared library,
11688 and in many other cases the relocations for .debug_info/.debug_loc are
11689 dropped, so the address becomes zero anyway. Hidden symbols, guaranteed
11690 to be defined within the same shared library or executable are fine. */
11691 if (SYMBOL_REF_EXTERNAL_P (rtl))
11693 tree decl = SYMBOL_REF_DECL (rtl);
11695 if (decl == NULL || !targetm.binds_local_p (decl))
11697 expansion_failed (NULL_TREE, rtl,
11698 "Symbol not defined in current TU.\n");
11699 return false;
11703 return true;
11706 /* Return true if constant RTL can be emitted in DW_OP_addr or
11707 DW_AT_const_value. TLS SYMBOL_REFs, external SYMBOL_REFs or
11708 non-marked constant pool SYMBOL_REFs can't be referenced in it. */
11710 static bool
11711 const_ok_for_output (rtx rtl)
11713 if (GET_CODE (rtl) == SYMBOL_REF)
11714 return const_ok_for_output_1 (rtl);
11716 if (GET_CODE (rtl) == CONST)
11718 subrtx_var_iterator::array_type array;
11719 FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 0), ALL)
11720 if (!const_ok_for_output_1 (*iter))
11721 return false;
11722 return true;
11725 return true;
11728 /* Return a reference to DW_TAG_base_type corresponding to MODE and UNSIGNEDP
11729 if possible, NULL otherwise. */
11731 static dw_die_ref
11732 base_type_for_mode (machine_mode mode, bool unsignedp)
11734 dw_die_ref type_die;
11735 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11737 if (type == NULL)
11738 return NULL;
11739 switch (TREE_CODE (type))
11741 case INTEGER_TYPE:
11742 case REAL_TYPE:
11743 break;
11744 default:
11745 return NULL;
11747 type_die = lookup_type_die (type);
11748 if (!type_die)
11749 type_die = modified_type_die (type, TYPE_UNQUALIFIED, comp_unit_die ());
11750 if (type_die == NULL || type_die->die_tag != DW_TAG_base_type)
11751 return NULL;
11752 return type_die;
11755 /* For OP descriptor assumed to be in unsigned MODE, convert it to a unsigned
11756 type matching MODE, or, if MODE is narrower than or as wide as
11757 DWARF2_ADDR_SIZE, untyped. Return NULL if the conversion is not
11758 possible. */
11760 static dw_loc_descr_ref
11761 convert_descriptor_to_mode (machine_mode mode, dw_loc_descr_ref op)
11763 machine_mode outer_mode = mode;
11764 dw_die_ref type_die;
11765 dw_loc_descr_ref cvt;
11767 if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
11769 add_loc_descr (&op, new_loc_descr (DW_OP_GNU_convert, 0, 0));
11770 return op;
11772 type_die = base_type_for_mode (outer_mode, 1);
11773 if (type_die == NULL)
11774 return NULL;
11775 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11776 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11777 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
11778 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11779 add_loc_descr (&op, cvt);
11780 return op;
11783 /* Return location descriptor for comparison OP with operands OP0 and OP1. */
11785 static dw_loc_descr_ref
11786 compare_loc_descriptor (enum dwarf_location_atom op, dw_loc_descr_ref op0,
11787 dw_loc_descr_ref op1)
11789 dw_loc_descr_ref ret = op0;
11790 add_loc_descr (&ret, op1);
11791 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
11792 if (STORE_FLAG_VALUE != 1)
11794 add_loc_descr (&ret, int_loc_descriptor (STORE_FLAG_VALUE));
11795 add_loc_descr (&ret, new_loc_descr (DW_OP_mul, 0, 0));
11797 return ret;
11800 /* Return location descriptor for signed comparison OP RTL. */
11802 static dw_loc_descr_ref
11803 scompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
11804 machine_mode mem_mode)
11806 machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
11807 dw_loc_descr_ref op0, op1;
11808 int shift;
11810 if (op_mode == VOIDmode)
11811 op_mode = GET_MODE (XEXP (rtl, 1));
11812 if (op_mode == VOIDmode)
11813 return NULL;
11815 if (dwarf_strict
11816 && (GET_MODE_CLASS (op_mode) != MODE_INT
11817 || GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE))
11818 return NULL;
11820 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
11821 VAR_INIT_STATUS_INITIALIZED);
11822 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
11823 VAR_INIT_STATUS_INITIALIZED);
11825 if (op0 == NULL || op1 == NULL)
11826 return NULL;
11828 if (GET_MODE_CLASS (op_mode) != MODE_INT
11829 || GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
11830 return compare_loc_descriptor (op, op0, op1);
11832 if (GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
11834 dw_die_ref type_die = base_type_for_mode (op_mode, 0);
11835 dw_loc_descr_ref cvt;
11837 if (type_die == NULL)
11838 return NULL;
11839 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11840 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11841 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
11842 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11843 add_loc_descr (&op0, cvt);
11844 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11845 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11846 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
11847 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11848 add_loc_descr (&op1, cvt);
11849 return compare_loc_descriptor (op, op0, op1);
11852 shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (op_mode)) * BITS_PER_UNIT;
11853 /* For eq/ne, if the operands are known to be zero-extended,
11854 there is no need to do the fancy shifting up. */
11855 if (op == DW_OP_eq || op == DW_OP_ne)
11857 dw_loc_descr_ref last0, last1;
11858 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
11860 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
11862 /* deref_size zero extends, and for constants we can check
11863 whether they are zero extended or not. */
11864 if (((last0->dw_loc_opc == DW_OP_deref_size
11865 && last0->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
11866 || (CONST_INT_P (XEXP (rtl, 0))
11867 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 0))
11868 == (INTVAL (XEXP (rtl, 0)) & GET_MODE_MASK (op_mode))))
11869 && ((last1->dw_loc_opc == DW_OP_deref_size
11870 && last1->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
11871 || (CONST_INT_P (XEXP (rtl, 1))
11872 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 1))
11873 == (INTVAL (XEXP (rtl, 1)) & GET_MODE_MASK (op_mode)))))
11874 return compare_loc_descriptor (op, op0, op1);
11876 /* EQ/NE comparison against constant in narrower type than
11877 DWARF2_ADDR_SIZE can be performed either as
11878 DW_OP_const1u <shift> DW_OP_shl DW_OP_const* <cst << shift>
11879 DW_OP_{eq,ne}
11881 DW_OP_const*u <mode_mask> DW_OP_and DW_OP_const* <cst & mode_mask>
11882 DW_OP_{eq,ne}. Pick whatever is shorter. */
11883 if (CONST_INT_P (XEXP (rtl, 1))
11884 && GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
11885 && (size_of_int_loc_descriptor (shift) + 1
11886 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1)) << shift)
11887 >= size_of_int_loc_descriptor (GET_MODE_MASK (op_mode)) + 1
11888 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1))
11889 & GET_MODE_MASK (op_mode))))
11891 add_loc_descr (&op0, int_loc_descriptor (GET_MODE_MASK (op_mode)));
11892 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
11893 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1))
11894 & GET_MODE_MASK (op_mode));
11895 return compare_loc_descriptor (op, op0, op1);
11898 add_loc_descr (&op0, int_loc_descriptor (shift));
11899 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
11900 if (CONST_INT_P (XEXP (rtl, 1)))
11901 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) << shift);
11902 else
11904 add_loc_descr (&op1, int_loc_descriptor (shift));
11905 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
11907 return compare_loc_descriptor (op, op0, op1);
11910 /* Return location descriptor for unsigned comparison OP RTL. */
11912 static dw_loc_descr_ref
11913 ucompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
11914 machine_mode mem_mode)
11916 machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
11917 dw_loc_descr_ref op0, op1;
11919 if (op_mode == VOIDmode)
11920 op_mode = GET_MODE (XEXP (rtl, 1));
11921 if (op_mode == VOIDmode)
11922 return NULL;
11923 if (GET_MODE_CLASS (op_mode) != MODE_INT)
11924 return NULL;
11926 if (dwarf_strict && GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
11927 return NULL;
11929 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
11930 VAR_INIT_STATUS_INITIALIZED);
11931 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
11932 VAR_INIT_STATUS_INITIALIZED);
11934 if (op0 == NULL || op1 == NULL)
11935 return NULL;
11937 if (GET_MODE_SIZE (op_mode) < DWARF2_ADDR_SIZE)
11939 HOST_WIDE_INT mask = GET_MODE_MASK (op_mode);
11940 dw_loc_descr_ref last0, last1;
11941 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
11943 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
11945 if (CONST_INT_P (XEXP (rtl, 0)))
11946 op0 = int_loc_descriptor (INTVAL (XEXP (rtl, 0)) & mask);
11947 /* deref_size zero extends, so no need to mask it again. */
11948 else if (last0->dw_loc_opc != DW_OP_deref_size
11949 || last0->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
11951 add_loc_descr (&op0, int_loc_descriptor (mask));
11952 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
11954 if (CONST_INT_P (XEXP (rtl, 1)))
11955 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) & mask);
11956 /* deref_size zero extends, so no need to mask it again. */
11957 else if (last1->dw_loc_opc != DW_OP_deref_size
11958 || last1->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
11960 add_loc_descr (&op1, int_loc_descriptor (mask));
11961 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
11964 else if (GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
11966 HOST_WIDE_INT bias = 1;
11967 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
11968 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
11969 if (CONST_INT_P (XEXP (rtl, 1)))
11970 op1 = int_loc_descriptor ((unsigned HOST_WIDE_INT) bias
11971 + INTVAL (XEXP (rtl, 1)));
11972 else
11973 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst,
11974 bias, 0));
11976 return compare_loc_descriptor (op, op0, op1);
11979 /* Return location descriptor for {U,S}{MIN,MAX}. */
11981 static dw_loc_descr_ref
11982 minmax_loc_descriptor (rtx rtl, machine_mode mode,
11983 machine_mode mem_mode)
11985 enum dwarf_location_atom op;
11986 dw_loc_descr_ref op0, op1, ret;
11987 dw_loc_descr_ref bra_node, drop_node;
11989 if (dwarf_strict
11990 && (GET_MODE_CLASS (mode) != MODE_INT
11991 || GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE))
11992 return NULL;
11994 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
11995 VAR_INIT_STATUS_INITIALIZED);
11996 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
11997 VAR_INIT_STATUS_INITIALIZED);
11999 if (op0 == NULL || op1 == NULL)
12000 return NULL;
12002 add_loc_descr (&op0, new_loc_descr (DW_OP_dup, 0, 0));
12003 add_loc_descr (&op1, new_loc_descr (DW_OP_swap, 0, 0));
12004 add_loc_descr (&op1, new_loc_descr (DW_OP_over, 0, 0));
12005 if (GET_CODE (rtl) == UMIN || GET_CODE (rtl) == UMAX)
12007 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
12009 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12010 add_loc_descr (&op0, int_loc_descriptor (mask));
12011 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
12012 add_loc_descr (&op1, int_loc_descriptor (mask));
12013 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
12015 else if (GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE)
12017 HOST_WIDE_INT bias = 1;
12018 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
12019 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
12020 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, bias, 0));
12023 else if (GET_MODE_CLASS (mode) == MODE_INT
12024 && GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
12026 int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (mode)) * BITS_PER_UNIT;
12027 add_loc_descr (&op0, int_loc_descriptor (shift));
12028 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
12029 add_loc_descr (&op1, int_loc_descriptor (shift));
12030 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
12032 else if (GET_MODE_CLASS (mode) == MODE_INT
12033 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
12035 dw_die_ref type_die = base_type_for_mode (mode, 0);
12036 dw_loc_descr_ref cvt;
12037 if (type_die == NULL)
12038 return NULL;
12039 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12040 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12041 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12042 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12043 add_loc_descr (&op0, cvt);
12044 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12045 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12046 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12047 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12048 add_loc_descr (&op1, cvt);
12051 if (GET_CODE (rtl) == SMIN || GET_CODE (rtl) == UMIN)
12052 op = DW_OP_lt;
12053 else
12054 op = DW_OP_gt;
12055 ret = op0;
12056 add_loc_descr (&ret, op1);
12057 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
12058 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
12059 add_loc_descr (&ret, bra_node);
12060 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12061 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
12062 add_loc_descr (&ret, drop_node);
12063 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
12064 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
12065 if ((GET_CODE (rtl) == SMIN || GET_CODE (rtl) == SMAX)
12066 && GET_MODE_CLASS (mode) == MODE_INT
12067 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
12068 ret = convert_descriptor_to_mode (mode, ret);
12069 return ret;
12072 /* Helper function for mem_loc_descriptor. Perform OP binary op,
12073 but after converting arguments to type_die, afterwards
12074 convert back to unsigned. */
12076 static dw_loc_descr_ref
12077 typed_binop (enum dwarf_location_atom op, rtx rtl, dw_die_ref type_die,
12078 machine_mode mode, machine_mode mem_mode)
12080 dw_loc_descr_ref cvt, op0, op1;
12082 if (type_die == NULL)
12083 return NULL;
12084 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12085 VAR_INIT_STATUS_INITIALIZED);
12086 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12087 VAR_INIT_STATUS_INITIALIZED);
12088 if (op0 == NULL || op1 == NULL)
12089 return NULL;
12090 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12091 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12092 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12093 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12094 add_loc_descr (&op0, cvt);
12095 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12096 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12097 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12098 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12099 add_loc_descr (&op1, cvt);
12100 add_loc_descr (&op0, op1);
12101 add_loc_descr (&op0, new_loc_descr (op, 0, 0));
12102 return convert_descriptor_to_mode (mode, op0);
12105 /* CLZ (where constV is CLZ_DEFINED_VALUE_AT_ZERO computed value,
12106 const0 is DW_OP_lit0 or corresponding typed constant,
12107 const1 is DW_OP_lit1 or corresponding typed constant
12108 and constMSB is constant with just the MSB bit set
12109 for the mode):
12110 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
12111 L1: const0 DW_OP_swap
12112 L2: DW_OP_dup constMSB DW_OP_and DW_OP_bra <L3> const1 DW_OP_shl
12113 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
12114 L3: DW_OP_drop
12115 L4: DW_OP_nop
12117 CTZ is similar:
12118 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
12119 L1: const0 DW_OP_swap
12120 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
12121 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
12122 L3: DW_OP_drop
12123 L4: DW_OP_nop
12125 FFS is similar:
12126 DW_OP_dup DW_OP_bra <L1> DW_OP_drop const0 DW_OP_skip <L4>
12127 L1: const1 DW_OP_swap
12128 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
12129 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
12130 L3: DW_OP_drop
12131 L4: DW_OP_nop */
12133 static dw_loc_descr_ref
12134 clz_loc_descriptor (rtx rtl, machine_mode mode,
12135 machine_mode mem_mode)
12137 dw_loc_descr_ref op0, ret, tmp;
12138 HOST_WIDE_INT valv;
12139 dw_loc_descr_ref l1jump, l1label;
12140 dw_loc_descr_ref l2jump, l2label;
12141 dw_loc_descr_ref l3jump, l3label;
12142 dw_loc_descr_ref l4jump, l4label;
12143 rtx msb;
12145 if (GET_MODE_CLASS (mode) != MODE_INT
12146 || GET_MODE (XEXP (rtl, 0)) != mode)
12147 return NULL;
12149 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12150 VAR_INIT_STATUS_INITIALIZED);
12151 if (op0 == NULL)
12152 return NULL;
12153 ret = op0;
12154 if (GET_CODE (rtl) == CLZ)
12156 if (!CLZ_DEFINED_VALUE_AT_ZERO (mode, valv))
12157 valv = GET_MODE_BITSIZE (mode);
12159 else if (GET_CODE (rtl) == FFS)
12160 valv = 0;
12161 else if (!CTZ_DEFINED_VALUE_AT_ZERO (mode, valv))
12162 valv = GET_MODE_BITSIZE (mode);
12163 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
12164 l1jump = new_loc_descr (DW_OP_bra, 0, 0);
12165 add_loc_descr (&ret, l1jump);
12166 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
12167 tmp = mem_loc_descriptor (GEN_INT (valv), mode, mem_mode,
12168 VAR_INIT_STATUS_INITIALIZED);
12169 if (tmp == NULL)
12170 return NULL;
12171 add_loc_descr (&ret, tmp);
12172 l4jump = new_loc_descr (DW_OP_skip, 0, 0);
12173 add_loc_descr (&ret, l4jump);
12174 l1label = mem_loc_descriptor (GET_CODE (rtl) == FFS
12175 ? const1_rtx : const0_rtx,
12176 mode, mem_mode,
12177 VAR_INIT_STATUS_INITIALIZED);
12178 if (l1label == NULL)
12179 return NULL;
12180 add_loc_descr (&ret, l1label);
12181 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12182 l2label = new_loc_descr (DW_OP_dup, 0, 0);
12183 add_loc_descr (&ret, l2label);
12184 if (GET_CODE (rtl) != CLZ)
12185 msb = const1_rtx;
12186 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12187 msb = GEN_INT ((unsigned HOST_WIDE_INT) 1
12188 << (GET_MODE_BITSIZE (mode) - 1));
12189 else
12190 msb = immed_wide_int_const
12191 (wi::set_bit_in_zero (GET_MODE_PRECISION (mode) - 1,
12192 GET_MODE_PRECISION (mode)), mode);
12193 if (GET_CODE (msb) == CONST_INT && INTVAL (msb) < 0)
12194 tmp = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
12195 ? DW_OP_const4u : HOST_BITS_PER_WIDE_INT == 64
12196 ? DW_OP_const8u : DW_OP_constu, INTVAL (msb), 0);
12197 else
12198 tmp = mem_loc_descriptor (msb, mode, mem_mode,
12199 VAR_INIT_STATUS_INITIALIZED);
12200 if (tmp == NULL)
12201 return NULL;
12202 add_loc_descr (&ret, tmp);
12203 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
12204 l3jump = new_loc_descr (DW_OP_bra, 0, 0);
12205 add_loc_descr (&ret, l3jump);
12206 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
12207 VAR_INIT_STATUS_INITIALIZED);
12208 if (tmp == NULL)
12209 return NULL;
12210 add_loc_descr (&ret, tmp);
12211 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == CLZ
12212 ? DW_OP_shl : DW_OP_shr, 0, 0));
12213 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12214 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, 1, 0));
12215 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12216 l2jump = new_loc_descr (DW_OP_skip, 0, 0);
12217 add_loc_descr (&ret, l2jump);
12218 l3label = new_loc_descr (DW_OP_drop, 0, 0);
12219 add_loc_descr (&ret, l3label);
12220 l4label = new_loc_descr (DW_OP_nop, 0, 0);
12221 add_loc_descr (&ret, l4label);
12222 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12223 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
12224 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12225 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
12226 l3jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12227 l3jump->dw_loc_oprnd1.v.val_loc = l3label;
12228 l4jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12229 l4jump->dw_loc_oprnd1.v.val_loc = l4label;
12230 return ret;
12233 /* POPCOUNT (const0 is DW_OP_lit0 or corresponding typed constant,
12234 const1 is DW_OP_lit1 or corresponding typed constant):
12235 const0 DW_OP_swap
12236 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
12237 DW_OP_plus DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
12238 L2: DW_OP_drop
12240 PARITY is similar:
12241 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
12242 DW_OP_xor DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
12243 L2: DW_OP_drop */
12245 static dw_loc_descr_ref
12246 popcount_loc_descriptor (rtx rtl, machine_mode mode,
12247 machine_mode mem_mode)
12249 dw_loc_descr_ref op0, ret, tmp;
12250 dw_loc_descr_ref l1jump, l1label;
12251 dw_loc_descr_ref l2jump, l2label;
12253 if (GET_MODE_CLASS (mode) != MODE_INT
12254 || GET_MODE (XEXP (rtl, 0)) != mode)
12255 return NULL;
12257 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12258 VAR_INIT_STATUS_INITIALIZED);
12259 if (op0 == NULL)
12260 return NULL;
12261 ret = op0;
12262 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
12263 VAR_INIT_STATUS_INITIALIZED);
12264 if (tmp == NULL)
12265 return NULL;
12266 add_loc_descr (&ret, tmp);
12267 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12268 l1label = new_loc_descr (DW_OP_dup, 0, 0);
12269 add_loc_descr (&ret, l1label);
12270 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
12271 add_loc_descr (&ret, l2jump);
12272 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
12273 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
12274 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
12275 VAR_INIT_STATUS_INITIALIZED);
12276 if (tmp == NULL)
12277 return NULL;
12278 add_loc_descr (&ret, tmp);
12279 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
12280 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == POPCOUNT
12281 ? DW_OP_plus : DW_OP_xor, 0, 0));
12282 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12283 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
12284 VAR_INIT_STATUS_INITIALIZED);
12285 add_loc_descr (&ret, tmp);
12286 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
12287 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
12288 add_loc_descr (&ret, l1jump);
12289 l2label = new_loc_descr (DW_OP_drop, 0, 0);
12290 add_loc_descr (&ret, l2label);
12291 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12292 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
12293 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12294 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
12295 return ret;
12298 /* BSWAP (constS is initial shift count, either 56 or 24):
12299 constS const0
12300 L1: DW_OP_pick <2> constS DW_OP_pick <3> DW_OP_minus DW_OP_shr
12301 const255 DW_OP_and DW_OP_pick <2> DW_OP_shl DW_OP_or
12302 DW_OP_swap DW_OP_dup const0 DW_OP_eq DW_OP_bra <L2> const8
12303 DW_OP_minus DW_OP_swap DW_OP_skip <L1>
12304 L2: DW_OP_drop DW_OP_swap DW_OP_drop */
12306 static dw_loc_descr_ref
12307 bswap_loc_descriptor (rtx rtl, machine_mode mode,
12308 machine_mode mem_mode)
12310 dw_loc_descr_ref op0, ret, tmp;
12311 dw_loc_descr_ref l1jump, l1label;
12312 dw_loc_descr_ref l2jump, l2label;
12314 if (GET_MODE_CLASS (mode) != MODE_INT
12315 || BITS_PER_UNIT != 8
12316 || (GET_MODE_BITSIZE (mode) != 32
12317 && GET_MODE_BITSIZE (mode) != 64))
12318 return NULL;
12320 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12321 VAR_INIT_STATUS_INITIALIZED);
12322 if (op0 == NULL)
12323 return NULL;
12325 ret = op0;
12326 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
12327 mode, mem_mode,
12328 VAR_INIT_STATUS_INITIALIZED);
12329 if (tmp == NULL)
12330 return NULL;
12331 add_loc_descr (&ret, tmp);
12332 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
12333 VAR_INIT_STATUS_INITIALIZED);
12334 if (tmp == NULL)
12335 return NULL;
12336 add_loc_descr (&ret, tmp);
12337 l1label = new_loc_descr (DW_OP_pick, 2, 0);
12338 add_loc_descr (&ret, l1label);
12339 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
12340 mode, mem_mode,
12341 VAR_INIT_STATUS_INITIALIZED);
12342 add_loc_descr (&ret, tmp);
12343 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 3, 0));
12344 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
12345 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
12346 tmp = mem_loc_descriptor (GEN_INT (255), mode, mem_mode,
12347 VAR_INIT_STATUS_INITIALIZED);
12348 if (tmp == NULL)
12349 return NULL;
12350 add_loc_descr (&ret, tmp);
12351 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
12352 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 2, 0));
12353 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
12354 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
12355 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12356 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
12357 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
12358 VAR_INIT_STATUS_INITIALIZED);
12359 add_loc_descr (&ret, tmp);
12360 add_loc_descr (&ret, new_loc_descr (DW_OP_eq, 0, 0));
12361 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
12362 add_loc_descr (&ret, l2jump);
12363 tmp = mem_loc_descriptor (GEN_INT (8), mode, mem_mode,
12364 VAR_INIT_STATUS_INITIALIZED);
12365 add_loc_descr (&ret, tmp);
12366 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
12367 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12368 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
12369 add_loc_descr (&ret, l1jump);
12370 l2label = new_loc_descr (DW_OP_drop, 0, 0);
12371 add_loc_descr (&ret, l2label);
12372 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12373 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
12374 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12375 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
12376 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12377 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
12378 return ret;
12381 /* ROTATE (constMASK is mode mask, BITSIZE is bitsize of mode):
12382 DW_OP_over DW_OP_over DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
12383 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_neg
12384 DW_OP_plus_uconst <BITSIZE> DW_OP_shr DW_OP_or
12386 ROTATERT is similar:
12387 DW_OP_over DW_OP_over DW_OP_neg DW_OP_plus_uconst <BITSIZE>
12388 DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
12389 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_shr DW_OP_or */
12391 static dw_loc_descr_ref
12392 rotate_loc_descriptor (rtx rtl, machine_mode mode,
12393 machine_mode mem_mode)
12395 rtx rtlop1 = XEXP (rtl, 1);
12396 dw_loc_descr_ref op0, op1, ret, mask[2] = { NULL, NULL };
12397 int i;
12399 if (GET_MODE_CLASS (mode) != MODE_INT)
12400 return NULL;
12402 if (GET_MODE (rtlop1) != VOIDmode
12403 && GET_MODE_BITSIZE (GET_MODE (rtlop1)) < GET_MODE_BITSIZE (mode))
12404 rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
12405 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12406 VAR_INIT_STATUS_INITIALIZED);
12407 op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
12408 VAR_INIT_STATUS_INITIALIZED);
12409 if (op0 == NULL || op1 == NULL)
12410 return NULL;
12411 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
12412 for (i = 0; i < 2; i++)
12414 if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
12415 mask[i] = mem_loc_descriptor (GEN_INT (GET_MODE_MASK (mode)),
12416 mode, mem_mode,
12417 VAR_INIT_STATUS_INITIALIZED);
12418 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
12419 mask[i] = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
12420 ? DW_OP_const4u
12421 : HOST_BITS_PER_WIDE_INT == 64
12422 ? DW_OP_const8u : DW_OP_constu,
12423 GET_MODE_MASK (mode), 0);
12424 else
12425 mask[i] = NULL;
12426 if (mask[i] == NULL)
12427 return NULL;
12428 add_loc_descr (&mask[i], new_loc_descr (DW_OP_and, 0, 0));
12430 ret = op0;
12431 add_loc_descr (&ret, op1);
12432 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
12433 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
12434 if (GET_CODE (rtl) == ROTATERT)
12436 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
12437 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
12438 GET_MODE_BITSIZE (mode), 0));
12440 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
12441 if (mask[0] != NULL)
12442 add_loc_descr (&ret, mask[0]);
12443 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
12444 if (mask[1] != NULL)
12446 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12447 add_loc_descr (&ret, mask[1]);
12448 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12450 if (GET_CODE (rtl) == ROTATE)
12452 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
12453 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
12454 GET_MODE_BITSIZE (mode), 0));
12456 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
12457 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
12458 return ret;
12461 /* Helper function for mem_loc_descriptor. Return DW_OP_GNU_parameter_ref
12462 for DEBUG_PARAMETER_REF RTL. */
12464 static dw_loc_descr_ref
12465 parameter_ref_descriptor (rtx rtl)
12467 dw_loc_descr_ref ret;
12468 dw_die_ref ref;
12470 if (dwarf_strict)
12471 return NULL;
12472 gcc_assert (TREE_CODE (DEBUG_PARAMETER_REF_DECL (rtl)) == PARM_DECL);
12473 ref = lookup_decl_die (DEBUG_PARAMETER_REF_DECL (rtl));
12474 ret = new_loc_descr (DW_OP_GNU_parameter_ref, 0, 0);
12475 if (ref)
12477 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12478 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
12479 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
12481 else
12483 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
12484 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_PARAMETER_REF_DECL (rtl);
12486 return ret;
12489 /* The following routine converts the RTL for a variable or parameter
12490 (resident in memory) into an equivalent Dwarf representation of a
12491 mechanism for getting the address of that same variable onto the top of a
12492 hypothetical "address evaluation" stack.
12494 When creating memory location descriptors, we are effectively transforming
12495 the RTL for a memory-resident object into its Dwarf postfix expression
12496 equivalent. This routine recursively descends an RTL tree, turning
12497 it into Dwarf postfix code as it goes.
12499 MODE is the mode that should be assumed for the rtl if it is VOIDmode.
12501 MEM_MODE is the mode of the memory reference, needed to handle some
12502 autoincrement addressing modes.
12504 Return 0 if we can't represent the location. */
12506 dw_loc_descr_ref
12507 mem_loc_descriptor (rtx rtl, machine_mode mode,
12508 machine_mode mem_mode,
12509 enum var_init_status initialized)
12511 dw_loc_descr_ref mem_loc_result = NULL;
12512 enum dwarf_location_atom op;
12513 dw_loc_descr_ref op0, op1;
12514 rtx inner = NULL_RTX;
12516 if (mode == VOIDmode)
12517 mode = GET_MODE (rtl);
12519 /* Note that for a dynamically sized array, the location we will generate a
12520 description of here will be the lowest numbered location which is
12521 actually within the array. That's *not* necessarily the same as the
12522 zeroth element of the array. */
12524 rtl = targetm.delegitimize_address (rtl);
12526 if (mode != GET_MODE (rtl) && GET_MODE (rtl) != VOIDmode)
12527 return NULL;
12529 switch (GET_CODE (rtl))
12531 case POST_INC:
12532 case POST_DEC:
12533 case POST_MODIFY:
12534 return mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, initialized);
12536 case SUBREG:
12537 /* The case of a subreg may arise when we have a local (register)
12538 variable or a formal (register) parameter which doesn't quite fill
12539 up an entire register. For now, just assume that it is
12540 legitimate to make the Dwarf info refer to the whole register which
12541 contains the given subreg. */
12542 if (!subreg_lowpart_p (rtl))
12543 break;
12544 inner = SUBREG_REG (rtl);
12545 case TRUNCATE:
12546 if (inner == NULL_RTX)
12547 inner = XEXP (rtl, 0);
12548 if (GET_MODE_CLASS (mode) == MODE_INT
12549 && GET_MODE_CLASS (GET_MODE (inner)) == MODE_INT
12550 && (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
12551 #ifdef POINTERS_EXTEND_UNSIGNED
12552 || (mode == Pmode && mem_mode != VOIDmode)
12553 #endif
12555 && GET_MODE_SIZE (GET_MODE (inner)) <= DWARF2_ADDR_SIZE)
12557 mem_loc_result = mem_loc_descriptor (inner,
12558 GET_MODE (inner),
12559 mem_mode, initialized);
12560 break;
12562 if (dwarf_strict)
12563 break;
12564 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (inner)))
12565 break;
12566 if (GET_MODE_SIZE (mode) != GET_MODE_SIZE (GET_MODE (inner))
12567 && (GET_MODE_CLASS (mode) != MODE_INT
12568 || GET_MODE_CLASS (GET_MODE (inner)) != MODE_INT))
12569 break;
12570 else
12572 dw_die_ref type_die;
12573 dw_loc_descr_ref cvt;
12575 mem_loc_result = mem_loc_descriptor (inner,
12576 GET_MODE (inner),
12577 mem_mode, initialized);
12578 if (mem_loc_result == NULL)
12579 break;
12580 type_die = base_type_for_mode (mode,
12581 GET_MODE_CLASS (mode) == MODE_INT);
12582 if (type_die == NULL)
12584 mem_loc_result = NULL;
12585 break;
12587 if (GET_MODE_SIZE (mode)
12588 != GET_MODE_SIZE (GET_MODE (inner)))
12589 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12590 else
12591 cvt = new_loc_descr (DW_OP_GNU_reinterpret, 0, 0);
12592 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12593 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12594 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12595 add_loc_descr (&mem_loc_result, cvt);
12597 break;
12599 case REG:
12600 if (GET_MODE_CLASS (mode) != MODE_INT
12601 || (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
12602 && rtl != arg_pointer_rtx
12603 && rtl != frame_pointer_rtx
12604 #ifdef POINTERS_EXTEND_UNSIGNED
12605 && (mode != Pmode || mem_mode == VOIDmode)
12606 #endif
12609 dw_die_ref type_die;
12610 unsigned int dbx_regnum;
12612 if (dwarf_strict)
12613 break;
12614 if (REGNO (rtl) > FIRST_PSEUDO_REGISTER)
12615 break;
12616 type_die = base_type_for_mode (mode,
12617 GET_MODE_CLASS (mode) == MODE_INT);
12618 if (type_die == NULL)
12619 break;
12621 dbx_regnum = dbx_reg_number (rtl);
12622 if (dbx_regnum == IGNORED_DWARF_REGNUM)
12623 break;
12624 mem_loc_result = new_loc_descr (DW_OP_GNU_regval_type,
12625 dbx_regnum, 0);
12626 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
12627 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.die = type_die;
12628 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.external = 0;
12629 break;
12631 /* Whenever a register number forms a part of the description of the
12632 method for calculating the (dynamic) address of a memory resident
12633 object, DWARF rules require the register number be referred to as
12634 a "base register". This distinction is not based in any way upon
12635 what category of register the hardware believes the given register
12636 belongs to. This is strictly DWARF terminology we're dealing with
12637 here. Note that in cases where the location of a memory-resident
12638 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
12639 OP_CONST (0)) the actual DWARF location descriptor that we generate
12640 may just be OP_BASEREG (basereg). This may look deceptively like
12641 the object in question was allocated to a register (rather than in
12642 memory) so DWARF consumers need to be aware of the subtle
12643 distinction between OP_REG and OP_BASEREG. */
12644 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
12645 mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
12646 else if (stack_realign_drap
12647 && crtl->drap_reg
12648 && crtl->args.internal_arg_pointer == rtl
12649 && REGNO (crtl->drap_reg) < FIRST_PSEUDO_REGISTER)
12651 /* If RTL is internal_arg_pointer, which has been optimized
12652 out, use DRAP instead. */
12653 mem_loc_result = based_loc_descr (crtl->drap_reg, 0,
12654 VAR_INIT_STATUS_INITIALIZED);
12656 break;
12658 case SIGN_EXTEND:
12659 case ZERO_EXTEND:
12660 if (GET_MODE_CLASS (mode) != MODE_INT)
12661 break;
12662 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
12663 mem_mode, VAR_INIT_STATUS_INITIALIZED);
12664 if (op0 == 0)
12665 break;
12666 else if (GET_CODE (rtl) == ZERO_EXTEND
12667 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
12668 && GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0)))
12669 < HOST_BITS_PER_WIDE_INT
12670 /* If DW_OP_const{1,2,4}u won't be used, it is shorter
12671 to expand zero extend as two shifts instead of
12672 masking. */
12673 && GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) <= 4)
12675 machine_mode imode = GET_MODE (XEXP (rtl, 0));
12676 mem_loc_result = op0;
12677 add_loc_descr (&mem_loc_result,
12678 int_loc_descriptor (GET_MODE_MASK (imode)));
12679 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_and, 0, 0));
12681 else if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
12683 int shift = DWARF2_ADDR_SIZE
12684 - GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)));
12685 shift *= BITS_PER_UNIT;
12686 if (GET_CODE (rtl) == SIGN_EXTEND)
12687 op = DW_OP_shra;
12688 else
12689 op = DW_OP_shr;
12690 mem_loc_result = op0;
12691 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
12692 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
12693 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
12694 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
12696 else if (!dwarf_strict)
12698 dw_die_ref type_die1, type_die2;
12699 dw_loc_descr_ref cvt;
12701 type_die1 = base_type_for_mode (GET_MODE (XEXP (rtl, 0)),
12702 GET_CODE (rtl) == ZERO_EXTEND);
12703 if (type_die1 == NULL)
12704 break;
12705 type_die2 = base_type_for_mode (mode, 1);
12706 if (type_die2 == NULL)
12707 break;
12708 mem_loc_result = op0;
12709 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12710 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12711 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die1;
12712 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12713 add_loc_descr (&mem_loc_result, cvt);
12714 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12715 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12716 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die2;
12717 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12718 add_loc_descr (&mem_loc_result, cvt);
12720 break;
12722 case MEM:
12724 rtx new_rtl = avoid_constant_pool_reference (rtl);
12725 if (new_rtl != rtl)
12727 mem_loc_result = mem_loc_descriptor (new_rtl, mode, mem_mode,
12728 initialized);
12729 if (mem_loc_result != NULL)
12730 return mem_loc_result;
12733 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0),
12734 get_address_mode (rtl), mode,
12735 VAR_INIT_STATUS_INITIALIZED);
12736 if (mem_loc_result == NULL)
12737 mem_loc_result = tls_mem_loc_descriptor (rtl);
12738 if (mem_loc_result != NULL)
12740 if (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
12741 || GET_MODE_CLASS (mode) != MODE_INT)
12743 dw_die_ref type_die;
12744 dw_loc_descr_ref deref;
12746 if (dwarf_strict)
12747 return NULL;
12748 type_die
12749 = base_type_for_mode (mode, GET_MODE_CLASS (mode) == MODE_INT);
12750 if (type_die == NULL)
12751 return NULL;
12752 deref = new_loc_descr (DW_OP_GNU_deref_type,
12753 GET_MODE_SIZE (mode), 0);
12754 deref->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
12755 deref->dw_loc_oprnd2.v.val_die_ref.die = type_die;
12756 deref->dw_loc_oprnd2.v.val_die_ref.external = 0;
12757 add_loc_descr (&mem_loc_result, deref);
12759 else if (GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE)
12760 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
12761 else
12762 add_loc_descr (&mem_loc_result,
12763 new_loc_descr (DW_OP_deref_size,
12764 GET_MODE_SIZE (mode), 0));
12766 break;
12768 case LO_SUM:
12769 return mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode, initialized);
12771 case LABEL_REF:
12772 /* Some ports can transform a symbol ref into a label ref, because
12773 the symbol ref is too far away and has to be dumped into a constant
12774 pool. */
12775 case CONST:
12776 case SYMBOL_REF:
12777 if ((GET_MODE_CLASS (mode) != MODE_INT
12778 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
12779 || (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
12780 #ifdef POINTERS_EXTEND_UNSIGNED
12781 && (mode != Pmode || mem_mode == VOIDmode)
12782 #endif
12784 break;
12785 if (GET_CODE (rtl) == SYMBOL_REF
12786 && SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
12788 dw_loc_descr_ref temp;
12790 /* If this is not defined, we have no way to emit the data. */
12791 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
12792 break;
12794 temp = new_addr_loc_descr (rtl, dtprel_true);
12796 mem_loc_result = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
12797 add_loc_descr (&mem_loc_result, temp);
12799 break;
12802 if (!const_ok_for_output (rtl))
12803 break;
12805 symref:
12806 mem_loc_result = new_addr_loc_descr (rtl, dtprel_false);
12807 vec_safe_push (used_rtx_array, rtl);
12808 break;
12810 case CONCAT:
12811 case CONCATN:
12812 case VAR_LOCATION:
12813 case DEBUG_IMPLICIT_PTR:
12814 expansion_failed (NULL_TREE, rtl,
12815 "CONCAT/CONCATN/VAR_LOCATION is handled only by loc_descriptor");
12816 return 0;
12818 case ENTRY_VALUE:
12819 if (dwarf_strict)
12820 return NULL;
12821 if (REG_P (ENTRY_VALUE_EXP (rtl)))
12823 if (GET_MODE_CLASS (mode) != MODE_INT
12824 || GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
12825 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
12826 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
12827 else
12829 unsigned int dbx_regnum = dbx_reg_number (ENTRY_VALUE_EXP (rtl));
12830 if (dbx_regnum == IGNORED_DWARF_REGNUM)
12831 return NULL;
12832 op0 = one_reg_loc_descriptor (dbx_regnum,
12833 VAR_INIT_STATUS_INITIALIZED);
12836 else if (MEM_P (ENTRY_VALUE_EXP (rtl))
12837 && REG_P (XEXP (ENTRY_VALUE_EXP (rtl), 0)))
12839 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
12840 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
12841 if (op0 && op0->dw_loc_opc == DW_OP_fbreg)
12842 return NULL;
12844 else
12845 gcc_unreachable ();
12846 if (op0 == NULL)
12847 return NULL;
12848 mem_loc_result = new_loc_descr (DW_OP_GNU_entry_value, 0, 0);
12849 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_loc;
12850 mem_loc_result->dw_loc_oprnd1.v.val_loc = op0;
12851 break;
12853 case DEBUG_PARAMETER_REF:
12854 mem_loc_result = parameter_ref_descriptor (rtl);
12855 break;
12857 case PRE_MODIFY:
12858 /* Extract the PLUS expression nested inside and fall into
12859 PLUS code below. */
12860 rtl = XEXP (rtl, 1);
12861 goto plus;
12863 case PRE_INC:
12864 case PRE_DEC:
12865 /* Turn these into a PLUS expression and fall into the PLUS code
12866 below. */
12867 rtl = gen_rtx_PLUS (mode, XEXP (rtl, 0),
12868 gen_int_mode (GET_CODE (rtl) == PRE_INC
12869 ? GET_MODE_UNIT_SIZE (mem_mode)
12870 : -GET_MODE_UNIT_SIZE (mem_mode),
12871 mode));
12873 /* ... fall through ... */
12875 case PLUS:
12876 plus:
12877 if (is_based_loc (rtl)
12878 && (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
12879 || XEXP (rtl, 0) == arg_pointer_rtx
12880 || XEXP (rtl, 0) == frame_pointer_rtx)
12881 && GET_MODE_CLASS (mode) == MODE_INT)
12882 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
12883 INTVAL (XEXP (rtl, 1)),
12884 VAR_INIT_STATUS_INITIALIZED);
12885 else
12887 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12888 VAR_INIT_STATUS_INITIALIZED);
12889 if (mem_loc_result == 0)
12890 break;
12892 if (CONST_INT_P (XEXP (rtl, 1))
12893 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
12894 loc_descr_plus_const (&mem_loc_result, INTVAL (XEXP (rtl, 1)));
12895 else
12897 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12898 VAR_INIT_STATUS_INITIALIZED);
12899 if (op1 == 0)
12900 return NULL;
12901 add_loc_descr (&mem_loc_result, op1);
12902 add_loc_descr (&mem_loc_result,
12903 new_loc_descr (DW_OP_plus, 0, 0));
12906 break;
12908 /* If a pseudo-reg is optimized away, it is possible for it to
12909 be replaced with a MEM containing a multiply or shift. */
12910 case MINUS:
12911 op = DW_OP_minus;
12912 goto do_binop;
12914 case MULT:
12915 op = DW_OP_mul;
12916 goto do_binop;
12918 case DIV:
12919 if (!dwarf_strict
12920 && GET_MODE_CLASS (mode) == MODE_INT
12921 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
12923 mem_loc_result = typed_binop (DW_OP_div, rtl,
12924 base_type_for_mode (mode, 0),
12925 mode, mem_mode);
12926 break;
12928 op = DW_OP_div;
12929 goto do_binop;
12931 case UMOD:
12932 op = DW_OP_mod;
12933 goto do_binop;
12935 case ASHIFT:
12936 op = DW_OP_shl;
12937 goto do_shift;
12939 case ASHIFTRT:
12940 op = DW_OP_shra;
12941 goto do_shift;
12943 case LSHIFTRT:
12944 op = DW_OP_shr;
12945 goto do_shift;
12947 do_shift:
12948 if (GET_MODE_CLASS (mode) != MODE_INT)
12949 break;
12950 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12951 VAR_INIT_STATUS_INITIALIZED);
12953 rtx rtlop1 = XEXP (rtl, 1);
12954 if (GET_MODE (rtlop1) != VOIDmode
12955 && GET_MODE_BITSIZE (GET_MODE (rtlop1))
12956 < GET_MODE_BITSIZE (mode))
12957 rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
12958 op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
12959 VAR_INIT_STATUS_INITIALIZED);
12962 if (op0 == 0 || op1 == 0)
12963 break;
12965 mem_loc_result = op0;
12966 add_loc_descr (&mem_loc_result, op1);
12967 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
12968 break;
12970 case AND:
12971 op = DW_OP_and;
12972 goto do_binop;
12974 case IOR:
12975 op = DW_OP_or;
12976 goto do_binop;
12978 case XOR:
12979 op = DW_OP_xor;
12980 goto do_binop;
12982 do_binop:
12983 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12984 VAR_INIT_STATUS_INITIALIZED);
12985 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12986 VAR_INIT_STATUS_INITIALIZED);
12988 if (op0 == 0 || op1 == 0)
12989 break;
12991 mem_loc_result = op0;
12992 add_loc_descr (&mem_loc_result, op1);
12993 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
12994 break;
12996 case MOD:
12997 if (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE && !dwarf_strict)
12999 mem_loc_result = typed_binop (DW_OP_mod, rtl,
13000 base_type_for_mode (mode, 0),
13001 mode, mem_mode);
13002 break;
13005 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13006 VAR_INIT_STATUS_INITIALIZED);
13007 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
13008 VAR_INIT_STATUS_INITIALIZED);
13010 if (op0 == 0 || op1 == 0)
13011 break;
13013 mem_loc_result = op0;
13014 add_loc_descr (&mem_loc_result, op1);
13015 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
13016 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
13017 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_div, 0, 0));
13018 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
13019 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_minus, 0, 0));
13020 break;
13022 case UDIV:
13023 if (!dwarf_strict && GET_MODE_CLASS (mode) == MODE_INT)
13025 if (GET_MODE_CLASS (mode) > DWARF2_ADDR_SIZE)
13027 op = DW_OP_div;
13028 goto do_binop;
13030 mem_loc_result = typed_binop (DW_OP_div, rtl,
13031 base_type_for_mode (mode, 1),
13032 mode, mem_mode);
13034 break;
13036 case NOT:
13037 op = DW_OP_not;
13038 goto do_unop;
13040 case ABS:
13041 op = DW_OP_abs;
13042 goto do_unop;
13044 case NEG:
13045 op = DW_OP_neg;
13046 goto do_unop;
13048 do_unop:
13049 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13050 VAR_INIT_STATUS_INITIALIZED);
13052 if (op0 == 0)
13053 break;
13055 mem_loc_result = op0;
13056 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13057 break;
13059 case CONST_INT:
13060 if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13061 #ifdef POINTERS_EXTEND_UNSIGNED
13062 || (mode == Pmode
13063 && mem_mode != VOIDmode
13064 && trunc_int_for_mode (INTVAL (rtl), ptr_mode) == INTVAL (rtl))
13065 #endif
13068 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
13069 break;
13071 if (!dwarf_strict
13072 && (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT
13073 || GET_MODE_BITSIZE (mode) == HOST_BITS_PER_DOUBLE_INT))
13075 dw_die_ref type_die = base_type_for_mode (mode, 1);
13076 machine_mode amode;
13077 if (type_die == NULL)
13078 return NULL;
13079 amode = mode_for_size (DWARF2_ADDR_SIZE * BITS_PER_UNIT,
13080 MODE_INT, 0);
13081 if (INTVAL (rtl) >= 0
13082 && amode != BLKmode
13083 && trunc_int_for_mode (INTVAL (rtl), amode) == INTVAL (rtl)
13084 /* const DW_OP_GNU_convert <XXX> vs.
13085 DW_OP_GNU_const_type <XXX, 1, const>. */
13086 && size_of_int_loc_descriptor (INTVAL (rtl)) + 1 + 1
13087 < (unsigned long) 1 + 1 + 1 + GET_MODE_SIZE (mode))
13089 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
13090 op0 = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13091 op0->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13092 op0->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13093 op0->dw_loc_oprnd1.v.val_die_ref.external = 0;
13094 add_loc_descr (&mem_loc_result, op0);
13095 return mem_loc_result;
13097 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0,
13098 INTVAL (rtl));
13099 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13100 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13101 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
13102 if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
13103 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
13104 else
13106 mem_loc_result->dw_loc_oprnd2.val_class
13107 = dw_val_class_const_double;
13108 mem_loc_result->dw_loc_oprnd2.v.val_double
13109 = double_int::from_shwi (INTVAL (rtl));
13112 break;
13114 case CONST_DOUBLE:
13115 if (!dwarf_strict)
13117 dw_die_ref type_die;
13119 /* Note that if TARGET_SUPPORTS_WIDE_INT == 0, a
13120 CONST_DOUBLE rtx could represent either a large integer
13121 or a floating-point constant. If TARGET_SUPPORTS_WIDE_INT != 0,
13122 the value is always a floating point constant.
13124 When it is an integer, a CONST_DOUBLE is used whenever
13125 the constant requires 2 HWIs to be adequately represented.
13126 We output CONST_DOUBLEs as blocks. */
13127 if (mode == VOIDmode
13128 || (GET_MODE (rtl) == VOIDmode
13129 && GET_MODE_BITSIZE (mode) != HOST_BITS_PER_DOUBLE_INT))
13130 break;
13131 type_die = base_type_for_mode (mode,
13132 GET_MODE_CLASS (mode) == MODE_INT);
13133 if (type_die == NULL)
13134 return NULL;
13135 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0, 0);
13136 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13137 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13138 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
13139 #if TARGET_SUPPORTS_WIDE_INT == 0
13140 if (!SCALAR_FLOAT_MODE_P (mode))
13142 mem_loc_result->dw_loc_oprnd2.val_class
13143 = dw_val_class_const_double;
13144 mem_loc_result->dw_loc_oprnd2.v.val_double
13145 = rtx_to_double_int (rtl);
13147 else
13148 #endif
13150 unsigned int length = GET_MODE_SIZE (mode);
13151 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
13153 insert_float (rtl, array);
13154 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
13155 mem_loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
13156 mem_loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
13157 mem_loc_result->dw_loc_oprnd2.v.val_vec.array = array;
13160 break;
13162 case CONST_WIDE_INT:
13163 if (!dwarf_strict)
13165 dw_die_ref type_die;
13167 type_die = base_type_for_mode (mode,
13168 GET_MODE_CLASS (mode) == MODE_INT);
13169 if (type_die == NULL)
13170 return NULL;
13171 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0, 0);
13172 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13173 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13174 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
13175 mem_loc_result->dw_loc_oprnd2.val_class
13176 = dw_val_class_wide_int;
13177 mem_loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
13178 *mem_loc_result->dw_loc_oprnd2.v.val_wide = std::make_pair (rtl, mode);
13180 break;
13182 case EQ:
13183 mem_loc_result = scompare_loc_descriptor (DW_OP_eq, rtl, mem_mode);
13184 break;
13186 case GE:
13187 mem_loc_result = scompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
13188 break;
13190 case GT:
13191 mem_loc_result = scompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
13192 break;
13194 case LE:
13195 mem_loc_result = scompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
13196 break;
13198 case LT:
13199 mem_loc_result = scompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
13200 break;
13202 case NE:
13203 mem_loc_result = scompare_loc_descriptor (DW_OP_ne, rtl, mem_mode);
13204 break;
13206 case GEU:
13207 mem_loc_result = ucompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
13208 break;
13210 case GTU:
13211 mem_loc_result = ucompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
13212 break;
13214 case LEU:
13215 mem_loc_result = ucompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
13216 break;
13218 case LTU:
13219 mem_loc_result = ucompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
13220 break;
13222 case UMIN:
13223 case UMAX:
13224 if (GET_MODE_CLASS (mode) != MODE_INT)
13225 break;
13226 /* FALLTHRU */
13227 case SMIN:
13228 case SMAX:
13229 mem_loc_result = minmax_loc_descriptor (rtl, mode, mem_mode);
13230 break;
13232 case ZERO_EXTRACT:
13233 case SIGN_EXTRACT:
13234 if (CONST_INT_P (XEXP (rtl, 1))
13235 && CONST_INT_P (XEXP (rtl, 2))
13236 && ((unsigned) INTVAL (XEXP (rtl, 1))
13237 + (unsigned) INTVAL (XEXP (rtl, 2))
13238 <= GET_MODE_BITSIZE (mode))
13239 && GET_MODE_CLASS (mode) == MODE_INT
13240 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13241 && GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) <= DWARF2_ADDR_SIZE)
13243 int shift, size;
13244 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
13245 mem_mode, VAR_INIT_STATUS_INITIALIZED);
13246 if (op0 == 0)
13247 break;
13248 if (GET_CODE (rtl) == SIGN_EXTRACT)
13249 op = DW_OP_shra;
13250 else
13251 op = DW_OP_shr;
13252 mem_loc_result = op0;
13253 size = INTVAL (XEXP (rtl, 1));
13254 shift = INTVAL (XEXP (rtl, 2));
13255 if (BITS_BIG_ENDIAN)
13256 shift = GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0)))
13257 - shift - size;
13258 if (shift + size != (int) DWARF2_ADDR_SIZE)
13260 add_loc_descr (&mem_loc_result,
13261 int_loc_descriptor (DWARF2_ADDR_SIZE
13262 - shift - size));
13263 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
13265 if (size != (int) DWARF2_ADDR_SIZE)
13267 add_loc_descr (&mem_loc_result,
13268 int_loc_descriptor (DWARF2_ADDR_SIZE - size));
13269 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13272 break;
13274 case IF_THEN_ELSE:
13276 dw_loc_descr_ref op2, bra_node, drop_node;
13277 op0 = mem_loc_descriptor (XEXP (rtl, 0),
13278 GET_MODE (XEXP (rtl, 0)) == VOIDmode
13279 ? word_mode : GET_MODE (XEXP (rtl, 0)),
13280 mem_mode, VAR_INIT_STATUS_INITIALIZED);
13281 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
13282 VAR_INIT_STATUS_INITIALIZED);
13283 op2 = mem_loc_descriptor (XEXP (rtl, 2), mode, mem_mode,
13284 VAR_INIT_STATUS_INITIALIZED);
13285 if (op0 == NULL || op1 == NULL || op2 == NULL)
13286 break;
13288 mem_loc_result = op1;
13289 add_loc_descr (&mem_loc_result, op2);
13290 add_loc_descr (&mem_loc_result, op0);
13291 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
13292 add_loc_descr (&mem_loc_result, bra_node);
13293 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_swap, 0, 0));
13294 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
13295 add_loc_descr (&mem_loc_result, drop_node);
13296 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
13297 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
13299 break;
13301 case FLOAT_EXTEND:
13302 case FLOAT_TRUNCATE:
13303 case FLOAT:
13304 case UNSIGNED_FLOAT:
13305 case FIX:
13306 case UNSIGNED_FIX:
13307 if (!dwarf_strict)
13309 dw_die_ref type_die;
13310 dw_loc_descr_ref cvt;
13312 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
13313 mem_mode, VAR_INIT_STATUS_INITIALIZED);
13314 if (op0 == NULL)
13315 break;
13316 if (GET_MODE_CLASS (GET_MODE (XEXP (rtl, 0))) == MODE_INT
13317 && (GET_CODE (rtl) == FLOAT
13318 || GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)))
13319 <= DWARF2_ADDR_SIZE))
13321 type_die = base_type_for_mode (GET_MODE (XEXP (rtl, 0)),
13322 GET_CODE (rtl) == UNSIGNED_FLOAT);
13323 if (type_die == NULL)
13324 break;
13325 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13326 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13327 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13328 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13329 add_loc_descr (&op0, cvt);
13331 type_die = base_type_for_mode (mode, GET_CODE (rtl) == UNSIGNED_FIX);
13332 if (type_die == NULL)
13333 break;
13334 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13335 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13336 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13337 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13338 add_loc_descr (&op0, cvt);
13339 if (GET_MODE_CLASS (mode) == MODE_INT
13340 && (GET_CODE (rtl) == FIX
13341 || GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE))
13343 op0 = convert_descriptor_to_mode (mode, op0);
13344 if (op0 == NULL)
13345 break;
13347 mem_loc_result = op0;
13349 break;
13351 case CLZ:
13352 case CTZ:
13353 case FFS:
13354 mem_loc_result = clz_loc_descriptor (rtl, mode, mem_mode);
13355 break;
13357 case POPCOUNT:
13358 case PARITY:
13359 mem_loc_result = popcount_loc_descriptor (rtl, mode, mem_mode);
13360 break;
13362 case BSWAP:
13363 mem_loc_result = bswap_loc_descriptor (rtl, mode, mem_mode);
13364 break;
13366 case ROTATE:
13367 case ROTATERT:
13368 mem_loc_result = rotate_loc_descriptor (rtl, mode, mem_mode);
13369 break;
13371 case COMPARE:
13372 /* In theory, we could implement the above. */
13373 /* DWARF cannot represent the unsigned compare operations
13374 natively. */
13375 case SS_MULT:
13376 case US_MULT:
13377 case SS_DIV:
13378 case US_DIV:
13379 case SS_PLUS:
13380 case US_PLUS:
13381 case SS_MINUS:
13382 case US_MINUS:
13383 case SS_NEG:
13384 case US_NEG:
13385 case SS_ABS:
13386 case SS_ASHIFT:
13387 case US_ASHIFT:
13388 case SS_TRUNCATE:
13389 case US_TRUNCATE:
13390 case UNORDERED:
13391 case ORDERED:
13392 case UNEQ:
13393 case UNGE:
13394 case UNGT:
13395 case UNLE:
13396 case UNLT:
13397 case LTGT:
13398 case FRACT_CONVERT:
13399 case UNSIGNED_FRACT_CONVERT:
13400 case SAT_FRACT:
13401 case UNSIGNED_SAT_FRACT:
13402 case SQRT:
13403 case ASM_OPERANDS:
13404 case VEC_MERGE:
13405 case VEC_SELECT:
13406 case VEC_CONCAT:
13407 case VEC_DUPLICATE:
13408 case UNSPEC:
13409 case HIGH:
13410 case FMA:
13411 case STRICT_LOW_PART:
13412 case CONST_VECTOR:
13413 case CONST_FIXED:
13414 case CLRSB:
13415 case CLOBBER:
13416 /* If delegitimize_address couldn't do anything with the UNSPEC, we
13417 can't express it in the debug info. This can happen e.g. with some
13418 TLS UNSPECs. */
13419 break;
13421 case CONST_STRING:
13422 resolve_one_addr (&rtl);
13423 goto symref;
13425 default:
13426 #ifdef ENABLE_CHECKING
13427 print_rtl (stderr, rtl);
13428 gcc_unreachable ();
13429 #else
13430 break;
13431 #endif
13434 if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
13435 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13437 return mem_loc_result;
13440 /* Return a descriptor that describes the concatenation of two locations.
13441 This is typically a complex variable. */
13443 static dw_loc_descr_ref
13444 concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
13446 dw_loc_descr_ref cc_loc_result = NULL;
13447 dw_loc_descr_ref x0_ref
13448 = loc_descriptor (x0, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13449 dw_loc_descr_ref x1_ref
13450 = loc_descriptor (x1, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13452 if (x0_ref == 0 || x1_ref == 0)
13453 return 0;
13455 cc_loc_result = x0_ref;
13456 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
13458 add_loc_descr (&cc_loc_result, x1_ref);
13459 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
13461 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
13462 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13464 return cc_loc_result;
13467 /* Return a descriptor that describes the concatenation of N
13468 locations. */
13470 static dw_loc_descr_ref
13471 concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
13473 unsigned int i;
13474 dw_loc_descr_ref cc_loc_result = NULL;
13475 unsigned int n = XVECLEN (concatn, 0);
13477 for (i = 0; i < n; ++i)
13479 dw_loc_descr_ref ref;
13480 rtx x = XVECEXP (concatn, 0, i);
13482 ref = loc_descriptor (x, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13483 if (ref == NULL)
13484 return NULL;
13486 add_loc_descr (&cc_loc_result, ref);
13487 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
13490 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
13491 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13493 return cc_loc_result;
13496 /* Helper function for loc_descriptor. Return DW_OP_GNU_implicit_pointer
13497 for DEBUG_IMPLICIT_PTR RTL. */
13499 static dw_loc_descr_ref
13500 implicit_ptr_descriptor (rtx rtl, HOST_WIDE_INT offset)
13502 dw_loc_descr_ref ret;
13503 dw_die_ref ref;
13505 if (dwarf_strict)
13506 return NULL;
13507 gcc_assert (TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == VAR_DECL
13508 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == PARM_DECL
13509 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == RESULT_DECL);
13510 ref = lookup_decl_die (DEBUG_IMPLICIT_PTR_DECL (rtl));
13511 ret = new_loc_descr (DW_OP_GNU_implicit_pointer, 0, offset);
13512 ret->dw_loc_oprnd2.val_class = dw_val_class_const;
13513 if (ref)
13515 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13516 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
13517 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
13519 else
13521 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
13522 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_IMPLICIT_PTR_DECL (rtl);
13524 return ret;
13527 /* Output a proper Dwarf location descriptor for a variable or parameter
13528 which is either allocated in a register or in a memory location. For a
13529 register, we just generate an OP_REG and the register number. For a
13530 memory location we provide a Dwarf postfix expression describing how to
13531 generate the (dynamic) address of the object onto the address stack.
13533 MODE is mode of the decl if this loc_descriptor is going to be used in
13534 .debug_loc section where DW_OP_stack_value and DW_OP_implicit_value are
13535 allowed, VOIDmode otherwise.
13537 If we don't know how to describe it, return 0. */
13539 static dw_loc_descr_ref
13540 loc_descriptor (rtx rtl, machine_mode mode,
13541 enum var_init_status initialized)
13543 dw_loc_descr_ref loc_result = NULL;
13545 switch (GET_CODE (rtl))
13547 case SUBREG:
13548 /* The case of a subreg may arise when we have a local (register)
13549 variable or a formal (register) parameter which doesn't quite fill
13550 up an entire register. For now, just assume that it is
13551 legitimate to make the Dwarf info refer to the whole register which
13552 contains the given subreg. */
13553 if (REG_P (SUBREG_REG (rtl)) && subreg_lowpart_p (rtl))
13554 loc_result = loc_descriptor (SUBREG_REG (rtl),
13555 GET_MODE (SUBREG_REG (rtl)), initialized);
13556 else
13557 goto do_default;
13558 break;
13560 case REG:
13561 loc_result = reg_loc_descriptor (rtl, initialized);
13562 break;
13564 case MEM:
13565 loc_result = mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
13566 GET_MODE (rtl), initialized);
13567 if (loc_result == NULL)
13568 loc_result = tls_mem_loc_descriptor (rtl);
13569 if (loc_result == NULL)
13571 rtx new_rtl = avoid_constant_pool_reference (rtl);
13572 if (new_rtl != rtl)
13573 loc_result = loc_descriptor (new_rtl, mode, initialized);
13575 break;
13577 case CONCAT:
13578 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
13579 initialized);
13580 break;
13582 case CONCATN:
13583 loc_result = concatn_loc_descriptor (rtl, initialized);
13584 break;
13586 case VAR_LOCATION:
13587 /* Single part. */
13588 if (GET_CODE (PAT_VAR_LOCATION_LOC (rtl)) != PARALLEL)
13590 rtx loc = PAT_VAR_LOCATION_LOC (rtl);
13591 if (GET_CODE (loc) == EXPR_LIST)
13592 loc = XEXP (loc, 0);
13593 loc_result = loc_descriptor (loc, mode, initialized);
13594 break;
13597 rtl = XEXP (rtl, 1);
13598 /* FALLTHRU */
13600 case PARALLEL:
13602 rtvec par_elems = XVEC (rtl, 0);
13603 int num_elem = GET_NUM_ELEM (par_elems);
13604 machine_mode mode;
13605 int i;
13607 /* Create the first one, so we have something to add to. */
13608 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
13609 VOIDmode, initialized);
13610 if (loc_result == NULL)
13611 return NULL;
13612 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
13613 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
13614 for (i = 1; i < num_elem; i++)
13616 dw_loc_descr_ref temp;
13618 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
13619 VOIDmode, initialized);
13620 if (temp == NULL)
13621 return NULL;
13622 add_loc_descr (&loc_result, temp);
13623 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
13624 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
13627 break;
13629 case CONST_INT:
13630 if (mode != VOIDmode && mode != BLKmode)
13631 loc_result = address_of_int_loc_descriptor (GET_MODE_SIZE (mode),
13632 INTVAL (rtl));
13633 break;
13635 case CONST_DOUBLE:
13636 if (mode == VOIDmode)
13637 mode = GET_MODE (rtl);
13639 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
13641 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
13643 /* Note that a CONST_DOUBLE rtx could represent either an integer
13644 or a floating-point constant. A CONST_DOUBLE is used whenever
13645 the constant requires more than one word in order to be
13646 adequately represented. We output CONST_DOUBLEs as blocks. */
13647 loc_result = new_loc_descr (DW_OP_implicit_value,
13648 GET_MODE_SIZE (mode), 0);
13649 #if TARGET_SUPPORTS_WIDE_INT == 0
13650 if (!SCALAR_FLOAT_MODE_P (mode))
13652 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const_double;
13653 loc_result->dw_loc_oprnd2.v.val_double
13654 = rtx_to_double_int (rtl);
13656 else
13657 #endif
13659 unsigned int length = GET_MODE_SIZE (mode);
13660 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
13662 insert_float (rtl, array);
13663 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
13664 loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
13665 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
13666 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
13669 break;
13671 case CONST_WIDE_INT:
13672 if (mode == VOIDmode)
13673 mode = GET_MODE (rtl);
13675 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
13677 loc_result = new_loc_descr (DW_OP_implicit_value,
13678 GET_MODE_SIZE (mode), 0);
13679 loc_result->dw_loc_oprnd2.val_class = dw_val_class_wide_int;
13680 loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
13681 *loc_result->dw_loc_oprnd2.v.val_wide = std::make_pair (rtl, mode);
13683 break;
13685 case CONST_VECTOR:
13686 if (mode == VOIDmode)
13687 mode = GET_MODE (rtl);
13689 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
13691 unsigned int elt_size = GET_MODE_UNIT_SIZE (GET_MODE (rtl));
13692 unsigned int length = CONST_VECTOR_NUNITS (rtl);
13693 unsigned char *array
13694 = ggc_vec_alloc<unsigned char> (length * elt_size);
13695 unsigned int i;
13696 unsigned char *p;
13697 machine_mode imode = GET_MODE_INNER (mode);
13699 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
13700 switch (GET_MODE_CLASS (mode))
13702 case MODE_VECTOR_INT:
13703 for (i = 0, p = array; i < length; i++, p += elt_size)
13705 rtx elt = CONST_VECTOR_ELT (rtl, i);
13706 insert_wide_int (std::make_pair (elt, imode), p, elt_size);
13708 break;
13710 case MODE_VECTOR_FLOAT:
13711 for (i = 0, p = array; i < length; i++, p += elt_size)
13713 rtx elt = CONST_VECTOR_ELT (rtl, i);
13714 insert_float (elt, p);
13716 break;
13718 default:
13719 gcc_unreachable ();
13722 loc_result = new_loc_descr (DW_OP_implicit_value,
13723 length * elt_size, 0);
13724 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
13725 loc_result->dw_loc_oprnd2.v.val_vec.length = length;
13726 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = elt_size;
13727 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
13729 break;
13731 case CONST:
13732 if (mode == VOIDmode
13733 || CONST_SCALAR_INT_P (XEXP (rtl, 0))
13734 || CONST_DOUBLE_AS_FLOAT_P (XEXP (rtl, 0))
13735 || GET_CODE (XEXP (rtl, 0)) == CONST_VECTOR)
13737 loc_result = loc_descriptor (XEXP (rtl, 0), mode, initialized);
13738 break;
13740 /* FALLTHROUGH */
13741 case SYMBOL_REF:
13742 if (!const_ok_for_output (rtl))
13743 break;
13744 case LABEL_REF:
13745 if (mode != VOIDmode && GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE
13746 && (dwarf_version >= 4 || !dwarf_strict))
13748 loc_result = new_addr_loc_descr (rtl, dtprel_false);
13749 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
13750 vec_safe_push (used_rtx_array, rtl);
13752 break;
13754 case DEBUG_IMPLICIT_PTR:
13755 loc_result = implicit_ptr_descriptor (rtl, 0);
13756 break;
13758 case PLUS:
13759 if (GET_CODE (XEXP (rtl, 0)) == DEBUG_IMPLICIT_PTR
13760 && CONST_INT_P (XEXP (rtl, 1)))
13762 loc_result
13763 = implicit_ptr_descriptor (XEXP (rtl, 0), INTVAL (XEXP (rtl, 1)));
13764 break;
13766 /* FALLTHRU */
13767 do_default:
13768 default:
13769 if ((GET_MODE_CLASS (mode) == MODE_INT && GET_MODE (rtl) == mode
13770 && GET_MODE_SIZE (GET_MODE (rtl)) <= DWARF2_ADDR_SIZE
13771 && dwarf_version >= 4)
13772 || (!dwarf_strict && mode != VOIDmode && mode != BLKmode))
13774 /* Value expression. */
13775 loc_result = mem_loc_descriptor (rtl, mode, VOIDmode, initialized);
13776 if (loc_result)
13777 add_loc_descr (&loc_result,
13778 new_loc_descr (DW_OP_stack_value, 0, 0));
13780 break;
13783 return loc_result;
13786 /* We need to figure out what section we should use as the base for the
13787 address ranges where a given location is valid.
13788 1. If this particular DECL has a section associated with it, use that.
13789 2. If this function has a section associated with it, use that.
13790 3. Otherwise, use the text section.
13791 XXX: If you split a variable across multiple sections, we won't notice. */
13793 static const char *
13794 secname_for_decl (const_tree decl)
13796 const char *secname;
13798 if (VAR_OR_FUNCTION_DECL_P (decl)
13799 && (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl) || TREE_STATIC (decl))
13800 && DECL_SECTION_NAME (decl))
13801 secname = DECL_SECTION_NAME (decl);
13802 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
13803 secname = DECL_SECTION_NAME (current_function_decl);
13804 else if (cfun && in_cold_section_p)
13805 secname = crtl->subsections.cold_section_label;
13806 else
13807 secname = text_section_label;
13809 return secname;
13812 /* Return true when DECL_BY_REFERENCE is defined and set for DECL. */
13814 static bool
13815 decl_by_reference_p (tree decl)
13817 return ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL
13818 || TREE_CODE (decl) == VAR_DECL)
13819 && DECL_BY_REFERENCE (decl));
13822 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
13823 for VARLOC. */
13825 static dw_loc_descr_ref
13826 dw_loc_list_1 (tree loc, rtx varloc, int want_address,
13827 enum var_init_status initialized)
13829 int have_address = 0;
13830 dw_loc_descr_ref descr;
13831 machine_mode mode;
13833 if (want_address != 2)
13835 gcc_assert (GET_CODE (varloc) == VAR_LOCATION);
13836 /* Single part. */
13837 if (GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
13839 varloc = PAT_VAR_LOCATION_LOC (varloc);
13840 if (GET_CODE (varloc) == EXPR_LIST)
13841 varloc = XEXP (varloc, 0);
13842 mode = GET_MODE (varloc);
13843 if (MEM_P (varloc))
13845 rtx addr = XEXP (varloc, 0);
13846 descr = mem_loc_descriptor (addr, get_address_mode (varloc),
13847 mode, initialized);
13848 if (descr)
13849 have_address = 1;
13850 else
13852 rtx x = avoid_constant_pool_reference (varloc);
13853 if (x != varloc)
13854 descr = mem_loc_descriptor (x, mode, VOIDmode,
13855 initialized);
13858 else
13859 descr = mem_loc_descriptor (varloc, mode, VOIDmode, initialized);
13861 else
13862 return 0;
13864 else
13866 if (GET_CODE (varloc) == VAR_LOCATION)
13867 mode = DECL_MODE (PAT_VAR_LOCATION_DECL (varloc));
13868 else
13869 mode = DECL_MODE (loc);
13870 descr = loc_descriptor (varloc, mode, initialized);
13871 have_address = 1;
13874 if (!descr)
13875 return 0;
13877 if (want_address == 2 && !have_address
13878 && (dwarf_version >= 4 || !dwarf_strict))
13880 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
13882 expansion_failed (loc, NULL_RTX,
13883 "DWARF address size mismatch");
13884 return 0;
13886 add_loc_descr (&descr, new_loc_descr (DW_OP_stack_value, 0, 0));
13887 have_address = 1;
13889 /* Show if we can't fill the request for an address. */
13890 if (want_address && !have_address)
13892 expansion_failed (loc, NULL_RTX,
13893 "Want address and only have value");
13894 return 0;
13897 /* If we've got an address and don't want one, dereference. */
13898 if (!want_address && have_address)
13900 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
13901 enum dwarf_location_atom op;
13903 if (size > DWARF2_ADDR_SIZE || size == -1)
13905 expansion_failed (loc, NULL_RTX,
13906 "DWARF address size mismatch");
13907 return 0;
13909 else if (size == DWARF2_ADDR_SIZE)
13910 op = DW_OP_deref;
13911 else
13912 op = DW_OP_deref_size;
13914 add_loc_descr (&descr, new_loc_descr (op, size, 0));
13917 return descr;
13920 /* Create a DW_OP_piece or DW_OP_bit_piece for bitsize, or return NULL
13921 if it is not possible. */
13923 static dw_loc_descr_ref
13924 new_loc_descr_op_bit_piece (HOST_WIDE_INT bitsize, HOST_WIDE_INT offset)
13926 if ((bitsize % BITS_PER_UNIT) == 0 && offset == 0)
13927 return new_loc_descr (DW_OP_piece, bitsize / BITS_PER_UNIT, 0);
13928 else if (dwarf_version >= 3 || !dwarf_strict)
13929 return new_loc_descr (DW_OP_bit_piece, bitsize, offset);
13930 else
13931 return NULL;
13934 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
13935 for VAR_LOC_NOTE for variable DECL that has been optimized by SRA. */
13937 static dw_loc_descr_ref
13938 dw_sra_loc_expr (tree decl, rtx loc)
13940 rtx p;
13941 unsigned HOST_WIDE_INT padsize = 0;
13942 dw_loc_descr_ref descr, *descr_tail;
13943 unsigned HOST_WIDE_INT decl_size;
13944 rtx varloc;
13945 enum var_init_status initialized;
13947 if (DECL_SIZE (decl) == NULL
13948 || !tree_fits_uhwi_p (DECL_SIZE (decl)))
13949 return NULL;
13951 decl_size = tree_to_uhwi (DECL_SIZE (decl));
13952 descr = NULL;
13953 descr_tail = &descr;
13955 for (p = loc; p; p = XEXP (p, 1))
13957 unsigned HOST_WIDE_INT bitsize = decl_piece_bitsize (p);
13958 rtx loc_note = *decl_piece_varloc_ptr (p);
13959 dw_loc_descr_ref cur_descr;
13960 dw_loc_descr_ref *tail, last = NULL;
13961 unsigned HOST_WIDE_INT opsize = 0;
13963 if (loc_note == NULL_RTX
13964 || NOTE_VAR_LOCATION_LOC (loc_note) == NULL_RTX)
13966 padsize += bitsize;
13967 continue;
13969 initialized = NOTE_VAR_LOCATION_STATUS (loc_note);
13970 varloc = NOTE_VAR_LOCATION (loc_note);
13971 cur_descr = dw_loc_list_1 (decl, varloc, 2, initialized);
13972 if (cur_descr == NULL)
13974 padsize += bitsize;
13975 continue;
13978 /* Check that cur_descr either doesn't use
13979 DW_OP_*piece operations, or their sum is equal
13980 to bitsize. Otherwise we can't embed it. */
13981 for (tail = &cur_descr; *tail != NULL;
13982 tail = &(*tail)->dw_loc_next)
13983 if ((*tail)->dw_loc_opc == DW_OP_piece)
13985 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned
13986 * BITS_PER_UNIT;
13987 last = *tail;
13989 else if ((*tail)->dw_loc_opc == DW_OP_bit_piece)
13991 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned;
13992 last = *tail;
13995 if (last != NULL && opsize != bitsize)
13997 padsize += bitsize;
13998 /* Discard the current piece of the descriptor and release any
13999 addr_table entries it uses. */
14000 remove_loc_list_addr_table_entries (cur_descr);
14001 continue;
14004 /* If there is a hole, add DW_OP_*piece after empty DWARF
14005 expression, which means that those bits are optimized out. */
14006 if (padsize)
14008 if (padsize > decl_size)
14010 remove_loc_list_addr_table_entries (cur_descr);
14011 goto discard_descr;
14013 decl_size -= padsize;
14014 *descr_tail = new_loc_descr_op_bit_piece (padsize, 0);
14015 if (*descr_tail == NULL)
14017 remove_loc_list_addr_table_entries (cur_descr);
14018 goto discard_descr;
14020 descr_tail = &(*descr_tail)->dw_loc_next;
14021 padsize = 0;
14023 *descr_tail = cur_descr;
14024 descr_tail = tail;
14025 if (bitsize > decl_size)
14026 goto discard_descr;
14027 decl_size -= bitsize;
14028 if (last == NULL)
14030 HOST_WIDE_INT offset = 0;
14031 if (GET_CODE (varloc) == VAR_LOCATION
14032 && GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
14034 varloc = PAT_VAR_LOCATION_LOC (varloc);
14035 if (GET_CODE (varloc) == EXPR_LIST)
14036 varloc = XEXP (varloc, 0);
14040 if (GET_CODE (varloc) == CONST
14041 || GET_CODE (varloc) == SIGN_EXTEND
14042 || GET_CODE (varloc) == ZERO_EXTEND)
14043 varloc = XEXP (varloc, 0);
14044 else if (GET_CODE (varloc) == SUBREG)
14045 varloc = SUBREG_REG (varloc);
14046 else
14047 break;
14049 while (1);
14050 /* DW_OP_bit_size offset should be zero for register
14051 or implicit location descriptions and empty location
14052 descriptions, but for memory addresses needs big endian
14053 adjustment. */
14054 if (MEM_P (varloc))
14056 unsigned HOST_WIDE_INT memsize
14057 = MEM_SIZE (varloc) * BITS_PER_UNIT;
14058 if (memsize != bitsize)
14060 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
14061 && (memsize > BITS_PER_WORD || bitsize > BITS_PER_WORD))
14062 goto discard_descr;
14063 if (memsize < bitsize)
14064 goto discard_descr;
14065 if (BITS_BIG_ENDIAN)
14066 offset = memsize - bitsize;
14070 *descr_tail = new_loc_descr_op_bit_piece (bitsize, offset);
14071 if (*descr_tail == NULL)
14072 goto discard_descr;
14073 descr_tail = &(*descr_tail)->dw_loc_next;
14077 /* If there were any non-empty expressions, add padding till the end of
14078 the decl. */
14079 if (descr != NULL && decl_size != 0)
14081 *descr_tail = new_loc_descr_op_bit_piece (decl_size, 0);
14082 if (*descr_tail == NULL)
14083 goto discard_descr;
14085 return descr;
14087 discard_descr:
14088 /* Discard the descriptor and release any addr_table entries it uses. */
14089 remove_loc_list_addr_table_entries (descr);
14090 return NULL;
14093 /* Return the dwarf representation of the location list LOC_LIST of
14094 DECL. WANT_ADDRESS has the same meaning as in loc_list_from_tree
14095 function. */
14097 static dw_loc_list_ref
14098 dw_loc_list (var_loc_list *loc_list, tree decl, int want_address)
14100 const char *endname, *secname;
14101 rtx varloc;
14102 enum var_init_status initialized;
14103 struct var_loc_node *node;
14104 dw_loc_descr_ref descr;
14105 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
14106 dw_loc_list_ref list = NULL;
14107 dw_loc_list_ref *listp = &list;
14109 /* Now that we know what section we are using for a base,
14110 actually construct the list of locations.
14111 The first location information is what is passed to the
14112 function that creates the location list, and the remaining
14113 locations just get added on to that list.
14114 Note that we only know the start address for a location
14115 (IE location changes), so to build the range, we use
14116 the range [current location start, next location start].
14117 This means we have to special case the last node, and generate
14118 a range of [last location start, end of function label]. */
14120 secname = secname_for_decl (decl);
14122 for (node = loc_list->first; node; node = node->next)
14123 if (GET_CODE (node->loc) == EXPR_LIST
14124 || NOTE_VAR_LOCATION_LOC (node->loc) != NULL_RTX)
14126 if (GET_CODE (node->loc) == EXPR_LIST)
14128 /* This requires DW_OP_{,bit_}piece, which is not usable
14129 inside DWARF expressions. */
14130 if (want_address != 2)
14131 continue;
14132 descr = dw_sra_loc_expr (decl, node->loc);
14133 if (descr == NULL)
14134 continue;
14136 else
14138 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
14139 varloc = NOTE_VAR_LOCATION (node->loc);
14140 descr = dw_loc_list_1 (decl, varloc, want_address, initialized);
14142 if (descr)
14144 bool range_across_switch = false;
14145 /* If section switch happens in between node->label
14146 and node->next->label (or end of function) and
14147 we can't emit it as a single entry list,
14148 emit two ranges, first one ending at the end
14149 of first partition and second one starting at the
14150 beginning of second partition. */
14151 if (node == loc_list->last_before_switch
14152 && (node != loc_list->first || loc_list->first->next)
14153 && current_function_decl)
14155 endname = cfun->fde->dw_fde_end;
14156 range_across_switch = true;
14158 /* The variable has a location between NODE->LABEL and
14159 NODE->NEXT->LABEL. */
14160 else if (node->next)
14161 endname = node->next->label;
14162 /* If the variable has a location at the last label
14163 it keeps its location until the end of function. */
14164 else if (!current_function_decl)
14165 endname = text_end_label;
14166 else
14168 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
14169 current_function_funcdef_no);
14170 endname = ggc_strdup (label_id);
14173 *listp = new_loc_list (descr, node->label, endname, secname);
14174 if (TREE_CODE (decl) == PARM_DECL
14175 && node == loc_list->first
14176 && NOTE_P (node->loc)
14177 && strcmp (node->label, endname) == 0)
14178 (*listp)->force = true;
14179 listp = &(*listp)->dw_loc_next;
14181 if (range_across_switch)
14183 if (GET_CODE (node->loc) == EXPR_LIST)
14184 descr = dw_sra_loc_expr (decl, node->loc);
14185 else
14187 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
14188 varloc = NOTE_VAR_LOCATION (node->loc);
14189 descr = dw_loc_list_1 (decl, varloc, want_address,
14190 initialized);
14192 gcc_assert (descr);
14193 /* The variable has a location between NODE->LABEL and
14194 NODE->NEXT->LABEL. */
14195 if (node->next)
14196 endname = node->next->label;
14197 else
14198 endname = cfun->fde->dw_fde_second_end;
14199 *listp = new_loc_list (descr,
14200 cfun->fde->dw_fde_second_begin,
14201 endname, secname);
14202 listp = &(*listp)->dw_loc_next;
14207 /* Try to avoid the overhead of a location list emitting a location
14208 expression instead, but only if we didn't have more than one
14209 location entry in the first place. If some entries were not
14210 representable, we don't want to pretend a single entry that was
14211 applies to the entire scope in which the variable is
14212 available. */
14213 if (list && loc_list->first->next)
14214 gen_llsym (list);
14216 return list;
14219 /* Return if the loc_list has only single element and thus can be represented
14220 as location description. */
14222 static bool
14223 single_element_loc_list_p (dw_loc_list_ref list)
14225 gcc_assert (!list->dw_loc_next || list->ll_symbol);
14226 return !list->ll_symbol;
14229 /* To each location in list LIST add loc descr REF. */
14231 static void
14232 add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
14234 dw_loc_descr_ref copy;
14235 add_loc_descr (&list->expr, ref);
14236 list = list->dw_loc_next;
14237 while (list)
14239 copy = ggc_alloc<dw_loc_descr_node> ();
14240 memcpy (copy, ref, sizeof (dw_loc_descr_node));
14241 add_loc_descr (&list->expr, copy);
14242 while (copy->dw_loc_next)
14244 dw_loc_descr_ref new_copy = ggc_alloc<dw_loc_descr_node> ();
14245 memcpy (new_copy, copy->dw_loc_next, sizeof (dw_loc_descr_node));
14246 copy->dw_loc_next = new_copy;
14247 copy = new_copy;
14249 list = list->dw_loc_next;
14253 /* Given two lists RET and LIST
14254 produce location list that is result of adding expression in LIST
14255 to expression in RET on each position in program.
14256 Might be destructive on both RET and LIST.
14258 TODO: We handle only simple cases of RET or LIST having at most one
14259 element. General case would inolve sorting the lists in program order
14260 and merging them that will need some additional work.
14261 Adding that will improve quality of debug info especially for SRA-ed
14262 structures. */
14264 static void
14265 add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list)
14267 if (!list)
14268 return;
14269 if (!*ret)
14271 *ret = list;
14272 return;
14274 if (!list->dw_loc_next)
14276 add_loc_descr_to_each (*ret, list->expr);
14277 return;
14279 if (!(*ret)->dw_loc_next)
14281 add_loc_descr_to_each (list, (*ret)->expr);
14282 *ret = list;
14283 return;
14285 expansion_failed (NULL_TREE, NULL_RTX,
14286 "Don't know how to merge two non-trivial"
14287 " location lists.\n");
14288 *ret = NULL;
14289 return;
14292 /* LOC is constant expression. Try a luck, look it up in constant
14293 pool and return its loc_descr of its address. */
14295 static dw_loc_descr_ref
14296 cst_pool_loc_descr (tree loc)
14298 /* Get an RTL for this, if something has been emitted. */
14299 rtx rtl = lookup_constant_def (loc);
14301 if (!rtl || !MEM_P (rtl))
14303 gcc_assert (!rtl);
14304 return 0;
14306 gcc_assert (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF);
14308 /* TODO: We might get more coverage if we was actually delaying expansion
14309 of all expressions till end of compilation when constant pools are fully
14310 populated. */
14311 if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (XEXP (rtl, 0))))
14313 expansion_failed (loc, NULL_RTX,
14314 "CST value in contant pool but not marked.");
14315 return 0;
14317 return mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
14318 GET_MODE (rtl), VAR_INIT_STATUS_INITIALIZED);
14321 /* Return dw_loc_list representing address of addr_expr LOC
14322 by looking for inner INDIRECT_REF expression and turning
14323 it into simple arithmetics.
14325 See loc_list_from_tree for the meaning of CONTEXT. */
14327 static dw_loc_list_ref
14328 loc_list_for_address_of_addr_expr_of_indirect_ref (tree loc, bool toplev,
14329 const loc_descr_context *context)
14331 tree obj, offset;
14332 HOST_WIDE_INT bitsize, bitpos, bytepos;
14333 machine_mode mode;
14334 int unsignedp, volatilep = 0;
14335 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
14337 obj = get_inner_reference (TREE_OPERAND (loc, 0),
14338 &bitsize, &bitpos, &offset, &mode,
14339 &unsignedp, &volatilep, false);
14340 STRIP_NOPS (obj);
14341 if (bitpos % BITS_PER_UNIT)
14343 expansion_failed (loc, NULL_RTX, "bitfield access");
14344 return 0;
14346 if (!INDIRECT_REF_P (obj))
14348 expansion_failed (obj,
14349 NULL_RTX, "no indirect ref in inner refrence");
14350 return 0;
14352 if (!offset && !bitpos)
14353 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), toplev ? 2 : 1,
14354 context);
14355 else if (toplev
14356 && int_size_in_bytes (TREE_TYPE (loc)) <= DWARF2_ADDR_SIZE
14357 && (dwarf_version >= 4 || !dwarf_strict))
14359 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), 0, context);
14360 if (!list_ret)
14361 return 0;
14362 if (offset)
14364 /* Variable offset. */
14365 list_ret1 = loc_list_from_tree (offset, 0, context);
14366 if (list_ret1 == 0)
14367 return 0;
14368 add_loc_list (&list_ret, list_ret1);
14369 if (!list_ret)
14370 return 0;
14371 add_loc_descr_to_each (list_ret,
14372 new_loc_descr (DW_OP_plus, 0, 0));
14374 bytepos = bitpos / BITS_PER_UNIT;
14375 if (bytepos > 0)
14376 add_loc_descr_to_each (list_ret,
14377 new_loc_descr (DW_OP_plus_uconst,
14378 bytepos, 0));
14379 else if (bytepos < 0)
14380 loc_list_plus_const (list_ret, bytepos);
14381 add_loc_descr_to_each (list_ret,
14382 new_loc_descr (DW_OP_stack_value, 0, 0));
14384 return list_ret;
14388 /* Helper structure for location descriptions generation. */
14389 struct loc_descr_context
14391 /* The type that is implicitly referenced by DW_OP_push_object_address, or
14392 NULL_TREE if DW_OP_push_object_address in invalid for this location
14393 description. This is used when processing PLACEHOLDER_EXPR nodes. */
14394 tree context_type;
14395 /* The ..._DECL node that should be translated as a
14396 DW_OP_push_object_address operation. */
14397 tree base_decl;
14400 /* Generate Dwarf location list representing LOC.
14401 If WANT_ADDRESS is false, expression computing LOC will be computed
14402 If WANT_ADDRESS is 1, expression computing address of LOC will be returned
14403 if WANT_ADDRESS is 2, expression computing address useable in location
14404 will be returned (i.e. DW_OP_reg can be used
14405 to refer to register values).
14407 CONTEXT provides information to customize the location descriptions
14408 generation. Its context_type field specifies what type is implicitly
14409 referenced by DW_OP_push_object_address. If it is NULL_TREE, this operation
14410 will not be generated.
14412 If CONTEXT is NULL, the behavior is the same as if both context_type and
14413 base_decl fields were NULL_TREE. */
14415 static dw_loc_list_ref
14416 loc_list_from_tree (tree loc, int want_address,
14417 const struct loc_descr_context *context)
14419 dw_loc_descr_ref ret = NULL, ret1 = NULL;
14420 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
14421 int have_address = 0;
14422 enum dwarf_location_atom op;
14424 /* ??? Most of the time we do not take proper care for sign/zero
14425 extending the values properly. Hopefully this won't be a real
14426 problem... */
14428 if (context != NULL
14429 && context->base_decl == loc
14430 && want_address == 0)
14432 if (dwarf_version >= 3 || !dwarf_strict)
14433 return new_loc_list (new_loc_descr (DW_OP_push_object_address, 0, 0),
14434 NULL, NULL, NULL);
14435 else
14436 return NULL;
14439 switch (TREE_CODE (loc))
14441 case ERROR_MARK:
14442 expansion_failed (loc, NULL_RTX, "ERROR_MARK");
14443 return 0;
14445 case PLACEHOLDER_EXPR:
14446 /* This case involves extracting fields from an object to determine the
14447 position of other fields. It is supposed to appear only as the first
14448 operand of COMPONENT_REF nodes and to reference precisely the type
14449 that the context allows. */
14450 if (context != NULL
14451 && TREE_TYPE (loc) == context->context_type
14452 && want_address >= 1)
14454 if (dwarf_version >= 3 || !dwarf_strict)
14456 ret = new_loc_descr (DW_OP_push_object_address, 0, 0);
14457 have_address = 1;
14458 break;
14460 else
14461 return NULL;
14463 else
14464 expansion_failed (loc, NULL_RTX,
14465 "PLACEHOLDER_EXPR for an unexpected type");
14466 break;
14468 case CALL_EXPR:
14469 expansion_failed (loc, NULL_RTX, "CALL_EXPR");
14470 /* There are no opcodes for these operations. */
14471 return 0;
14473 case PREINCREMENT_EXPR:
14474 case PREDECREMENT_EXPR:
14475 case POSTINCREMENT_EXPR:
14476 case POSTDECREMENT_EXPR:
14477 expansion_failed (loc, NULL_RTX, "PRE/POST INDCREMENT/DECREMENT");
14478 /* There are no opcodes for these operations. */
14479 return 0;
14481 case ADDR_EXPR:
14482 /* If we already want an address, see if there is INDIRECT_REF inside
14483 e.g. for &this->field. */
14484 if (want_address)
14486 list_ret = loc_list_for_address_of_addr_expr_of_indirect_ref
14487 (loc, want_address == 2, context);
14488 if (list_ret)
14489 have_address = 1;
14490 else if (decl_address_ip_invariant_p (TREE_OPERAND (loc, 0))
14491 && (ret = cst_pool_loc_descr (loc)))
14492 have_address = 1;
14494 /* Otherwise, process the argument and look for the address. */
14495 if (!list_ret && !ret)
14496 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 1, context);
14497 else
14499 if (want_address)
14500 expansion_failed (loc, NULL_RTX, "need address of ADDR_EXPR");
14501 return NULL;
14503 break;
14505 case VAR_DECL:
14506 if (DECL_THREAD_LOCAL_P (loc))
14508 rtx rtl;
14509 enum dwarf_location_atom tls_op;
14510 enum dtprel_bool dtprel = dtprel_false;
14512 if (targetm.have_tls)
14514 /* If this is not defined, we have no way to emit the
14515 data. */
14516 if (!targetm.asm_out.output_dwarf_dtprel)
14517 return 0;
14519 /* The way DW_OP_GNU_push_tls_address is specified, we
14520 can only look up addresses of objects in the current
14521 module. We used DW_OP_addr as first op, but that's
14522 wrong, because DW_OP_addr is relocated by the debug
14523 info consumer, while DW_OP_GNU_push_tls_address
14524 operand shouldn't be. */
14525 if (DECL_EXTERNAL (loc) && !targetm.binds_local_p (loc))
14526 return 0;
14527 dtprel = dtprel_true;
14528 tls_op = DW_OP_GNU_push_tls_address;
14530 else
14532 if (!targetm.emutls.debug_form_tls_address
14533 || !(dwarf_version >= 3 || !dwarf_strict))
14534 return 0;
14535 /* We stuffed the control variable into the DECL_VALUE_EXPR
14536 to signal (via DECL_HAS_VALUE_EXPR_P) that the decl should
14537 no longer appear in gimple code. We used the control
14538 variable in specific so that we could pick it up here. */
14539 loc = DECL_VALUE_EXPR (loc);
14540 tls_op = DW_OP_form_tls_address;
14543 rtl = rtl_for_decl_location (loc);
14544 if (rtl == NULL_RTX)
14545 return 0;
14547 if (!MEM_P (rtl))
14548 return 0;
14549 rtl = XEXP (rtl, 0);
14550 if (! CONSTANT_P (rtl))
14551 return 0;
14553 ret = new_addr_loc_descr (rtl, dtprel);
14554 ret1 = new_loc_descr (tls_op, 0, 0);
14555 add_loc_descr (&ret, ret1);
14557 have_address = 1;
14558 break;
14560 /* FALLTHRU */
14562 case PARM_DECL:
14563 case RESULT_DECL:
14564 if (DECL_HAS_VALUE_EXPR_P (loc))
14565 return loc_list_from_tree (DECL_VALUE_EXPR (loc),
14566 want_address, context);
14567 /* FALLTHRU */
14569 case FUNCTION_DECL:
14571 rtx rtl;
14572 var_loc_list *loc_list = lookup_decl_loc (loc);
14574 if (loc_list && loc_list->first)
14576 list_ret = dw_loc_list (loc_list, loc, want_address);
14577 have_address = want_address != 0;
14578 break;
14580 rtl = rtl_for_decl_location (loc);
14581 if (rtl == NULL_RTX)
14583 expansion_failed (loc, NULL_RTX, "DECL has no RTL");
14584 return 0;
14586 else if (CONST_INT_P (rtl))
14588 HOST_WIDE_INT val = INTVAL (rtl);
14589 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
14590 val &= GET_MODE_MASK (DECL_MODE (loc));
14591 ret = int_loc_descriptor (val);
14593 else if (GET_CODE (rtl) == CONST_STRING)
14595 expansion_failed (loc, NULL_RTX, "CONST_STRING");
14596 return 0;
14598 else if (CONSTANT_P (rtl) && const_ok_for_output (rtl))
14599 ret = new_addr_loc_descr (rtl, dtprel_false);
14600 else
14602 machine_mode mode, mem_mode;
14604 /* Certain constructs can only be represented at top-level. */
14605 if (want_address == 2)
14607 ret = loc_descriptor (rtl, VOIDmode,
14608 VAR_INIT_STATUS_INITIALIZED);
14609 have_address = 1;
14611 else
14613 mode = GET_MODE (rtl);
14614 mem_mode = VOIDmode;
14615 if (MEM_P (rtl))
14617 mem_mode = mode;
14618 mode = get_address_mode (rtl);
14619 rtl = XEXP (rtl, 0);
14620 have_address = 1;
14622 ret = mem_loc_descriptor (rtl, mode, mem_mode,
14623 VAR_INIT_STATUS_INITIALIZED);
14625 if (!ret)
14626 expansion_failed (loc, rtl,
14627 "failed to produce loc descriptor for rtl");
14630 break;
14632 case MEM_REF:
14633 if (!integer_zerop (TREE_OPERAND (loc, 1)))
14635 have_address = 1;
14636 goto do_plus;
14638 /* Fallthru. */
14639 case INDIRECT_REF:
14640 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
14641 have_address = 1;
14642 break;
14644 case TARGET_MEM_REF:
14645 case SSA_NAME:
14646 case DEBUG_EXPR_DECL:
14647 return NULL;
14649 case COMPOUND_EXPR:
14650 return loc_list_from_tree (TREE_OPERAND (loc, 1), want_address, context);
14652 CASE_CONVERT:
14653 case VIEW_CONVERT_EXPR:
14654 case SAVE_EXPR:
14655 case MODIFY_EXPR:
14656 return loc_list_from_tree (TREE_OPERAND (loc, 0), want_address, context);
14658 case COMPONENT_REF:
14659 case BIT_FIELD_REF:
14660 case ARRAY_REF:
14661 case ARRAY_RANGE_REF:
14662 case REALPART_EXPR:
14663 case IMAGPART_EXPR:
14665 tree obj, offset;
14666 HOST_WIDE_INT bitsize, bitpos, bytepos;
14667 machine_mode mode;
14668 int unsignedp, volatilep = 0;
14670 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
14671 &unsignedp, &volatilep, false);
14673 gcc_assert (obj != loc);
14675 list_ret = loc_list_from_tree (obj,
14676 want_address == 2
14677 && !bitpos && !offset ? 2 : 1,
14678 context);
14679 /* TODO: We can extract value of the small expression via shifting even
14680 for nonzero bitpos. */
14681 if (list_ret == 0)
14682 return 0;
14683 if (bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
14685 expansion_failed (loc, NULL_RTX,
14686 "bitfield access");
14687 return 0;
14690 if (offset != NULL_TREE)
14692 /* Variable offset. */
14693 list_ret1 = loc_list_from_tree (offset, 0, context);
14694 if (list_ret1 == 0)
14695 return 0;
14696 add_loc_list (&list_ret, list_ret1);
14697 if (!list_ret)
14698 return 0;
14699 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus, 0, 0));
14702 bytepos = bitpos / BITS_PER_UNIT;
14703 if (bytepos > 0)
14704 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
14705 else if (bytepos < 0)
14706 loc_list_plus_const (list_ret, bytepos);
14708 have_address = 1;
14709 break;
14712 case INTEGER_CST:
14713 if ((want_address || !tree_fits_shwi_p (loc))
14714 && (ret = cst_pool_loc_descr (loc)))
14715 have_address = 1;
14716 else if (want_address == 2
14717 && tree_fits_shwi_p (loc)
14718 && (ret = address_of_int_loc_descriptor
14719 (int_size_in_bytes (TREE_TYPE (loc)),
14720 tree_to_shwi (loc))))
14721 have_address = 1;
14722 else if (tree_fits_shwi_p (loc))
14723 ret = int_loc_descriptor (tree_to_shwi (loc));
14724 else
14726 expansion_failed (loc, NULL_RTX,
14727 "Integer operand is not host integer");
14728 return 0;
14730 break;
14732 case CONSTRUCTOR:
14733 case REAL_CST:
14734 case STRING_CST:
14735 case COMPLEX_CST:
14736 if ((ret = cst_pool_loc_descr (loc)))
14737 have_address = 1;
14738 else
14739 /* We can construct small constants here using int_loc_descriptor. */
14740 expansion_failed (loc, NULL_RTX,
14741 "constructor or constant not in constant pool");
14742 break;
14744 case TRUTH_AND_EXPR:
14745 case TRUTH_ANDIF_EXPR:
14746 case BIT_AND_EXPR:
14747 op = DW_OP_and;
14748 goto do_binop;
14750 case TRUTH_XOR_EXPR:
14751 case BIT_XOR_EXPR:
14752 op = DW_OP_xor;
14753 goto do_binop;
14755 case TRUTH_OR_EXPR:
14756 case TRUTH_ORIF_EXPR:
14757 case BIT_IOR_EXPR:
14758 op = DW_OP_or;
14759 goto do_binop;
14761 case FLOOR_DIV_EXPR:
14762 case CEIL_DIV_EXPR:
14763 case ROUND_DIV_EXPR:
14764 case TRUNC_DIV_EXPR:
14765 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
14766 return 0;
14767 op = DW_OP_div;
14768 goto do_binop;
14770 case MINUS_EXPR:
14771 op = DW_OP_minus;
14772 goto do_binop;
14774 case FLOOR_MOD_EXPR:
14775 case CEIL_MOD_EXPR:
14776 case ROUND_MOD_EXPR:
14777 case TRUNC_MOD_EXPR:
14778 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
14780 op = DW_OP_mod;
14781 goto do_binop;
14783 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
14784 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0, context);
14785 if (list_ret == 0 || list_ret1 == 0)
14786 return 0;
14788 add_loc_list (&list_ret, list_ret1);
14789 if (list_ret == 0)
14790 return 0;
14791 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
14792 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
14793 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_div, 0, 0));
14794 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_mul, 0, 0));
14795 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_minus, 0, 0));
14796 break;
14798 case MULT_EXPR:
14799 op = DW_OP_mul;
14800 goto do_binop;
14802 case LSHIFT_EXPR:
14803 op = DW_OP_shl;
14804 goto do_binop;
14806 case RSHIFT_EXPR:
14807 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
14808 goto do_binop;
14810 case POINTER_PLUS_EXPR:
14811 case PLUS_EXPR:
14812 do_plus:
14813 if (tree_fits_shwi_p (TREE_OPERAND (loc, 1)))
14815 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
14816 if (list_ret == 0)
14817 return 0;
14819 loc_list_plus_const (list_ret, tree_to_shwi (TREE_OPERAND (loc, 1)));
14820 break;
14823 op = DW_OP_plus;
14824 goto do_binop;
14826 case LE_EXPR:
14827 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
14828 return 0;
14830 op = DW_OP_le;
14831 goto do_binop;
14833 case GE_EXPR:
14834 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
14835 return 0;
14837 op = DW_OP_ge;
14838 goto do_binop;
14840 case LT_EXPR:
14841 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
14842 return 0;
14844 op = DW_OP_lt;
14845 goto do_binop;
14847 case GT_EXPR:
14848 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
14849 return 0;
14851 op = DW_OP_gt;
14852 goto do_binop;
14854 case EQ_EXPR:
14855 op = DW_OP_eq;
14856 goto do_binop;
14858 case NE_EXPR:
14859 op = DW_OP_ne;
14860 goto do_binop;
14862 do_binop:
14863 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
14864 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0, context);
14865 if (list_ret == 0 || list_ret1 == 0)
14866 return 0;
14868 add_loc_list (&list_ret, list_ret1);
14869 if (list_ret == 0)
14870 return 0;
14871 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
14872 break;
14874 case TRUTH_NOT_EXPR:
14875 case BIT_NOT_EXPR:
14876 op = DW_OP_not;
14877 goto do_unop;
14879 case ABS_EXPR:
14880 op = DW_OP_abs;
14881 goto do_unop;
14883 case NEGATE_EXPR:
14884 op = DW_OP_neg;
14885 goto do_unop;
14887 do_unop:
14888 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
14889 if (list_ret == 0)
14890 return 0;
14892 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
14893 break;
14895 case MIN_EXPR:
14896 case MAX_EXPR:
14898 const enum tree_code code =
14899 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
14901 loc = build3 (COND_EXPR, TREE_TYPE (loc),
14902 build2 (code, integer_type_node,
14903 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
14904 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
14907 /* ... fall through ... */
14909 case COND_EXPR:
14911 dw_loc_descr_ref lhs
14912 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0, context);
14913 dw_loc_list_ref rhs
14914 = loc_list_from_tree (TREE_OPERAND (loc, 2), 0, context);
14915 dw_loc_descr_ref bra_node, jump_node, tmp;
14917 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
14918 if (list_ret == 0 || lhs == 0 || rhs == 0)
14919 return 0;
14921 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
14922 add_loc_descr_to_each (list_ret, bra_node);
14924 add_loc_list (&list_ret, rhs);
14925 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
14926 add_loc_descr_to_each (list_ret, jump_node);
14928 add_loc_descr_to_each (list_ret, lhs);
14929 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
14930 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
14932 /* ??? Need a node to point the skip at. Use a nop. */
14933 tmp = new_loc_descr (DW_OP_nop, 0, 0);
14934 add_loc_descr_to_each (list_ret, tmp);
14935 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
14936 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
14938 break;
14940 case FIX_TRUNC_EXPR:
14941 return 0;
14943 default:
14944 /* Leave front-end specific codes as simply unknown. This comes
14945 up, for instance, with the C STMT_EXPR. */
14946 if ((unsigned int) TREE_CODE (loc)
14947 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
14949 expansion_failed (loc, NULL_RTX,
14950 "language specific tree node");
14951 return 0;
14954 #ifdef ENABLE_CHECKING
14955 /* Otherwise this is a generic code; we should just lists all of
14956 these explicitly. We forgot one. */
14957 gcc_unreachable ();
14958 #else
14959 /* In a release build, we want to degrade gracefully: better to
14960 generate incomplete debugging information than to crash. */
14961 return NULL;
14962 #endif
14965 if (!ret && !list_ret)
14966 return 0;
14968 if (want_address == 2 && !have_address
14969 && (dwarf_version >= 4 || !dwarf_strict))
14971 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
14973 expansion_failed (loc, NULL_RTX,
14974 "DWARF address size mismatch");
14975 return 0;
14977 if (ret)
14978 add_loc_descr (&ret, new_loc_descr (DW_OP_stack_value, 0, 0));
14979 else
14980 add_loc_descr_to_each (list_ret,
14981 new_loc_descr (DW_OP_stack_value, 0, 0));
14982 have_address = 1;
14984 /* Show if we can't fill the request for an address. */
14985 if (want_address && !have_address)
14987 expansion_failed (loc, NULL_RTX,
14988 "Want address and only have value");
14989 return 0;
14992 gcc_assert (!ret || !list_ret);
14994 /* If we've got an address and don't want one, dereference. */
14995 if (!want_address && have_address)
14997 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
14999 if (size > DWARF2_ADDR_SIZE || size == -1)
15001 expansion_failed (loc, NULL_RTX,
15002 "DWARF address size mismatch");
15003 return 0;
15005 else if (size == DWARF2_ADDR_SIZE)
15006 op = DW_OP_deref;
15007 else
15008 op = DW_OP_deref_size;
15010 if (ret)
15011 add_loc_descr (&ret, new_loc_descr (op, size, 0));
15012 else
15013 add_loc_descr_to_each (list_ret, new_loc_descr (op, size, 0));
15015 if (ret)
15016 list_ret = new_loc_list (ret, NULL, NULL, NULL);
15018 return list_ret;
15021 /* Same as above but return only single location expression. */
15022 static dw_loc_descr_ref
15023 loc_descriptor_from_tree (tree loc, int want_address,
15024 const struct loc_descr_context *context)
15026 dw_loc_list_ref ret = loc_list_from_tree (loc, want_address, context);
15027 if (!ret)
15028 return NULL;
15029 if (ret->dw_loc_next)
15031 expansion_failed (loc, NULL_RTX,
15032 "Location list where only loc descriptor needed");
15033 return NULL;
15035 return ret->expr;
15038 /* Given a value, round it up to the lowest multiple of `boundary'
15039 which is not less than the value itself. */
15041 static inline HOST_WIDE_INT
15042 ceiling (HOST_WIDE_INT value, unsigned int boundary)
15044 return (((value + boundary - 1) / boundary) * boundary);
15047 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
15048 pointer to the declared type for the relevant field variable, or return
15049 `integer_type_node' if the given node turns out to be an
15050 ERROR_MARK node. */
15052 static inline tree
15053 field_type (const_tree decl)
15055 tree type;
15057 if (TREE_CODE (decl) == ERROR_MARK)
15058 return integer_type_node;
15060 type = DECL_BIT_FIELD_TYPE (decl);
15061 if (type == NULL_TREE)
15062 type = TREE_TYPE (decl);
15064 return type;
15067 /* Given a pointer to a tree node, return the alignment in bits for
15068 it, or else return BITS_PER_WORD if the node actually turns out to
15069 be an ERROR_MARK node. */
15071 static inline unsigned
15072 simple_type_align_in_bits (const_tree type)
15074 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
15077 static inline unsigned
15078 simple_decl_align_in_bits (const_tree decl)
15080 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
15083 /* Return the result of rounding T up to ALIGN. */
15085 static inline offset_int
15086 round_up_to_align (const offset_int &t, unsigned int align)
15088 return wi::udiv_trunc (t + align - 1, align) * align;
15091 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
15092 lowest addressed byte of the "containing object" for the given FIELD_DECL,
15093 or return 0 if we are unable to determine what that offset is, either
15094 because the argument turns out to be a pointer to an ERROR_MARK node, or
15095 because the offset is actually variable. (We can't handle the latter case
15096 just yet). */
15098 static HOST_WIDE_INT
15099 field_byte_offset (const_tree decl)
15101 offset_int object_offset_in_bits;
15102 offset_int object_offset_in_bytes;
15103 offset_int bitpos_int;
15105 if (TREE_CODE (decl) == ERROR_MARK)
15106 return 0;
15108 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
15110 /* We cannot yet cope with fields whose positions are variable, so
15111 for now, when we see such things, we simply return 0. Someday, we may
15112 be able to handle such cases, but it will be damn difficult. */
15113 if (TREE_CODE (bit_position (decl)) != INTEGER_CST)
15114 return 0;
15116 bitpos_int = wi::to_offset (bit_position (decl));
15118 #ifdef PCC_BITFIELD_TYPE_MATTERS
15119 if (PCC_BITFIELD_TYPE_MATTERS)
15121 tree type;
15122 tree field_size_tree;
15123 offset_int deepest_bitpos;
15124 offset_int field_size_in_bits;
15125 unsigned int type_align_in_bits;
15126 unsigned int decl_align_in_bits;
15127 offset_int type_size_in_bits;
15129 type = field_type (decl);
15130 type_size_in_bits = offset_int_type_size_in_bits (type);
15131 type_align_in_bits = simple_type_align_in_bits (type);
15133 field_size_tree = DECL_SIZE (decl);
15135 /* The size could be unspecified if there was an error, or for
15136 a flexible array member. */
15137 if (!field_size_tree)
15138 field_size_tree = bitsize_zero_node;
15140 /* If the size of the field is not constant, use the type size. */
15141 if (TREE_CODE (field_size_tree) == INTEGER_CST)
15142 field_size_in_bits = wi::to_offset (field_size_tree);
15143 else
15144 field_size_in_bits = type_size_in_bits;
15146 decl_align_in_bits = simple_decl_align_in_bits (decl);
15148 /* The GCC front-end doesn't make any attempt to keep track of the
15149 starting bit offset (relative to the start of the containing
15150 structure type) of the hypothetical "containing object" for a
15151 bit-field. Thus, when computing the byte offset value for the
15152 start of the "containing object" of a bit-field, we must deduce
15153 this information on our own. This can be rather tricky to do in
15154 some cases. For example, handling the following structure type
15155 definition when compiling for an i386/i486 target (which only
15156 aligns long long's to 32-bit boundaries) can be very tricky:
15158 struct S { int field1; long long field2:31; };
15160 Fortunately, there is a simple rule-of-thumb which can be used
15161 in such cases. When compiling for an i386/i486, GCC will
15162 allocate 8 bytes for the structure shown above. It decides to
15163 do this based upon one simple rule for bit-field allocation.
15164 GCC allocates each "containing object" for each bit-field at
15165 the first (i.e. lowest addressed) legitimate alignment boundary
15166 (based upon the required minimum alignment for the declared
15167 type of the field) which it can possibly use, subject to the
15168 condition that there is still enough available space remaining
15169 in the containing object (when allocated at the selected point)
15170 to fully accommodate all of the bits of the bit-field itself.
15172 This simple rule makes it obvious why GCC allocates 8 bytes for
15173 each object of the structure type shown above. When looking
15174 for a place to allocate the "containing object" for `field2',
15175 the compiler simply tries to allocate a 64-bit "containing
15176 object" at each successive 32-bit boundary (starting at zero)
15177 until it finds a place to allocate that 64- bit field such that
15178 at least 31 contiguous (and previously unallocated) bits remain
15179 within that selected 64 bit field. (As it turns out, for the
15180 example above, the compiler finds it is OK to allocate the
15181 "containing object" 64-bit field at bit-offset zero within the
15182 structure type.)
15184 Here we attempt to work backwards from the limited set of facts
15185 we're given, and we try to deduce from those facts, where GCC
15186 must have believed that the containing object started (within
15187 the structure type). The value we deduce is then used (by the
15188 callers of this routine) to generate DW_AT_location and
15189 DW_AT_bit_offset attributes for fields (both bit-fields and, in
15190 the case of DW_AT_location, regular fields as well). */
15192 /* Figure out the bit-distance from the start of the structure to
15193 the "deepest" bit of the bit-field. */
15194 deepest_bitpos = bitpos_int + field_size_in_bits;
15196 /* This is the tricky part. Use some fancy footwork to deduce
15197 where the lowest addressed bit of the containing object must
15198 be. */
15199 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
15201 /* Round up to type_align by default. This works best for
15202 bitfields. */
15203 object_offset_in_bits
15204 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
15206 if (wi::gtu_p (object_offset_in_bits, bitpos_int))
15208 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
15210 /* Round up to decl_align instead. */
15211 object_offset_in_bits
15212 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
15215 else
15216 #endif /* PCC_BITFIELD_TYPE_MATTERS */
15217 object_offset_in_bits = bitpos_int;
15219 object_offset_in_bytes
15220 = wi::lrshift (object_offset_in_bits, LOG2_BITS_PER_UNIT);
15221 return object_offset_in_bytes.to_shwi ();
15224 /* The following routines define various Dwarf attributes and any data
15225 associated with them. */
15227 /* Add a location description attribute value to a DIE.
15229 This emits location attributes suitable for whole variables and
15230 whole parameters. Note that the location attributes for struct fields are
15231 generated by the routine `data_member_location_attribute' below. */
15233 static inline void
15234 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
15235 dw_loc_list_ref descr)
15237 if (descr == 0)
15238 return;
15239 if (single_element_loc_list_p (descr))
15240 add_AT_loc (die, attr_kind, descr->expr);
15241 else
15242 add_AT_loc_list (die, attr_kind, descr);
15245 /* Add DW_AT_accessibility attribute to DIE if needed. */
15247 static void
15248 add_accessibility_attribute (dw_die_ref die, tree decl)
15250 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
15251 children, otherwise the default is DW_ACCESS_public. In DWARF2
15252 the default has always been DW_ACCESS_public. */
15253 if (TREE_PROTECTED (decl))
15254 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
15255 else if (TREE_PRIVATE (decl))
15257 if (dwarf_version == 2
15258 || die->die_parent == NULL
15259 || die->die_parent->die_tag != DW_TAG_class_type)
15260 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
15262 else if (dwarf_version > 2
15263 && die->die_parent
15264 && die->die_parent->die_tag == DW_TAG_class_type)
15265 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
15268 /* Attach the specialized form of location attribute used for data members of
15269 struct and union types. In the special case of a FIELD_DECL node which
15270 represents a bit-field, the "offset" part of this special location
15271 descriptor must indicate the distance in bytes from the lowest-addressed
15272 byte of the containing struct or union type to the lowest-addressed byte of
15273 the "containing object" for the bit-field. (See the `field_byte_offset'
15274 function above).
15276 For any given bit-field, the "containing object" is a hypothetical object
15277 (of some integral or enum type) within which the given bit-field lives. The
15278 type of this hypothetical "containing object" is always the same as the
15279 declared type of the individual bit-field itself (for GCC anyway... the
15280 DWARF spec doesn't actually mandate this). Note that it is the size (in
15281 bytes) of the hypothetical "containing object" which will be given in the
15282 DW_AT_byte_size attribute for this bit-field. (See the
15283 `byte_size_attribute' function below.) It is also used when calculating the
15284 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
15285 function below.) */
15287 static void
15288 add_data_member_location_attribute (dw_die_ref die, tree decl)
15290 HOST_WIDE_INT offset;
15291 dw_loc_descr_ref loc_descr = 0;
15293 if (TREE_CODE (decl) == TREE_BINFO)
15295 /* We're working on the TAG_inheritance for a base class. */
15296 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
15298 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
15299 aren't at a fixed offset from all (sub)objects of the same
15300 type. We need to extract the appropriate offset from our
15301 vtable. The following dwarf expression means
15303 BaseAddr = ObAddr + *((*ObAddr) - Offset)
15305 This is specific to the V3 ABI, of course. */
15307 dw_loc_descr_ref tmp;
15309 /* Make a copy of the object address. */
15310 tmp = new_loc_descr (DW_OP_dup, 0, 0);
15311 add_loc_descr (&loc_descr, tmp);
15313 /* Extract the vtable address. */
15314 tmp = new_loc_descr (DW_OP_deref, 0, 0);
15315 add_loc_descr (&loc_descr, tmp);
15317 /* Calculate the address of the offset. */
15318 offset = tree_to_shwi (BINFO_VPTR_FIELD (decl));
15319 gcc_assert (offset < 0);
15321 tmp = int_loc_descriptor (-offset);
15322 add_loc_descr (&loc_descr, tmp);
15323 tmp = new_loc_descr (DW_OP_minus, 0, 0);
15324 add_loc_descr (&loc_descr, tmp);
15326 /* Extract the offset. */
15327 tmp = new_loc_descr (DW_OP_deref, 0, 0);
15328 add_loc_descr (&loc_descr, tmp);
15330 /* Add it to the object address. */
15331 tmp = new_loc_descr (DW_OP_plus, 0, 0);
15332 add_loc_descr (&loc_descr, tmp);
15334 else
15335 offset = tree_to_shwi (BINFO_OFFSET (decl));
15337 else
15338 offset = field_byte_offset (decl);
15340 if (! loc_descr)
15342 if (dwarf_version > 2)
15344 /* Don't need to output a location expression, just the constant. */
15345 if (offset < 0)
15346 add_AT_int (die, DW_AT_data_member_location, offset);
15347 else
15348 add_AT_unsigned (die, DW_AT_data_member_location, offset);
15349 return;
15351 else
15353 enum dwarf_location_atom op;
15355 /* The DWARF2 standard says that we should assume that the structure
15356 address is already on the stack, so we can specify a structure
15357 field address by using DW_OP_plus_uconst. */
15358 op = DW_OP_plus_uconst;
15359 loc_descr = new_loc_descr (op, offset, 0);
15363 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
15366 /* Writes integer values to dw_vec_const array. */
15368 static void
15369 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
15371 while (size != 0)
15373 *dest++ = val & 0xff;
15374 val >>= 8;
15375 --size;
15379 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
15381 static HOST_WIDE_INT
15382 extract_int (const unsigned char *src, unsigned int size)
15384 HOST_WIDE_INT val = 0;
15386 src += size;
15387 while (size != 0)
15389 val <<= 8;
15390 val |= *--src & 0xff;
15391 --size;
15393 return val;
15396 /* Writes wide_int values to dw_vec_const array. */
15398 static void
15399 insert_wide_int (const wide_int &val, unsigned char *dest, int elt_size)
15401 int i;
15403 if (elt_size <= HOST_BITS_PER_WIDE_INT/BITS_PER_UNIT)
15405 insert_int ((HOST_WIDE_INT) val.elt (0), elt_size, dest);
15406 return;
15409 /* We'd have to extend this code to support odd sizes. */
15410 gcc_assert (elt_size % (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT) == 0);
15412 int n = elt_size / (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
15414 if (WORDS_BIG_ENDIAN)
15415 for (i = n - 1; i >= 0; i--)
15417 insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
15418 dest += sizeof (HOST_WIDE_INT);
15420 else
15421 for (i = 0; i < n; i++)
15423 insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
15424 dest += sizeof (HOST_WIDE_INT);
15428 /* Writes floating point values to dw_vec_const array. */
15430 static void
15431 insert_float (const_rtx rtl, unsigned char *array)
15433 REAL_VALUE_TYPE rv;
15434 long val[4];
15435 int i;
15437 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
15438 real_to_target (val, &rv, GET_MODE (rtl));
15440 /* real_to_target puts 32-bit pieces in each long. Pack them. */
15441 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
15443 insert_int (val[i], 4, array);
15444 array += 4;
15448 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
15449 does not have a "location" either in memory or in a register. These
15450 things can arise in GNU C when a constant is passed as an actual parameter
15451 to an inlined function. They can also arise in C++ where declared
15452 constants do not necessarily get memory "homes". */
15454 static bool
15455 add_const_value_attribute (dw_die_ref die, rtx rtl)
15457 switch (GET_CODE (rtl))
15459 case CONST_INT:
15461 HOST_WIDE_INT val = INTVAL (rtl);
15463 if (val < 0)
15464 add_AT_int (die, DW_AT_const_value, val);
15465 else
15466 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
15468 return true;
15470 case CONST_WIDE_INT:
15471 add_AT_wide (die, DW_AT_const_value,
15472 std::make_pair (rtl, GET_MODE (rtl)));
15473 return true;
15475 case CONST_DOUBLE:
15476 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
15477 floating-point constant. A CONST_DOUBLE is used whenever the
15478 constant requires more than one word in order to be adequately
15479 represented. */
15481 machine_mode mode = GET_MODE (rtl);
15483 if (TARGET_SUPPORTS_WIDE_INT == 0 && !SCALAR_FLOAT_MODE_P (mode))
15484 add_AT_double (die, DW_AT_const_value,
15485 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
15486 else
15488 unsigned int length = GET_MODE_SIZE (mode);
15489 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
15491 insert_float (rtl, array);
15492 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
15495 return true;
15497 case CONST_VECTOR:
15499 machine_mode mode = GET_MODE (rtl);
15500 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
15501 unsigned int length = CONST_VECTOR_NUNITS (rtl);
15502 unsigned char *array
15503 = ggc_vec_alloc<unsigned char> (length * elt_size);
15504 unsigned int i;
15505 unsigned char *p;
15506 machine_mode imode = GET_MODE_INNER (mode);
15508 switch (GET_MODE_CLASS (mode))
15510 case MODE_VECTOR_INT:
15511 for (i = 0, p = array; i < length; i++, p += elt_size)
15513 rtx elt = CONST_VECTOR_ELT (rtl, i);
15514 insert_wide_int (std::make_pair (elt, imode), p, elt_size);
15516 break;
15518 case MODE_VECTOR_FLOAT:
15519 for (i = 0, p = array; i < length; i++, p += elt_size)
15521 rtx elt = CONST_VECTOR_ELT (rtl, i);
15522 insert_float (elt, p);
15524 break;
15526 default:
15527 gcc_unreachable ();
15530 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
15532 return true;
15534 case CONST_STRING:
15535 if (dwarf_version >= 4 || !dwarf_strict)
15537 dw_loc_descr_ref loc_result;
15538 resolve_one_addr (&rtl);
15539 rtl_addr:
15540 loc_result = new_addr_loc_descr (rtl, dtprel_false);
15541 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
15542 add_AT_loc (die, DW_AT_location, loc_result);
15543 vec_safe_push (used_rtx_array, rtl);
15544 return true;
15546 return false;
15548 case CONST:
15549 if (CONSTANT_P (XEXP (rtl, 0)))
15550 return add_const_value_attribute (die, XEXP (rtl, 0));
15551 /* FALLTHROUGH */
15552 case SYMBOL_REF:
15553 if (!const_ok_for_output (rtl))
15554 return false;
15555 case LABEL_REF:
15556 if (dwarf_version >= 4 || !dwarf_strict)
15557 goto rtl_addr;
15558 return false;
15560 case PLUS:
15561 /* In cases where an inlined instance of an inline function is passed
15562 the address of an `auto' variable (which is local to the caller) we
15563 can get a situation where the DECL_RTL of the artificial local
15564 variable (for the inlining) which acts as a stand-in for the
15565 corresponding formal parameter (of the inline function) will look
15566 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
15567 exactly a compile-time constant expression, but it isn't the address
15568 of the (artificial) local variable either. Rather, it represents the
15569 *value* which the artificial local variable always has during its
15570 lifetime. We currently have no way to represent such quasi-constant
15571 values in Dwarf, so for now we just punt and generate nothing. */
15572 return false;
15574 case HIGH:
15575 case CONST_FIXED:
15576 return false;
15578 case MEM:
15579 if (GET_CODE (XEXP (rtl, 0)) == CONST_STRING
15580 && MEM_READONLY_P (rtl)
15581 && GET_MODE (rtl) == BLKmode)
15583 add_AT_string (die, DW_AT_const_value, XSTR (XEXP (rtl, 0), 0));
15584 return true;
15586 return false;
15588 default:
15589 /* No other kinds of rtx should be possible here. */
15590 gcc_unreachable ();
15592 return false;
15595 /* Determine whether the evaluation of EXPR references any variables
15596 or functions which aren't otherwise used (and therefore may not be
15597 output). */
15598 static tree
15599 reference_to_unused (tree * tp, int * walk_subtrees,
15600 void * data ATTRIBUTE_UNUSED)
15602 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
15603 *walk_subtrees = 0;
15605 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
15606 && ! TREE_ASM_WRITTEN (*tp))
15607 return *tp;
15608 /* ??? The C++ FE emits debug information for using decls, so
15609 putting gcc_unreachable here falls over. See PR31899. For now
15610 be conservative. */
15611 else if (!symtab->global_info_ready
15612 && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
15613 return *tp;
15614 else if (TREE_CODE (*tp) == VAR_DECL)
15616 varpool_node *node = varpool_node::get (*tp);
15617 if (!node || !node->definition)
15618 return *tp;
15620 else if (TREE_CODE (*tp) == FUNCTION_DECL
15621 && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
15623 /* The call graph machinery must have finished analyzing,
15624 optimizing and gimplifying the CU by now.
15625 So if *TP has no call graph node associated
15626 to it, it means *TP will not be emitted. */
15627 if (!cgraph_node::get (*tp))
15628 return *tp;
15630 else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
15631 return *tp;
15633 return NULL_TREE;
15636 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
15637 for use in a later add_const_value_attribute call. */
15639 static rtx
15640 rtl_for_decl_init (tree init, tree type)
15642 rtx rtl = NULL_RTX;
15644 STRIP_NOPS (init);
15646 /* If a variable is initialized with a string constant without embedded
15647 zeros, build CONST_STRING. */
15648 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
15650 tree enttype = TREE_TYPE (type);
15651 tree domain = TYPE_DOMAIN (type);
15652 machine_mode mode = TYPE_MODE (enttype);
15654 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
15655 && domain
15656 && integer_zerop (TYPE_MIN_VALUE (domain))
15657 && compare_tree_int (TYPE_MAX_VALUE (domain),
15658 TREE_STRING_LENGTH (init) - 1) == 0
15659 && ((size_t) TREE_STRING_LENGTH (init)
15660 == strlen (TREE_STRING_POINTER (init)) + 1))
15662 rtl = gen_rtx_CONST_STRING (VOIDmode,
15663 ggc_strdup (TREE_STRING_POINTER (init)));
15664 rtl = gen_rtx_MEM (BLKmode, rtl);
15665 MEM_READONLY_P (rtl) = 1;
15668 /* Other aggregates, and complex values, could be represented using
15669 CONCAT: FIXME! */
15670 else if (AGGREGATE_TYPE_P (type)
15671 || (TREE_CODE (init) == VIEW_CONVERT_EXPR
15672 && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (init, 0))))
15673 || TREE_CODE (type) == COMPLEX_TYPE)
15675 /* Vectors only work if their mode is supported by the target.
15676 FIXME: generic vectors ought to work too. */
15677 else if (TREE_CODE (type) == VECTOR_TYPE
15678 && !VECTOR_MODE_P (TYPE_MODE (type)))
15680 /* If the initializer is something that we know will expand into an
15681 immediate RTL constant, expand it now. We must be careful not to
15682 reference variables which won't be output. */
15683 else if (initializer_constant_valid_p (init, type)
15684 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
15686 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
15687 possible. */
15688 if (TREE_CODE (type) == VECTOR_TYPE)
15689 switch (TREE_CODE (init))
15691 case VECTOR_CST:
15692 break;
15693 case CONSTRUCTOR:
15694 if (TREE_CONSTANT (init))
15696 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (init);
15697 bool constant_p = true;
15698 tree value;
15699 unsigned HOST_WIDE_INT ix;
15701 /* Even when ctor is constant, it might contain non-*_CST
15702 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
15703 belong into VECTOR_CST nodes. */
15704 FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
15705 if (!CONSTANT_CLASS_P (value))
15707 constant_p = false;
15708 break;
15711 if (constant_p)
15713 init = build_vector_from_ctor (type, elts);
15714 break;
15717 /* FALLTHRU */
15719 default:
15720 return NULL;
15723 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
15725 /* If expand_expr returns a MEM, it wasn't immediate. */
15726 gcc_assert (!rtl || !MEM_P (rtl));
15729 return rtl;
15732 /* Generate RTL for the variable DECL to represent its location. */
15734 static rtx
15735 rtl_for_decl_location (tree decl)
15737 rtx rtl;
15739 /* Here we have to decide where we are going to say the parameter "lives"
15740 (as far as the debugger is concerned). We only have a couple of
15741 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
15743 DECL_RTL normally indicates where the parameter lives during most of the
15744 activation of the function. If optimization is enabled however, this
15745 could be either NULL or else a pseudo-reg. Both of those cases indicate
15746 that the parameter doesn't really live anywhere (as far as the code
15747 generation parts of GCC are concerned) during most of the function's
15748 activation. That will happen (for example) if the parameter is never
15749 referenced within the function.
15751 We could just generate a location descriptor here for all non-NULL
15752 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
15753 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
15754 where DECL_RTL is NULL or is a pseudo-reg.
15756 Note however that we can only get away with using DECL_INCOMING_RTL as
15757 a backup substitute for DECL_RTL in certain limited cases. In cases
15758 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
15759 we can be sure that the parameter was passed using the same type as it is
15760 declared to have within the function, and that its DECL_INCOMING_RTL
15761 points us to a place where a value of that type is passed.
15763 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
15764 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
15765 because in these cases DECL_INCOMING_RTL points us to a value of some
15766 type which is *different* from the type of the parameter itself. Thus,
15767 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
15768 such cases, the debugger would end up (for example) trying to fetch a
15769 `float' from a place which actually contains the first part of a
15770 `double'. That would lead to really incorrect and confusing
15771 output at debug-time.
15773 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
15774 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
15775 are a couple of exceptions however. On little-endian machines we can
15776 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
15777 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
15778 an integral type that is smaller than TREE_TYPE (decl). These cases arise
15779 when (on a little-endian machine) a non-prototyped function has a
15780 parameter declared to be of type `short' or `char'. In such cases,
15781 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
15782 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
15783 passed `int' value. If the debugger then uses that address to fetch
15784 a `short' or a `char' (on a little-endian machine) the result will be
15785 the correct data, so we allow for such exceptional cases below.
15787 Note that our goal here is to describe the place where the given formal
15788 parameter lives during most of the function's activation (i.e. between the
15789 end of the prologue and the start of the epilogue). We'll do that as best
15790 as we can. Note however that if the given formal parameter is modified
15791 sometime during the execution of the function, then a stack backtrace (at
15792 debug-time) will show the function as having been called with the *new*
15793 value rather than the value which was originally passed in. This happens
15794 rarely enough that it is not a major problem, but it *is* a problem, and
15795 I'd like to fix it.
15797 A future version of dwarf2out.c may generate two additional attributes for
15798 any given DW_TAG_formal_parameter DIE which will describe the "passed
15799 type" and the "passed location" for the given formal parameter in addition
15800 to the attributes we now generate to indicate the "declared type" and the
15801 "active location" for each parameter. This additional set of attributes
15802 could be used by debuggers for stack backtraces. Separately, note that
15803 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
15804 This happens (for example) for inlined-instances of inline function formal
15805 parameters which are never referenced. This really shouldn't be
15806 happening. All PARM_DECL nodes should get valid non-NULL
15807 DECL_INCOMING_RTL values. FIXME. */
15809 /* Use DECL_RTL as the "location" unless we find something better. */
15810 rtl = DECL_RTL_IF_SET (decl);
15812 /* When generating abstract instances, ignore everything except
15813 constants, symbols living in memory, and symbols living in
15814 fixed registers. */
15815 if (! reload_completed)
15817 if (rtl
15818 && (CONSTANT_P (rtl)
15819 || (MEM_P (rtl)
15820 && CONSTANT_P (XEXP (rtl, 0)))
15821 || (REG_P (rtl)
15822 && TREE_CODE (decl) == VAR_DECL
15823 && TREE_STATIC (decl))))
15825 rtl = targetm.delegitimize_address (rtl);
15826 return rtl;
15828 rtl = NULL_RTX;
15830 else if (TREE_CODE (decl) == PARM_DECL)
15832 if (rtl == NULL_RTX
15833 || is_pseudo_reg (rtl)
15834 || (MEM_P (rtl)
15835 && is_pseudo_reg (XEXP (rtl, 0))
15836 && DECL_INCOMING_RTL (decl)
15837 && MEM_P (DECL_INCOMING_RTL (decl))
15838 && GET_MODE (rtl) == GET_MODE (DECL_INCOMING_RTL (decl))))
15840 tree declared_type = TREE_TYPE (decl);
15841 tree passed_type = DECL_ARG_TYPE (decl);
15842 machine_mode dmode = TYPE_MODE (declared_type);
15843 machine_mode pmode = TYPE_MODE (passed_type);
15845 /* This decl represents a formal parameter which was optimized out.
15846 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
15847 all cases where (rtl == NULL_RTX) just below. */
15848 if (dmode == pmode)
15849 rtl = DECL_INCOMING_RTL (decl);
15850 else if ((rtl == NULL_RTX || is_pseudo_reg (rtl))
15851 && SCALAR_INT_MODE_P (dmode)
15852 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
15853 && DECL_INCOMING_RTL (decl))
15855 rtx inc = DECL_INCOMING_RTL (decl);
15856 if (REG_P (inc))
15857 rtl = inc;
15858 else if (MEM_P (inc))
15860 if (BYTES_BIG_ENDIAN)
15861 rtl = adjust_address_nv (inc, dmode,
15862 GET_MODE_SIZE (pmode)
15863 - GET_MODE_SIZE (dmode));
15864 else
15865 rtl = inc;
15870 /* If the parm was passed in registers, but lives on the stack, then
15871 make a big endian correction if the mode of the type of the
15872 parameter is not the same as the mode of the rtl. */
15873 /* ??? This is the same series of checks that are made in dbxout.c before
15874 we reach the big endian correction code there. It isn't clear if all
15875 of these checks are necessary here, but keeping them all is the safe
15876 thing to do. */
15877 else if (MEM_P (rtl)
15878 && XEXP (rtl, 0) != const0_rtx
15879 && ! CONSTANT_P (XEXP (rtl, 0))
15880 /* Not passed in memory. */
15881 && !MEM_P (DECL_INCOMING_RTL (decl))
15882 /* Not passed by invisible reference. */
15883 && (!REG_P (XEXP (rtl, 0))
15884 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
15885 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
15886 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
15887 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
15888 #endif
15890 /* Big endian correction check. */
15891 && BYTES_BIG_ENDIAN
15892 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
15893 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
15894 < UNITS_PER_WORD))
15896 machine_mode addr_mode = get_address_mode (rtl);
15897 int offset = (UNITS_PER_WORD
15898 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
15900 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
15901 plus_constant (addr_mode, XEXP (rtl, 0), offset));
15904 else if (TREE_CODE (decl) == VAR_DECL
15905 && rtl
15906 && MEM_P (rtl)
15907 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
15908 && BYTES_BIG_ENDIAN)
15910 machine_mode addr_mode = get_address_mode (rtl);
15911 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
15912 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
15914 /* If a variable is declared "register" yet is smaller than
15915 a register, then if we store the variable to memory, it
15916 looks like we're storing a register-sized value, when in
15917 fact we are not. We need to adjust the offset of the
15918 storage location to reflect the actual value's bytes,
15919 else gdb will not be able to display it. */
15920 if (rsize > dsize)
15921 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
15922 plus_constant (addr_mode, XEXP (rtl, 0),
15923 rsize - dsize));
15926 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
15927 and will have been substituted directly into all expressions that use it.
15928 C does not have such a concept, but C++ and other languages do. */
15929 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
15930 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
15932 if (rtl)
15933 rtl = targetm.delegitimize_address (rtl);
15935 /* If we don't look past the constant pool, we risk emitting a
15936 reference to a constant pool entry that isn't referenced from
15937 code, and thus is not emitted. */
15938 if (rtl)
15939 rtl = avoid_constant_pool_reference (rtl);
15941 /* Try harder to get a rtl. If this symbol ends up not being emitted
15942 in the current CU, resolve_addr will remove the expression referencing
15943 it. */
15944 if (rtl == NULL_RTX
15945 && TREE_CODE (decl) == VAR_DECL
15946 && !DECL_EXTERNAL (decl)
15947 && TREE_STATIC (decl)
15948 && DECL_NAME (decl)
15949 && !DECL_HARD_REGISTER (decl)
15950 && DECL_MODE (decl) != VOIDmode)
15952 rtl = make_decl_rtl_for_debug (decl);
15953 if (!MEM_P (rtl)
15954 || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF
15955 || SYMBOL_REF_DECL (XEXP (rtl, 0)) != decl)
15956 rtl = NULL_RTX;
15959 return rtl;
15962 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_TREE is
15963 returned. If so, the decl for the COMMON block is returned, and the
15964 value is the offset into the common block for the symbol. */
15966 static tree
15967 fortran_common (tree decl, HOST_WIDE_INT *value)
15969 tree val_expr, cvar;
15970 machine_mode mode;
15971 HOST_WIDE_INT bitsize, bitpos;
15972 tree offset;
15973 int unsignedp, volatilep = 0;
15975 /* If the decl isn't a VAR_DECL, or if it isn't static, or if
15976 it does not have a value (the offset into the common area), or if it
15977 is thread local (as opposed to global) then it isn't common, and shouldn't
15978 be handled as such. */
15979 if (TREE_CODE (decl) != VAR_DECL
15980 || !TREE_STATIC (decl)
15981 || !DECL_HAS_VALUE_EXPR_P (decl)
15982 || !is_fortran ())
15983 return NULL_TREE;
15985 val_expr = DECL_VALUE_EXPR (decl);
15986 if (TREE_CODE (val_expr) != COMPONENT_REF)
15987 return NULL_TREE;
15989 cvar = get_inner_reference (val_expr, &bitsize, &bitpos, &offset,
15990 &mode, &unsignedp, &volatilep, true);
15992 if (cvar == NULL_TREE
15993 || TREE_CODE (cvar) != VAR_DECL
15994 || DECL_ARTIFICIAL (cvar)
15995 || !TREE_PUBLIC (cvar))
15996 return NULL_TREE;
15998 *value = 0;
15999 if (offset != NULL)
16001 if (!tree_fits_shwi_p (offset))
16002 return NULL_TREE;
16003 *value = tree_to_shwi (offset);
16005 if (bitpos != 0)
16006 *value += bitpos / BITS_PER_UNIT;
16008 return cvar;
16011 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
16012 data attribute for a variable or a parameter. We generate the
16013 DW_AT_const_value attribute only in those cases where the given variable
16014 or parameter does not have a true "location" either in memory or in a
16015 register. This can happen (for example) when a constant is passed as an
16016 actual argument in a call to an inline function. (It's possible that
16017 these things can crop up in other ways also.) Note that one type of
16018 constant value which can be passed into an inlined function is a constant
16019 pointer. This can happen for example if an actual argument in an inlined
16020 function call evaluates to a compile-time constant address.
16022 CACHE_P is true if it is worth caching the location list for DECL,
16023 so that future calls can reuse it rather than regenerate it from scratch.
16024 This is true for BLOCK_NONLOCALIZED_VARS in inlined subroutines,
16025 since we will need to refer to them each time the function is inlined. */
16027 static bool
16028 add_location_or_const_value_attribute (dw_die_ref die, tree decl, bool cache_p,
16029 enum dwarf_attribute attr)
16031 rtx rtl;
16032 dw_loc_list_ref list;
16033 var_loc_list *loc_list;
16034 cached_dw_loc_list *cache;
16036 if (TREE_CODE (decl) == ERROR_MARK)
16037 return false;
16039 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
16040 || TREE_CODE (decl) == RESULT_DECL);
16042 /* Try to get some constant RTL for this decl, and use that as the value of
16043 the location. */
16045 rtl = rtl_for_decl_location (decl);
16046 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
16047 && add_const_value_attribute (die, rtl))
16048 return true;
16050 /* See if we have single element location list that is equivalent to
16051 a constant value. That way we are better to use add_const_value_attribute
16052 rather than expanding constant value equivalent. */
16053 loc_list = lookup_decl_loc (decl);
16054 if (loc_list
16055 && loc_list->first
16056 && loc_list->first->next == NULL
16057 && NOTE_P (loc_list->first->loc)
16058 && NOTE_VAR_LOCATION (loc_list->first->loc)
16059 && NOTE_VAR_LOCATION_LOC (loc_list->first->loc))
16061 struct var_loc_node *node;
16063 node = loc_list->first;
16064 rtl = NOTE_VAR_LOCATION_LOC (node->loc);
16065 if (GET_CODE (rtl) == EXPR_LIST)
16066 rtl = XEXP (rtl, 0);
16067 if ((CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
16068 && add_const_value_attribute (die, rtl))
16069 return true;
16071 /* If this decl is from BLOCK_NONLOCALIZED_VARS, we might need its
16072 list several times. See if we've already cached the contents. */
16073 list = NULL;
16074 if (loc_list == NULL || cached_dw_loc_list_table == NULL)
16075 cache_p = false;
16076 if (cache_p)
16078 cache = cached_dw_loc_list_table->find_with_hash (decl, DECL_UID (decl));
16079 if (cache)
16080 list = cache->loc_list;
16082 if (list == NULL)
16084 list = loc_list_from_tree (decl, decl_by_reference_p (decl) ? 0 : 2,
16085 NULL);
16086 /* It is usually worth caching this result if the decl is from
16087 BLOCK_NONLOCALIZED_VARS and if the list has at least two elements. */
16088 if (cache_p && list && list->dw_loc_next)
16090 cached_dw_loc_list **slot
16091 = cached_dw_loc_list_table->find_slot_with_hash (decl,
16092 DECL_UID (decl),
16093 INSERT);
16094 cache = ggc_cleared_alloc<cached_dw_loc_list> ();
16095 cache->decl_id = DECL_UID (decl);
16096 cache->loc_list = list;
16097 *slot = cache;
16100 if (list)
16102 add_AT_location_description (die, attr, list);
16103 return true;
16105 /* None of that worked, so it must not really have a location;
16106 try adding a constant value attribute from the DECL_INITIAL. */
16107 return tree_add_const_value_attribute_for_decl (die, decl);
16110 /* Add VARIABLE and DIE into deferred locations list. */
16112 static void
16113 defer_location (tree variable, dw_die_ref die)
16115 deferred_locations entry;
16116 entry.variable = variable;
16117 entry.die = die;
16118 vec_safe_push (deferred_locations_list, entry);
16121 /* Helper function for tree_add_const_value_attribute. Natively encode
16122 initializer INIT into an array. Return true if successful. */
16124 static bool
16125 native_encode_initializer (tree init, unsigned char *array, int size)
16127 tree type;
16129 if (init == NULL_TREE)
16130 return false;
16132 STRIP_NOPS (init);
16133 switch (TREE_CODE (init))
16135 case STRING_CST:
16136 type = TREE_TYPE (init);
16137 if (TREE_CODE (type) == ARRAY_TYPE)
16139 tree enttype = TREE_TYPE (type);
16140 machine_mode mode = TYPE_MODE (enttype);
16142 if (GET_MODE_CLASS (mode) != MODE_INT || GET_MODE_SIZE (mode) != 1)
16143 return false;
16144 if (int_size_in_bytes (type) != size)
16145 return false;
16146 if (size > TREE_STRING_LENGTH (init))
16148 memcpy (array, TREE_STRING_POINTER (init),
16149 TREE_STRING_LENGTH (init));
16150 memset (array + TREE_STRING_LENGTH (init),
16151 '\0', size - TREE_STRING_LENGTH (init));
16153 else
16154 memcpy (array, TREE_STRING_POINTER (init), size);
16155 return true;
16157 return false;
16158 case CONSTRUCTOR:
16159 type = TREE_TYPE (init);
16160 if (int_size_in_bytes (type) != size)
16161 return false;
16162 if (TREE_CODE (type) == ARRAY_TYPE)
16164 HOST_WIDE_INT min_index;
16165 unsigned HOST_WIDE_INT cnt;
16166 int curpos = 0, fieldsize;
16167 constructor_elt *ce;
16169 if (TYPE_DOMAIN (type) == NULL_TREE
16170 || !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type))))
16171 return false;
16173 fieldsize = int_size_in_bytes (TREE_TYPE (type));
16174 if (fieldsize <= 0)
16175 return false;
16177 min_index = tree_to_shwi (TYPE_MIN_VALUE (TYPE_DOMAIN (type)));
16178 memset (array, '\0', size);
16179 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
16181 tree val = ce->value;
16182 tree index = ce->index;
16183 int pos = curpos;
16184 if (index && TREE_CODE (index) == RANGE_EXPR)
16185 pos = (tree_to_shwi (TREE_OPERAND (index, 0)) - min_index)
16186 * fieldsize;
16187 else if (index)
16188 pos = (tree_to_shwi (index) - min_index) * fieldsize;
16190 if (val)
16192 STRIP_NOPS (val);
16193 if (!native_encode_initializer (val, array + pos, fieldsize))
16194 return false;
16196 curpos = pos + fieldsize;
16197 if (index && TREE_CODE (index) == RANGE_EXPR)
16199 int count = tree_to_shwi (TREE_OPERAND (index, 1))
16200 - tree_to_shwi (TREE_OPERAND (index, 0));
16201 while (count-- > 0)
16203 if (val)
16204 memcpy (array + curpos, array + pos, fieldsize);
16205 curpos += fieldsize;
16208 gcc_assert (curpos <= size);
16210 return true;
16212 else if (TREE_CODE (type) == RECORD_TYPE
16213 || TREE_CODE (type) == UNION_TYPE)
16215 tree field = NULL_TREE;
16216 unsigned HOST_WIDE_INT cnt;
16217 constructor_elt *ce;
16219 if (int_size_in_bytes (type) != size)
16220 return false;
16222 if (TREE_CODE (type) == RECORD_TYPE)
16223 field = TYPE_FIELDS (type);
16225 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
16227 tree val = ce->value;
16228 int pos, fieldsize;
16230 if (ce->index != 0)
16231 field = ce->index;
16233 if (val)
16234 STRIP_NOPS (val);
16236 if (field == NULL_TREE || DECL_BIT_FIELD (field))
16237 return false;
16239 if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
16240 && TYPE_DOMAIN (TREE_TYPE (field))
16241 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field))))
16242 return false;
16243 else if (DECL_SIZE_UNIT (field) == NULL_TREE
16244 || !tree_fits_shwi_p (DECL_SIZE_UNIT (field)))
16245 return false;
16246 fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
16247 pos = int_byte_position (field);
16248 gcc_assert (pos + fieldsize <= size);
16249 if (val
16250 && !native_encode_initializer (val, array + pos, fieldsize))
16251 return false;
16253 return true;
16255 return false;
16256 case VIEW_CONVERT_EXPR:
16257 case NON_LVALUE_EXPR:
16258 return native_encode_initializer (TREE_OPERAND (init, 0), array, size);
16259 default:
16260 return native_encode_expr (init, array, size) == size;
16264 /* Attach a DW_AT_const_value attribute to DIE. The value of the
16265 attribute is the const value T. */
16267 static bool
16268 tree_add_const_value_attribute (dw_die_ref die, tree t)
16270 tree init;
16271 tree type = TREE_TYPE (t);
16272 rtx rtl;
16274 if (!t || !TREE_TYPE (t) || TREE_TYPE (t) == error_mark_node)
16275 return false;
16277 init = t;
16278 gcc_assert (!DECL_P (init));
16280 rtl = rtl_for_decl_init (init, type);
16281 if (rtl)
16282 return add_const_value_attribute (die, rtl);
16283 /* If the host and target are sane, try harder. */
16284 else if (CHAR_BIT == 8 && BITS_PER_UNIT == 8
16285 && initializer_constant_valid_p (init, type))
16287 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (init));
16288 if (size > 0 && (int) size == size)
16290 unsigned char *array = ggc_cleared_vec_alloc<unsigned char> (size);
16292 if (native_encode_initializer (init, array, size))
16294 add_AT_vec (die, DW_AT_const_value, size, 1, array);
16295 return true;
16297 ggc_free (array);
16300 return false;
16303 /* Attach a DW_AT_const_value attribute to VAR_DIE. The value of the
16304 attribute is the const value of T, where T is an integral constant
16305 variable with static storage duration
16306 (so it can't be a PARM_DECL or a RESULT_DECL). */
16308 static bool
16309 tree_add_const_value_attribute_for_decl (dw_die_ref var_die, tree decl)
16312 if (!decl
16313 || (TREE_CODE (decl) != VAR_DECL
16314 && TREE_CODE (decl) != CONST_DECL)
16315 || (TREE_CODE (decl) == VAR_DECL
16316 && !TREE_STATIC (decl)))
16317 return false;
16319 if (TREE_READONLY (decl)
16320 && ! TREE_THIS_VOLATILE (decl)
16321 && DECL_INITIAL (decl))
16322 /* OK */;
16323 else
16324 return false;
16326 /* Don't add DW_AT_const_value if abstract origin already has one. */
16327 if (get_AT (var_die, DW_AT_const_value))
16328 return false;
16330 return tree_add_const_value_attribute (var_die, DECL_INITIAL (decl));
16333 /* Convert the CFI instructions for the current function into a
16334 location list. This is used for DW_AT_frame_base when we targeting
16335 a dwarf2 consumer that does not support the dwarf3
16336 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
16337 expressions. */
16339 static dw_loc_list_ref
16340 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
16342 int ix;
16343 dw_fde_ref fde;
16344 dw_loc_list_ref list, *list_tail;
16345 dw_cfi_ref cfi;
16346 dw_cfa_location last_cfa, next_cfa;
16347 const char *start_label, *last_label, *section;
16348 dw_cfa_location remember;
16350 fde = cfun->fde;
16351 gcc_assert (fde != NULL);
16353 section = secname_for_decl (current_function_decl);
16354 list_tail = &list;
16355 list = NULL;
16357 memset (&next_cfa, 0, sizeof (next_cfa));
16358 next_cfa.reg = INVALID_REGNUM;
16359 remember = next_cfa;
16361 start_label = fde->dw_fde_begin;
16363 /* ??? Bald assumption that the CIE opcode list does not contain
16364 advance opcodes. */
16365 FOR_EACH_VEC_ELT (*cie_cfi_vec, ix, cfi)
16366 lookup_cfa_1 (cfi, &next_cfa, &remember);
16368 last_cfa = next_cfa;
16369 last_label = start_label;
16371 if (fde->dw_fde_second_begin && fde->dw_fde_switch_cfi_index == 0)
16373 /* If the first partition contained no CFI adjustments, the
16374 CIE opcodes apply to the whole first partition. */
16375 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16376 fde->dw_fde_begin, fde->dw_fde_end, section);
16377 list_tail =&(*list_tail)->dw_loc_next;
16378 start_label = last_label = fde->dw_fde_second_begin;
16381 FOR_EACH_VEC_SAFE_ELT (fde->dw_fde_cfi, ix, cfi)
16383 switch (cfi->dw_cfi_opc)
16385 case DW_CFA_set_loc:
16386 case DW_CFA_advance_loc1:
16387 case DW_CFA_advance_loc2:
16388 case DW_CFA_advance_loc4:
16389 if (!cfa_equal_p (&last_cfa, &next_cfa))
16391 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16392 start_label, last_label, section);
16394 list_tail = &(*list_tail)->dw_loc_next;
16395 last_cfa = next_cfa;
16396 start_label = last_label;
16398 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
16399 break;
16401 case DW_CFA_advance_loc:
16402 /* The encoding is complex enough that we should never emit this. */
16403 gcc_unreachable ();
16405 default:
16406 lookup_cfa_1 (cfi, &next_cfa, &remember);
16407 break;
16409 if (ix + 1 == fde->dw_fde_switch_cfi_index)
16411 if (!cfa_equal_p (&last_cfa, &next_cfa))
16413 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16414 start_label, last_label, section);
16416 list_tail = &(*list_tail)->dw_loc_next;
16417 last_cfa = next_cfa;
16418 start_label = last_label;
16420 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16421 start_label, fde->dw_fde_end, section);
16422 list_tail = &(*list_tail)->dw_loc_next;
16423 start_label = last_label = fde->dw_fde_second_begin;
16427 if (!cfa_equal_p (&last_cfa, &next_cfa))
16429 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16430 start_label, last_label, section);
16431 list_tail = &(*list_tail)->dw_loc_next;
16432 start_label = last_label;
16435 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
16436 start_label,
16437 fde->dw_fde_second_begin
16438 ? fde->dw_fde_second_end : fde->dw_fde_end,
16439 section);
16441 if (list && list->dw_loc_next)
16442 gen_llsym (list);
16444 return list;
16447 /* Compute a displacement from the "steady-state frame pointer" to the
16448 frame base (often the same as the CFA), and store it in
16449 frame_pointer_fb_offset. OFFSET is added to the displacement
16450 before the latter is negated. */
16452 static void
16453 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
16455 rtx reg, elim;
16457 #ifdef FRAME_POINTER_CFA_OFFSET
16458 reg = frame_pointer_rtx;
16459 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
16460 #else
16461 reg = arg_pointer_rtx;
16462 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
16463 #endif
16465 elim = (ira_use_lra_p
16466 ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
16467 : eliminate_regs (reg, VOIDmode, NULL_RTX));
16468 if (GET_CODE (elim) == PLUS)
16470 offset += INTVAL (XEXP (elim, 1));
16471 elim = XEXP (elim, 0);
16474 frame_pointer_fb_offset = -offset;
16476 /* ??? AVR doesn't set up valid eliminations when there is no stack frame
16477 in which to eliminate. This is because it's stack pointer isn't
16478 directly accessible as a register within the ISA. To work around
16479 this, assume that while we cannot provide a proper value for
16480 frame_pointer_fb_offset, we won't need one either. */
16481 frame_pointer_fb_offset_valid
16482 = ((SUPPORTS_STACK_ALIGNMENT
16483 && (elim == hard_frame_pointer_rtx
16484 || elim == stack_pointer_rtx))
16485 || elim == (frame_pointer_needed
16486 ? hard_frame_pointer_rtx
16487 : stack_pointer_rtx));
16490 /* Generate a DW_AT_name attribute given some string value to be included as
16491 the value of the attribute. */
16493 static void
16494 add_name_attribute (dw_die_ref die, const char *name_string)
16496 if (name_string != NULL && *name_string != 0)
16498 if (demangle_name_func)
16499 name_string = (*demangle_name_func) (name_string);
16501 add_AT_string (die, DW_AT_name, name_string);
16505 /* Retrieve the descriptive type of TYPE, if any, make sure it has a
16506 DIE and attach a DW_AT_GNAT_descriptive_type attribute to the DIE
16507 of TYPE accordingly.
16509 ??? This is a temporary measure until after we're able to generate
16510 regular DWARF for the complex Ada type system. */
16512 static void
16513 add_gnat_descriptive_type_attribute (dw_die_ref die, tree type,
16514 dw_die_ref context_die)
16516 tree dtype;
16517 dw_die_ref dtype_die;
16519 if (!lang_hooks.types.descriptive_type)
16520 return;
16522 dtype = lang_hooks.types.descriptive_type (type);
16523 if (!dtype)
16524 return;
16526 dtype_die = lookup_type_die (dtype);
16527 if (!dtype_die)
16529 gen_type_die (dtype, context_die);
16530 dtype_die = lookup_type_die (dtype);
16531 gcc_assert (dtype_die);
16534 add_AT_die_ref (die, DW_AT_GNAT_descriptive_type, dtype_die);
16537 /* Retrieve the comp_dir string suitable for use with DW_AT_comp_dir. */
16539 static const char *
16540 comp_dir_string (void)
16542 const char *wd;
16543 char *wd1;
16544 static const char *cached_wd = NULL;
16546 if (cached_wd != NULL)
16547 return cached_wd;
16549 wd = get_src_pwd ();
16550 if (wd == NULL)
16551 return NULL;
16553 if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR)
16555 int wdlen;
16557 wdlen = strlen (wd);
16558 wd1 = ggc_vec_alloc<char> (wdlen + 2);
16559 strcpy (wd1, wd);
16560 wd1 [wdlen] = DIR_SEPARATOR;
16561 wd1 [wdlen + 1] = 0;
16562 wd = wd1;
16565 cached_wd = remap_debug_filename (wd);
16566 return cached_wd;
16569 /* Generate a DW_AT_comp_dir attribute for DIE. */
16571 static void
16572 add_comp_dir_attribute (dw_die_ref die)
16574 const char * wd = comp_dir_string ();
16575 if (wd != NULL)
16576 add_AT_string (die, DW_AT_comp_dir, wd);
16579 /* Given a tree node VALUE describing a scalar attribute ATTR (i.e. a bound, a
16580 pointer computation, ...), output a representation for that bound according
16581 to the accepted FORMS (see enum dw_scalar_form) and add it to DIE. See
16582 loc_list_from_tree for the meaning of CONTEXT. */
16584 static void
16585 add_scalar_info (dw_die_ref die, enum dwarf_attribute attr, tree value,
16586 int forms, const struct loc_descr_context *context)
16588 dw_die_ref ctx, decl_die;
16589 dw_loc_list_ref list;
16591 bool strip_conversions = true;
16593 while (strip_conversions)
16594 switch (TREE_CODE (value))
16596 case ERROR_MARK:
16597 case SAVE_EXPR:
16598 return;
16600 CASE_CONVERT:
16601 case VIEW_CONVERT_EXPR:
16602 value = TREE_OPERAND (value, 0);
16603 break;
16605 default:
16606 strip_conversions = false;
16607 break;
16610 /* If possible and permitted, output the attribute as a constant. */
16611 if ((forms & dw_scalar_form_constant) != 0
16612 && TREE_CODE (value) == INTEGER_CST)
16614 unsigned int prec = simple_type_size_in_bits (TREE_TYPE (value));
16616 /* If HOST_WIDE_INT is big enough then represent the bound as
16617 a constant value. We need to choose a form based on
16618 whether the type is signed or unsigned. We cannot just
16619 call add_AT_unsigned if the value itself is positive
16620 (add_AT_unsigned might add the unsigned value encoded as
16621 DW_FORM_data[1248]). Some DWARF consumers will lookup the
16622 bounds type and then sign extend any unsigned values found
16623 for signed types. This is needed only for
16624 DW_AT_{lower,upper}_bound, since for most other attributes,
16625 consumers will treat DW_FORM_data[1248] as unsigned values,
16626 regardless of the underlying type. */
16627 if (prec <= HOST_BITS_PER_WIDE_INT
16628 || tree_fits_uhwi_p (value))
16630 if (TYPE_UNSIGNED (TREE_TYPE (value)))
16631 add_AT_unsigned (die, attr, TREE_INT_CST_LOW (value));
16632 else
16633 add_AT_int (die, attr, TREE_INT_CST_LOW (value));
16635 else
16636 /* Otherwise represent the bound as an unsigned value with
16637 the precision of its type. The precision and signedness
16638 of the type will be necessary to re-interpret it
16639 unambiguously. */
16640 add_AT_wide (die, attr, value);
16641 return;
16644 /* Otherwise, if it's possible and permitted too, output a reference to
16645 another DIE. */
16646 if ((forms & dw_scalar_form_reference) != 0)
16648 tree decl = NULL_TREE;
16650 /* Some type attributes reference an outer type. For instance, the upper
16651 bound of an array may reference an embedding record (this happens in
16652 Ada). */
16653 if (TREE_CODE (value) == COMPONENT_REF
16654 && TREE_CODE (TREE_OPERAND (value, 0)) == PLACEHOLDER_EXPR
16655 && TREE_CODE (TREE_OPERAND (value, 1)) == FIELD_DECL)
16656 decl = TREE_OPERAND (value, 1);
16658 else if (TREE_CODE (value) == VAR_DECL
16659 || TREE_CODE (value) == PARM_DECL
16660 || TREE_CODE (value) == RESULT_DECL)
16661 decl = value;
16663 if (decl != NULL_TREE)
16665 dw_die_ref decl_die = lookup_decl_die (decl);
16667 /* ??? Can this happen, or should the variable have been bound
16668 first? Probably it can, since I imagine that we try to create
16669 the types of parameters in the order in which they exist in
16670 the list, and won't have created a forward reference to a
16671 later parameter. */
16672 if (decl_die != NULL)
16674 add_AT_die_ref (die, attr, decl_die);
16675 return;
16680 /* Last chance: try to create a stack operation procedure to evaluate the
16681 value. Do nothing if even that is not possible or permitted. */
16682 if ((forms & dw_scalar_form_exprloc) == 0)
16683 return;
16685 list = loc_list_from_tree (value, 2, context);
16686 if (list == NULL || single_element_loc_list_p (list))
16688 /* If this attribute is not a reference nor constant, it is
16689 a DWARF expression rather than location description. For that
16690 loc_list_from_tree (value, 0, &context) is needed. */
16691 dw_loc_list_ref list2 = loc_list_from_tree (value, 0, context);
16692 if (list2 && single_element_loc_list_p (list2))
16694 add_AT_loc (die, attr, list2->expr);
16695 return;
16699 /* If that failed to give a single element location list, fall back to
16700 outputting this as a reference... still if permitted. */
16701 if (list == NULL || (forms & dw_scalar_form_reference) == 0)
16702 return;
16704 if (current_function_decl == 0)
16705 ctx = comp_unit_die ();
16706 else
16707 ctx = lookup_decl_die (current_function_decl);
16709 decl_die = new_die (DW_TAG_variable, ctx, value);
16710 add_AT_flag (decl_die, DW_AT_artificial, 1);
16711 add_type_attribute (decl_die, TREE_TYPE (value), TYPE_QUAL_CONST, ctx);
16712 add_AT_location_description (decl_die, DW_AT_location, list);
16713 add_AT_die_ref (die, attr, decl_die);
16716 /* Return the default for DW_AT_lower_bound, or -1 if there is not any
16717 default. */
16719 static int
16720 lower_bound_default (void)
16722 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
16724 case DW_LANG_C:
16725 case DW_LANG_C89:
16726 case DW_LANG_C99:
16727 case DW_LANG_C11:
16728 case DW_LANG_C_plus_plus:
16729 case DW_LANG_C_plus_plus_11:
16730 case DW_LANG_C_plus_plus_14:
16731 case DW_LANG_ObjC:
16732 case DW_LANG_ObjC_plus_plus:
16733 case DW_LANG_Java:
16734 return 0;
16735 case DW_LANG_Fortran77:
16736 case DW_LANG_Fortran90:
16737 case DW_LANG_Fortran95:
16738 case DW_LANG_Fortran03:
16739 case DW_LANG_Fortran08:
16740 return 1;
16741 case DW_LANG_UPC:
16742 case DW_LANG_D:
16743 case DW_LANG_Python:
16744 return dwarf_version >= 4 ? 0 : -1;
16745 case DW_LANG_Ada95:
16746 case DW_LANG_Ada83:
16747 case DW_LANG_Cobol74:
16748 case DW_LANG_Cobol85:
16749 case DW_LANG_Pascal83:
16750 case DW_LANG_Modula2:
16751 case DW_LANG_PLI:
16752 return dwarf_version >= 4 ? 1 : -1;
16753 default:
16754 return -1;
16758 /* Given a tree node describing an array bound (either lower or upper) output
16759 a representation for that bound. */
16761 static void
16762 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr,
16763 tree bound, const struct loc_descr_context *context)
16765 int dflt;
16767 while (1)
16768 switch (TREE_CODE (bound))
16770 /* Strip all conversions. */
16771 CASE_CONVERT:
16772 case VIEW_CONVERT_EXPR:
16773 bound = TREE_OPERAND (bound, 0);
16774 break;
16776 /* All fixed-bounds are represented by INTEGER_CST nodes. Lower bounds
16777 are even omitted when they are the default. */
16778 case INTEGER_CST:
16779 /* If the value for this bound is the default one, we can even omit the
16780 attribute. */
16781 if (bound_attr == DW_AT_lower_bound
16782 && tree_fits_shwi_p (bound)
16783 && (dflt = lower_bound_default ()) != -1
16784 && tree_to_shwi (bound) == dflt)
16785 return;
16787 /* FALLTHRU */
16789 default:
16790 add_scalar_info (subrange_die, bound_attr, bound,
16791 dw_scalar_form_constant
16792 | dw_scalar_form_exprloc
16793 | dw_scalar_form_reference,
16794 context);
16795 return;
16799 /* Add subscript info to TYPE_DIE, describing an array TYPE, collapsing
16800 possibly nested array subscripts in a flat sequence if COLLAPSE_P is true.
16801 Note that the block of subscript information for an array type also
16802 includes information about the element type of the given array type. */
16804 static void
16805 add_subscript_info (dw_die_ref type_die, tree type, bool collapse_p)
16807 unsigned dimension_number;
16808 tree lower, upper;
16809 dw_die_ref subrange_die;
16811 for (dimension_number = 0;
16812 TREE_CODE (type) == ARRAY_TYPE && (dimension_number == 0 || collapse_p);
16813 type = TREE_TYPE (type), dimension_number++)
16815 tree domain = TYPE_DOMAIN (type);
16817 if (TYPE_STRING_FLAG (type) && is_fortran () && dimension_number > 0)
16818 break;
16820 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
16821 and (in GNU C only) variable bounds. Handle all three forms
16822 here. */
16823 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
16824 if (domain)
16826 /* We have an array type with specified bounds. */
16827 lower = TYPE_MIN_VALUE (domain);
16828 upper = TYPE_MAX_VALUE (domain);
16830 /* Define the index type. */
16831 if (TREE_TYPE (domain))
16833 /* ??? This is probably an Ada unnamed subrange type. Ignore the
16834 TREE_TYPE field. We can't emit debug info for this
16835 because it is an unnamed integral type. */
16836 if (TREE_CODE (domain) == INTEGER_TYPE
16837 && TYPE_NAME (domain) == NULL_TREE
16838 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
16839 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
16841 else
16842 add_type_attribute (subrange_die, TREE_TYPE (domain),
16843 TYPE_UNQUALIFIED, type_die);
16846 /* ??? If upper is NULL, the array has unspecified length,
16847 but it does have a lower bound. This happens with Fortran
16848 dimension arr(N:*)
16849 Since the debugger is definitely going to need to know N
16850 to produce useful results, go ahead and output the lower
16851 bound solo, and hope the debugger can cope. */
16853 add_bound_info (subrange_die, DW_AT_lower_bound, lower, NULL);
16854 if (upper)
16855 add_bound_info (subrange_die, DW_AT_upper_bound, upper, NULL);
16858 /* Otherwise we have an array type with an unspecified length. The
16859 DWARF-2 spec does not say how to handle this; let's just leave out the
16860 bounds. */
16864 /* Add a DW_AT_byte_size attribute to DIE with TREE_NODE's size. */
16866 static void
16867 add_byte_size_attribute (dw_die_ref die, tree tree_node)
16869 dw_die_ref decl_die;
16870 HOST_WIDE_INT size;
16872 switch (TREE_CODE (tree_node))
16874 case ERROR_MARK:
16875 size = 0;
16876 break;
16877 case ENUMERAL_TYPE:
16878 case RECORD_TYPE:
16879 case UNION_TYPE:
16880 case QUAL_UNION_TYPE:
16881 if (TREE_CODE (TYPE_SIZE_UNIT (tree_node)) == VAR_DECL
16882 && (decl_die = lookup_decl_die (TYPE_SIZE_UNIT (tree_node))))
16884 add_AT_die_ref (die, DW_AT_byte_size, decl_die);
16885 return;
16887 size = int_size_in_bytes (tree_node);
16888 break;
16889 case FIELD_DECL:
16890 /* For a data member of a struct or union, the DW_AT_byte_size is
16891 generally given as the number of bytes normally allocated for an
16892 object of the *declared* type of the member itself. This is true
16893 even for bit-fields. */
16894 size = int_size_in_bytes (field_type (tree_node));
16895 break;
16896 default:
16897 gcc_unreachable ();
16900 /* Note that `size' might be -1 when we get to this point. If it is, that
16901 indicates that the byte size of the entity in question is variable. We
16902 have no good way of expressing this fact in Dwarf at the present time,
16903 when location description was not used by the caller code instead. */
16904 if (size >= 0)
16905 add_AT_unsigned (die, DW_AT_byte_size, size);
16908 /* For a FIELD_DECL node which represents a bit-field, output an attribute
16909 which specifies the distance in bits from the highest order bit of the
16910 "containing object" for the bit-field to the highest order bit of the
16911 bit-field itself.
16913 For any given bit-field, the "containing object" is a hypothetical object
16914 (of some integral or enum type) within which the given bit-field lives. The
16915 type of this hypothetical "containing object" is always the same as the
16916 declared type of the individual bit-field itself. The determination of the
16917 exact location of the "containing object" for a bit-field is rather
16918 complicated. It's handled by the `field_byte_offset' function (above).
16920 Note that it is the size (in bytes) of the hypothetical "containing object"
16921 which will be given in the DW_AT_byte_size attribute for this bit-field.
16922 (See `byte_size_attribute' above). */
16924 static inline void
16925 add_bit_offset_attribute (dw_die_ref die, tree decl)
16927 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
16928 tree type = DECL_BIT_FIELD_TYPE (decl);
16929 HOST_WIDE_INT bitpos_int;
16930 HOST_WIDE_INT highest_order_object_bit_offset;
16931 HOST_WIDE_INT highest_order_field_bit_offset;
16932 HOST_WIDE_INT bit_offset;
16934 /* Must be a field and a bit field. */
16935 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
16937 /* We can't yet handle bit-fields whose offsets are variable, so if we
16938 encounter such things, just return without generating any attribute
16939 whatsoever. Likewise for variable or too large size. */
16940 if (! tree_fits_shwi_p (bit_position (decl))
16941 || ! tree_fits_uhwi_p (DECL_SIZE (decl)))
16942 return;
16944 bitpos_int = int_bit_position (decl);
16946 /* Note that the bit offset is always the distance (in bits) from the
16947 highest-order bit of the "containing object" to the highest-order bit of
16948 the bit-field itself. Since the "high-order end" of any object or field
16949 is different on big-endian and little-endian machines, the computation
16950 below must take account of these differences. */
16951 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
16952 highest_order_field_bit_offset = bitpos_int;
16954 if (! BYTES_BIG_ENDIAN)
16956 highest_order_field_bit_offset += tree_to_shwi (DECL_SIZE (decl));
16957 highest_order_object_bit_offset += simple_type_size_in_bits (type);
16960 bit_offset
16961 = (! BYTES_BIG_ENDIAN
16962 ? highest_order_object_bit_offset - highest_order_field_bit_offset
16963 : highest_order_field_bit_offset - highest_order_object_bit_offset);
16965 if (bit_offset < 0)
16966 add_AT_int (die, DW_AT_bit_offset, bit_offset);
16967 else
16968 add_AT_unsigned (die, DW_AT_bit_offset, (unsigned HOST_WIDE_INT) bit_offset);
16971 /* For a FIELD_DECL node which represents a bit field, output an attribute
16972 which specifies the length in bits of the given field. */
16974 static inline void
16975 add_bit_size_attribute (dw_die_ref die, tree decl)
16977 /* Must be a field and a bit field. */
16978 gcc_assert (TREE_CODE (decl) == FIELD_DECL
16979 && DECL_BIT_FIELD_TYPE (decl));
16981 if (tree_fits_uhwi_p (DECL_SIZE (decl)))
16982 add_AT_unsigned (die, DW_AT_bit_size, tree_to_uhwi (DECL_SIZE (decl)));
16985 /* If the compiled language is ANSI C, then add a 'prototyped'
16986 attribute, if arg types are given for the parameters of a function. */
16988 static inline void
16989 add_prototyped_attribute (dw_die_ref die, tree func_type)
16991 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
16993 case DW_LANG_C:
16994 case DW_LANG_C89:
16995 case DW_LANG_C99:
16996 case DW_LANG_C11:
16997 case DW_LANG_ObjC:
16998 if (prototype_p (func_type))
16999 add_AT_flag (die, DW_AT_prototyped, 1);
17000 break;
17001 default:
17002 break;
17006 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
17007 by looking in either the type declaration or object declaration
17008 equate table. */
17010 static inline dw_die_ref
17011 add_abstract_origin_attribute (dw_die_ref die, tree origin)
17013 dw_die_ref origin_die = NULL;
17015 if (TREE_CODE (origin) != FUNCTION_DECL)
17017 /* We may have gotten separated from the block for the inlined
17018 function, if we're in an exception handler or some such; make
17019 sure that the abstract function has been written out.
17021 Doing this for nested functions is wrong, however; functions are
17022 distinct units, and our context might not even be inline. */
17023 tree fn = origin;
17025 if (TYPE_P (fn))
17026 fn = TYPE_STUB_DECL (fn);
17028 fn = decl_function_context (fn);
17029 if (fn)
17030 dwarf2out_abstract_function (fn);
17033 if (DECL_P (origin))
17034 origin_die = lookup_decl_die (origin);
17035 else if (TYPE_P (origin))
17036 origin_die = lookup_type_die (origin);
17038 /* XXX: Functions that are never lowered don't always have correct block
17039 trees (in the case of java, they simply have no block tree, in some other
17040 languages). For these functions, there is nothing we can really do to
17041 output correct debug info for inlined functions in all cases. Rather
17042 than die, we'll just produce deficient debug info now, in that we will
17043 have variables without a proper abstract origin. In the future, when all
17044 functions are lowered, we should re-add a gcc_assert (origin_die)
17045 here. */
17047 if (origin_die)
17048 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
17049 return origin_die;
17052 /* We do not currently support the pure_virtual attribute. */
17054 static inline void
17055 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
17057 if (DECL_VINDEX (func_decl))
17059 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
17061 if (tree_fits_shwi_p (DECL_VINDEX (func_decl)))
17062 add_AT_loc (die, DW_AT_vtable_elem_location,
17063 new_loc_descr (DW_OP_constu,
17064 tree_to_shwi (DECL_VINDEX (func_decl)),
17065 0));
17067 /* GNU extension: Record what type this method came from originally. */
17068 if (debug_info_level > DINFO_LEVEL_TERSE
17069 && DECL_CONTEXT (func_decl))
17070 add_AT_die_ref (die, DW_AT_containing_type,
17071 lookup_type_die (DECL_CONTEXT (func_decl)));
17075 /* Add a DW_AT_linkage_name or DW_AT_MIPS_linkage_name attribute for the
17076 given decl. This used to be a vendor extension until after DWARF 4
17077 standardized it. */
17079 static void
17080 add_linkage_attr (dw_die_ref die, tree decl)
17082 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
17084 /* Mimic what assemble_name_raw does with a leading '*'. */
17085 if (name[0] == '*')
17086 name = &name[1];
17088 if (dwarf_version >= 4)
17089 add_AT_string (die, DW_AT_linkage_name, name);
17090 else
17091 add_AT_string (die, DW_AT_MIPS_linkage_name, name);
17094 /* Add source coordinate attributes for the given decl. */
17096 static void
17097 add_src_coords_attributes (dw_die_ref die, tree decl)
17099 expanded_location s;
17101 if (LOCATION_LOCUS (DECL_SOURCE_LOCATION (decl)) == UNKNOWN_LOCATION)
17102 return;
17103 s = expand_location (DECL_SOURCE_LOCATION (decl));
17104 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
17105 add_AT_unsigned (die, DW_AT_decl_line, s.line);
17108 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl. */
17110 static void
17111 add_linkage_name (dw_die_ref die, tree decl)
17113 if (debug_info_level > DINFO_LEVEL_NONE
17114 && (TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
17115 && TREE_PUBLIC (decl)
17116 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
17117 && die->die_tag != DW_TAG_member)
17119 /* Defer until we have an assembler name set. */
17120 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
17122 limbo_die_node *asm_name;
17124 asm_name = ggc_cleared_alloc<limbo_die_node> ();
17125 asm_name->die = die;
17126 asm_name->created_for = decl;
17127 asm_name->next = deferred_asm_name;
17128 deferred_asm_name = asm_name;
17130 else if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
17131 add_linkage_attr (die, decl);
17135 /* Add a DW_AT_name attribute and source coordinate attribute for the
17136 given decl, but only if it actually has a name. */
17138 static void
17139 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
17141 tree decl_name;
17143 decl_name = DECL_NAME (decl);
17144 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
17146 const char *name = dwarf2_name (decl, 0);
17147 if (name)
17148 add_name_attribute (die, name);
17149 if (! DECL_ARTIFICIAL (decl))
17150 add_src_coords_attributes (die, decl);
17152 add_linkage_name (die, decl);
17155 #ifdef VMS_DEBUGGING_INFO
17156 /* Get the function's name, as described by its RTL. This may be different
17157 from the DECL_NAME name used in the source file. */
17158 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
17160 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
17161 XEXP (DECL_RTL (decl), 0), false);
17162 vec_safe_push (used_rtx_array, XEXP (DECL_RTL (decl), 0));
17164 #endif /* VMS_DEBUGGING_INFO */
17167 #ifdef VMS_DEBUGGING_INFO
17168 /* Output the debug main pointer die for VMS */
17170 void
17171 dwarf2out_vms_debug_main_pointer (void)
17173 char label[MAX_ARTIFICIAL_LABEL_BYTES];
17174 dw_die_ref die;
17176 /* Allocate the VMS debug main subprogram die. */
17177 die = ggc_cleared_alloc<die_node> ();
17178 die->die_tag = DW_TAG_subprogram;
17179 add_name_attribute (die, VMS_DEBUG_MAIN_POINTER);
17180 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
17181 current_function_funcdef_no);
17182 add_AT_lbl_id (die, DW_AT_entry_pc, label);
17184 /* Make it the first child of comp_unit_die (). */
17185 die->die_parent = comp_unit_die ();
17186 if (comp_unit_die ()->die_child)
17188 die->die_sib = comp_unit_die ()->die_child->die_sib;
17189 comp_unit_die ()->die_child->die_sib = die;
17191 else
17193 die->die_sib = die;
17194 comp_unit_die ()->die_child = die;
17197 #endif /* VMS_DEBUGGING_INFO */
17199 /* Push a new declaration scope. */
17201 static void
17202 push_decl_scope (tree scope)
17204 vec_safe_push (decl_scope_table, scope);
17207 /* Pop a declaration scope. */
17209 static inline void
17210 pop_decl_scope (void)
17212 decl_scope_table->pop ();
17215 /* walk_tree helper function for uses_local_type, below. */
17217 static tree
17218 uses_local_type_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
17220 if (!TYPE_P (*tp))
17221 *walk_subtrees = 0;
17222 else
17224 tree name = TYPE_NAME (*tp);
17225 if (name && DECL_P (name) && decl_function_context (name))
17226 return *tp;
17228 return NULL_TREE;
17231 /* If TYPE involves a function-local type (including a local typedef to a
17232 non-local type), returns that type; otherwise returns NULL_TREE. */
17234 static tree
17235 uses_local_type (tree type)
17237 tree used = walk_tree_without_duplicates (&type, uses_local_type_r, NULL);
17238 return used;
17241 /* Return the DIE for the scope that immediately contains this type.
17242 Non-named types that do not involve a function-local type get global
17243 scope. Named types nested in namespaces or other types get their
17244 containing scope. All other types (i.e. function-local named types) get
17245 the current active scope. */
17247 static dw_die_ref
17248 scope_die_for (tree t, dw_die_ref context_die)
17250 dw_die_ref scope_die = NULL;
17251 tree containing_scope;
17253 /* Non-types always go in the current scope. */
17254 gcc_assert (TYPE_P (t));
17256 /* Use the scope of the typedef, rather than the scope of the type
17257 it refers to. */
17258 if (TYPE_NAME (t) && DECL_P (TYPE_NAME (t)))
17259 containing_scope = DECL_CONTEXT (TYPE_NAME (t));
17260 else
17261 containing_scope = TYPE_CONTEXT (t);
17263 /* Use the containing namespace if there is one. */
17264 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
17266 if (context_die == lookup_decl_die (containing_scope))
17267 /* OK */;
17268 else if (debug_info_level > DINFO_LEVEL_TERSE)
17269 context_die = get_context_die (containing_scope);
17270 else
17271 containing_scope = NULL_TREE;
17274 /* Ignore function type "scopes" from the C frontend. They mean that
17275 a tagged type is local to a parmlist of a function declarator, but
17276 that isn't useful to DWARF. */
17277 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
17278 containing_scope = NULL_TREE;
17280 if (SCOPE_FILE_SCOPE_P (containing_scope))
17282 /* If T uses a local type keep it local as well, to avoid references
17283 to function-local DIEs from outside the function. */
17284 if (current_function_decl && uses_local_type (t))
17285 scope_die = context_die;
17286 else
17287 scope_die = comp_unit_die ();
17289 else if (TYPE_P (containing_scope))
17291 /* For types, we can just look up the appropriate DIE. */
17292 if (debug_info_level > DINFO_LEVEL_TERSE)
17293 scope_die = get_context_die (containing_scope);
17294 else
17296 scope_die = lookup_type_die_strip_naming_typedef (containing_scope);
17297 if (scope_die == NULL)
17298 scope_die = comp_unit_die ();
17301 else
17302 scope_die = context_die;
17304 return scope_die;
17307 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
17309 static inline int
17310 local_scope_p (dw_die_ref context_die)
17312 for (; context_die; context_die = context_die->die_parent)
17313 if (context_die->die_tag == DW_TAG_inlined_subroutine
17314 || context_die->die_tag == DW_TAG_subprogram)
17315 return 1;
17317 return 0;
17320 /* Returns nonzero if CONTEXT_DIE is a class. */
17322 static inline int
17323 class_scope_p (dw_die_ref context_die)
17325 return (context_die
17326 && (context_die->die_tag == DW_TAG_structure_type
17327 || context_die->die_tag == DW_TAG_class_type
17328 || context_die->die_tag == DW_TAG_interface_type
17329 || context_die->die_tag == DW_TAG_union_type));
17332 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
17333 whether or not to treat a DIE in this context as a declaration. */
17335 static inline int
17336 class_or_namespace_scope_p (dw_die_ref context_die)
17338 return (class_scope_p (context_die)
17339 || (context_die && context_die->die_tag == DW_TAG_namespace));
17342 /* Many forms of DIEs require a "type description" attribute. This
17343 routine locates the proper "type descriptor" die for the type given
17344 by 'type' plus any additional qualifiers given by 'cv_quals', and
17345 adds a DW_AT_type attribute below the given die. */
17347 static void
17348 add_type_attribute (dw_die_ref object_die, tree type, int cv_quals,
17349 dw_die_ref context_die)
17351 enum tree_code code = TREE_CODE (type);
17352 dw_die_ref type_die = NULL;
17354 /* ??? If this type is an unnamed subrange type of an integral, floating-point
17355 or fixed-point type, use the inner type. This is because we have no
17356 support for unnamed types in base_type_die. This can happen if this is
17357 an Ada subrange type. Correct solution is emit a subrange type die. */
17358 if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
17359 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
17360 type = TREE_TYPE (type), code = TREE_CODE (type);
17362 if (code == ERROR_MARK
17363 /* Handle a special case. For functions whose return type is void, we
17364 generate *no* type attribute. (Note that no object may have type
17365 `void', so this only applies to function return types). */
17366 || code == VOID_TYPE)
17367 return;
17369 type_die = modified_type_die (type,
17370 cv_quals | TYPE_QUALS_NO_ADDR_SPACE (type),
17371 context_die);
17373 if (type_die != NULL)
17374 add_AT_die_ref (object_die, DW_AT_type, type_die);
17377 /* Given an object die, add the calling convention attribute for the
17378 function call type. */
17379 static void
17380 add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
17382 enum dwarf_calling_convention value = DW_CC_normal;
17384 value = ((enum dwarf_calling_convention)
17385 targetm.dwarf_calling_convention (TREE_TYPE (decl)));
17387 if (is_fortran ()
17388 && !strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "MAIN__"))
17390 /* DWARF 2 doesn't provide a way to identify a program's source-level
17391 entry point. DW_AT_calling_convention attributes are only meant
17392 to describe functions' calling conventions. However, lacking a
17393 better way to signal the Fortran main program, we used this for
17394 a long time, following existing custom. Now, DWARF 4 has
17395 DW_AT_main_subprogram, which we add below, but some tools still
17396 rely on the old way, which we thus keep. */
17397 value = DW_CC_program;
17399 if (dwarf_version >= 4 || !dwarf_strict)
17400 add_AT_flag (subr_die, DW_AT_main_subprogram, 1);
17403 /* Only add the attribute if the backend requests it, and
17404 is not DW_CC_normal. */
17405 if (value && (value != DW_CC_normal))
17406 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
17409 /* Given a tree pointer to a struct, class, union, or enum type node, return
17410 a pointer to the (string) tag name for the given type, or zero if the type
17411 was declared without a tag. */
17413 static const char *
17414 type_tag (const_tree type)
17416 const char *name = 0;
17418 if (TYPE_NAME (type) != 0)
17420 tree t = 0;
17422 /* Find the IDENTIFIER_NODE for the type name. */
17423 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE
17424 && !TYPE_NAMELESS (type))
17425 t = TYPE_NAME (type);
17427 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
17428 a TYPE_DECL node, regardless of whether or not a `typedef' was
17429 involved. */
17430 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
17431 && ! DECL_IGNORED_P (TYPE_NAME (type)))
17433 /* We want to be extra verbose. Don't call dwarf_name if
17434 DECL_NAME isn't set. The default hook for decl_printable_name
17435 doesn't like that, and in this context it's correct to return
17436 0, instead of "<anonymous>" or the like. */
17437 if (DECL_NAME (TYPE_NAME (type))
17438 && !DECL_NAMELESS (TYPE_NAME (type)))
17439 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
17442 /* Now get the name as a string, or invent one. */
17443 if (!name && t != 0)
17444 name = IDENTIFIER_POINTER (t);
17447 return (name == 0 || *name == '\0') ? 0 : name;
17450 /* Return the type associated with a data member, make a special check
17451 for bit field types. */
17453 static inline tree
17454 member_declared_type (const_tree member)
17456 return (DECL_BIT_FIELD_TYPE (member)
17457 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
17460 /* Get the decl's label, as described by its RTL. This may be different
17461 from the DECL_NAME name used in the source file. */
17463 #if 0
17464 static const char *
17465 decl_start_label (tree decl)
17467 rtx x;
17468 const char *fnname;
17470 x = DECL_RTL (decl);
17471 gcc_assert (MEM_P (x));
17473 x = XEXP (x, 0);
17474 gcc_assert (GET_CODE (x) == SYMBOL_REF);
17476 fnname = XSTR (x, 0);
17477 return fnname;
17479 #endif
17481 /* These routines generate the internal representation of the DIE's for
17482 the compilation unit. Debugging information is collected by walking
17483 the declaration trees passed in from dwarf2out_decl(). */
17485 static void
17486 gen_array_type_die (tree type, dw_die_ref context_die)
17488 dw_die_ref scope_die = scope_die_for (type, context_die);
17489 dw_die_ref array_die;
17491 /* GNU compilers represent multidimensional array types as sequences of one
17492 dimensional array types whose element types are themselves array types.
17493 We sometimes squish that down to a single array_type DIE with multiple
17494 subscripts in the Dwarf debugging info. The draft Dwarf specification
17495 say that we are allowed to do this kind of compression in C, because
17496 there is no difference between an array of arrays and a multidimensional
17497 array. We don't do this for Ada to remain as close as possible to the
17498 actual representation, which is especially important against the language
17499 flexibilty wrt arrays of variable size. */
17501 bool collapse_nested_arrays = !is_ada ();
17502 tree element_type;
17504 /* Emit DW_TAG_string_type for Fortran character types (with kind 1 only, as
17505 DW_TAG_string_type doesn't have DW_AT_type attribute). */
17506 if (TYPE_STRING_FLAG (type)
17507 && TREE_CODE (type) == ARRAY_TYPE
17508 && is_fortran ()
17509 && TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (char_type_node))
17511 HOST_WIDE_INT size;
17513 array_die = new_die (DW_TAG_string_type, scope_die, type);
17514 add_name_attribute (array_die, type_tag (type));
17515 equate_type_number_to_die (type, array_die);
17516 size = int_size_in_bytes (type);
17517 if (size >= 0)
17518 add_AT_unsigned (array_die, DW_AT_byte_size, size);
17519 else if (TYPE_DOMAIN (type) != NULL_TREE
17520 && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != NULL_TREE
17521 && DECL_P (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
17523 tree szdecl = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
17524 dw_loc_list_ref loc = loc_list_from_tree (szdecl, 2, NULL);
17526 size = int_size_in_bytes (TREE_TYPE (szdecl));
17527 if (loc && size > 0)
17529 add_AT_location_description (array_die, DW_AT_string_length, loc);
17530 if (size != DWARF2_ADDR_SIZE)
17531 add_AT_unsigned (array_die, DW_AT_byte_size, size);
17534 return;
17537 array_die = new_die (DW_TAG_array_type, scope_die, type);
17538 add_name_attribute (array_die, type_tag (type));
17539 equate_type_number_to_die (type, array_die);
17541 if (TREE_CODE (type) == VECTOR_TYPE)
17542 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
17544 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
17545 if (is_fortran ()
17546 && TREE_CODE (type) == ARRAY_TYPE
17547 && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE
17548 && !TYPE_STRING_FLAG (TREE_TYPE (type)))
17549 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
17551 #if 0
17552 /* We default the array ordering. SDB will probably do
17553 the right things even if DW_AT_ordering is not present. It's not even
17554 an issue until we start to get into multidimensional arrays anyway. If
17555 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
17556 then we'll have to put the DW_AT_ordering attribute back in. (But if
17557 and when we find out that we need to put these in, we will only do so
17558 for multidimensional arrays. */
17559 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
17560 #endif
17562 if (TREE_CODE (type) == VECTOR_TYPE)
17564 /* For VECTOR_TYPEs we use an array die with appropriate bounds. */
17565 dw_die_ref subrange_die = new_die (DW_TAG_subrange_type, array_die, NULL);
17566 add_bound_info (subrange_die, DW_AT_lower_bound, size_zero_node, NULL);
17567 add_bound_info (subrange_die, DW_AT_upper_bound,
17568 size_int (TYPE_VECTOR_SUBPARTS (type) - 1), NULL);
17570 else
17571 add_subscript_info (array_die, type, collapse_nested_arrays);
17573 /* Add representation of the type of the elements of this array type and
17574 emit the corresponding DIE if we haven't done it already. */
17575 element_type = TREE_TYPE (type);
17576 if (collapse_nested_arrays)
17577 while (TREE_CODE (element_type) == ARRAY_TYPE)
17579 if (TYPE_STRING_FLAG (element_type) && is_fortran ())
17580 break;
17581 element_type = TREE_TYPE (element_type);
17584 add_type_attribute (array_die, element_type, TYPE_UNQUALIFIED, context_die);
17586 add_gnat_descriptive_type_attribute (array_die, type, context_die);
17587 if (TYPE_ARTIFICIAL (type))
17588 add_AT_flag (array_die, DW_AT_artificial, 1);
17590 if (get_AT (array_die, DW_AT_name))
17591 add_pubtype (type, array_die);
17594 /* This routine generates DIE for array with hidden descriptor, details
17595 are filled into *info by a langhook. */
17597 static void
17598 gen_descr_array_type_die (tree type, struct array_descr_info *info,
17599 dw_die_ref context_die)
17601 const dw_die_ref scope_die = scope_die_for (type, context_die);
17602 const dw_die_ref array_die = new_die (DW_TAG_array_type, scope_die, type);
17603 const struct loc_descr_context context = { type, info->base_decl };
17604 int dim;
17606 add_name_attribute (array_die, type_tag (type));
17607 equate_type_number_to_die (type, array_die);
17609 if (info->ndimensions > 1)
17610 switch (info->ordering)
17612 case array_descr_ordering_row_major:
17613 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
17614 break;
17615 case array_descr_ordering_column_major:
17616 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
17617 break;
17618 default:
17619 break;
17622 if (dwarf_version >= 3 || !dwarf_strict)
17624 if (info->data_location)
17625 add_scalar_info (array_die, DW_AT_data_location, info->data_location,
17626 dw_scalar_form_exprloc, &context);
17627 if (info->associated)
17628 add_scalar_info (array_die, DW_AT_associated, info->associated,
17629 dw_scalar_form_constant
17630 | dw_scalar_form_exprloc
17631 | dw_scalar_form_reference, &context);
17632 if (info->allocated)
17633 add_scalar_info (array_die, DW_AT_allocated, info->allocated,
17634 dw_scalar_form_constant
17635 | dw_scalar_form_exprloc
17636 | dw_scalar_form_reference, &context);
17639 add_gnat_descriptive_type_attribute (array_die, type, context_die);
17641 for (dim = 0; dim < info->ndimensions; dim++)
17643 dw_die_ref subrange_die
17644 = new_die (DW_TAG_subrange_type, array_die, NULL);
17646 if (info->dimen[dim].bounds_type)
17647 add_type_attribute (subrange_die,
17648 info->dimen[dim].bounds_type, 0,
17649 context_die);
17650 if (info->dimen[dim].lower_bound)
17651 add_bound_info (subrange_die, DW_AT_lower_bound,
17652 info->dimen[dim].lower_bound, &context);
17653 if (info->dimen[dim].upper_bound)
17654 add_bound_info (subrange_die, DW_AT_upper_bound,
17655 info->dimen[dim].upper_bound, &context);
17656 if ((dwarf_version >= 3 || !dwarf_strict) && info->dimen[dim].stride)
17657 add_scalar_info (subrange_die, DW_AT_byte_stride,
17658 info->dimen[dim].stride,
17659 dw_scalar_form_constant
17660 | dw_scalar_form_exprloc
17661 | dw_scalar_form_reference,
17662 &context);
17665 gen_type_die (info->element_type, context_die);
17666 add_type_attribute (array_die, info->element_type, TYPE_UNQUALIFIED,
17667 context_die);
17669 if (get_AT (array_die, DW_AT_name))
17670 add_pubtype (type, array_die);
17673 #if 0
17674 static void
17675 gen_entry_point_die (tree decl, dw_die_ref context_die)
17677 tree origin = decl_ultimate_origin (decl);
17678 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
17680 if (origin != NULL)
17681 add_abstract_origin_attribute (decl_die, origin);
17682 else
17684 add_name_and_src_coords_attributes (decl_die, decl);
17685 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
17686 TYPE_UNQUALIFIED, context_die);
17689 if (DECL_ABSTRACT_P (decl))
17690 equate_decl_number_to_die (decl, decl_die);
17691 else
17692 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
17694 #endif
17696 /* Walk through the list of incomplete types again, trying once more to
17697 emit full debugging info for them. */
17699 static void
17700 retry_incomplete_types (void)
17702 int i;
17704 for (i = vec_safe_length (incomplete_types) - 1; i >= 0; i--)
17705 if (should_emit_struct_debug ((*incomplete_types)[i], DINFO_USAGE_DIR_USE))
17706 gen_type_die ((*incomplete_types)[i], comp_unit_die ());
17709 /* Determine what tag to use for a record type. */
17711 static enum dwarf_tag
17712 record_type_tag (tree type)
17714 if (! lang_hooks.types.classify_record)
17715 return DW_TAG_structure_type;
17717 switch (lang_hooks.types.classify_record (type))
17719 case RECORD_IS_STRUCT:
17720 return DW_TAG_structure_type;
17722 case RECORD_IS_CLASS:
17723 return DW_TAG_class_type;
17725 case RECORD_IS_INTERFACE:
17726 if (dwarf_version >= 3 || !dwarf_strict)
17727 return DW_TAG_interface_type;
17728 return DW_TAG_structure_type;
17730 default:
17731 gcc_unreachable ();
17735 /* Generate a DIE to represent an enumeration type. Note that these DIEs
17736 include all of the information about the enumeration values also. Each
17737 enumerated type name/value is listed as a child of the enumerated type
17738 DIE. */
17740 static dw_die_ref
17741 gen_enumeration_type_die (tree type, dw_die_ref context_die)
17743 dw_die_ref type_die = lookup_type_die (type);
17745 if (type_die == NULL)
17747 type_die = new_die (DW_TAG_enumeration_type,
17748 scope_die_for (type, context_die), type);
17749 equate_type_number_to_die (type, type_die);
17750 add_name_attribute (type_die, type_tag (type));
17751 if (dwarf_version >= 4 || !dwarf_strict)
17753 if (ENUM_IS_SCOPED (type))
17754 add_AT_flag (type_die, DW_AT_enum_class, 1);
17755 if (ENUM_IS_OPAQUE (type))
17756 add_AT_flag (type_die, DW_AT_declaration, 1);
17759 else if (! TYPE_SIZE (type))
17760 return type_die;
17761 else
17762 remove_AT (type_die, DW_AT_declaration);
17764 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
17765 given enum type is incomplete, do not generate the DW_AT_byte_size
17766 attribute or the DW_AT_element_list attribute. */
17767 if (TYPE_SIZE (type))
17769 tree link;
17771 TREE_ASM_WRITTEN (type) = 1;
17772 add_byte_size_attribute (type_die, type);
17773 if (dwarf_version >= 3 || !dwarf_strict)
17775 tree underlying = lang_hooks.types.enum_underlying_base_type (type);
17776 add_type_attribute (type_die, underlying, TYPE_UNQUALIFIED,
17777 context_die);
17779 if (TYPE_STUB_DECL (type) != NULL_TREE)
17781 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
17782 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
17785 /* If the first reference to this type was as the return type of an
17786 inline function, then it may not have a parent. Fix this now. */
17787 if (type_die->die_parent == NULL)
17788 add_child_die (scope_die_for (type, context_die), type_die);
17790 for (link = TYPE_VALUES (type);
17791 link != NULL; link = TREE_CHAIN (link))
17793 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
17794 tree value = TREE_VALUE (link);
17796 add_name_attribute (enum_die,
17797 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
17799 if (TREE_CODE (value) == CONST_DECL)
17800 value = DECL_INITIAL (value);
17802 if (simple_type_size_in_bits (TREE_TYPE (value))
17803 <= HOST_BITS_PER_WIDE_INT || tree_fits_shwi_p (value))
17805 /* For constant forms created by add_AT_unsigned DWARF
17806 consumers (GDB, elfutils, etc.) always zero extend
17807 the value. Only when the actual value is negative
17808 do we need to use add_AT_int to generate a constant
17809 form that can represent negative values. */
17810 HOST_WIDE_INT val = TREE_INT_CST_LOW (value);
17811 if (TYPE_UNSIGNED (TREE_TYPE (value)) || val >= 0)
17812 add_AT_unsigned (enum_die, DW_AT_const_value,
17813 (unsigned HOST_WIDE_INT) val);
17814 else
17815 add_AT_int (enum_die, DW_AT_const_value, val);
17817 else
17818 /* Enumeration constants may be wider than HOST_WIDE_INT. Handle
17819 that here. TODO: This should be re-worked to use correct
17820 signed/unsigned double tags for all cases. */
17821 add_AT_wide (enum_die, DW_AT_const_value, value);
17824 add_gnat_descriptive_type_attribute (type_die, type, context_die);
17825 if (TYPE_ARTIFICIAL (type))
17826 add_AT_flag (type_die, DW_AT_artificial, 1);
17828 else
17829 add_AT_flag (type_die, DW_AT_declaration, 1);
17831 add_pubtype (type, type_die);
17833 return type_die;
17836 /* Generate a DIE to represent either a real live formal parameter decl or to
17837 represent just the type of some formal parameter position in some function
17838 type.
17840 Note that this routine is a bit unusual because its argument may be a
17841 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
17842 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
17843 node. If it's the former then this function is being called to output a
17844 DIE to represent a formal parameter object (or some inlining thereof). If
17845 it's the latter, then this function is only being called to output a
17846 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
17847 argument type of some subprogram type.
17848 If EMIT_NAME_P is true, name and source coordinate attributes
17849 are emitted. */
17851 static dw_die_ref
17852 gen_formal_parameter_die (tree node, tree origin, bool emit_name_p,
17853 dw_die_ref context_die)
17855 tree node_or_origin = node ? node : origin;
17856 tree ultimate_origin;
17857 dw_die_ref parm_die
17858 = new_die (DW_TAG_formal_parameter, context_die, node);
17860 switch (TREE_CODE_CLASS (TREE_CODE (node_or_origin)))
17862 case tcc_declaration:
17863 ultimate_origin = decl_ultimate_origin (node_or_origin);
17864 if (node || ultimate_origin)
17865 origin = ultimate_origin;
17866 if (origin != NULL)
17867 add_abstract_origin_attribute (parm_die, origin);
17868 else if (emit_name_p)
17869 add_name_and_src_coords_attributes (parm_die, node);
17870 if (origin == NULL
17871 || (! DECL_ABSTRACT_P (node_or_origin)
17872 && variably_modified_type_p (TREE_TYPE (node_or_origin),
17873 decl_function_context
17874 (node_or_origin))))
17876 tree type = TREE_TYPE (node_or_origin);
17877 if (decl_by_reference_p (node_or_origin))
17878 add_type_attribute (parm_die, TREE_TYPE (type),
17879 TYPE_UNQUALIFIED, context_die);
17880 else
17881 add_type_attribute (parm_die, type,
17882 decl_quals (node_or_origin),
17883 context_die);
17885 if (origin == NULL && DECL_ARTIFICIAL (node))
17886 add_AT_flag (parm_die, DW_AT_artificial, 1);
17888 if (node && node != origin)
17889 equate_decl_number_to_die (node, parm_die);
17890 if (! DECL_ABSTRACT_P (node_or_origin))
17891 add_location_or_const_value_attribute (parm_die, node_or_origin,
17892 node == NULL, DW_AT_location);
17894 break;
17896 case tcc_type:
17897 /* We were called with some kind of a ..._TYPE node. */
17898 add_type_attribute (parm_die, node_or_origin, TYPE_UNQUALIFIED,
17899 context_die);
17900 break;
17902 default:
17903 gcc_unreachable ();
17906 return parm_die;
17909 /* Generate and return a DW_TAG_GNU_formal_parameter_pack. Also generate
17910 children DW_TAG_formal_parameter DIEs representing the arguments of the
17911 parameter pack.
17913 PARM_PACK must be a function parameter pack.
17914 PACK_ARG is the first argument of the parameter pack. Its TREE_CHAIN
17915 must point to the subsequent arguments of the function PACK_ARG belongs to.
17916 SUBR_DIE is the DIE of the function PACK_ARG belongs to.
17917 If NEXT_ARG is non NULL, *NEXT_ARG is set to the function argument
17918 following the last one for which a DIE was generated. */
17920 static dw_die_ref
17921 gen_formal_parameter_pack_die (tree parm_pack,
17922 tree pack_arg,
17923 dw_die_ref subr_die,
17924 tree *next_arg)
17926 tree arg;
17927 dw_die_ref parm_pack_die;
17929 gcc_assert (parm_pack
17930 && lang_hooks.function_parameter_pack_p (parm_pack)
17931 && subr_die);
17933 parm_pack_die = new_die (DW_TAG_GNU_formal_parameter_pack, subr_die, parm_pack);
17934 add_src_coords_attributes (parm_pack_die, parm_pack);
17936 for (arg = pack_arg; arg; arg = DECL_CHAIN (arg))
17938 if (! lang_hooks.decls.function_parm_expanded_from_pack_p (arg,
17939 parm_pack))
17940 break;
17941 gen_formal_parameter_die (arg, NULL,
17942 false /* Don't emit name attribute. */,
17943 parm_pack_die);
17945 if (next_arg)
17946 *next_arg = arg;
17947 return parm_pack_die;
17950 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
17951 at the end of an (ANSI prototyped) formal parameters list. */
17953 static void
17954 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
17956 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
17959 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
17960 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
17961 parameters as specified in some function type specification (except for
17962 those which appear as part of a function *definition*). */
17964 static void
17965 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
17967 tree link;
17968 tree formal_type = NULL;
17969 tree first_parm_type;
17970 tree arg;
17972 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
17974 arg = DECL_ARGUMENTS (function_or_method_type);
17975 function_or_method_type = TREE_TYPE (function_or_method_type);
17977 else
17978 arg = NULL_TREE;
17980 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
17982 /* Make our first pass over the list of formal parameter types and output a
17983 DW_TAG_formal_parameter DIE for each one. */
17984 for (link = first_parm_type; link; )
17986 dw_die_ref parm_die;
17988 formal_type = TREE_VALUE (link);
17989 if (formal_type == void_type_node)
17990 break;
17992 /* Output a (nameless) DIE to represent the formal parameter itself. */
17993 if (!POINTER_BOUNDS_TYPE_P (formal_type))
17995 parm_die = gen_formal_parameter_die (formal_type, NULL,
17996 true /* Emit name attribute. */,
17997 context_die);
17998 if (TREE_CODE (function_or_method_type) == METHOD_TYPE
17999 && link == first_parm_type)
18001 add_AT_flag (parm_die, DW_AT_artificial, 1);
18002 if (dwarf_version >= 3 || !dwarf_strict)
18003 add_AT_die_ref (context_die, DW_AT_object_pointer, parm_die);
18005 else if (arg && DECL_ARTIFICIAL (arg))
18006 add_AT_flag (parm_die, DW_AT_artificial, 1);
18009 link = TREE_CHAIN (link);
18010 if (arg)
18011 arg = DECL_CHAIN (arg);
18014 /* If this function type has an ellipsis, add a
18015 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
18016 if (formal_type != void_type_node)
18017 gen_unspecified_parameters_die (function_or_method_type, context_die);
18019 /* Make our second (and final) pass over the list of formal parameter types
18020 and output DIEs to represent those types (as necessary). */
18021 for (link = TYPE_ARG_TYPES (function_or_method_type);
18022 link && TREE_VALUE (link);
18023 link = TREE_CHAIN (link))
18024 gen_type_die (TREE_VALUE (link), context_die);
18027 /* We want to generate the DIE for TYPE so that we can generate the
18028 die for MEMBER, which has been defined; we will need to refer back
18029 to the member declaration nested within TYPE. If we're trying to
18030 generate minimal debug info for TYPE, processing TYPE won't do the
18031 trick; we need to attach the member declaration by hand. */
18033 static void
18034 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
18036 gen_type_die (type, context_die);
18038 /* If we're trying to avoid duplicate debug info, we may not have
18039 emitted the member decl for this function. Emit it now. */
18040 if (TYPE_STUB_DECL (type)
18041 && TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
18042 && ! lookup_decl_die (member))
18044 dw_die_ref type_die;
18045 gcc_assert (!decl_ultimate_origin (member));
18047 push_decl_scope (type);
18048 type_die = lookup_type_die_strip_naming_typedef (type);
18049 if (TREE_CODE (member) == FUNCTION_DECL)
18050 gen_subprogram_die (member, type_die);
18051 else if (TREE_CODE (member) == FIELD_DECL)
18053 /* Ignore the nameless fields that are used to skip bits but handle
18054 C++ anonymous unions and structs. */
18055 if (DECL_NAME (member) != NULL_TREE
18056 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
18057 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
18059 gen_type_die (member_declared_type (member), type_die);
18060 gen_field_die (member, type_die);
18063 else
18064 gen_variable_die (member, NULL_TREE, type_die);
18066 pop_decl_scope ();
18070 /* Forward declare these functions, because they are mutually recursive
18071 with their set_block_* pairing functions. */
18072 static void set_decl_origin_self (tree);
18073 static void set_decl_abstract_flags (tree, vec<tree> &);
18075 /* Given a pointer to some BLOCK node, if the BLOCK_ABSTRACT_ORIGIN for the
18076 given BLOCK node is NULL, set the BLOCK_ABSTRACT_ORIGIN for the node so
18077 that it points to the node itself, thus indicating that the node is its
18078 own (abstract) origin. Additionally, if the BLOCK_ABSTRACT_ORIGIN for
18079 the given node is NULL, recursively descend the decl/block tree which
18080 it is the root of, and for each other ..._DECL or BLOCK node contained
18081 therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also
18082 still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN
18083 values to point to themselves. */
18085 static void
18086 set_block_origin_self (tree stmt)
18088 if (BLOCK_ABSTRACT_ORIGIN (stmt) == NULL_TREE)
18090 BLOCK_ABSTRACT_ORIGIN (stmt) = stmt;
18093 tree local_decl;
18095 for (local_decl = BLOCK_VARS (stmt);
18096 local_decl != NULL_TREE;
18097 local_decl = DECL_CHAIN (local_decl))
18098 /* Do not recurse on nested functions since the inlining status
18099 of parent and child can be different as per the DWARF spec. */
18100 if (TREE_CODE (local_decl) != FUNCTION_DECL
18101 && !DECL_EXTERNAL (local_decl))
18102 set_decl_origin_self (local_decl);
18106 tree subblock;
18108 for (subblock = BLOCK_SUBBLOCKS (stmt);
18109 subblock != NULL_TREE;
18110 subblock = BLOCK_CHAIN (subblock))
18111 set_block_origin_self (subblock); /* Recurse. */
18116 /* Given a pointer to some ..._DECL node, if the DECL_ABSTRACT_ORIGIN for
18117 the given ..._DECL node is NULL, set the DECL_ABSTRACT_ORIGIN for the
18118 node to so that it points to the node itself, thus indicating that the
18119 node represents its own (abstract) origin. Additionally, if the
18120 DECL_ABSTRACT_ORIGIN for the given node is NULL, recursively descend
18121 the decl/block tree of which the given node is the root of, and for
18122 each other ..._DECL or BLOCK node contained therein whose
18123 DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL,
18124 set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to
18125 point to themselves. */
18127 static void
18128 set_decl_origin_self (tree decl)
18130 if (DECL_ABSTRACT_ORIGIN (decl) == NULL_TREE)
18132 DECL_ABSTRACT_ORIGIN (decl) = decl;
18133 if (TREE_CODE (decl) == FUNCTION_DECL)
18135 tree arg;
18137 for (arg = DECL_ARGUMENTS (decl); arg; arg = DECL_CHAIN (arg))
18138 DECL_ABSTRACT_ORIGIN (arg) = arg;
18139 if (DECL_INITIAL (decl) != NULL_TREE
18140 && DECL_INITIAL (decl) != error_mark_node)
18141 set_block_origin_self (DECL_INITIAL (decl));
18146 /* Given a pointer to some BLOCK node, set the BLOCK_ABSTRACT flag to 1
18147 and if it wasn't 1 before, push it to abstract_vec vector.
18148 For all local decls and all local sub-blocks (recursively) do it
18149 too. */
18151 static void
18152 set_block_abstract_flags (tree stmt, vec<tree> &abstract_vec)
18154 tree local_decl;
18155 tree subblock;
18156 unsigned int i;
18158 if (!BLOCK_ABSTRACT (stmt))
18160 abstract_vec.safe_push (stmt);
18161 BLOCK_ABSTRACT (stmt) = 1;
18164 for (local_decl = BLOCK_VARS (stmt);
18165 local_decl != NULL_TREE;
18166 local_decl = DECL_CHAIN (local_decl))
18167 if (! DECL_EXTERNAL (local_decl))
18168 set_decl_abstract_flags (local_decl, abstract_vec);
18170 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
18172 local_decl = BLOCK_NONLOCALIZED_VAR (stmt, i);
18173 if ((TREE_CODE (local_decl) == VAR_DECL && !TREE_STATIC (local_decl))
18174 || TREE_CODE (local_decl) == PARM_DECL)
18175 set_decl_abstract_flags (local_decl, abstract_vec);
18178 for (subblock = BLOCK_SUBBLOCKS (stmt);
18179 subblock != NULL_TREE;
18180 subblock = BLOCK_CHAIN (subblock))
18181 set_block_abstract_flags (subblock, abstract_vec);
18184 /* Given a pointer to some ..._DECL node, set DECL_ABSTRACT_P flag on it
18185 to 1 and if it wasn't 1 before, push to abstract_vec vector.
18186 In the case where the decl is a FUNCTION_DECL also set the abstract
18187 flags for all of the parameters, local vars, local
18188 blocks and sub-blocks (recursively). */
18190 static void
18191 set_decl_abstract_flags (tree decl, vec<tree> &abstract_vec)
18193 if (!DECL_ABSTRACT_P (decl))
18195 abstract_vec.safe_push (decl);
18196 DECL_ABSTRACT_P (decl) = 1;
18199 if (TREE_CODE (decl) == FUNCTION_DECL)
18201 tree arg;
18203 for (arg = DECL_ARGUMENTS (decl); arg; arg = DECL_CHAIN (arg))
18204 if (!DECL_ABSTRACT_P (arg))
18206 abstract_vec.safe_push (arg);
18207 DECL_ABSTRACT_P (arg) = 1;
18209 if (DECL_INITIAL (decl) != NULL_TREE
18210 && DECL_INITIAL (decl) != error_mark_node)
18211 set_block_abstract_flags (DECL_INITIAL (decl), abstract_vec);
18215 /* Generate the DWARF2 info for the "abstract" instance of a function which we
18216 may later generate inlined and/or out-of-line instances of. */
18218 static void
18219 dwarf2out_abstract_function (tree decl)
18221 dw_die_ref old_die;
18222 tree save_fn;
18223 tree context;
18224 hash_table<decl_loc_hasher> *old_decl_loc_table;
18225 hash_table<dw_loc_list_hasher> *old_cached_dw_loc_list_table;
18226 int old_call_site_count, old_tail_call_site_count;
18227 struct call_arg_loc_node *old_call_arg_locations;
18229 /* Make sure we have the actual abstract inline, not a clone. */
18230 decl = DECL_ORIGIN (decl);
18232 old_die = lookup_decl_die (decl);
18233 if (old_die && get_AT (old_die, DW_AT_inline))
18234 /* We've already generated the abstract instance. */
18235 return;
18237 /* We can be called while recursively when seeing block defining inlined subroutine
18238 DIE. Be sure to not clobber the outer location table nor use it or we would
18239 get locations in abstract instantces. */
18240 old_decl_loc_table = decl_loc_table;
18241 decl_loc_table = NULL;
18242 old_cached_dw_loc_list_table = cached_dw_loc_list_table;
18243 cached_dw_loc_list_table = NULL;
18244 old_call_arg_locations = call_arg_locations;
18245 call_arg_locations = NULL;
18246 old_call_site_count = call_site_count;
18247 call_site_count = -1;
18248 old_tail_call_site_count = tail_call_site_count;
18249 tail_call_site_count = -1;
18251 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
18252 we don't get confused by DECL_ABSTRACT_P. */
18253 if (debug_info_level > DINFO_LEVEL_TERSE)
18255 context = decl_class_context (decl);
18256 if (context)
18257 gen_type_die_for_member
18258 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die ());
18261 /* Pretend we've just finished compiling this function. */
18262 save_fn = current_function_decl;
18263 current_function_decl = decl;
18265 auto_vec<tree, 64> abstract_vec;
18266 set_decl_abstract_flags (decl, abstract_vec);
18267 dwarf2out_decl (decl);
18268 unsigned int i;
18269 tree t;
18270 FOR_EACH_VEC_ELT (abstract_vec, i, t)
18271 if (TREE_CODE (t) == BLOCK)
18272 BLOCK_ABSTRACT (t) = 0;
18273 else
18274 DECL_ABSTRACT_P (t) = 0;
18276 current_function_decl = save_fn;
18277 decl_loc_table = old_decl_loc_table;
18278 cached_dw_loc_list_table = old_cached_dw_loc_list_table;
18279 call_arg_locations = old_call_arg_locations;
18280 call_site_count = old_call_site_count;
18281 tail_call_site_count = old_tail_call_site_count;
18284 /* Helper function of premark_used_types() which gets called through
18285 htab_traverse.
18287 Marks the DIE of a given type in *SLOT as perennial, so it never gets
18288 marked as unused by prune_unused_types. */
18290 bool
18291 premark_used_types_helper (tree const &type, void *)
18293 dw_die_ref die;
18295 die = lookup_type_die (type);
18296 if (die != NULL)
18297 die->die_perennial_p = 1;
18298 return true;
18301 /* Helper function of premark_types_used_by_global_vars which gets called
18302 through htab_traverse.
18304 Marks the DIE of a given type in *SLOT as perennial, so it never gets
18305 marked as unused by prune_unused_types. The DIE of the type is marked
18306 only if the global variable using the type will actually be emitted. */
18309 premark_types_used_by_global_vars_helper (types_used_by_vars_entry **slot,
18310 void *)
18312 struct types_used_by_vars_entry *entry;
18313 dw_die_ref die;
18315 entry = (struct types_used_by_vars_entry *) *slot;
18316 gcc_assert (entry->type != NULL
18317 && entry->var_decl != NULL);
18318 die = lookup_type_die (entry->type);
18319 if (die)
18321 /* Ask cgraph if the global variable really is to be emitted.
18322 If yes, then we'll keep the DIE of ENTRY->TYPE. */
18323 varpool_node *node = varpool_node::get (entry->var_decl);
18324 if (node && node->definition)
18326 die->die_perennial_p = 1;
18327 /* Keep the parent DIEs as well. */
18328 while ((die = die->die_parent) && die->die_perennial_p == 0)
18329 die->die_perennial_p = 1;
18332 return 1;
18335 /* Mark all members of used_types_hash as perennial. */
18337 static void
18338 premark_used_types (struct function *fun)
18340 if (fun && fun->used_types_hash)
18341 fun->used_types_hash->traverse<void *, premark_used_types_helper> (NULL);
18344 /* Mark all members of types_used_by_vars_entry as perennial. */
18346 static void
18347 premark_types_used_by_global_vars (void)
18349 if (types_used_by_vars_hash)
18350 types_used_by_vars_hash
18351 ->traverse<void *, premark_types_used_by_global_vars_helper> (NULL);
18354 /* Generate a DW_TAG_GNU_call_site DIE in function DECL under SUBR_DIE
18355 for CA_LOC call arg loc node. */
18357 static dw_die_ref
18358 gen_call_site_die (tree decl, dw_die_ref subr_die,
18359 struct call_arg_loc_node *ca_loc)
18361 dw_die_ref stmt_die = NULL, die;
18362 tree block = ca_loc->block;
18364 while (block
18365 && block != DECL_INITIAL (decl)
18366 && TREE_CODE (block) == BLOCK)
18368 if (block_map.length () > BLOCK_NUMBER (block))
18369 stmt_die = block_map[BLOCK_NUMBER (block)];
18370 if (stmt_die)
18371 break;
18372 block = BLOCK_SUPERCONTEXT (block);
18374 if (stmt_die == NULL)
18375 stmt_die = subr_die;
18376 die = new_die (DW_TAG_GNU_call_site, stmt_die, NULL_TREE);
18377 add_AT_lbl_id (die, DW_AT_low_pc, ca_loc->label);
18378 if (ca_loc->tail_call_p)
18379 add_AT_flag (die, DW_AT_GNU_tail_call, 1);
18380 if (ca_loc->symbol_ref)
18382 dw_die_ref tdie = lookup_decl_die (SYMBOL_REF_DECL (ca_loc->symbol_ref));
18383 if (tdie)
18384 add_AT_die_ref (die, DW_AT_abstract_origin, tdie);
18385 else
18386 add_AT_addr (die, DW_AT_abstract_origin, ca_loc->symbol_ref, false);
18388 return die;
18391 /* Generate a DIE to represent a declared function (either file-scope or
18392 block-local). */
18394 static void
18395 gen_subprogram_die (tree decl, dw_die_ref context_die)
18397 tree origin = decl_ultimate_origin (decl);
18398 dw_die_ref subr_die;
18399 tree outer_scope;
18400 dw_die_ref old_die = lookup_decl_die (decl);
18401 int declaration = (current_function_decl != decl
18402 || class_or_namespace_scope_p (context_die));
18404 premark_used_types (DECL_STRUCT_FUNCTION (decl));
18406 /* It is possible to have both DECL_ABSTRACT_P and DECLARATION be true if we
18407 started to generate the abstract instance of an inline, decided to output
18408 its containing class, and proceeded to emit the declaration of the inline
18409 from the member list for the class. If so, DECLARATION takes priority;
18410 we'll get back to the abstract instance when done with the class. */
18412 /* The class-scope declaration DIE must be the primary DIE. */
18413 if (origin && declaration && class_or_namespace_scope_p (context_die))
18415 origin = NULL;
18416 gcc_assert (!old_die);
18419 /* Now that the C++ front end lazily declares artificial member fns, we
18420 might need to retrofit the declaration into its class. */
18421 if (!declaration && !origin && !old_die
18422 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
18423 && !class_or_namespace_scope_p (context_die)
18424 && debug_info_level > DINFO_LEVEL_TERSE)
18425 old_die = force_decl_die (decl);
18427 if (origin != NULL)
18429 gcc_assert (!declaration || local_scope_p (context_die));
18431 /* Fixup die_parent for the abstract instance of a nested
18432 inline function. */
18433 if (old_die && old_die->die_parent == NULL)
18434 add_child_die (context_die, old_die);
18436 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
18437 add_abstract_origin_attribute (subr_die, origin);
18438 /* This is where the actual code for a cloned function is.
18439 Let's emit linkage name attribute for it. This helps
18440 debuggers to e.g, set breakpoints into
18441 constructors/destructors when the user asks "break
18442 K::K". */
18443 add_linkage_name (subr_die, decl);
18445 else if (old_die)
18447 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
18448 struct dwarf_file_data * file_index = lookup_filename (s.file);
18450 if (!get_AT_flag (old_die, DW_AT_declaration)
18451 /* We can have a normal definition following an inline one in the
18452 case of redefinition of GNU C extern inlines.
18453 It seems reasonable to use AT_specification in this case. */
18454 && !get_AT (old_die, DW_AT_inline))
18456 /* Detect and ignore this case, where we are trying to output
18457 something we have already output. */
18458 return;
18461 /* If the definition comes from the same place as the declaration,
18462 maybe use the old DIE. We always want the DIE for this function
18463 that has the *_pc attributes to be under comp_unit_die so the
18464 debugger can find it. We also need to do this for abstract
18465 instances of inlines, since the spec requires the out-of-line copy
18466 to have the same parent. For local class methods, this doesn't
18467 apply; we just use the old DIE. */
18468 if ((is_cu_die (old_die->die_parent) || context_die == NULL)
18469 && (DECL_ARTIFICIAL (decl)
18470 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
18471 && (get_AT_unsigned (old_die, DW_AT_decl_line)
18472 == (unsigned) s.line))))
18474 subr_die = old_die;
18476 /* Clear out the declaration attribute and the formal parameters.
18477 Do not remove all children, because it is possible that this
18478 declaration die was forced using force_decl_die(). In such
18479 cases die that forced declaration die (e.g. TAG_imported_module)
18480 is one of the children that we do not want to remove. */
18481 remove_AT (subr_die, DW_AT_declaration);
18482 remove_AT (subr_die, DW_AT_object_pointer);
18483 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
18485 else
18487 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
18488 add_AT_specification (subr_die, old_die);
18489 add_pubname (decl, subr_die);
18490 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
18491 add_AT_file (subr_die, DW_AT_decl_file, file_index);
18492 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
18493 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
18495 /* If the prototype had an 'auto' or 'decltype(auto)' return type,
18496 emit the real type on the definition die. */
18497 if (is_cxx() && debug_info_level > DINFO_LEVEL_TERSE)
18499 dw_die_ref die = get_AT_ref (old_die, DW_AT_type);
18500 if (die == auto_die || die == decltype_auto_die)
18501 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
18502 TYPE_UNQUALIFIED, context_die);
18506 else
18508 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
18510 if (TREE_PUBLIC (decl))
18511 add_AT_flag (subr_die, DW_AT_external, 1);
18513 add_name_and_src_coords_attributes (subr_die, decl);
18514 add_pubname (decl, subr_die);
18515 if (debug_info_level > DINFO_LEVEL_TERSE)
18517 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
18518 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
18519 TYPE_UNQUALIFIED, context_die);
18522 add_pure_or_virtual_attribute (subr_die, decl);
18523 if (DECL_ARTIFICIAL (decl))
18524 add_AT_flag (subr_die, DW_AT_artificial, 1);
18526 if (TREE_THIS_VOLATILE (decl) && (dwarf_version >= 5 || !dwarf_strict))
18527 add_AT_flag (subr_die, DW_AT_noreturn, 1);
18529 add_accessibility_attribute (subr_die, decl);
18532 if (declaration)
18534 if (!old_die || !get_AT (old_die, DW_AT_inline))
18536 add_AT_flag (subr_die, DW_AT_declaration, 1);
18538 /* If this is an explicit function declaration then generate
18539 a DW_AT_explicit attribute. */
18540 if (lang_hooks.decls.function_decl_explicit_p (decl)
18541 && (dwarf_version >= 3 || !dwarf_strict))
18542 add_AT_flag (subr_die, DW_AT_explicit, 1);
18544 /* If this is a C++11 deleted special function member then generate
18545 a DW_AT_GNU_deleted attribute. */
18546 if (lang_hooks.decls.function_decl_deleted_p (decl)
18547 && (! dwarf_strict))
18548 add_AT_flag (subr_die, DW_AT_GNU_deleted, 1);
18550 /* The first time we see a member function, it is in the context of
18551 the class to which it belongs. We make sure of this by emitting
18552 the class first. The next time is the definition, which is
18553 handled above. The two may come from the same source text.
18555 Note that force_decl_die() forces function declaration die. It is
18556 later reused to represent definition. */
18557 equate_decl_number_to_die (decl, subr_die);
18560 else if (DECL_ABSTRACT_P (decl))
18562 if (DECL_DECLARED_INLINE_P (decl))
18564 if (cgraph_function_possibly_inlined_p (decl))
18565 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
18566 else
18567 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
18569 else
18571 if (cgraph_function_possibly_inlined_p (decl))
18572 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
18573 else
18574 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
18577 if (DECL_DECLARED_INLINE_P (decl)
18578 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
18579 add_AT_flag (subr_die, DW_AT_artificial, 1);
18581 equate_decl_number_to_die (decl, subr_die);
18583 else if (!DECL_EXTERNAL (decl))
18585 HOST_WIDE_INT cfa_fb_offset;
18586 struct function *fun = DECL_STRUCT_FUNCTION (decl);
18588 if (!old_die || !get_AT (old_die, DW_AT_inline))
18589 equate_decl_number_to_die (decl, subr_die);
18591 gcc_checking_assert (fun);
18592 if (!flag_reorder_blocks_and_partition)
18594 dw_fde_ref fde = fun->fde;
18595 if (fde->dw_fde_begin)
18597 /* We have already generated the labels. */
18598 add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
18599 fde->dw_fde_end, false);
18601 else
18603 /* Create start/end labels and add the range. */
18604 char label_id_low[MAX_ARTIFICIAL_LABEL_BYTES];
18605 char label_id_high[MAX_ARTIFICIAL_LABEL_BYTES];
18606 ASM_GENERATE_INTERNAL_LABEL (label_id_low, FUNC_BEGIN_LABEL,
18607 current_function_funcdef_no);
18608 ASM_GENERATE_INTERNAL_LABEL (label_id_high, FUNC_END_LABEL,
18609 current_function_funcdef_no);
18610 add_AT_low_high_pc (subr_die, label_id_low, label_id_high,
18611 false);
18614 #if VMS_DEBUGGING_INFO
18615 /* HP OpenVMS Industry Standard 64: DWARF Extensions
18616 Section 2.3 Prologue and Epilogue Attributes:
18617 When a breakpoint is set on entry to a function, it is generally
18618 desirable for execution to be suspended, not on the very first
18619 instruction of the function, but rather at a point after the
18620 function's frame has been set up, after any language defined local
18621 declaration processing has been completed, and before execution of
18622 the first statement of the function begins. Debuggers generally
18623 cannot properly determine where this point is. Similarly for a
18624 breakpoint set on exit from a function. The prologue and epilogue
18625 attributes allow a compiler to communicate the location(s) to use. */
18628 if (fde->dw_fde_vms_end_prologue)
18629 add_AT_vms_delta (subr_die, DW_AT_HP_prologue,
18630 fde->dw_fde_begin, fde->dw_fde_vms_end_prologue);
18632 if (fde->dw_fde_vms_begin_epilogue)
18633 add_AT_vms_delta (subr_die, DW_AT_HP_epilogue,
18634 fde->dw_fde_begin, fde->dw_fde_vms_begin_epilogue);
18636 #endif
18639 else
18641 /* Generate pubnames entries for the split function code ranges. */
18642 dw_fde_ref fde = fun->fde;
18644 if (fde->dw_fde_second_begin)
18646 if (dwarf_version >= 3 || !dwarf_strict)
18648 /* We should use ranges for non-contiguous code section
18649 addresses. Use the actual code range for the initial
18650 section, since the HOT/COLD labels might precede an
18651 alignment offset. */
18652 bool range_list_added = false;
18653 add_ranges_by_labels (subr_die, fde->dw_fde_begin,
18654 fde->dw_fde_end, &range_list_added,
18655 false);
18656 add_ranges_by_labels (subr_die, fde->dw_fde_second_begin,
18657 fde->dw_fde_second_end,
18658 &range_list_added, false);
18659 if (range_list_added)
18660 add_ranges (NULL);
18662 else
18664 /* There is no real support in DW2 for this .. so we make
18665 a work-around. First, emit the pub name for the segment
18666 containing the function label. Then make and emit a
18667 simplified subprogram DIE for the second segment with the
18668 name pre-fixed by __hot/cold_sect_of_. We use the same
18669 linkage name for the second die so that gdb will find both
18670 sections when given "b foo". */
18671 const char *name = NULL;
18672 tree decl_name = DECL_NAME (decl);
18673 dw_die_ref seg_die;
18675 /* Do the 'primary' section. */
18676 add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
18677 fde->dw_fde_end, false);
18679 /* Build a minimal DIE for the secondary section. */
18680 seg_die = new_die (DW_TAG_subprogram,
18681 subr_die->die_parent, decl);
18683 if (TREE_PUBLIC (decl))
18684 add_AT_flag (seg_die, DW_AT_external, 1);
18686 if (decl_name != NULL
18687 && IDENTIFIER_POINTER (decl_name) != NULL)
18689 name = dwarf2_name (decl, 1);
18690 if (! DECL_ARTIFICIAL (decl))
18691 add_src_coords_attributes (seg_die, decl);
18693 add_linkage_name (seg_die, decl);
18695 gcc_assert (name != NULL);
18696 add_pure_or_virtual_attribute (seg_die, decl);
18697 if (DECL_ARTIFICIAL (decl))
18698 add_AT_flag (seg_die, DW_AT_artificial, 1);
18700 name = concat ("__second_sect_of_", name, NULL);
18701 add_AT_low_high_pc (seg_die, fde->dw_fde_second_begin,
18702 fde->dw_fde_second_end, false);
18703 add_name_attribute (seg_die, name);
18704 if (want_pubnames ())
18705 add_pubname_string (name, seg_die);
18708 else
18709 add_AT_low_high_pc (subr_die, fde->dw_fde_begin, fde->dw_fde_end,
18710 false);
18713 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
18715 /* We define the "frame base" as the function's CFA. This is more
18716 convenient for several reasons: (1) It's stable across the prologue
18717 and epilogue, which makes it better than just a frame pointer,
18718 (2) With dwarf3, there exists a one-byte encoding that allows us
18719 to reference the .debug_frame data by proxy, but failing that,
18720 (3) We can at least reuse the code inspection and interpretation
18721 code that determines the CFA position at various points in the
18722 function. */
18723 if (dwarf_version >= 3 && targetm.debug_unwind_info () == UI_DWARF2)
18725 dw_loc_descr_ref op = new_loc_descr (DW_OP_call_frame_cfa, 0, 0);
18726 add_AT_loc (subr_die, DW_AT_frame_base, op);
18728 else
18730 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
18731 if (list->dw_loc_next)
18732 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
18733 else
18734 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
18737 /* Compute a displacement from the "steady-state frame pointer" to
18738 the CFA. The former is what all stack slots and argument slots
18739 will reference in the rtl; the latter is what we've told the
18740 debugger about. We'll need to adjust all frame_base references
18741 by this displacement. */
18742 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
18744 if (fun->static_chain_decl)
18745 add_AT_location_description (subr_die, DW_AT_static_link,
18746 loc_list_from_tree (fun->static_chain_decl, 2, NULL));
18749 /* Generate child dies for template paramaters. */
18750 if (debug_info_level > DINFO_LEVEL_TERSE)
18751 gen_generic_params_dies (decl);
18753 /* Now output descriptions of the arguments for this function. This gets
18754 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
18755 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
18756 `...' at the end of the formal parameter list. In order to find out if
18757 there was a trailing ellipsis or not, we must instead look at the type
18758 associated with the FUNCTION_DECL. This will be a node of type
18759 FUNCTION_TYPE. If the chain of type nodes hanging off of this
18760 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
18761 an ellipsis at the end. */
18763 /* In the case where we are describing a mere function declaration, all we
18764 need to do here (and all we *can* do here) is to describe the *types* of
18765 its formal parameters. */
18766 if (debug_info_level <= DINFO_LEVEL_TERSE)
18768 else if (declaration)
18769 gen_formal_types_die (decl, subr_die);
18770 else
18772 /* Generate DIEs to represent all known formal parameters. */
18773 tree parm = DECL_ARGUMENTS (decl);
18774 tree generic_decl = lang_hooks.decls.get_generic_function_decl (decl);
18775 tree generic_decl_parm = generic_decl
18776 ? DECL_ARGUMENTS (generic_decl)
18777 : NULL;
18779 /* Now we want to walk the list of parameters of the function and
18780 emit their relevant DIEs.
18782 We consider the case of DECL being an instance of a generic function
18783 as well as it being a normal function.
18785 If DECL is an instance of a generic function we walk the
18786 parameters of the generic function declaration _and_ the parameters of
18787 DECL itself. This is useful because we want to emit specific DIEs for
18788 function parameter packs and those are declared as part of the
18789 generic function declaration. In that particular case,
18790 the parameter pack yields a DW_TAG_GNU_formal_parameter_pack DIE.
18791 That DIE has children DIEs representing the set of arguments
18792 of the pack. Note that the set of pack arguments can be empty.
18793 In that case, the DW_TAG_GNU_formal_parameter_pack DIE will not have any
18794 children DIE.
18796 Otherwise, we just consider the parameters of DECL. */
18797 while (generic_decl_parm || parm)
18799 if (generic_decl_parm
18800 && lang_hooks.function_parameter_pack_p (generic_decl_parm))
18801 gen_formal_parameter_pack_die (generic_decl_parm,
18802 parm, subr_die,
18803 &parm);
18804 else if (parm && !POINTER_BOUNDS_P (parm))
18806 dw_die_ref parm_die = gen_decl_die (parm, NULL, subr_die);
18808 if (parm == DECL_ARGUMENTS (decl)
18809 && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE
18810 && parm_die
18811 && (dwarf_version >= 3 || !dwarf_strict))
18812 add_AT_die_ref (subr_die, DW_AT_object_pointer, parm_die);
18814 parm = DECL_CHAIN (parm);
18816 else if (parm)
18817 parm = DECL_CHAIN (parm);
18819 if (generic_decl_parm)
18820 generic_decl_parm = DECL_CHAIN (generic_decl_parm);
18823 /* Decide whether we need an unspecified_parameters DIE at the end.
18824 There are 2 more cases to do this for: 1) the ansi ... declaration -
18825 this is detectable when the end of the arg list is not a
18826 void_type_node 2) an unprototyped function declaration (not a
18827 definition). This just means that we have no info about the
18828 parameters at all. */
18829 if (prototype_p (TREE_TYPE (decl)))
18831 /* This is the prototyped case, check for.... */
18832 if (stdarg_p (TREE_TYPE (decl)))
18833 gen_unspecified_parameters_die (decl, subr_die);
18835 else if (DECL_INITIAL (decl) == NULL_TREE)
18836 gen_unspecified_parameters_die (decl, subr_die);
18839 /* Output Dwarf info for all of the stuff within the body of the function
18840 (if it has one - it may be just a declaration). */
18841 outer_scope = DECL_INITIAL (decl);
18843 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
18844 a function. This BLOCK actually represents the outermost binding contour
18845 for the function, i.e. the contour in which the function's formal
18846 parameters and labels get declared. Curiously, it appears that the front
18847 end doesn't actually put the PARM_DECL nodes for the current function onto
18848 the BLOCK_VARS list for this outer scope, but are strung off of the
18849 DECL_ARGUMENTS list for the function instead.
18851 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
18852 the LABEL_DECL nodes for the function however, and we output DWARF info
18853 for those in decls_for_scope. Just within the `outer_scope' there will be
18854 a BLOCK node representing the function's outermost pair of curly braces,
18855 and any blocks used for the base and member initializers of a C++
18856 constructor function. */
18857 if (! declaration && outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
18859 int call_site_note_count = 0;
18860 int tail_call_site_note_count = 0;
18862 /* Emit a DW_TAG_variable DIE for a named return value. */
18863 if (DECL_NAME (DECL_RESULT (decl)))
18864 gen_decl_die (DECL_RESULT (decl), NULL, subr_die);
18866 decls_for_scope (outer_scope, subr_die);
18868 if (call_arg_locations && !dwarf_strict)
18870 struct call_arg_loc_node *ca_loc;
18871 for (ca_loc = call_arg_locations; ca_loc; ca_loc = ca_loc->next)
18873 dw_die_ref die = NULL;
18874 rtx tloc = NULL_RTX, tlocc = NULL_RTX;
18875 rtx arg, next_arg;
18877 for (arg = NOTE_VAR_LOCATION (ca_loc->call_arg_loc_note);
18878 arg; arg = next_arg)
18880 dw_loc_descr_ref reg, val;
18881 machine_mode mode = GET_MODE (XEXP (XEXP (arg, 0), 1));
18882 dw_die_ref cdie, tdie = NULL;
18884 next_arg = XEXP (arg, 1);
18885 if (REG_P (XEXP (XEXP (arg, 0), 0))
18886 && next_arg
18887 && MEM_P (XEXP (XEXP (next_arg, 0), 0))
18888 && REG_P (XEXP (XEXP (XEXP (next_arg, 0), 0), 0))
18889 && REGNO (XEXP (XEXP (arg, 0), 0))
18890 == REGNO (XEXP (XEXP (XEXP (next_arg, 0), 0), 0)))
18891 next_arg = XEXP (next_arg, 1);
18892 if (mode == VOIDmode)
18894 mode = GET_MODE (XEXP (XEXP (arg, 0), 0));
18895 if (mode == VOIDmode)
18896 mode = GET_MODE (XEXP (arg, 0));
18898 if (mode == VOIDmode || mode == BLKmode)
18899 continue;
18900 if (XEXP (XEXP (arg, 0), 0) == pc_rtx)
18902 gcc_assert (ca_loc->symbol_ref == NULL_RTX);
18903 tloc = XEXP (XEXP (arg, 0), 1);
18904 continue;
18906 else if (GET_CODE (XEXP (XEXP (arg, 0), 0)) == CLOBBER
18907 && XEXP (XEXP (XEXP (arg, 0), 0), 0) == pc_rtx)
18909 gcc_assert (ca_loc->symbol_ref == NULL_RTX);
18910 tlocc = XEXP (XEXP (arg, 0), 1);
18911 continue;
18913 reg = NULL;
18914 if (REG_P (XEXP (XEXP (arg, 0), 0)))
18915 reg = reg_loc_descriptor (XEXP (XEXP (arg, 0), 0),
18916 VAR_INIT_STATUS_INITIALIZED);
18917 else if (MEM_P (XEXP (XEXP (arg, 0), 0)))
18919 rtx mem = XEXP (XEXP (arg, 0), 0);
18920 reg = mem_loc_descriptor (XEXP (mem, 0),
18921 get_address_mode (mem),
18922 GET_MODE (mem),
18923 VAR_INIT_STATUS_INITIALIZED);
18925 else if (GET_CODE (XEXP (XEXP (arg, 0), 0))
18926 == DEBUG_PARAMETER_REF)
18928 tree tdecl
18929 = DEBUG_PARAMETER_REF_DECL (XEXP (XEXP (arg, 0), 0));
18930 tdie = lookup_decl_die (tdecl);
18931 if (tdie == NULL)
18932 continue;
18934 else
18935 continue;
18936 if (reg == NULL
18937 && GET_CODE (XEXP (XEXP (arg, 0), 0))
18938 != DEBUG_PARAMETER_REF)
18939 continue;
18940 val = mem_loc_descriptor (XEXP (XEXP (arg, 0), 1), mode,
18941 VOIDmode,
18942 VAR_INIT_STATUS_INITIALIZED);
18943 if (val == NULL)
18944 continue;
18945 if (die == NULL)
18946 die = gen_call_site_die (decl, subr_die, ca_loc);
18947 cdie = new_die (DW_TAG_GNU_call_site_parameter, die,
18948 NULL_TREE);
18949 if (reg != NULL)
18950 add_AT_loc (cdie, DW_AT_location, reg);
18951 else if (tdie != NULL)
18952 add_AT_die_ref (cdie, DW_AT_abstract_origin, tdie);
18953 add_AT_loc (cdie, DW_AT_GNU_call_site_value, val);
18954 if (next_arg != XEXP (arg, 1))
18956 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 1));
18957 if (mode == VOIDmode)
18958 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 0));
18959 val = mem_loc_descriptor (XEXP (XEXP (XEXP (arg, 1),
18960 0), 1),
18961 mode, VOIDmode,
18962 VAR_INIT_STATUS_INITIALIZED);
18963 if (val != NULL)
18964 add_AT_loc (cdie, DW_AT_GNU_call_site_data_value, val);
18967 if (die == NULL
18968 && (ca_loc->symbol_ref || tloc))
18969 die = gen_call_site_die (decl, subr_die, ca_loc);
18970 if (die != NULL && (tloc != NULL_RTX || tlocc != NULL_RTX))
18972 dw_loc_descr_ref tval = NULL;
18974 if (tloc != NULL_RTX)
18975 tval = mem_loc_descriptor (tloc,
18976 GET_MODE (tloc) == VOIDmode
18977 ? Pmode : GET_MODE (tloc),
18978 VOIDmode,
18979 VAR_INIT_STATUS_INITIALIZED);
18980 if (tval)
18981 add_AT_loc (die, DW_AT_GNU_call_site_target, tval);
18982 else if (tlocc != NULL_RTX)
18984 tval = mem_loc_descriptor (tlocc,
18985 GET_MODE (tlocc) == VOIDmode
18986 ? Pmode : GET_MODE (tlocc),
18987 VOIDmode,
18988 VAR_INIT_STATUS_INITIALIZED);
18989 if (tval)
18990 add_AT_loc (die, DW_AT_GNU_call_site_target_clobbered,
18991 tval);
18994 if (die != NULL)
18996 call_site_note_count++;
18997 if (ca_loc->tail_call_p)
18998 tail_call_site_note_count++;
19002 call_arg_locations = NULL;
19003 call_arg_loc_last = NULL;
19004 if (tail_call_site_count >= 0
19005 && tail_call_site_count == tail_call_site_note_count
19006 && !dwarf_strict)
19008 if (call_site_count >= 0
19009 && call_site_count == call_site_note_count)
19010 add_AT_flag (subr_die, DW_AT_GNU_all_call_sites, 1);
19011 else
19012 add_AT_flag (subr_die, DW_AT_GNU_all_tail_call_sites, 1);
19014 call_site_count = -1;
19015 tail_call_site_count = -1;
19018 if (subr_die != old_die)
19019 /* Add the calling convention attribute if requested. */
19020 add_calling_convention_attribute (subr_die, decl);
19023 /* Returns a hash value for X (which really is a die_struct). */
19025 hashval_t
19026 block_die_hasher::hash (die_struct *d)
19028 return (hashval_t) d->decl_id ^ htab_hash_pointer (d->die_parent);
19031 /* Return nonzero if decl_id and die_parent of die_struct X is the same
19032 as decl_id and die_parent of die_struct Y. */
19034 bool
19035 block_die_hasher::equal (die_struct *x, die_struct *y)
19037 return x->decl_id == y->decl_id && x->die_parent == y->die_parent;
19040 /* Generate a DIE to represent a declared data object.
19041 Either DECL or ORIGIN must be non-null. */
19043 static void
19044 gen_variable_die (tree decl, tree origin, dw_die_ref context_die)
19046 HOST_WIDE_INT off = 0;
19047 tree com_decl;
19048 tree decl_or_origin = decl ? decl : origin;
19049 tree ultimate_origin;
19050 dw_die_ref var_die;
19051 dw_die_ref old_die = decl ? lookup_decl_die (decl) : NULL;
19052 dw_die_ref origin_die;
19053 bool declaration = (DECL_EXTERNAL (decl_or_origin)
19054 || class_or_namespace_scope_p (context_die));
19055 bool specialization_p = false;
19057 ultimate_origin = decl_ultimate_origin (decl_or_origin);
19058 if (decl || ultimate_origin)
19059 origin = ultimate_origin;
19060 com_decl = fortran_common (decl_or_origin, &off);
19062 /* Symbol in common gets emitted as a child of the common block, in the form
19063 of a data member. */
19064 if (com_decl)
19066 dw_die_ref com_die;
19067 dw_loc_list_ref loc;
19068 die_node com_die_arg;
19070 var_die = lookup_decl_die (decl_or_origin);
19071 if (var_die)
19073 if (get_AT (var_die, DW_AT_location) == NULL)
19075 loc = loc_list_from_tree (com_decl, off ? 1 : 2, NULL);
19076 if (loc)
19078 if (off)
19080 /* Optimize the common case. */
19081 if (single_element_loc_list_p (loc)
19082 && loc->expr->dw_loc_opc == DW_OP_addr
19083 && loc->expr->dw_loc_next == NULL
19084 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr)
19085 == SYMBOL_REF)
19087 rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
19088 loc->expr->dw_loc_oprnd1.v.val_addr
19089 = plus_constant (GET_MODE (x), x , off);
19091 else
19092 loc_list_plus_const (loc, off);
19094 add_AT_location_description (var_die, DW_AT_location, loc);
19095 remove_AT (var_die, DW_AT_declaration);
19098 return;
19101 if (common_block_die_table == NULL)
19102 common_block_die_table = hash_table<block_die_hasher>::create_ggc (10);
19104 com_die_arg.decl_id = DECL_UID (com_decl);
19105 com_die_arg.die_parent = context_die;
19106 com_die = common_block_die_table->find (&com_die_arg);
19107 loc = loc_list_from_tree (com_decl, 2, NULL);
19108 if (com_die == NULL)
19110 const char *cnam
19111 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl));
19112 die_node **slot;
19114 com_die = new_die (DW_TAG_common_block, context_die, decl);
19115 add_name_and_src_coords_attributes (com_die, com_decl);
19116 if (loc)
19118 add_AT_location_description (com_die, DW_AT_location, loc);
19119 /* Avoid sharing the same loc descriptor between
19120 DW_TAG_common_block and DW_TAG_variable. */
19121 loc = loc_list_from_tree (com_decl, 2, NULL);
19123 else if (DECL_EXTERNAL (decl))
19124 add_AT_flag (com_die, DW_AT_declaration, 1);
19125 if (want_pubnames ())
19126 add_pubname_string (cnam, com_die); /* ??? needed? */
19127 com_die->decl_id = DECL_UID (com_decl);
19128 slot = common_block_die_table->find_slot (com_die, INSERT);
19129 *slot = com_die;
19131 else if (get_AT (com_die, DW_AT_location) == NULL && loc)
19133 add_AT_location_description (com_die, DW_AT_location, loc);
19134 loc = loc_list_from_tree (com_decl, 2, NULL);
19135 remove_AT (com_die, DW_AT_declaration);
19137 var_die = new_die (DW_TAG_variable, com_die, decl);
19138 add_name_and_src_coords_attributes (var_die, decl);
19139 add_type_attribute (var_die, TREE_TYPE (decl), decl_quals (decl),
19140 context_die);
19141 add_AT_flag (var_die, DW_AT_external, 1);
19142 if (loc)
19144 if (off)
19146 /* Optimize the common case. */
19147 if (single_element_loc_list_p (loc)
19148 && loc->expr->dw_loc_opc == DW_OP_addr
19149 && loc->expr->dw_loc_next == NULL
19150 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF)
19152 rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
19153 loc->expr->dw_loc_oprnd1.v.val_addr
19154 = plus_constant (GET_MODE (x), x, off);
19156 else
19157 loc_list_plus_const (loc, off);
19159 add_AT_location_description (var_die, DW_AT_location, loc);
19161 else if (DECL_EXTERNAL (decl))
19162 add_AT_flag (var_die, DW_AT_declaration, 1);
19163 equate_decl_number_to_die (decl, var_die);
19164 return;
19167 /* If the compiler emitted a definition for the DECL declaration
19168 and if we already emitted a DIE for it, don't emit a second
19169 DIE for it again. Allow re-declarations of DECLs that are
19170 inside functions, though. */
19171 if (old_die && declaration && !local_scope_p (context_die))
19172 return;
19174 /* For static data members, the declaration in the class is supposed
19175 to have DW_TAG_member tag; the specification should still be
19176 DW_TAG_variable referencing the DW_TAG_member DIE. */
19177 if (declaration && class_scope_p (context_die))
19178 var_die = new_die (DW_TAG_member, context_die, decl);
19179 else
19180 var_die = new_die (DW_TAG_variable, context_die, decl);
19182 origin_die = NULL;
19183 if (origin != NULL)
19184 origin_die = add_abstract_origin_attribute (var_die, origin);
19186 /* Loop unrolling can create multiple blocks that refer to the same
19187 static variable, so we must test for the DW_AT_declaration flag.
19189 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
19190 copy decls and set the DECL_ABSTRACT_P flag on them instead of
19191 sharing them.
19193 ??? Duplicated blocks have been rewritten to use .debug_ranges.
19195 ??? The declare_in_namespace support causes us to get two DIEs for one
19196 variable, both of which are declarations. We want to avoid considering
19197 one to be a specification, so we must test that this DIE is not a
19198 declaration. */
19199 else if (old_die && TREE_STATIC (decl) && ! declaration
19200 && get_AT_flag (old_die, DW_AT_declaration) == 1)
19202 /* This is a definition of a C++ class level static. */
19203 add_AT_specification (var_die, old_die);
19204 specialization_p = true;
19205 if (DECL_NAME (decl))
19207 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
19208 struct dwarf_file_data * file_index = lookup_filename (s.file);
19210 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
19211 add_AT_file (var_die, DW_AT_decl_file, file_index);
19213 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
19214 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
19216 if (old_die->die_tag == DW_TAG_member)
19217 add_linkage_name (var_die, decl);
19220 else
19221 add_name_and_src_coords_attributes (var_die, decl);
19223 if ((origin == NULL && !specialization_p)
19224 || (origin != NULL
19225 && !DECL_ABSTRACT_P (decl_or_origin)
19226 && variably_modified_type_p (TREE_TYPE (decl_or_origin),
19227 decl_function_context
19228 (decl_or_origin))))
19230 tree type = TREE_TYPE (decl_or_origin);
19232 if (decl_by_reference_p (decl_or_origin))
19233 add_type_attribute (var_die, TREE_TYPE (type), TYPE_UNQUALIFIED,
19234 context_die);
19235 else
19236 add_type_attribute (var_die, type, decl_quals (decl_or_origin),
19237 context_die);
19240 if (origin == NULL && !specialization_p)
19242 if (TREE_PUBLIC (decl))
19243 add_AT_flag (var_die, DW_AT_external, 1);
19245 if (DECL_ARTIFICIAL (decl))
19246 add_AT_flag (var_die, DW_AT_artificial, 1);
19248 add_accessibility_attribute (var_die, decl);
19251 if (declaration)
19252 add_AT_flag (var_die, DW_AT_declaration, 1);
19254 if (decl && (DECL_ABSTRACT_P (decl) || declaration || old_die == NULL))
19255 equate_decl_number_to_die (decl, var_die);
19257 if (! declaration
19258 && (! DECL_ABSTRACT_P (decl_or_origin)
19259 /* Local static vars are shared between all clones/inlines,
19260 so emit DW_AT_location on the abstract DIE if DECL_RTL is
19261 already set. */
19262 || (TREE_CODE (decl_or_origin) == VAR_DECL
19263 && TREE_STATIC (decl_or_origin)
19264 && DECL_RTL_SET_P (decl_or_origin)))
19265 /* When abstract origin already has DW_AT_location attribute, no need
19266 to add it again. */
19267 && (origin_die == NULL || get_AT (origin_die, DW_AT_location) == NULL))
19269 if (TREE_CODE (decl_or_origin) == VAR_DECL && TREE_STATIC (decl_or_origin)
19270 && !TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl_or_origin)))
19271 defer_location (decl_or_origin, var_die);
19272 else
19273 add_location_or_const_value_attribute (var_die, decl_or_origin,
19274 decl == NULL, DW_AT_location);
19275 add_pubname (decl_or_origin, var_die);
19277 else
19278 tree_add_const_value_attribute_for_decl (var_die, decl_or_origin);
19281 /* Generate a DIE to represent a named constant. */
19283 static void
19284 gen_const_die (tree decl, dw_die_ref context_die)
19286 dw_die_ref const_die;
19287 tree type = TREE_TYPE (decl);
19289 const_die = new_die (DW_TAG_constant, context_die, decl);
19290 add_name_and_src_coords_attributes (const_die, decl);
19291 add_type_attribute (const_die, type, TYPE_QUAL_CONST, context_die);
19292 if (TREE_PUBLIC (decl))
19293 add_AT_flag (const_die, DW_AT_external, 1);
19294 if (DECL_ARTIFICIAL (decl))
19295 add_AT_flag (const_die, DW_AT_artificial, 1);
19296 tree_add_const_value_attribute_for_decl (const_die, decl);
19299 /* Generate a DIE to represent a label identifier. */
19301 static void
19302 gen_label_die (tree decl, dw_die_ref context_die)
19304 tree origin = decl_ultimate_origin (decl);
19305 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
19306 rtx insn;
19307 char label[MAX_ARTIFICIAL_LABEL_BYTES];
19309 if (origin != NULL)
19310 add_abstract_origin_attribute (lbl_die, origin);
19311 else
19312 add_name_and_src_coords_attributes (lbl_die, decl);
19314 if (DECL_ABSTRACT_P (decl))
19315 equate_decl_number_to_die (decl, lbl_die);
19316 else
19318 insn = DECL_RTL_IF_SET (decl);
19320 /* Deleted labels are programmer specified labels which have been
19321 eliminated because of various optimizations. We still emit them
19322 here so that it is possible to put breakpoints on them. */
19323 if (insn
19324 && (LABEL_P (insn)
19325 || ((NOTE_P (insn)
19326 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
19328 /* When optimization is enabled (via -O) some parts of the compiler
19329 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
19330 represent source-level labels which were explicitly declared by
19331 the user. This really shouldn't be happening though, so catch
19332 it if it ever does happen. */
19333 gcc_assert (!as_a<rtx_insn *> (insn)->deleted ());
19335 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
19336 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
19338 else if (insn
19339 && NOTE_P (insn)
19340 && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL
19341 && CODE_LABEL_NUMBER (insn) != -1)
19343 ASM_GENERATE_INTERNAL_LABEL (label, "LDL", CODE_LABEL_NUMBER (insn));
19344 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
19349 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
19350 attributes to the DIE for a block STMT, to describe where the inlined
19351 function was called from. This is similar to add_src_coords_attributes. */
19353 static inline void
19354 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
19356 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
19358 if (dwarf_version >= 3 || !dwarf_strict)
19360 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
19361 add_AT_unsigned (die, DW_AT_call_line, s.line);
19366 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
19367 Add low_pc and high_pc attributes to the DIE for a block STMT. */
19369 static inline void
19370 add_high_low_attributes (tree stmt, dw_die_ref die)
19372 char label[MAX_ARTIFICIAL_LABEL_BYTES];
19374 if (BLOCK_FRAGMENT_CHAIN (stmt)
19375 && (dwarf_version >= 3 || !dwarf_strict))
19377 tree chain, superblock = NULL_TREE;
19378 dw_die_ref pdie;
19379 dw_attr_ref attr = NULL;
19381 if (inlined_function_outer_scope_p (stmt))
19383 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
19384 BLOCK_NUMBER (stmt));
19385 add_AT_lbl_id (die, DW_AT_entry_pc, label);
19388 /* Optimize duplicate .debug_ranges lists or even tails of
19389 lists. If this BLOCK has same ranges as its supercontext,
19390 lookup DW_AT_ranges attribute in the supercontext (and
19391 recursively so), verify that the ranges_table contains the
19392 right values and use it instead of adding a new .debug_range. */
19393 for (chain = stmt, pdie = die;
19394 BLOCK_SAME_RANGE (chain);
19395 chain = BLOCK_SUPERCONTEXT (chain))
19397 dw_attr_ref new_attr;
19399 pdie = pdie->die_parent;
19400 if (pdie == NULL)
19401 break;
19402 if (BLOCK_SUPERCONTEXT (chain) == NULL_TREE)
19403 break;
19404 new_attr = get_AT (pdie, DW_AT_ranges);
19405 if (new_attr == NULL
19406 || new_attr->dw_attr_val.val_class != dw_val_class_range_list)
19407 break;
19408 attr = new_attr;
19409 superblock = BLOCK_SUPERCONTEXT (chain);
19411 if (attr != NULL
19412 && (ranges_table[attr->dw_attr_val.v.val_offset
19413 / 2 / DWARF2_ADDR_SIZE].num
19414 == BLOCK_NUMBER (superblock))
19415 && BLOCK_FRAGMENT_CHAIN (superblock))
19417 unsigned long off = attr->dw_attr_val.v.val_offset
19418 / 2 / DWARF2_ADDR_SIZE;
19419 unsigned long supercnt = 0, thiscnt = 0;
19420 for (chain = BLOCK_FRAGMENT_CHAIN (superblock);
19421 chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
19423 ++supercnt;
19424 gcc_checking_assert (ranges_table[off + supercnt].num
19425 == BLOCK_NUMBER (chain));
19427 gcc_checking_assert (ranges_table[off + supercnt + 1].num == 0);
19428 for (chain = BLOCK_FRAGMENT_CHAIN (stmt);
19429 chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
19430 ++thiscnt;
19431 gcc_assert (supercnt >= thiscnt);
19432 add_AT_range_list (die, DW_AT_ranges,
19433 ((off + supercnt - thiscnt)
19434 * 2 * DWARF2_ADDR_SIZE),
19435 false);
19436 return;
19439 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt), false);
19441 chain = BLOCK_FRAGMENT_CHAIN (stmt);
19444 add_ranges (chain);
19445 chain = BLOCK_FRAGMENT_CHAIN (chain);
19447 while (chain);
19448 add_ranges (NULL);
19450 else
19452 char label_high[MAX_ARTIFICIAL_LABEL_BYTES];
19453 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
19454 BLOCK_NUMBER (stmt));
19455 ASM_GENERATE_INTERNAL_LABEL (label_high, BLOCK_END_LABEL,
19456 BLOCK_NUMBER (stmt));
19457 add_AT_low_high_pc (die, label, label_high, false);
19461 /* Generate a DIE for a lexical block. */
19463 static void
19464 gen_lexical_block_die (tree stmt, dw_die_ref context_die)
19466 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
19468 if (call_arg_locations)
19470 if (block_map.length () <= BLOCK_NUMBER (stmt))
19471 block_map.safe_grow_cleared (BLOCK_NUMBER (stmt) + 1);
19472 block_map[BLOCK_NUMBER (stmt)] = stmt_die;
19475 if (! BLOCK_ABSTRACT (stmt) && TREE_ASM_WRITTEN (stmt))
19476 add_high_low_attributes (stmt, stmt_die);
19478 decls_for_scope (stmt, stmt_die);
19481 /* Generate a DIE for an inlined subprogram. */
19483 static void
19484 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die)
19486 tree decl;
19488 /* The instance of function that is effectively being inlined shall not
19489 be abstract. */
19490 gcc_assert (! BLOCK_ABSTRACT (stmt));
19492 decl = block_ultimate_origin (stmt);
19494 /* Emit info for the abstract instance first, if we haven't yet. We
19495 must emit this even if the block is abstract, otherwise when we
19496 emit the block below (or elsewhere), we may end up trying to emit
19497 a die whose origin die hasn't been emitted, and crashing. */
19498 dwarf2out_abstract_function (decl);
19500 if (! BLOCK_ABSTRACT (stmt))
19502 dw_die_ref subr_die
19503 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
19505 if (call_arg_locations)
19507 if (block_map.length () <= BLOCK_NUMBER (stmt))
19508 block_map.safe_grow_cleared (BLOCK_NUMBER (stmt) + 1);
19509 block_map[BLOCK_NUMBER (stmt)] = subr_die;
19511 add_abstract_origin_attribute (subr_die, decl);
19512 if (TREE_ASM_WRITTEN (stmt))
19513 add_high_low_attributes (stmt, subr_die);
19514 add_call_src_coords_attributes (stmt, subr_die);
19516 decls_for_scope (stmt, subr_die);
19520 /* Generate a DIE for a field in a record, or structure. */
19522 static void
19523 gen_field_die (tree decl, dw_die_ref context_die)
19525 dw_die_ref decl_die;
19527 if (TREE_TYPE (decl) == error_mark_node)
19528 return;
19530 decl_die = new_die (DW_TAG_member, context_die, decl);
19531 add_name_and_src_coords_attributes (decl_die, decl);
19532 add_type_attribute (decl_die, member_declared_type (decl),
19533 decl_quals (decl), context_die);
19535 if (DECL_BIT_FIELD_TYPE (decl))
19537 add_byte_size_attribute (decl_die, decl);
19538 add_bit_size_attribute (decl_die, decl);
19539 add_bit_offset_attribute (decl_die, decl);
19542 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
19543 add_data_member_location_attribute (decl_die, decl);
19545 if (DECL_ARTIFICIAL (decl))
19546 add_AT_flag (decl_die, DW_AT_artificial, 1);
19548 add_accessibility_attribute (decl_die, decl);
19550 /* Equate decl number to die, so that we can look up this decl later on. */
19551 equate_decl_number_to_die (decl, decl_die);
19554 #if 0
19555 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
19556 Use modified_type_die instead.
19557 We keep this code here just in case these types of DIEs may be needed to
19558 represent certain things in other languages (e.g. Pascal) someday. */
19560 static void
19561 gen_pointer_type_die (tree type, dw_die_ref context_die)
19563 dw_die_ref ptr_die
19564 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
19566 equate_type_number_to_die (type, ptr_die);
19567 add_type_attribute (ptr_die, TREE_TYPE (type), TYPE_UNQUALIFIED,
19568 context_die);
19569 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
19572 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
19573 Use modified_type_die instead.
19574 We keep this code here just in case these types of DIEs may be needed to
19575 represent certain things in other languages (e.g. Pascal) someday. */
19577 static void
19578 gen_reference_type_die (tree type, dw_die_ref context_die)
19580 dw_die_ref ref_die, scope_die = scope_die_for (type, context_die);
19582 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
19583 ref_die = new_die (DW_TAG_rvalue_reference_type, scope_die, type);
19584 else
19585 ref_die = new_die (DW_TAG_reference_type, scope_die, type);
19587 equate_type_number_to_die (type, ref_die);
19588 add_type_attribute (ref_die, TREE_TYPE (type), TYPE_UNQUALIFIED,
19589 context_die);
19590 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
19592 #endif
19594 /* Generate a DIE for a pointer to a member type. */
19596 static void
19597 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
19599 dw_die_ref ptr_die
19600 = new_die (DW_TAG_ptr_to_member_type,
19601 scope_die_for (type, context_die), type);
19603 equate_type_number_to_die (type, ptr_die);
19604 add_AT_die_ref (ptr_die, DW_AT_containing_type,
19605 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
19606 add_type_attribute (ptr_die, TREE_TYPE (type), TYPE_UNQUALIFIED,
19607 context_die);
19610 typedef const char *dchar_p; /* For DEF_VEC_P. */
19612 static char *producer_string;
19614 /* Return a heap allocated producer string including command line options
19615 if -grecord-gcc-switches. */
19617 static char *
19618 gen_producer_string (void)
19620 size_t j;
19621 auto_vec<dchar_p> switches;
19622 const char *language_string = lang_hooks.name;
19623 char *producer, *tail;
19624 const char *p;
19625 size_t len = dwarf_record_gcc_switches ? 0 : 3;
19626 size_t plen = strlen (language_string) + 1 + strlen (version_string);
19628 for (j = 1; dwarf_record_gcc_switches && j < save_decoded_options_count; j++)
19629 switch (save_decoded_options[j].opt_index)
19631 case OPT_o:
19632 case OPT_d:
19633 case OPT_dumpbase:
19634 case OPT_dumpdir:
19635 case OPT_auxbase:
19636 case OPT_auxbase_strip:
19637 case OPT_quiet:
19638 case OPT_version:
19639 case OPT_v:
19640 case OPT_w:
19641 case OPT_L:
19642 case OPT_D:
19643 case OPT_I:
19644 case OPT_U:
19645 case OPT_SPECIAL_unknown:
19646 case OPT_SPECIAL_ignore:
19647 case OPT_SPECIAL_program_name:
19648 case OPT_SPECIAL_input_file:
19649 case OPT_grecord_gcc_switches:
19650 case OPT_gno_record_gcc_switches:
19651 case OPT__output_pch_:
19652 case OPT_fdiagnostics_show_location_:
19653 case OPT_fdiagnostics_show_option:
19654 case OPT_fdiagnostics_show_caret:
19655 case OPT_fdiagnostics_color_:
19656 case OPT_fverbose_asm:
19657 case OPT____:
19658 case OPT__sysroot_:
19659 case OPT_nostdinc:
19660 case OPT_nostdinc__:
19661 case OPT_fpreprocessed:
19662 case OPT_fltrans_output_list_:
19663 case OPT_fresolution_:
19664 /* Ignore these. */
19665 continue;
19666 default:
19667 if (cl_options[save_decoded_options[j].opt_index].flags
19668 & CL_NO_DWARF_RECORD)
19669 continue;
19670 gcc_checking_assert (save_decoded_options[j].canonical_option[0][0]
19671 == '-');
19672 switch (save_decoded_options[j].canonical_option[0][1])
19674 case 'M':
19675 case 'i':
19676 case 'W':
19677 continue;
19678 case 'f':
19679 if (strncmp (save_decoded_options[j].canonical_option[0] + 2,
19680 "dump", 4) == 0)
19681 continue;
19682 break;
19683 default:
19684 break;
19686 switches.safe_push (save_decoded_options[j].orig_option_with_args_text);
19687 len += strlen (save_decoded_options[j].orig_option_with_args_text) + 1;
19688 break;
19691 producer = XNEWVEC (char, plen + 1 + len + 1);
19692 tail = producer;
19693 sprintf (tail, "%s %s", language_string, version_string);
19694 tail += plen;
19696 FOR_EACH_VEC_ELT (switches, j, p)
19698 len = strlen (p);
19699 *tail = ' ';
19700 memcpy (tail + 1, p, len);
19701 tail += len + 1;
19704 *tail = '\0';
19705 return producer;
19708 /* Given a C and/or C++ language/version string return the "highest".
19709 C++ is assumed to be "higher" than C in this case. Used for merging
19710 LTO translation unit languages. */
19711 static const char *
19712 highest_c_language (const char *lang1, const char *lang2)
19714 if (strcmp ("GNU C++14", lang1) == 0 || strcmp ("GNU C++14", lang2) == 0)
19715 return "GNU C++14";
19716 if (strcmp ("GNU C++11", lang1) == 0 || strcmp ("GNU C++11", lang2) == 0)
19717 return "GNU C++11";
19718 if (strcmp ("GNU C++98", lang1) == 0 || strcmp ("GNU C++98", lang2) == 0)
19719 return "GNU C++98";
19721 if (strcmp ("GNU C11", lang1) == 0 || strcmp ("GNU C11", lang2) == 0)
19722 return "GNU C11";
19723 if (strcmp ("GNU C99", lang1) == 0 || strcmp ("GNU C99", lang2) == 0)
19724 return "GNU C99";
19725 if (strcmp ("GNU C89", lang1) == 0 || strcmp ("GNU C89", lang2) == 0)
19726 return "GNU C89";
19728 gcc_unreachable ();
19732 /* Generate the DIE for the compilation unit. */
19734 static dw_die_ref
19735 gen_compile_unit_die (const char *filename)
19737 dw_die_ref die;
19738 const char *language_string = lang_hooks.name;
19739 int language;
19741 die = new_die (DW_TAG_compile_unit, NULL, NULL);
19743 if (filename)
19745 add_name_attribute (die, filename);
19746 /* Don't add cwd for <built-in>. */
19747 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
19748 add_comp_dir_attribute (die);
19751 add_AT_string (die, DW_AT_producer, producer_string ? producer_string : "");
19753 /* If our producer is LTO try to figure out a common language to use
19754 from the global list of translation units. */
19755 if (strcmp (language_string, "GNU GIMPLE") == 0)
19757 unsigned i;
19758 tree t;
19759 const char *common_lang = NULL;
19761 FOR_EACH_VEC_SAFE_ELT (all_translation_units, i, t)
19763 if (!TRANSLATION_UNIT_LANGUAGE (t))
19764 continue;
19765 if (!common_lang)
19766 common_lang = TRANSLATION_UNIT_LANGUAGE (t);
19767 else if (strcmp (common_lang, TRANSLATION_UNIT_LANGUAGE (t)) == 0)
19769 else if (strncmp (common_lang, "GNU C", 5) == 0
19770 && strncmp (TRANSLATION_UNIT_LANGUAGE (t), "GNU C", 5) == 0)
19771 /* Mixing C and C++ is ok, use C++ in that case. */
19772 common_lang = highest_c_language (common_lang,
19773 TRANSLATION_UNIT_LANGUAGE (t));
19774 else
19776 /* Fall back to C. */
19777 common_lang = NULL;
19778 break;
19782 if (common_lang)
19783 language_string = common_lang;
19786 language = DW_LANG_C;
19787 if (strncmp (language_string, "GNU C", 5) == 0
19788 && ISDIGIT (language_string[5]))
19790 language = DW_LANG_C89;
19791 if (dwarf_version >= 3 || !dwarf_strict)
19793 if (strcmp (language_string, "GNU C89") != 0)
19794 language = DW_LANG_C99;
19796 if (dwarf_version >= 5 /* || !dwarf_strict */)
19797 if (strcmp (language_string, "GNU C11") == 0)
19798 language = DW_LANG_C11;
19801 else if (strncmp (language_string, "GNU C++", 7) == 0)
19803 language = DW_LANG_C_plus_plus;
19804 if (dwarf_version >= 5 /* || !dwarf_strict */)
19806 if (strcmp (language_string, "GNU C++11") == 0)
19807 language = DW_LANG_C_plus_plus_11;
19808 else if (strcmp (language_string, "GNU C++14") == 0)
19809 language = DW_LANG_C_plus_plus_14;
19812 else if (strcmp (language_string, "GNU F77") == 0)
19813 language = DW_LANG_Fortran77;
19814 else if (strcmp (language_string, "GNU Pascal") == 0)
19815 language = DW_LANG_Pascal83;
19816 else if (dwarf_version >= 3 || !dwarf_strict)
19818 if (strcmp (language_string, "GNU Ada") == 0)
19819 language = DW_LANG_Ada95;
19820 else if (strncmp (language_string, "GNU Fortran", 11) == 0)
19822 language = DW_LANG_Fortran95;
19823 if (dwarf_version >= 5 /* || !dwarf_strict */)
19825 if (strcmp (language_string, "GNU Fortran2003") == 0)
19826 language = DW_LANG_Fortran03;
19827 else if (strcmp (language_string, "GNU Fortran2008") == 0)
19828 language = DW_LANG_Fortran08;
19831 else if (strcmp (language_string, "GNU Java") == 0)
19832 language = DW_LANG_Java;
19833 else if (strcmp (language_string, "GNU Objective-C") == 0)
19834 language = DW_LANG_ObjC;
19835 else if (strcmp (language_string, "GNU Objective-C++") == 0)
19836 language = DW_LANG_ObjC_plus_plus;
19837 else if (dwarf_version >= 5 || !dwarf_strict)
19839 if (strcmp (language_string, "GNU Go") == 0)
19840 language = DW_LANG_Go;
19843 /* Use a degraded Fortran setting in strict DWARF2 so is_fortran works. */
19844 else if (strncmp (language_string, "GNU Fortran", 11) == 0)
19845 language = DW_LANG_Fortran90;
19847 add_AT_unsigned (die, DW_AT_language, language);
19849 switch (language)
19851 case DW_LANG_Fortran77:
19852 case DW_LANG_Fortran90:
19853 case DW_LANG_Fortran95:
19854 case DW_LANG_Fortran03:
19855 case DW_LANG_Fortran08:
19856 /* Fortran has case insensitive identifiers and the front-end
19857 lowercases everything. */
19858 add_AT_unsigned (die, DW_AT_identifier_case, DW_ID_down_case);
19859 break;
19860 default:
19861 /* The default DW_ID_case_sensitive doesn't need to be specified. */
19862 break;
19864 return die;
19867 /* Generate the DIE for a base class. */
19869 static void
19870 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
19872 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
19874 add_type_attribute (die, BINFO_TYPE (binfo), TYPE_UNQUALIFIED, context_die);
19875 add_data_member_location_attribute (die, binfo);
19877 if (BINFO_VIRTUAL_P (binfo))
19878 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
19880 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
19881 children, otherwise the default is DW_ACCESS_public. In DWARF2
19882 the default has always been DW_ACCESS_private. */
19883 if (access == access_public_node)
19885 if (dwarf_version == 2
19886 || context_die->die_tag == DW_TAG_class_type)
19887 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
19889 else if (access == access_protected_node)
19890 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
19891 else if (dwarf_version > 2
19892 && context_die->die_tag != DW_TAG_class_type)
19893 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
19896 /* Generate a DIE for a class member. */
19898 static void
19899 gen_member_die (tree type, dw_die_ref context_die)
19901 tree member;
19902 tree binfo = TYPE_BINFO (type);
19903 dw_die_ref child;
19905 /* If this is not an incomplete type, output descriptions of each of its
19906 members. Note that as we output the DIEs necessary to represent the
19907 members of this record or union type, we will also be trying to output
19908 DIEs to represent the *types* of those members. However the `type'
19909 function (above) will specifically avoid generating type DIEs for member
19910 types *within* the list of member DIEs for this (containing) type except
19911 for those types (of members) which are explicitly marked as also being
19912 members of this (containing) type themselves. The g++ front- end can
19913 force any given type to be treated as a member of some other (containing)
19914 type by setting the TYPE_CONTEXT of the given (member) type to point to
19915 the TREE node representing the appropriate (containing) type. */
19917 /* First output info about the base classes. */
19918 if (binfo)
19920 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
19921 int i;
19922 tree base;
19924 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
19925 gen_inheritance_die (base,
19926 (accesses ? (*accesses)[i] : access_public_node),
19927 context_die);
19930 /* Now output info about the data members and type members. */
19931 for (member = TYPE_FIELDS (type); member; member = DECL_CHAIN (member))
19933 /* If we thought we were generating minimal debug info for TYPE
19934 and then changed our minds, some of the member declarations
19935 may have already been defined. Don't define them again, but
19936 do put them in the right order. */
19938 child = lookup_decl_die (member);
19939 if (child)
19940 splice_child_die (context_die, child);
19941 else
19942 gen_decl_die (member, NULL, context_die);
19945 /* Now output info about the function members (if any). */
19946 for (member = TYPE_METHODS (type); member; member = DECL_CHAIN (member))
19948 /* Don't include clones in the member list. */
19949 if (DECL_ABSTRACT_ORIGIN (member))
19950 continue;
19952 child = lookup_decl_die (member);
19953 if (child)
19954 splice_child_die (context_die, child);
19955 else
19956 gen_decl_die (member, NULL, context_die);
19960 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
19961 is set, we pretend that the type was never defined, so we only get the
19962 member DIEs needed by later specification DIEs. */
19964 static void
19965 gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
19966 enum debug_info_usage usage)
19968 dw_die_ref type_die = lookup_type_die (type);
19969 dw_die_ref scope_die = 0;
19970 int nested = 0;
19971 int complete = (TYPE_SIZE (type)
19972 && (! TYPE_STUB_DECL (type)
19973 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
19974 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
19975 complete = complete && should_emit_struct_debug (type, usage);
19977 if (type_die && ! complete)
19978 return;
19980 if (TYPE_CONTEXT (type) != NULL_TREE
19981 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
19982 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
19983 nested = 1;
19985 scope_die = scope_die_for (type, context_die);
19987 /* Generate child dies for template paramaters. */
19988 if (!type_die && debug_info_level > DINFO_LEVEL_TERSE)
19989 schedule_generic_params_dies_gen (type);
19991 if (! type_die || (nested && is_cu_die (scope_die)))
19992 /* First occurrence of type or toplevel definition of nested class. */
19994 dw_die_ref old_die = type_die;
19996 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
19997 ? record_type_tag (type) : DW_TAG_union_type,
19998 scope_die, type);
19999 equate_type_number_to_die (type, type_die);
20000 if (old_die)
20001 add_AT_specification (type_die, old_die);
20002 else
20003 add_name_attribute (type_die, type_tag (type));
20005 else
20006 remove_AT (type_die, DW_AT_declaration);
20008 /* If this type has been completed, then give it a byte_size attribute and
20009 then give a list of members. */
20010 if (complete && !ns_decl)
20012 /* Prevent infinite recursion in cases where the type of some member of
20013 this type is expressed in terms of this type itself. */
20014 TREE_ASM_WRITTEN (type) = 1;
20015 add_byte_size_attribute (type_die, type);
20016 if (TYPE_STUB_DECL (type) != NULL_TREE)
20018 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
20019 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
20022 /* If the first reference to this type was as the return type of an
20023 inline function, then it may not have a parent. Fix this now. */
20024 if (type_die->die_parent == NULL)
20025 add_child_die (scope_die, type_die);
20027 push_decl_scope (type);
20028 gen_member_die (type, type_die);
20029 pop_decl_scope ();
20031 add_gnat_descriptive_type_attribute (type_die, type, context_die);
20032 if (TYPE_ARTIFICIAL (type))
20033 add_AT_flag (type_die, DW_AT_artificial, 1);
20035 /* GNU extension: Record what type our vtable lives in. */
20036 if (TYPE_VFIELD (type))
20038 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
20040 gen_type_die (vtype, context_die);
20041 add_AT_die_ref (type_die, DW_AT_containing_type,
20042 lookup_type_die (vtype));
20045 else
20047 add_AT_flag (type_die, DW_AT_declaration, 1);
20049 /* We don't need to do this for function-local types. */
20050 if (TYPE_STUB_DECL (type)
20051 && ! decl_function_context (TYPE_STUB_DECL (type)))
20052 vec_safe_push (incomplete_types, type);
20055 if (get_AT (type_die, DW_AT_name))
20056 add_pubtype (type, type_die);
20059 /* Generate a DIE for a subroutine _type_. */
20061 static void
20062 gen_subroutine_type_die (tree type, dw_die_ref context_die)
20064 tree return_type = TREE_TYPE (type);
20065 dw_die_ref subr_die
20066 = new_die (DW_TAG_subroutine_type,
20067 scope_die_for (type, context_die), type);
20069 equate_type_number_to_die (type, subr_die);
20070 add_prototyped_attribute (subr_die, type);
20071 add_type_attribute (subr_die, return_type, TYPE_UNQUALIFIED, context_die);
20072 gen_formal_types_die (type, subr_die);
20074 if (get_AT (subr_die, DW_AT_name))
20075 add_pubtype (type, subr_die);
20078 /* Generate a DIE for a type definition. */
20080 static void
20081 gen_typedef_die (tree decl, dw_die_ref context_die)
20083 dw_die_ref type_die;
20084 tree origin;
20086 if (TREE_ASM_WRITTEN (decl))
20087 return;
20089 TREE_ASM_WRITTEN (decl) = 1;
20090 type_die = new_die (DW_TAG_typedef, context_die, decl);
20091 origin = decl_ultimate_origin (decl);
20092 if (origin != NULL)
20093 add_abstract_origin_attribute (type_die, origin);
20094 else
20096 tree type;
20098 add_name_and_src_coords_attributes (type_die, decl);
20099 if (DECL_ORIGINAL_TYPE (decl))
20101 type = DECL_ORIGINAL_TYPE (decl);
20103 gcc_assert (type != TREE_TYPE (decl));
20104 equate_type_number_to_die (TREE_TYPE (decl), type_die);
20106 else
20108 type = TREE_TYPE (decl);
20110 if (is_naming_typedef_decl (TYPE_NAME (type)))
20112 /* Here, we are in the case of decl being a typedef naming
20113 an anonymous type, e.g:
20114 typedef struct {...} foo;
20115 In that case TREE_TYPE (decl) is not a typedef variant
20116 type and TYPE_NAME of the anonymous type is set to the
20117 TYPE_DECL of the typedef. This construct is emitted by
20118 the C++ FE.
20120 TYPE is the anonymous struct named by the typedef
20121 DECL. As we need the DW_AT_type attribute of the
20122 DW_TAG_typedef to point to the DIE of TYPE, let's
20123 generate that DIE right away. add_type_attribute
20124 called below will then pick (via lookup_type_die) that
20125 anonymous struct DIE. */
20126 if (!TREE_ASM_WRITTEN (type))
20127 gen_tagged_type_die (type, context_die, DINFO_USAGE_DIR_USE);
20129 /* This is a GNU Extension. We are adding a
20130 DW_AT_linkage_name attribute to the DIE of the
20131 anonymous struct TYPE. The value of that attribute
20132 is the name of the typedef decl naming the anonymous
20133 struct. This greatly eases the work of consumers of
20134 this debug info. */
20135 add_linkage_attr (lookup_type_die (type), decl);
20139 add_type_attribute (type_die, type, decl_quals (decl), context_die);
20141 if (is_naming_typedef_decl (decl))
20142 /* We want that all subsequent calls to lookup_type_die with
20143 TYPE in argument yield the DW_TAG_typedef we have just
20144 created. */
20145 equate_type_number_to_die (type, type_die);
20147 add_accessibility_attribute (type_die, decl);
20150 if (DECL_ABSTRACT_P (decl))
20151 equate_decl_number_to_die (decl, type_die);
20153 if (get_AT (type_die, DW_AT_name))
20154 add_pubtype (decl, type_die);
20157 /* Generate a DIE for a struct, class, enum or union type. */
20159 static void
20160 gen_tagged_type_die (tree type,
20161 dw_die_ref context_die,
20162 enum debug_info_usage usage)
20164 int need_pop;
20166 if (type == NULL_TREE
20167 || !is_tagged_type (type))
20168 return;
20170 /* If this is a nested type whose containing class hasn't been written
20171 out yet, writing it out will cover this one, too. This does not apply
20172 to instantiations of member class templates; they need to be added to
20173 the containing class as they are generated. FIXME: This hurts the
20174 idea of combining type decls from multiple TUs, since we can't predict
20175 what set of template instantiations we'll get. */
20176 if (TYPE_CONTEXT (type)
20177 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
20178 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
20180 gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
20182 if (TREE_ASM_WRITTEN (type))
20183 return;
20185 /* If that failed, attach ourselves to the stub. */
20186 push_decl_scope (TYPE_CONTEXT (type));
20187 context_die = lookup_type_die (TYPE_CONTEXT (type));
20188 need_pop = 1;
20190 else if (TYPE_CONTEXT (type) != NULL_TREE
20191 && (TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL))
20193 /* If this type is local to a function that hasn't been written
20194 out yet, use a NULL context for now; it will be fixed up in
20195 decls_for_scope. */
20196 context_die = lookup_decl_die (TYPE_CONTEXT (type));
20197 /* A declaration DIE doesn't count; nested types need to go in the
20198 specification. */
20199 if (context_die && is_declaration_die (context_die))
20200 context_die = NULL;
20201 need_pop = 0;
20203 else
20205 context_die = declare_in_namespace (type, context_die);
20206 need_pop = 0;
20209 if (TREE_CODE (type) == ENUMERAL_TYPE)
20211 /* This might have been written out by the call to
20212 declare_in_namespace. */
20213 if (!TREE_ASM_WRITTEN (type))
20214 gen_enumeration_type_die (type, context_die);
20216 else
20217 gen_struct_or_union_type_die (type, context_die, usage);
20219 if (need_pop)
20220 pop_decl_scope ();
20222 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
20223 it up if it is ever completed. gen_*_type_die will set it for us
20224 when appropriate. */
20227 /* Generate a type description DIE. */
20229 static void
20230 gen_type_die_with_usage (tree type, dw_die_ref context_die,
20231 enum debug_info_usage usage)
20233 struct array_descr_info info;
20235 if (type == NULL_TREE || type == error_mark_node)
20236 return;
20238 if (TYPE_NAME (type) != NULL_TREE
20239 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
20240 && is_redundant_typedef (TYPE_NAME (type))
20241 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
20242 /* The DECL of this type is a typedef we don't want to emit debug
20243 info for but we want debug info for its underlying typedef.
20244 This can happen for e.g, the injected-class-name of a C++
20245 type. */
20246 type = DECL_ORIGINAL_TYPE (TYPE_NAME (type));
20248 /* If TYPE is a typedef type variant, let's generate debug info
20249 for the parent typedef which TYPE is a type of. */
20250 if (typedef_variant_p (type))
20252 if (TREE_ASM_WRITTEN (type))
20253 return;
20255 /* Prevent broken recursion; we can't hand off to the same type. */
20256 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
20258 /* Give typedefs the right scope. */
20259 context_die = scope_die_for (type, context_die);
20261 TREE_ASM_WRITTEN (type) = 1;
20263 gen_decl_die (TYPE_NAME (type), NULL, context_die);
20264 return;
20267 /* If type is an anonymous tagged type named by a typedef, let's
20268 generate debug info for the typedef. */
20269 if (is_naming_typedef_decl (TYPE_NAME (type)))
20271 /* Use the DIE of the containing namespace as the parent DIE of
20272 the type description DIE we want to generate. */
20273 if (DECL_CONTEXT (TYPE_NAME (type))
20274 && TREE_CODE (DECL_CONTEXT (TYPE_NAME (type))) == NAMESPACE_DECL)
20275 context_die = get_context_die (DECL_CONTEXT (TYPE_NAME (type)));
20277 gen_decl_die (TYPE_NAME (type), NULL, context_die);
20278 return;
20281 /* We are going to output a DIE to represent the unqualified version
20282 of this type (i.e. without any const or volatile qualifiers) so
20283 get the main variant (i.e. the unqualified version) of this type
20284 now. (Vectors are special because the debugging info is in the
20285 cloned type itself). */
20286 if (TREE_CODE (type) != VECTOR_TYPE)
20287 type = type_main_variant (type);
20289 /* If this is an array type with hidden descriptor, handle it first. */
20290 if (!TREE_ASM_WRITTEN (type)
20291 && lang_hooks.types.get_array_descr_info)
20293 memset (&info, 0, sizeof (info));
20294 if (lang_hooks.types.get_array_descr_info (type, &info))
20296 gen_descr_array_type_die (type, &info, context_die);
20297 TREE_ASM_WRITTEN (type) = 1;
20298 return;
20302 if (TREE_ASM_WRITTEN (type))
20303 return;
20305 switch (TREE_CODE (type))
20307 case ERROR_MARK:
20308 break;
20310 case POINTER_TYPE:
20311 case REFERENCE_TYPE:
20312 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
20313 ensures that the gen_type_die recursion will terminate even if the
20314 type is recursive. Recursive types are possible in Ada. */
20315 /* ??? We could perhaps do this for all types before the switch
20316 statement. */
20317 TREE_ASM_WRITTEN (type) = 1;
20319 /* For these types, all that is required is that we output a DIE (or a
20320 set of DIEs) to represent the "basis" type. */
20321 gen_type_die_with_usage (TREE_TYPE (type), context_die,
20322 DINFO_USAGE_IND_USE);
20323 break;
20325 case OFFSET_TYPE:
20326 /* This code is used for C++ pointer-to-data-member types.
20327 Output a description of the relevant class type. */
20328 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
20329 DINFO_USAGE_IND_USE);
20331 /* Output a description of the type of the object pointed to. */
20332 gen_type_die_with_usage (TREE_TYPE (type), context_die,
20333 DINFO_USAGE_IND_USE);
20335 /* Now output a DIE to represent this pointer-to-data-member type
20336 itself. */
20337 gen_ptr_to_mbr_type_die (type, context_die);
20338 break;
20340 case FUNCTION_TYPE:
20341 /* Force out return type (in case it wasn't forced out already). */
20342 gen_type_die_with_usage (TREE_TYPE (type), context_die,
20343 DINFO_USAGE_DIR_USE);
20344 gen_subroutine_type_die (type, context_die);
20345 break;
20347 case METHOD_TYPE:
20348 /* Force out return type (in case it wasn't forced out already). */
20349 gen_type_die_with_usage (TREE_TYPE (type), context_die,
20350 DINFO_USAGE_DIR_USE);
20351 gen_subroutine_type_die (type, context_die);
20352 break;
20354 case ARRAY_TYPE:
20355 gen_array_type_die (type, context_die);
20356 break;
20358 case VECTOR_TYPE:
20359 gen_array_type_die (type, context_die);
20360 break;
20362 case ENUMERAL_TYPE:
20363 case RECORD_TYPE:
20364 case UNION_TYPE:
20365 case QUAL_UNION_TYPE:
20366 gen_tagged_type_die (type, context_die, usage);
20367 return;
20369 case VOID_TYPE:
20370 case INTEGER_TYPE:
20371 case REAL_TYPE:
20372 case FIXED_POINT_TYPE:
20373 case COMPLEX_TYPE:
20374 case BOOLEAN_TYPE:
20375 case POINTER_BOUNDS_TYPE:
20376 /* No DIEs needed for fundamental types. */
20377 break;
20379 case NULLPTR_TYPE:
20380 case LANG_TYPE:
20381 /* Just use DW_TAG_unspecified_type. */
20383 dw_die_ref type_die = lookup_type_die (type);
20384 if (type_die == NULL)
20386 tree name = TYPE_IDENTIFIER (type);
20387 type_die = new_die (DW_TAG_unspecified_type, comp_unit_die (),
20388 type);
20389 add_name_attribute (type_die, IDENTIFIER_POINTER (name));
20390 equate_type_number_to_die (type, type_die);
20393 break;
20395 default:
20396 if (is_cxx_auto (type))
20398 tree name = TYPE_IDENTIFIER (type);
20399 dw_die_ref *die = (name == get_identifier ("auto")
20400 ? &auto_die : &decltype_auto_die);
20401 if (!*die)
20403 *die = new_die (DW_TAG_unspecified_type,
20404 comp_unit_die (), NULL_TREE);
20405 add_name_attribute (*die, IDENTIFIER_POINTER (name));
20407 equate_type_number_to_die (type, *die);
20408 break;
20410 gcc_unreachable ();
20413 TREE_ASM_WRITTEN (type) = 1;
20416 static void
20417 gen_type_die (tree type, dw_die_ref context_die)
20419 gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
20422 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
20423 things which are local to the given block. */
20425 static void
20426 gen_block_die (tree stmt, dw_die_ref context_die)
20428 int must_output_die = 0;
20429 bool inlined_func;
20431 /* Ignore blocks that are NULL. */
20432 if (stmt == NULL_TREE)
20433 return;
20435 inlined_func = inlined_function_outer_scope_p (stmt);
20437 /* If the block is one fragment of a non-contiguous block, do not
20438 process the variables, since they will have been done by the
20439 origin block. Do process subblocks. */
20440 if (BLOCK_FRAGMENT_ORIGIN (stmt))
20442 tree sub;
20444 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
20445 gen_block_die (sub, context_die);
20447 return;
20450 /* Determine if we need to output any Dwarf DIEs at all to represent this
20451 block. */
20452 if (inlined_func)
20453 /* The outer scopes for inlinings *must* always be represented. We
20454 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
20455 must_output_die = 1;
20456 else
20458 /* Determine if this block directly contains any "significant"
20459 local declarations which we will need to output DIEs for. */
20460 if (debug_info_level > DINFO_LEVEL_TERSE)
20461 /* We are not in terse mode so *any* local declaration counts
20462 as being a "significant" one. */
20463 must_output_die = ((BLOCK_VARS (stmt) != NULL
20464 || BLOCK_NUM_NONLOCALIZED_VARS (stmt))
20465 && (TREE_USED (stmt)
20466 || TREE_ASM_WRITTEN (stmt)
20467 || BLOCK_ABSTRACT (stmt)));
20468 else if ((TREE_USED (stmt)
20469 || TREE_ASM_WRITTEN (stmt)
20470 || BLOCK_ABSTRACT (stmt))
20471 && !dwarf2out_ignore_block (stmt))
20472 must_output_die = 1;
20475 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
20476 DIE for any block which contains no significant local declarations at
20477 all. Rather, in such cases we just call `decls_for_scope' so that any
20478 needed Dwarf info for any sub-blocks will get properly generated. Note
20479 that in terse mode, our definition of what constitutes a "significant"
20480 local declaration gets restricted to include only inlined function
20481 instances and local (nested) function definitions. */
20482 if (must_output_die)
20484 if (inlined_func)
20486 /* If STMT block is abstract, that means we have been called
20487 indirectly from dwarf2out_abstract_function.
20488 That function rightfully marks the descendent blocks (of
20489 the abstract function it is dealing with) as being abstract,
20490 precisely to prevent us from emitting any
20491 DW_TAG_inlined_subroutine DIE as a descendent
20492 of an abstract function instance. So in that case, we should
20493 not call gen_inlined_subroutine_die.
20495 Later though, when cgraph asks dwarf2out to emit info
20496 for the concrete instance of the function decl into which
20497 the concrete instance of STMT got inlined, the later will lead
20498 to the generation of a DW_TAG_inlined_subroutine DIE. */
20499 if (! BLOCK_ABSTRACT (stmt))
20500 gen_inlined_subroutine_die (stmt, context_die);
20502 else
20503 gen_lexical_block_die (stmt, context_die);
20505 else
20506 decls_for_scope (stmt, context_die);
20509 /* Process variable DECL (or variable with origin ORIGIN) within
20510 block STMT and add it to CONTEXT_DIE. */
20511 static void
20512 process_scope_var (tree stmt, tree decl, tree origin, dw_die_ref context_die)
20514 dw_die_ref die;
20515 tree decl_or_origin = decl ? decl : origin;
20517 if (TREE_CODE (decl_or_origin) == FUNCTION_DECL)
20518 die = lookup_decl_die (decl_or_origin);
20519 else if (TREE_CODE (decl_or_origin) == TYPE_DECL
20520 && TYPE_DECL_IS_STUB (decl_or_origin))
20521 die = lookup_type_die (TREE_TYPE (decl_or_origin));
20522 else
20523 die = NULL;
20525 if (die != NULL && die->die_parent == NULL)
20526 add_child_die (context_die, die);
20527 else if (TREE_CODE (decl_or_origin) == IMPORTED_DECL)
20528 dwarf2out_imported_module_or_decl_1 (decl_or_origin, DECL_NAME (decl_or_origin),
20529 stmt, context_die);
20530 else
20531 gen_decl_die (decl, origin, context_die);
20534 /* Generate all of the decls declared within a given scope and (recursively)
20535 all of its sub-blocks. */
20537 static void
20538 decls_for_scope (tree stmt, dw_die_ref context_die)
20540 tree decl;
20541 unsigned int i;
20542 tree subblocks;
20544 /* Ignore NULL blocks. */
20545 if (stmt == NULL_TREE)
20546 return;
20548 /* Output the DIEs to represent all of the data objects and typedefs
20549 declared directly within this block but not within any nested
20550 sub-blocks. Also, nested function and tag DIEs have been
20551 generated with a parent of NULL; fix that up now. We don't
20552 have to do this if we're at -g1. */
20553 if (debug_info_level > DINFO_LEVEL_TERSE)
20555 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = DECL_CHAIN (decl))
20556 process_scope_var (stmt, decl, NULL_TREE, context_die);
20557 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
20558 process_scope_var (stmt, NULL, BLOCK_NONLOCALIZED_VAR (stmt, i),
20559 context_die);
20562 /* Even if we're at -g1, we need to process the subblocks in order to get
20563 inlined call information. */
20565 /* Output the DIEs to represent all sub-blocks (and the items declared
20566 therein) of this block. */
20567 for (subblocks = BLOCK_SUBBLOCKS (stmt);
20568 subblocks != NULL;
20569 subblocks = BLOCK_CHAIN (subblocks))
20570 gen_block_die (subblocks, context_die);
20573 /* Is this a typedef we can avoid emitting? */
20575 static inline int
20576 is_redundant_typedef (const_tree decl)
20578 if (TYPE_DECL_IS_STUB (decl))
20579 return 1;
20581 if (DECL_ARTIFICIAL (decl)
20582 && DECL_CONTEXT (decl)
20583 && is_tagged_type (DECL_CONTEXT (decl))
20584 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
20585 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
20586 /* Also ignore the artificial member typedef for the class name. */
20587 return 1;
20589 return 0;
20592 /* Return TRUE if TYPE is a typedef that names a type for linkage
20593 purposes. This kind of typedefs is produced by the C++ FE for
20594 constructs like:
20596 typedef struct {...} foo;
20598 In that case, there is no typedef variant type produced for foo.
20599 Rather, the TREE_TYPE of the TYPE_DECL of foo is the anonymous
20600 struct type. */
20602 static bool
20603 is_naming_typedef_decl (const_tree decl)
20605 if (decl == NULL_TREE
20606 || TREE_CODE (decl) != TYPE_DECL
20607 || !is_tagged_type (TREE_TYPE (decl))
20608 || DECL_IS_BUILTIN (decl)
20609 || is_redundant_typedef (decl)
20610 /* It looks like Ada produces TYPE_DECLs that are very similar
20611 to C++ naming typedefs but that have different
20612 semantics. Let's be specific to c++ for now. */
20613 || !is_cxx ())
20614 return FALSE;
20616 return (DECL_ORIGINAL_TYPE (decl) == NULL_TREE
20617 && TYPE_NAME (TREE_TYPE (decl)) == decl
20618 && (TYPE_STUB_DECL (TREE_TYPE (decl))
20619 != TYPE_NAME (TREE_TYPE (decl))));
20622 /* Returns the DIE for a context. */
20624 static inline dw_die_ref
20625 get_context_die (tree context)
20627 if (context)
20629 /* Find die that represents this context. */
20630 if (TYPE_P (context))
20632 context = TYPE_MAIN_VARIANT (context);
20633 return strip_naming_typedef (context, force_type_die (context));
20635 else
20636 return force_decl_die (context);
20638 return comp_unit_die ();
20641 /* Returns the DIE for decl. A DIE will always be returned. */
20643 static dw_die_ref
20644 force_decl_die (tree decl)
20646 dw_die_ref decl_die;
20647 unsigned saved_external_flag;
20648 tree save_fn = NULL_TREE;
20649 decl_die = lookup_decl_die (decl);
20650 if (!decl_die)
20652 dw_die_ref context_die = get_context_die (DECL_CONTEXT (decl));
20654 decl_die = lookup_decl_die (decl);
20655 if (decl_die)
20656 return decl_die;
20658 switch (TREE_CODE (decl))
20660 case FUNCTION_DECL:
20661 /* Clear current_function_decl, so that gen_subprogram_die thinks
20662 that this is a declaration. At this point, we just want to force
20663 declaration die. */
20664 save_fn = current_function_decl;
20665 current_function_decl = NULL_TREE;
20666 gen_subprogram_die (decl, context_die);
20667 current_function_decl = save_fn;
20668 break;
20670 case VAR_DECL:
20671 /* Set external flag to force declaration die. Restore it after
20672 gen_decl_die() call. */
20673 saved_external_flag = DECL_EXTERNAL (decl);
20674 DECL_EXTERNAL (decl) = 1;
20675 gen_decl_die (decl, NULL, context_die);
20676 DECL_EXTERNAL (decl) = saved_external_flag;
20677 break;
20679 case NAMESPACE_DECL:
20680 if (dwarf_version >= 3 || !dwarf_strict)
20681 dwarf2out_decl (decl);
20682 else
20683 /* DWARF2 has neither DW_TAG_module, nor DW_TAG_namespace. */
20684 decl_die = comp_unit_die ();
20685 break;
20687 case TRANSLATION_UNIT_DECL:
20688 decl_die = comp_unit_die ();
20689 break;
20691 default:
20692 gcc_unreachable ();
20695 /* We should be able to find the DIE now. */
20696 if (!decl_die)
20697 decl_die = lookup_decl_die (decl);
20698 gcc_assert (decl_die);
20701 return decl_die;
20704 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
20705 always returned. */
20707 static dw_die_ref
20708 force_type_die (tree type)
20710 dw_die_ref type_die;
20712 type_die = lookup_type_die (type);
20713 if (!type_die)
20715 dw_die_ref context_die = get_context_die (TYPE_CONTEXT (type));
20717 type_die = modified_type_die (type, TYPE_QUALS_NO_ADDR_SPACE (type),
20718 context_die);
20719 gcc_assert (type_die);
20721 return type_die;
20724 /* Force out any required namespaces to be able to output DECL,
20725 and return the new context_die for it, if it's changed. */
20727 static dw_die_ref
20728 setup_namespace_context (tree thing, dw_die_ref context_die)
20730 tree context = (DECL_P (thing)
20731 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
20732 if (context && TREE_CODE (context) == NAMESPACE_DECL)
20733 /* Force out the namespace. */
20734 context_die = force_decl_die (context);
20736 return context_die;
20739 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
20740 type) within its namespace, if appropriate.
20742 For compatibility with older debuggers, namespace DIEs only contain
20743 declarations; all definitions are emitted at CU scope. */
20745 static dw_die_ref
20746 declare_in_namespace (tree thing, dw_die_ref context_die)
20748 dw_die_ref ns_context;
20750 if (debug_info_level <= DINFO_LEVEL_TERSE)
20751 return context_die;
20753 /* External declarations in the local scope only need to be emitted
20754 once, not once in the namespace and once in the scope.
20756 This avoids declaring the `extern' below in the
20757 namespace DIE as well as in the innermost scope:
20759 namespace S
20761 int i=5;
20762 int foo()
20764 int i=8;
20765 extern int i;
20766 return i;
20770 if (DECL_P (thing) && DECL_EXTERNAL (thing) && local_scope_p (context_die))
20771 return context_die;
20773 /* If this decl is from an inlined function, then don't try to emit it in its
20774 namespace, as we will get confused. It would have already been emitted
20775 when the abstract instance of the inline function was emitted anyways. */
20776 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
20777 return context_die;
20779 ns_context = setup_namespace_context (thing, context_die);
20781 if (ns_context != context_die)
20783 if (is_fortran ())
20784 return ns_context;
20785 if (DECL_P (thing))
20786 gen_decl_die (thing, NULL, ns_context);
20787 else
20788 gen_type_die (thing, ns_context);
20790 return context_die;
20793 /* Generate a DIE for a namespace or namespace alias. */
20795 static void
20796 gen_namespace_die (tree decl, dw_die_ref context_die)
20798 dw_die_ref namespace_die;
20800 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
20801 they are an alias of. */
20802 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
20804 /* Output a real namespace or module. */
20805 context_die = setup_namespace_context (decl, comp_unit_die ());
20806 namespace_die = new_die (is_fortran ()
20807 ? DW_TAG_module : DW_TAG_namespace,
20808 context_die, decl);
20809 /* For Fortran modules defined in different CU don't add src coords. */
20810 if (namespace_die->die_tag == DW_TAG_module && DECL_EXTERNAL (decl))
20812 const char *name = dwarf2_name (decl, 0);
20813 if (name)
20814 add_name_attribute (namespace_die, name);
20816 else
20817 add_name_and_src_coords_attributes (namespace_die, decl);
20818 if (DECL_EXTERNAL (decl))
20819 add_AT_flag (namespace_die, DW_AT_declaration, 1);
20820 equate_decl_number_to_die (decl, namespace_die);
20822 else
20824 /* Output a namespace alias. */
20826 /* Force out the namespace we are an alias of, if necessary. */
20827 dw_die_ref origin_die
20828 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
20830 if (DECL_FILE_SCOPE_P (decl)
20831 || TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
20832 context_die = setup_namespace_context (decl, comp_unit_die ());
20833 /* Now create the namespace alias DIE. */
20834 namespace_die = new_die (DW_TAG_imported_declaration, context_die, decl);
20835 add_name_and_src_coords_attributes (namespace_die, decl);
20836 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
20837 equate_decl_number_to_die (decl, namespace_die);
20839 /* Bypass dwarf2_name's check for DECL_NAMELESS. */
20840 if (want_pubnames ())
20841 add_pubname_string (lang_hooks.dwarf_name (decl, 1), namespace_die);
20844 /* Generate Dwarf debug information for a decl described by DECL.
20845 The return value is currently only meaningful for PARM_DECLs,
20846 for all other decls it returns NULL. */
20848 static dw_die_ref
20849 gen_decl_die (tree decl, tree origin, dw_die_ref context_die)
20851 tree decl_or_origin = decl ? decl : origin;
20852 tree class_origin = NULL, ultimate_origin;
20854 if (DECL_P (decl_or_origin) && DECL_IGNORED_P (decl_or_origin))
20855 return NULL;
20857 /* Ignore pointer bounds decls. */
20858 if (DECL_P (decl_or_origin)
20859 && TREE_TYPE (decl_or_origin)
20860 && POINTER_BOUNDS_P (decl_or_origin))
20861 return NULL;
20863 switch (TREE_CODE (decl_or_origin))
20865 case ERROR_MARK:
20866 break;
20868 case CONST_DECL:
20869 if (!is_fortran () && !is_ada ())
20871 /* The individual enumerators of an enum type get output when we output
20872 the Dwarf representation of the relevant enum type itself. */
20873 break;
20876 /* Emit its type. */
20877 gen_type_die (TREE_TYPE (decl), context_die);
20879 /* And its containing namespace. */
20880 context_die = declare_in_namespace (decl, context_die);
20882 gen_const_die (decl, context_die);
20883 break;
20885 case FUNCTION_DECL:
20886 /* Don't output any DIEs to represent mere function declarations,
20887 unless they are class members or explicit block externs. */
20888 if (DECL_INITIAL (decl_or_origin) == NULL_TREE
20889 && DECL_FILE_SCOPE_P (decl_or_origin)
20890 && (current_function_decl == NULL_TREE
20891 || DECL_ARTIFICIAL (decl_or_origin)))
20892 break;
20894 #if 0
20895 /* FIXME */
20896 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
20897 on local redeclarations of global functions. That seems broken. */
20898 if (current_function_decl != decl)
20899 /* This is only a declaration. */;
20900 #endif
20902 /* If we're emitting a clone, emit info for the abstract instance. */
20903 if (origin || DECL_ORIGIN (decl) != decl)
20904 dwarf2out_abstract_function (origin
20905 ? DECL_ORIGIN (origin)
20906 : DECL_ABSTRACT_ORIGIN (decl));
20908 /* If we're emitting an out-of-line copy of an inline function,
20909 emit info for the abstract instance and set up to refer to it. */
20910 else if (cgraph_function_possibly_inlined_p (decl)
20911 && ! DECL_ABSTRACT_P (decl)
20912 && ! class_or_namespace_scope_p (context_die)
20913 /* dwarf2out_abstract_function won't emit a die if this is just
20914 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
20915 that case, because that works only if we have a die. */
20916 && DECL_INITIAL (decl) != NULL_TREE)
20918 dwarf2out_abstract_function (decl);
20919 set_decl_origin_self (decl);
20922 /* Otherwise we're emitting the primary DIE for this decl. */
20923 else if (debug_info_level > DINFO_LEVEL_TERSE)
20925 /* Before we describe the FUNCTION_DECL itself, make sure that we
20926 have its containing type. */
20927 if (!origin)
20928 origin = decl_class_context (decl);
20929 if (origin != NULL_TREE)
20930 gen_type_die (origin, context_die);
20932 /* And its return type. */
20933 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
20935 /* And its virtual context. */
20936 if (DECL_VINDEX (decl) != NULL_TREE)
20937 gen_type_die (DECL_CONTEXT (decl), context_die);
20939 /* Make sure we have a member DIE for decl. */
20940 if (origin != NULL_TREE)
20941 gen_type_die_for_member (origin, decl, context_die);
20943 /* And its containing namespace. */
20944 context_die = declare_in_namespace (decl, context_die);
20947 /* Now output a DIE to represent the function itself. */
20948 if (decl)
20949 gen_subprogram_die (decl, context_die);
20950 break;
20952 case TYPE_DECL:
20953 /* If we are in terse mode, don't generate any DIEs to represent any
20954 actual typedefs. */
20955 if (debug_info_level <= DINFO_LEVEL_TERSE)
20956 break;
20958 /* In the special case of a TYPE_DECL node representing the declaration
20959 of some type tag, if the given TYPE_DECL is marked as having been
20960 instantiated from some other (original) TYPE_DECL node (e.g. one which
20961 was generated within the original definition of an inline function) we
20962 used to generate a special (abbreviated) DW_TAG_structure_type,
20963 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. But nothing
20964 should be actually referencing those DIEs, as variable DIEs with that
20965 type would be emitted already in the abstract origin, so it was always
20966 removed during unused type prunning. Don't add anything in this
20967 case. */
20968 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
20969 break;
20971 if (is_redundant_typedef (decl))
20972 gen_type_die (TREE_TYPE (decl), context_die);
20973 else
20974 /* Output a DIE to represent the typedef itself. */
20975 gen_typedef_die (decl, context_die);
20976 break;
20978 case LABEL_DECL:
20979 if (debug_info_level >= DINFO_LEVEL_NORMAL)
20980 gen_label_die (decl, context_die);
20981 break;
20983 case VAR_DECL:
20984 case RESULT_DECL:
20985 /* If we are in terse mode, don't generate any DIEs to represent any
20986 variable declarations or definitions. */
20987 if (debug_info_level <= DINFO_LEVEL_TERSE)
20988 break;
20990 /* Output any DIEs that are needed to specify the type of this data
20991 object. */
20992 if (decl_by_reference_p (decl_or_origin))
20993 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
20994 else
20995 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
20997 /* And its containing type. */
20998 class_origin = decl_class_context (decl_or_origin);
20999 if (class_origin != NULL_TREE)
21000 gen_type_die_for_member (class_origin, decl_or_origin, context_die);
21002 /* And its containing namespace. */
21003 context_die = declare_in_namespace (decl_or_origin, context_die);
21005 /* Now output the DIE to represent the data object itself. This gets
21006 complicated because of the possibility that the VAR_DECL really
21007 represents an inlined instance of a formal parameter for an inline
21008 function. */
21009 ultimate_origin = decl_ultimate_origin (decl_or_origin);
21010 if (ultimate_origin != NULL_TREE
21011 && TREE_CODE (ultimate_origin) == PARM_DECL)
21012 gen_formal_parameter_die (decl, origin,
21013 true /* Emit name attribute. */,
21014 context_die);
21015 else
21016 gen_variable_die (decl, origin, context_die);
21017 break;
21019 case FIELD_DECL:
21020 /* Ignore the nameless fields that are used to skip bits but handle C++
21021 anonymous unions and structs. */
21022 if (DECL_NAME (decl) != NULL_TREE
21023 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
21024 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
21026 gen_type_die (member_declared_type (decl), context_die);
21027 gen_field_die (decl, context_die);
21029 break;
21031 case PARM_DECL:
21032 if (DECL_BY_REFERENCE (decl_or_origin))
21033 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
21034 else
21035 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
21036 return gen_formal_parameter_die (decl, origin,
21037 true /* Emit name attribute. */,
21038 context_die);
21040 case NAMESPACE_DECL:
21041 case IMPORTED_DECL:
21042 if (dwarf_version >= 3 || !dwarf_strict)
21043 gen_namespace_die (decl, context_die);
21044 break;
21046 case NAMELIST_DECL:
21047 gen_namelist_decl (DECL_NAME (decl), context_die,
21048 NAMELIST_DECL_ASSOCIATED_DECL (decl));
21049 break;
21051 default:
21052 /* Probably some frontend-internal decl. Assume we don't care. */
21053 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
21054 break;
21057 return NULL;
21060 /* Output debug information for global decl DECL. Called from toplev.c after
21061 compilation proper has finished. */
21063 static void
21064 dwarf2out_global_decl (tree decl)
21066 /* Output DWARF2 information for file-scope tentative data object
21067 declarations, file-scope (extern) function declarations (which
21068 had no corresponding body) and file-scope tagged type declarations
21069 and definitions which have not yet been forced out. */
21070 if ((TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
21071 && !POINTER_BOUNDS_P (decl))
21072 dwarf2out_decl (decl);
21075 /* Output debug information for type decl DECL. Called from toplev.c
21076 and from language front ends (to record built-in types). */
21077 static void
21078 dwarf2out_type_decl (tree decl, int local)
21080 if (!local)
21081 dwarf2out_decl (decl);
21084 /* Output debug information for imported module or decl DECL.
21085 NAME is non-NULL name in the lexical block if the decl has been renamed.
21086 LEXICAL_BLOCK is the lexical block (which TREE_CODE is a BLOCK)
21087 that DECL belongs to.
21088 LEXICAL_BLOCK_DIE is the DIE of LEXICAL_BLOCK. */
21089 static void
21090 dwarf2out_imported_module_or_decl_1 (tree decl,
21091 tree name,
21092 tree lexical_block,
21093 dw_die_ref lexical_block_die)
21095 expanded_location xloc;
21096 dw_die_ref imported_die = NULL;
21097 dw_die_ref at_import_die;
21099 if (TREE_CODE (decl) == IMPORTED_DECL)
21101 xloc = expand_location (DECL_SOURCE_LOCATION (decl));
21102 decl = IMPORTED_DECL_ASSOCIATED_DECL (decl);
21103 gcc_assert (decl);
21105 else
21106 xloc = expand_location (input_location);
21108 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
21110 at_import_die = force_type_die (TREE_TYPE (decl));
21111 /* For namespace N { typedef void T; } using N::T; base_type_die
21112 returns NULL, but DW_TAG_imported_declaration requires
21113 the DW_AT_import tag. Force creation of DW_TAG_typedef. */
21114 if (!at_import_die)
21116 gcc_assert (TREE_CODE (decl) == TYPE_DECL);
21117 gen_typedef_die (decl, get_context_die (DECL_CONTEXT (decl)));
21118 at_import_die = lookup_type_die (TREE_TYPE (decl));
21119 gcc_assert (at_import_die);
21122 else
21124 at_import_die = lookup_decl_die (decl);
21125 if (!at_import_die)
21127 /* If we're trying to avoid duplicate debug info, we may not have
21128 emitted the member decl for this field. Emit it now. */
21129 if (TREE_CODE (decl) == FIELD_DECL)
21131 tree type = DECL_CONTEXT (decl);
21133 if (TYPE_CONTEXT (type)
21134 && TYPE_P (TYPE_CONTEXT (type))
21135 && !should_emit_struct_debug (TYPE_CONTEXT (type),
21136 DINFO_USAGE_DIR_USE))
21137 return;
21138 gen_type_die_for_member (type, decl,
21139 get_context_die (TYPE_CONTEXT (type)));
21141 if (TREE_CODE (decl) == NAMELIST_DECL)
21142 at_import_die = gen_namelist_decl (DECL_NAME (decl),
21143 get_context_die (DECL_CONTEXT (decl)),
21144 NULL_TREE);
21145 else
21146 at_import_die = force_decl_die (decl);
21150 if (TREE_CODE (decl) == NAMESPACE_DECL)
21152 if (dwarf_version >= 3 || !dwarf_strict)
21153 imported_die = new_die (DW_TAG_imported_module,
21154 lexical_block_die,
21155 lexical_block);
21156 else
21157 return;
21159 else
21160 imported_die = new_die (DW_TAG_imported_declaration,
21161 lexical_block_die,
21162 lexical_block);
21164 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
21165 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
21166 if (name)
21167 add_AT_string (imported_die, DW_AT_name,
21168 IDENTIFIER_POINTER (name));
21169 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
21172 /* Output debug information for imported module or decl DECL.
21173 NAME is non-NULL name in context if the decl has been renamed.
21174 CHILD is true if decl is one of the renamed decls as part of
21175 importing whole module. */
21177 static void
21178 dwarf2out_imported_module_or_decl (tree decl, tree name, tree context,
21179 bool child)
21181 /* dw_die_ref at_import_die; */
21182 dw_die_ref scope_die;
21184 if (debug_info_level <= DINFO_LEVEL_TERSE)
21185 return;
21187 gcc_assert (decl);
21189 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
21190 We need decl DIE for reference and scope die. First, get DIE for the decl
21191 itself. */
21193 /* Get the scope die for decl context. Use comp_unit_die for global module
21194 or decl. If die is not found for non globals, force new die. */
21195 if (context
21196 && TYPE_P (context)
21197 && !should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
21198 return;
21200 if (!(dwarf_version >= 3 || !dwarf_strict))
21201 return;
21203 scope_die = get_context_die (context);
21205 if (child)
21207 gcc_assert (scope_die->die_child);
21208 gcc_assert (scope_die->die_child->die_tag == DW_TAG_imported_module);
21209 gcc_assert (TREE_CODE (decl) != NAMESPACE_DECL);
21210 scope_die = scope_die->die_child;
21213 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
21214 dwarf2out_imported_module_or_decl_1 (decl, name, context, scope_die);
21218 /* Output debug information for namelists. */
21220 static dw_die_ref
21221 gen_namelist_decl (tree name, dw_die_ref scope_die, tree item_decls)
21223 dw_die_ref nml_die, nml_item_die, nml_item_ref_die;
21224 tree value;
21225 unsigned i;
21227 if (debug_info_level <= DINFO_LEVEL_TERSE)
21228 return NULL;
21230 gcc_assert (scope_die != NULL);
21231 nml_die = new_die (DW_TAG_namelist, scope_die, NULL);
21232 add_AT_string (nml_die, DW_AT_name, IDENTIFIER_POINTER (name));
21234 /* If there are no item_decls, we have a nondefining namelist, e.g.
21235 with USE association; hence, set DW_AT_declaration. */
21236 if (item_decls == NULL_TREE)
21238 add_AT_flag (nml_die, DW_AT_declaration, 1);
21239 return nml_die;
21242 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (item_decls), i, value)
21244 nml_item_ref_die = lookup_decl_die (value);
21245 if (!nml_item_ref_die)
21246 nml_item_ref_die = force_decl_die (value);
21248 nml_item_die = new_die (DW_TAG_namelist_item, nml_die, NULL);
21249 add_AT_die_ref (nml_item_die, DW_AT_namelist_items, nml_item_ref_die);
21251 return nml_die;
21255 /* Write the debugging output for DECL. */
21257 static void
21258 dwarf2out_decl (tree decl)
21260 dw_die_ref context_die = comp_unit_die ();
21262 switch (TREE_CODE (decl))
21264 case ERROR_MARK:
21265 return;
21267 case FUNCTION_DECL:
21268 /* What we would really like to do here is to filter out all mere
21269 file-scope declarations of file-scope functions which are never
21270 referenced later within this translation unit (and keep all of ones
21271 that *are* referenced later on) but we aren't clairvoyant, so we have
21272 no idea which functions will be referenced in the future (i.e. later
21273 on within the current translation unit). So here we just ignore all
21274 file-scope function declarations which are not also definitions. If
21275 and when the debugger needs to know something about these functions,
21276 it will have to hunt around and find the DWARF information associated
21277 with the definition of the function.
21279 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
21280 nodes represent definitions and which ones represent mere
21281 declarations. We have to check DECL_INITIAL instead. That's because
21282 the C front-end supports some weird semantics for "extern inline"
21283 function definitions. These can get inlined within the current
21284 translation unit (and thus, we need to generate Dwarf info for their
21285 abstract instances so that the Dwarf info for the concrete inlined
21286 instances can have something to refer to) but the compiler never
21287 generates any out-of-lines instances of such things (despite the fact
21288 that they *are* definitions).
21290 The important point is that the C front-end marks these "extern
21291 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
21292 them anyway. Note that the C++ front-end also plays some similar games
21293 for inline function definitions appearing within include files which
21294 also contain `#pragma interface' pragmas.
21296 If we are called from dwarf2out_abstract_function output a DIE
21297 anyway. We can end up here this way with early inlining and LTO
21298 where the inlined function is output in a different LTRANS unit
21299 or not at all. */
21300 if (DECL_INITIAL (decl) == NULL_TREE
21301 && ! DECL_ABSTRACT_P (decl))
21302 return;
21304 /* If we're a nested function, initially use a parent of NULL; if we're
21305 a plain function, this will be fixed up in decls_for_scope. If
21306 we're a method, it will be ignored, since we already have a DIE. */
21307 if (decl_function_context (decl)
21308 /* But if we're in terse mode, we don't care about scope. */
21309 && debug_info_level > DINFO_LEVEL_TERSE)
21310 context_die = NULL;
21311 break;
21313 case VAR_DECL:
21314 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
21315 declaration and if the declaration was never even referenced from
21316 within this entire compilation unit. We suppress these DIEs in
21317 order to save space in the .debug section (by eliminating entries
21318 which are probably useless). Note that we must not suppress
21319 block-local extern declarations (whether used or not) because that
21320 would screw-up the debugger's name lookup mechanism and cause it to
21321 miss things which really ought to be in scope at a given point. */
21322 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
21323 return;
21325 /* For local statics lookup proper context die. */
21326 if (TREE_STATIC (decl)
21327 && DECL_CONTEXT (decl)
21328 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL)
21329 context_die = lookup_decl_die (DECL_CONTEXT (decl));
21331 /* If we are in terse mode, don't generate any DIEs to represent any
21332 variable declarations or definitions. */
21333 if (debug_info_level <= DINFO_LEVEL_TERSE)
21334 return;
21335 break;
21337 case CONST_DECL:
21338 if (debug_info_level <= DINFO_LEVEL_TERSE)
21339 return;
21340 if (!is_fortran () && !is_ada ())
21341 return;
21342 if (TREE_STATIC (decl) && decl_function_context (decl))
21343 context_die = lookup_decl_die (DECL_CONTEXT (decl));
21344 break;
21346 case NAMESPACE_DECL:
21347 case IMPORTED_DECL:
21348 if (debug_info_level <= DINFO_LEVEL_TERSE)
21349 return;
21350 if (lookup_decl_die (decl) != NULL)
21351 return;
21352 break;
21354 case TYPE_DECL:
21355 /* Don't emit stubs for types unless they are needed by other DIEs. */
21356 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
21357 return;
21359 /* Don't bother trying to generate any DIEs to represent any of the
21360 normal built-in types for the language we are compiling. */
21361 if (DECL_IS_BUILTIN (decl))
21362 return;
21364 /* If we are in terse mode, don't generate any DIEs for types. */
21365 if (debug_info_level <= DINFO_LEVEL_TERSE)
21366 return;
21368 /* If we're a function-scope tag, initially use a parent of NULL;
21369 this will be fixed up in decls_for_scope. */
21370 if (decl_function_context (decl))
21371 context_die = NULL;
21373 break;
21375 case NAMELIST_DECL:
21376 break;
21378 default:
21379 return;
21382 gen_decl_die (decl, NULL, context_die);
21385 /* Write the debugging output for DECL. */
21387 static void
21388 dwarf2out_function_decl (tree decl)
21390 dwarf2out_decl (decl);
21391 call_arg_locations = NULL;
21392 call_arg_loc_last = NULL;
21393 call_site_count = -1;
21394 tail_call_site_count = -1;
21395 block_map.release ();
21396 decl_loc_table->empty ();
21397 cached_dw_loc_list_table->empty ();
21400 /* Output a marker (i.e. a label) for the beginning of the generated code for
21401 a lexical block. */
21403 static void
21404 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
21405 unsigned int blocknum)
21407 switch_to_section (current_function_section ());
21408 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
21411 /* Output a marker (i.e. a label) for the end of the generated code for a
21412 lexical block. */
21414 static void
21415 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
21417 switch_to_section (current_function_section ());
21418 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
21421 /* Returns nonzero if it is appropriate not to emit any debugging
21422 information for BLOCK, because it doesn't contain any instructions.
21424 Don't allow this for blocks with nested functions or local classes
21425 as we would end up with orphans, and in the presence of scheduling
21426 we may end up calling them anyway. */
21428 static bool
21429 dwarf2out_ignore_block (const_tree block)
21431 tree decl;
21432 unsigned int i;
21434 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
21435 if (TREE_CODE (decl) == FUNCTION_DECL
21436 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
21437 return 0;
21438 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (block); i++)
21440 decl = BLOCK_NONLOCALIZED_VAR (block, i);
21441 if (TREE_CODE (decl) == FUNCTION_DECL
21442 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
21443 return 0;
21446 return 1;
21449 /* Hash table routines for file_hash. */
21451 bool
21452 dwarf_file_hasher::equal (dwarf_file_data *p1, const char *p2)
21454 return filename_cmp (p1->filename, p2) == 0;
21457 hashval_t
21458 dwarf_file_hasher::hash (dwarf_file_data *p)
21460 return htab_hash_string (p->filename);
21463 /* Lookup FILE_NAME (in the list of filenames that we know about here in
21464 dwarf2out.c) and return its "index". The index of each (known) filename is
21465 just a unique number which is associated with only that one filename. We
21466 need such numbers for the sake of generating labels (in the .debug_sfnames
21467 section) and references to those files numbers (in the .debug_srcinfo
21468 and.debug_macinfo sections). If the filename given as an argument is not
21469 found in our current list, add it to the list and assign it the next
21470 available unique index number. In order to speed up searches, we remember
21471 the index of the filename was looked up last. This handles the majority of
21472 all searches. */
21474 static struct dwarf_file_data *
21475 lookup_filename (const char *file_name)
21477 struct dwarf_file_data * created;
21479 /* Check to see if the file name that was searched on the previous
21480 call matches this file name. If so, return the index. */
21481 if (file_table_last_lookup
21482 && (file_name == file_table_last_lookup->filename
21483 || filename_cmp (file_table_last_lookup->filename, file_name) == 0))
21484 return file_table_last_lookup;
21486 /* Didn't match the previous lookup, search the table. */
21487 dwarf_file_data **slot
21488 = file_table->find_slot_with_hash (file_name, htab_hash_string (file_name),
21489 INSERT);
21490 if (*slot)
21491 return *slot;
21493 created = ggc_alloc<dwarf_file_data> ();
21494 created->filename = file_name;
21495 created->emitted_number = 0;
21496 *slot = created;
21497 return created;
21500 /* If the assembler will construct the file table, then translate the compiler
21501 internal file table number into the assembler file table number, and emit
21502 a .file directive if we haven't already emitted one yet. The file table
21503 numbers are different because we prune debug info for unused variables and
21504 types, which may include filenames. */
21506 static int
21507 maybe_emit_file (struct dwarf_file_data * fd)
21509 if (! fd->emitted_number)
21511 if (last_emitted_file)
21512 fd->emitted_number = last_emitted_file->emitted_number + 1;
21513 else
21514 fd->emitted_number = 1;
21515 last_emitted_file = fd;
21517 if (DWARF2_ASM_LINE_DEBUG_INFO)
21519 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
21520 output_quoted_string (asm_out_file,
21521 remap_debug_filename (fd->filename));
21522 fputc ('\n', asm_out_file);
21526 return fd->emitted_number;
21529 /* Schedule generation of a DW_AT_const_value attribute to DIE.
21530 That generation should happen after function debug info has been
21531 generated. The value of the attribute is the constant value of ARG. */
21533 static void
21534 append_entry_to_tmpl_value_parm_die_table (dw_die_ref die, tree arg)
21536 die_arg_entry entry;
21538 if (!die || !arg)
21539 return;
21541 if (!tmpl_value_parm_die_table)
21542 vec_alloc (tmpl_value_parm_die_table, 32);
21544 entry.die = die;
21545 entry.arg = arg;
21546 vec_safe_push (tmpl_value_parm_die_table, entry);
21549 /* Return TRUE if T is an instance of generic type, FALSE
21550 otherwise. */
21552 static bool
21553 generic_type_p (tree t)
21555 if (t == NULL_TREE || !TYPE_P (t))
21556 return false;
21557 return lang_hooks.get_innermost_generic_parms (t) != NULL_TREE;
21560 /* Schedule the generation of the generic parameter dies for the
21561 instance of generic type T. The proper generation itself is later
21562 done by gen_scheduled_generic_parms_dies. */
21564 static void
21565 schedule_generic_params_dies_gen (tree t)
21567 if (!generic_type_p (t))
21568 return;
21570 if (!generic_type_instances)
21571 vec_alloc (generic_type_instances, 256);
21573 vec_safe_push (generic_type_instances, t);
21576 /* Add a DW_AT_const_value attribute to DIEs that were scheduled
21577 by append_entry_to_tmpl_value_parm_die_table. This function must
21578 be called after function DIEs have been generated. */
21580 static void
21581 gen_remaining_tmpl_value_param_die_attribute (void)
21583 if (tmpl_value_parm_die_table)
21585 unsigned i;
21586 die_arg_entry *e;
21588 FOR_EACH_VEC_ELT (*tmpl_value_parm_die_table, i, e)
21589 tree_add_const_value_attribute (e->die, e->arg);
21593 /* Generate generic parameters DIEs for instances of generic types
21594 that have been previously scheduled by
21595 schedule_generic_params_dies_gen. This function must be called
21596 after all the types of the CU have been laid out. */
21598 static void
21599 gen_scheduled_generic_parms_dies (void)
21601 unsigned i;
21602 tree t;
21604 if (!generic_type_instances)
21605 return;
21607 FOR_EACH_VEC_ELT (*generic_type_instances, i, t)
21608 if (COMPLETE_TYPE_P (t))
21609 gen_generic_params_dies (t);
21613 /* Replace DW_AT_name for the decl with name. */
21615 static void
21616 dwarf2out_set_name (tree decl, tree name)
21618 dw_die_ref die;
21619 dw_attr_ref attr;
21620 const char *dname;
21622 die = TYPE_SYMTAB_DIE (decl);
21623 if (!die)
21624 return;
21626 dname = dwarf2_name (name, 0);
21627 if (!dname)
21628 return;
21630 attr = get_AT (die, DW_AT_name);
21631 if (attr)
21633 struct indirect_string_node *node;
21635 node = find_AT_string (dname);
21636 /* replace the string. */
21637 attr->dw_attr_val.v.val_str = node;
21640 else
21641 add_name_attribute (die, dname);
21644 /* True if before or during processing of the first function being emitted. */
21645 static bool in_first_function_p = true;
21646 /* True if loc_note during dwarf2out_var_location call might still be
21647 before first real instruction at address equal to .Ltext0. */
21648 static bool maybe_at_text_label_p = true;
21649 /* One above highest N where .LVLN label might be equal to .Ltext0 label. */
21650 static unsigned int first_loclabel_num_not_at_text_label;
21652 /* Called by the final INSN scan whenever we see a var location. We
21653 use it to drop labels in the right places, and throw the location in
21654 our lookup table. */
21656 static void
21657 dwarf2out_var_location (rtx_insn *loc_note)
21659 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES + 2];
21660 struct var_loc_node *newloc;
21661 rtx_insn *next_real, *next_note;
21662 static const char *last_label;
21663 static const char *last_postcall_label;
21664 static bool last_in_cold_section_p;
21665 static rtx_insn *expected_next_loc_note;
21666 tree decl;
21667 bool var_loc_p;
21669 if (!NOTE_P (loc_note))
21671 if (CALL_P (loc_note))
21673 call_site_count++;
21674 if (SIBLING_CALL_P (loc_note))
21675 tail_call_site_count++;
21677 return;
21680 var_loc_p = NOTE_KIND (loc_note) == NOTE_INSN_VAR_LOCATION;
21681 if (var_loc_p && !DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
21682 return;
21684 /* Optimize processing a large consecutive sequence of location
21685 notes so we don't spend too much time in next_real_insn. If the
21686 next insn is another location note, remember the next_real_insn
21687 calculation for next time. */
21688 next_real = cached_next_real_insn;
21689 if (next_real)
21691 if (expected_next_loc_note != loc_note)
21692 next_real = NULL;
21695 next_note = NEXT_INSN (loc_note);
21696 if (! next_note
21697 || next_note->deleted ()
21698 || ! NOTE_P (next_note)
21699 || (NOTE_KIND (next_note) != NOTE_INSN_VAR_LOCATION
21700 && NOTE_KIND (next_note) != NOTE_INSN_CALL_ARG_LOCATION))
21701 next_note = NULL;
21703 if (! next_real)
21704 next_real = next_real_insn (loc_note);
21706 if (next_note)
21708 expected_next_loc_note = next_note;
21709 cached_next_real_insn = next_real;
21711 else
21712 cached_next_real_insn = NULL;
21714 /* If there are no instructions which would be affected by this note,
21715 don't do anything. */
21716 if (var_loc_p
21717 && next_real == NULL_RTX
21718 && !NOTE_DURING_CALL_P (loc_note))
21719 return;
21721 if (next_real == NULL_RTX)
21722 next_real = get_last_insn ();
21724 /* If there were any real insns between note we processed last time
21725 and this note (or if it is the first note), clear
21726 last_{,postcall_}label so that they are not reused this time. */
21727 if (last_var_location_insn == NULL_RTX
21728 || last_var_location_insn != next_real
21729 || last_in_cold_section_p != in_cold_section_p)
21731 last_label = NULL;
21732 last_postcall_label = NULL;
21735 if (var_loc_p)
21737 decl = NOTE_VAR_LOCATION_DECL (loc_note);
21738 newloc = add_var_loc_to_decl (decl, loc_note,
21739 NOTE_DURING_CALL_P (loc_note)
21740 ? last_postcall_label : last_label);
21741 if (newloc == NULL)
21742 return;
21744 else
21746 decl = NULL_TREE;
21747 newloc = NULL;
21750 /* If there were no real insns between note we processed last time
21751 and this note, use the label we emitted last time. Otherwise
21752 create a new label and emit it. */
21753 if (last_label == NULL)
21755 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
21756 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
21757 loclabel_num++;
21758 last_label = ggc_strdup (loclabel);
21759 /* See if loclabel might be equal to .Ltext0. If yes,
21760 bump first_loclabel_num_not_at_text_label. */
21761 if (!have_multiple_function_sections
21762 && in_first_function_p
21763 && maybe_at_text_label_p)
21765 static rtx_insn *last_start;
21766 rtx_insn *insn;
21767 for (insn = loc_note; insn; insn = previous_insn (insn))
21768 if (insn == last_start)
21769 break;
21770 else if (!NONDEBUG_INSN_P (insn))
21771 continue;
21772 else
21774 rtx body = PATTERN (insn);
21775 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
21776 continue;
21777 /* Inline asm could occupy zero bytes. */
21778 else if (GET_CODE (body) == ASM_INPUT
21779 || asm_noperands (body) >= 0)
21780 continue;
21781 #ifdef HAVE_attr_length
21782 else if (get_attr_min_length (insn) == 0)
21783 continue;
21784 #endif
21785 else
21787 /* Assume insn has non-zero length. */
21788 maybe_at_text_label_p = false;
21789 break;
21792 if (maybe_at_text_label_p)
21794 last_start = loc_note;
21795 first_loclabel_num_not_at_text_label = loclabel_num;
21800 if (!var_loc_p)
21802 struct call_arg_loc_node *ca_loc
21803 = ggc_cleared_alloc<call_arg_loc_node> ();
21804 rtx_insn *prev = prev_real_insn (loc_note);
21805 rtx x;
21806 ca_loc->call_arg_loc_note = loc_note;
21807 ca_loc->next = NULL;
21808 ca_loc->label = last_label;
21809 gcc_assert (prev
21810 && (CALL_P (prev)
21811 || (NONJUMP_INSN_P (prev)
21812 && GET_CODE (PATTERN (prev)) == SEQUENCE
21813 && CALL_P (XVECEXP (PATTERN (prev), 0, 0)))));
21814 if (!CALL_P (prev))
21815 prev = as_a <rtx_sequence *> (PATTERN (prev))->insn (0);
21816 ca_loc->tail_call_p = SIBLING_CALL_P (prev);
21817 x = get_call_rtx_from (PATTERN (prev));
21818 if (x)
21820 x = XEXP (XEXP (x, 0), 0);
21821 if (GET_CODE (x) == SYMBOL_REF
21822 && SYMBOL_REF_DECL (x)
21823 && TREE_CODE (SYMBOL_REF_DECL (x)) == FUNCTION_DECL)
21824 ca_loc->symbol_ref = x;
21826 ca_loc->block = insn_scope (prev);
21827 if (call_arg_locations)
21828 call_arg_loc_last->next = ca_loc;
21829 else
21830 call_arg_locations = ca_loc;
21831 call_arg_loc_last = ca_loc;
21833 else if (!NOTE_DURING_CALL_P (loc_note))
21834 newloc->label = last_label;
21835 else
21837 if (!last_postcall_label)
21839 sprintf (loclabel, "%s-1", last_label);
21840 last_postcall_label = ggc_strdup (loclabel);
21842 newloc->label = last_postcall_label;
21845 last_var_location_insn = next_real;
21846 last_in_cold_section_p = in_cold_section_p;
21849 /* Note in one location list that text section has changed. */
21852 var_location_switch_text_section_1 (var_loc_list **slot, void *)
21854 var_loc_list *list = *slot;
21855 if (list->first)
21856 list->last_before_switch
21857 = list->last->next ? list->last->next : list->last;
21858 return 1;
21861 /* Note in all location lists that text section has changed. */
21863 static void
21864 var_location_switch_text_section (void)
21866 if (decl_loc_table == NULL)
21867 return;
21869 decl_loc_table->traverse<void *, var_location_switch_text_section_1> (NULL);
21872 /* Create a new line number table. */
21874 static dw_line_info_table *
21875 new_line_info_table (void)
21877 dw_line_info_table *table;
21879 table = ggc_cleared_alloc<dw_line_info_table_struct> ();
21880 table->file_num = 1;
21881 table->line_num = 1;
21882 table->is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
21884 return table;
21887 /* Lookup the "current" table into which we emit line info, so
21888 that we don't have to do it for every source line. */
21890 static void
21891 set_cur_line_info_table (section *sec)
21893 dw_line_info_table *table;
21895 if (sec == text_section)
21896 table = text_section_line_info;
21897 else if (sec == cold_text_section)
21899 table = cold_text_section_line_info;
21900 if (!table)
21902 cold_text_section_line_info = table = new_line_info_table ();
21903 table->end_label = cold_end_label;
21906 else
21908 const char *end_label;
21910 if (flag_reorder_blocks_and_partition)
21912 if (in_cold_section_p)
21913 end_label = crtl->subsections.cold_section_end_label;
21914 else
21915 end_label = crtl->subsections.hot_section_end_label;
21917 else
21919 char label[MAX_ARTIFICIAL_LABEL_BYTES];
21920 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
21921 current_function_funcdef_no);
21922 end_label = ggc_strdup (label);
21925 table = new_line_info_table ();
21926 table->end_label = end_label;
21928 vec_safe_push (separate_line_info, table);
21931 if (DWARF2_ASM_LINE_DEBUG_INFO)
21932 table->is_stmt = (cur_line_info_table
21933 ? cur_line_info_table->is_stmt
21934 : DWARF_LINE_DEFAULT_IS_STMT_START);
21935 cur_line_info_table = table;
21939 /* We need to reset the locations at the beginning of each
21940 function. We can't do this in the end_function hook, because the
21941 declarations that use the locations won't have been output when
21942 that hook is called. Also compute have_multiple_function_sections here. */
21944 static void
21945 dwarf2out_begin_function (tree fun)
21947 section *sec = function_section (fun);
21949 if (sec != text_section)
21950 have_multiple_function_sections = true;
21952 if (flag_reorder_blocks_and_partition && !cold_text_section)
21954 gcc_assert (current_function_decl == fun);
21955 cold_text_section = unlikely_text_section ();
21956 switch_to_section (cold_text_section);
21957 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
21958 switch_to_section (sec);
21961 dwarf2out_note_section_used ();
21962 call_site_count = 0;
21963 tail_call_site_count = 0;
21965 set_cur_line_info_table (sec);
21968 /* Helper function of dwarf2out_end_function, called only after emitting
21969 the very first function into assembly. Check if some .debug_loc range
21970 might end with a .LVL* label that could be equal to .Ltext0.
21971 In that case we must force using absolute addresses in .debug_loc ranges,
21972 because this range could be .LVLN-.Ltext0 .. .LVLM-.Ltext0 for
21973 .LVLN == .LVLM == .Ltext0, thus 0 .. 0, which is a .debug_loc
21974 list terminator.
21975 Set have_multiple_function_sections to true in that case and
21976 terminate htab traversal. */
21979 find_empty_loc_ranges_at_text_label (var_loc_list **slot, int)
21981 var_loc_list *entry = *slot;
21982 struct var_loc_node *node;
21984 node = entry->first;
21985 if (node && node->next && node->next->label)
21987 unsigned int i;
21988 const char *label = node->next->label;
21989 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
21991 for (i = 0; i < first_loclabel_num_not_at_text_label; i++)
21993 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", i);
21994 if (strcmp (label, loclabel) == 0)
21996 have_multiple_function_sections = true;
21997 return 0;
22001 return 1;
22004 /* Hook called after emitting a function into assembly.
22005 This does something only for the very first function emitted. */
22007 static void
22008 dwarf2out_end_function (unsigned int)
22010 if (in_first_function_p
22011 && !have_multiple_function_sections
22012 && first_loclabel_num_not_at_text_label
22013 && decl_loc_table)
22014 decl_loc_table->traverse<int, find_empty_loc_ranges_at_text_label> (0);
22015 in_first_function_p = false;
22016 maybe_at_text_label_p = false;
22019 /* Add OPCODE+VAL as an entry at the end of the opcode array in TABLE. */
22021 static void
22022 push_dw_line_info_entry (dw_line_info_table *table,
22023 enum dw_line_info_opcode opcode, unsigned int val)
22025 dw_line_info_entry e;
22026 e.opcode = opcode;
22027 e.val = val;
22028 vec_safe_push (table->entries, e);
22031 /* Output a label to mark the beginning of a source code line entry
22032 and record information relating to this source line, in
22033 'line_info_table' for later output of the .debug_line section. */
22034 /* ??? The discriminator parameter ought to be unsigned. */
22036 static void
22037 dwarf2out_source_line (unsigned int line, const char *filename,
22038 int discriminator, bool is_stmt)
22040 unsigned int file_num;
22041 dw_line_info_table *table;
22043 if (debug_info_level < DINFO_LEVEL_TERSE || line == 0)
22044 return;
22046 /* The discriminator column was added in dwarf4. Simplify the below
22047 by simply removing it if we're not supposed to output it. */
22048 if (dwarf_version < 4 && dwarf_strict)
22049 discriminator = 0;
22051 table = cur_line_info_table;
22052 file_num = maybe_emit_file (lookup_filename (filename));
22054 /* ??? TODO: Elide duplicate line number entries. Traditionally,
22055 the debugger has used the second (possibly duplicate) line number
22056 at the beginning of the function to mark the end of the prologue.
22057 We could eliminate any other duplicates within the function. For
22058 Dwarf3, we ought to include the DW_LNS_set_prologue_end mark in
22059 that second line number entry. */
22060 /* Recall that this end-of-prologue indication is *not* the same thing
22061 as the end_prologue debug hook. The NOTE_INSN_PROLOGUE_END note,
22062 to which the hook corresponds, follows the last insn that was
22063 emitted by gen_prologue. What we need is to precede the first insn
22064 that had been emitted after NOTE_INSN_FUNCTION_BEG, i.e. the first
22065 insn that corresponds to something the user wrote. These may be
22066 very different locations once scheduling is enabled. */
22068 if (0 && file_num == table->file_num
22069 && line == table->line_num
22070 && discriminator == table->discrim_num
22071 && is_stmt == table->is_stmt)
22072 return;
22074 switch_to_section (current_function_section ());
22076 /* If requested, emit something human-readable. */
22077 if (flag_debug_asm)
22078 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START, filename, line);
22080 if (DWARF2_ASM_LINE_DEBUG_INFO)
22082 /* Emit the .loc directive understood by GNU as. */
22083 /* "\t.loc %u %u 0 is_stmt %u discriminator %u",
22084 file_num, line, is_stmt, discriminator */
22085 fputs ("\t.loc ", asm_out_file);
22086 fprint_ul (asm_out_file, file_num);
22087 putc (' ', asm_out_file);
22088 fprint_ul (asm_out_file, line);
22089 putc (' ', asm_out_file);
22090 putc ('0', asm_out_file);
22092 if (is_stmt != table->is_stmt)
22094 fputs (" is_stmt ", asm_out_file);
22095 putc (is_stmt ? '1' : '0', asm_out_file);
22097 if (SUPPORTS_DISCRIMINATOR && discriminator != 0)
22099 gcc_assert (discriminator > 0);
22100 fputs (" discriminator ", asm_out_file);
22101 fprint_ul (asm_out_file, (unsigned long) discriminator);
22103 putc ('\n', asm_out_file);
22105 else
22107 unsigned int label_num = ++line_info_label_num;
22109 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL, label_num);
22111 push_dw_line_info_entry (table, LI_set_address, label_num);
22112 if (file_num != table->file_num)
22113 push_dw_line_info_entry (table, LI_set_file, file_num);
22114 if (discriminator != table->discrim_num)
22115 push_dw_line_info_entry (table, LI_set_discriminator, discriminator);
22116 if (is_stmt != table->is_stmt)
22117 push_dw_line_info_entry (table, LI_negate_stmt, 0);
22118 push_dw_line_info_entry (table, LI_set_line, line);
22121 table->file_num = file_num;
22122 table->line_num = line;
22123 table->discrim_num = discriminator;
22124 table->is_stmt = is_stmt;
22125 table->in_use = true;
22128 /* Record the beginning of a new source file. */
22130 static void
22131 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
22133 if (flag_eliminate_dwarf2_dups)
22135 /* Record the beginning of the file for break_out_includes. */
22136 dw_die_ref bincl_die;
22138 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die (), NULL);
22139 add_AT_string (bincl_die, DW_AT_name, remap_debug_filename (filename));
22142 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22144 macinfo_entry e;
22145 e.code = DW_MACINFO_start_file;
22146 e.lineno = lineno;
22147 e.info = ggc_strdup (filename);
22148 vec_safe_push (macinfo_table, e);
22152 /* Record the end of a source file. */
22154 static void
22155 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
22157 if (flag_eliminate_dwarf2_dups)
22158 /* Record the end of the file for break_out_includes. */
22159 new_die (DW_TAG_GNU_EINCL, comp_unit_die (), NULL);
22161 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22163 macinfo_entry e;
22164 e.code = DW_MACINFO_end_file;
22165 e.lineno = lineno;
22166 e.info = NULL;
22167 vec_safe_push (macinfo_table, e);
22171 /* Called from debug_define in toplev.c. The `buffer' parameter contains
22172 the tail part of the directive line, i.e. the part which is past the
22173 initial whitespace, #, whitespace, directive-name, whitespace part. */
22175 static void
22176 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
22177 const char *buffer ATTRIBUTE_UNUSED)
22179 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22181 macinfo_entry e;
22182 /* Insert a dummy first entry to be able to optimize the whole
22183 predefined macro block using DW_MACRO_GNU_transparent_include. */
22184 if (macinfo_table->is_empty () && lineno <= 1)
22186 e.code = 0;
22187 e.lineno = 0;
22188 e.info = NULL;
22189 vec_safe_push (macinfo_table, e);
22191 e.code = DW_MACINFO_define;
22192 e.lineno = lineno;
22193 e.info = ggc_strdup (buffer);
22194 vec_safe_push (macinfo_table, e);
22198 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
22199 the tail part of the directive line, i.e. the part which is past the
22200 initial whitespace, #, whitespace, directive-name, whitespace part. */
22202 static void
22203 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
22204 const char *buffer ATTRIBUTE_UNUSED)
22206 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22208 macinfo_entry e;
22209 /* Insert a dummy first entry to be able to optimize the whole
22210 predefined macro block using DW_MACRO_GNU_transparent_include. */
22211 if (macinfo_table->is_empty () && lineno <= 1)
22213 e.code = 0;
22214 e.lineno = 0;
22215 e.info = NULL;
22216 vec_safe_push (macinfo_table, e);
22218 e.code = DW_MACINFO_undef;
22219 e.lineno = lineno;
22220 e.info = ggc_strdup (buffer);
22221 vec_safe_push (macinfo_table, e);
22225 /* Helpers to manipulate hash table of CUs. */
22227 struct macinfo_entry_hasher : typed_noop_remove <macinfo_entry>
22229 typedef macinfo_entry value_type;
22230 typedef macinfo_entry compare_type;
22231 static inline hashval_t hash (const value_type *);
22232 static inline bool equal (const value_type *, const compare_type *);
22235 inline hashval_t
22236 macinfo_entry_hasher::hash (const value_type *entry)
22238 return htab_hash_string (entry->info);
22241 inline bool
22242 macinfo_entry_hasher::equal (const value_type *entry1,
22243 const compare_type *entry2)
22245 return !strcmp (entry1->info, entry2->info);
22248 typedef hash_table<macinfo_entry_hasher> macinfo_hash_type;
22250 /* Output a single .debug_macinfo entry. */
22252 static void
22253 output_macinfo_op (macinfo_entry *ref)
22255 int file_num;
22256 size_t len;
22257 struct indirect_string_node *node;
22258 char label[MAX_ARTIFICIAL_LABEL_BYTES];
22259 struct dwarf_file_data *fd;
22261 switch (ref->code)
22263 case DW_MACINFO_start_file:
22264 fd = lookup_filename (ref->info);
22265 file_num = maybe_emit_file (fd);
22266 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
22267 dw2_asm_output_data_uleb128 (ref->lineno,
22268 "Included from line number %lu",
22269 (unsigned long) ref->lineno);
22270 dw2_asm_output_data_uleb128 (file_num, "file %s", ref->info);
22271 break;
22272 case DW_MACINFO_end_file:
22273 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
22274 break;
22275 case DW_MACINFO_define:
22276 case DW_MACINFO_undef:
22277 len = strlen (ref->info) + 1;
22278 if (!dwarf_strict
22279 && len > DWARF_OFFSET_SIZE
22280 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
22281 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
22283 ref->code = ref->code == DW_MACINFO_define
22284 ? DW_MACRO_GNU_define_indirect
22285 : DW_MACRO_GNU_undef_indirect;
22286 output_macinfo_op (ref);
22287 return;
22289 dw2_asm_output_data (1, ref->code,
22290 ref->code == DW_MACINFO_define
22291 ? "Define macro" : "Undefine macro");
22292 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
22293 (unsigned long) ref->lineno);
22294 dw2_asm_output_nstring (ref->info, -1, "The macro");
22295 break;
22296 case DW_MACRO_GNU_define_indirect:
22297 case DW_MACRO_GNU_undef_indirect:
22298 node = find_AT_string (ref->info);
22299 gcc_assert (node
22300 && ((node->form == DW_FORM_strp)
22301 || (node->form == DW_FORM_GNU_str_index)));
22302 dw2_asm_output_data (1, ref->code,
22303 ref->code == DW_MACRO_GNU_define_indirect
22304 ? "Define macro indirect"
22305 : "Undefine macro indirect");
22306 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
22307 (unsigned long) ref->lineno);
22308 if (node->form == DW_FORM_strp)
22309 dw2_asm_output_offset (DWARF_OFFSET_SIZE, node->label,
22310 debug_str_section, "The macro: \"%s\"",
22311 ref->info);
22312 else
22313 dw2_asm_output_data_uleb128 (node->index, "The macro: \"%s\"",
22314 ref->info);
22315 break;
22316 case DW_MACRO_GNU_transparent_include:
22317 dw2_asm_output_data (1, ref->code, "Transparent include");
22318 ASM_GENERATE_INTERNAL_LABEL (label,
22319 DEBUG_MACRO_SECTION_LABEL, ref->lineno);
22320 dw2_asm_output_offset (DWARF_OFFSET_SIZE, label, NULL, NULL);
22321 break;
22322 default:
22323 fprintf (asm_out_file, "%s unrecognized macinfo code %lu\n",
22324 ASM_COMMENT_START, (unsigned long) ref->code);
22325 break;
22329 /* Attempt to make a sequence of define/undef macinfo ops shareable with
22330 other compilation unit .debug_macinfo sections. IDX is the first
22331 index of a define/undef, return the number of ops that should be
22332 emitted in a comdat .debug_macinfo section and emit
22333 a DW_MACRO_GNU_transparent_include entry referencing it.
22334 If the define/undef entry should be emitted normally, return 0. */
22336 static unsigned
22337 optimize_macinfo_range (unsigned int idx, vec<macinfo_entry, va_gc> *files,
22338 macinfo_hash_type **macinfo_htab)
22340 macinfo_entry *first, *second, *cur, *inc;
22341 char linebuf[sizeof (HOST_WIDE_INT) * 3 + 1];
22342 unsigned char checksum[16];
22343 struct md5_ctx ctx;
22344 char *grp_name, *tail;
22345 const char *base;
22346 unsigned int i, count, encoded_filename_len, linebuf_len;
22347 macinfo_entry **slot;
22349 first = &(*macinfo_table)[idx];
22350 second = &(*macinfo_table)[idx + 1];
22352 /* Optimize only if there are at least two consecutive define/undef ops,
22353 and either all of them are before first DW_MACINFO_start_file
22354 with lineno {0,1} (i.e. predefined macro block), or all of them are
22355 in some included header file. */
22356 if (second->code != DW_MACINFO_define && second->code != DW_MACINFO_undef)
22357 return 0;
22358 if (vec_safe_is_empty (files))
22360 if (first->lineno > 1 || second->lineno > 1)
22361 return 0;
22363 else if (first->lineno == 0)
22364 return 0;
22366 /* Find the last define/undef entry that can be grouped together
22367 with first and at the same time compute md5 checksum of their
22368 codes, linenumbers and strings. */
22369 md5_init_ctx (&ctx);
22370 for (i = idx; macinfo_table->iterate (i, &cur); i++)
22371 if (cur->code != DW_MACINFO_define && cur->code != DW_MACINFO_undef)
22372 break;
22373 else if (vec_safe_is_empty (files) && cur->lineno > 1)
22374 break;
22375 else
22377 unsigned char code = cur->code;
22378 md5_process_bytes (&code, 1, &ctx);
22379 checksum_uleb128 (cur->lineno, &ctx);
22380 md5_process_bytes (cur->info, strlen (cur->info) + 1, &ctx);
22382 md5_finish_ctx (&ctx, checksum);
22383 count = i - idx;
22385 /* From the containing include filename (if any) pick up just
22386 usable characters from its basename. */
22387 if (vec_safe_is_empty (files))
22388 base = "";
22389 else
22390 base = lbasename (files->last ().info);
22391 for (encoded_filename_len = 0, i = 0; base[i]; i++)
22392 if (ISIDNUM (base[i]) || base[i] == '.')
22393 encoded_filename_len++;
22394 /* Count . at the end. */
22395 if (encoded_filename_len)
22396 encoded_filename_len++;
22398 sprintf (linebuf, HOST_WIDE_INT_PRINT_UNSIGNED, first->lineno);
22399 linebuf_len = strlen (linebuf);
22401 /* The group name format is: wmN.[<encoded filename>.]<lineno>.<md5sum> */
22402 grp_name = XALLOCAVEC (char, 4 + encoded_filename_len + linebuf_len + 1
22403 + 16 * 2 + 1);
22404 memcpy (grp_name, DWARF_OFFSET_SIZE == 4 ? "wm4." : "wm8.", 4);
22405 tail = grp_name + 4;
22406 if (encoded_filename_len)
22408 for (i = 0; base[i]; i++)
22409 if (ISIDNUM (base[i]) || base[i] == '.')
22410 *tail++ = base[i];
22411 *tail++ = '.';
22413 memcpy (tail, linebuf, linebuf_len);
22414 tail += linebuf_len;
22415 *tail++ = '.';
22416 for (i = 0; i < 16; i++)
22417 sprintf (tail + i * 2, "%02x", checksum[i] & 0xff);
22419 /* Construct a macinfo_entry for DW_MACRO_GNU_transparent_include
22420 in the empty vector entry before the first define/undef. */
22421 inc = &(*macinfo_table)[idx - 1];
22422 inc->code = DW_MACRO_GNU_transparent_include;
22423 inc->lineno = 0;
22424 inc->info = ggc_strdup (grp_name);
22425 if (!*macinfo_htab)
22426 *macinfo_htab = new macinfo_hash_type (10);
22427 /* Avoid emitting duplicates. */
22428 slot = (*macinfo_htab)->find_slot (inc, INSERT);
22429 if (*slot != NULL)
22431 inc->code = 0;
22432 inc->info = NULL;
22433 /* If such an entry has been used before, just emit
22434 a DW_MACRO_GNU_transparent_include op. */
22435 inc = *slot;
22436 output_macinfo_op (inc);
22437 /* And clear all macinfo_entry in the range to avoid emitting them
22438 in the second pass. */
22439 for (i = idx; macinfo_table->iterate (i, &cur) && i < idx + count; i++)
22441 cur->code = 0;
22442 cur->info = NULL;
22445 else
22447 *slot = inc;
22448 inc->lineno = (*macinfo_htab)->elements ();
22449 output_macinfo_op (inc);
22451 return count;
22454 /* Save any strings needed by the macinfo table in the debug str
22455 table. All strings must be collected into the table by the time
22456 index_string is called. */
22458 static void
22459 save_macinfo_strings (void)
22461 unsigned len;
22462 unsigned i;
22463 macinfo_entry *ref;
22465 for (i = 0; macinfo_table && macinfo_table->iterate (i, &ref); i++)
22467 switch (ref->code)
22469 /* Match the logic in output_macinfo_op to decide on
22470 indirect strings. */
22471 case DW_MACINFO_define:
22472 case DW_MACINFO_undef:
22473 len = strlen (ref->info) + 1;
22474 if (!dwarf_strict
22475 && len > DWARF_OFFSET_SIZE
22476 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
22477 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
22478 set_indirect_string (find_AT_string (ref->info));
22479 break;
22480 case DW_MACRO_GNU_define_indirect:
22481 case DW_MACRO_GNU_undef_indirect:
22482 set_indirect_string (find_AT_string (ref->info));
22483 break;
22484 default:
22485 break;
22490 /* Output macinfo section(s). */
22492 static void
22493 output_macinfo (void)
22495 unsigned i;
22496 unsigned long length = vec_safe_length (macinfo_table);
22497 macinfo_entry *ref;
22498 vec<macinfo_entry, va_gc> *files = NULL;
22499 macinfo_hash_type *macinfo_htab = NULL;
22501 if (! length)
22502 return;
22504 /* output_macinfo* uses these interchangeably. */
22505 gcc_assert ((int) DW_MACINFO_define == (int) DW_MACRO_GNU_define
22506 && (int) DW_MACINFO_undef == (int) DW_MACRO_GNU_undef
22507 && (int) DW_MACINFO_start_file == (int) DW_MACRO_GNU_start_file
22508 && (int) DW_MACINFO_end_file == (int) DW_MACRO_GNU_end_file);
22510 /* For .debug_macro emit the section header. */
22511 if (!dwarf_strict)
22513 dw2_asm_output_data (2, 4, "DWARF macro version number");
22514 if (DWARF_OFFSET_SIZE == 8)
22515 dw2_asm_output_data (1, 3, "Flags: 64-bit, lineptr present");
22516 else
22517 dw2_asm_output_data (1, 2, "Flags: 32-bit, lineptr present");
22518 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
22519 (!dwarf_split_debug_info ? debug_line_section_label
22520 : debug_skeleton_line_section_label),
22521 debug_line_section, NULL);
22524 /* In the first loop, it emits the primary .debug_macinfo section
22525 and after each emitted op the macinfo_entry is cleared.
22526 If a longer range of define/undef ops can be optimized using
22527 DW_MACRO_GNU_transparent_include, the
22528 DW_MACRO_GNU_transparent_include op is emitted and kept in
22529 the vector before the first define/undef in the range and the
22530 whole range of define/undef ops is not emitted and kept. */
22531 for (i = 0; macinfo_table->iterate (i, &ref); i++)
22533 switch (ref->code)
22535 case DW_MACINFO_start_file:
22536 vec_safe_push (files, *ref);
22537 break;
22538 case DW_MACINFO_end_file:
22539 if (!vec_safe_is_empty (files))
22540 files->pop ();
22541 break;
22542 case DW_MACINFO_define:
22543 case DW_MACINFO_undef:
22544 if (!dwarf_strict
22545 && HAVE_COMDAT_GROUP
22546 && vec_safe_length (files) != 1
22547 && i > 0
22548 && i + 1 < length
22549 && (*macinfo_table)[i - 1].code == 0)
22551 unsigned count = optimize_macinfo_range (i, files, &macinfo_htab);
22552 if (count)
22554 i += count - 1;
22555 continue;
22558 break;
22559 case 0:
22560 /* A dummy entry may be inserted at the beginning to be able
22561 to optimize the whole block of predefined macros. */
22562 if (i == 0)
22563 continue;
22564 default:
22565 break;
22567 output_macinfo_op (ref);
22568 ref->info = NULL;
22569 ref->code = 0;
22572 if (!macinfo_htab)
22573 return;
22575 delete macinfo_htab;
22576 macinfo_htab = NULL;
22578 /* If any DW_MACRO_GNU_transparent_include were used, on those
22579 DW_MACRO_GNU_transparent_include entries terminate the
22580 current chain and switch to a new comdat .debug_macinfo
22581 section and emit the define/undef entries within it. */
22582 for (i = 0; macinfo_table->iterate (i, &ref); i++)
22583 switch (ref->code)
22585 case 0:
22586 continue;
22587 case DW_MACRO_GNU_transparent_include:
22589 char label[MAX_ARTIFICIAL_LABEL_BYTES];
22590 tree comdat_key = get_identifier (ref->info);
22591 /* Terminate the previous .debug_macinfo section. */
22592 dw2_asm_output_data (1, 0, "End compilation unit");
22593 targetm.asm_out.named_section (DEBUG_MACRO_SECTION,
22594 SECTION_DEBUG
22595 | SECTION_LINKONCE,
22596 comdat_key);
22597 ASM_GENERATE_INTERNAL_LABEL (label,
22598 DEBUG_MACRO_SECTION_LABEL,
22599 ref->lineno);
22600 ASM_OUTPUT_LABEL (asm_out_file, label);
22601 ref->code = 0;
22602 ref->info = NULL;
22603 dw2_asm_output_data (2, 4, "DWARF macro version number");
22604 if (DWARF_OFFSET_SIZE == 8)
22605 dw2_asm_output_data (1, 1, "Flags: 64-bit");
22606 else
22607 dw2_asm_output_data (1, 0, "Flags: 32-bit");
22609 break;
22610 case DW_MACINFO_define:
22611 case DW_MACINFO_undef:
22612 output_macinfo_op (ref);
22613 ref->code = 0;
22614 ref->info = NULL;
22615 break;
22616 default:
22617 gcc_unreachable ();
22621 /* Set up for Dwarf output at the start of compilation. */
22623 static void
22624 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
22626 /* This option is currently broken, see (PR53118 and PR46102). */
22627 if (flag_eliminate_dwarf2_dups
22628 && strstr (lang_hooks.name, "C++"))
22630 warning (0, "-feliminate-dwarf2-dups is broken for C++, ignoring");
22631 flag_eliminate_dwarf2_dups = 0;
22634 /* Allocate the file_table. */
22635 file_table = hash_table<dwarf_file_hasher>::create_ggc (50);
22637 /* Allocate the decl_die_table. */
22638 decl_die_table = hash_table<decl_die_hasher>::create_ggc (10);
22640 /* Allocate the decl_loc_table. */
22641 decl_loc_table = hash_table<decl_loc_hasher>::create_ggc (10);
22643 /* Allocate the cached_dw_loc_list_table. */
22644 cached_dw_loc_list_table = hash_table<dw_loc_list_hasher>::create_ggc (10);
22646 /* Allocate the initial hunk of the decl_scope_table. */
22647 vec_alloc (decl_scope_table, 256);
22649 /* Allocate the initial hunk of the abbrev_die_table. */
22650 abbrev_die_table = ggc_cleared_vec_alloc<dw_die_ref>
22651 (ABBREV_DIE_TABLE_INCREMENT);
22652 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
22653 /* Zero-th entry is allocated, but unused. */
22654 abbrev_die_table_in_use = 1;
22656 /* Allocate the pubtypes and pubnames vectors. */
22657 vec_alloc (pubname_table, 32);
22658 vec_alloc (pubtype_table, 32);
22660 vec_alloc (incomplete_types, 64);
22662 vec_alloc (used_rtx_array, 32);
22664 if (!dwarf_split_debug_info)
22666 debug_info_section = get_section (DEBUG_INFO_SECTION,
22667 SECTION_DEBUG, NULL);
22668 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
22669 SECTION_DEBUG, NULL);
22670 debug_loc_section = get_section (DEBUG_LOC_SECTION,
22671 SECTION_DEBUG, NULL);
22673 else
22675 debug_info_section = get_section (DEBUG_DWO_INFO_SECTION,
22676 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
22677 debug_abbrev_section = get_section (DEBUG_DWO_ABBREV_SECTION,
22678 SECTION_DEBUG | SECTION_EXCLUDE,
22679 NULL);
22680 debug_addr_section = get_section (DEBUG_ADDR_SECTION,
22681 SECTION_DEBUG, NULL);
22682 debug_skeleton_info_section = get_section (DEBUG_INFO_SECTION,
22683 SECTION_DEBUG, NULL);
22684 debug_skeleton_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
22685 SECTION_DEBUG, NULL);
22686 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label,
22687 DEBUG_SKELETON_ABBREV_SECTION_LABEL, 0);
22689 /* Somewhat confusing detail: The skeleton_[abbrev|info] sections stay in
22690 the main .o, but the skeleton_line goes into the split off dwo. */
22691 debug_skeleton_line_section
22692 = get_section (DEBUG_DWO_LINE_SECTION,
22693 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
22694 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label,
22695 DEBUG_SKELETON_LINE_SECTION_LABEL, 0);
22696 debug_str_offsets_section = get_section (DEBUG_STR_OFFSETS_SECTION,
22697 SECTION_DEBUG | SECTION_EXCLUDE,
22698 NULL);
22699 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label,
22700 DEBUG_SKELETON_INFO_SECTION_LABEL, 0);
22701 debug_loc_section = get_section (DEBUG_DWO_LOC_SECTION,
22702 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
22703 debug_str_dwo_section = get_section (DEBUG_STR_DWO_SECTION,
22704 DEBUG_STR_DWO_SECTION_FLAGS, NULL);
22706 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
22707 SECTION_DEBUG, NULL);
22708 debug_macinfo_section = get_section (dwarf_strict
22709 ? DEBUG_MACINFO_SECTION
22710 : DEBUG_MACRO_SECTION,
22711 DEBUG_MACRO_SECTION_FLAGS, NULL);
22712 debug_line_section = get_section (DEBUG_LINE_SECTION,
22713 SECTION_DEBUG, NULL);
22714 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
22715 SECTION_DEBUG, NULL);
22716 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
22717 SECTION_DEBUG, NULL);
22718 debug_str_section = get_section (DEBUG_STR_SECTION,
22719 DEBUG_STR_SECTION_FLAGS, NULL);
22720 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
22721 SECTION_DEBUG, NULL);
22722 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
22723 SECTION_DEBUG, NULL);
22725 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
22726 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
22727 DEBUG_ABBREV_SECTION_LABEL, 0);
22728 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
22729 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
22730 COLD_TEXT_SECTION_LABEL, 0);
22731 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
22733 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
22734 DEBUG_INFO_SECTION_LABEL, 0);
22735 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
22736 DEBUG_LINE_SECTION_LABEL, 0);
22737 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
22738 DEBUG_RANGES_SECTION_LABEL, 0);
22739 ASM_GENERATE_INTERNAL_LABEL (debug_addr_section_label,
22740 DEBUG_ADDR_SECTION_LABEL, 0);
22741 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
22742 dwarf_strict
22743 ? DEBUG_MACINFO_SECTION_LABEL
22744 : DEBUG_MACRO_SECTION_LABEL, 0);
22745 ASM_GENERATE_INTERNAL_LABEL (loc_section_label, DEBUG_LOC_SECTION_LABEL, 0);
22747 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22748 vec_alloc (macinfo_table, 64);
22750 switch_to_section (text_section);
22751 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
22753 /* Make sure the line number table for .text always exists. */
22754 text_section_line_info = new_line_info_table ();
22755 text_section_line_info->end_label = text_end_label;
22758 /* Called before compile () starts outputtting functions, variables
22759 and toplevel asms into assembly. */
22761 static void
22762 dwarf2out_assembly_start (void)
22764 if (HAVE_GAS_CFI_SECTIONS_DIRECTIVE
22765 && dwarf2out_do_cfi_asm ()
22766 && (!(flag_unwind_tables || flag_exceptions)
22767 || targetm_common.except_unwind_info (&global_options) != UI_DWARF2))
22768 fprintf (asm_out_file, "\t.cfi_sections\t.debug_frame\n");
22771 /* A helper function for dwarf2out_finish called through
22772 htab_traverse. Assign a string its index. All strings must be
22773 collected into the table by the time index_string is called,
22774 because the indexing code relies on htab_traverse to traverse nodes
22775 in the same order for each run. */
22778 index_string (indirect_string_node **h, unsigned int *index)
22780 indirect_string_node *node = *h;
22782 find_string_form (node);
22783 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
22785 gcc_assert (node->index == NO_INDEX_ASSIGNED);
22786 node->index = *index;
22787 *index += 1;
22789 return 1;
22792 /* A helper function for output_indirect_strings called through
22793 htab_traverse. Output the offset to a string and update the
22794 current offset. */
22797 output_index_string_offset (indirect_string_node **h, unsigned int *offset)
22799 indirect_string_node *node = *h;
22801 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
22803 /* Assert that this node has been assigned an index. */
22804 gcc_assert (node->index != NO_INDEX_ASSIGNED
22805 && node->index != NOT_INDEXED);
22806 dw2_asm_output_data (DWARF_OFFSET_SIZE, *offset,
22807 "indexed string 0x%x: %s", node->index, node->str);
22808 *offset += strlen (node->str) + 1;
22810 return 1;
22813 /* A helper function for dwarf2out_finish called through
22814 htab_traverse. Output the indexed string. */
22817 output_index_string (indirect_string_node **h, unsigned int *cur_idx)
22819 struct indirect_string_node *node = *h;
22821 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
22823 /* Assert that the strings are output in the same order as their
22824 indexes were assigned. */
22825 gcc_assert (*cur_idx == node->index);
22826 assemble_string (node->str, strlen (node->str) + 1);
22827 *cur_idx += 1;
22829 return 1;
22832 /* A helper function for dwarf2out_finish called through
22833 htab_traverse. Emit one queued .debug_str string. */
22836 output_indirect_string (indirect_string_node **h, void *)
22838 struct indirect_string_node *node = *h;
22840 node->form = find_string_form (node);
22841 if (node->form == DW_FORM_strp && node->refcount > 0)
22843 ASM_OUTPUT_LABEL (asm_out_file, node->label);
22844 assemble_string (node->str, strlen (node->str) + 1);
22847 return 1;
22850 /* Output the indexed string table. */
22852 static void
22853 output_indirect_strings (void)
22855 switch_to_section (debug_str_section);
22856 if (!dwarf_split_debug_info)
22857 debug_str_hash->traverse<void *, output_indirect_string> (NULL);
22858 else
22860 unsigned int offset = 0;
22861 unsigned int cur_idx = 0;
22863 skeleton_debug_str_hash->traverse<void *, output_indirect_string> (NULL);
22865 switch_to_section (debug_str_offsets_section);
22866 debug_str_hash->traverse_noresize
22867 <unsigned int *, output_index_string_offset> (&offset);
22868 switch_to_section (debug_str_dwo_section);
22869 debug_str_hash->traverse_noresize<unsigned int *, output_index_string>
22870 (&cur_idx);
22874 /* Callback for htab_traverse to assign an index to an entry in the
22875 table, and to write that entry to the .debug_addr section. */
22878 output_addr_table_entry (addr_table_entry **slot, unsigned int *cur_index)
22880 addr_table_entry *entry = *slot;
22882 if (entry->refcount == 0)
22884 gcc_assert (entry->index == NO_INDEX_ASSIGNED
22885 || entry->index == NOT_INDEXED);
22886 return 1;
22889 gcc_assert (entry->index == *cur_index);
22890 (*cur_index)++;
22892 switch (entry->kind)
22894 case ate_kind_rtx:
22895 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, entry->addr.rtl,
22896 "0x%x", entry->index);
22897 break;
22898 case ate_kind_rtx_dtprel:
22899 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
22900 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
22901 DWARF2_ADDR_SIZE,
22902 entry->addr.rtl);
22903 fputc ('\n', asm_out_file);
22904 break;
22905 case ate_kind_label:
22906 dw2_asm_output_addr (DWARF2_ADDR_SIZE, entry->addr.label,
22907 "0x%x", entry->index);
22908 break;
22909 default:
22910 gcc_unreachable ();
22912 return 1;
22915 /* Produce the .debug_addr section. */
22917 static void
22918 output_addr_table (void)
22920 unsigned int index = 0;
22921 if (addr_index_table == NULL || addr_index_table->size () == 0)
22922 return;
22924 switch_to_section (debug_addr_section);
22925 addr_index_table
22926 ->traverse_noresize<unsigned int *, output_addr_table_entry> (&index);
22929 #if ENABLE_ASSERT_CHECKING
22930 /* Verify that all marks are clear. */
22932 static void
22933 verify_marks_clear (dw_die_ref die)
22935 dw_die_ref c;
22937 gcc_assert (! die->die_mark);
22938 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
22940 #endif /* ENABLE_ASSERT_CHECKING */
22942 /* Clear the marks for a die and its children.
22943 Be cool if the mark isn't set. */
22945 static void
22946 prune_unmark_dies (dw_die_ref die)
22948 dw_die_ref c;
22950 if (die->die_mark)
22951 die->die_mark = 0;
22952 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
22955 /* Given DIE that we're marking as used, find any other dies
22956 it references as attributes and mark them as used. */
22958 static void
22959 prune_unused_types_walk_attribs (dw_die_ref die)
22961 dw_attr_ref a;
22962 unsigned ix;
22964 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
22966 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
22968 /* A reference to another DIE.
22969 Make sure that it will get emitted.
22970 If it was broken out into a comdat group, don't follow it. */
22971 if (! AT_ref (a)->comdat_type_p
22972 || a->dw_attr == DW_AT_specification)
22973 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
22975 /* Set the string's refcount to 0 so that prune_unused_types_mark
22976 accounts properly for it. */
22977 if (AT_class (a) == dw_val_class_str)
22978 a->dw_attr_val.v.val_str->refcount = 0;
22982 /* Mark the generic parameters and arguments children DIEs of DIE. */
22984 static void
22985 prune_unused_types_mark_generic_parms_dies (dw_die_ref die)
22987 dw_die_ref c;
22989 if (die == NULL || die->die_child == NULL)
22990 return;
22991 c = die->die_child;
22994 if (is_template_parameter (c))
22995 prune_unused_types_mark (c, 1);
22996 c = c->die_sib;
22997 } while (c && c != die->die_child);
23000 /* Mark DIE as being used. If DOKIDS is true, then walk down
23001 to DIE's children. */
23003 static void
23004 prune_unused_types_mark (dw_die_ref die, int dokids)
23006 dw_die_ref c;
23008 if (die->die_mark == 0)
23010 /* We haven't done this node yet. Mark it as used. */
23011 die->die_mark = 1;
23012 /* If this is the DIE of a generic type instantiation,
23013 mark the children DIEs that describe its generic parms and
23014 args. */
23015 prune_unused_types_mark_generic_parms_dies (die);
23017 /* We also have to mark its parents as used.
23018 (But we don't want to mark our parent's kids due to this,
23019 unless it is a class.) */
23020 if (die->die_parent)
23021 prune_unused_types_mark (die->die_parent,
23022 class_scope_p (die->die_parent));
23024 /* Mark any referenced nodes. */
23025 prune_unused_types_walk_attribs (die);
23027 /* If this node is a specification,
23028 also mark the definition, if it exists. */
23029 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
23030 prune_unused_types_mark (die->die_definition, 1);
23033 if (dokids && die->die_mark != 2)
23035 /* We need to walk the children, but haven't done so yet.
23036 Remember that we've walked the kids. */
23037 die->die_mark = 2;
23039 /* If this is an array type, we need to make sure our
23040 kids get marked, even if they're types. If we're
23041 breaking out types into comdat sections, do this
23042 for all type definitions. */
23043 if (die->die_tag == DW_TAG_array_type
23044 || (use_debug_types
23045 && is_type_die (die) && ! is_declaration_die (die)))
23046 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
23047 else
23048 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
23052 /* For local classes, look if any static member functions were emitted
23053 and if so, mark them. */
23055 static void
23056 prune_unused_types_walk_local_classes (dw_die_ref die)
23058 dw_die_ref c;
23060 if (die->die_mark == 2)
23061 return;
23063 switch (die->die_tag)
23065 case DW_TAG_structure_type:
23066 case DW_TAG_union_type:
23067 case DW_TAG_class_type:
23068 break;
23070 case DW_TAG_subprogram:
23071 if (!get_AT_flag (die, DW_AT_declaration)
23072 || die->die_definition != NULL)
23073 prune_unused_types_mark (die, 1);
23074 return;
23076 default:
23077 return;
23080 /* Mark children. */
23081 FOR_EACH_CHILD (die, c, prune_unused_types_walk_local_classes (c));
23084 /* Walk the tree DIE and mark types that we actually use. */
23086 static void
23087 prune_unused_types_walk (dw_die_ref die)
23089 dw_die_ref c;
23091 /* Don't do anything if this node is already marked and
23092 children have been marked as well. */
23093 if (die->die_mark == 2)
23094 return;
23096 switch (die->die_tag)
23098 case DW_TAG_structure_type:
23099 case DW_TAG_union_type:
23100 case DW_TAG_class_type:
23101 if (die->die_perennial_p)
23102 break;
23104 for (c = die->die_parent; c; c = c->die_parent)
23105 if (c->die_tag == DW_TAG_subprogram)
23106 break;
23108 /* Finding used static member functions inside of classes
23109 is needed just for local classes, because for other classes
23110 static member function DIEs with DW_AT_specification
23111 are emitted outside of the DW_TAG_*_type. If we ever change
23112 it, we'd need to call this even for non-local classes. */
23113 if (c)
23114 prune_unused_types_walk_local_classes (die);
23116 /* It's a type node --- don't mark it. */
23117 return;
23119 case DW_TAG_const_type:
23120 case DW_TAG_packed_type:
23121 case DW_TAG_pointer_type:
23122 case DW_TAG_reference_type:
23123 case DW_TAG_rvalue_reference_type:
23124 case DW_TAG_volatile_type:
23125 case DW_TAG_typedef:
23126 case DW_TAG_array_type:
23127 case DW_TAG_interface_type:
23128 case DW_TAG_friend:
23129 case DW_TAG_variant_part:
23130 case DW_TAG_enumeration_type:
23131 case DW_TAG_subroutine_type:
23132 case DW_TAG_string_type:
23133 case DW_TAG_set_type:
23134 case DW_TAG_subrange_type:
23135 case DW_TAG_ptr_to_member_type:
23136 case DW_TAG_file_type:
23137 if (die->die_perennial_p)
23138 break;
23140 /* It's a type node --- don't mark it. */
23141 return;
23143 default:
23144 /* Mark everything else. */
23145 break;
23148 if (die->die_mark == 0)
23150 die->die_mark = 1;
23152 /* Now, mark any dies referenced from here. */
23153 prune_unused_types_walk_attribs (die);
23156 die->die_mark = 2;
23158 /* Mark children. */
23159 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
23162 /* Increment the string counts on strings referred to from DIE's
23163 attributes. */
23165 static void
23166 prune_unused_types_update_strings (dw_die_ref die)
23168 dw_attr_ref a;
23169 unsigned ix;
23171 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
23172 if (AT_class (a) == dw_val_class_str)
23174 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
23175 s->refcount++;
23176 /* Avoid unnecessarily putting strings that are used less than
23177 twice in the hash table. */
23178 if (s->refcount
23179 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
23181 indirect_string_node **slot
23182 = debug_str_hash->find_slot_with_hash (s->str,
23183 htab_hash_string (s->str),
23184 INSERT);
23185 gcc_assert (*slot == NULL);
23186 *slot = s;
23191 /* Remove from the tree DIE any dies that aren't marked. */
23193 static void
23194 prune_unused_types_prune (dw_die_ref die)
23196 dw_die_ref c;
23198 gcc_assert (die->die_mark);
23199 prune_unused_types_update_strings (die);
23201 if (! die->die_child)
23202 return;
23204 c = die->die_child;
23205 do {
23206 dw_die_ref prev = c;
23207 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
23208 if (c == die->die_child)
23210 /* No marked children between 'prev' and the end of the list. */
23211 if (prev == c)
23212 /* No marked children at all. */
23213 die->die_child = NULL;
23214 else
23216 prev->die_sib = c->die_sib;
23217 die->die_child = prev;
23219 return;
23222 if (c != prev->die_sib)
23223 prev->die_sib = c;
23224 prune_unused_types_prune (c);
23225 } while (c != die->die_child);
23228 /* Remove dies representing declarations that we never use. */
23230 static void
23231 prune_unused_types (void)
23233 unsigned int i;
23234 limbo_die_node *node;
23235 comdat_type_node *ctnode;
23236 pubname_ref pub;
23237 dw_die_ref base_type;
23239 #if ENABLE_ASSERT_CHECKING
23240 /* All the marks should already be clear. */
23241 verify_marks_clear (comp_unit_die ());
23242 for (node = limbo_die_list; node; node = node->next)
23243 verify_marks_clear (node->die);
23244 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
23245 verify_marks_clear (ctnode->root_die);
23246 #endif /* ENABLE_ASSERT_CHECKING */
23248 /* Mark types that are used in global variables. */
23249 premark_types_used_by_global_vars ();
23251 /* Set the mark on nodes that are actually used. */
23252 prune_unused_types_walk (comp_unit_die ());
23253 for (node = limbo_die_list; node; node = node->next)
23254 prune_unused_types_walk (node->die);
23255 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
23257 prune_unused_types_walk (ctnode->root_die);
23258 prune_unused_types_mark (ctnode->type_die, 1);
23261 /* Also set the mark on nodes referenced from the pubname_table. Enumerators
23262 are unusual in that they are pubnames that are the children of pubtypes.
23263 They should only be marked via their parent DW_TAG_enumeration_type die,
23264 not as roots in themselves. */
23265 FOR_EACH_VEC_ELT (*pubname_table, i, pub)
23266 if (pub->die->die_tag != DW_TAG_enumerator)
23267 prune_unused_types_mark (pub->die, 1);
23268 for (i = 0; base_types.iterate (i, &base_type); i++)
23269 prune_unused_types_mark (base_type, 1);
23271 if (debug_str_hash)
23272 debug_str_hash->empty ();
23273 if (skeleton_debug_str_hash)
23274 skeleton_debug_str_hash->empty ();
23275 prune_unused_types_prune (comp_unit_die ());
23276 for (node = limbo_die_list; node; node = node->next)
23277 prune_unused_types_prune (node->die);
23278 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
23279 prune_unused_types_prune (ctnode->root_die);
23281 /* Leave the marks clear. */
23282 prune_unmark_dies (comp_unit_die ());
23283 for (node = limbo_die_list; node; node = node->next)
23284 prune_unmark_dies (node->die);
23285 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
23286 prune_unmark_dies (ctnode->root_die);
23289 /* Set the parameter to true if there are any relative pathnames in
23290 the file table. */
23292 file_table_relative_p (dwarf_file_data **slot, bool *p)
23294 struct dwarf_file_data *d = *slot;
23295 if (!IS_ABSOLUTE_PATH (d->filename))
23297 *p = true;
23298 return 0;
23300 return 1;
23303 /* Helpers to manipulate hash table of comdat type units. */
23305 struct comdat_type_hasher : typed_noop_remove <comdat_type_node>
23307 typedef comdat_type_node value_type;
23308 typedef comdat_type_node compare_type;
23309 static inline hashval_t hash (const value_type *);
23310 static inline bool equal (const value_type *, const compare_type *);
23313 inline hashval_t
23314 comdat_type_hasher::hash (const value_type *type_node)
23316 hashval_t h;
23317 memcpy (&h, type_node->signature, sizeof (h));
23318 return h;
23321 inline bool
23322 comdat_type_hasher::equal (const value_type *type_node_1,
23323 const compare_type *type_node_2)
23325 return (! memcmp (type_node_1->signature, type_node_2->signature,
23326 DWARF_TYPE_SIGNATURE_SIZE));
23329 /* Move a DW_AT_{,MIPS_}linkage_name attribute just added to dw_die_ref
23330 to the location it would have been added, should we know its
23331 DECL_ASSEMBLER_NAME when we added other attributes. This will
23332 probably improve compactness of debug info, removing equivalent
23333 abbrevs, and hide any differences caused by deferring the
23334 computation of the assembler name, triggered by e.g. PCH. */
23336 static inline void
23337 move_linkage_attr (dw_die_ref die)
23339 unsigned ix = vec_safe_length (die->die_attr);
23340 dw_attr_node linkage = (*die->die_attr)[ix - 1];
23342 gcc_assert (linkage.dw_attr == DW_AT_linkage_name
23343 || linkage.dw_attr == DW_AT_MIPS_linkage_name);
23345 while (--ix > 0)
23347 dw_attr_node *prev = &(*die->die_attr)[ix - 1];
23349 if (prev->dw_attr == DW_AT_decl_line || prev->dw_attr == DW_AT_name)
23350 break;
23353 if (ix != vec_safe_length (die->die_attr) - 1)
23355 die->die_attr->pop ();
23356 die->die_attr->quick_insert (ix, linkage);
23360 /* Helper function for resolve_addr, mark DW_TAG_base_type nodes
23361 referenced from typed stack ops and count how often they are used. */
23363 static void
23364 mark_base_types (dw_loc_descr_ref loc)
23366 dw_die_ref base_type = NULL;
23368 for (; loc; loc = loc->dw_loc_next)
23370 switch (loc->dw_loc_opc)
23372 case DW_OP_GNU_regval_type:
23373 case DW_OP_GNU_deref_type:
23374 base_type = loc->dw_loc_oprnd2.v.val_die_ref.die;
23375 break;
23376 case DW_OP_GNU_convert:
23377 case DW_OP_GNU_reinterpret:
23378 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
23379 continue;
23380 /* FALLTHRU */
23381 case DW_OP_GNU_const_type:
23382 base_type = loc->dw_loc_oprnd1.v.val_die_ref.die;
23383 break;
23384 case DW_OP_GNU_entry_value:
23385 mark_base_types (loc->dw_loc_oprnd1.v.val_loc);
23386 continue;
23387 default:
23388 continue;
23390 gcc_assert (base_type->die_parent == comp_unit_die ());
23391 if (base_type->die_mark)
23392 base_type->die_mark++;
23393 else
23395 base_types.safe_push (base_type);
23396 base_type->die_mark = 1;
23401 /* Comparison function for sorting marked base types. */
23403 static int
23404 base_type_cmp (const void *x, const void *y)
23406 dw_die_ref dx = *(const dw_die_ref *) x;
23407 dw_die_ref dy = *(const dw_die_ref *) y;
23408 unsigned int byte_size1, byte_size2;
23409 unsigned int encoding1, encoding2;
23410 if (dx->die_mark > dy->die_mark)
23411 return -1;
23412 if (dx->die_mark < dy->die_mark)
23413 return 1;
23414 byte_size1 = get_AT_unsigned (dx, DW_AT_byte_size);
23415 byte_size2 = get_AT_unsigned (dy, DW_AT_byte_size);
23416 if (byte_size1 < byte_size2)
23417 return 1;
23418 if (byte_size1 > byte_size2)
23419 return -1;
23420 encoding1 = get_AT_unsigned (dx, DW_AT_encoding);
23421 encoding2 = get_AT_unsigned (dy, DW_AT_encoding);
23422 if (encoding1 < encoding2)
23423 return 1;
23424 if (encoding1 > encoding2)
23425 return -1;
23426 return 0;
23429 /* Move base types marked by mark_base_types as early as possible
23430 in the CU, sorted by decreasing usage count both to make the
23431 uleb128 references as small as possible and to make sure they
23432 will have die_offset already computed by calc_die_sizes when
23433 sizes of typed stack loc ops is computed. */
23435 static void
23436 move_marked_base_types (void)
23438 unsigned int i;
23439 dw_die_ref base_type, die, c;
23441 if (base_types.is_empty ())
23442 return;
23444 /* Sort by decreasing usage count, they will be added again in that
23445 order later on. */
23446 base_types.qsort (base_type_cmp);
23447 die = comp_unit_die ();
23448 c = die->die_child;
23451 dw_die_ref prev = c;
23452 c = c->die_sib;
23453 while (c->die_mark)
23455 remove_child_with_prev (c, prev);
23456 /* As base types got marked, there must be at least
23457 one node other than DW_TAG_base_type. */
23458 gcc_assert (c != c->die_sib);
23459 c = c->die_sib;
23462 while (c != die->die_child);
23463 gcc_assert (die->die_child);
23464 c = die->die_child;
23465 for (i = 0; base_types.iterate (i, &base_type); i++)
23467 base_type->die_mark = 0;
23468 base_type->die_sib = c->die_sib;
23469 c->die_sib = base_type;
23470 c = base_type;
23474 /* Helper function for resolve_addr, attempt to resolve
23475 one CONST_STRING, return true if successful. Similarly verify that
23476 SYMBOL_REFs refer to variables emitted in the current CU. */
23478 static bool
23479 resolve_one_addr (rtx *addr)
23481 rtx rtl = *addr;
23483 if (GET_CODE (rtl) == CONST_STRING)
23485 size_t len = strlen (XSTR (rtl, 0)) + 1;
23486 tree t = build_string (len, XSTR (rtl, 0));
23487 tree tlen = size_int (len - 1);
23488 TREE_TYPE (t)
23489 = build_array_type (char_type_node, build_index_type (tlen));
23490 rtl = lookup_constant_def (t);
23491 if (!rtl || !MEM_P (rtl))
23492 return false;
23493 rtl = XEXP (rtl, 0);
23494 if (GET_CODE (rtl) == SYMBOL_REF
23495 && SYMBOL_REF_DECL (rtl)
23496 && !TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
23497 return false;
23498 vec_safe_push (used_rtx_array, rtl);
23499 *addr = rtl;
23500 return true;
23503 if (GET_CODE (rtl) == SYMBOL_REF
23504 && SYMBOL_REF_DECL (rtl))
23506 if (TREE_CONSTANT_POOL_ADDRESS_P (rtl))
23508 if (!TREE_ASM_WRITTEN (DECL_INITIAL (SYMBOL_REF_DECL (rtl))))
23509 return false;
23511 else if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
23512 return false;
23515 if (GET_CODE (rtl) == CONST)
23517 subrtx_ptr_iterator::array_type array;
23518 FOR_EACH_SUBRTX_PTR (iter, array, &XEXP (rtl, 0), ALL)
23519 if (!resolve_one_addr (*iter))
23520 return false;
23523 return true;
23526 /* For STRING_CST, return SYMBOL_REF of its constant pool entry,
23527 if possible, and create DW_TAG_dwarf_procedure that can be referenced
23528 from DW_OP_GNU_implicit_pointer if the string hasn't been seen yet. */
23530 static rtx
23531 string_cst_pool_decl (tree t)
23533 rtx rtl = output_constant_def (t, 1);
23534 unsigned char *array;
23535 dw_loc_descr_ref l;
23536 tree decl;
23537 size_t len;
23538 dw_die_ref ref;
23540 if (!rtl || !MEM_P (rtl))
23541 return NULL_RTX;
23542 rtl = XEXP (rtl, 0);
23543 if (GET_CODE (rtl) != SYMBOL_REF
23544 || SYMBOL_REF_DECL (rtl) == NULL_TREE)
23545 return NULL_RTX;
23547 decl = SYMBOL_REF_DECL (rtl);
23548 if (!lookup_decl_die (decl))
23550 len = TREE_STRING_LENGTH (t);
23551 vec_safe_push (used_rtx_array, rtl);
23552 ref = new_die (DW_TAG_dwarf_procedure, comp_unit_die (), decl);
23553 array = ggc_vec_alloc<unsigned char> (len);
23554 memcpy (array, TREE_STRING_POINTER (t), len);
23555 l = new_loc_descr (DW_OP_implicit_value, len, 0);
23556 l->dw_loc_oprnd2.val_class = dw_val_class_vec;
23557 l->dw_loc_oprnd2.v.val_vec.length = len;
23558 l->dw_loc_oprnd2.v.val_vec.elt_size = 1;
23559 l->dw_loc_oprnd2.v.val_vec.array = array;
23560 add_AT_loc (ref, DW_AT_location, l);
23561 equate_decl_number_to_die (decl, ref);
23563 return rtl;
23566 /* Helper function of resolve_addr_in_expr. LOC is
23567 a DW_OP_addr followed by DW_OP_stack_value, either at the start
23568 of exprloc or after DW_OP_{,bit_}piece, and val_addr can't be
23569 resolved. Replace it (both DW_OP_addr and DW_OP_stack_value)
23570 with DW_OP_GNU_implicit_pointer if possible
23571 and return true, if unsuccessful, return false. */
23573 static bool
23574 optimize_one_addr_into_implicit_ptr (dw_loc_descr_ref loc)
23576 rtx rtl = loc->dw_loc_oprnd1.v.val_addr;
23577 HOST_WIDE_INT offset = 0;
23578 dw_die_ref ref = NULL;
23579 tree decl;
23581 if (GET_CODE (rtl) == CONST
23582 && GET_CODE (XEXP (rtl, 0)) == PLUS
23583 && CONST_INT_P (XEXP (XEXP (rtl, 0), 1)))
23585 offset = INTVAL (XEXP (XEXP (rtl, 0), 1));
23586 rtl = XEXP (XEXP (rtl, 0), 0);
23588 if (GET_CODE (rtl) == CONST_STRING)
23590 size_t len = strlen (XSTR (rtl, 0)) + 1;
23591 tree t = build_string (len, XSTR (rtl, 0));
23592 tree tlen = size_int (len - 1);
23594 TREE_TYPE (t)
23595 = build_array_type (char_type_node, build_index_type (tlen));
23596 rtl = string_cst_pool_decl (t);
23597 if (!rtl)
23598 return false;
23600 if (GET_CODE (rtl) == SYMBOL_REF && SYMBOL_REF_DECL (rtl))
23602 decl = SYMBOL_REF_DECL (rtl);
23603 if (TREE_CODE (decl) == VAR_DECL && !DECL_EXTERNAL (decl))
23605 ref = lookup_decl_die (decl);
23606 if (ref && (get_AT (ref, DW_AT_location)
23607 || get_AT (ref, DW_AT_const_value)))
23609 loc->dw_loc_opc = DW_OP_GNU_implicit_pointer;
23610 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
23611 loc->dw_loc_oprnd1.val_entry = NULL;
23612 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
23613 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
23614 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
23615 loc->dw_loc_oprnd2.v.val_int = offset;
23616 return true;
23620 return false;
23623 /* Helper function for resolve_addr, handle one location
23624 expression, return false if at least one CONST_STRING or SYMBOL_REF in
23625 the location list couldn't be resolved. */
23627 static bool
23628 resolve_addr_in_expr (dw_loc_descr_ref loc)
23630 dw_loc_descr_ref keep = NULL;
23631 for (dw_loc_descr_ref prev = NULL; loc; prev = loc, loc = loc->dw_loc_next)
23632 switch (loc->dw_loc_opc)
23634 case DW_OP_addr:
23635 if (!resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
23637 if ((prev == NULL
23638 || prev->dw_loc_opc == DW_OP_piece
23639 || prev->dw_loc_opc == DW_OP_bit_piece)
23640 && loc->dw_loc_next
23641 && loc->dw_loc_next->dw_loc_opc == DW_OP_stack_value
23642 && !dwarf_strict
23643 && optimize_one_addr_into_implicit_ptr (loc))
23644 break;
23645 return false;
23647 break;
23648 case DW_OP_GNU_addr_index:
23649 case DW_OP_GNU_const_index:
23650 if (loc->dw_loc_opc == DW_OP_GNU_addr_index
23651 || (loc->dw_loc_opc == DW_OP_GNU_const_index && loc->dtprel))
23653 rtx rtl = loc->dw_loc_oprnd1.val_entry->addr.rtl;
23654 if (!resolve_one_addr (&rtl))
23655 return false;
23656 remove_addr_table_entry (loc->dw_loc_oprnd1.val_entry);
23657 loc->dw_loc_oprnd1.val_entry =
23658 add_addr_table_entry (rtl, ate_kind_rtx);
23660 break;
23661 case DW_OP_const4u:
23662 case DW_OP_const8u:
23663 if (loc->dtprel
23664 && !resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
23665 return false;
23666 break;
23667 case DW_OP_plus_uconst:
23668 if (size_of_loc_descr (loc)
23669 > size_of_int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned)
23671 && loc->dw_loc_oprnd1.v.val_unsigned > 0)
23673 dw_loc_descr_ref repl
23674 = int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned);
23675 add_loc_descr (&repl, new_loc_descr (DW_OP_plus, 0, 0));
23676 add_loc_descr (&repl, loc->dw_loc_next);
23677 *loc = *repl;
23679 break;
23680 case DW_OP_implicit_value:
23681 if (loc->dw_loc_oprnd2.val_class == dw_val_class_addr
23682 && !resolve_one_addr (&loc->dw_loc_oprnd2.v.val_addr))
23683 return false;
23684 break;
23685 case DW_OP_GNU_implicit_pointer:
23686 case DW_OP_GNU_parameter_ref:
23687 if (loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
23689 dw_die_ref ref
23690 = lookup_decl_die (loc->dw_loc_oprnd1.v.val_decl_ref);
23691 if (ref == NULL)
23692 return false;
23693 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
23694 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
23695 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
23697 break;
23698 case DW_OP_GNU_const_type:
23699 case DW_OP_GNU_regval_type:
23700 case DW_OP_GNU_deref_type:
23701 case DW_OP_GNU_convert:
23702 case DW_OP_GNU_reinterpret:
23703 while (loc->dw_loc_next
23704 && loc->dw_loc_next->dw_loc_opc == DW_OP_GNU_convert)
23706 dw_die_ref base1, base2;
23707 unsigned enc1, enc2, size1, size2;
23708 if (loc->dw_loc_opc == DW_OP_GNU_regval_type
23709 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
23710 base1 = loc->dw_loc_oprnd2.v.val_die_ref.die;
23711 else if (loc->dw_loc_oprnd1.val_class
23712 == dw_val_class_unsigned_const)
23713 break;
23714 else
23715 base1 = loc->dw_loc_oprnd1.v.val_die_ref.die;
23716 if (loc->dw_loc_next->dw_loc_oprnd1.val_class
23717 == dw_val_class_unsigned_const)
23718 break;
23719 base2 = loc->dw_loc_next->dw_loc_oprnd1.v.val_die_ref.die;
23720 gcc_assert (base1->die_tag == DW_TAG_base_type
23721 && base2->die_tag == DW_TAG_base_type);
23722 enc1 = get_AT_unsigned (base1, DW_AT_encoding);
23723 enc2 = get_AT_unsigned (base2, DW_AT_encoding);
23724 size1 = get_AT_unsigned (base1, DW_AT_byte_size);
23725 size2 = get_AT_unsigned (base2, DW_AT_byte_size);
23726 if (size1 == size2
23727 && (((enc1 == DW_ATE_unsigned || enc1 == DW_ATE_signed)
23728 && (enc2 == DW_ATE_unsigned || enc2 == DW_ATE_signed)
23729 && loc != keep)
23730 || enc1 == enc2))
23732 /* Optimize away next DW_OP_GNU_convert after
23733 adjusting LOC's base type die reference. */
23734 if (loc->dw_loc_opc == DW_OP_GNU_regval_type
23735 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
23736 loc->dw_loc_oprnd2.v.val_die_ref.die = base2;
23737 else
23738 loc->dw_loc_oprnd1.v.val_die_ref.die = base2;
23739 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
23740 continue;
23742 /* Don't change integer DW_OP_GNU_convert after e.g. floating
23743 point typed stack entry. */
23744 else if (enc1 != DW_ATE_unsigned && enc1 != DW_ATE_signed)
23745 keep = loc->dw_loc_next;
23746 break;
23748 break;
23749 default:
23750 break;
23752 return true;
23755 /* Helper function of resolve_addr. DIE had DW_AT_location of
23756 DW_OP_addr alone, which referred to DECL in DW_OP_addr's operand
23757 and DW_OP_addr couldn't be resolved. resolve_addr has already
23758 removed the DW_AT_location attribute. This function attempts to
23759 add a new DW_AT_location attribute with DW_OP_GNU_implicit_pointer
23760 to it or DW_AT_const_value attribute, if possible. */
23762 static void
23763 optimize_location_into_implicit_ptr (dw_die_ref die, tree decl)
23765 if (TREE_CODE (decl) != VAR_DECL
23766 || lookup_decl_die (decl) != die
23767 || DECL_EXTERNAL (decl)
23768 || !TREE_STATIC (decl)
23769 || DECL_INITIAL (decl) == NULL_TREE
23770 || DECL_P (DECL_INITIAL (decl))
23771 || get_AT (die, DW_AT_const_value))
23772 return;
23774 tree init = DECL_INITIAL (decl);
23775 HOST_WIDE_INT offset = 0;
23776 /* For variables that have been optimized away and thus
23777 don't have a memory location, see if we can emit
23778 DW_AT_const_value instead. */
23779 if (tree_add_const_value_attribute (die, init))
23780 return;
23781 if (dwarf_strict)
23782 return;
23783 /* If init is ADDR_EXPR or POINTER_PLUS_EXPR of ADDR_EXPR,
23784 and ADDR_EXPR refers to a decl that has DW_AT_location or
23785 DW_AT_const_value (but isn't addressable, otherwise
23786 resolving the original DW_OP_addr wouldn't fail), see if
23787 we can add DW_OP_GNU_implicit_pointer. */
23788 STRIP_NOPS (init);
23789 if (TREE_CODE (init) == POINTER_PLUS_EXPR
23790 && tree_fits_shwi_p (TREE_OPERAND (init, 1)))
23792 offset = tree_to_shwi (TREE_OPERAND (init, 1));
23793 init = TREE_OPERAND (init, 0);
23794 STRIP_NOPS (init);
23796 if (TREE_CODE (init) != ADDR_EXPR)
23797 return;
23798 if ((TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST
23799 && !TREE_ASM_WRITTEN (TREE_OPERAND (init, 0)))
23800 || (TREE_CODE (TREE_OPERAND (init, 0)) == VAR_DECL
23801 && !DECL_EXTERNAL (TREE_OPERAND (init, 0))
23802 && TREE_OPERAND (init, 0) != decl))
23804 dw_die_ref ref;
23805 dw_loc_descr_ref l;
23807 if (TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST)
23809 rtx rtl = string_cst_pool_decl (TREE_OPERAND (init, 0));
23810 if (!rtl)
23811 return;
23812 decl = SYMBOL_REF_DECL (rtl);
23814 else
23815 decl = TREE_OPERAND (init, 0);
23816 ref = lookup_decl_die (decl);
23817 if (ref == NULL
23818 || (!get_AT (ref, DW_AT_location)
23819 && !get_AT (ref, DW_AT_const_value)))
23820 return;
23821 l = new_loc_descr (DW_OP_GNU_implicit_pointer, 0, offset);
23822 l->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
23823 l->dw_loc_oprnd1.v.val_die_ref.die = ref;
23824 l->dw_loc_oprnd1.v.val_die_ref.external = 0;
23825 add_AT_loc (die, DW_AT_location, l);
23829 /* Resolve DW_OP_addr and DW_AT_const_value CONST_STRING arguments to
23830 an address in .rodata section if the string literal is emitted there,
23831 or remove the containing location list or replace DW_AT_const_value
23832 with DW_AT_location and empty location expression, if it isn't found
23833 in .rodata. Similarly for SYMBOL_REFs, keep only those that refer
23834 to something that has been emitted in the current CU. */
23836 static void
23837 resolve_addr (dw_die_ref die)
23839 dw_die_ref c;
23840 dw_attr_ref a;
23841 dw_loc_list_ref *curr, *start, loc;
23842 unsigned ix;
23844 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
23845 switch (AT_class (a))
23847 case dw_val_class_loc_list:
23848 start = curr = AT_loc_list_ptr (a);
23849 loc = *curr;
23850 gcc_assert (loc);
23851 /* The same list can be referenced more than once. See if we have
23852 already recorded the result from a previous pass. */
23853 if (loc->replaced)
23854 *curr = loc->dw_loc_next;
23855 else if (!loc->resolved_addr)
23857 /* As things stand, we do not expect or allow one die to
23858 reference a suffix of another die's location list chain.
23859 References must be identical or completely separate.
23860 There is therefore no need to cache the result of this
23861 pass on any list other than the first; doing so
23862 would lead to unnecessary writes. */
23863 while (*curr)
23865 gcc_assert (!(*curr)->replaced && !(*curr)->resolved_addr);
23866 if (!resolve_addr_in_expr ((*curr)->expr))
23868 dw_loc_list_ref next = (*curr)->dw_loc_next;
23869 dw_loc_descr_ref l = (*curr)->expr;
23871 if (next && (*curr)->ll_symbol)
23873 gcc_assert (!next->ll_symbol);
23874 next->ll_symbol = (*curr)->ll_symbol;
23876 if (dwarf_split_debug_info)
23877 remove_loc_list_addr_table_entries (l);
23878 *curr = next;
23880 else
23882 mark_base_types ((*curr)->expr);
23883 curr = &(*curr)->dw_loc_next;
23886 if (loc == *start)
23887 loc->resolved_addr = 1;
23888 else
23890 loc->replaced = 1;
23891 loc->dw_loc_next = *start;
23894 if (!*start)
23896 remove_AT (die, a->dw_attr);
23897 ix--;
23899 break;
23900 case dw_val_class_loc:
23902 dw_loc_descr_ref l = AT_loc (a);
23903 /* For -gdwarf-2 don't attempt to optimize
23904 DW_AT_data_member_location containing
23905 DW_OP_plus_uconst - older consumers might
23906 rely on it being that op instead of a more complex,
23907 but shorter, location description. */
23908 if ((dwarf_version > 2
23909 || a->dw_attr != DW_AT_data_member_location
23910 || l == NULL
23911 || l->dw_loc_opc != DW_OP_plus_uconst
23912 || l->dw_loc_next != NULL)
23913 && !resolve_addr_in_expr (l))
23915 if (dwarf_split_debug_info)
23916 remove_loc_list_addr_table_entries (l);
23917 if (l != NULL
23918 && l->dw_loc_next == NULL
23919 && l->dw_loc_opc == DW_OP_addr
23920 && GET_CODE (l->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF
23921 && SYMBOL_REF_DECL (l->dw_loc_oprnd1.v.val_addr)
23922 && a->dw_attr == DW_AT_location)
23924 tree decl = SYMBOL_REF_DECL (l->dw_loc_oprnd1.v.val_addr);
23925 remove_AT (die, a->dw_attr);
23926 ix--;
23927 optimize_location_into_implicit_ptr (die, decl);
23928 break;
23930 remove_AT (die, a->dw_attr);
23931 ix--;
23933 else
23934 mark_base_types (l);
23936 break;
23937 case dw_val_class_addr:
23938 if (a->dw_attr == DW_AT_const_value
23939 && !resolve_one_addr (&a->dw_attr_val.v.val_addr))
23941 if (AT_index (a) != NOT_INDEXED)
23942 remove_addr_table_entry (a->dw_attr_val.val_entry);
23943 remove_AT (die, a->dw_attr);
23944 ix--;
23946 if (die->die_tag == DW_TAG_GNU_call_site
23947 && a->dw_attr == DW_AT_abstract_origin)
23949 tree tdecl = SYMBOL_REF_DECL (a->dw_attr_val.v.val_addr);
23950 dw_die_ref tdie = lookup_decl_die (tdecl);
23951 if (tdie == NULL
23952 && DECL_EXTERNAL (tdecl)
23953 && DECL_ABSTRACT_ORIGIN (tdecl) == NULL_TREE)
23955 force_decl_die (tdecl);
23956 tdie = lookup_decl_die (tdecl);
23958 if (tdie)
23960 a->dw_attr_val.val_class = dw_val_class_die_ref;
23961 a->dw_attr_val.v.val_die_ref.die = tdie;
23962 a->dw_attr_val.v.val_die_ref.external = 0;
23964 else
23966 if (AT_index (a) != NOT_INDEXED)
23967 remove_addr_table_entry (a->dw_attr_val.val_entry);
23968 remove_AT (die, a->dw_attr);
23969 ix--;
23972 break;
23973 default:
23974 break;
23977 FOR_EACH_CHILD (die, c, resolve_addr (c));
23980 /* Helper routines for optimize_location_lists.
23981 This pass tries to share identical local lists in .debug_loc
23982 section. */
23984 /* Iteratively hash operands of LOC opcode into HSTATE. */
23986 static void
23987 hash_loc_operands (dw_loc_descr_ref loc, inchash::hash &hstate)
23989 dw_val_ref val1 = &loc->dw_loc_oprnd1;
23990 dw_val_ref val2 = &loc->dw_loc_oprnd2;
23992 switch (loc->dw_loc_opc)
23994 case DW_OP_const4u:
23995 case DW_OP_const8u:
23996 if (loc->dtprel)
23997 goto hash_addr;
23998 /* FALLTHRU */
23999 case DW_OP_const1u:
24000 case DW_OP_const1s:
24001 case DW_OP_const2u:
24002 case DW_OP_const2s:
24003 case DW_OP_const4s:
24004 case DW_OP_const8s:
24005 case DW_OP_constu:
24006 case DW_OP_consts:
24007 case DW_OP_pick:
24008 case DW_OP_plus_uconst:
24009 case DW_OP_breg0:
24010 case DW_OP_breg1:
24011 case DW_OP_breg2:
24012 case DW_OP_breg3:
24013 case DW_OP_breg4:
24014 case DW_OP_breg5:
24015 case DW_OP_breg6:
24016 case DW_OP_breg7:
24017 case DW_OP_breg8:
24018 case DW_OP_breg9:
24019 case DW_OP_breg10:
24020 case DW_OP_breg11:
24021 case DW_OP_breg12:
24022 case DW_OP_breg13:
24023 case DW_OP_breg14:
24024 case DW_OP_breg15:
24025 case DW_OP_breg16:
24026 case DW_OP_breg17:
24027 case DW_OP_breg18:
24028 case DW_OP_breg19:
24029 case DW_OP_breg20:
24030 case DW_OP_breg21:
24031 case DW_OP_breg22:
24032 case DW_OP_breg23:
24033 case DW_OP_breg24:
24034 case DW_OP_breg25:
24035 case DW_OP_breg26:
24036 case DW_OP_breg27:
24037 case DW_OP_breg28:
24038 case DW_OP_breg29:
24039 case DW_OP_breg30:
24040 case DW_OP_breg31:
24041 case DW_OP_regx:
24042 case DW_OP_fbreg:
24043 case DW_OP_piece:
24044 case DW_OP_deref_size:
24045 case DW_OP_xderef_size:
24046 hstate.add_object (val1->v.val_int);
24047 break;
24048 case DW_OP_skip:
24049 case DW_OP_bra:
24051 int offset;
24053 gcc_assert (val1->val_class == dw_val_class_loc);
24054 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
24055 hstate.add_object (offset);
24057 break;
24058 case DW_OP_implicit_value:
24059 hstate.add_object (val1->v.val_unsigned);
24060 switch (val2->val_class)
24062 case dw_val_class_const:
24063 hstate.add_object (val2->v.val_int);
24064 break;
24065 case dw_val_class_vec:
24067 unsigned int elt_size = val2->v.val_vec.elt_size;
24068 unsigned int len = val2->v.val_vec.length;
24070 hstate.add_int (elt_size);
24071 hstate.add_int (len);
24072 hstate.add (val2->v.val_vec.array, len * elt_size);
24074 break;
24075 case dw_val_class_const_double:
24076 hstate.add_object (val2->v.val_double.low);
24077 hstate.add_object (val2->v.val_double.high);
24078 break;
24079 case dw_val_class_wide_int:
24080 hstate.add (val2->v.val_wide->get_val (),
24081 get_full_len (*val2->v.val_wide)
24082 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
24083 break;
24084 case dw_val_class_addr:
24085 inchash::add_rtx (val2->v.val_addr, hstate);
24086 break;
24087 default:
24088 gcc_unreachable ();
24090 break;
24091 case DW_OP_bregx:
24092 case DW_OP_bit_piece:
24093 hstate.add_object (val1->v.val_int);
24094 hstate.add_object (val2->v.val_int);
24095 break;
24096 case DW_OP_addr:
24097 hash_addr:
24098 if (loc->dtprel)
24100 unsigned char dtprel = 0xd1;
24101 hstate.add_object (dtprel);
24103 inchash::add_rtx (val1->v.val_addr, hstate);
24104 break;
24105 case DW_OP_GNU_addr_index:
24106 case DW_OP_GNU_const_index:
24108 if (loc->dtprel)
24110 unsigned char dtprel = 0xd1;
24111 hstate.add_object (dtprel);
24113 inchash::add_rtx (val1->val_entry->addr.rtl, hstate);
24115 break;
24116 case DW_OP_GNU_implicit_pointer:
24117 hstate.add_int (val2->v.val_int);
24118 break;
24119 case DW_OP_GNU_entry_value:
24120 hstate.add_object (val1->v.val_loc);
24121 break;
24122 case DW_OP_GNU_regval_type:
24123 case DW_OP_GNU_deref_type:
24125 unsigned int byte_size
24126 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_byte_size);
24127 unsigned int encoding
24128 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_encoding);
24129 hstate.add_object (val1->v.val_int);
24130 hstate.add_object (byte_size);
24131 hstate.add_object (encoding);
24133 break;
24134 case DW_OP_GNU_convert:
24135 case DW_OP_GNU_reinterpret:
24136 if (val1->val_class == dw_val_class_unsigned_const)
24138 hstate.add_object (val1->v.val_unsigned);
24139 break;
24141 /* FALLTHRU */
24142 case DW_OP_GNU_const_type:
24144 unsigned int byte_size
24145 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_byte_size);
24146 unsigned int encoding
24147 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_encoding);
24148 hstate.add_object (byte_size);
24149 hstate.add_object (encoding);
24150 if (loc->dw_loc_opc != DW_OP_GNU_const_type)
24151 break;
24152 hstate.add_object (val2->val_class);
24153 switch (val2->val_class)
24155 case dw_val_class_const:
24156 hstate.add_object (val2->v.val_int);
24157 break;
24158 case dw_val_class_vec:
24160 unsigned int elt_size = val2->v.val_vec.elt_size;
24161 unsigned int len = val2->v.val_vec.length;
24163 hstate.add_object (elt_size);
24164 hstate.add_object (len);
24165 hstate.add (val2->v.val_vec.array, len * elt_size);
24167 break;
24168 case dw_val_class_const_double:
24169 hstate.add_object (val2->v.val_double.low);
24170 hstate.add_object (val2->v.val_double.high);
24171 break;
24172 case dw_val_class_wide_int:
24173 hstate.add (val2->v.val_wide->get_val (),
24174 get_full_len (*val2->v.val_wide)
24175 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
24176 break;
24177 default:
24178 gcc_unreachable ();
24181 break;
24183 default:
24184 /* Other codes have no operands. */
24185 break;
24189 /* Iteratively hash the whole DWARF location expression LOC into HSTATE. */
24191 static inline void
24192 hash_locs (dw_loc_descr_ref loc, inchash::hash &hstate)
24194 dw_loc_descr_ref l;
24195 bool sizes_computed = false;
24196 /* Compute sizes, so that DW_OP_skip/DW_OP_bra can be checksummed. */
24197 size_of_locs (loc);
24199 for (l = loc; l != NULL; l = l->dw_loc_next)
24201 enum dwarf_location_atom opc = l->dw_loc_opc;
24202 hstate.add_object (opc);
24203 if ((opc == DW_OP_skip || opc == DW_OP_bra) && !sizes_computed)
24205 size_of_locs (loc);
24206 sizes_computed = true;
24208 hash_loc_operands (l, hstate);
24212 /* Compute hash of the whole location list LIST_HEAD. */
24214 static inline void
24215 hash_loc_list (dw_loc_list_ref list_head)
24217 dw_loc_list_ref curr = list_head;
24218 inchash::hash hstate;
24220 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
24222 hstate.add (curr->begin, strlen (curr->begin) + 1);
24223 hstate.add (curr->end, strlen (curr->end) + 1);
24224 if (curr->section)
24225 hstate.add (curr->section, strlen (curr->section) + 1);
24226 hash_locs (curr->expr, hstate);
24228 list_head->hash = hstate.end ();
24231 /* Return true if X and Y opcodes have the same operands. */
24233 static inline bool
24234 compare_loc_operands (dw_loc_descr_ref x, dw_loc_descr_ref y)
24236 dw_val_ref valx1 = &x->dw_loc_oprnd1;
24237 dw_val_ref valx2 = &x->dw_loc_oprnd2;
24238 dw_val_ref valy1 = &y->dw_loc_oprnd1;
24239 dw_val_ref valy2 = &y->dw_loc_oprnd2;
24241 switch (x->dw_loc_opc)
24243 case DW_OP_const4u:
24244 case DW_OP_const8u:
24245 if (x->dtprel)
24246 goto hash_addr;
24247 /* FALLTHRU */
24248 case DW_OP_const1u:
24249 case DW_OP_const1s:
24250 case DW_OP_const2u:
24251 case DW_OP_const2s:
24252 case DW_OP_const4s:
24253 case DW_OP_const8s:
24254 case DW_OP_constu:
24255 case DW_OP_consts:
24256 case DW_OP_pick:
24257 case DW_OP_plus_uconst:
24258 case DW_OP_breg0:
24259 case DW_OP_breg1:
24260 case DW_OP_breg2:
24261 case DW_OP_breg3:
24262 case DW_OP_breg4:
24263 case DW_OP_breg5:
24264 case DW_OP_breg6:
24265 case DW_OP_breg7:
24266 case DW_OP_breg8:
24267 case DW_OP_breg9:
24268 case DW_OP_breg10:
24269 case DW_OP_breg11:
24270 case DW_OP_breg12:
24271 case DW_OP_breg13:
24272 case DW_OP_breg14:
24273 case DW_OP_breg15:
24274 case DW_OP_breg16:
24275 case DW_OP_breg17:
24276 case DW_OP_breg18:
24277 case DW_OP_breg19:
24278 case DW_OP_breg20:
24279 case DW_OP_breg21:
24280 case DW_OP_breg22:
24281 case DW_OP_breg23:
24282 case DW_OP_breg24:
24283 case DW_OP_breg25:
24284 case DW_OP_breg26:
24285 case DW_OP_breg27:
24286 case DW_OP_breg28:
24287 case DW_OP_breg29:
24288 case DW_OP_breg30:
24289 case DW_OP_breg31:
24290 case DW_OP_regx:
24291 case DW_OP_fbreg:
24292 case DW_OP_piece:
24293 case DW_OP_deref_size:
24294 case DW_OP_xderef_size:
24295 return valx1->v.val_int == valy1->v.val_int;
24296 case DW_OP_skip:
24297 case DW_OP_bra:
24298 /* If splitting debug info, the use of DW_OP_GNU_addr_index
24299 can cause irrelevant differences in dw_loc_addr. */
24300 gcc_assert (valx1->val_class == dw_val_class_loc
24301 && valy1->val_class == dw_val_class_loc
24302 && (dwarf_split_debug_info
24303 || x->dw_loc_addr == y->dw_loc_addr));
24304 return valx1->v.val_loc->dw_loc_addr == valy1->v.val_loc->dw_loc_addr;
24305 case DW_OP_implicit_value:
24306 if (valx1->v.val_unsigned != valy1->v.val_unsigned
24307 || valx2->val_class != valy2->val_class)
24308 return false;
24309 switch (valx2->val_class)
24311 case dw_val_class_const:
24312 return valx2->v.val_int == valy2->v.val_int;
24313 case dw_val_class_vec:
24314 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
24315 && valx2->v.val_vec.length == valy2->v.val_vec.length
24316 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
24317 valx2->v.val_vec.elt_size
24318 * valx2->v.val_vec.length) == 0;
24319 case dw_val_class_const_double:
24320 return valx2->v.val_double.low == valy2->v.val_double.low
24321 && valx2->v.val_double.high == valy2->v.val_double.high;
24322 case dw_val_class_wide_int:
24323 return *valx2->v.val_wide == *valy2->v.val_wide;
24324 case dw_val_class_addr:
24325 return rtx_equal_p (valx2->v.val_addr, valy2->v.val_addr);
24326 default:
24327 gcc_unreachable ();
24329 case DW_OP_bregx:
24330 case DW_OP_bit_piece:
24331 return valx1->v.val_int == valy1->v.val_int
24332 && valx2->v.val_int == valy2->v.val_int;
24333 case DW_OP_addr:
24334 hash_addr:
24335 return rtx_equal_p (valx1->v.val_addr, valy1->v.val_addr);
24336 case DW_OP_GNU_addr_index:
24337 case DW_OP_GNU_const_index:
24339 rtx ax1 = valx1->val_entry->addr.rtl;
24340 rtx ay1 = valy1->val_entry->addr.rtl;
24341 return rtx_equal_p (ax1, ay1);
24343 case DW_OP_GNU_implicit_pointer:
24344 return valx1->val_class == dw_val_class_die_ref
24345 && valx1->val_class == valy1->val_class
24346 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die
24347 && valx2->v.val_int == valy2->v.val_int;
24348 case DW_OP_GNU_entry_value:
24349 return compare_loc_operands (valx1->v.val_loc, valy1->v.val_loc);
24350 case DW_OP_GNU_const_type:
24351 if (valx1->v.val_die_ref.die != valy1->v.val_die_ref.die
24352 || valx2->val_class != valy2->val_class)
24353 return false;
24354 switch (valx2->val_class)
24356 case dw_val_class_const:
24357 return valx2->v.val_int == valy2->v.val_int;
24358 case dw_val_class_vec:
24359 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
24360 && valx2->v.val_vec.length == valy2->v.val_vec.length
24361 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
24362 valx2->v.val_vec.elt_size
24363 * valx2->v.val_vec.length) == 0;
24364 case dw_val_class_const_double:
24365 return valx2->v.val_double.low == valy2->v.val_double.low
24366 && valx2->v.val_double.high == valy2->v.val_double.high;
24367 case dw_val_class_wide_int:
24368 return *valx2->v.val_wide == *valy2->v.val_wide;
24369 default:
24370 gcc_unreachable ();
24372 case DW_OP_GNU_regval_type:
24373 case DW_OP_GNU_deref_type:
24374 return valx1->v.val_int == valy1->v.val_int
24375 && valx2->v.val_die_ref.die == valy2->v.val_die_ref.die;
24376 case DW_OP_GNU_convert:
24377 case DW_OP_GNU_reinterpret:
24378 if (valx1->val_class != valy1->val_class)
24379 return false;
24380 if (valx1->val_class == dw_val_class_unsigned_const)
24381 return valx1->v.val_unsigned == valy1->v.val_unsigned;
24382 return valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
24383 case DW_OP_GNU_parameter_ref:
24384 return valx1->val_class == dw_val_class_die_ref
24385 && valx1->val_class == valy1->val_class
24386 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
24387 default:
24388 /* Other codes have no operands. */
24389 return true;
24393 /* Return true if DWARF location expressions X and Y are the same. */
24395 static inline bool
24396 compare_locs (dw_loc_descr_ref x, dw_loc_descr_ref y)
24398 for (; x != NULL && y != NULL; x = x->dw_loc_next, y = y->dw_loc_next)
24399 if (x->dw_loc_opc != y->dw_loc_opc
24400 || x->dtprel != y->dtprel
24401 || !compare_loc_operands (x, y))
24402 break;
24403 return x == NULL && y == NULL;
24406 /* Hashtable helpers. */
24408 struct loc_list_hasher : typed_noop_remove <dw_loc_list_struct>
24410 typedef dw_loc_list_struct value_type;
24411 typedef dw_loc_list_struct compare_type;
24412 static inline hashval_t hash (const value_type *);
24413 static inline bool equal (const value_type *, const compare_type *);
24416 /* Return precomputed hash of location list X. */
24418 inline hashval_t
24419 loc_list_hasher::hash (const value_type *x)
24421 return x->hash;
24424 /* Return true if location lists A and B are the same. */
24426 inline bool
24427 loc_list_hasher::equal (const value_type *a, const compare_type *b)
24429 if (a == b)
24430 return 1;
24431 if (a->hash != b->hash)
24432 return 0;
24433 for (; a != NULL && b != NULL; a = a->dw_loc_next, b = b->dw_loc_next)
24434 if (strcmp (a->begin, b->begin) != 0
24435 || strcmp (a->end, b->end) != 0
24436 || (a->section == NULL) != (b->section == NULL)
24437 || (a->section && strcmp (a->section, b->section) != 0)
24438 || !compare_locs (a->expr, b->expr))
24439 break;
24440 return a == NULL && b == NULL;
24443 typedef hash_table<loc_list_hasher> loc_list_hash_type;
24446 /* Recursively optimize location lists referenced from DIE
24447 children and share them whenever possible. */
24449 static void
24450 optimize_location_lists_1 (dw_die_ref die, loc_list_hash_type *htab)
24452 dw_die_ref c;
24453 dw_attr_ref a;
24454 unsigned ix;
24455 dw_loc_list_struct **slot;
24457 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
24458 if (AT_class (a) == dw_val_class_loc_list)
24460 dw_loc_list_ref list = AT_loc_list (a);
24461 /* TODO: perform some optimizations here, before hashing
24462 it and storing into the hash table. */
24463 hash_loc_list (list);
24464 slot = htab->find_slot_with_hash (list, list->hash, INSERT);
24465 if (*slot == NULL)
24466 *slot = list;
24467 else
24468 a->dw_attr_val.v.val_loc_list = *slot;
24471 FOR_EACH_CHILD (die, c, optimize_location_lists_1 (c, htab));
24475 /* Recursively assign each location list a unique index into the debug_addr
24476 section. */
24478 static void
24479 index_location_lists (dw_die_ref die)
24481 dw_die_ref c;
24482 dw_attr_ref a;
24483 unsigned ix;
24485 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
24486 if (AT_class (a) == dw_val_class_loc_list)
24488 dw_loc_list_ref list = AT_loc_list (a);
24489 dw_loc_list_ref curr;
24490 for (curr = list; curr != NULL; curr = curr->dw_loc_next)
24492 /* Don't index an entry that has already been indexed
24493 or won't be output. */
24494 if (curr->begin_entry != NULL
24495 || (strcmp (curr->begin, curr->end) == 0 && !curr->force))
24496 continue;
24498 curr->begin_entry
24499 = add_addr_table_entry (xstrdup (curr->begin),
24500 ate_kind_label);
24504 FOR_EACH_CHILD (die, c, index_location_lists (c));
24507 /* Optimize location lists referenced from DIE
24508 children and share them whenever possible. */
24510 static void
24511 optimize_location_lists (dw_die_ref die)
24513 loc_list_hash_type htab (500);
24514 optimize_location_lists_1 (die, &htab);
24517 /* Output stuff that dwarf requires at the end of every file,
24518 and generate the DWARF-2 debugging info. */
24520 static void
24521 dwarf2out_finish (const char *filename)
24523 limbo_die_node *node, *next_node;
24524 comdat_type_node *ctnode;
24525 unsigned int i;
24526 dw_die_ref main_comp_unit_die;
24528 /* PCH might result in DW_AT_producer string being restored from the
24529 header compilation, so always fill it with empty string initially
24530 and overwrite only here. */
24531 dw_attr_ref producer = get_AT (comp_unit_die (), DW_AT_producer);
24532 producer_string = gen_producer_string ();
24533 producer->dw_attr_val.v.val_str->refcount--;
24534 producer->dw_attr_val.v.val_str = find_AT_string (producer_string);
24536 gen_scheduled_generic_parms_dies ();
24537 gen_remaining_tmpl_value_param_die_attribute ();
24539 /* Add the name for the main input file now. We delayed this from
24540 dwarf2out_init to avoid complications with PCH.
24541 For LTO produced units use a fixed artificial name to avoid
24542 leaking tempfile names into the dwarf. */
24543 if (!in_lto_p)
24544 add_name_attribute (comp_unit_die (), remap_debug_filename (filename));
24545 else
24546 add_name_attribute (comp_unit_die (), "<artificial>");
24547 if (!IS_ABSOLUTE_PATH (filename) || targetm.force_at_comp_dir)
24548 add_comp_dir_attribute (comp_unit_die ());
24549 else if (get_AT (comp_unit_die (), DW_AT_comp_dir) == NULL)
24551 bool p = false;
24552 file_table->traverse<bool *, file_table_relative_p> (&p);
24553 if (p)
24554 add_comp_dir_attribute (comp_unit_die ());
24557 if (deferred_locations_list)
24558 for (i = 0; i < deferred_locations_list->length (); i++)
24560 add_location_or_const_value_attribute (
24561 (*deferred_locations_list)[i].die,
24562 (*deferred_locations_list)[i].variable,
24563 false,
24564 DW_AT_location);
24567 /* Traverse the limbo die list, and add parent/child links. The only
24568 dies without parents that should be here are concrete instances of
24569 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
24570 For concrete instances, we can get the parent die from the abstract
24571 instance. */
24572 for (node = limbo_die_list; node; node = next_node)
24574 dw_die_ref die = node->die;
24575 next_node = node->next;
24577 if (die->die_parent == NULL)
24579 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
24581 if (origin && origin->die_parent)
24582 add_child_die (origin->die_parent, die);
24583 else if (is_cu_die (die))
24585 else if (seen_error ())
24586 /* It's OK to be confused by errors in the input. */
24587 add_child_die (comp_unit_die (), die);
24588 else
24590 /* In certain situations, the lexical block containing a
24591 nested function can be optimized away, which results
24592 in the nested function die being orphaned. Likewise
24593 with the return type of that nested function. Force
24594 this to be a child of the containing function.
24596 It may happen that even the containing function got fully
24597 inlined and optimized out. In that case we are lost and
24598 assign the empty child. This should not be big issue as
24599 the function is likely unreachable too. */
24600 gcc_assert (node->created_for);
24602 if (DECL_P (node->created_for))
24603 origin = get_context_die (DECL_CONTEXT (node->created_for));
24604 else if (TYPE_P (node->created_for))
24605 origin = scope_die_for (node->created_for, comp_unit_die ());
24606 else
24607 origin = comp_unit_die ();
24609 add_child_die (origin, die);
24614 limbo_die_list = NULL;
24616 #if ENABLE_ASSERT_CHECKING
24618 dw_die_ref die = comp_unit_die (), c;
24619 FOR_EACH_CHILD (die, c, gcc_assert (! c->die_mark));
24621 #endif
24622 resolve_addr (comp_unit_die ());
24623 move_marked_base_types ();
24625 for (node = deferred_asm_name; node; node = node->next)
24627 tree decl = node->created_for;
24628 /* When generating LTO bytecode we can not generate new assembler
24629 names at this point and all important decls got theirs via
24630 free-lang-data. */
24631 if (((!flag_generate_lto && !flag_generate_offload)
24632 || DECL_ASSEMBLER_NAME_SET_P (decl))
24633 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
24635 add_linkage_attr (node->die, decl);
24636 move_linkage_attr (node->die);
24640 deferred_asm_name = NULL;
24642 /* Walk through the list of incomplete types again, trying once more to
24643 emit full debugging info for them. */
24644 retry_incomplete_types ();
24646 if (flag_eliminate_unused_debug_types)
24647 prune_unused_types ();
24649 /* Generate separate COMDAT sections for type DIEs. */
24650 if (use_debug_types)
24652 break_out_comdat_types (comp_unit_die ());
24654 /* Each new type_unit DIE was added to the limbo die list when created.
24655 Since these have all been added to comdat_type_list, clear the
24656 limbo die list. */
24657 limbo_die_list = NULL;
24659 /* For each new comdat type unit, copy declarations for incomplete
24660 types to make the new unit self-contained (i.e., no direct
24661 references to the main compile unit). */
24662 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
24663 copy_decls_for_unworthy_types (ctnode->root_die);
24664 copy_decls_for_unworthy_types (comp_unit_die ());
24666 /* In the process of copying declarations from one unit to another,
24667 we may have left some declarations behind that are no longer
24668 referenced. Prune them. */
24669 prune_unused_types ();
24672 /* Generate separate CUs for each of the include files we've seen.
24673 They will go into limbo_die_list. */
24674 if (flag_eliminate_dwarf2_dups)
24675 break_out_includes (comp_unit_die ());
24677 /* Traverse the DIE's and add add sibling attributes to those DIE's
24678 that have children. */
24679 add_sibling_attributes (comp_unit_die ());
24680 for (node = limbo_die_list; node; node = node->next)
24681 add_sibling_attributes (node->die);
24682 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
24683 add_sibling_attributes (ctnode->root_die);
24685 /* When splitting DWARF info, we put some attributes in the
24686 skeleton compile_unit DIE that remains in the .o, while
24687 most attributes go in the DWO compile_unit_die. */
24688 if (dwarf_split_debug_info)
24689 main_comp_unit_die = gen_compile_unit_die (NULL);
24690 else
24691 main_comp_unit_die = comp_unit_die ();
24693 /* Output a terminator label for the .text section. */
24694 switch_to_section (text_section);
24695 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
24696 if (cold_text_section)
24698 switch_to_section (cold_text_section);
24699 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
24702 /* We can only use the low/high_pc attributes if all of the code was
24703 in .text. */
24704 if (!have_multiple_function_sections
24705 || (dwarf_version < 3 && dwarf_strict))
24707 /* Don't add if the CU has no associated code. */
24708 if (text_section_used)
24709 add_AT_low_high_pc (main_comp_unit_die, text_section_label,
24710 text_end_label, true);
24712 else
24714 unsigned fde_idx;
24715 dw_fde_ref fde;
24716 bool range_list_added = false;
24718 if (text_section_used)
24719 add_ranges_by_labels (main_comp_unit_die, text_section_label,
24720 text_end_label, &range_list_added, true);
24721 if (cold_text_section_used)
24722 add_ranges_by_labels (main_comp_unit_die, cold_text_section_label,
24723 cold_end_label, &range_list_added, true);
24725 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
24727 if (DECL_IGNORED_P (fde->decl))
24728 continue;
24729 if (!fde->in_std_section)
24730 add_ranges_by_labels (main_comp_unit_die, fde->dw_fde_begin,
24731 fde->dw_fde_end, &range_list_added,
24732 true);
24733 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
24734 add_ranges_by_labels (main_comp_unit_die, fde->dw_fde_second_begin,
24735 fde->dw_fde_second_end, &range_list_added,
24736 true);
24739 if (range_list_added)
24741 /* We need to give .debug_loc and .debug_ranges an appropriate
24742 "base address". Use zero so that these addresses become
24743 absolute. Historically, we've emitted the unexpected
24744 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
24745 Emit both to give time for other tools to adapt. */
24746 add_AT_addr (main_comp_unit_die, DW_AT_low_pc, const0_rtx, true);
24747 if (! dwarf_strict && dwarf_version < 4)
24748 add_AT_addr (main_comp_unit_die, DW_AT_entry_pc, const0_rtx, true);
24750 add_ranges (NULL);
24754 if (debug_info_level >= DINFO_LEVEL_TERSE)
24755 add_AT_lineptr (main_comp_unit_die, DW_AT_stmt_list,
24756 debug_line_section_label);
24758 if (have_macinfo)
24759 add_AT_macptr (comp_unit_die (),
24760 dwarf_strict ? DW_AT_macro_info : DW_AT_GNU_macros,
24761 macinfo_section_label);
24763 if (dwarf_split_debug_info)
24765 /* optimize_location_lists calculates the size of the lists,
24766 so index them first, and assign indices to the entries.
24767 Although optimize_location_lists will remove entries from
24768 the table, it only does so for duplicates, and therefore
24769 only reduces ref_counts to 1. */
24770 index_location_lists (comp_unit_die ());
24772 if (addr_index_table != NULL)
24774 unsigned int index = 0;
24775 addr_index_table
24776 ->traverse_noresize<unsigned int *, index_addr_table_entry>
24777 (&index);
24781 if (have_location_lists)
24782 optimize_location_lists (comp_unit_die ());
24784 save_macinfo_strings ();
24786 if (dwarf_split_debug_info)
24788 unsigned int index = 0;
24790 /* Add attributes common to skeleton compile_units and
24791 type_units. Because these attributes include strings, it
24792 must be done before freezing the string table. Top-level
24793 skeleton die attrs are added when the skeleton type unit is
24794 created, so ensure it is created by this point. */
24795 add_top_level_skeleton_die_attrs (main_comp_unit_die);
24796 debug_str_hash->traverse_noresize<unsigned int *, index_string> (&index);
24799 /* Output all of the compilation units. We put the main one last so that
24800 the offsets are available to output_pubnames. */
24801 for (node = limbo_die_list; node; node = node->next)
24802 output_comp_unit (node->die, 0);
24804 hash_table<comdat_type_hasher> comdat_type_table (100);
24805 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
24807 comdat_type_node **slot = comdat_type_table.find_slot (ctnode, INSERT);
24809 /* Don't output duplicate types. */
24810 if (*slot != HTAB_EMPTY_ENTRY)
24811 continue;
24813 /* Add a pointer to the line table for the main compilation unit
24814 so that the debugger can make sense of DW_AT_decl_file
24815 attributes. */
24816 if (debug_info_level >= DINFO_LEVEL_TERSE)
24817 add_AT_lineptr (ctnode->root_die, DW_AT_stmt_list,
24818 (!dwarf_split_debug_info
24819 ? debug_line_section_label
24820 : debug_skeleton_line_section_label));
24822 output_comdat_type_unit (ctnode);
24823 *slot = ctnode;
24826 /* The AT_pubnames attribute needs to go in all skeleton dies, including
24827 both the main_cu and all skeleton TUs. Making this call unconditional
24828 would end up either adding a second copy of the AT_pubnames attribute, or
24829 requiring a special case in add_top_level_skeleton_die_attrs. */
24830 if (!dwarf_split_debug_info)
24831 add_AT_pubnames (comp_unit_die ());
24833 if (dwarf_split_debug_info)
24835 int mark;
24836 unsigned char checksum[16];
24837 struct md5_ctx ctx;
24839 /* Compute a checksum of the comp_unit to use as the dwo_id. */
24840 md5_init_ctx (&ctx);
24841 mark = 0;
24842 die_checksum (comp_unit_die (), &ctx, &mark);
24843 unmark_all_dies (comp_unit_die ());
24844 md5_finish_ctx (&ctx, checksum);
24846 /* Use the first 8 bytes of the checksum as the dwo_id,
24847 and add it to both comp-unit DIEs. */
24848 add_AT_data8 (main_comp_unit_die, DW_AT_GNU_dwo_id, checksum);
24849 add_AT_data8 (comp_unit_die (), DW_AT_GNU_dwo_id, checksum);
24851 /* Add the base offset of the ranges table to the skeleton
24852 comp-unit DIE. */
24853 if (ranges_table_in_use)
24854 add_AT_lineptr (main_comp_unit_die, DW_AT_GNU_ranges_base,
24855 ranges_section_label);
24857 switch_to_section (debug_addr_section);
24858 ASM_OUTPUT_LABEL (asm_out_file, debug_addr_section_label);
24859 output_addr_table ();
24862 /* Output the main compilation unit if non-empty or if .debug_macinfo
24863 or .debug_macro will be emitted. */
24864 output_comp_unit (comp_unit_die (), have_macinfo);
24866 if (dwarf_split_debug_info && info_section_emitted)
24867 output_skeleton_debug_sections (main_comp_unit_die);
24869 /* Output the abbreviation table. */
24870 if (abbrev_die_table_in_use != 1)
24872 switch_to_section (debug_abbrev_section);
24873 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
24874 output_abbrev_section ();
24877 /* Output location list section if necessary. */
24878 if (have_location_lists)
24880 /* Output the location lists info. */
24881 switch_to_section (debug_loc_section);
24882 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
24883 output_location_lists (comp_unit_die ());
24886 output_pubtables ();
24888 /* Output the address range information if a CU (.debug_info section)
24889 was emitted. We output an empty table even if we had no functions
24890 to put in it. This because the consumer has no way to tell the
24891 difference between an empty table that we omitted and failure to
24892 generate a table that would have contained data. */
24893 if (info_section_emitted)
24895 unsigned long aranges_length = size_of_aranges ();
24897 switch_to_section (debug_aranges_section);
24898 output_aranges (aranges_length);
24901 /* Output ranges section if necessary. */
24902 if (ranges_table_in_use)
24904 switch_to_section (debug_ranges_section);
24905 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
24906 output_ranges ();
24909 /* Have to end the macro section. */
24910 if (have_macinfo)
24912 switch_to_section (debug_macinfo_section);
24913 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
24914 output_macinfo ();
24915 dw2_asm_output_data (1, 0, "End compilation unit");
24918 /* Output the source line correspondence table. We must do this
24919 even if there is no line information. Otherwise, on an empty
24920 translation unit, we will generate a present, but empty,
24921 .debug_info section. IRIX 6.5 `nm' will then complain when
24922 examining the file. This is done late so that any filenames
24923 used by the debug_info section are marked as 'used'. */
24924 switch_to_section (debug_line_section);
24925 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
24926 if (! DWARF2_ASM_LINE_DEBUG_INFO)
24927 output_line_info (false);
24929 if (dwarf_split_debug_info && info_section_emitted)
24931 switch_to_section (debug_skeleton_line_section);
24932 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_line_section_label);
24933 output_line_info (true);
24936 /* If we emitted any indirect strings, output the string table too. */
24937 if (debug_str_hash || skeleton_debug_str_hash)
24938 output_indirect_strings ();
24941 /* Reset all state within dwarf2out.c so that we can rerun the compiler
24942 within the same process. For use by toplev::finalize. */
24944 void
24945 dwarf2out_c_finalize (void)
24947 last_var_location_insn = NULL;
24948 cached_next_real_insn = NULL;
24949 used_rtx_array = NULL;
24950 incomplete_types = NULL;
24951 decl_scope_table = NULL;
24952 debug_info_section = NULL;
24953 debug_skeleton_info_section = NULL;
24954 debug_abbrev_section = NULL;
24955 debug_skeleton_abbrev_section = NULL;
24956 debug_aranges_section = NULL;
24957 debug_addr_section = NULL;
24958 debug_macinfo_section = NULL;
24959 debug_line_section = NULL;
24960 debug_skeleton_line_section = NULL;
24961 debug_loc_section = NULL;
24962 debug_pubnames_section = NULL;
24963 debug_pubtypes_section = NULL;
24964 debug_str_section = NULL;
24965 debug_str_dwo_section = NULL;
24966 debug_str_offsets_section = NULL;
24967 debug_ranges_section = NULL;
24968 debug_frame_section = NULL;
24969 fde_vec = NULL;
24970 debug_str_hash = NULL;
24971 skeleton_debug_str_hash = NULL;
24972 dw2_string_counter = 0;
24973 have_multiple_function_sections = false;
24974 text_section_used = false;
24975 cold_text_section_used = false;
24976 cold_text_section = NULL;
24977 current_unit_personality = NULL;
24979 deferred_locations_list = NULL;
24981 next_die_offset = 0;
24982 single_comp_unit_die = NULL;
24983 comdat_type_list = NULL;
24984 limbo_die_list = NULL;
24985 deferred_asm_name = NULL;
24986 file_table = NULL;
24987 decl_die_table = NULL;
24988 common_block_die_table = NULL;
24989 decl_loc_table = NULL;
24990 call_arg_locations = NULL;
24991 call_arg_loc_last = NULL;
24992 call_site_count = -1;
24993 tail_call_site_count = -1;
24994 //block_map = NULL;
24995 cached_dw_loc_list_table = NULL;
24996 abbrev_die_table = NULL;
24997 abbrev_die_table_allocated = 0;
24998 abbrev_die_table_in_use = 0;
24999 line_info_label_num = 0;
25000 cur_line_info_table = NULL;
25001 text_section_line_info = NULL;
25002 cold_text_section_line_info = NULL;
25003 separate_line_info = NULL;
25004 info_section_emitted = false;
25005 pubname_table = NULL;
25006 pubtype_table = NULL;
25007 macinfo_table = NULL;
25008 ranges_table = NULL;
25009 ranges_table_allocated = 0;
25010 ranges_table_in_use = 0;
25011 ranges_by_label = 0;
25012 ranges_by_label_allocated = 0;
25013 ranges_by_label_in_use = 0;
25014 have_location_lists = false;
25015 loclabel_num = 0;
25016 poc_label_num = 0;
25017 last_emitted_file = NULL;
25018 label_num = 0;
25019 file_table_last_lookup = NULL;
25020 tmpl_value_parm_die_table = NULL;
25021 generic_type_instances = NULL;
25022 frame_pointer_fb_offset = 0;
25023 frame_pointer_fb_offset_valid = false;
25024 base_types.release ();
25025 XDELETEVEC (producer_string);
25026 producer_string = NULL;
25029 #include "gt-dwarf2out.h"