* configure.tgt: Add sh* case.
[official-gcc.git] / gcc / tree-cfg.c
blobcd779427b0f1f9803efb6ccfcd9ebfef8340769d
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t *edge_to_cases;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs;
78 /* CFG statistics. */
79 struct cfg_stats_d
81 long num_merged_labels;
84 static struct cfg_stats_d cfg_stats;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
92 location_t locus;
93 int discriminator;
95 static htab_t discriminator_per_locus;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120 static bool verify_gimple_transaction (gimple);
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
164 void
165 init_empty_tree_cfg (void)
167 init_empty_tree_cfg_for_function (cfun);
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
177 static void
178 build_gimple_cfg (gimple_seq seq)
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
185 init_empty_tree_cfg ();
187 found_computed_goto = 0;
188 make_blocks (seq);
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
221 /* Debugging dumps. */
223 /* Write the flowgraph to a VCG file. */
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
235 static unsigned int
236 execute_build_cfg (void)
238 gimple_seq body = gimple_body (current_function_decl);
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
247 return 0;
250 struct gimple_opt_pass pass_build_cfg =
253 GIMPLE_PASS,
254 "cfg", /* name */
255 NULL, /* gate */
256 execute_build_cfg, /* execute */
257 NULL, /* sub */
258 NULL, /* next */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
270 /* Return true if T is a computed goto. */
272 static bool
273 computed_goto_p (gimple t)
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
285 static void
286 factor_computed_gotos (void)
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
298 FOR_EACH_BB (bb)
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
303 if (gsi_end_p (gsi))
304 continue;
306 last = gsi_stmt (gsi);
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
316 gimple assignment;
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
356 /* Build a flowgraph for the sequence of stmts SEQ. */
358 static void
359 make_blocks (gimple_seq seq)
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
367 while (!gsi_end_p (i))
369 gimple prev_stmt;
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
416 start_new_block = true;
419 gsi_next (&i);
420 first_stmt_of_seq = false;
425 /* Create and return a new empty basic block after bb AFTER. */
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
430 basic_block bb;
432 gcc_assert (!e);
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
457 n_basic_blocks++;
458 last_basic_block++;
460 return bb;
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
470 void
471 fold_cond_expr_cond (void)
473 basic_block bb;
475 FOR_EACH_BB (bb)
477 gimple stmt = last_stmt (bb);
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
493 else
494 zerop = onep = false;
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
507 /* Join all the blocks in the flowgraph. */
509 static void
510 make_edges (void)
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
522 gimple last = last_stmt (bb);
523 bool fallthru;
525 if (last)
527 enum gimple_code code = gimple_code (last);
528 switch (code)
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
645 basic_block switch_bb = single_succ (cur_region->entry);
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
663 break;
665 default:
666 gcc_unreachable ();
668 break;
670 case GIMPLE_TRANSACTION:
672 tree abort_label = gimple_transaction_label (last);
673 if (abort_label)
674 make_edge (bb, label_to_block (abort_label), 0);
675 fallthru = true;
677 break;
679 default:
680 gcc_assert (!stmt_ends_bb_p (last));
681 fallthru = true;
684 else
685 fallthru = true;
687 if (fallthru)
689 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
690 if (last)
691 assign_discriminator (gimple_location (last), bb->next_bb);
695 if (root_omp_region)
696 free_omp_regions ();
698 /* Fold COND_EXPR_COND of each COND_EXPR. */
699 fold_cond_expr_cond ();
702 /* Trivial hash function for a location_t. ITEM is a pointer to
703 a hash table entry that maps a location_t to a discriminator. */
705 static unsigned int
706 locus_map_hash (const void *item)
708 return ((const struct locus_discrim_map *) item)->locus;
711 /* Equality function for the locus-to-discriminator map. VA and VB
712 point to the two hash table entries to compare. */
714 static int
715 locus_map_eq (const void *va, const void *vb)
717 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
718 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
719 return a->locus == b->locus;
722 /* Find the next available discriminator value for LOCUS. The
723 discriminator distinguishes among several basic blocks that
724 share a common locus, allowing for more accurate sample-based
725 profiling. */
727 static int
728 next_discriminator_for_locus (location_t locus)
730 struct locus_discrim_map item;
731 struct locus_discrim_map **slot;
733 item.locus = locus;
734 item.discriminator = 0;
735 slot = (struct locus_discrim_map **)
736 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
737 (hashval_t) locus, INSERT);
738 gcc_assert (slot);
739 if (*slot == HTAB_EMPTY_ENTRY)
741 *slot = XNEW (struct locus_discrim_map);
742 gcc_assert (*slot);
743 (*slot)->locus = locus;
744 (*slot)->discriminator = 0;
746 (*slot)->discriminator++;
747 return (*slot)->discriminator;
750 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
752 static bool
753 same_line_p (location_t locus1, location_t locus2)
755 expanded_location from, to;
757 if (locus1 == locus2)
758 return true;
760 from = expand_location (locus1);
761 to = expand_location (locus2);
763 if (from.line != to.line)
764 return false;
765 if (from.file == to.file)
766 return true;
767 return (from.file != NULL
768 && to.file != NULL
769 && filename_cmp (from.file, to.file) == 0);
772 /* Assign a unique discriminator value to block BB if it begins at the same
773 LOCUS as its predecessor block. */
775 static void
776 assign_discriminator (location_t locus, basic_block bb)
778 gimple first_in_to_bb, last_in_to_bb;
780 if (locus == 0 || bb->discriminator != 0)
781 return;
783 first_in_to_bb = first_non_label_stmt (bb);
784 last_in_to_bb = last_stmt (bb);
785 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
786 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
787 bb->discriminator = next_discriminator_for_locus (locus);
790 /* Create the edges for a GIMPLE_COND starting at block BB. */
792 static void
793 make_cond_expr_edges (basic_block bb)
795 gimple entry = last_stmt (bb);
796 gimple then_stmt, else_stmt;
797 basic_block then_bb, else_bb;
798 tree then_label, else_label;
799 edge e;
800 location_t entry_locus;
802 gcc_assert (entry);
803 gcc_assert (gimple_code (entry) == GIMPLE_COND);
805 entry_locus = gimple_location (entry);
807 /* Entry basic blocks for each component. */
808 then_label = gimple_cond_true_label (entry);
809 else_label = gimple_cond_false_label (entry);
810 then_bb = label_to_block (then_label);
811 else_bb = label_to_block (else_label);
812 then_stmt = first_stmt (then_bb);
813 else_stmt = first_stmt (else_bb);
815 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
816 assign_discriminator (entry_locus, then_bb);
817 e->goto_locus = gimple_location (then_stmt);
818 if (e->goto_locus)
819 e->goto_block = gimple_block (then_stmt);
820 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
821 if (e)
823 assign_discriminator (entry_locus, else_bb);
824 e->goto_locus = gimple_location (else_stmt);
825 if (e->goto_locus)
826 e->goto_block = gimple_block (else_stmt);
829 /* We do not need the labels anymore. */
830 gimple_cond_set_true_label (entry, NULL_TREE);
831 gimple_cond_set_false_label (entry, NULL_TREE);
835 /* Called for each element in the hash table (P) as we delete the
836 edge to cases hash table.
838 Clear all the TREE_CHAINs to prevent problems with copying of
839 SWITCH_EXPRs and structure sharing rules, then free the hash table
840 element. */
842 static bool
843 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
844 void *data ATTRIBUTE_UNUSED)
846 tree t, next;
848 for (t = (tree) *value; t; t = next)
850 next = CASE_CHAIN (t);
851 CASE_CHAIN (t) = NULL;
854 *value = NULL;
855 return true;
858 /* Start recording information mapping edges to case labels. */
860 void
861 start_recording_case_labels (void)
863 gcc_assert (edge_to_cases == NULL);
864 edge_to_cases = pointer_map_create ();
865 touched_switch_bbs = BITMAP_ALLOC (NULL);
868 /* Return nonzero if we are recording information for case labels. */
870 static bool
871 recording_case_labels_p (void)
873 return (edge_to_cases != NULL);
876 /* Stop recording information mapping edges to case labels and
877 remove any information we have recorded. */
878 void
879 end_recording_case_labels (void)
881 bitmap_iterator bi;
882 unsigned i;
883 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
884 pointer_map_destroy (edge_to_cases);
885 edge_to_cases = NULL;
886 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
888 basic_block bb = BASIC_BLOCK (i);
889 if (bb)
891 gimple stmt = last_stmt (bb);
892 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
893 group_case_labels_stmt (stmt);
896 BITMAP_FREE (touched_switch_bbs);
899 /* If we are inside a {start,end}_recording_cases block, then return
900 a chain of CASE_LABEL_EXPRs from T which reference E.
902 Otherwise return NULL. */
904 static tree
905 get_cases_for_edge (edge e, gimple t)
907 void **slot;
908 size_t i, n;
910 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
911 chains available. Return NULL so the caller can detect this case. */
912 if (!recording_case_labels_p ())
913 return NULL;
915 slot = pointer_map_contains (edge_to_cases, e);
916 if (slot)
917 return (tree) *slot;
919 /* If we did not find E in the hash table, then this must be the first
920 time we have been queried for information about E & T. Add all the
921 elements from T to the hash table then perform the query again. */
923 n = gimple_switch_num_labels (t);
924 for (i = 0; i < n; i++)
926 tree elt = gimple_switch_label (t, i);
927 tree lab = CASE_LABEL (elt);
928 basic_block label_bb = label_to_block (lab);
929 edge this_edge = find_edge (e->src, label_bb);
931 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
932 a new chain. */
933 slot = pointer_map_insert (edge_to_cases, this_edge);
934 CASE_CHAIN (elt) = (tree) *slot;
935 *slot = elt;
938 return (tree) *pointer_map_contains (edge_to_cases, e);
941 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
943 static void
944 make_gimple_switch_edges (basic_block bb)
946 gimple entry = last_stmt (bb);
947 location_t entry_locus;
948 size_t i, n;
950 entry_locus = gimple_location (entry);
952 n = gimple_switch_num_labels (entry);
954 for (i = 0; i < n; ++i)
956 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
957 basic_block label_bb = label_to_block (lab);
958 make_edge (bb, label_bb, 0);
959 assign_discriminator (entry_locus, label_bb);
964 /* Return the basic block holding label DEST. */
966 basic_block
967 label_to_block_fn (struct function *ifun, tree dest)
969 int uid = LABEL_DECL_UID (dest);
971 /* We would die hard when faced by an undefined label. Emit a label to
972 the very first basic block. This will hopefully make even the dataflow
973 and undefined variable warnings quite right. */
974 if (seen_error () && uid < 0)
976 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
977 gimple stmt;
979 stmt = gimple_build_label (dest);
980 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
981 uid = LABEL_DECL_UID (dest);
983 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
984 <= (unsigned int) uid)
985 return NULL;
986 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
989 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
990 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
992 void
993 make_abnormal_goto_edges (basic_block bb, bool for_call)
995 basic_block target_bb;
996 gimple_stmt_iterator gsi;
998 FOR_EACH_BB (target_bb)
999 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1001 gimple label_stmt = gsi_stmt (gsi);
1002 tree target;
1004 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1005 break;
1007 target = gimple_label_label (label_stmt);
1009 /* Make an edge to every label block that has been marked as a
1010 potential target for a computed goto or a non-local goto. */
1011 if ((FORCED_LABEL (target) && !for_call)
1012 || (DECL_NONLOCAL (target) && for_call))
1014 make_edge (bb, target_bb, EDGE_ABNORMAL);
1015 break;
1020 /* Create edges for a goto statement at block BB. */
1022 static void
1023 make_goto_expr_edges (basic_block bb)
1025 gimple_stmt_iterator last = gsi_last_bb (bb);
1026 gimple goto_t = gsi_stmt (last);
1028 /* A simple GOTO creates normal edges. */
1029 if (simple_goto_p (goto_t))
1031 tree dest = gimple_goto_dest (goto_t);
1032 basic_block label_bb = label_to_block (dest);
1033 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1034 e->goto_locus = gimple_location (goto_t);
1035 assign_discriminator (e->goto_locus, label_bb);
1036 if (e->goto_locus)
1037 e->goto_block = gimple_block (goto_t);
1038 gsi_remove (&last, true);
1039 return;
1042 /* A computed GOTO creates abnormal edges. */
1043 make_abnormal_goto_edges (bb, false);
1046 /* Create edges for an asm statement with labels at block BB. */
1048 static void
1049 make_gimple_asm_edges (basic_block bb)
1051 gimple stmt = last_stmt (bb);
1052 location_t stmt_loc = gimple_location (stmt);
1053 int i, n = gimple_asm_nlabels (stmt);
1055 for (i = 0; i < n; ++i)
1057 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1058 basic_block label_bb = label_to_block (label);
1059 make_edge (bb, label_bb, 0);
1060 assign_discriminator (stmt_loc, label_bb);
1064 /*---------------------------------------------------------------------------
1065 Flowgraph analysis
1066 ---------------------------------------------------------------------------*/
1068 /* Cleanup useless labels in basic blocks. This is something we wish
1069 to do early because it allows us to group case labels before creating
1070 the edges for the CFG, and it speeds up block statement iterators in
1071 all passes later on.
1072 We rerun this pass after CFG is created, to get rid of the labels that
1073 are no longer referenced. After then we do not run it any more, since
1074 (almost) no new labels should be created. */
1076 /* A map from basic block index to the leading label of that block. */
1077 static struct label_record
1079 /* The label. */
1080 tree label;
1082 /* True if the label is referenced from somewhere. */
1083 bool used;
1084 } *label_for_bb;
1086 /* Given LABEL return the first label in the same basic block. */
1088 static tree
1089 main_block_label (tree label)
1091 basic_block bb = label_to_block (label);
1092 tree main_label = label_for_bb[bb->index].label;
1094 /* label_to_block possibly inserted undefined label into the chain. */
1095 if (!main_label)
1097 label_for_bb[bb->index].label = label;
1098 main_label = label;
1101 label_for_bb[bb->index].used = true;
1102 return main_label;
1105 /* Clean up redundant labels within the exception tree. */
1107 static void
1108 cleanup_dead_labels_eh (void)
1110 eh_landing_pad lp;
1111 eh_region r;
1112 tree lab;
1113 int i;
1115 if (cfun->eh == NULL)
1116 return;
1118 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1119 if (lp && lp->post_landing_pad)
1121 lab = main_block_label (lp->post_landing_pad);
1122 if (lab != lp->post_landing_pad)
1124 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1125 EH_LANDING_PAD_NR (lab) = lp->index;
1129 FOR_ALL_EH_REGION (r)
1130 switch (r->type)
1132 case ERT_CLEANUP:
1133 case ERT_MUST_NOT_THROW:
1134 break;
1136 case ERT_TRY:
1138 eh_catch c;
1139 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1141 lab = c->label;
1142 if (lab)
1143 c->label = main_block_label (lab);
1146 break;
1148 case ERT_ALLOWED_EXCEPTIONS:
1149 lab = r->u.allowed.label;
1150 if (lab)
1151 r->u.allowed.label = main_block_label (lab);
1152 break;
1157 /* Cleanup redundant labels. This is a three-step process:
1158 1) Find the leading label for each block.
1159 2) Redirect all references to labels to the leading labels.
1160 3) Cleanup all useless labels. */
1162 void
1163 cleanup_dead_labels (void)
1165 basic_block bb;
1166 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1168 /* Find a suitable label for each block. We use the first user-defined
1169 label if there is one, or otherwise just the first label we see. */
1170 FOR_EACH_BB (bb)
1172 gimple_stmt_iterator i;
1174 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1176 tree label;
1177 gimple stmt = gsi_stmt (i);
1179 if (gimple_code (stmt) != GIMPLE_LABEL)
1180 break;
1182 label = gimple_label_label (stmt);
1184 /* If we have not yet seen a label for the current block,
1185 remember this one and see if there are more labels. */
1186 if (!label_for_bb[bb->index].label)
1188 label_for_bb[bb->index].label = label;
1189 continue;
1192 /* If we did see a label for the current block already, but it
1193 is an artificially created label, replace it if the current
1194 label is a user defined label. */
1195 if (!DECL_ARTIFICIAL (label)
1196 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1198 label_for_bb[bb->index].label = label;
1199 break;
1204 /* Now redirect all jumps/branches to the selected label.
1205 First do so for each block ending in a control statement. */
1206 FOR_EACH_BB (bb)
1208 gimple stmt = last_stmt (bb);
1209 tree label, new_label;
1211 if (!stmt)
1212 continue;
1214 switch (gimple_code (stmt))
1216 case GIMPLE_COND:
1217 label = gimple_cond_true_label (stmt);
1218 if (label)
1220 new_label = main_block_label (label);
1221 if (new_label != label)
1222 gimple_cond_set_true_label (stmt, new_label);
1225 label = gimple_cond_false_label (stmt);
1226 if (label)
1228 new_label = main_block_label (label);
1229 if (new_label != label)
1230 gimple_cond_set_false_label (stmt, new_label);
1232 break;
1234 case GIMPLE_SWITCH:
1236 size_t i, n = gimple_switch_num_labels (stmt);
1238 /* Replace all destination labels. */
1239 for (i = 0; i < n; ++i)
1241 tree case_label = gimple_switch_label (stmt, i);
1242 label = CASE_LABEL (case_label);
1243 new_label = main_block_label (label);
1244 if (new_label != label)
1245 CASE_LABEL (case_label) = new_label;
1247 break;
1250 case GIMPLE_ASM:
1252 int i, n = gimple_asm_nlabels (stmt);
1254 for (i = 0; i < n; ++i)
1256 tree cons = gimple_asm_label_op (stmt, i);
1257 tree label = main_block_label (TREE_VALUE (cons));
1258 TREE_VALUE (cons) = label;
1260 break;
1263 /* We have to handle gotos until they're removed, and we don't
1264 remove them until after we've created the CFG edges. */
1265 case GIMPLE_GOTO:
1266 if (!computed_goto_p (stmt))
1268 label = gimple_goto_dest (stmt);
1269 new_label = main_block_label (label);
1270 if (new_label != label)
1271 gimple_goto_set_dest (stmt, new_label);
1273 break;
1275 case GIMPLE_TRANSACTION:
1277 tree label = gimple_transaction_label (stmt);
1278 if (label)
1280 tree new_label = main_block_label (label);
1281 if (new_label != label)
1282 gimple_transaction_set_label (stmt, new_label);
1285 break;
1287 default:
1288 break;
1292 /* Do the same for the exception region tree labels. */
1293 cleanup_dead_labels_eh ();
1295 /* Finally, purge dead labels. All user-defined labels and labels that
1296 can be the target of non-local gotos and labels which have their
1297 address taken are preserved. */
1298 FOR_EACH_BB (bb)
1300 gimple_stmt_iterator i;
1301 tree label_for_this_bb = label_for_bb[bb->index].label;
1303 if (!label_for_this_bb)
1304 continue;
1306 /* If the main label of the block is unused, we may still remove it. */
1307 if (!label_for_bb[bb->index].used)
1308 label_for_this_bb = NULL;
1310 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1312 tree label;
1313 gimple stmt = gsi_stmt (i);
1315 if (gimple_code (stmt) != GIMPLE_LABEL)
1316 break;
1318 label = gimple_label_label (stmt);
1320 if (label == label_for_this_bb
1321 || !DECL_ARTIFICIAL (label)
1322 || DECL_NONLOCAL (label)
1323 || FORCED_LABEL (label))
1324 gsi_next (&i);
1325 else
1326 gsi_remove (&i, true);
1330 free (label_for_bb);
1333 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1334 the ones jumping to the same label.
1335 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1337 static void
1338 group_case_labels_stmt (gimple stmt)
1340 int old_size = gimple_switch_num_labels (stmt);
1341 int i, j, new_size = old_size;
1342 tree default_case = NULL_TREE;
1343 tree default_label = NULL_TREE;
1344 bool has_default;
1346 /* The default label is always the first case in a switch
1347 statement after gimplification if it was not optimized
1348 away */
1349 if (!CASE_LOW (gimple_switch_default_label (stmt))
1350 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1352 default_case = gimple_switch_default_label (stmt);
1353 default_label = CASE_LABEL (default_case);
1354 has_default = true;
1356 else
1357 has_default = false;
1359 /* Look for possible opportunities to merge cases. */
1360 if (has_default)
1361 i = 1;
1362 else
1363 i = 0;
1364 while (i < old_size)
1366 tree base_case, base_label, base_high;
1367 base_case = gimple_switch_label (stmt, i);
1369 gcc_assert (base_case);
1370 base_label = CASE_LABEL (base_case);
1372 /* Discard cases that have the same destination as the
1373 default case. */
1374 if (base_label == default_label)
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1377 i++;
1378 new_size--;
1379 continue;
1382 base_high = CASE_HIGH (base_case)
1383 ? CASE_HIGH (base_case)
1384 : CASE_LOW (base_case);
1385 i++;
1387 /* Try to merge case labels. Break out when we reach the end
1388 of the label vector or when we cannot merge the next case
1389 label with the current one. */
1390 while (i < old_size)
1392 tree merge_case = gimple_switch_label (stmt, i);
1393 tree merge_label = CASE_LABEL (merge_case);
1394 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1395 double_int_one);
1397 /* Merge the cases if they jump to the same place,
1398 and their ranges are consecutive. */
1399 if (merge_label == base_label
1400 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1401 bhp1))
1403 base_high = CASE_HIGH (merge_case) ?
1404 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1405 CASE_HIGH (base_case) = base_high;
1406 gimple_switch_set_label (stmt, i, NULL_TREE);
1407 new_size--;
1408 i++;
1410 else
1411 break;
1415 /* Compress the case labels in the label vector, and adjust the
1416 length of the vector. */
1417 for (i = 0, j = 0; i < new_size; i++)
1419 while (! gimple_switch_label (stmt, j))
1420 j++;
1421 gimple_switch_set_label (stmt, i,
1422 gimple_switch_label (stmt, j++));
1425 gcc_assert (new_size <= old_size);
1426 gimple_switch_set_num_labels (stmt, new_size);
1429 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1430 and scan the sorted vector of cases. Combine the ones jumping to the
1431 same label. */
1433 void
1434 group_case_labels (void)
1436 basic_block bb;
1438 FOR_EACH_BB (bb)
1440 gimple stmt = last_stmt (bb);
1441 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1442 group_case_labels_stmt (stmt);
1446 /* Checks whether we can merge block B into block A. */
1448 static bool
1449 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1451 gimple stmt;
1452 gimple_stmt_iterator gsi;
1453 gimple_seq phis;
1455 if (!single_succ_p (a))
1456 return false;
1458 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1459 return false;
1461 if (single_succ (a) != b)
1462 return false;
1464 if (!single_pred_p (b))
1465 return false;
1467 if (b == EXIT_BLOCK_PTR)
1468 return false;
1470 /* If A ends by a statement causing exceptions or something similar, we
1471 cannot merge the blocks. */
1472 stmt = last_stmt (a);
1473 if (stmt && stmt_ends_bb_p (stmt))
1474 return false;
1476 /* Do not allow a block with only a non-local label to be merged. */
1477 if (stmt
1478 && gimple_code (stmt) == GIMPLE_LABEL
1479 && DECL_NONLOCAL (gimple_label_label (stmt)))
1480 return false;
1482 /* Examine the labels at the beginning of B. */
1483 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1485 tree lab;
1486 stmt = gsi_stmt (gsi);
1487 if (gimple_code (stmt) != GIMPLE_LABEL)
1488 break;
1489 lab = gimple_label_label (stmt);
1491 /* Do not remove user forced labels or for -O0 any user labels. */
1492 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1493 return false;
1496 /* Protect the loop latches. */
1497 if (current_loops && b->loop_father->latch == b)
1498 return false;
1500 /* It must be possible to eliminate all phi nodes in B. If ssa form
1501 is not up-to-date and a name-mapping is registered, we cannot eliminate
1502 any phis. Symbols marked for renaming are never a problem though. */
1503 phis = phi_nodes (b);
1504 if (!gimple_seq_empty_p (phis)
1505 && name_mappings_registered_p ())
1506 return false;
1508 /* When not optimizing, don't merge if we'd lose goto_locus. */
1509 if (!optimize
1510 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1512 location_t goto_locus = single_succ_edge (a)->goto_locus;
1513 gimple_stmt_iterator prev, next;
1514 prev = gsi_last_nondebug_bb (a);
1515 next = gsi_after_labels (b);
1516 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1517 gsi_next_nondebug (&next);
1518 if ((gsi_end_p (prev)
1519 || gimple_location (gsi_stmt (prev)) != goto_locus)
1520 && (gsi_end_p (next)
1521 || gimple_location (gsi_stmt (next)) != goto_locus))
1522 return false;
1525 return true;
1528 /* Return true if the var whose chain of uses starts at PTR has no
1529 nondebug uses. */
1530 bool
1531 has_zero_uses_1 (const ssa_use_operand_t *head)
1533 const ssa_use_operand_t *ptr;
1535 for (ptr = head->next; ptr != head; ptr = ptr->next)
1536 if (!is_gimple_debug (USE_STMT (ptr)))
1537 return false;
1539 return true;
1542 /* Return true if the var whose chain of uses starts at PTR has a
1543 single nondebug use. Set USE_P and STMT to that single nondebug
1544 use, if so, or to NULL otherwise. */
1545 bool
1546 single_imm_use_1 (const ssa_use_operand_t *head,
1547 use_operand_p *use_p, gimple *stmt)
1549 ssa_use_operand_t *ptr, *single_use = 0;
1551 for (ptr = head->next; ptr != head; ptr = ptr->next)
1552 if (!is_gimple_debug (USE_STMT (ptr)))
1554 if (single_use)
1556 single_use = NULL;
1557 break;
1559 single_use = ptr;
1562 if (use_p)
1563 *use_p = single_use;
1565 if (stmt)
1566 *stmt = single_use ? single_use->loc.stmt : NULL;
1568 return !!single_use;
1571 /* Replaces all uses of NAME by VAL. */
1573 void
1574 replace_uses_by (tree name, tree val)
1576 imm_use_iterator imm_iter;
1577 use_operand_p use;
1578 gimple stmt;
1579 edge e;
1581 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1583 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1585 replace_exp (use, val);
1587 if (gimple_code (stmt) == GIMPLE_PHI)
1589 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1590 if (e->flags & EDGE_ABNORMAL)
1592 /* This can only occur for virtual operands, since
1593 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1594 would prevent replacement. */
1595 gcc_checking_assert (!is_gimple_reg (name));
1596 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1601 if (gimple_code (stmt) != GIMPLE_PHI)
1603 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1604 gimple orig_stmt = stmt;
1605 size_t i;
1607 /* Mark the block if we changed the last stmt in it. */
1608 if (cfgcleanup_altered_bbs
1609 && stmt_ends_bb_p (stmt))
1610 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1612 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1613 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1614 only change sth from non-invariant to invariant, and only
1615 when propagating constants. */
1616 if (is_gimple_min_invariant (val))
1617 for (i = 0; i < gimple_num_ops (stmt); i++)
1619 tree op = gimple_op (stmt, i);
1620 /* Operands may be empty here. For example, the labels
1621 of a GIMPLE_COND are nulled out following the creation
1622 of the corresponding CFG edges. */
1623 if (op && TREE_CODE (op) == ADDR_EXPR)
1624 recompute_tree_invariant_for_addr_expr (op);
1627 if (fold_stmt (&gsi))
1628 stmt = gsi_stmt (gsi);
1630 maybe_clean_or_replace_eh_stmt (orig_stmt, stmt);
1632 update_stmt (stmt);
1636 gcc_checking_assert (has_zero_uses (name));
1638 /* Also update the trees stored in loop structures. */
1639 if (current_loops)
1641 struct loop *loop;
1642 loop_iterator li;
1644 FOR_EACH_LOOP (li, loop, 0)
1646 substitute_in_loop_info (loop, name, val);
1651 /* Merge block B into block A. */
1653 static void
1654 gimple_merge_blocks (basic_block a, basic_block b)
1656 gimple_stmt_iterator last, gsi, psi;
1657 gimple_seq phis = phi_nodes (b);
1659 if (dump_file)
1660 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1662 /* Remove all single-valued PHI nodes from block B of the form
1663 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1664 gsi = gsi_last_bb (a);
1665 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1667 gimple phi = gsi_stmt (psi);
1668 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1669 gimple copy;
1670 bool may_replace_uses = !is_gimple_reg (def)
1671 || may_propagate_copy (def, use);
1673 /* In case we maintain loop closed ssa form, do not propagate arguments
1674 of loop exit phi nodes. */
1675 if (current_loops
1676 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1677 && is_gimple_reg (def)
1678 && TREE_CODE (use) == SSA_NAME
1679 && a->loop_father != b->loop_father)
1680 may_replace_uses = false;
1682 if (!may_replace_uses)
1684 gcc_assert (is_gimple_reg (def));
1686 /* Note that just emitting the copies is fine -- there is no problem
1687 with ordering of phi nodes. This is because A is the single
1688 predecessor of B, therefore results of the phi nodes cannot
1689 appear as arguments of the phi nodes. */
1690 copy = gimple_build_assign (def, use);
1691 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1692 remove_phi_node (&psi, false);
1694 else
1696 /* If we deal with a PHI for virtual operands, we can simply
1697 propagate these without fussing with folding or updating
1698 the stmt. */
1699 if (!is_gimple_reg (def))
1701 imm_use_iterator iter;
1702 use_operand_p use_p;
1703 gimple stmt;
1705 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1706 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1707 SET_USE (use_p, use);
1709 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1710 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1712 else
1713 replace_uses_by (def, use);
1715 remove_phi_node (&psi, true);
1719 /* Ensure that B follows A. */
1720 move_block_after (b, a);
1722 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1723 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1725 /* Remove labels from B and set gimple_bb to A for other statements. */
1726 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1728 gimple stmt = gsi_stmt (gsi);
1729 if (gimple_code (stmt) == GIMPLE_LABEL)
1731 tree label = gimple_label_label (stmt);
1732 int lp_nr;
1734 gsi_remove (&gsi, false);
1736 /* Now that we can thread computed gotos, we might have
1737 a situation where we have a forced label in block B
1738 However, the label at the start of block B might still be
1739 used in other ways (think about the runtime checking for
1740 Fortran assigned gotos). So we can not just delete the
1741 label. Instead we move the label to the start of block A. */
1742 if (FORCED_LABEL (label))
1744 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1745 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1747 /* Other user labels keep around in a form of a debug stmt. */
1748 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1750 gimple dbg = gimple_build_debug_bind (label,
1751 integer_zero_node,
1752 stmt);
1753 gimple_debug_bind_reset_value (dbg);
1754 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1757 lp_nr = EH_LANDING_PAD_NR (label);
1758 if (lp_nr)
1760 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1761 lp->post_landing_pad = NULL;
1764 else
1766 gimple_set_bb (stmt, a);
1767 gsi_next (&gsi);
1771 /* Merge the sequences. */
1772 last = gsi_last_bb (a);
1773 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1774 set_bb_seq (b, NULL);
1776 if (cfgcleanup_altered_bbs)
1777 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1781 /* Return the one of two successors of BB that is not reachable by a
1782 complex edge, if there is one. Else, return BB. We use
1783 this in optimizations that use post-dominators for their heuristics,
1784 to catch the cases in C++ where function calls are involved. */
1786 basic_block
1787 single_noncomplex_succ (basic_block bb)
1789 edge e0, e1;
1790 if (EDGE_COUNT (bb->succs) != 2)
1791 return bb;
1793 e0 = EDGE_SUCC (bb, 0);
1794 e1 = EDGE_SUCC (bb, 1);
1795 if (e0->flags & EDGE_COMPLEX)
1796 return e1->dest;
1797 if (e1->flags & EDGE_COMPLEX)
1798 return e0->dest;
1800 return bb;
1803 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1805 void
1806 notice_special_calls (gimple call)
1808 int flags = gimple_call_flags (call);
1810 if (flags & ECF_MAY_BE_ALLOCA)
1811 cfun->calls_alloca = true;
1812 if (flags & ECF_RETURNS_TWICE)
1813 cfun->calls_setjmp = true;
1817 /* Clear flags set by notice_special_calls. Used by dead code removal
1818 to update the flags. */
1820 void
1821 clear_special_calls (void)
1823 cfun->calls_alloca = false;
1824 cfun->calls_setjmp = false;
1827 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1829 static void
1830 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1832 /* Since this block is no longer reachable, we can just delete all
1833 of its PHI nodes. */
1834 remove_phi_nodes (bb);
1836 /* Remove edges to BB's successors. */
1837 while (EDGE_COUNT (bb->succs) > 0)
1838 remove_edge (EDGE_SUCC (bb, 0));
1842 /* Remove statements of basic block BB. */
1844 static void
1845 remove_bb (basic_block bb)
1847 gimple_stmt_iterator i;
1849 if (dump_file)
1851 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1852 if (dump_flags & TDF_DETAILS)
1854 dump_bb (bb, dump_file, 0);
1855 fprintf (dump_file, "\n");
1859 if (current_loops)
1861 struct loop *loop = bb->loop_father;
1863 /* If a loop gets removed, clean up the information associated
1864 with it. */
1865 if (loop->latch == bb
1866 || loop->header == bb)
1867 free_numbers_of_iterations_estimates_loop (loop);
1870 /* Remove all the instructions in the block. */
1871 if (bb_seq (bb) != NULL)
1873 /* Walk backwards so as to get a chance to substitute all
1874 released DEFs into debug stmts. See
1875 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1876 details. */
1877 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1879 gimple stmt = gsi_stmt (i);
1880 if (gimple_code (stmt) == GIMPLE_LABEL
1881 && (FORCED_LABEL (gimple_label_label (stmt))
1882 || DECL_NONLOCAL (gimple_label_label (stmt))))
1884 basic_block new_bb;
1885 gimple_stmt_iterator new_gsi;
1887 /* A non-reachable non-local label may still be referenced.
1888 But it no longer needs to carry the extra semantics of
1889 non-locality. */
1890 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1892 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1893 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1896 new_bb = bb->prev_bb;
1897 new_gsi = gsi_start_bb (new_bb);
1898 gsi_remove (&i, false);
1899 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1901 else
1903 /* Release SSA definitions if we are in SSA. Note that we
1904 may be called when not in SSA. For example,
1905 final_cleanup calls this function via
1906 cleanup_tree_cfg. */
1907 if (gimple_in_ssa_p (cfun))
1908 release_defs (stmt);
1910 gsi_remove (&i, true);
1913 if (gsi_end_p (i))
1914 i = gsi_last_bb (bb);
1915 else
1916 gsi_prev (&i);
1920 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1921 bb->il.gimple = NULL;
1925 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1926 predicate VAL, return the edge that will be taken out of the block.
1927 If VAL does not match a unique edge, NULL is returned. */
1929 edge
1930 find_taken_edge (basic_block bb, tree val)
1932 gimple stmt;
1934 stmt = last_stmt (bb);
1936 gcc_assert (stmt);
1937 gcc_assert (is_ctrl_stmt (stmt));
1939 if (val == NULL)
1940 return NULL;
1942 if (!is_gimple_min_invariant (val))
1943 return NULL;
1945 if (gimple_code (stmt) == GIMPLE_COND)
1946 return find_taken_edge_cond_expr (bb, val);
1948 if (gimple_code (stmt) == GIMPLE_SWITCH)
1949 return find_taken_edge_switch_expr (bb, val);
1951 if (computed_goto_p (stmt))
1953 /* Only optimize if the argument is a label, if the argument is
1954 not a label then we can not construct a proper CFG.
1956 It may be the case that we only need to allow the LABEL_REF to
1957 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1958 appear inside a LABEL_EXPR just to be safe. */
1959 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1960 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1961 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1962 return NULL;
1965 gcc_unreachable ();
1968 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1969 statement, determine which of the outgoing edges will be taken out of the
1970 block. Return NULL if either edge may be taken. */
1972 static edge
1973 find_taken_edge_computed_goto (basic_block bb, tree val)
1975 basic_block dest;
1976 edge e = NULL;
1978 dest = label_to_block (val);
1979 if (dest)
1981 e = find_edge (bb, dest);
1982 gcc_assert (e != NULL);
1985 return e;
1988 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1989 statement, determine which of the two edges will be taken out of the
1990 block. Return NULL if either edge may be taken. */
1992 static edge
1993 find_taken_edge_cond_expr (basic_block bb, tree val)
1995 edge true_edge, false_edge;
1997 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1999 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2000 return (integer_zerop (val) ? false_edge : true_edge);
2003 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2004 statement, determine which edge will be taken out of the block. Return
2005 NULL if any edge may be taken. */
2007 static edge
2008 find_taken_edge_switch_expr (basic_block bb, tree val)
2010 basic_block dest_bb;
2011 edge e;
2012 gimple switch_stmt;
2013 tree taken_case;
2015 switch_stmt = last_stmt (bb);
2016 taken_case = find_case_label_for_value (switch_stmt, val);
2017 dest_bb = label_to_block (CASE_LABEL (taken_case));
2019 e = find_edge (bb, dest_bb);
2020 gcc_assert (e);
2021 return e;
2025 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2026 We can make optimal use here of the fact that the case labels are
2027 sorted: We can do a binary search for a case matching VAL. */
2029 static tree
2030 find_case_label_for_value (gimple switch_stmt, tree val)
2032 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2033 tree default_case = gimple_switch_default_label (switch_stmt);
2035 for (low = 0, high = n; high - low > 1; )
2037 size_t i = (high + low) / 2;
2038 tree t = gimple_switch_label (switch_stmt, i);
2039 int cmp;
2041 /* Cache the result of comparing CASE_LOW and val. */
2042 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2044 if (cmp > 0)
2045 high = i;
2046 else
2047 low = i;
2049 if (CASE_HIGH (t) == NULL)
2051 /* A singe-valued case label. */
2052 if (cmp == 0)
2053 return t;
2055 else
2057 /* A case range. We can only handle integer ranges. */
2058 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2059 return t;
2063 return default_case;
2067 /* Dump a basic block on stderr. */
2069 void
2070 gimple_debug_bb (basic_block bb)
2072 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2076 /* Dump basic block with index N on stderr. */
2078 basic_block
2079 gimple_debug_bb_n (int n)
2081 gimple_debug_bb (BASIC_BLOCK (n));
2082 return BASIC_BLOCK (n);
2086 /* Dump the CFG on stderr.
2088 FLAGS are the same used by the tree dumping functions
2089 (see TDF_* in tree-pass.h). */
2091 void
2092 gimple_debug_cfg (int flags)
2094 gimple_dump_cfg (stderr, flags);
2098 /* Dump the program showing basic block boundaries on the given FILE.
2100 FLAGS are the same used by the tree dumping functions (see TDF_* in
2101 tree.h). */
2103 void
2104 gimple_dump_cfg (FILE *file, int flags)
2106 if (flags & TDF_DETAILS)
2108 dump_function_header (file, current_function_decl, flags);
2109 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2110 n_basic_blocks, n_edges, last_basic_block);
2112 brief_dump_cfg (file);
2113 fprintf (file, "\n");
2116 if (flags & TDF_STATS)
2117 dump_cfg_stats (file);
2119 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2123 /* Dump CFG statistics on FILE. */
2125 void
2126 dump_cfg_stats (FILE *file)
2128 static long max_num_merged_labels = 0;
2129 unsigned long size, total = 0;
2130 long num_edges;
2131 basic_block bb;
2132 const char * const fmt_str = "%-30s%-13s%12s\n";
2133 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2134 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2135 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2136 const char *funcname
2137 = lang_hooks.decl_printable_name (current_function_decl, 2);
2140 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2142 fprintf (file, "---------------------------------------------------------\n");
2143 fprintf (file, fmt_str, "", " Number of ", "Memory");
2144 fprintf (file, fmt_str, "", " instances ", "used ");
2145 fprintf (file, "---------------------------------------------------------\n");
2147 size = n_basic_blocks * sizeof (struct basic_block_def);
2148 total += size;
2149 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2150 SCALE (size), LABEL (size));
2152 num_edges = 0;
2153 FOR_EACH_BB (bb)
2154 num_edges += EDGE_COUNT (bb->succs);
2155 size = num_edges * sizeof (struct edge_def);
2156 total += size;
2157 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2159 fprintf (file, "---------------------------------------------------------\n");
2160 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2161 LABEL (total));
2162 fprintf (file, "---------------------------------------------------------\n");
2163 fprintf (file, "\n");
2165 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2166 max_num_merged_labels = cfg_stats.num_merged_labels;
2168 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2169 cfg_stats.num_merged_labels, max_num_merged_labels);
2171 fprintf (file, "\n");
2175 /* Dump CFG statistics on stderr. Keep extern so that it's always
2176 linked in the final executable. */
2178 DEBUG_FUNCTION void
2179 debug_cfg_stats (void)
2181 dump_cfg_stats (stderr);
2185 /* Dump the flowgraph to a .vcg FILE. */
2187 static void
2188 gimple_cfg2vcg (FILE *file)
2190 edge e;
2191 edge_iterator ei;
2192 basic_block bb;
2193 const char *funcname
2194 = lang_hooks.decl_printable_name (current_function_decl, 2);
2196 /* Write the file header. */
2197 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2198 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2199 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2201 /* Write blocks and edges. */
2202 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2204 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2205 e->dest->index);
2207 if (e->flags & EDGE_FAKE)
2208 fprintf (file, " linestyle: dotted priority: 10");
2209 else
2210 fprintf (file, " linestyle: solid priority: 100");
2212 fprintf (file, " }\n");
2214 fputc ('\n', file);
2216 FOR_EACH_BB (bb)
2218 enum gimple_code head_code, end_code;
2219 const char *head_name, *end_name;
2220 int head_line = 0;
2221 int end_line = 0;
2222 gimple first = first_stmt (bb);
2223 gimple last = last_stmt (bb);
2225 if (first)
2227 head_code = gimple_code (first);
2228 head_name = gimple_code_name[head_code];
2229 head_line = get_lineno (first);
2231 else
2232 head_name = "no-statement";
2234 if (last)
2236 end_code = gimple_code (last);
2237 end_name = gimple_code_name[end_code];
2238 end_line = get_lineno (last);
2240 else
2241 end_name = "no-statement";
2243 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2244 bb->index, bb->index, head_name, head_line, end_name,
2245 end_line);
2247 FOR_EACH_EDGE (e, ei, bb->succs)
2249 if (e->dest == EXIT_BLOCK_PTR)
2250 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2251 else
2252 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2254 if (e->flags & EDGE_FAKE)
2255 fprintf (file, " priority: 10 linestyle: dotted");
2256 else
2257 fprintf (file, " priority: 100 linestyle: solid");
2259 fprintf (file, " }\n");
2262 if (bb->next_bb != EXIT_BLOCK_PTR)
2263 fputc ('\n', file);
2266 fputs ("}\n\n", file);
2271 /*---------------------------------------------------------------------------
2272 Miscellaneous helpers
2273 ---------------------------------------------------------------------------*/
2275 /* Return true if T represents a stmt that always transfers control. */
2277 bool
2278 is_ctrl_stmt (gimple t)
2280 switch (gimple_code (t))
2282 case GIMPLE_COND:
2283 case GIMPLE_SWITCH:
2284 case GIMPLE_GOTO:
2285 case GIMPLE_RETURN:
2286 case GIMPLE_RESX:
2287 return true;
2288 default:
2289 return false;
2294 /* Return true if T is a statement that may alter the flow of control
2295 (e.g., a call to a non-returning function). */
2297 bool
2298 is_ctrl_altering_stmt (gimple t)
2300 gcc_assert (t);
2302 switch (gimple_code (t))
2304 case GIMPLE_CALL:
2306 int flags = gimple_call_flags (t);
2308 /* A non-pure/const call alters flow control if the current
2309 function has nonlocal labels. */
2310 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2311 && cfun->has_nonlocal_label)
2312 return true;
2314 /* A call also alters control flow if it does not return. */
2315 if (flags & ECF_NORETURN)
2316 return true;
2318 /* TM ending statements have backedges out of the transaction.
2319 Return true so we split the basic block containing them.
2320 Note that the TM_BUILTIN test is merely an optimization. */
2321 if ((flags & ECF_TM_BUILTIN)
2322 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2323 return true;
2325 /* BUILT_IN_RETURN call is same as return statement. */
2326 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2327 return true;
2329 break;
2331 case GIMPLE_EH_DISPATCH:
2332 /* EH_DISPATCH branches to the individual catch handlers at
2333 this level of a try or allowed-exceptions region. It can
2334 fallthru to the next statement as well. */
2335 return true;
2337 case GIMPLE_ASM:
2338 if (gimple_asm_nlabels (t) > 0)
2339 return true;
2340 break;
2342 CASE_GIMPLE_OMP:
2343 /* OpenMP directives alter control flow. */
2344 return true;
2346 case GIMPLE_TRANSACTION:
2347 /* A transaction start alters control flow. */
2348 return true;
2350 default:
2351 break;
2354 /* If a statement can throw, it alters control flow. */
2355 return stmt_can_throw_internal (t);
2359 /* Return true if T is a simple local goto. */
2361 bool
2362 simple_goto_p (gimple t)
2364 return (gimple_code (t) == GIMPLE_GOTO
2365 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2369 /* Return true if T can make an abnormal transfer of control flow.
2370 Transfers of control flow associated with EH are excluded. */
2372 bool
2373 stmt_can_make_abnormal_goto (gimple t)
2375 if (computed_goto_p (t))
2376 return true;
2377 if (is_gimple_call (t))
2378 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2379 && !(gimple_call_flags (t) & ECF_LEAF));
2380 return false;
2384 /* Return true if STMT should start a new basic block. PREV_STMT is
2385 the statement preceding STMT. It is used when STMT is a label or a
2386 case label. Labels should only start a new basic block if their
2387 previous statement wasn't a label. Otherwise, sequence of labels
2388 would generate unnecessary basic blocks that only contain a single
2389 label. */
2391 static inline bool
2392 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2394 if (stmt == NULL)
2395 return false;
2397 /* Labels start a new basic block only if the preceding statement
2398 wasn't a label of the same type. This prevents the creation of
2399 consecutive blocks that have nothing but a single label. */
2400 if (gimple_code (stmt) == GIMPLE_LABEL)
2402 /* Nonlocal and computed GOTO targets always start a new block. */
2403 if (DECL_NONLOCAL (gimple_label_label (stmt))
2404 || FORCED_LABEL (gimple_label_label (stmt)))
2405 return true;
2407 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2409 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2410 return true;
2412 cfg_stats.num_merged_labels++;
2413 return false;
2415 else
2416 return true;
2419 return false;
2423 /* Return true if T should end a basic block. */
2425 bool
2426 stmt_ends_bb_p (gimple t)
2428 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2431 /* Remove block annotations and other data structures. */
2433 void
2434 delete_tree_cfg_annotations (void)
2436 label_to_block_map = NULL;
2440 /* Return the first statement in basic block BB. */
2442 gimple
2443 first_stmt (basic_block bb)
2445 gimple_stmt_iterator i = gsi_start_bb (bb);
2446 gimple stmt = NULL;
2448 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2450 gsi_next (&i);
2451 stmt = NULL;
2453 return stmt;
2456 /* Return the first non-label statement in basic block BB. */
2458 static gimple
2459 first_non_label_stmt (basic_block bb)
2461 gimple_stmt_iterator i = gsi_start_bb (bb);
2462 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2463 gsi_next (&i);
2464 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2467 /* Return the last statement in basic block BB. */
2469 gimple
2470 last_stmt (basic_block bb)
2472 gimple_stmt_iterator i = gsi_last_bb (bb);
2473 gimple stmt = NULL;
2475 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2477 gsi_prev (&i);
2478 stmt = NULL;
2480 return stmt;
2483 /* Return the last statement of an otherwise empty block. Return NULL
2484 if the block is totally empty, or if it contains more than one
2485 statement. */
2487 gimple
2488 last_and_only_stmt (basic_block bb)
2490 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2491 gimple last, prev;
2493 if (gsi_end_p (i))
2494 return NULL;
2496 last = gsi_stmt (i);
2497 gsi_prev_nondebug (&i);
2498 if (gsi_end_p (i))
2499 return last;
2501 /* Empty statements should no longer appear in the instruction stream.
2502 Everything that might have appeared before should be deleted by
2503 remove_useless_stmts, and the optimizers should just gsi_remove
2504 instead of smashing with build_empty_stmt.
2506 Thus the only thing that should appear here in a block containing
2507 one executable statement is a label. */
2508 prev = gsi_stmt (i);
2509 if (gimple_code (prev) == GIMPLE_LABEL)
2510 return last;
2511 else
2512 return NULL;
2515 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2517 static void
2518 reinstall_phi_args (edge new_edge, edge old_edge)
2520 edge_var_map_vector v;
2521 edge_var_map *vm;
2522 int i;
2523 gimple_stmt_iterator phis;
2525 v = redirect_edge_var_map_vector (old_edge);
2526 if (!v)
2527 return;
2529 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2530 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2531 i++, gsi_next (&phis))
2533 gimple phi = gsi_stmt (phis);
2534 tree result = redirect_edge_var_map_result (vm);
2535 tree arg = redirect_edge_var_map_def (vm);
2537 gcc_assert (result == gimple_phi_result (phi));
2539 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2542 redirect_edge_var_map_clear (old_edge);
2545 /* Returns the basic block after which the new basic block created
2546 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2547 near its "logical" location. This is of most help to humans looking
2548 at debugging dumps. */
2550 static basic_block
2551 split_edge_bb_loc (edge edge_in)
2553 basic_block dest = edge_in->dest;
2554 basic_block dest_prev = dest->prev_bb;
2556 if (dest_prev)
2558 edge e = find_edge (dest_prev, dest);
2559 if (e && !(e->flags & EDGE_COMPLEX))
2560 return edge_in->src;
2562 return dest_prev;
2565 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2566 Abort on abnormal edges. */
2568 static basic_block
2569 gimple_split_edge (edge edge_in)
2571 basic_block new_bb, after_bb, dest;
2572 edge new_edge, e;
2574 /* Abnormal edges cannot be split. */
2575 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2577 dest = edge_in->dest;
2579 after_bb = split_edge_bb_loc (edge_in);
2581 new_bb = create_empty_bb (after_bb);
2582 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2583 new_bb->count = edge_in->count;
2584 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2585 new_edge->probability = REG_BR_PROB_BASE;
2586 new_edge->count = edge_in->count;
2588 e = redirect_edge_and_branch (edge_in, new_bb);
2589 gcc_assert (e == edge_in);
2590 reinstall_phi_args (new_edge, e);
2592 return new_bb;
2596 /* Verify properties of the address expression T with base object BASE. */
2598 static tree
2599 verify_address (tree t, tree base)
2601 bool old_constant;
2602 bool old_side_effects;
2603 bool new_constant;
2604 bool new_side_effects;
2606 old_constant = TREE_CONSTANT (t);
2607 old_side_effects = TREE_SIDE_EFFECTS (t);
2609 recompute_tree_invariant_for_addr_expr (t);
2610 new_side_effects = TREE_SIDE_EFFECTS (t);
2611 new_constant = TREE_CONSTANT (t);
2613 if (old_constant != new_constant)
2615 error ("constant not recomputed when ADDR_EXPR changed");
2616 return t;
2618 if (old_side_effects != new_side_effects)
2620 error ("side effects not recomputed when ADDR_EXPR changed");
2621 return t;
2624 if (!(TREE_CODE (base) == VAR_DECL
2625 || TREE_CODE (base) == PARM_DECL
2626 || TREE_CODE (base) == RESULT_DECL))
2627 return NULL_TREE;
2629 if (DECL_GIMPLE_REG_P (base))
2631 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2632 return base;
2635 return NULL_TREE;
2638 /* Callback for walk_tree, check that all elements with address taken are
2639 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2640 inside a PHI node. */
2642 static tree
2643 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2645 tree t = *tp, x;
2647 if (TYPE_P (t))
2648 *walk_subtrees = 0;
2650 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2651 #define CHECK_OP(N, MSG) \
2652 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2653 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2655 switch (TREE_CODE (t))
2657 case SSA_NAME:
2658 if (SSA_NAME_IN_FREE_LIST (t))
2660 error ("SSA name in freelist but still referenced");
2661 return *tp;
2663 break;
2665 case INDIRECT_REF:
2666 error ("INDIRECT_REF in gimple IL");
2667 return t;
2669 case MEM_REF:
2670 x = TREE_OPERAND (t, 0);
2671 if (!POINTER_TYPE_P (TREE_TYPE (x))
2672 || !is_gimple_mem_ref_addr (x))
2674 error ("invalid first operand of MEM_REF");
2675 return x;
2677 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2678 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2680 error ("invalid offset operand of MEM_REF");
2681 return TREE_OPERAND (t, 1);
2683 if (TREE_CODE (x) == ADDR_EXPR
2684 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2685 return x;
2686 *walk_subtrees = 0;
2687 break;
2689 case ASSERT_EXPR:
2690 x = fold (ASSERT_EXPR_COND (t));
2691 if (x == boolean_false_node)
2693 error ("ASSERT_EXPR with an always-false condition");
2694 return *tp;
2696 break;
2698 case MODIFY_EXPR:
2699 error ("MODIFY_EXPR not expected while having tuples");
2700 return *tp;
2702 case ADDR_EXPR:
2704 tree tem;
2706 gcc_assert (is_gimple_address (t));
2708 /* Skip any references (they will be checked when we recurse down the
2709 tree) and ensure that any variable used as a prefix is marked
2710 addressable. */
2711 for (x = TREE_OPERAND (t, 0);
2712 handled_component_p (x);
2713 x = TREE_OPERAND (x, 0))
2716 if ((tem = verify_address (t, x)))
2717 return tem;
2719 if (!(TREE_CODE (x) == VAR_DECL
2720 || TREE_CODE (x) == PARM_DECL
2721 || TREE_CODE (x) == RESULT_DECL))
2722 return NULL;
2724 if (!TREE_ADDRESSABLE (x))
2726 error ("address taken, but ADDRESSABLE bit not set");
2727 return x;
2730 break;
2733 case COND_EXPR:
2734 x = COND_EXPR_COND (t);
2735 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2737 error ("non-integral used in condition");
2738 return x;
2740 if (!is_gimple_condexpr (x))
2742 error ("invalid conditional operand");
2743 return x;
2745 break;
2747 case NON_LVALUE_EXPR:
2748 case TRUTH_NOT_EXPR:
2749 gcc_unreachable ();
2751 CASE_CONVERT:
2752 case FIX_TRUNC_EXPR:
2753 case FLOAT_EXPR:
2754 case NEGATE_EXPR:
2755 case ABS_EXPR:
2756 case BIT_NOT_EXPR:
2757 CHECK_OP (0, "invalid operand to unary operator");
2758 break;
2760 case REALPART_EXPR:
2761 case IMAGPART_EXPR:
2762 case COMPONENT_REF:
2763 case ARRAY_REF:
2764 case ARRAY_RANGE_REF:
2765 case BIT_FIELD_REF:
2766 case VIEW_CONVERT_EXPR:
2767 /* We have a nest of references. Verify that each of the operands
2768 that determine where to reference is either a constant or a variable,
2769 verify that the base is valid, and then show we've already checked
2770 the subtrees. */
2771 while (handled_component_p (t))
2773 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2774 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2775 else if (TREE_CODE (t) == ARRAY_REF
2776 || TREE_CODE (t) == ARRAY_RANGE_REF)
2778 CHECK_OP (1, "invalid array index");
2779 if (TREE_OPERAND (t, 2))
2780 CHECK_OP (2, "invalid array lower bound");
2781 if (TREE_OPERAND (t, 3))
2782 CHECK_OP (3, "invalid array stride");
2784 else if (TREE_CODE (t) == BIT_FIELD_REF)
2786 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2787 || !host_integerp (TREE_OPERAND (t, 2), 1))
2789 error ("invalid position or size operand to BIT_FIELD_REF");
2790 return t;
2792 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2793 && (TYPE_PRECISION (TREE_TYPE (t))
2794 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2796 error ("integral result type precision does not match "
2797 "field size of BIT_FIELD_REF");
2798 return t;
2800 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2801 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2802 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2804 error ("mode precision of non-integral result does not "
2805 "match field size of BIT_FIELD_REF");
2806 return t;
2810 t = TREE_OPERAND (t, 0);
2813 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2815 error ("invalid reference prefix");
2816 return t;
2818 *walk_subtrees = 0;
2819 break;
2820 case PLUS_EXPR:
2821 case MINUS_EXPR:
2822 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2823 POINTER_PLUS_EXPR. */
2824 if (POINTER_TYPE_P (TREE_TYPE (t)))
2826 error ("invalid operand to plus/minus, type is a pointer");
2827 return t;
2829 CHECK_OP (0, "invalid operand to binary operator");
2830 CHECK_OP (1, "invalid operand to binary operator");
2831 break;
2833 case POINTER_PLUS_EXPR:
2834 /* Check to make sure the first operand is a pointer or reference type. */
2835 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2837 error ("invalid operand to pointer plus, first operand is not a pointer");
2838 return t;
2840 /* Check to make sure the second operand is a ptrofftype. */
2841 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2843 error ("invalid operand to pointer plus, second operand is not an "
2844 "integer type of appropriate width");
2845 return t;
2847 /* FALLTHROUGH */
2848 case LT_EXPR:
2849 case LE_EXPR:
2850 case GT_EXPR:
2851 case GE_EXPR:
2852 case EQ_EXPR:
2853 case NE_EXPR:
2854 case UNORDERED_EXPR:
2855 case ORDERED_EXPR:
2856 case UNLT_EXPR:
2857 case UNLE_EXPR:
2858 case UNGT_EXPR:
2859 case UNGE_EXPR:
2860 case UNEQ_EXPR:
2861 case LTGT_EXPR:
2862 case MULT_EXPR:
2863 case TRUNC_DIV_EXPR:
2864 case CEIL_DIV_EXPR:
2865 case FLOOR_DIV_EXPR:
2866 case ROUND_DIV_EXPR:
2867 case TRUNC_MOD_EXPR:
2868 case CEIL_MOD_EXPR:
2869 case FLOOR_MOD_EXPR:
2870 case ROUND_MOD_EXPR:
2871 case RDIV_EXPR:
2872 case EXACT_DIV_EXPR:
2873 case MIN_EXPR:
2874 case MAX_EXPR:
2875 case LSHIFT_EXPR:
2876 case RSHIFT_EXPR:
2877 case LROTATE_EXPR:
2878 case RROTATE_EXPR:
2879 case BIT_IOR_EXPR:
2880 case BIT_XOR_EXPR:
2881 case BIT_AND_EXPR:
2882 CHECK_OP (0, "invalid operand to binary operator");
2883 CHECK_OP (1, "invalid operand to binary operator");
2884 break;
2886 case CONSTRUCTOR:
2887 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2888 *walk_subtrees = 0;
2889 break;
2891 case CASE_LABEL_EXPR:
2892 if (CASE_CHAIN (t))
2894 error ("invalid CASE_CHAIN");
2895 return t;
2897 break;
2899 default:
2900 break;
2902 return NULL;
2904 #undef CHECK_OP
2908 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2909 Returns true if there is an error, otherwise false. */
2911 static bool
2912 verify_types_in_gimple_min_lval (tree expr)
2914 tree op;
2916 if (is_gimple_id (expr))
2917 return false;
2919 if (TREE_CODE (expr) != TARGET_MEM_REF
2920 && TREE_CODE (expr) != MEM_REF)
2922 error ("invalid expression for min lvalue");
2923 return true;
2926 /* TARGET_MEM_REFs are strange beasts. */
2927 if (TREE_CODE (expr) == TARGET_MEM_REF)
2928 return false;
2930 op = TREE_OPERAND (expr, 0);
2931 if (!is_gimple_val (op))
2933 error ("invalid operand in indirect reference");
2934 debug_generic_stmt (op);
2935 return true;
2937 /* Memory references now generally can involve a value conversion. */
2939 return false;
2942 /* Verify if EXPR is a valid GIMPLE reference expression. If
2943 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2944 if there is an error, otherwise false. */
2946 static bool
2947 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2949 while (handled_component_p (expr))
2951 tree op = TREE_OPERAND (expr, 0);
2953 if (TREE_CODE (expr) == ARRAY_REF
2954 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2956 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2957 || (TREE_OPERAND (expr, 2)
2958 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2959 || (TREE_OPERAND (expr, 3)
2960 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2962 error ("invalid operands to array reference");
2963 debug_generic_stmt (expr);
2964 return true;
2968 /* Verify if the reference array element types are compatible. */
2969 if (TREE_CODE (expr) == ARRAY_REF
2970 && !useless_type_conversion_p (TREE_TYPE (expr),
2971 TREE_TYPE (TREE_TYPE (op))))
2973 error ("type mismatch in array reference");
2974 debug_generic_stmt (TREE_TYPE (expr));
2975 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2976 return true;
2978 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2979 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2980 TREE_TYPE (TREE_TYPE (op))))
2982 error ("type mismatch in array range reference");
2983 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2984 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2985 return true;
2988 if ((TREE_CODE (expr) == REALPART_EXPR
2989 || TREE_CODE (expr) == IMAGPART_EXPR)
2990 && !useless_type_conversion_p (TREE_TYPE (expr),
2991 TREE_TYPE (TREE_TYPE (op))))
2993 error ("type mismatch in real/imagpart reference");
2994 debug_generic_stmt (TREE_TYPE (expr));
2995 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2996 return true;
2999 if (TREE_CODE (expr) == COMPONENT_REF
3000 && !useless_type_conversion_p (TREE_TYPE (expr),
3001 TREE_TYPE (TREE_OPERAND (expr, 1))))
3003 error ("type mismatch in component reference");
3004 debug_generic_stmt (TREE_TYPE (expr));
3005 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3006 return true;
3009 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3011 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3012 that their operand is not an SSA name or an invariant when
3013 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3014 bug). Otherwise there is nothing to verify, gross mismatches at
3015 most invoke undefined behavior. */
3016 if (require_lvalue
3017 && (TREE_CODE (op) == SSA_NAME
3018 || is_gimple_min_invariant (op)))
3020 error ("conversion of an SSA_NAME on the left hand side");
3021 debug_generic_stmt (expr);
3022 return true;
3024 else if (TREE_CODE (op) == SSA_NAME
3025 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3027 error ("conversion of register to a different size");
3028 debug_generic_stmt (expr);
3029 return true;
3031 else if (!handled_component_p (op))
3032 return false;
3035 expr = op;
3038 if (TREE_CODE (expr) == MEM_REF)
3040 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3042 error ("invalid address operand in MEM_REF");
3043 debug_generic_stmt (expr);
3044 return true;
3046 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3047 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3049 error ("invalid offset operand in MEM_REF");
3050 debug_generic_stmt (expr);
3051 return true;
3054 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3056 if (!TMR_BASE (expr)
3057 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3059 error ("invalid address operand in TARGET_MEM_REF");
3060 return true;
3062 if (!TMR_OFFSET (expr)
3063 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3064 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3066 error ("invalid offset operand in TARGET_MEM_REF");
3067 debug_generic_stmt (expr);
3068 return true;
3072 return ((require_lvalue || !is_gimple_min_invariant (expr))
3073 && verify_types_in_gimple_min_lval (expr));
3076 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3077 list of pointer-to types that is trivially convertible to DEST. */
3079 static bool
3080 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3082 tree src;
3084 if (!TYPE_POINTER_TO (src_obj))
3085 return true;
3087 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3088 if (useless_type_conversion_p (dest, src))
3089 return true;
3091 return false;
3094 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3095 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3097 static bool
3098 valid_fixed_convert_types_p (tree type1, tree type2)
3100 return (FIXED_POINT_TYPE_P (type1)
3101 && (INTEGRAL_TYPE_P (type2)
3102 || SCALAR_FLOAT_TYPE_P (type2)
3103 || FIXED_POINT_TYPE_P (type2)));
3106 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3107 is a problem, otherwise false. */
3109 static bool
3110 verify_gimple_call (gimple stmt)
3112 tree fn = gimple_call_fn (stmt);
3113 tree fntype, fndecl;
3114 unsigned i;
3116 if (gimple_call_internal_p (stmt))
3118 if (fn)
3120 error ("gimple call has two targets");
3121 debug_generic_stmt (fn);
3122 return true;
3125 else
3127 if (!fn)
3129 error ("gimple call has no target");
3130 return true;
3134 if (fn && !is_gimple_call_addr (fn))
3136 error ("invalid function in gimple call");
3137 debug_generic_stmt (fn);
3138 return true;
3141 if (fn
3142 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3143 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3144 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3146 error ("non-function in gimple call");
3147 return true;
3150 fndecl = gimple_call_fndecl (stmt);
3151 if (fndecl
3152 && TREE_CODE (fndecl) == FUNCTION_DECL
3153 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3154 && !DECL_PURE_P (fndecl)
3155 && !TREE_READONLY (fndecl))
3157 error ("invalid pure const state for function");
3158 return true;
3161 if (gimple_call_lhs (stmt)
3162 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3163 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3165 error ("invalid LHS in gimple call");
3166 return true;
3169 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3171 error ("LHS in noreturn call");
3172 return true;
3175 fntype = gimple_call_fntype (stmt);
3176 if (fntype
3177 && gimple_call_lhs (stmt)
3178 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3179 TREE_TYPE (fntype))
3180 /* ??? At least C++ misses conversions at assignments from
3181 void * call results.
3182 ??? Java is completely off. Especially with functions
3183 returning java.lang.Object.
3184 For now simply allow arbitrary pointer type conversions. */
3185 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3186 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3188 error ("invalid conversion in gimple call");
3189 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3190 debug_generic_stmt (TREE_TYPE (fntype));
3191 return true;
3194 if (gimple_call_chain (stmt)
3195 && !is_gimple_val (gimple_call_chain (stmt)))
3197 error ("invalid static chain in gimple call");
3198 debug_generic_stmt (gimple_call_chain (stmt));
3199 return true;
3202 /* If there is a static chain argument, this should not be an indirect
3203 call, and the decl should have DECL_STATIC_CHAIN set. */
3204 if (gimple_call_chain (stmt))
3206 if (!gimple_call_fndecl (stmt))
3208 error ("static chain in indirect gimple call");
3209 return true;
3211 fn = TREE_OPERAND (fn, 0);
3213 if (!DECL_STATIC_CHAIN (fn))
3215 error ("static chain with function that doesn%'t use one");
3216 return true;
3220 /* ??? The C frontend passes unpromoted arguments in case it
3221 didn't see a function declaration before the call. So for now
3222 leave the call arguments mostly unverified. Once we gimplify
3223 unit-at-a-time we have a chance to fix this. */
3225 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3227 tree arg = gimple_call_arg (stmt, i);
3228 if ((is_gimple_reg_type (TREE_TYPE (arg))
3229 && !is_gimple_val (arg))
3230 || (!is_gimple_reg_type (TREE_TYPE (arg))
3231 && !is_gimple_lvalue (arg)))
3233 error ("invalid argument to gimple call");
3234 debug_generic_expr (arg);
3235 return true;
3239 return false;
3242 /* Verifies the gimple comparison with the result type TYPE and
3243 the operands OP0 and OP1. */
3245 static bool
3246 verify_gimple_comparison (tree type, tree op0, tree op1)
3248 tree op0_type = TREE_TYPE (op0);
3249 tree op1_type = TREE_TYPE (op1);
3251 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3253 error ("invalid operands in gimple comparison");
3254 return true;
3257 /* For comparisons we do not have the operations type as the
3258 effective type the comparison is carried out in. Instead
3259 we require that either the first operand is trivially
3260 convertible into the second, or the other way around.
3261 Because we special-case pointers to void we allow
3262 comparisons of pointers with the same mode as well. */
3263 if (!useless_type_conversion_p (op0_type, op1_type)
3264 && !useless_type_conversion_p (op1_type, op0_type)
3265 && (!POINTER_TYPE_P (op0_type)
3266 || !POINTER_TYPE_P (op1_type)
3267 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3269 error ("mismatching comparison operand types");
3270 debug_generic_expr (op0_type);
3271 debug_generic_expr (op1_type);
3272 return true;
3275 /* The resulting type of a comparison may be an effective boolean type. */
3276 if (INTEGRAL_TYPE_P (type)
3277 && (TREE_CODE (type) == BOOLEAN_TYPE
3278 || TYPE_PRECISION (type) == 1))
3280 /* Or an integer vector type with the same size and element count
3281 as the comparison operand types. */
3282 else if (TREE_CODE (type) == VECTOR_TYPE
3283 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3285 if (TREE_CODE (op0_type) != VECTOR_TYPE
3286 || TREE_CODE (op1_type) != VECTOR_TYPE)
3288 error ("non-vector operands in vector comparison");
3289 debug_generic_expr (op0_type);
3290 debug_generic_expr (op1_type);
3291 return true;
3294 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3295 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3296 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3298 error ("invalid vector comparison resulting type");
3299 debug_generic_expr (type);
3300 return true;
3303 else
3305 error ("bogus comparison result type");
3306 debug_generic_expr (type);
3307 return true;
3310 return false;
3313 /* Verify a gimple assignment statement STMT with an unary rhs.
3314 Returns true if anything is wrong. */
3316 static bool
3317 verify_gimple_assign_unary (gimple stmt)
3319 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3320 tree lhs = gimple_assign_lhs (stmt);
3321 tree lhs_type = TREE_TYPE (lhs);
3322 tree rhs1 = gimple_assign_rhs1 (stmt);
3323 tree rhs1_type = TREE_TYPE (rhs1);
3325 if (!is_gimple_reg (lhs))
3327 error ("non-register as LHS of unary operation");
3328 return true;
3331 if (!is_gimple_val (rhs1))
3333 error ("invalid operand in unary operation");
3334 return true;
3337 /* First handle conversions. */
3338 switch (rhs_code)
3340 CASE_CONVERT:
3342 /* Allow conversions between integral types and pointers only if
3343 there is no sign or zero extension involved.
3344 For targets were the precision of ptrofftype doesn't match that
3345 of pointers we need to allow arbitrary conversions from and
3346 to ptrofftype. */
3347 if ((POINTER_TYPE_P (lhs_type)
3348 && INTEGRAL_TYPE_P (rhs1_type)
3349 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3350 || ptrofftype_p (rhs1_type)))
3351 || (POINTER_TYPE_P (rhs1_type)
3352 && INTEGRAL_TYPE_P (lhs_type)
3353 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3354 || ptrofftype_p (sizetype))))
3355 return false;
3357 /* Allow conversion from integer to offset type and vice versa. */
3358 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3359 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3360 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3361 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3362 return false;
3364 /* Otherwise assert we are converting between types of the
3365 same kind. */
3366 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3368 error ("invalid types in nop conversion");
3369 debug_generic_expr (lhs_type);
3370 debug_generic_expr (rhs1_type);
3371 return true;
3374 return false;
3377 case ADDR_SPACE_CONVERT_EXPR:
3379 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3380 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3381 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3383 error ("invalid types in address space conversion");
3384 debug_generic_expr (lhs_type);
3385 debug_generic_expr (rhs1_type);
3386 return true;
3389 return false;
3392 case FIXED_CONVERT_EXPR:
3394 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3395 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3397 error ("invalid types in fixed-point conversion");
3398 debug_generic_expr (lhs_type);
3399 debug_generic_expr (rhs1_type);
3400 return true;
3403 return false;
3406 case FLOAT_EXPR:
3408 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3409 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3410 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3412 error ("invalid types in conversion to floating point");
3413 debug_generic_expr (lhs_type);
3414 debug_generic_expr (rhs1_type);
3415 return true;
3418 return false;
3421 case FIX_TRUNC_EXPR:
3423 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3424 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3425 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3427 error ("invalid types in conversion to integer");
3428 debug_generic_expr (lhs_type);
3429 debug_generic_expr (rhs1_type);
3430 return true;
3433 return false;
3436 case VEC_UNPACK_HI_EXPR:
3437 case VEC_UNPACK_LO_EXPR:
3438 case REDUC_MAX_EXPR:
3439 case REDUC_MIN_EXPR:
3440 case REDUC_PLUS_EXPR:
3441 case VEC_UNPACK_FLOAT_HI_EXPR:
3442 case VEC_UNPACK_FLOAT_LO_EXPR:
3443 /* FIXME. */
3444 return false;
3446 case NEGATE_EXPR:
3447 case ABS_EXPR:
3448 case BIT_NOT_EXPR:
3449 case PAREN_EXPR:
3450 case NON_LVALUE_EXPR:
3451 case CONJ_EXPR:
3452 break;
3454 default:
3455 gcc_unreachable ();
3458 /* For the remaining codes assert there is no conversion involved. */
3459 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3461 error ("non-trivial conversion in unary operation");
3462 debug_generic_expr (lhs_type);
3463 debug_generic_expr (rhs1_type);
3464 return true;
3467 return false;
3470 /* Verify a gimple assignment statement STMT with a binary rhs.
3471 Returns true if anything is wrong. */
3473 static bool
3474 verify_gimple_assign_binary (gimple stmt)
3476 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3477 tree lhs = gimple_assign_lhs (stmt);
3478 tree lhs_type = TREE_TYPE (lhs);
3479 tree rhs1 = gimple_assign_rhs1 (stmt);
3480 tree rhs1_type = TREE_TYPE (rhs1);
3481 tree rhs2 = gimple_assign_rhs2 (stmt);
3482 tree rhs2_type = TREE_TYPE (rhs2);
3484 if (!is_gimple_reg (lhs))
3486 error ("non-register as LHS of binary operation");
3487 return true;
3490 if (!is_gimple_val (rhs1)
3491 || !is_gimple_val (rhs2))
3493 error ("invalid operands in binary operation");
3494 return true;
3497 /* First handle operations that involve different types. */
3498 switch (rhs_code)
3500 case COMPLEX_EXPR:
3502 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3503 || !(INTEGRAL_TYPE_P (rhs1_type)
3504 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3505 || !(INTEGRAL_TYPE_P (rhs2_type)
3506 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3508 error ("type mismatch in complex expression");
3509 debug_generic_expr (lhs_type);
3510 debug_generic_expr (rhs1_type);
3511 debug_generic_expr (rhs2_type);
3512 return true;
3515 return false;
3518 case LSHIFT_EXPR:
3519 case RSHIFT_EXPR:
3520 case LROTATE_EXPR:
3521 case RROTATE_EXPR:
3523 /* Shifts and rotates are ok on integral types, fixed point
3524 types and integer vector types. */
3525 if ((!INTEGRAL_TYPE_P (rhs1_type)
3526 && !FIXED_POINT_TYPE_P (rhs1_type)
3527 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3528 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3529 || (!INTEGRAL_TYPE_P (rhs2_type)
3530 /* Vector shifts of vectors are also ok. */
3531 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3532 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3533 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3534 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3535 || !useless_type_conversion_p (lhs_type, rhs1_type))
3537 error ("type mismatch in shift expression");
3538 debug_generic_expr (lhs_type);
3539 debug_generic_expr (rhs1_type);
3540 debug_generic_expr (rhs2_type);
3541 return true;
3544 return false;
3547 case VEC_LSHIFT_EXPR:
3548 case VEC_RSHIFT_EXPR:
3550 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3551 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3552 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3553 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3554 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3555 || (!INTEGRAL_TYPE_P (rhs2_type)
3556 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3557 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3558 || !useless_type_conversion_p (lhs_type, rhs1_type))
3560 error ("type mismatch in vector shift expression");
3561 debug_generic_expr (lhs_type);
3562 debug_generic_expr (rhs1_type);
3563 debug_generic_expr (rhs2_type);
3564 return true;
3566 /* For shifting a vector of non-integral components we
3567 only allow shifting by a constant multiple of the element size. */
3568 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3569 && (TREE_CODE (rhs2) != INTEGER_CST
3570 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3571 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3573 error ("non-element sized vector shift of floating point vector");
3574 return true;
3577 return false;
3580 case WIDEN_LSHIFT_EXPR:
3582 if (!INTEGRAL_TYPE_P (lhs_type)
3583 || !INTEGRAL_TYPE_P (rhs1_type)
3584 || TREE_CODE (rhs2) != INTEGER_CST
3585 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3587 error ("type mismatch in widening vector shift expression");
3588 debug_generic_expr (lhs_type);
3589 debug_generic_expr (rhs1_type);
3590 debug_generic_expr (rhs2_type);
3591 return true;
3594 return false;
3597 case VEC_WIDEN_LSHIFT_HI_EXPR:
3598 case VEC_WIDEN_LSHIFT_LO_EXPR:
3600 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3601 || TREE_CODE (lhs_type) != VECTOR_TYPE
3602 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3603 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3604 || TREE_CODE (rhs2) != INTEGER_CST
3605 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3606 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3608 error ("type mismatch in widening vector shift expression");
3609 debug_generic_expr (lhs_type);
3610 debug_generic_expr (rhs1_type);
3611 debug_generic_expr (rhs2_type);
3612 return true;
3615 return false;
3618 case PLUS_EXPR:
3619 case MINUS_EXPR:
3621 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3622 ??? This just makes the checker happy and may not be what is
3623 intended. */
3624 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3625 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3627 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3628 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3630 error ("invalid non-vector operands to vector valued plus");
3631 return true;
3633 lhs_type = TREE_TYPE (lhs_type);
3634 rhs1_type = TREE_TYPE (rhs1_type);
3635 rhs2_type = TREE_TYPE (rhs2_type);
3636 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3637 the pointer to 2nd place. */
3638 if (POINTER_TYPE_P (rhs2_type))
3640 tree tem = rhs1_type;
3641 rhs1_type = rhs2_type;
3642 rhs2_type = tem;
3644 goto do_pointer_plus_expr_check;
3646 if (POINTER_TYPE_P (lhs_type)
3647 || POINTER_TYPE_P (rhs1_type)
3648 || POINTER_TYPE_P (rhs2_type))
3650 error ("invalid (pointer) operands to plus/minus");
3651 return true;
3654 /* Continue with generic binary expression handling. */
3655 break;
3658 case POINTER_PLUS_EXPR:
3660 do_pointer_plus_expr_check:
3661 if (!POINTER_TYPE_P (rhs1_type)
3662 || !useless_type_conversion_p (lhs_type, rhs1_type)
3663 || !ptrofftype_p (rhs2_type))
3665 error ("type mismatch in pointer plus expression");
3666 debug_generic_stmt (lhs_type);
3667 debug_generic_stmt (rhs1_type);
3668 debug_generic_stmt (rhs2_type);
3669 return true;
3672 return false;
3675 case TRUTH_ANDIF_EXPR:
3676 case TRUTH_ORIF_EXPR:
3677 case TRUTH_AND_EXPR:
3678 case TRUTH_OR_EXPR:
3679 case TRUTH_XOR_EXPR:
3681 gcc_unreachable ();
3683 case LT_EXPR:
3684 case LE_EXPR:
3685 case GT_EXPR:
3686 case GE_EXPR:
3687 case EQ_EXPR:
3688 case NE_EXPR:
3689 case UNORDERED_EXPR:
3690 case ORDERED_EXPR:
3691 case UNLT_EXPR:
3692 case UNLE_EXPR:
3693 case UNGT_EXPR:
3694 case UNGE_EXPR:
3695 case UNEQ_EXPR:
3696 case LTGT_EXPR:
3697 /* Comparisons are also binary, but the result type is not
3698 connected to the operand types. */
3699 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3701 case WIDEN_MULT_EXPR:
3702 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3703 return true;
3704 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3705 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3707 case WIDEN_SUM_EXPR:
3708 case VEC_WIDEN_MULT_HI_EXPR:
3709 case VEC_WIDEN_MULT_LO_EXPR:
3710 case VEC_PACK_TRUNC_EXPR:
3711 case VEC_PACK_SAT_EXPR:
3712 case VEC_PACK_FIX_TRUNC_EXPR:
3713 case VEC_EXTRACT_EVEN_EXPR:
3714 case VEC_EXTRACT_ODD_EXPR:
3715 case VEC_INTERLEAVE_HIGH_EXPR:
3716 case VEC_INTERLEAVE_LOW_EXPR:
3717 /* FIXME. */
3718 return false;
3720 case MULT_EXPR:
3721 case TRUNC_DIV_EXPR:
3722 case CEIL_DIV_EXPR:
3723 case FLOOR_DIV_EXPR:
3724 case ROUND_DIV_EXPR:
3725 case TRUNC_MOD_EXPR:
3726 case CEIL_MOD_EXPR:
3727 case FLOOR_MOD_EXPR:
3728 case ROUND_MOD_EXPR:
3729 case RDIV_EXPR:
3730 case EXACT_DIV_EXPR:
3731 case MIN_EXPR:
3732 case MAX_EXPR:
3733 case BIT_IOR_EXPR:
3734 case BIT_XOR_EXPR:
3735 case BIT_AND_EXPR:
3736 /* Continue with generic binary expression handling. */
3737 break;
3739 default:
3740 gcc_unreachable ();
3743 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3744 || !useless_type_conversion_p (lhs_type, rhs2_type))
3746 error ("type mismatch in binary expression");
3747 debug_generic_stmt (lhs_type);
3748 debug_generic_stmt (rhs1_type);
3749 debug_generic_stmt (rhs2_type);
3750 return true;
3753 return false;
3756 /* Verify a gimple assignment statement STMT with a ternary rhs.
3757 Returns true if anything is wrong. */
3759 static bool
3760 verify_gimple_assign_ternary (gimple stmt)
3762 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3763 tree lhs = gimple_assign_lhs (stmt);
3764 tree lhs_type = TREE_TYPE (lhs);
3765 tree rhs1 = gimple_assign_rhs1 (stmt);
3766 tree rhs1_type = TREE_TYPE (rhs1);
3767 tree rhs2 = gimple_assign_rhs2 (stmt);
3768 tree rhs2_type = TREE_TYPE (rhs2);
3769 tree rhs3 = gimple_assign_rhs3 (stmt);
3770 tree rhs3_type = TREE_TYPE (rhs3);
3772 if (!is_gimple_reg (lhs))
3774 error ("non-register as LHS of ternary operation");
3775 return true;
3778 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3779 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3780 || !is_gimple_val (rhs2)
3781 || !is_gimple_val (rhs3))
3783 error ("invalid operands in ternary operation");
3784 return true;
3787 /* First handle operations that involve different types. */
3788 switch (rhs_code)
3790 case WIDEN_MULT_PLUS_EXPR:
3791 case WIDEN_MULT_MINUS_EXPR:
3792 if ((!INTEGRAL_TYPE_P (rhs1_type)
3793 && !FIXED_POINT_TYPE_P (rhs1_type))
3794 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3795 || !useless_type_conversion_p (lhs_type, rhs3_type)
3796 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3797 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3799 error ("type mismatch in widening multiply-accumulate expression");
3800 debug_generic_expr (lhs_type);
3801 debug_generic_expr (rhs1_type);
3802 debug_generic_expr (rhs2_type);
3803 debug_generic_expr (rhs3_type);
3804 return true;
3806 break;
3808 case FMA_EXPR:
3809 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3810 || !useless_type_conversion_p (lhs_type, rhs2_type)
3811 || !useless_type_conversion_p (lhs_type, rhs3_type))
3813 error ("type mismatch in fused multiply-add expression");
3814 debug_generic_expr (lhs_type);
3815 debug_generic_expr (rhs1_type);
3816 debug_generic_expr (rhs2_type);
3817 debug_generic_expr (rhs3_type);
3818 return true;
3820 break;
3822 case COND_EXPR:
3823 case VEC_COND_EXPR:
3824 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3825 || !useless_type_conversion_p (lhs_type, rhs3_type))
3827 error ("type mismatch in conditional expression");
3828 debug_generic_expr (lhs_type);
3829 debug_generic_expr (rhs2_type);
3830 debug_generic_expr (rhs3_type);
3831 return true;
3833 break;
3835 case VEC_PERM_EXPR:
3836 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3837 || !useless_type_conversion_p (lhs_type, rhs2_type))
3839 error ("type mismatch in vector permute expression");
3840 debug_generic_expr (lhs_type);
3841 debug_generic_expr (rhs1_type);
3842 debug_generic_expr (rhs2_type);
3843 debug_generic_expr (rhs3_type);
3844 return true;
3847 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3848 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3849 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3851 error ("vector types expected in vector permute expression");
3852 debug_generic_expr (lhs_type);
3853 debug_generic_expr (rhs1_type);
3854 debug_generic_expr (rhs2_type);
3855 debug_generic_expr (rhs3_type);
3856 return true;
3859 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3860 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3861 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3862 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3863 != TYPE_VECTOR_SUBPARTS (lhs_type))
3865 error ("vectors with different element number found "
3866 "in vector permute expression");
3867 debug_generic_expr (lhs_type);
3868 debug_generic_expr (rhs1_type);
3869 debug_generic_expr (rhs2_type);
3870 debug_generic_expr (rhs3_type);
3871 return true;
3874 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3875 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3876 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3878 error ("invalid mask type in vector permute expression");
3879 debug_generic_expr (lhs_type);
3880 debug_generic_expr (rhs1_type);
3881 debug_generic_expr (rhs2_type);
3882 debug_generic_expr (rhs3_type);
3883 return true;
3886 return false;
3888 case DOT_PROD_EXPR:
3889 case REALIGN_LOAD_EXPR:
3890 /* FIXME. */
3891 return false;
3893 default:
3894 gcc_unreachable ();
3896 return false;
3899 /* Verify a gimple assignment statement STMT with a single rhs.
3900 Returns true if anything is wrong. */
3902 static bool
3903 verify_gimple_assign_single (gimple stmt)
3905 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3906 tree lhs = gimple_assign_lhs (stmt);
3907 tree lhs_type = TREE_TYPE (lhs);
3908 tree rhs1 = gimple_assign_rhs1 (stmt);
3909 tree rhs1_type = TREE_TYPE (rhs1);
3910 bool res = false;
3912 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3914 error ("non-trivial conversion at assignment");
3915 debug_generic_expr (lhs_type);
3916 debug_generic_expr (rhs1_type);
3917 return true;
3920 if (handled_component_p (lhs))
3921 res |= verify_types_in_gimple_reference (lhs, true);
3923 /* Special codes we cannot handle via their class. */
3924 switch (rhs_code)
3926 case ADDR_EXPR:
3928 tree op = TREE_OPERAND (rhs1, 0);
3929 if (!is_gimple_addressable (op))
3931 error ("invalid operand in unary expression");
3932 return true;
3935 /* Technically there is no longer a need for matching types, but
3936 gimple hygiene asks for this check. In LTO we can end up
3937 combining incompatible units and thus end up with addresses
3938 of globals that change their type to a common one. */
3939 if (!in_lto_p
3940 && !types_compatible_p (TREE_TYPE (op),
3941 TREE_TYPE (TREE_TYPE (rhs1)))
3942 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3943 TREE_TYPE (op)))
3945 error ("type mismatch in address expression");
3946 debug_generic_stmt (TREE_TYPE (rhs1));
3947 debug_generic_stmt (TREE_TYPE (op));
3948 return true;
3951 return verify_types_in_gimple_reference (op, true);
3954 /* tcc_reference */
3955 case INDIRECT_REF:
3956 error ("INDIRECT_REF in gimple IL");
3957 return true;
3959 case COMPONENT_REF:
3960 case BIT_FIELD_REF:
3961 case ARRAY_REF:
3962 case ARRAY_RANGE_REF:
3963 case VIEW_CONVERT_EXPR:
3964 case REALPART_EXPR:
3965 case IMAGPART_EXPR:
3966 case TARGET_MEM_REF:
3967 case MEM_REF:
3968 if (!is_gimple_reg (lhs)
3969 && is_gimple_reg_type (TREE_TYPE (lhs)))
3971 error ("invalid rhs for gimple memory store");
3972 debug_generic_stmt (lhs);
3973 debug_generic_stmt (rhs1);
3974 return true;
3976 return res || verify_types_in_gimple_reference (rhs1, false);
3978 /* tcc_constant */
3979 case SSA_NAME:
3980 case INTEGER_CST:
3981 case REAL_CST:
3982 case FIXED_CST:
3983 case COMPLEX_CST:
3984 case VECTOR_CST:
3985 case STRING_CST:
3986 return res;
3988 /* tcc_declaration */
3989 case CONST_DECL:
3990 return res;
3991 case VAR_DECL:
3992 case PARM_DECL:
3993 if (!is_gimple_reg (lhs)
3994 && !is_gimple_reg (rhs1)
3995 && is_gimple_reg_type (TREE_TYPE (lhs)))
3997 error ("invalid rhs for gimple memory store");
3998 debug_generic_stmt (lhs);
3999 debug_generic_stmt (rhs1);
4000 return true;
4002 return res;
4004 case CONSTRUCTOR:
4005 case OBJ_TYPE_REF:
4006 case ASSERT_EXPR:
4007 case WITH_SIZE_EXPR:
4008 /* FIXME. */
4009 return res;
4011 default:;
4014 return res;
4017 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4018 is a problem, otherwise false. */
4020 static bool
4021 verify_gimple_assign (gimple stmt)
4023 switch (gimple_assign_rhs_class (stmt))
4025 case GIMPLE_SINGLE_RHS:
4026 return verify_gimple_assign_single (stmt);
4028 case GIMPLE_UNARY_RHS:
4029 return verify_gimple_assign_unary (stmt);
4031 case GIMPLE_BINARY_RHS:
4032 return verify_gimple_assign_binary (stmt);
4034 case GIMPLE_TERNARY_RHS:
4035 return verify_gimple_assign_ternary (stmt);
4037 default:
4038 gcc_unreachable ();
4042 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4043 is a problem, otherwise false. */
4045 static bool
4046 verify_gimple_return (gimple stmt)
4048 tree op = gimple_return_retval (stmt);
4049 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4051 /* We cannot test for present return values as we do not fix up missing
4052 return values from the original source. */
4053 if (op == NULL)
4054 return false;
4056 if (!is_gimple_val (op)
4057 && TREE_CODE (op) != RESULT_DECL)
4059 error ("invalid operand in return statement");
4060 debug_generic_stmt (op);
4061 return true;
4064 if ((TREE_CODE (op) == RESULT_DECL
4065 && DECL_BY_REFERENCE (op))
4066 || (TREE_CODE (op) == SSA_NAME
4067 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4068 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4069 op = TREE_TYPE (op);
4071 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4073 error ("invalid conversion in return statement");
4074 debug_generic_stmt (restype);
4075 debug_generic_stmt (TREE_TYPE (op));
4076 return true;
4079 return false;
4083 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4084 is a problem, otherwise false. */
4086 static bool
4087 verify_gimple_goto (gimple stmt)
4089 tree dest = gimple_goto_dest (stmt);
4091 /* ??? We have two canonical forms of direct goto destinations, a
4092 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4093 if (TREE_CODE (dest) != LABEL_DECL
4094 && (!is_gimple_val (dest)
4095 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4097 error ("goto destination is neither a label nor a pointer");
4098 return true;
4101 return false;
4104 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4105 is a problem, otherwise false. */
4107 static bool
4108 verify_gimple_switch (gimple stmt)
4110 if (!is_gimple_val (gimple_switch_index (stmt)))
4112 error ("invalid operand to switch statement");
4113 debug_generic_stmt (gimple_switch_index (stmt));
4114 return true;
4117 return false;
4120 /* Verify a gimple debug statement STMT.
4121 Returns true if anything is wrong. */
4123 static bool
4124 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4126 /* There isn't much that could be wrong in a gimple debug stmt. A
4127 gimple debug bind stmt, for example, maps a tree, that's usually
4128 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4129 component or member of an aggregate type, to another tree, that
4130 can be an arbitrary expression. These stmts expand into debug
4131 insns, and are converted to debug notes by var-tracking.c. */
4132 return false;
4135 /* Verify a gimple label statement STMT.
4136 Returns true if anything is wrong. */
4138 static bool
4139 verify_gimple_label (gimple stmt)
4141 tree decl = gimple_label_label (stmt);
4142 int uid;
4143 bool err = false;
4145 if (TREE_CODE (decl) != LABEL_DECL)
4146 return true;
4148 uid = LABEL_DECL_UID (decl);
4149 if (cfun->cfg
4150 && (uid == -1
4151 || VEC_index (basic_block,
4152 label_to_block_map, uid) != gimple_bb (stmt)))
4154 error ("incorrect entry in label_to_block_map");
4155 err |= true;
4158 uid = EH_LANDING_PAD_NR (decl);
4159 if (uid)
4161 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4162 if (decl != lp->post_landing_pad)
4164 error ("incorrect setting of landing pad number");
4165 err |= true;
4169 return err;
4172 /* Verify the GIMPLE statement STMT. Returns true if there is an
4173 error, otherwise false. */
4175 static bool
4176 verify_gimple_stmt (gimple stmt)
4178 switch (gimple_code (stmt))
4180 case GIMPLE_ASSIGN:
4181 return verify_gimple_assign (stmt);
4183 case GIMPLE_LABEL:
4184 return verify_gimple_label (stmt);
4186 case GIMPLE_CALL:
4187 return verify_gimple_call (stmt);
4189 case GIMPLE_COND:
4190 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4192 error ("invalid comparison code in gimple cond");
4193 return true;
4195 if (!(!gimple_cond_true_label (stmt)
4196 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4197 || !(!gimple_cond_false_label (stmt)
4198 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4200 error ("invalid labels in gimple cond");
4201 return true;
4204 return verify_gimple_comparison (boolean_type_node,
4205 gimple_cond_lhs (stmt),
4206 gimple_cond_rhs (stmt));
4208 case GIMPLE_GOTO:
4209 return verify_gimple_goto (stmt);
4211 case GIMPLE_SWITCH:
4212 return verify_gimple_switch (stmt);
4214 case GIMPLE_RETURN:
4215 return verify_gimple_return (stmt);
4217 case GIMPLE_ASM:
4218 return false;
4220 case GIMPLE_TRANSACTION:
4221 return verify_gimple_transaction (stmt);
4223 /* Tuples that do not have tree operands. */
4224 case GIMPLE_NOP:
4225 case GIMPLE_PREDICT:
4226 case GIMPLE_RESX:
4227 case GIMPLE_EH_DISPATCH:
4228 case GIMPLE_EH_MUST_NOT_THROW:
4229 return false;
4231 CASE_GIMPLE_OMP:
4232 /* OpenMP directives are validated by the FE and never operated
4233 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4234 non-gimple expressions when the main index variable has had
4235 its address taken. This does not affect the loop itself
4236 because the header of an GIMPLE_OMP_FOR is merely used to determine
4237 how to setup the parallel iteration. */
4238 return false;
4240 case GIMPLE_DEBUG:
4241 return verify_gimple_debug (stmt);
4243 default:
4244 gcc_unreachable ();
4248 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4249 and false otherwise. */
4251 static bool
4252 verify_gimple_phi (gimple phi)
4254 bool err = false;
4255 unsigned i;
4256 tree phi_result = gimple_phi_result (phi);
4257 bool virtual_p;
4259 if (!phi_result)
4261 error ("invalid PHI result");
4262 return true;
4265 virtual_p = !is_gimple_reg (phi_result);
4266 if (TREE_CODE (phi_result) != SSA_NAME
4267 || (virtual_p
4268 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4270 error ("invalid PHI result");
4271 err = true;
4274 for (i = 0; i < gimple_phi_num_args (phi); i++)
4276 tree t = gimple_phi_arg_def (phi, i);
4278 if (!t)
4280 error ("missing PHI def");
4281 err |= true;
4282 continue;
4284 /* Addressable variables do have SSA_NAMEs but they
4285 are not considered gimple values. */
4286 else if ((TREE_CODE (t) == SSA_NAME
4287 && virtual_p != !is_gimple_reg (t))
4288 || (virtual_p
4289 && (TREE_CODE (t) != SSA_NAME
4290 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4291 || (!virtual_p
4292 && !is_gimple_val (t)))
4294 error ("invalid PHI argument");
4295 debug_generic_expr (t);
4296 err |= true;
4298 #ifdef ENABLE_TYPES_CHECKING
4299 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4301 error ("incompatible types in PHI argument %u", i);
4302 debug_generic_stmt (TREE_TYPE (phi_result));
4303 debug_generic_stmt (TREE_TYPE (t));
4304 err |= true;
4306 #endif
4309 return err;
4312 /* Verify the GIMPLE statements inside the sequence STMTS. */
4314 static bool
4315 verify_gimple_in_seq_2 (gimple_seq stmts)
4317 gimple_stmt_iterator ittr;
4318 bool err = false;
4320 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4322 gimple stmt = gsi_stmt (ittr);
4324 switch (gimple_code (stmt))
4326 case GIMPLE_BIND:
4327 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4328 break;
4330 case GIMPLE_TRY:
4331 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4332 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4333 break;
4335 case GIMPLE_EH_FILTER:
4336 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4337 break;
4339 case GIMPLE_EH_ELSE:
4340 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4341 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4342 break;
4344 case GIMPLE_CATCH:
4345 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4346 break;
4348 case GIMPLE_TRANSACTION:
4349 err |= verify_gimple_transaction (stmt);
4350 break;
4352 default:
4354 bool err2 = verify_gimple_stmt (stmt);
4355 if (err2)
4356 debug_gimple_stmt (stmt);
4357 err |= err2;
4362 return err;
4365 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4366 is a problem, otherwise false. */
4368 static bool
4369 verify_gimple_transaction (gimple stmt)
4371 tree lab = gimple_transaction_label (stmt);
4372 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4373 return true;
4374 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4378 /* Verify the GIMPLE statements inside the statement list STMTS. */
4380 DEBUG_FUNCTION void
4381 verify_gimple_in_seq (gimple_seq stmts)
4383 timevar_push (TV_TREE_STMT_VERIFY);
4384 if (verify_gimple_in_seq_2 (stmts))
4385 internal_error ("verify_gimple failed");
4386 timevar_pop (TV_TREE_STMT_VERIFY);
4389 /* Return true when the T can be shared. */
4391 bool
4392 tree_node_can_be_shared (tree t)
4394 if (IS_TYPE_OR_DECL_P (t)
4395 || is_gimple_min_invariant (t)
4396 || TREE_CODE (t) == SSA_NAME
4397 || t == error_mark_node
4398 || TREE_CODE (t) == IDENTIFIER_NODE)
4399 return true;
4401 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4402 return true;
4404 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4405 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4406 || TREE_CODE (t) == COMPONENT_REF
4407 || TREE_CODE (t) == REALPART_EXPR
4408 || TREE_CODE (t) == IMAGPART_EXPR)
4409 t = TREE_OPERAND (t, 0);
4411 if (DECL_P (t))
4412 return true;
4414 return false;
4417 /* Called via walk_gimple_stmt. Verify tree sharing. */
4419 static tree
4420 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4422 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4423 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4425 if (tree_node_can_be_shared (*tp))
4427 *walk_subtrees = false;
4428 return NULL;
4431 if (pointer_set_insert (visited, *tp))
4432 return *tp;
4434 return NULL;
4437 static bool eh_error_found;
4438 static int
4439 verify_eh_throw_stmt_node (void **slot, void *data)
4441 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4442 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4444 if (!pointer_set_contains (visited, node->stmt))
4446 error ("dead STMT in EH table");
4447 debug_gimple_stmt (node->stmt);
4448 eh_error_found = true;
4450 return 1;
4453 /* Verify the GIMPLE statements in the CFG of FN. */
4455 DEBUG_FUNCTION void
4456 verify_gimple_in_cfg (struct function *fn)
4458 basic_block bb;
4459 bool err = false;
4460 struct pointer_set_t *visited, *visited_stmts;
4462 timevar_push (TV_TREE_STMT_VERIFY);
4463 visited = pointer_set_create ();
4464 visited_stmts = pointer_set_create ();
4466 FOR_EACH_BB_FN (bb, fn)
4468 gimple_stmt_iterator gsi;
4470 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4472 gimple phi = gsi_stmt (gsi);
4473 bool err2 = false;
4474 unsigned i;
4476 pointer_set_insert (visited_stmts, phi);
4478 if (gimple_bb (phi) != bb)
4480 error ("gimple_bb (phi) is set to a wrong basic block");
4481 err2 = true;
4484 err2 |= verify_gimple_phi (phi);
4486 for (i = 0; i < gimple_phi_num_args (phi); i++)
4488 tree arg = gimple_phi_arg_def (phi, i);
4489 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4490 if (addr)
4492 error ("incorrect sharing of tree nodes");
4493 debug_generic_expr (addr);
4494 err2 |= true;
4498 if (err2)
4499 debug_gimple_stmt (phi);
4500 err |= err2;
4503 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4505 gimple stmt = gsi_stmt (gsi);
4506 bool err2 = false;
4507 struct walk_stmt_info wi;
4508 tree addr;
4509 int lp_nr;
4511 pointer_set_insert (visited_stmts, stmt);
4513 if (gimple_bb (stmt) != bb)
4515 error ("gimple_bb (stmt) is set to a wrong basic block");
4516 err2 = true;
4519 err2 |= verify_gimple_stmt (stmt);
4521 memset (&wi, 0, sizeof (wi));
4522 wi.info = (void *) visited;
4523 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4524 if (addr)
4526 error ("incorrect sharing of tree nodes");
4527 debug_generic_expr (addr);
4528 err2 |= true;
4531 /* ??? Instead of not checking these stmts at all the walker
4532 should know its context via wi. */
4533 if (!is_gimple_debug (stmt)
4534 && !is_gimple_omp (stmt))
4536 memset (&wi, 0, sizeof (wi));
4537 addr = walk_gimple_op (stmt, verify_expr, &wi);
4538 if (addr)
4540 debug_generic_expr (addr);
4541 inform (gimple_location (stmt), "in statement");
4542 err2 |= true;
4546 /* If the statement is marked as part of an EH region, then it is
4547 expected that the statement could throw. Verify that when we
4548 have optimizations that simplify statements such that we prove
4549 that they cannot throw, that we update other data structures
4550 to match. */
4551 lp_nr = lookup_stmt_eh_lp (stmt);
4552 if (lp_nr != 0)
4554 if (!stmt_could_throw_p (stmt))
4556 error ("statement marked for throw, but doesn%'t");
4557 err2 |= true;
4559 else if (lp_nr > 0
4560 && !gsi_one_before_end_p (gsi)
4561 && stmt_can_throw_internal (stmt))
4563 error ("statement marked for throw in middle of block");
4564 err2 |= true;
4568 if (err2)
4569 debug_gimple_stmt (stmt);
4570 err |= err2;
4574 eh_error_found = false;
4575 if (get_eh_throw_stmt_table (cfun))
4576 htab_traverse (get_eh_throw_stmt_table (cfun),
4577 verify_eh_throw_stmt_node,
4578 visited_stmts);
4580 if (err || eh_error_found)
4581 internal_error ("verify_gimple failed");
4583 pointer_set_destroy (visited);
4584 pointer_set_destroy (visited_stmts);
4585 verify_histograms ();
4586 timevar_pop (TV_TREE_STMT_VERIFY);
4590 /* Verifies that the flow information is OK. */
4592 static int
4593 gimple_verify_flow_info (void)
4595 int err = 0;
4596 basic_block bb;
4597 gimple_stmt_iterator gsi;
4598 gimple stmt;
4599 edge e;
4600 edge_iterator ei;
4602 if (ENTRY_BLOCK_PTR->il.gimple)
4604 error ("ENTRY_BLOCK has IL associated with it");
4605 err = 1;
4608 if (EXIT_BLOCK_PTR->il.gimple)
4610 error ("EXIT_BLOCK has IL associated with it");
4611 err = 1;
4614 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4615 if (e->flags & EDGE_FALLTHRU)
4617 error ("fallthru to exit from bb %d", e->src->index);
4618 err = 1;
4621 FOR_EACH_BB (bb)
4623 bool found_ctrl_stmt = false;
4625 stmt = NULL;
4627 /* Skip labels on the start of basic block. */
4628 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4630 tree label;
4631 gimple prev_stmt = stmt;
4633 stmt = gsi_stmt (gsi);
4635 if (gimple_code (stmt) != GIMPLE_LABEL)
4636 break;
4638 label = gimple_label_label (stmt);
4639 if (prev_stmt && DECL_NONLOCAL (label))
4641 error ("nonlocal label ");
4642 print_generic_expr (stderr, label, 0);
4643 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4644 bb->index);
4645 err = 1;
4648 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4650 error ("EH landing pad label ");
4651 print_generic_expr (stderr, label, 0);
4652 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4653 bb->index);
4654 err = 1;
4657 if (label_to_block (label) != bb)
4659 error ("label ");
4660 print_generic_expr (stderr, label, 0);
4661 fprintf (stderr, " to block does not match in bb %d",
4662 bb->index);
4663 err = 1;
4666 if (decl_function_context (label) != current_function_decl)
4668 error ("label ");
4669 print_generic_expr (stderr, label, 0);
4670 fprintf (stderr, " has incorrect context in bb %d",
4671 bb->index);
4672 err = 1;
4676 /* Verify that body of basic block BB is free of control flow. */
4677 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4679 gimple stmt = gsi_stmt (gsi);
4681 if (found_ctrl_stmt)
4683 error ("control flow in the middle of basic block %d",
4684 bb->index);
4685 err = 1;
4688 if (stmt_ends_bb_p (stmt))
4689 found_ctrl_stmt = true;
4691 if (gimple_code (stmt) == GIMPLE_LABEL)
4693 error ("label ");
4694 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4695 fprintf (stderr, " in the middle of basic block %d", bb->index);
4696 err = 1;
4700 gsi = gsi_last_bb (bb);
4701 if (gsi_end_p (gsi))
4702 continue;
4704 stmt = gsi_stmt (gsi);
4706 if (gimple_code (stmt) == GIMPLE_LABEL)
4707 continue;
4709 err |= verify_eh_edges (stmt);
4711 if (is_ctrl_stmt (stmt))
4713 FOR_EACH_EDGE (e, ei, bb->succs)
4714 if (e->flags & EDGE_FALLTHRU)
4716 error ("fallthru edge after a control statement in bb %d",
4717 bb->index);
4718 err = 1;
4722 if (gimple_code (stmt) != GIMPLE_COND)
4724 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4725 after anything else but if statement. */
4726 FOR_EACH_EDGE (e, ei, bb->succs)
4727 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4729 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4730 bb->index);
4731 err = 1;
4735 switch (gimple_code (stmt))
4737 case GIMPLE_COND:
4739 edge true_edge;
4740 edge false_edge;
4742 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4744 if (!true_edge
4745 || !false_edge
4746 || !(true_edge->flags & EDGE_TRUE_VALUE)
4747 || !(false_edge->flags & EDGE_FALSE_VALUE)
4748 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4749 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4750 || EDGE_COUNT (bb->succs) >= 3)
4752 error ("wrong outgoing edge flags at end of bb %d",
4753 bb->index);
4754 err = 1;
4757 break;
4759 case GIMPLE_GOTO:
4760 if (simple_goto_p (stmt))
4762 error ("explicit goto at end of bb %d", bb->index);
4763 err = 1;
4765 else
4767 /* FIXME. We should double check that the labels in the
4768 destination blocks have their address taken. */
4769 FOR_EACH_EDGE (e, ei, bb->succs)
4770 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4771 | EDGE_FALSE_VALUE))
4772 || !(e->flags & EDGE_ABNORMAL))
4774 error ("wrong outgoing edge flags at end of bb %d",
4775 bb->index);
4776 err = 1;
4779 break;
4781 case GIMPLE_CALL:
4782 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4783 break;
4784 /* ... fallthru ... */
4785 case GIMPLE_RETURN:
4786 if (!single_succ_p (bb)
4787 || (single_succ_edge (bb)->flags
4788 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4789 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4791 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4792 err = 1;
4794 if (single_succ (bb) != EXIT_BLOCK_PTR)
4796 error ("return edge does not point to exit in bb %d",
4797 bb->index);
4798 err = 1;
4800 break;
4802 case GIMPLE_SWITCH:
4804 tree prev;
4805 edge e;
4806 size_t i, n;
4808 n = gimple_switch_num_labels (stmt);
4810 /* Mark all the destination basic blocks. */
4811 for (i = 0; i < n; ++i)
4813 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4814 basic_block label_bb = label_to_block (lab);
4815 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4816 label_bb->aux = (void *)1;
4819 /* Verify that the case labels are sorted. */
4820 prev = gimple_switch_label (stmt, 0);
4821 for (i = 1; i < n; ++i)
4823 tree c = gimple_switch_label (stmt, i);
4824 if (!CASE_LOW (c))
4826 error ("found default case not at the start of "
4827 "case vector");
4828 err = 1;
4829 continue;
4831 if (CASE_LOW (prev)
4832 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4834 error ("case labels not sorted: ");
4835 print_generic_expr (stderr, prev, 0);
4836 fprintf (stderr," is greater than ");
4837 print_generic_expr (stderr, c, 0);
4838 fprintf (stderr," but comes before it.\n");
4839 err = 1;
4841 prev = c;
4843 /* VRP will remove the default case if it can prove it will
4844 never be executed. So do not verify there always exists
4845 a default case here. */
4847 FOR_EACH_EDGE (e, ei, bb->succs)
4849 if (!e->dest->aux)
4851 error ("extra outgoing edge %d->%d",
4852 bb->index, e->dest->index);
4853 err = 1;
4856 e->dest->aux = (void *)2;
4857 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4858 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4860 error ("wrong outgoing edge flags at end of bb %d",
4861 bb->index);
4862 err = 1;
4866 /* Check that we have all of them. */
4867 for (i = 0; i < n; ++i)
4869 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4870 basic_block label_bb = label_to_block (lab);
4872 if (label_bb->aux != (void *)2)
4874 error ("missing edge %i->%i", bb->index, label_bb->index);
4875 err = 1;
4879 FOR_EACH_EDGE (e, ei, bb->succs)
4880 e->dest->aux = (void *)0;
4882 break;
4884 case GIMPLE_EH_DISPATCH:
4885 err |= verify_eh_dispatch_edge (stmt);
4886 break;
4888 default:
4889 break;
4893 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4894 verify_dominators (CDI_DOMINATORS);
4896 return err;
4900 /* Updates phi nodes after creating a forwarder block joined
4901 by edge FALLTHRU. */
4903 static void
4904 gimple_make_forwarder_block (edge fallthru)
4906 edge e;
4907 edge_iterator ei;
4908 basic_block dummy, bb;
4909 tree var;
4910 gimple_stmt_iterator gsi;
4912 dummy = fallthru->src;
4913 bb = fallthru->dest;
4915 if (single_pred_p (bb))
4916 return;
4918 /* If we redirected a branch we must create new PHI nodes at the
4919 start of BB. */
4920 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4922 gimple phi, new_phi;
4924 phi = gsi_stmt (gsi);
4925 var = gimple_phi_result (phi);
4926 new_phi = create_phi_node (var, bb);
4927 SSA_NAME_DEF_STMT (var) = new_phi;
4928 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4929 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4930 UNKNOWN_LOCATION);
4933 /* Add the arguments we have stored on edges. */
4934 FOR_EACH_EDGE (e, ei, bb->preds)
4936 if (e == fallthru)
4937 continue;
4939 flush_pending_stmts (e);
4944 /* Return a non-special label in the head of basic block BLOCK.
4945 Create one if it doesn't exist. */
4947 tree
4948 gimple_block_label (basic_block bb)
4950 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4951 bool first = true;
4952 tree label;
4953 gimple stmt;
4955 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4957 stmt = gsi_stmt (i);
4958 if (gimple_code (stmt) != GIMPLE_LABEL)
4959 break;
4960 label = gimple_label_label (stmt);
4961 if (!DECL_NONLOCAL (label))
4963 if (!first)
4964 gsi_move_before (&i, &s);
4965 return label;
4969 label = create_artificial_label (UNKNOWN_LOCATION);
4970 stmt = gimple_build_label (label);
4971 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4972 return label;
4976 /* Attempt to perform edge redirection by replacing a possibly complex
4977 jump instruction by a goto or by removing the jump completely.
4978 This can apply only if all edges now point to the same block. The
4979 parameters and return values are equivalent to
4980 redirect_edge_and_branch. */
4982 static edge
4983 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4985 basic_block src = e->src;
4986 gimple_stmt_iterator i;
4987 gimple stmt;
4989 /* We can replace or remove a complex jump only when we have exactly
4990 two edges. */
4991 if (EDGE_COUNT (src->succs) != 2
4992 /* Verify that all targets will be TARGET. Specifically, the
4993 edge that is not E must also go to TARGET. */
4994 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4995 return NULL;
4997 i = gsi_last_bb (src);
4998 if (gsi_end_p (i))
4999 return NULL;
5001 stmt = gsi_stmt (i);
5003 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5005 gsi_remove (&i, true);
5006 e = ssa_redirect_edge (e, target);
5007 e->flags = EDGE_FALLTHRU;
5008 return e;
5011 return NULL;
5015 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5016 edge representing the redirected branch. */
5018 static edge
5019 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5021 basic_block bb = e->src;
5022 gimple_stmt_iterator gsi;
5023 edge ret;
5024 gimple stmt;
5026 if (e->flags & EDGE_ABNORMAL)
5027 return NULL;
5029 if (e->dest == dest)
5030 return NULL;
5032 if (e->flags & EDGE_EH)
5033 return redirect_eh_edge (e, dest);
5035 if (e->src != ENTRY_BLOCK_PTR)
5037 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5038 if (ret)
5039 return ret;
5042 gsi = gsi_last_bb (bb);
5043 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5045 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5047 case GIMPLE_COND:
5048 /* For COND_EXPR, we only need to redirect the edge. */
5049 break;
5051 case GIMPLE_GOTO:
5052 /* No non-abnormal edges should lead from a non-simple goto, and
5053 simple ones should be represented implicitly. */
5054 gcc_unreachable ();
5056 case GIMPLE_SWITCH:
5058 tree label = gimple_block_label (dest);
5059 tree cases = get_cases_for_edge (e, stmt);
5061 /* If we have a list of cases associated with E, then use it
5062 as it's a lot faster than walking the entire case vector. */
5063 if (cases)
5065 edge e2 = find_edge (e->src, dest);
5066 tree last, first;
5068 first = cases;
5069 while (cases)
5071 last = cases;
5072 CASE_LABEL (cases) = label;
5073 cases = CASE_CHAIN (cases);
5076 /* If there was already an edge in the CFG, then we need
5077 to move all the cases associated with E to E2. */
5078 if (e2)
5080 tree cases2 = get_cases_for_edge (e2, stmt);
5082 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5083 CASE_CHAIN (cases2) = first;
5085 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5087 else
5089 size_t i, n = gimple_switch_num_labels (stmt);
5091 for (i = 0; i < n; i++)
5093 tree elt = gimple_switch_label (stmt, i);
5094 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5095 CASE_LABEL (elt) = label;
5099 break;
5101 case GIMPLE_ASM:
5103 int i, n = gimple_asm_nlabels (stmt);
5104 tree label = NULL;
5106 for (i = 0; i < n; ++i)
5108 tree cons = gimple_asm_label_op (stmt, i);
5109 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5111 if (!label)
5112 label = gimple_block_label (dest);
5113 TREE_VALUE (cons) = label;
5117 /* If we didn't find any label matching the former edge in the
5118 asm labels, we must be redirecting the fallthrough
5119 edge. */
5120 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5122 break;
5124 case GIMPLE_RETURN:
5125 gsi_remove (&gsi, true);
5126 e->flags |= EDGE_FALLTHRU;
5127 break;
5129 case GIMPLE_OMP_RETURN:
5130 case GIMPLE_OMP_CONTINUE:
5131 case GIMPLE_OMP_SECTIONS_SWITCH:
5132 case GIMPLE_OMP_FOR:
5133 /* The edges from OMP constructs can be simply redirected. */
5134 break;
5136 case GIMPLE_EH_DISPATCH:
5137 if (!(e->flags & EDGE_FALLTHRU))
5138 redirect_eh_dispatch_edge (stmt, e, dest);
5139 break;
5141 case GIMPLE_TRANSACTION:
5142 /* The ABORT edge has a stored label associated with it, otherwise
5143 the edges are simply redirectable. */
5144 if (e->flags == 0)
5145 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5146 break;
5148 default:
5149 /* Otherwise it must be a fallthru edge, and we don't need to
5150 do anything besides redirecting it. */
5151 gcc_assert (e->flags & EDGE_FALLTHRU);
5152 break;
5155 /* Update/insert PHI nodes as necessary. */
5157 /* Now update the edges in the CFG. */
5158 e = ssa_redirect_edge (e, dest);
5160 return e;
5163 /* Returns true if it is possible to remove edge E by redirecting
5164 it to the destination of the other edge from E->src. */
5166 static bool
5167 gimple_can_remove_branch_p (const_edge e)
5169 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5170 return false;
5172 return true;
5175 /* Simple wrapper, as we can always redirect fallthru edges. */
5177 static basic_block
5178 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5180 e = gimple_redirect_edge_and_branch (e, dest);
5181 gcc_assert (e);
5183 return NULL;
5187 /* Splits basic block BB after statement STMT (but at least after the
5188 labels). If STMT is NULL, BB is split just after the labels. */
5190 static basic_block
5191 gimple_split_block (basic_block bb, void *stmt)
5193 gimple_stmt_iterator gsi;
5194 gimple_stmt_iterator gsi_tgt;
5195 gimple act;
5196 gimple_seq list;
5197 basic_block new_bb;
5198 edge e;
5199 edge_iterator ei;
5201 new_bb = create_empty_bb (bb);
5203 /* Redirect the outgoing edges. */
5204 new_bb->succs = bb->succs;
5205 bb->succs = NULL;
5206 FOR_EACH_EDGE (e, ei, new_bb->succs)
5207 e->src = new_bb;
5209 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5210 stmt = NULL;
5212 /* Move everything from GSI to the new basic block. */
5213 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5215 act = gsi_stmt (gsi);
5216 if (gimple_code (act) == GIMPLE_LABEL)
5217 continue;
5219 if (!stmt)
5220 break;
5222 if (stmt == act)
5224 gsi_next (&gsi);
5225 break;
5229 if (gsi_end_p (gsi))
5230 return new_bb;
5232 /* Split the statement list - avoid re-creating new containers as this
5233 brings ugly quadratic memory consumption in the inliner.
5234 (We are still quadratic since we need to update stmt BB pointers,
5235 sadly.) */
5236 list = gsi_split_seq_before (&gsi);
5237 set_bb_seq (new_bb, list);
5238 for (gsi_tgt = gsi_start (list);
5239 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5240 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5242 return new_bb;
5246 /* Moves basic block BB after block AFTER. */
5248 static bool
5249 gimple_move_block_after (basic_block bb, basic_block after)
5251 if (bb->prev_bb == after)
5252 return true;
5254 unlink_block (bb);
5255 link_block (bb, after);
5257 return true;
5261 /* Return true if basic_block can be duplicated. */
5263 static bool
5264 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5266 return true;
5269 /* Create a duplicate of the basic block BB. NOTE: This does not
5270 preserve SSA form. */
5272 static basic_block
5273 gimple_duplicate_bb (basic_block bb)
5275 basic_block new_bb;
5276 gimple_stmt_iterator gsi, gsi_tgt;
5277 gimple_seq phis = phi_nodes (bb);
5278 gimple phi, stmt, copy;
5280 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5282 /* Copy the PHI nodes. We ignore PHI node arguments here because
5283 the incoming edges have not been setup yet. */
5284 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5286 phi = gsi_stmt (gsi);
5287 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5288 create_new_def_for (gimple_phi_result (copy), copy,
5289 gimple_phi_result_ptr (copy));
5292 gsi_tgt = gsi_start_bb (new_bb);
5293 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5295 def_operand_p def_p;
5296 ssa_op_iter op_iter;
5297 tree lhs;
5299 stmt = gsi_stmt (gsi);
5300 if (gimple_code (stmt) == GIMPLE_LABEL)
5301 continue;
5303 /* Don't duplicate label debug stmts. */
5304 if (gimple_debug_bind_p (stmt)
5305 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5306 == LABEL_DECL)
5307 continue;
5309 /* Create a new copy of STMT and duplicate STMT's virtual
5310 operands. */
5311 copy = gimple_copy (stmt);
5312 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5314 maybe_duplicate_eh_stmt (copy, stmt);
5315 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5317 /* When copying around a stmt writing into a local non-user
5318 aggregate, make sure it won't share stack slot with other
5319 vars. */
5320 lhs = gimple_get_lhs (stmt);
5321 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5323 tree base = get_base_address (lhs);
5324 if (base
5325 && (TREE_CODE (base) == VAR_DECL
5326 || TREE_CODE (base) == RESULT_DECL)
5327 && DECL_IGNORED_P (base)
5328 && !TREE_STATIC (base)
5329 && !DECL_EXTERNAL (base)
5330 && (TREE_CODE (base) != VAR_DECL
5331 || !DECL_HAS_VALUE_EXPR_P (base)))
5332 DECL_NONSHAREABLE (base) = 1;
5335 /* Create new names for all the definitions created by COPY and
5336 add replacement mappings for each new name. */
5337 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5338 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5341 return new_bb;
5344 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5346 static void
5347 add_phi_args_after_copy_edge (edge e_copy)
5349 basic_block bb, bb_copy = e_copy->src, dest;
5350 edge e;
5351 edge_iterator ei;
5352 gimple phi, phi_copy;
5353 tree def;
5354 gimple_stmt_iterator psi, psi_copy;
5356 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5357 return;
5359 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5361 if (e_copy->dest->flags & BB_DUPLICATED)
5362 dest = get_bb_original (e_copy->dest);
5363 else
5364 dest = e_copy->dest;
5366 e = find_edge (bb, dest);
5367 if (!e)
5369 /* During loop unrolling the target of the latch edge is copied.
5370 In this case we are not looking for edge to dest, but to
5371 duplicated block whose original was dest. */
5372 FOR_EACH_EDGE (e, ei, bb->succs)
5374 if ((e->dest->flags & BB_DUPLICATED)
5375 && get_bb_original (e->dest) == dest)
5376 break;
5379 gcc_assert (e != NULL);
5382 for (psi = gsi_start_phis (e->dest),
5383 psi_copy = gsi_start_phis (e_copy->dest);
5384 !gsi_end_p (psi);
5385 gsi_next (&psi), gsi_next (&psi_copy))
5387 phi = gsi_stmt (psi);
5388 phi_copy = gsi_stmt (psi_copy);
5389 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5390 add_phi_arg (phi_copy, def, e_copy,
5391 gimple_phi_arg_location_from_edge (phi, e));
5396 /* Basic block BB_COPY was created by code duplication. Add phi node
5397 arguments for edges going out of BB_COPY. The blocks that were
5398 duplicated have BB_DUPLICATED set. */
5400 void
5401 add_phi_args_after_copy_bb (basic_block bb_copy)
5403 edge e_copy;
5404 edge_iterator ei;
5406 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5408 add_phi_args_after_copy_edge (e_copy);
5412 /* Blocks in REGION_COPY array of length N_REGION were created by
5413 duplication of basic blocks. Add phi node arguments for edges
5414 going from these blocks. If E_COPY is not NULL, also add
5415 phi node arguments for its destination.*/
5417 void
5418 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5419 edge e_copy)
5421 unsigned i;
5423 for (i = 0; i < n_region; i++)
5424 region_copy[i]->flags |= BB_DUPLICATED;
5426 for (i = 0; i < n_region; i++)
5427 add_phi_args_after_copy_bb (region_copy[i]);
5428 if (e_copy)
5429 add_phi_args_after_copy_edge (e_copy);
5431 for (i = 0; i < n_region; i++)
5432 region_copy[i]->flags &= ~BB_DUPLICATED;
5435 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5436 important exit edge EXIT. By important we mean that no SSA name defined
5437 inside region is live over the other exit edges of the region. All entry
5438 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5439 to the duplicate of the region. SSA form, dominance and loop information
5440 is updated. The new basic blocks are stored to REGION_COPY in the same
5441 order as they had in REGION, provided that REGION_COPY is not NULL.
5442 The function returns false if it is unable to copy the region,
5443 true otherwise. */
5445 bool
5446 gimple_duplicate_sese_region (edge entry, edge exit,
5447 basic_block *region, unsigned n_region,
5448 basic_block *region_copy)
5450 unsigned i;
5451 bool free_region_copy = false, copying_header = false;
5452 struct loop *loop = entry->dest->loop_father;
5453 edge exit_copy;
5454 VEC (basic_block, heap) *doms;
5455 edge redirected;
5456 int total_freq = 0, entry_freq = 0;
5457 gcov_type total_count = 0, entry_count = 0;
5459 if (!can_copy_bbs_p (region, n_region))
5460 return false;
5462 /* Some sanity checking. Note that we do not check for all possible
5463 missuses of the functions. I.e. if you ask to copy something weird,
5464 it will work, but the state of structures probably will not be
5465 correct. */
5466 for (i = 0; i < n_region; i++)
5468 /* We do not handle subloops, i.e. all the blocks must belong to the
5469 same loop. */
5470 if (region[i]->loop_father != loop)
5471 return false;
5473 if (region[i] != entry->dest
5474 && region[i] == loop->header)
5475 return false;
5478 set_loop_copy (loop, loop);
5480 /* In case the function is used for loop header copying (which is the primary
5481 use), ensure that EXIT and its copy will be new latch and entry edges. */
5482 if (loop->header == entry->dest)
5484 copying_header = true;
5485 set_loop_copy (loop, loop_outer (loop));
5487 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5488 return false;
5490 for (i = 0; i < n_region; i++)
5491 if (region[i] != exit->src
5492 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5493 return false;
5496 if (!region_copy)
5498 region_copy = XNEWVEC (basic_block, n_region);
5499 free_region_copy = true;
5502 gcc_assert (!need_ssa_update_p (cfun));
5504 /* Record blocks outside the region that are dominated by something
5505 inside. */
5506 doms = NULL;
5507 initialize_original_copy_tables ();
5509 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5511 if (entry->dest->count)
5513 total_count = entry->dest->count;
5514 entry_count = entry->count;
5515 /* Fix up corner cases, to avoid division by zero or creation of negative
5516 frequencies. */
5517 if (entry_count > total_count)
5518 entry_count = total_count;
5520 else
5522 total_freq = entry->dest->frequency;
5523 entry_freq = EDGE_FREQUENCY (entry);
5524 /* Fix up corner cases, to avoid division by zero or creation of negative
5525 frequencies. */
5526 if (total_freq == 0)
5527 total_freq = 1;
5528 else if (entry_freq > total_freq)
5529 entry_freq = total_freq;
5532 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5533 split_edge_bb_loc (entry));
5534 if (total_count)
5536 scale_bbs_frequencies_gcov_type (region, n_region,
5537 total_count - entry_count,
5538 total_count);
5539 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5540 total_count);
5542 else
5544 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5545 total_freq);
5546 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5549 if (copying_header)
5551 loop->header = exit->dest;
5552 loop->latch = exit->src;
5555 /* Redirect the entry and add the phi node arguments. */
5556 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5557 gcc_assert (redirected != NULL);
5558 flush_pending_stmts (entry);
5560 /* Concerning updating of dominators: We must recount dominators
5561 for entry block and its copy. Anything that is outside of the
5562 region, but was dominated by something inside needs recounting as
5563 well. */
5564 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5565 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5566 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5567 VEC_free (basic_block, heap, doms);
5569 /* Add the other PHI node arguments. */
5570 add_phi_args_after_copy (region_copy, n_region, NULL);
5572 /* Update the SSA web. */
5573 update_ssa (TODO_update_ssa);
5575 if (free_region_copy)
5576 free (region_copy);
5578 free_original_copy_tables ();
5579 return true;
5582 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5583 are stored to REGION_COPY in the same order in that they appear
5584 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5585 the region, EXIT an exit from it. The condition guarding EXIT
5586 is moved to ENTRY. Returns true if duplication succeeds, false
5587 otherwise.
5589 For example,
5591 some_code;
5592 if (cond)
5594 else
5597 is transformed to
5599 if (cond)
5601 some_code;
5604 else
5606 some_code;
5611 bool
5612 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5613 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5614 basic_block *region_copy ATTRIBUTE_UNUSED)
5616 unsigned i;
5617 bool free_region_copy = false;
5618 struct loop *loop = exit->dest->loop_father;
5619 struct loop *orig_loop = entry->dest->loop_father;
5620 basic_block switch_bb, entry_bb, nentry_bb;
5621 VEC (basic_block, heap) *doms;
5622 int total_freq = 0, exit_freq = 0;
5623 gcov_type total_count = 0, exit_count = 0;
5624 edge exits[2], nexits[2], e;
5625 gimple_stmt_iterator gsi;
5626 gimple cond_stmt;
5627 edge sorig, snew;
5628 basic_block exit_bb;
5629 gimple_stmt_iterator psi;
5630 gimple phi;
5631 tree def;
5633 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5634 exits[0] = exit;
5635 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5637 if (!can_copy_bbs_p (region, n_region))
5638 return false;
5640 initialize_original_copy_tables ();
5641 set_loop_copy (orig_loop, loop);
5642 duplicate_subloops (orig_loop, loop);
5644 if (!region_copy)
5646 region_copy = XNEWVEC (basic_block, n_region);
5647 free_region_copy = true;
5650 gcc_assert (!need_ssa_update_p (cfun));
5652 /* Record blocks outside the region that are dominated by something
5653 inside. */
5654 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5656 if (exit->src->count)
5658 total_count = exit->src->count;
5659 exit_count = exit->count;
5660 /* Fix up corner cases, to avoid division by zero or creation of negative
5661 frequencies. */
5662 if (exit_count > total_count)
5663 exit_count = total_count;
5665 else
5667 total_freq = exit->src->frequency;
5668 exit_freq = EDGE_FREQUENCY (exit);
5669 /* Fix up corner cases, to avoid division by zero or creation of negative
5670 frequencies. */
5671 if (total_freq == 0)
5672 total_freq = 1;
5673 if (exit_freq > total_freq)
5674 exit_freq = total_freq;
5677 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5678 split_edge_bb_loc (exit));
5679 if (total_count)
5681 scale_bbs_frequencies_gcov_type (region, n_region,
5682 total_count - exit_count,
5683 total_count);
5684 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5685 total_count);
5687 else
5689 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5690 total_freq);
5691 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5694 /* Create the switch block, and put the exit condition to it. */
5695 entry_bb = entry->dest;
5696 nentry_bb = get_bb_copy (entry_bb);
5697 if (!last_stmt (entry->src)
5698 || !stmt_ends_bb_p (last_stmt (entry->src)))
5699 switch_bb = entry->src;
5700 else
5701 switch_bb = split_edge (entry);
5702 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5704 gsi = gsi_last_bb (switch_bb);
5705 cond_stmt = last_stmt (exit->src);
5706 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5707 cond_stmt = gimple_copy (cond_stmt);
5709 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5711 sorig = single_succ_edge (switch_bb);
5712 sorig->flags = exits[1]->flags;
5713 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5715 /* Register the new edge from SWITCH_BB in loop exit lists. */
5716 rescan_loop_exit (snew, true, false);
5718 /* Add the PHI node arguments. */
5719 add_phi_args_after_copy (region_copy, n_region, snew);
5721 /* Get rid of now superfluous conditions and associated edges (and phi node
5722 arguments). */
5723 exit_bb = exit->dest;
5725 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5726 PENDING_STMT (e) = NULL;
5728 /* The latch of ORIG_LOOP was copied, and so was the backedge
5729 to the original header. We redirect this backedge to EXIT_BB. */
5730 for (i = 0; i < n_region; i++)
5731 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5733 gcc_assert (single_succ_edge (region_copy[i]));
5734 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5735 PENDING_STMT (e) = NULL;
5736 for (psi = gsi_start_phis (exit_bb);
5737 !gsi_end_p (psi);
5738 gsi_next (&psi))
5740 phi = gsi_stmt (psi);
5741 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5742 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5745 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5746 PENDING_STMT (e) = NULL;
5748 /* Anything that is outside of the region, but was dominated by something
5749 inside needs to update dominance info. */
5750 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5751 VEC_free (basic_block, heap, doms);
5752 /* Update the SSA web. */
5753 update_ssa (TODO_update_ssa);
5755 if (free_region_copy)
5756 free (region_copy);
5758 free_original_copy_tables ();
5759 return true;
5762 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5763 adding blocks when the dominator traversal reaches EXIT. This
5764 function silently assumes that ENTRY strictly dominates EXIT. */
5766 void
5767 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5768 VEC(basic_block,heap) **bbs_p)
5770 basic_block son;
5772 for (son = first_dom_son (CDI_DOMINATORS, entry);
5773 son;
5774 son = next_dom_son (CDI_DOMINATORS, son))
5776 VEC_safe_push (basic_block, heap, *bbs_p, son);
5777 if (son != exit)
5778 gather_blocks_in_sese_region (son, exit, bbs_p);
5782 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5783 The duplicates are recorded in VARS_MAP. */
5785 static void
5786 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5787 tree to_context)
5789 tree t = *tp, new_t;
5790 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5791 void **loc;
5793 if (DECL_CONTEXT (t) == to_context)
5794 return;
5796 loc = pointer_map_contains (vars_map, t);
5798 if (!loc)
5800 loc = pointer_map_insert (vars_map, t);
5802 if (SSA_VAR_P (t))
5804 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5805 add_local_decl (f, new_t);
5807 else
5809 gcc_assert (TREE_CODE (t) == CONST_DECL);
5810 new_t = copy_node (t);
5812 DECL_CONTEXT (new_t) = to_context;
5814 *loc = new_t;
5816 else
5817 new_t = (tree) *loc;
5819 *tp = new_t;
5823 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5824 VARS_MAP maps old ssa names and var_decls to the new ones. */
5826 static tree
5827 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5828 tree to_context)
5830 void **loc;
5831 tree new_name, decl = SSA_NAME_VAR (name);
5833 gcc_assert (is_gimple_reg (name));
5835 loc = pointer_map_contains (vars_map, name);
5837 if (!loc)
5839 replace_by_duplicate_decl (&decl, vars_map, to_context);
5841 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5842 if (gimple_in_ssa_p (cfun))
5843 add_referenced_var (decl);
5845 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5846 if (SSA_NAME_IS_DEFAULT_DEF (name))
5847 set_default_def (decl, new_name);
5848 pop_cfun ();
5850 loc = pointer_map_insert (vars_map, name);
5851 *loc = new_name;
5853 else
5854 new_name = (tree) *loc;
5856 return new_name;
5859 struct move_stmt_d
5861 tree orig_block;
5862 tree new_block;
5863 tree from_context;
5864 tree to_context;
5865 struct pointer_map_t *vars_map;
5866 htab_t new_label_map;
5867 struct pointer_map_t *eh_map;
5868 bool remap_decls_p;
5871 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5872 contained in *TP if it has been ORIG_BLOCK previously and change the
5873 DECL_CONTEXT of every local variable referenced in *TP. */
5875 static tree
5876 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5878 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5879 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5880 tree t = *tp;
5882 if (EXPR_P (t))
5883 /* We should never have TREE_BLOCK set on non-statements. */
5884 gcc_assert (!TREE_BLOCK (t));
5886 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5888 if (TREE_CODE (t) == SSA_NAME)
5889 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5890 else if (TREE_CODE (t) == LABEL_DECL)
5892 if (p->new_label_map)
5894 struct tree_map in, *out;
5895 in.base.from = t;
5896 out = (struct tree_map *)
5897 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5898 if (out)
5899 *tp = t = out->to;
5902 DECL_CONTEXT (t) = p->to_context;
5904 else if (p->remap_decls_p)
5906 /* Replace T with its duplicate. T should no longer appear in the
5907 parent function, so this looks wasteful; however, it may appear
5908 in referenced_vars, and more importantly, as virtual operands of
5909 statements, and in alias lists of other variables. It would be
5910 quite difficult to expunge it from all those places. ??? It might
5911 suffice to do this for addressable variables. */
5912 if ((TREE_CODE (t) == VAR_DECL
5913 && !is_global_var (t))
5914 || TREE_CODE (t) == CONST_DECL)
5915 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5917 if (SSA_VAR_P (t)
5918 && gimple_in_ssa_p (cfun))
5920 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5921 add_referenced_var (*tp);
5922 pop_cfun ();
5925 *walk_subtrees = 0;
5927 else if (TYPE_P (t))
5928 *walk_subtrees = 0;
5930 return NULL_TREE;
5933 /* Helper for move_stmt_r. Given an EH region number for the source
5934 function, map that to the duplicate EH regio number in the dest. */
5936 static int
5937 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5939 eh_region old_r, new_r;
5940 void **slot;
5942 old_r = get_eh_region_from_number (old_nr);
5943 slot = pointer_map_contains (p->eh_map, old_r);
5944 new_r = (eh_region) *slot;
5946 return new_r->index;
5949 /* Similar, but operate on INTEGER_CSTs. */
5951 static tree
5952 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5954 int old_nr, new_nr;
5956 old_nr = tree_low_cst (old_t_nr, 0);
5957 new_nr = move_stmt_eh_region_nr (old_nr, p);
5959 return build_int_cst (integer_type_node, new_nr);
5962 /* Like move_stmt_op, but for gimple statements.
5964 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5965 contained in the current statement in *GSI_P and change the
5966 DECL_CONTEXT of every local variable referenced in the current
5967 statement. */
5969 static tree
5970 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5971 struct walk_stmt_info *wi)
5973 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5974 gimple stmt = gsi_stmt (*gsi_p);
5975 tree block = gimple_block (stmt);
5977 if (p->orig_block == NULL_TREE
5978 || block == p->orig_block
5979 || block == NULL_TREE)
5980 gimple_set_block (stmt, p->new_block);
5981 #ifdef ENABLE_CHECKING
5982 else if (block != p->new_block)
5984 while (block && block != p->orig_block)
5985 block = BLOCK_SUPERCONTEXT (block);
5986 gcc_assert (block);
5988 #endif
5990 switch (gimple_code (stmt))
5992 case GIMPLE_CALL:
5993 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5995 tree r, fndecl = gimple_call_fndecl (stmt);
5996 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5997 switch (DECL_FUNCTION_CODE (fndecl))
5999 case BUILT_IN_EH_COPY_VALUES:
6000 r = gimple_call_arg (stmt, 1);
6001 r = move_stmt_eh_region_tree_nr (r, p);
6002 gimple_call_set_arg (stmt, 1, r);
6003 /* FALLTHRU */
6005 case BUILT_IN_EH_POINTER:
6006 case BUILT_IN_EH_FILTER:
6007 r = gimple_call_arg (stmt, 0);
6008 r = move_stmt_eh_region_tree_nr (r, p);
6009 gimple_call_set_arg (stmt, 0, r);
6010 break;
6012 default:
6013 break;
6016 break;
6018 case GIMPLE_RESX:
6020 int r = gimple_resx_region (stmt);
6021 r = move_stmt_eh_region_nr (r, p);
6022 gimple_resx_set_region (stmt, r);
6024 break;
6026 case GIMPLE_EH_DISPATCH:
6028 int r = gimple_eh_dispatch_region (stmt);
6029 r = move_stmt_eh_region_nr (r, p);
6030 gimple_eh_dispatch_set_region (stmt, r);
6032 break;
6034 case GIMPLE_OMP_RETURN:
6035 case GIMPLE_OMP_CONTINUE:
6036 break;
6037 default:
6038 if (is_gimple_omp (stmt))
6040 /* Do not remap variables inside OMP directives. Variables
6041 referenced in clauses and directive header belong to the
6042 parent function and should not be moved into the child
6043 function. */
6044 bool save_remap_decls_p = p->remap_decls_p;
6045 p->remap_decls_p = false;
6046 *handled_ops_p = true;
6048 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
6049 move_stmt_op, wi);
6051 p->remap_decls_p = save_remap_decls_p;
6053 break;
6056 return NULL_TREE;
6059 /* Move basic block BB from function CFUN to function DEST_FN. The
6060 block is moved out of the original linked list and placed after
6061 block AFTER in the new list. Also, the block is removed from the
6062 original array of blocks and placed in DEST_FN's array of blocks.
6063 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6064 updated to reflect the moved edges.
6066 The local variables are remapped to new instances, VARS_MAP is used
6067 to record the mapping. */
6069 static void
6070 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6071 basic_block after, bool update_edge_count_p,
6072 struct move_stmt_d *d)
6074 struct control_flow_graph *cfg;
6075 edge_iterator ei;
6076 edge e;
6077 gimple_stmt_iterator si;
6078 unsigned old_len, new_len;
6080 /* Remove BB from dominance structures. */
6081 delete_from_dominance_info (CDI_DOMINATORS, bb);
6082 if (current_loops)
6083 remove_bb_from_loops (bb);
6085 /* Link BB to the new linked list. */
6086 move_block_after (bb, after);
6088 /* Update the edge count in the corresponding flowgraphs. */
6089 if (update_edge_count_p)
6090 FOR_EACH_EDGE (e, ei, bb->succs)
6092 cfun->cfg->x_n_edges--;
6093 dest_cfun->cfg->x_n_edges++;
6096 /* Remove BB from the original basic block array. */
6097 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
6098 cfun->cfg->x_n_basic_blocks--;
6100 /* Grow DEST_CFUN's basic block array if needed. */
6101 cfg = dest_cfun->cfg;
6102 cfg->x_n_basic_blocks++;
6103 if (bb->index >= cfg->x_last_basic_block)
6104 cfg->x_last_basic_block = bb->index + 1;
6106 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
6107 if ((unsigned) cfg->x_last_basic_block >= old_len)
6109 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6110 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
6111 new_len);
6114 VEC_replace (basic_block, cfg->x_basic_block_info,
6115 bb->index, bb);
6117 /* Remap the variables in phi nodes. */
6118 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6120 gimple phi = gsi_stmt (si);
6121 use_operand_p use;
6122 tree op = PHI_RESULT (phi);
6123 ssa_op_iter oi;
6125 if (!is_gimple_reg (op))
6127 /* Remove the phi nodes for virtual operands (alias analysis will be
6128 run for the new function, anyway). */
6129 remove_phi_node (&si, true);
6130 continue;
6133 SET_PHI_RESULT (phi,
6134 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6135 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6137 op = USE_FROM_PTR (use);
6138 if (TREE_CODE (op) == SSA_NAME)
6139 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6142 gsi_next (&si);
6145 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6147 gimple stmt = gsi_stmt (si);
6148 struct walk_stmt_info wi;
6150 memset (&wi, 0, sizeof (wi));
6151 wi.info = d;
6152 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6154 if (gimple_code (stmt) == GIMPLE_LABEL)
6156 tree label = gimple_label_label (stmt);
6157 int uid = LABEL_DECL_UID (label);
6159 gcc_assert (uid > -1);
6161 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
6162 if (old_len <= (unsigned) uid)
6164 new_len = 3 * uid / 2 + 1;
6165 VEC_safe_grow_cleared (basic_block, gc,
6166 cfg->x_label_to_block_map, new_len);
6169 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
6170 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6172 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6174 if (uid >= dest_cfun->cfg->last_label_uid)
6175 dest_cfun->cfg->last_label_uid = uid + 1;
6178 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6179 remove_stmt_from_eh_lp_fn (cfun, stmt);
6181 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6182 gimple_remove_stmt_histograms (cfun, stmt);
6184 /* We cannot leave any operands allocated from the operand caches of
6185 the current function. */
6186 free_stmt_operands (stmt);
6187 push_cfun (dest_cfun);
6188 update_stmt (stmt);
6189 pop_cfun ();
6192 FOR_EACH_EDGE (e, ei, bb->succs)
6193 if (e->goto_locus)
6195 tree block = e->goto_block;
6196 if (d->orig_block == NULL_TREE
6197 || block == d->orig_block)
6198 e->goto_block = d->new_block;
6199 #ifdef ENABLE_CHECKING
6200 else if (block != d->new_block)
6202 while (block && block != d->orig_block)
6203 block = BLOCK_SUPERCONTEXT (block);
6204 gcc_assert (block);
6206 #endif
6210 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6211 the outermost EH region. Use REGION as the incoming base EH region. */
6213 static eh_region
6214 find_outermost_region_in_block (struct function *src_cfun,
6215 basic_block bb, eh_region region)
6217 gimple_stmt_iterator si;
6219 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6221 gimple stmt = gsi_stmt (si);
6222 eh_region stmt_region;
6223 int lp_nr;
6225 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6226 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6227 if (stmt_region)
6229 if (region == NULL)
6230 region = stmt_region;
6231 else if (stmt_region != region)
6233 region = eh_region_outermost (src_cfun, stmt_region, region);
6234 gcc_assert (region != NULL);
6239 return region;
6242 static tree
6243 new_label_mapper (tree decl, void *data)
6245 htab_t hash = (htab_t) data;
6246 struct tree_map *m;
6247 void **slot;
6249 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6251 m = XNEW (struct tree_map);
6252 m->hash = DECL_UID (decl);
6253 m->base.from = decl;
6254 m->to = create_artificial_label (UNKNOWN_LOCATION);
6255 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6256 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6257 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6259 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6260 gcc_assert (*slot == NULL);
6262 *slot = m;
6264 return m->to;
6267 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6268 subblocks. */
6270 static void
6271 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6272 tree to_context)
6274 tree *tp, t;
6276 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6278 t = *tp;
6279 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6280 continue;
6281 replace_by_duplicate_decl (&t, vars_map, to_context);
6282 if (t != *tp)
6284 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6286 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6287 DECL_HAS_VALUE_EXPR_P (t) = 1;
6289 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6290 *tp = t;
6294 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6295 replace_block_vars_by_duplicates (block, vars_map, to_context);
6298 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6299 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6300 single basic block in the original CFG and the new basic block is
6301 returned. DEST_CFUN must not have a CFG yet.
6303 Note that the region need not be a pure SESE region. Blocks inside
6304 the region may contain calls to abort/exit. The only restriction
6305 is that ENTRY_BB should be the only entry point and it must
6306 dominate EXIT_BB.
6308 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6309 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6310 to the new function.
6312 All local variables referenced in the region are assumed to be in
6313 the corresponding BLOCK_VARS and unexpanded variable lists
6314 associated with DEST_CFUN. */
6316 basic_block
6317 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6318 basic_block exit_bb, tree orig_block)
6320 VEC(basic_block,heap) *bbs, *dom_bbs;
6321 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6322 basic_block after, bb, *entry_pred, *exit_succ, abb;
6323 struct function *saved_cfun = cfun;
6324 int *entry_flag, *exit_flag;
6325 unsigned *entry_prob, *exit_prob;
6326 unsigned i, num_entry_edges, num_exit_edges;
6327 edge e;
6328 edge_iterator ei;
6329 htab_t new_label_map;
6330 struct pointer_map_t *vars_map, *eh_map;
6331 struct loop *loop = entry_bb->loop_father;
6332 struct move_stmt_d d;
6334 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6335 region. */
6336 gcc_assert (entry_bb != exit_bb
6337 && (!exit_bb
6338 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6340 /* Collect all the blocks in the region. Manually add ENTRY_BB
6341 because it won't be added by dfs_enumerate_from. */
6342 bbs = NULL;
6343 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6344 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6346 /* The blocks that used to be dominated by something in BBS will now be
6347 dominated by the new block. */
6348 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6349 VEC_address (basic_block, bbs),
6350 VEC_length (basic_block, bbs));
6352 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6353 the predecessor edges to ENTRY_BB and the successor edges to
6354 EXIT_BB so that we can re-attach them to the new basic block that
6355 will replace the region. */
6356 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6357 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6358 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6359 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6360 i = 0;
6361 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6363 entry_prob[i] = e->probability;
6364 entry_flag[i] = e->flags;
6365 entry_pred[i++] = e->src;
6366 remove_edge (e);
6369 if (exit_bb)
6371 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6372 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6373 sizeof (basic_block));
6374 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6375 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6376 i = 0;
6377 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6379 exit_prob[i] = e->probability;
6380 exit_flag[i] = e->flags;
6381 exit_succ[i++] = e->dest;
6382 remove_edge (e);
6385 else
6387 num_exit_edges = 0;
6388 exit_succ = NULL;
6389 exit_flag = NULL;
6390 exit_prob = NULL;
6393 /* Switch context to the child function to initialize DEST_FN's CFG. */
6394 gcc_assert (dest_cfun->cfg == NULL);
6395 push_cfun (dest_cfun);
6397 init_empty_tree_cfg ();
6399 /* Initialize EH information for the new function. */
6400 eh_map = NULL;
6401 new_label_map = NULL;
6402 if (saved_cfun->eh)
6404 eh_region region = NULL;
6406 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6407 region = find_outermost_region_in_block (saved_cfun, bb, region);
6409 init_eh_for_function ();
6410 if (region != NULL)
6412 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6413 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6414 new_label_mapper, new_label_map);
6418 pop_cfun ();
6420 /* Move blocks from BBS into DEST_CFUN. */
6421 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6422 after = dest_cfun->cfg->x_entry_block_ptr;
6423 vars_map = pointer_map_create ();
6425 memset (&d, 0, sizeof (d));
6426 d.orig_block = orig_block;
6427 d.new_block = DECL_INITIAL (dest_cfun->decl);
6428 d.from_context = cfun->decl;
6429 d.to_context = dest_cfun->decl;
6430 d.vars_map = vars_map;
6431 d.new_label_map = new_label_map;
6432 d.eh_map = eh_map;
6433 d.remap_decls_p = true;
6435 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6437 /* No need to update edge counts on the last block. It has
6438 already been updated earlier when we detached the region from
6439 the original CFG. */
6440 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6441 after = bb;
6444 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6445 if (orig_block)
6447 tree block;
6448 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6449 == NULL_TREE);
6450 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6451 = BLOCK_SUBBLOCKS (orig_block);
6452 for (block = BLOCK_SUBBLOCKS (orig_block);
6453 block; block = BLOCK_CHAIN (block))
6454 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6455 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6458 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6459 vars_map, dest_cfun->decl);
6461 if (new_label_map)
6462 htab_delete (new_label_map);
6463 if (eh_map)
6464 pointer_map_destroy (eh_map);
6465 pointer_map_destroy (vars_map);
6467 /* Rewire the entry and exit blocks. The successor to the entry
6468 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6469 the child function. Similarly, the predecessor of DEST_FN's
6470 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6471 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6472 various CFG manipulation function get to the right CFG.
6474 FIXME, this is silly. The CFG ought to become a parameter to
6475 these helpers. */
6476 push_cfun (dest_cfun);
6477 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6478 if (exit_bb)
6479 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6480 pop_cfun ();
6482 /* Back in the original function, the SESE region has disappeared,
6483 create a new basic block in its place. */
6484 bb = create_empty_bb (entry_pred[0]);
6485 if (current_loops)
6486 add_bb_to_loop (bb, loop);
6487 for (i = 0; i < num_entry_edges; i++)
6489 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6490 e->probability = entry_prob[i];
6493 for (i = 0; i < num_exit_edges; i++)
6495 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6496 e->probability = exit_prob[i];
6499 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6500 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6501 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6502 VEC_free (basic_block, heap, dom_bbs);
6504 if (exit_bb)
6506 free (exit_prob);
6507 free (exit_flag);
6508 free (exit_succ);
6510 free (entry_prob);
6511 free (entry_flag);
6512 free (entry_pred);
6513 VEC_free (basic_block, heap, bbs);
6515 return bb;
6519 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6522 void
6523 dump_function_to_file (tree fn, FILE *file, int flags)
6525 tree arg, var;
6526 struct function *dsf;
6527 bool ignore_topmost_bind = false, any_var = false;
6528 basic_block bb;
6529 tree chain;
6530 bool tmclone = TREE_CODE (fn) == FUNCTION_DECL && decl_is_tm_clone (fn);
6532 fprintf (file, "%s %s(", lang_hooks.decl_printable_name (fn, 2),
6533 tmclone ? "[tm-clone] " : "");
6535 arg = DECL_ARGUMENTS (fn);
6536 while (arg)
6538 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6539 fprintf (file, " ");
6540 print_generic_expr (file, arg, dump_flags);
6541 if (flags & TDF_VERBOSE)
6542 print_node (file, "", arg, 4);
6543 if (DECL_CHAIN (arg))
6544 fprintf (file, ", ");
6545 arg = DECL_CHAIN (arg);
6547 fprintf (file, ")\n");
6549 if (flags & TDF_VERBOSE)
6550 print_node (file, "", fn, 2);
6552 dsf = DECL_STRUCT_FUNCTION (fn);
6553 if (dsf && (flags & TDF_EH))
6554 dump_eh_tree (file, dsf);
6556 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6558 dump_node (fn, TDF_SLIM | flags, file);
6559 return;
6562 /* Switch CFUN to point to FN. */
6563 push_cfun (DECL_STRUCT_FUNCTION (fn));
6565 /* When GIMPLE is lowered, the variables are no longer available in
6566 BIND_EXPRs, so display them separately. */
6567 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6569 unsigned ix;
6570 ignore_topmost_bind = true;
6572 fprintf (file, "{\n");
6573 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6575 print_generic_decl (file, var, flags);
6576 if (flags & TDF_VERBOSE)
6577 print_node (file, "", var, 4);
6578 fprintf (file, "\n");
6580 any_var = true;
6584 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6586 /* If the CFG has been built, emit a CFG-based dump. */
6587 check_bb_profile (ENTRY_BLOCK_PTR, file);
6588 if (!ignore_topmost_bind)
6589 fprintf (file, "{\n");
6591 if (any_var && n_basic_blocks)
6592 fprintf (file, "\n");
6594 FOR_EACH_BB (bb)
6595 gimple_dump_bb (bb, file, 2, flags);
6597 fprintf (file, "}\n");
6598 check_bb_profile (EXIT_BLOCK_PTR, file);
6600 else if (DECL_SAVED_TREE (fn) == NULL)
6602 /* The function is now in GIMPLE form but the CFG has not been
6603 built yet. Emit the single sequence of GIMPLE statements
6604 that make up its body. */
6605 gimple_seq body = gimple_body (fn);
6607 if (gimple_seq_first_stmt (body)
6608 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6609 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6610 print_gimple_seq (file, body, 0, flags);
6611 else
6613 if (!ignore_topmost_bind)
6614 fprintf (file, "{\n");
6616 if (any_var)
6617 fprintf (file, "\n");
6619 print_gimple_seq (file, body, 2, flags);
6620 fprintf (file, "}\n");
6623 else
6625 int indent;
6627 /* Make a tree based dump. */
6628 chain = DECL_SAVED_TREE (fn);
6630 if (chain && TREE_CODE (chain) == BIND_EXPR)
6632 if (ignore_topmost_bind)
6634 chain = BIND_EXPR_BODY (chain);
6635 indent = 2;
6637 else
6638 indent = 0;
6640 else
6642 if (!ignore_topmost_bind)
6643 fprintf (file, "{\n");
6644 indent = 2;
6647 if (any_var)
6648 fprintf (file, "\n");
6650 print_generic_stmt_indented (file, chain, flags, indent);
6651 if (ignore_topmost_bind)
6652 fprintf (file, "}\n");
6655 if (flags & TDF_ENUMERATE_LOCALS)
6656 dump_enumerated_decls (file, flags);
6657 fprintf (file, "\n\n");
6659 /* Restore CFUN. */
6660 pop_cfun ();
6664 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6666 DEBUG_FUNCTION void
6667 debug_function (tree fn, int flags)
6669 dump_function_to_file (fn, stderr, flags);
6673 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6675 static void
6676 print_pred_bbs (FILE *file, basic_block bb)
6678 edge e;
6679 edge_iterator ei;
6681 FOR_EACH_EDGE (e, ei, bb->preds)
6682 fprintf (file, "bb_%d ", e->src->index);
6686 /* Print on FILE the indexes for the successors of basic_block BB. */
6688 static void
6689 print_succ_bbs (FILE *file, basic_block bb)
6691 edge e;
6692 edge_iterator ei;
6694 FOR_EACH_EDGE (e, ei, bb->succs)
6695 fprintf (file, "bb_%d ", e->dest->index);
6698 /* Print to FILE the basic block BB following the VERBOSITY level. */
6700 void
6701 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6703 char *s_indent = (char *) alloca ((size_t) indent + 1);
6704 memset ((void *) s_indent, ' ', (size_t) indent);
6705 s_indent[indent] = '\0';
6707 /* Print basic_block's header. */
6708 if (verbosity >= 2)
6710 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6711 print_pred_bbs (file, bb);
6712 fprintf (file, "}, succs = {");
6713 print_succ_bbs (file, bb);
6714 fprintf (file, "})\n");
6717 /* Print basic_block's body. */
6718 if (verbosity >= 3)
6720 fprintf (file, "%s {\n", s_indent);
6721 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6722 fprintf (file, "%s }\n", s_indent);
6726 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6728 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6729 VERBOSITY level this outputs the contents of the loop, or just its
6730 structure. */
6732 static void
6733 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6735 char *s_indent;
6736 basic_block bb;
6738 if (loop == NULL)
6739 return;
6741 s_indent = (char *) alloca ((size_t) indent + 1);
6742 memset ((void *) s_indent, ' ', (size_t) indent);
6743 s_indent[indent] = '\0';
6745 /* Print loop's header. */
6746 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6747 loop->num, loop->header->index, loop->latch->index);
6748 fprintf (file, ", niter = ");
6749 print_generic_expr (file, loop->nb_iterations, 0);
6751 if (loop->any_upper_bound)
6753 fprintf (file, ", upper_bound = ");
6754 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6757 if (loop->any_estimate)
6759 fprintf (file, ", estimate = ");
6760 dump_double_int (file, loop->nb_iterations_estimate, true);
6762 fprintf (file, ")\n");
6764 /* Print loop's body. */
6765 if (verbosity >= 1)
6767 fprintf (file, "%s{\n", s_indent);
6768 FOR_EACH_BB (bb)
6769 if (bb->loop_father == loop)
6770 print_loops_bb (file, bb, indent, verbosity);
6772 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6773 fprintf (file, "%s}\n", s_indent);
6777 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6778 spaces. Following VERBOSITY level this outputs the contents of the
6779 loop, or just its structure. */
6781 static void
6782 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6784 if (loop == NULL)
6785 return;
6787 print_loop (file, loop, indent, verbosity);
6788 print_loop_and_siblings (file, loop->next, indent, verbosity);
6791 /* Follow a CFG edge from the entry point of the program, and on entry
6792 of a loop, pretty print the loop structure on FILE. */
6794 void
6795 print_loops (FILE *file, int verbosity)
6797 basic_block bb;
6799 bb = ENTRY_BLOCK_PTR;
6800 if (bb && bb->loop_father)
6801 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6805 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6807 DEBUG_FUNCTION void
6808 debug_loops (int verbosity)
6810 print_loops (stderr, verbosity);
6813 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6815 DEBUG_FUNCTION void
6816 debug_loop (struct loop *loop, int verbosity)
6818 print_loop (stderr, loop, 0, verbosity);
6821 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6822 level. */
6824 DEBUG_FUNCTION void
6825 debug_loop_num (unsigned num, int verbosity)
6827 debug_loop (get_loop (num), verbosity);
6830 /* Return true if BB ends with a call, possibly followed by some
6831 instructions that must stay with the call. Return false,
6832 otherwise. */
6834 static bool
6835 gimple_block_ends_with_call_p (basic_block bb)
6837 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6838 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6842 /* Return true if BB ends with a conditional branch. Return false,
6843 otherwise. */
6845 static bool
6846 gimple_block_ends_with_condjump_p (const_basic_block bb)
6848 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6849 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6853 /* Return true if we need to add fake edge to exit at statement T.
6854 Helper function for gimple_flow_call_edges_add. */
6856 static bool
6857 need_fake_edge_p (gimple t)
6859 tree fndecl = NULL_TREE;
6860 int call_flags = 0;
6862 /* NORETURN and LONGJMP calls already have an edge to exit.
6863 CONST and PURE calls do not need one.
6864 We don't currently check for CONST and PURE here, although
6865 it would be a good idea, because those attributes are
6866 figured out from the RTL in mark_constant_function, and
6867 the counter incrementation code from -fprofile-arcs
6868 leads to different results from -fbranch-probabilities. */
6869 if (is_gimple_call (t))
6871 fndecl = gimple_call_fndecl (t);
6872 call_flags = gimple_call_flags (t);
6875 if (is_gimple_call (t)
6876 && fndecl
6877 && DECL_BUILT_IN (fndecl)
6878 && (call_flags & ECF_NOTHROW)
6879 && !(call_flags & ECF_RETURNS_TWICE)
6880 /* fork() doesn't really return twice, but the effect of
6881 wrapping it in __gcov_fork() which calls __gcov_flush()
6882 and clears the counters before forking has the same
6883 effect as returning twice. Force a fake edge. */
6884 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6885 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6886 return false;
6888 if (is_gimple_call (t)
6889 && !(call_flags & ECF_NORETURN))
6890 return true;
6892 if (gimple_code (t) == GIMPLE_ASM
6893 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6894 return true;
6896 return false;
6900 /* Add fake edges to the function exit for any non constant and non
6901 noreturn calls, volatile inline assembly in the bitmap of blocks
6902 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6903 the number of blocks that were split.
6905 The goal is to expose cases in which entering a basic block does
6906 not imply that all subsequent instructions must be executed. */
6908 static int
6909 gimple_flow_call_edges_add (sbitmap blocks)
6911 int i;
6912 int blocks_split = 0;
6913 int last_bb = last_basic_block;
6914 bool check_last_block = false;
6916 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6917 return 0;
6919 if (! blocks)
6920 check_last_block = true;
6921 else
6922 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6924 /* In the last basic block, before epilogue generation, there will be
6925 a fallthru edge to EXIT. Special care is required if the last insn
6926 of the last basic block is a call because make_edge folds duplicate
6927 edges, which would result in the fallthru edge also being marked
6928 fake, which would result in the fallthru edge being removed by
6929 remove_fake_edges, which would result in an invalid CFG.
6931 Moreover, we can't elide the outgoing fake edge, since the block
6932 profiler needs to take this into account in order to solve the minimal
6933 spanning tree in the case that the call doesn't return.
6935 Handle this by adding a dummy instruction in a new last basic block. */
6936 if (check_last_block)
6938 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6939 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6940 gimple t = NULL;
6942 if (!gsi_end_p (gsi))
6943 t = gsi_stmt (gsi);
6945 if (t && need_fake_edge_p (t))
6947 edge e;
6949 e = find_edge (bb, EXIT_BLOCK_PTR);
6950 if (e)
6952 gsi_insert_on_edge (e, gimple_build_nop ());
6953 gsi_commit_edge_inserts ();
6958 /* Now add fake edges to the function exit for any non constant
6959 calls since there is no way that we can determine if they will
6960 return or not... */
6961 for (i = 0; i < last_bb; i++)
6963 basic_block bb = BASIC_BLOCK (i);
6964 gimple_stmt_iterator gsi;
6965 gimple stmt, last_stmt;
6967 if (!bb)
6968 continue;
6970 if (blocks && !TEST_BIT (blocks, i))
6971 continue;
6973 gsi = gsi_last_nondebug_bb (bb);
6974 if (!gsi_end_p (gsi))
6976 last_stmt = gsi_stmt (gsi);
6979 stmt = gsi_stmt (gsi);
6980 if (need_fake_edge_p (stmt))
6982 edge e;
6984 /* The handling above of the final block before the
6985 epilogue should be enough to verify that there is
6986 no edge to the exit block in CFG already.
6987 Calling make_edge in such case would cause us to
6988 mark that edge as fake and remove it later. */
6989 #ifdef ENABLE_CHECKING
6990 if (stmt == last_stmt)
6992 e = find_edge (bb, EXIT_BLOCK_PTR);
6993 gcc_assert (e == NULL);
6995 #endif
6997 /* Note that the following may create a new basic block
6998 and renumber the existing basic blocks. */
6999 if (stmt != last_stmt)
7001 e = split_block (bb, stmt);
7002 if (e)
7003 blocks_split++;
7005 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7007 gsi_prev (&gsi);
7009 while (!gsi_end_p (gsi));
7013 if (blocks_split)
7014 verify_flow_info ();
7016 return blocks_split;
7019 /* Removes edge E and all the blocks dominated by it, and updates dominance
7020 information. The IL in E->src needs to be updated separately.
7021 If dominance info is not available, only the edge E is removed.*/
7023 void
7024 remove_edge_and_dominated_blocks (edge e)
7026 VEC (basic_block, heap) *bbs_to_remove = NULL;
7027 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
7028 bitmap df, df_idom;
7029 edge f;
7030 edge_iterator ei;
7031 bool none_removed = false;
7032 unsigned i;
7033 basic_block bb, dbb;
7034 bitmap_iterator bi;
7036 if (!dom_info_available_p (CDI_DOMINATORS))
7038 remove_edge (e);
7039 return;
7042 /* No updating is needed for edges to exit. */
7043 if (e->dest == EXIT_BLOCK_PTR)
7045 if (cfgcleanup_altered_bbs)
7046 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7047 remove_edge (e);
7048 return;
7051 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7052 that is not dominated by E->dest, then this set is empty. Otherwise,
7053 all the basic blocks dominated by E->dest are removed.
7055 Also, to DF_IDOM we store the immediate dominators of the blocks in
7056 the dominance frontier of E (i.e., of the successors of the
7057 removed blocks, if there are any, and of E->dest otherwise). */
7058 FOR_EACH_EDGE (f, ei, e->dest->preds)
7060 if (f == e)
7061 continue;
7063 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7065 none_removed = true;
7066 break;
7070 df = BITMAP_ALLOC (NULL);
7071 df_idom = BITMAP_ALLOC (NULL);
7073 if (none_removed)
7074 bitmap_set_bit (df_idom,
7075 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7076 else
7078 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7079 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7081 FOR_EACH_EDGE (f, ei, bb->succs)
7083 if (f->dest != EXIT_BLOCK_PTR)
7084 bitmap_set_bit (df, f->dest->index);
7087 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7088 bitmap_clear_bit (df, bb->index);
7090 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7092 bb = BASIC_BLOCK (i);
7093 bitmap_set_bit (df_idom,
7094 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7098 if (cfgcleanup_altered_bbs)
7100 /* Record the set of the altered basic blocks. */
7101 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7102 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7105 /* Remove E and the cancelled blocks. */
7106 if (none_removed)
7107 remove_edge (e);
7108 else
7110 /* Walk backwards so as to get a chance to substitute all
7111 released DEFs into debug stmts. See
7112 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7113 details. */
7114 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
7115 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
7118 /* Update the dominance information. The immediate dominator may change only
7119 for blocks whose immediate dominator belongs to DF_IDOM:
7121 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7122 removal. Let Z the arbitrary block such that idom(Z) = Y and
7123 Z dominates X after the removal. Before removal, there exists a path P
7124 from Y to X that avoids Z. Let F be the last edge on P that is
7125 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7126 dominates W, and because of P, Z does not dominate W), and W belongs to
7127 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7128 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7130 bb = BASIC_BLOCK (i);
7131 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7132 dbb;
7133 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7134 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
7137 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7139 BITMAP_FREE (df);
7140 BITMAP_FREE (df_idom);
7141 VEC_free (basic_block, heap, bbs_to_remove);
7142 VEC_free (basic_block, heap, bbs_to_fix_dom);
7145 /* Purge dead EH edges from basic block BB. */
7147 bool
7148 gimple_purge_dead_eh_edges (basic_block bb)
7150 bool changed = false;
7151 edge e;
7152 edge_iterator ei;
7153 gimple stmt = last_stmt (bb);
7155 if (stmt && stmt_can_throw_internal (stmt))
7156 return false;
7158 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7160 if (e->flags & EDGE_EH)
7162 remove_edge_and_dominated_blocks (e);
7163 changed = true;
7165 else
7166 ei_next (&ei);
7169 return changed;
7172 /* Purge dead EH edges from basic block listed in BLOCKS. */
7174 bool
7175 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7177 bool changed = false;
7178 unsigned i;
7179 bitmap_iterator bi;
7181 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7183 basic_block bb = BASIC_BLOCK (i);
7185 /* Earlier gimple_purge_dead_eh_edges could have removed
7186 this basic block already. */
7187 gcc_assert (bb || changed);
7188 if (bb != NULL)
7189 changed |= gimple_purge_dead_eh_edges (bb);
7192 return changed;
7195 /* Purge dead abnormal call edges from basic block BB. */
7197 bool
7198 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7200 bool changed = false;
7201 edge e;
7202 edge_iterator ei;
7203 gimple stmt = last_stmt (bb);
7205 if (!cfun->has_nonlocal_label)
7206 return false;
7208 if (stmt && stmt_can_make_abnormal_goto (stmt))
7209 return false;
7211 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7213 if (e->flags & EDGE_ABNORMAL)
7215 remove_edge_and_dominated_blocks (e);
7216 changed = true;
7218 else
7219 ei_next (&ei);
7222 return changed;
7225 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7227 bool
7228 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7230 bool changed = false;
7231 unsigned i;
7232 bitmap_iterator bi;
7234 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7236 basic_block bb = BASIC_BLOCK (i);
7238 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7239 this basic block already. */
7240 gcc_assert (bb || changed);
7241 if (bb != NULL)
7242 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7245 return changed;
7248 /* This function is called whenever a new edge is created or
7249 redirected. */
7251 static void
7252 gimple_execute_on_growing_pred (edge e)
7254 basic_block bb = e->dest;
7256 if (!gimple_seq_empty_p (phi_nodes (bb)))
7257 reserve_phi_args_for_new_edge (bb);
7260 /* This function is called immediately before edge E is removed from
7261 the edge vector E->dest->preds. */
7263 static void
7264 gimple_execute_on_shrinking_pred (edge e)
7266 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7267 remove_phi_args (e);
7270 /*---------------------------------------------------------------------------
7271 Helper functions for Loop versioning
7272 ---------------------------------------------------------------------------*/
7274 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7275 of 'first'. Both of them are dominated by 'new_head' basic block. When
7276 'new_head' was created by 'second's incoming edge it received phi arguments
7277 on the edge by split_edge(). Later, additional edge 'e' was created to
7278 connect 'new_head' and 'first'. Now this routine adds phi args on this
7279 additional edge 'e' that new_head to second edge received as part of edge
7280 splitting. */
7282 static void
7283 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7284 basic_block new_head, edge e)
7286 gimple phi1, phi2;
7287 gimple_stmt_iterator psi1, psi2;
7288 tree def;
7289 edge e2 = find_edge (new_head, second);
7291 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7292 edge, we should always have an edge from NEW_HEAD to SECOND. */
7293 gcc_assert (e2 != NULL);
7295 /* Browse all 'second' basic block phi nodes and add phi args to
7296 edge 'e' for 'first' head. PHI args are always in correct order. */
7298 for (psi2 = gsi_start_phis (second),
7299 psi1 = gsi_start_phis (first);
7300 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7301 gsi_next (&psi2), gsi_next (&psi1))
7303 phi1 = gsi_stmt (psi1);
7304 phi2 = gsi_stmt (psi2);
7305 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7306 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7311 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7312 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7313 the destination of the ELSE part. */
7315 static void
7316 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7317 basic_block second_head ATTRIBUTE_UNUSED,
7318 basic_block cond_bb, void *cond_e)
7320 gimple_stmt_iterator gsi;
7321 gimple new_cond_expr;
7322 tree cond_expr = (tree) cond_e;
7323 edge e0;
7325 /* Build new conditional expr */
7326 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7327 NULL_TREE, NULL_TREE);
7329 /* Add new cond in cond_bb. */
7330 gsi = gsi_last_bb (cond_bb);
7331 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7333 /* Adjust edges appropriately to connect new head with first head
7334 as well as second head. */
7335 e0 = single_succ_edge (cond_bb);
7336 e0->flags &= ~EDGE_FALLTHRU;
7337 e0->flags |= EDGE_FALSE_VALUE;
7340 struct cfg_hooks gimple_cfg_hooks = {
7341 "gimple",
7342 gimple_verify_flow_info,
7343 gimple_dump_bb, /* dump_bb */
7344 create_bb, /* create_basic_block */
7345 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7346 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7347 gimple_can_remove_branch_p, /* can_remove_branch_p */
7348 remove_bb, /* delete_basic_block */
7349 gimple_split_block, /* split_block */
7350 gimple_move_block_after, /* move_block_after */
7351 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7352 gimple_merge_blocks, /* merge_blocks */
7353 gimple_predict_edge, /* predict_edge */
7354 gimple_predicted_by_p, /* predicted_by_p */
7355 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7356 gimple_duplicate_bb, /* duplicate_block */
7357 gimple_split_edge, /* split_edge */
7358 gimple_make_forwarder_block, /* make_forward_block */
7359 NULL, /* tidy_fallthru_edge */
7360 NULL, /* force_nonfallthru */
7361 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7362 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7363 gimple_flow_call_edges_add, /* flow_call_edges_add */
7364 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7365 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7366 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7367 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7368 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7369 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7370 flush_pending_stmts /* flush_pending_stmts */
7374 /* Split all critical edges. */
7376 static unsigned int
7377 split_critical_edges (void)
7379 basic_block bb;
7380 edge e;
7381 edge_iterator ei;
7383 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7384 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7385 mappings around the calls to split_edge. */
7386 start_recording_case_labels ();
7387 FOR_ALL_BB (bb)
7389 FOR_EACH_EDGE (e, ei, bb->succs)
7391 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7392 split_edge (e);
7393 /* PRE inserts statements to edges and expects that
7394 since split_critical_edges was done beforehand, committing edge
7395 insertions will not split more edges. In addition to critical
7396 edges we must split edges that have multiple successors and
7397 end by control flow statements, such as RESX.
7398 Go ahead and split them too. This matches the logic in
7399 gimple_find_edge_insert_loc. */
7400 else if ((!single_pred_p (e->dest)
7401 || !gimple_seq_empty_p (phi_nodes (e->dest))
7402 || e->dest == EXIT_BLOCK_PTR)
7403 && e->src != ENTRY_BLOCK_PTR
7404 && !(e->flags & EDGE_ABNORMAL))
7406 gimple_stmt_iterator gsi;
7408 gsi = gsi_last_bb (e->src);
7409 if (!gsi_end_p (gsi)
7410 && stmt_ends_bb_p (gsi_stmt (gsi))
7411 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7412 && !gimple_call_builtin_p (gsi_stmt (gsi),
7413 BUILT_IN_RETURN)))
7414 split_edge (e);
7418 end_recording_case_labels ();
7419 return 0;
7422 struct gimple_opt_pass pass_split_crit_edges =
7425 GIMPLE_PASS,
7426 "crited", /* name */
7427 NULL, /* gate */
7428 split_critical_edges, /* execute */
7429 NULL, /* sub */
7430 NULL, /* next */
7431 0, /* static_pass_number */
7432 TV_TREE_SPLIT_EDGES, /* tv_id */
7433 PROP_cfg, /* properties required */
7434 PROP_no_crit_edges, /* properties_provided */
7435 0, /* properties_destroyed */
7436 0, /* todo_flags_start */
7437 TODO_verify_flow /* todo_flags_finish */
7442 /* Build a ternary operation and gimplify it. Emit code before GSI.
7443 Return the gimple_val holding the result. */
7445 tree
7446 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7447 tree type, tree a, tree b, tree c)
7449 tree ret;
7450 location_t loc = gimple_location (gsi_stmt (*gsi));
7452 ret = fold_build3_loc (loc, code, type, a, b, c);
7453 STRIP_NOPS (ret);
7455 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7456 GSI_SAME_STMT);
7459 /* Build a binary operation and gimplify it. Emit code before GSI.
7460 Return the gimple_val holding the result. */
7462 tree
7463 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7464 tree type, tree a, tree b)
7466 tree ret;
7468 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7469 STRIP_NOPS (ret);
7471 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7472 GSI_SAME_STMT);
7475 /* Build a unary operation and gimplify it. Emit code before GSI.
7476 Return the gimple_val holding the result. */
7478 tree
7479 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7480 tree a)
7482 tree ret;
7484 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7485 STRIP_NOPS (ret);
7487 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7488 GSI_SAME_STMT);
7493 /* Emit return warnings. */
7495 static unsigned int
7496 execute_warn_function_return (void)
7498 source_location location;
7499 gimple last;
7500 edge e;
7501 edge_iterator ei;
7503 /* If we have a path to EXIT, then we do return. */
7504 if (TREE_THIS_VOLATILE (cfun->decl)
7505 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7507 location = UNKNOWN_LOCATION;
7508 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7510 last = last_stmt (e->src);
7511 if ((gimple_code (last) == GIMPLE_RETURN
7512 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7513 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7514 break;
7516 if (location == UNKNOWN_LOCATION)
7517 location = cfun->function_end_locus;
7518 warning_at (location, 0, "%<noreturn%> function does return");
7521 /* If we see "return;" in some basic block, then we do reach the end
7522 without returning a value. */
7523 else if (warn_return_type
7524 && !TREE_NO_WARNING (cfun->decl)
7525 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7526 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7528 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7530 gimple last = last_stmt (e->src);
7531 if (gimple_code (last) == GIMPLE_RETURN
7532 && gimple_return_retval (last) == NULL
7533 && !gimple_no_warning_p (last))
7535 location = gimple_location (last);
7536 if (location == UNKNOWN_LOCATION)
7537 location = cfun->function_end_locus;
7538 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7539 TREE_NO_WARNING (cfun->decl) = 1;
7540 break;
7544 return 0;
7548 /* Given a basic block B which ends with a conditional and has
7549 precisely two successors, determine which of the edges is taken if
7550 the conditional is true and which is taken if the conditional is
7551 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7553 void
7554 extract_true_false_edges_from_block (basic_block b,
7555 edge *true_edge,
7556 edge *false_edge)
7558 edge e = EDGE_SUCC (b, 0);
7560 if (e->flags & EDGE_TRUE_VALUE)
7562 *true_edge = e;
7563 *false_edge = EDGE_SUCC (b, 1);
7565 else
7567 *false_edge = e;
7568 *true_edge = EDGE_SUCC (b, 1);
7572 struct gimple_opt_pass pass_warn_function_return =
7575 GIMPLE_PASS,
7576 "*warn_function_return", /* name */
7577 NULL, /* gate */
7578 execute_warn_function_return, /* execute */
7579 NULL, /* sub */
7580 NULL, /* next */
7581 0, /* static_pass_number */
7582 TV_NONE, /* tv_id */
7583 PROP_cfg, /* properties_required */
7584 0, /* properties_provided */
7585 0, /* properties_destroyed */
7586 0, /* todo_flags_start */
7587 0 /* todo_flags_finish */
7591 /* Emit noreturn warnings. */
7593 static unsigned int
7594 execute_warn_function_noreturn (void)
7596 if (!TREE_THIS_VOLATILE (current_function_decl)
7597 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7598 warn_function_noreturn (current_function_decl);
7599 return 0;
7602 static bool
7603 gate_warn_function_noreturn (void)
7605 return warn_suggest_attribute_noreturn;
7608 struct gimple_opt_pass pass_warn_function_noreturn =
7611 GIMPLE_PASS,
7612 "*warn_function_noreturn", /* name */
7613 gate_warn_function_noreturn, /* gate */
7614 execute_warn_function_noreturn, /* execute */
7615 NULL, /* sub */
7616 NULL, /* next */
7617 0, /* static_pass_number */
7618 TV_NONE, /* tv_id */
7619 PROP_cfg, /* properties_required */
7620 0, /* properties_provided */
7621 0, /* properties_destroyed */
7622 0, /* todo_flags_start */
7623 0 /* todo_flags_finish */
7628 /* Walk a gimplified function and warn for functions whose return value is
7629 ignored and attribute((warn_unused_result)) is set. This is done before
7630 inlining, so we don't have to worry about that. */
7632 static void
7633 do_warn_unused_result (gimple_seq seq)
7635 tree fdecl, ftype;
7636 gimple_stmt_iterator i;
7638 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7640 gimple g = gsi_stmt (i);
7642 switch (gimple_code (g))
7644 case GIMPLE_BIND:
7645 do_warn_unused_result (gimple_bind_body (g));
7646 break;
7647 case GIMPLE_TRY:
7648 do_warn_unused_result (gimple_try_eval (g));
7649 do_warn_unused_result (gimple_try_cleanup (g));
7650 break;
7651 case GIMPLE_CATCH:
7652 do_warn_unused_result (gimple_catch_handler (g));
7653 break;
7654 case GIMPLE_EH_FILTER:
7655 do_warn_unused_result (gimple_eh_filter_failure (g));
7656 break;
7658 case GIMPLE_CALL:
7659 if (gimple_call_lhs (g))
7660 break;
7661 if (gimple_call_internal_p (g))
7662 break;
7664 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7665 LHS. All calls whose value is ignored should be
7666 represented like this. Look for the attribute. */
7667 fdecl = gimple_call_fndecl (g);
7668 ftype = gimple_call_fntype (g);
7670 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7672 location_t loc = gimple_location (g);
7674 if (fdecl)
7675 warning_at (loc, OPT_Wunused_result,
7676 "ignoring return value of %qD, "
7677 "declared with attribute warn_unused_result",
7678 fdecl);
7679 else
7680 warning_at (loc, OPT_Wunused_result,
7681 "ignoring return value of function "
7682 "declared with attribute warn_unused_result");
7684 break;
7686 default:
7687 /* Not a container, not a call, or a call whose value is used. */
7688 break;
7693 static unsigned int
7694 run_warn_unused_result (void)
7696 do_warn_unused_result (gimple_body (current_function_decl));
7697 return 0;
7700 static bool
7701 gate_warn_unused_result (void)
7703 return flag_warn_unused_result;
7706 struct gimple_opt_pass pass_warn_unused_result =
7709 GIMPLE_PASS,
7710 "*warn_unused_result", /* name */
7711 gate_warn_unused_result, /* gate */
7712 run_warn_unused_result, /* execute */
7713 NULL, /* sub */
7714 NULL, /* next */
7715 0, /* static_pass_number */
7716 TV_NONE, /* tv_id */
7717 PROP_gimple_any, /* properties_required */
7718 0, /* properties_provided */
7719 0, /* properties_destroyed */
7720 0, /* todo_flags_start */
7721 0, /* todo_flags_finish */