* configure.tgt: Add sh* case.
[official-gcc.git] / gcc / ifcvt.c
blobce60ce27604e550df61edef619979964d150aa16
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010,
3 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "diagnostic-core.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
63 #ifndef MAX_CONDITIONAL_EXECUTE
64 #define MAX_CONDITIONAL_EXECUTE \
65 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
66 + 1)
67 #endif
69 #define IFCVT_MULTIPLE_DUMPS 1
71 #define NULL_BLOCK ((basic_block) NULL)
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
80 /* # of changes made. */
81 static int num_true_changes;
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static rtx find_active_insn_before (basic_block, rtx);
92 static rtx find_active_insn_after (basic_block, rtx);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
95 static rtx cond_exec_get_condition (rtx);
96 static rtx noce_get_condition (rtx, rtx *, bool);
97 static int noce_operand_ok (const_rtx);
98 static void merge_if_block (ce_if_block_t *);
99 static int find_cond_trap (basic_block, edge, edge);
100 static basic_block find_if_header (basic_block, int);
101 static int block_jumps_and_fallthru_p (basic_block, basic_block);
102 static int noce_find_if_block (basic_block, edge, edge, int);
103 static int cond_exec_find_if_block (ce_if_block_t *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int dead_or_predicable (basic_block, basic_block, basic_block,
107 edge, int);
108 static void noce_emit_move_insn (rtx, rtx);
109 static rtx block_has_only_trap (basic_block);
111 /* Count the number of non-jump active insns in BB. */
113 static int
114 count_bb_insns (const_basic_block bb)
116 int count = 0;
117 rtx insn = BB_HEAD (bb);
119 while (1)
121 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
122 count++;
124 if (insn == BB_END (bb))
125 break;
126 insn = NEXT_INSN (insn);
129 return count;
132 /* Determine whether the total insn_rtx_cost on non-jump insns in
133 basic block BB is less than MAX_COST. This function returns
134 false if the cost of any instruction could not be estimated.
136 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
137 as those insns are being speculated. MAX_COST is scaled with SCALE
138 plus a small fudge factor. */
140 static bool
141 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
143 int count = 0;
144 rtx insn = BB_HEAD (bb);
145 bool speed = optimize_bb_for_speed_p (bb);
147 /* Our branch probability/scaling factors are just estimates and don't
148 account for cases where we can get speculation for free and other
149 secondary benefits. So we fudge the scale factor to make speculating
150 appear a little more profitable. */
151 scale += REG_BR_PROB_BASE / 8;
152 max_cost *= scale;
154 while (1)
156 if (NONJUMP_INSN_P (insn))
158 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
159 if (cost == 0)
160 return false;
162 /* If this instruction is the load or set of a "stack" register,
163 such as a floating point register on x87, then the cost of
164 speculatively executing this insn may need to include
165 the additional cost of popping its result off of the
166 register stack. Unfortunately, correctly recognizing and
167 accounting for this additional overhead is tricky, so for
168 now we simply prohibit such speculative execution. */
169 #ifdef STACK_REGS
171 rtx set = single_set (insn);
172 if (set && STACK_REG_P (SET_DEST (set)))
173 return false;
175 #endif
177 count += cost;
178 if (count >= max_cost)
179 return false;
181 else if (CALL_P (insn))
182 return false;
184 if (insn == BB_END (bb))
185 break;
186 insn = NEXT_INSN (insn);
189 return true;
192 /* Return the first non-jump active insn in the basic block. */
194 static rtx
195 first_active_insn (basic_block bb)
197 rtx insn = BB_HEAD (bb);
199 if (LABEL_P (insn))
201 if (insn == BB_END (bb))
202 return NULL_RTX;
203 insn = NEXT_INSN (insn);
206 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
208 if (insn == BB_END (bb))
209 return NULL_RTX;
210 insn = NEXT_INSN (insn);
213 if (JUMP_P (insn))
214 return NULL_RTX;
216 return insn;
219 /* Return the last non-jump active (non-jump) insn in the basic block. */
221 static rtx
222 last_active_insn (basic_block bb, int skip_use_p)
224 rtx insn = BB_END (bb);
225 rtx head = BB_HEAD (bb);
227 while (NOTE_P (insn)
228 || JUMP_P (insn)
229 || DEBUG_INSN_P (insn)
230 || (skip_use_p
231 && NONJUMP_INSN_P (insn)
232 && GET_CODE (PATTERN (insn)) == USE))
234 if (insn == head)
235 return NULL_RTX;
236 insn = PREV_INSN (insn);
239 if (LABEL_P (insn))
240 return NULL_RTX;
242 return insn;
245 /* Return the active insn before INSN inside basic block CURR_BB. */
247 static rtx
248 find_active_insn_before (basic_block curr_bb, rtx insn)
250 if (!insn || insn == BB_HEAD (curr_bb))
251 return NULL_RTX;
253 while ((insn = PREV_INSN (insn)) != NULL_RTX)
255 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
256 break;
258 /* No other active insn all the way to the start of the basic block. */
259 if (insn == BB_HEAD (curr_bb))
260 return NULL_RTX;
263 return insn;
266 /* Return the active insn after INSN inside basic block CURR_BB. */
268 static rtx
269 find_active_insn_after (basic_block curr_bb, rtx insn)
271 if (!insn || insn == BB_END (curr_bb))
272 return NULL_RTX;
274 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
276 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
277 break;
279 /* No other active insn all the way to the end of the basic block. */
280 if (insn == BB_END (curr_bb))
281 return NULL_RTX;
284 return insn;
287 /* Return the basic block reached by falling though the basic block BB. */
289 static basic_block
290 block_fallthru (basic_block bb)
292 edge e = find_fallthru_edge (bb->succs);
294 return (e) ? e->dest : NULL_BLOCK;
297 /* Go through a bunch of insns, converting them to conditional
298 execution format if possible. Return TRUE if all of the non-note
299 insns were processed. */
301 static int
302 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
303 /* if block information */rtx start,
304 /* first insn to look at */rtx end,
305 /* last insn to look at */rtx test,
306 /* conditional execution test */rtx prob_val,
307 /* probability of branch taken. */int mod_ok)
309 int must_be_last = FALSE;
310 rtx insn;
311 rtx xtest;
312 rtx pattern;
314 if (!start || !end)
315 return FALSE;
317 for (insn = start; ; insn = NEXT_INSN (insn))
319 /* dwarf2out can't cope with conditional prologues. */
320 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
321 return FALSE;
323 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
324 goto insn_done;
326 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
328 /* Remove USE insns that get in the way. */
329 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
331 /* ??? Ug. Actually unlinking the thing is problematic,
332 given what we'd have to coordinate with our callers. */
333 SET_INSN_DELETED (insn);
334 goto insn_done;
337 /* Last insn wasn't last? */
338 if (must_be_last)
339 return FALSE;
341 if (modified_in_p (test, insn))
343 if (!mod_ok)
344 return FALSE;
345 must_be_last = TRUE;
348 /* Now build the conditional form of the instruction. */
349 pattern = PATTERN (insn);
350 xtest = copy_rtx (test);
352 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
353 two conditions. */
354 if (GET_CODE (pattern) == COND_EXEC)
356 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
357 return FALSE;
359 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
360 COND_EXEC_TEST (pattern));
361 pattern = COND_EXEC_CODE (pattern);
364 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
366 /* If the machine needs to modify the insn being conditionally executed,
367 say for example to force a constant integer operand into a temp
368 register, do so here. */
369 #ifdef IFCVT_MODIFY_INSN
370 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
371 if (! pattern)
372 return FALSE;
373 #endif
375 validate_change (insn, &PATTERN (insn), pattern, 1);
377 if (CALL_P (insn) && prob_val)
378 validate_change (insn, &REG_NOTES (insn),
379 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
380 REG_NOTES (insn)), 1);
382 insn_done:
383 if (insn == end)
384 break;
387 return TRUE;
390 /* Return the condition for a jump. Do not do any special processing. */
392 static rtx
393 cond_exec_get_condition (rtx jump)
395 rtx test_if, cond;
397 if (any_condjump_p (jump))
398 test_if = SET_SRC (pc_set (jump));
399 else
400 return NULL_RTX;
401 cond = XEXP (test_if, 0);
403 /* If this branches to JUMP_LABEL when the condition is false,
404 reverse the condition. */
405 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
406 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
408 enum rtx_code rev = reversed_comparison_code (cond, jump);
409 if (rev == UNKNOWN)
410 return NULL_RTX;
412 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
413 XEXP (cond, 1));
416 return cond;
419 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
420 to conditional execution. Return TRUE if we were successful at
421 converting the block. */
423 static int
424 cond_exec_process_if_block (ce_if_block_t * ce_info,
425 /* if block information */int do_multiple_p)
427 basic_block test_bb = ce_info->test_bb; /* last test block */
428 basic_block then_bb = ce_info->then_bb; /* THEN */
429 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
430 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
431 rtx then_start; /* first insn in THEN block */
432 rtx then_end; /* last insn + 1 in THEN block */
433 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
434 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
435 int max; /* max # of insns to convert. */
436 int then_mod_ok; /* whether conditional mods are ok in THEN */
437 rtx true_expr; /* test for else block insns */
438 rtx false_expr; /* test for then block insns */
439 rtx true_prob_val; /* probability of else block */
440 rtx false_prob_val; /* probability of then block */
441 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
442 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
443 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
444 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
445 int then_n_insns, else_n_insns, n_insns;
446 enum rtx_code false_code;
448 /* If test is comprised of && or || elements, and we've failed at handling
449 all of them together, just use the last test if it is the special case of
450 && elements without an ELSE block. */
451 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
453 if (else_bb || ! ce_info->and_and_p)
454 return FALSE;
456 ce_info->test_bb = test_bb = ce_info->last_test_bb;
457 ce_info->num_multiple_test_blocks = 0;
458 ce_info->num_and_and_blocks = 0;
459 ce_info->num_or_or_blocks = 0;
462 /* Find the conditional jump to the ELSE or JOIN part, and isolate
463 the test. */
464 test_expr = cond_exec_get_condition (BB_END (test_bb));
465 if (! test_expr)
466 return FALSE;
468 /* If the conditional jump is more than just a conditional jump,
469 then we can not do conditional execution conversion on this block. */
470 if (! onlyjump_p (BB_END (test_bb)))
471 return FALSE;
473 /* Collect the bounds of where we're to search, skipping any labels, jumps
474 and notes at the beginning and end of the block. Then count the total
475 number of insns and see if it is small enough to convert. */
476 then_start = first_active_insn (then_bb);
477 then_end = last_active_insn (then_bb, TRUE);
478 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
479 n_insns = then_n_insns;
480 max = MAX_CONDITIONAL_EXECUTE;
482 if (else_bb)
484 int n_matching;
486 max *= 2;
487 else_start = first_active_insn (else_bb);
488 else_end = last_active_insn (else_bb, TRUE);
489 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
490 n_insns += else_n_insns;
492 /* Look for matching sequences at the head and tail of the two blocks,
493 and limit the range of insns to be converted if possible. */
494 n_matching = flow_find_cross_jump (then_bb, else_bb,
495 &then_first_tail, &else_first_tail,
496 NULL);
497 if (then_first_tail == BB_HEAD (then_bb))
498 then_start = then_end = NULL_RTX;
499 if (else_first_tail == BB_HEAD (else_bb))
500 else_start = else_end = NULL_RTX;
502 if (n_matching > 0)
504 if (then_end)
505 then_end = find_active_insn_before (then_bb, then_first_tail);
506 if (else_end)
507 else_end = find_active_insn_before (else_bb, else_first_tail);
508 n_insns -= 2 * n_matching;
511 if (then_start && else_start)
513 int longest_match = MIN (then_n_insns - n_matching,
514 else_n_insns - n_matching);
515 n_matching
516 = flow_find_head_matching_sequence (then_bb, else_bb,
517 &then_last_head,
518 &else_last_head,
519 longest_match);
521 if (n_matching > 0)
523 rtx insn;
525 /* We won't pass the insns in the head sequence to
526 cond_exec_process_insns, so we need to test them here
527 to make sure that they don't clobber the condition. */
528 for (insn = BB_HEAD (then_bb);
529 insn != NEXT_INSN (then_last_head);
530 insn = NEXT_INSN (insn))
531 if (!LABEL_P (insn) && !NOTE_P (insn)
532 && !DEBUG_INSN_P (insn)
533 && modified_in_p (test_expr, insn))
534 return FALSE;
537 if (then_last_head == then_end)
538 then_start = then_end = NULL_RTX;
539 if (else_last_head == else_end)
540 else_start = else_end = NULL_RTX;
542 if (n_matching > 0)
544 if (then_start)
545 then_start = find_active_insn_after (then_bb, then_last_head);
546 if (else_start)
547 else_start = find_active_insn_after (else_bb, else_last_head);
548 n_insns -= 2 * n_matching;
553 if (n_insns > max)
554 return FALSE;
556 /* Map test_expr/test_jump into the appropriate MD tests to use on
557 the conditionally executed code. */
559 true_expr = test_expr;
561 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
562 if (false_code != UNKNOWN)
563 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
564 XEXP (true_expr, 0), XEXP (true_expr, 1));
565 else
566 false_expr = NULL_RTX;
568 #ifdef IFCVT_MODIFY_TESTS
569 /* If the machine description needs to modify the tests, such as setting a
570 conditional execution register from a comparison, it can do so here. */
571 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
573 /* See if the conversion failed. */
574 if (!true_expr || !false_expr)
575 goto fail;
576 #endif
578 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
579 if (true_prob_val)
581 true_prob_val = XEXP (true_prob_val, 0);
582 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
584 else
585 false_prob_val = NULL_RTX;
587 /* If we have && or || tests, do them here. These tests are in the adjacent
588 blocks after the first block containing the test. */
589 if (ce_info->num_multiple_test_blocks > 0)
591 basic_block bb = test_bb;
592 basic_block last_test_bb = ce_info->last_test_bb;
594 if (! false_expr)
595 goto fail;
599 rtx start, end;
600 rtx t, f;
601 enum rtx_code f_code;
603 bb = block_fallthru (bb);
604 start = first_active_insn (bb);
605 end = last_active_insn (bb, TRUE);
606 if (start
607 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
608 false_prob_val, FALSE))
609 goto fail;
611 /* If the conditional jump is more than just a conditional jump, then
612 we can not do conditional execution conversion on this block. */
613 if (! onlyjump_p (BB_END (bb)))
614 goto fail;
616 /* Find the conditional jump and isolate the test. */
617 t = cond_exec_get_condition (BB_END (bb));
618 if (! t)
619 goto fail;
621 f_code = reversed_comparison_code (t, BB_END (bb));
622 if (f_code == UNKNOWN)
623 goto fail;
625 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
626 if (ce_info->and_and_p)
628 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
629 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
631 else
633 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
634 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
637 /* If the machine description needs to modify the tests, such as
638 setting a conditional execution register from a comparison, it can
639 do so here. */
640 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
641 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
643 /* See if the conversion failed. */
644 if (!t || !f)
645 goto fail;
646 #endif
648 true_expr = t;
649 false_expr = f;
651 while (bb != last_test_bb);
654 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
655 on then THEN block. */
656 then_mod_ok = (else_bb == NULL_BLOCK);
658 /* Go through the THEN and ELSE blocks converting the insns if possible
659 to conditional execution. */
661 if (then_end
662 && (! false_expr
663 || ! cond_exec_process_insns (ce_info, then_start, then_end,
664 false_expr, false_prob_val,
665 then_mod_ok)))
666 goto fail;
668 if (else_bb && else_end
669 && ! cond_exec_process_insns (ce_info, else_start, else_end,
670 true_expr, true_prob_val, TRUE))
671 goto fail;
673 /* If we cannot apply the changes, fail. Do not go through the normal fail
674 processing, since apply_change_group will call cancel_changes. */
675 if (! apply_change_group ())
677 #ifdef IFCVT_MODIFY_CANCEL
678 /* Cancel any machine dependent changes. */
679 IFCVT_MODIFY_CANCEL (ce_info);
680 #endif
681 return FALSE;
684 #ifdef IFCVT_MODIFY_FINAL
685 /* Do any machine dependent final modifications. */
686 IFCVT_MODIFY_FINAL (ce_info);
687 #endif
689 /* Conversion succeeded. */
690 if (dump_file)
691 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
692 n_insns, (n_insns == 1) ? " was" : "s were");
694 /* Merge the blocks! If we had matching sequences, make sure to delete one
695 copy at the appropriate location first: delete the copy in the THEN branch
696 for a tail sequence so that the remaining one is executed last for both
697 branches, and delete the copy in the ELSE branch for a head sequence so
698 that the remaining one is executed first for both branches. */
699 if (then_first_tail)
701 rtx from = then_first_tail;
702 if (!INSN_P (from))
703 from = find_active_insn_after (then_bb, from);
704 delete_insn_chain (from, BB_END (then_bb), false);
706 if (else_last_head)
707 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
709 merge_if_block (ce_info);
710 cond_exec_changed_p = TRUE;
711 return TRUE;
713 fail:
714 #ifdef IFCVT_MODIFY_CANCEL
715 /* Cancel any machine dependent changes. */
716 IFCVT_MODIFY_CANCEL (ce_info);
717 #endif
719 cancel_changes (0);
720 return FALSE;
723 /* Used by noce_process_if_block to communicate with its subroutines.
725 The subroutines know that A and B may be evaluated freely. They
726 know that X is a register. They should insert new instructions
727 before cond_earliest. */
729 struct noce_if_info
731 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
732 basic_block test_bb, then_bb, else_bb, join_bb;
734 /* The jump that ends TEST_BB. */
735 rtx jump;
737 /* The jump condition. */
738 rtx cond;
740 /* New insns should be inserted before this one. */
741 rtx cond_earliest;
743 /* Insns in the THEN and ELSE block. There is always just this
744 one insns in those blocks. The insns are single_set insns.
745 If there was no ELSE block, INSN_B is the last insn before
746 COND_EARLIEST, or NULL_RTX. In the former case, the insn
747 operands are still valid, as if INSN_B was moved down below
748 the jump. */
749 rtx insn_a, insn_b;
751 /* The SET_SRC of INSN_A and INSN_B. */
752 rtx a, b;
754 /* The SET_DEST of INSN_A. */
755 rtx x;
757 /* True if this if block is not canonical. In the canonical form of
758 if blocks, the THEN_BB is the block reached via the fallthru edge
759 from TEST_BB. For the noce transformations, we allow the symmetric
760 form as well. */
761 bool then_else_reversed;
763 /* Estimated cost of the particular branch instruction. */
764 int branch_cost;
767 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
768 static int noce_try_move (struct noce_if_info *);
769 static int noce_try_store_flag (struct noce_if_info *);
770 static int noce_try_addcc (struct noce_if_info *);
771 static int noce_try_store_flag_constants (struct noce_if_info *);
772 static int noce_try_store_flag_mask (struct noce_if_info *);
773 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
774 rtx, rtx, rtx);
775 static int noce_try_cmove (struct noce_if_info *);
776 static int noce_try_cmove_arith (struct noce_if_info *);
777 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
778 static int noce_try_minmax (struct noce_if_info *);
779 static int noce_try_abs (struct noce_if_info *);
780 static int noce_try_sign_mask (struct noce_if_info *);
782 /* Helper function for noce_try_store_flag*. */
784 static rtx
785 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
786 int normalize)
788 rtx cond = if_info->cond;
789 int cond_complex;
790 enum rtx_code code;
792 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
793 || ! general_operand (XEXP (cond, 1), VOIDmode));
795 /* If earliest == jump, or when the condition is complex, try to
796 build the store_flag insn directly. */
798 if (cond_complex)
800 rtx set = pc_set (if_info->jump);
801 cond = XEXP (SET_SRC (set), 0);
802 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
803 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
804 reversep = !reversep;
805 if (if_info->then_else_reversed)
806 reversep = !reversep;
809 if (reversep)
810 code = reversed_comparison_code (cond, if_info->jump);
811 else
812 code = GET_CODE (cond);
814 if ((if_info->cond_earliest == if_info->jump || cond_complex)
815 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
817 rtx tmp;
819 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
820 XEXP (cond, 1));
821 tmp = gen_rtx_SET (VOIDmode, x, tmp);
823 start_sequence ();
824 tmp = emit_insn (tmp);
826 if (recog_memoized (tmp) >= 0)
828 tmp = get_insns ();
829 end_sequence ();
830 emit_insn (tmp);
832 if_info->cond_earliest = if_info->jump;
834 return x;
837 end_sequence ();
840 /* Don't even try if the comparison operands or the mode of X are weird. */
841 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
842 return NULL_RTX;
844 return emit_store_flag (x, code, XEXP (cond, 0),
845 XEXP (cond, 1), VOIDmode,
846 (code == LTU || code == LEU
847 || code == GEU || code == GTU), normalize);
850 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
851 X is the destination/target and Y is the value to copy. */
853 static void
854 noce_emit_move_insn (rtx x, rtx y)
856 enum machine_mode outmode;
857 rtx outer, inner;
858 int bitpos;
860 if (GET_CODE (x) != STRICT_LOW_PART)
862 rtx seq, insn, target;
863 optab ot;
865 start_sequence ();
866 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
867 otherwise construct a suitable SET pattern ourselves. */
868 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
869 ? emit_move_insn (x, y)
870 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
871 seq = get_insns ();
872 end_sequence ();
874 if (recog_memoized (insn) <= 0)
876 if (GET_CODE (x) == ZERO_EXTRACT)
878 rtx op = XEXP (x, 0);
879 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
880 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
882 /* store_bit_field expects START to be relative to
883 BYTES_BIG_ENDIAN and adjusts this value for machines with
884 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
885 invoke store_bit_field again it is necessary to have the START
886 value from the first call. */
887 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
889 if (MEM_P (op))
890 start = BITS_PER_UNIT - start - size;
891 else
893 gcc_assert (REG_P (op));
894 start = BITS_PER_WORD - start - size;
898 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
899 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
900 return;
903 switch (GET_RTX_CLASS (GET_CODE (y)))
905 case RTX_UNARY:
906 ot = code_to_optab[GET_CODE (y)];
907 if (ot)
909 start_sequence ();
910 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
911 if (target != NULL_RTX)
913 if (target != x)
914 emit_move_insn (x, target);
915 seq = get_insns ();
917 end_sequence ();
919 break;
921 case RTX_BIN_ARITH:
922 case RTX_COMM_ARITH:
923 ot = code_to_optab[GET_CODE (y)];
924 if (ot)
926 start_sequence ();
927 target = expand_binop (GET_MODE (y), ot,
928 XEXP (y, 0), XEXP (y, 1),
929 x, 0, OPTAB_DIRECT);
930 if (target != NULL_RTX)
932 if (target != x)
933 emit_move_insn (x, target);
934 seq = get_insns ();
936 end_sequence ();
938 break;
940 default:
941 break;
945 emit_insn (seq);
946 return;
949 outer = XEXP (x, 0);
950 inner = XEXP (outer, 0);
951 outmode = GET_MODE (outer);
952 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
953 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
954 0, 0, outmode, y);
957 /* Return sequence of instructions generated by if conversion. This
958 function calls end_sequence() to end the current stream, ensures
959 that are instructions are unshared, recognizable non-jump insns.
960 On failure, this function returns a NULL_RTX. */
962 static rtx
963 end_ifcvt_sequence (struct noce_if_info *if_info)
965 rtx insn;
966 rtx seq = get_insns ();
968 set_used_flags (if_info->x);
969 set_used_flags (if_info->cond);
970 unshare_all_rtl_in_chain (seq);
971 end_sequence ();
973 /* Make sure that all of the instructions emitted are recognizable,
974 and that we haven't introduced a new jump instruction.
975 As an exercise for the reader, build a general mechanism that
976 allows proper placement of required clobbers. */
977 for (insn = seq; insn; insn = NEXT_INSN (insn))
978 if (JUMP_P (insn)
979 || recog_memoized (insn) == -1)
980 return NULL_RTX;
982 return seq;
985 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
986 "if (a == b) x = a; else x = b" into "x = b". */
988 static int
989 noce_try_move (struct noce_if_info *if_info)
991 rtx cond = if_info->cond;
992 enum rtx_code code = GET_CODE (cond);
993 rtx y, seq;
995 if (code != NE && code != EQ)
996 return FALSE;
998 /* This optimization isn't valid if either A or B could be a NaN
999 or a signed zero. */
1000 if (HONOR_NANS (GET_MODE (if_info->x))
1001 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1002 return FALSE;
1004 /* Check whether the operands of the comparison are A and in
1005 either order. */
1006 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1007 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1008 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1009 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1011 y = (code == EQ) ? if_info->a : if_info->b;
1013 /* Avoid generating the move if the source is the destination. */
1014 if (! rtx_equal_p (if_info->x, y))
1016 start_sequence ();
1017 noce_emit_move_insn (if_info->x, y);
1018 seq = end_ifcvt_sequence (if_info);
1019 if (!seq)
1020 return FALSE;
1022 emit_insn_before_setloc (seq, if_info->jump,
1023 INSN_LOCATOR (if_info->insn_a));
1025 return TRUE;
1027 return FALSE;
1030 /* Convert "if (test) x = 1; else x = 0".
1032 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1033 tried in noce_try_store_flag_constants after noce_try_cmove has had
1034 a go at the conversion. */
1036 static int
1037 noce_try_store_flag (struct noce_if_info *if_info)
1039 int reversep;
1040 rtx target, seq;
1042 if (CONST_INT_P (if_info->b)
1043 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1044 && if_info->a == const0_rtx)
1045 reversep = 0;
1046 else if (if_info->b == const0_rtx
1047 && CONST_INT_P (if_info->a)
1048 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1049 && (reversed_comparison_code (if_info->cond, if_info->jump)
1050 != UNKNOWN))
1051 reversep = 1;
1052 else
1053 return FALSE;
1055 start_sequence ();
1057 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1058 if (target)
1060 if (target != if_info->x)
1061 noce_emit_move_insn (if_info->x, target);
1063 seq = end_ifcvt_sequence (if_info);
1064 if (! seq)
1065 return FALSE;
1067 emit_insn_before_setloc (seq, if_info->jump,
1068 INSN_LOCATOR (if_info->insn_a));
1069 return TRUE;
1071 else
1073 end_sequence ();
1074 return FALSE;
1078 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1080 static int
1081 noce_try_store_flag_constants (struct noce_if_info *if_info)
1083 rtx target, seq;
1084 int reversep;
1085 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1086 int normalize, can_reverse;
1087 enum machine_mode mode;
1089 if (CONST_INT_P (if_info->a)
1090 && CONST_INT_P (if_info->b))
1092 mode = GET_MODE (if_info->x);
1093 ifalse = INTVAL (if_info->a);
1094 itrue = INTVAL (if_info->b);
1096 /* Make sure we can represent the difference between the two values. */
1097 if ((itrue - ifalse > 0)
1098 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1099 return FALSE;
1101 diff = trunc_int_for_mode (itrue - ifalse, mode);
1103 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1104 != UNKNOWN);
1106 reversep = 0;
1107 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1108 normalize = 0;
1109 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1110 && (STORE_FLAG_VALUE == 1
1111 || if_info->branch_cost >= 2))
1112 normalize = 1;
1113 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1114 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1115 normalize = 1, reversep = 1;
1116 else if (itrue == -1
1117 && (STORE_FLAG_VALUE == -1
1118 || if_info->branch_cost >= 2))
1119 normalize = -1;
1120 else if (ifalse == -1 && can_reverse
1121 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1122 normalize = -1, reversep = 1;
1123 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1124 || if_info->branch_cost >= 3)
1125 normalize = -1;
1126 else
1127 return FALSE;
1129 if (reversep)
1131 tmp = itrue; itrue = ifalse; ifalse = tmp;
1132 diff = trunc_int_for_mode (-diff, mode);
1135 start_sequence ();
1136 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1137 if (! target)
1139 end_sequence ();
1140 return FALSE;
1143 /* if (test) x = 3; else x = 4;
1144 => x = 3 + (test == 0); */
1145 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1147 target = expand_simple_binop (mode,
1148 (diff == STORE_FLAG_VALUE
1149 ? PLUS : MINUS),
1150 GEN_INT (ifalse), target, if_info->x, 0,
1151 OPTAB_WIDEN);
1154 /* if (test) x = 8; else x = 0;
1155 => x = (test != 0) << 3; */
1156 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1158 target = expand_simple_binop (mode, ASHIFT,
1159 target, GEN_INT (tmp), if_info->x, 0,
1160 OPTAB_WIDEN);
1163 /* if (test) x = -1; else x = b;
1164 => x = -(test != 0) | b; */
1165 else if (itrue == -1)
1167 target = expand_simple_binop (mode, IOR,
1168 target, GEN_INT (ifalse), if_info->x, 0,
1169 OPTAB_WIDEN);
1172 /* if (test) x = a; else x = b;
1173 => x = (-(test != 0) & (b - a)) + a; */
1174 else
1176 target = expand_simple_binop (mode, AND,
1177 target, GEN_INT (diff), if_info->x, 0,
1178 OPTAB_WIDEN);
1179 if (target)
1180 target = expand_simple_binop (mode, PLUS,
1181 target, GEN_INT (ifalse),
1182 if_info->x, 0, OPTAB_WIDEN);
1185 if (! target)
1187 end_sequence ();
1188 return FALSE;
1191 if (target != if_info->x)
1192 noce_emit_move_insn (if_info->x, target);
1194 seq = end_ifcvt_sequence (if_info);
1195 if (!seq)
1196 return FALSE;
1198 emit_insn_before_setloc (seq, if_info->jump,
1199 INSN_LOCATOR (if_info->insn_a));
1200 return TRUE;
1203 return FALSE;
1206 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1207 similarly for "foo--". */
1209 static int
1210 noce_try_addcc (struct noce_if_info *if_info)
1212 rtx target, seq;
1213 int subtract, normalize;
1215 if (GET_CODE (if_info->a) == PLUS
1216 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1217 && (reversed_comparison_code (if_info->cond, if_info->jump)
1218 != UNKNOWN))
1220 rtx cond = if_info->cond;
1221 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1223 /* First try to use addcc pattern. */
1224 if (general_operand (XEXP (cond, 0), VOIDmode)
1225 && general_operand (XEXP (cond, 1), VOIDmode))
1227 start_sequence ();
1228 target = emit_conditional_add (if_info->x, code,
1229 XEXP (cond, 0),
1230 XEXP (cond, 1),
1231 VOIDmode,
1232 if_info->b,
1233 XEXP (if_info->a, 1),
1234 GET_MODE (if_info->x),
1235 (code == LTU || code == GEU
1236 || code == LEU || code == GTU));
1237 if (target)
1239 if (target != if_info->x)
1240 noce_emit_move_insn (if_info->x, target);
1242 seq = end_ifcvt_sequence (if_info);
1243 if (!seq)
1244 return FALSE;
1246 emit_insn_before_setloc (seq, if_info->jump,
1247 INSN_LOCATOR (if_info->insn_a));
1248 return TRUE;
1250 end_sequence ();
1253 /* If that fails, construct conditional increment or decrement using
1254 setcc. */
1255 if (if_info->branch_cost >= 2
1256 && (XEXP (if_info->a, 1) == const1_rtx
1257 || XEXP (if_info->a, 1) == constm1_rtx))
1259 start_sequence ();
1260 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1261 subtract = 0, normalize = 0;
1262 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1263 subtract = 1, normalize = 0;
1264 else
1265 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1268 target = noce_emit_store_flag (if_info,
1269 gen_reg_rtx (GET_MODE (if_info->x)),
1270 1, normalize);
1272 if (target)
1273 target = expand_simple_binop (GET_MODE (if_info->x),
1274 subtract ? MINUS : PLUS,
1275 if_info->b, target, if_info->x,
1276 0, OPTAB_WIDEN);
1277 if (target)
1279 if (target != if_info->x)
1280 noce_emit_move_insn (if_info->x, target);
1282 seq = end_ifcvt_sequence (if_info);
1283 if (!seq)
1284 return FALSE;
1286 emit_insn_before_setloc (seq, if_info->jump,
1287 INSN_LOCATOR (if_info->insn_a));
1288 return TRUE;
1290 end_sequence ();
1294 return FALSE;
1297 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1299 static int
1300 noce_try_store_flag_mask (struct noce_if_info *if_info)
1302 rtx target, seq;
1303 int reversep;
1305 reversep = 0;
1306 if ((if_info->branch_cost >= 2
1307 || STORE_FLAG_VALUE == -1)
1308 && ((if_info->a == const0_rtx
1309 && rtx_equal_p (if_info->b, if_info->x))
1310 || ((reversep = (reversed_comparison_code (if_info->cond,
1311 if_info->jump)
1312 != UNKNOWN))
1313 && if_info->b == const0_rtx
1314 && rtx_equal_p (if_info->a, if_info->x))))
1316 start_sequence ();
1317 target = noce_emit_store_flag (if_info,
1318 gen_reg_rtx (GET_MODE (if_info->x)),
1319 reversep, -1);
1320 if (target)
1321 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1322 if_info->x,
1323 target, if_info->x, 0,
1324 OPTAB_WIDEN);
1326 if (target)
1328 if (target != if_info->x)
1329 noce_emit_move_insn (if_info->x, target);
1331 seq = end_ifcvt_sequence (if_info);
1332 if (!seq)
1333 return FALSE;
1335 emit_insn_before_setloc (seq, if_info->jump,
1336 INSN_LOCATOR (if_info->insn_a));
1337 return TRUE;
1340 end_sequence ();
1343 return FALSE;
1346 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1348 static rtx
1349 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1350 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1352 rtx target ATTRIBUTE_UNUSED;
1353 int unsignedp ATTRIBUTE_UNUSED;
1355 /* If earliest == jump, try to build the cmove insn directly.
1356 This is helpful when combine has created some complex condition
1357 (like for alpha's cmovlbs) that we can't hope to regenerate
1358 through the normal interface. */
1360 if (if_info->cond_earliest == if_info->jump)
1362 rtx tmp;
1364 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1365 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1366 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1368 start_sequence ();
1369 tmp = emit_insn (tmp);
1371 if (recog_memoized (tmp) >= 0)
1373 tmp = get_insns ();
1374 end_sequence ();
1375 emit_insn (tmp);
1377 return x;
1380 end_sequence ();
1383 /* Don't even try if the comparison operands are weird. */
1384 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1385 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1386 return NULL_RTX;
1388 #if HAVE_conditional_move
1389 unsignedp = (code == LTU || code == GEU
1390 || code == LEU || code == GTU);
1392 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1393 vtrue, vfalse, GET_MODE (x),
1394 unsignedp);
1395 if (target)
1396 return target;
1398 /* We might be faced with a situation like:
1400 x = (reg:M TARGET)
1401 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1402 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1404 We can't do a conditional move in mode M, but it's possible that we
1405 could do a conditional move in mode N instead and take a subreg of
1406 the result.
1408 If we can't create new pseudos, though, don't bother. */
1409 if (reload_completed)
1410 return NULL_RTX;
1412 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1414 rtx reg_vtrue = SUBREG_REG (vtrue);
1415 rtx reg_vfalse = SUBREG_REG (vfalse);
1416 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1417 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1418 rtx promoted_target;
1420 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1421 || byte_vtrue != byte_vfalse
1422 || (SUBREG_PROMOTED_VAR_P (vtrue)
1423 != SUBREG_PROMOTED_VAR_P (vfalse))
1424 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1425 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1426 return NULL_RTX;
1428 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1430 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1431 VOIDmode, reg_vtrue, reg_vfalse,
1432 GET_MODE (reg_vtrue), unsignedp);
1433 /* Nope, couldn't do it in that mode either. */
1434 if (!target)
1435 return NULL_RTX;
1437 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1438 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1439 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1440 emit_move_insn (x, target);
1441 return x;
1443 else
1444 return NULL_RTX;
1445 #else
1446 /* We'll never get here, as noce_process_if_block doesn't call the
1447 functions involved. Ifdef code, however, should be discouraged
1448 because it leads to typos in the code not selected. However,
1449 emit_conditional_move won't exist either. */
1450 return NULL_RTX;
1451 #endif
1454 /* Try only simple constants and registers here. More complex cases
1455 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1456 has had a go at it. */
1458 static int
1459 noce_try_cmove (struct noce_if_info *if_info)
1461 enum rtx_code code;
1462 rtx target, seq;
1464 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1465 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1467 start_sequence ();
1469 code = GET_CODE (if_info->cond);
1470 target = noce_emit_cmove (if_info, if_info->x, code,
1471 XEXP (if_info->cond, 0),
1472 XEXP (if_info->cond, 1),
1473 if_info->a, if_info->b);
1475 if (target)
1477 if (target != if_info->x)
1478 noce_emit_move_insn (if_info->x, target);
1480 seq = end_ifcvt_sequence (if_info);
1481 if (!seq)
1482 return FALSE;
1484 emit_insn_before_setloc (seq, if_info->jump,
1485 INSN_LOCATOR (if_info->insn_a));
1486 return TRUE;
1488 else
1490 end_sequence ();
1491 return FALSE;
1495 return FALSE;
1498 /* Try more complex cases involving conditional_move. */
1500 static int
1501 noce_try_cmove_arith (struct noce_if_info *if_info)
1503 rtx a = if_info->a;
1504 rtx b = if_info->b;
1505 rtx x = if_info->x;
1506 rtx orig_a, orig_b;
1507 rtx insn_a, insn_b;
1508 rtx tmp, target;
1509 int is_mem = 0;
1510 int insn_cost;
1511 enum rtx_code code;
1513 /* A conditional move from two memory sources is equivalent to a
1514 conditional on their addresses followed by a load. Don't do this
1515 early because it'll screw alias analysis. Note that we've
1516 already checked for no side effects. */
1517 /* ??? FIXME: Magic number 5. */
1518 if (cse_not_expected
1519 && MEM_P (a) && MEM_P (b)
1520 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1521 && if_info->branch_cost >= 5)
1523 enum machine_mode address_mode
1524 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1526 a = XEXP (a, 0);
1527 b = XEXP (b, 0);
1528 x = gen_reg_rtx (address_mode);
1529 is_mem = 1;
1532 /* ??? We could handle this if we knew that a load from A or B could
1533 not trap or fault. This is also true if we've already loaded
1534 from the address along the path from ENTRY. */
1535 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1536 return FALSE;
1538 /* if (test) x = a + b; else x = c - d;
1539 => y = a + b;
1540 x = c - d;
1541 if (test)
1542 x = y;
1545 code = GET_CODE (if_info->cond);
1546 insn_a = if_info->insn_a;
1547 insn_b = if_info->insn_b;
1549 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1550 if insn_rtx_cost can't be estimated. */
1551 if (insn_a)
1553 insn_cost
1554 = insn_rtx_cost (PATTERN (insn_a),
1555 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1556 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1557 return FALSE;
1559 else
1560 insn_cost = 0;
1562 if (insn_b)
1564 insn_cost
1565 += insn_rtx_cost (PATTERN (insn_b),
1566 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1567 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1568 return FALSE;
1571 /* Possibly rearrange operands to make things come out more natural. */
1572 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1574 int reversep = 0;
1575 if (rtx_equal_p (b, x))
1576 reversep = 1;
1577 else if (general_operand (b, GET_MODE (b)))
1578 reversep = 1;
1580 if (reversep)
1582 code = reversed_comparison_code (if_info->cond, if_info->jump);
1583 tmp = a, a = b, b = tmp;
1584 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1588 start_sequence ();
1590 orig_a = a;
1591 orig_b = b;
1593 /* If either operand is complex, load it into a register first.
1594 The best way to do this is to copy the original insn. In this
1595 way we preserve any clobbers etc that the insn may have had.
1596 This is of course not possible in the IS_MEM case. */
1597 if (! general_operand (a, GET_MODE (a)))
1599 rtx set;
1601 if (is_mem)
1603 tmp = gen_reg_rtx (GET_MODE (a));
1604 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1606 else if (! insn_a)
1607 goto end_seq_and_fail;
1608 else
1610 a = gen_reg_rtx (GET_MODE (a));
1611 tmp = copy_rtx (insn_a);
1612 set = single_set (tmp);
1613 SET_DEST (set) = a;
1614 tmp = emit_insn (PATTERN (tmp));
1616 if (recog_memoized (tmp) < 0)
1617 goto end_seq_and_fail;
1619 if (! general_operand (b, GET_MODE (b)))
1621 rtx set, last;
1623 if (is_mem)
1625 tmp = gen_reg_rtx (GET_MODE (b));
1626 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1628 else if (! insn_b)
1629 goto end_seq_and_fail;
1630 else
1632 b = gen_reg_rtx (GET_MODE (b));
1633 tmp = copy_rtx (insn_b);
1634 set = single_set (tmp);
1635 SET_DEST (set) = b;
1636 tmp = PATTERN (tmp);
1639 /* If insn to set up A clobbers any registers B depends on, try to
1640 swap insn that sets up A with the one that sets up B. If even
1641 that doesn't help, punt. */
1642 last = get_last_insn ();
1643 if (last && modified_in_p (orig_b, last))
1645 tmp = emit_insn_before (tmp, get_insns ());
1646 if (modified_in_p (orig_a, tmp))
1647 goto end_seq_and_fail;
1649 else
1650 tmp = emit_insn (tmp);
1652 if (recog_memoized (tmp) < 0)
1653 goto end_seq_and_fail;
1656 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1657 XEXP (if_info->cond, 1), a, b);
1659 if (! target)
1660 goto end_seq_and_fail;
1662 /* If we're handling a memory for above, emit the load now. */
1663 if (is_mem)
1665 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1667 /* Copy over flags as appropriate. */
1668 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1669 MEM_VOLATILE_P (tmp) = 1;
1670 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1671 MEM_IN_STRUCT_P (tmp) = 1;
1672 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1673 MEM_SCALAR_P (tmp) = 1;
1674 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1675 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1676 set_mem_align (tmp,
1677 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1679 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1680 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1682 noce_emit_move_insn (if_info->x, tmp);
1684 else if (target != x)
1685 noce_emit_move_insn (x, target);
1687 tmp = end_ifcvt_sequence (if_info);
1688 if (!tmp)
1689 return FALSE;
1691 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1692 return TRUE;
1694 end_seq_and_fail:
1695 end_sequence ();
1696 return FALSE;
1699 /* For most cases, the simplified condition we found is the best
1700 choice, but this is not the case for the min/max/abs transforms.
1701 For these we wish to know that it is A or B in the condition. */
1703 static rtx
1704 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1705 rtx *earliest)
1707 rtx cond, set, insn;
1708 int reverse;
1710 /* If target is already mentioned in the known condition, return it. */
1711 if (reg_mentioned_p (target, if_info->cond))
1713 *earliest = if_info->cond_earliest;
1714 return if_info->cond;
1717 set = pc_set (if_info->jump);
1718 cond = XEXP (SET_SRC (set), 0);
1719 reverse
1720 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1721 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1722 if (if_info->then_else_reversed)
1723 reverse = !reverse;
1725 /* If we're looking for a constant, try to make the conditional
1726 have that constant in it. There are two reasons why it may
1727 not have the constant we want:
1729 1. GCC may have needed to put the constant in a register, because
1730 the target can't compare directly against that constant. For
1731 this case, we look for a SET immediately before the comparison
1732 that puts a constant in that register.
1734 2. GCC may have canonicalized the conditional, for example
1735 replacing "if x < 4" with "if x <= 3". We can undo that (or
1736 make equivalent types of changes) to get the constants we need
1737 if they're off by one in the right direction. */
1739 if (CONST_INT_P (target))
1741 enum rtx_code code = GET_CODE (if_info->cond);
1742 rtx op_a = XEXP (if_info->cond, 0);
1743 rtx op_b = XEXP (if_info->cond, 1);
1744 rtx prev_insn;
1746 /* First, look to see if we put a constant in a register. */
1747 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1748 if (prev_insn
1749 && BLOCK_FOR_INSN (prev_insn)
1750 == BLOCK_FOR_INSN (if_info->cond_earliest)
1751 && INSN_P (prev_insn)
1752 && GET_CODE (PATTERN (prev_insn)) == SET)
1754 rtx src = find_reg_equal_equiv_note (prev_insn);
1755 if (!src)
1756 src = SET_SRC (PATTERN (prev_insn));
1757 if (CONST_INT_P (src))
1759 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1760 op_a = src;
1761 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1762 op_b = src;
1764 if (CONST_INT_P (op_a))
1766 rtx tmp = op_a;
1767 op_a = op_b;
1768 op_b = tmp;
1769 code = swap_condition (code);
1774 /* Now, look to see if we can get the right constant by
1775 adjusting the conditional. */
1776 if (CONST_INT_P (op_b))
1778 HOST_WIDE_INT desired_val = INTVAL (target);
1779 HOST_WIDE_INT actual_val = INTVAL (op_b);
1781 switch (code)
1783 case LT:
1784 if (actual_val == desired_val + 1)
1786 code = LE;
1787 op_b = GEN_INT (desired_val);
1789 break;
1790 case LE:
1791 if (actual_val == desired_val - 1)
1793 code = LT;
1794 op_b = GEN_INT (desired_val);
1796 break;
1797 case GT:
1798 if (actual_val == desired_val - 1)
1800 code = GE;
1801 op_b = GEN_INT (desired_val);
1803 break;
1804 case GE:
1805 if (actual_val == desired_val + 1)
1807 code = GT;
1808 op_b = GEN_INT (desired_val);
1810 break;
1811 default:
1812 break;
1816 /* If we made any changes, generate a new conditional that is
1817 equivalent to what we started with, but has the right
1818 constants in it. */
1819 if (code != GET_CODE (if_info->cond)
1820 || op_a != XEXP (if_info->cond, 0)
1821 || op_b != XEXP (if_info->cond, 1))
1823 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1824 *earliest = if_info->cond_earliest;
1825 return cond;
1829 cond = canonicalize_condition (if_info->jump, cond, reverse,
1830 earliest, target, false, true);
1831 if (! cond || ! reg_mentioned_p (target, cond))
1832 return NULL;
1834 /* We almost certainly searched back to a different place.
1835 Need to re-verify correct lifetimes. */
1837 /* X may not be mentioned in the range (cond_earliest, jump]. */
1838 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1839 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1840 return NULL;
1842 /* A and B may not be modified in the range [cond_earliest, jump). */
1843 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1844 if (INSN_P (insn)
1845 && (modified_in_p (if_info->a, insn)
1846 || modified_in_p (if_info->b, insn)))
1847 return NULL;
1849 return cond;
1852 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1854 static int
1855 noce_try_minmax (struct noce_if_info *if_info)
1857 rtx cond, earliest, target, seq;
1858 enum rtx_code code, op;
1859 int unsignedp;
1861 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1862 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1863 to get the target to tell us... */
1864 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1865 || HONOR_NANS (GET_MODE (if_info->x)))
1866 return FALSE;
1868 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1869 if (!cond)
1870 return FALSE;
1872 /* Verify the condition is of the form we expect, and canonicalize
1873 the comparison code. */
1874 code = GET_CODE (cond);
1875 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1877 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1878 return FALSE;
1880 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1882 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1883 return FALSE;
1884 code = swap_condition (code);
1886 else
1887 return FALSE;
1889 /* Determine what sort of operation this is. Note that the code is for
1890 a taken branch, so the code->operation mapping appears backwards. */
1891 switch (code)
1893 case LT:
1894 case LE:
1895 case UNLT:
1896 case UNLE:
1897 op = SMAX;
1898 unsignedp = 0;
1899 break;
1900 case GT:
1901 case GE:
1902 case UNGT:
1903 case UNGE:
1904 op = SMIN;
1905 unsignedp = 0;
1906 break;
1907 case LTU:
1908 case LEU:
1909 op = UMAX;
1910 unsignedp = 1;
1911 break;
1912 case GTU:
1913 case GEU:
1914 op = UMIN;
1915 unsignedp = 1;
1916 break;
1917 default:
1918 return FALSE;
1921 start_sequence ();
1923 target = expand_simple_binop (GET_MODE (if_info->x), op,
1924 if_info->a, if_info->b,
1925 if_info->x, unsignedp, OPTAB_WIDEN);
1926 if (! target)
1928 end_sequence ();
1929 return FALSE;
1931 if (target != if_info->x)
1932 noce_emit_move_insn (if_info->x, target);
1934 seq = end_ifcvt_sequence (if_info);
1935 if (!seq)
1936 return FALSE;
1938 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1939 if_info->cond = cond;
1940 if_info->cond_earliest = earliest;
1942 return TRUE;
1945 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1946 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1947 etc. */
1949 static int
1950 noce_try_abs (struct noce_if_info *if_info)
1952 rtx cond, earliest, target, seq, a, b, c;
1953 int negate;
1954 bool one_cmpl = false;
1956 /* Reject modes with signed zeros. */
1957 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1958 return FALSE;
1960 /* Recognize A and B as constituting an ABS or NABS. The canonical
1961 form is a branch around the negation, taken when the object is the
1962 first operand of a comparison against 0 that evaluates to true. */
1963 a = if_info->a;
1964 b = if_info->b;
1965 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1966 negate = 0;
1967 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1969 c = a; a = b; b = c;
1970 negate = 1;
1972 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1974 negate = 0;
1975 one_cmpl = true;
1977 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1979 c = a; a = b; b = c;
1980 negate = 1;
1981 one_cmpl = true;
1983 else
1984 return FALSE;
1986 cond = noce_get_alt_condition (if_info, b, &earliest);
1987 if (!cond)
1988 return FALSE;
1990 /* Verify the condition is of the form we expect. */
1991 if (rtx_equal_p (XEXP (cond, 0), b))
1992 c = XEXP (cond, 1);
1993 else if (rtx_equal_p (XEXP (cond, 1), b))
1995 c = XEXP (cond, 0);
1996 negate = !negate;
1998 else
1999 return FALSE;
2001 /* Verify that C is zero. Search one step backward for a
2002 REG_EQUAL note or a simple source if necessary. */
2003 if (REG_P (c))
2005 rtx set, insn = prev_nonnote_insn (earliest);
2006 if (insn
2007 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2008 && (set = single_set (insn))
2009 && rtx_equal_p (SET_DEST (set), c))
2011 rtx note = find_reg_equal_equiv_note (insn);
2012 if (note)
2013 c = XEXP (note, 0);
2014 else
2015 c = SET_SRC (set);
2017 else
2018 return FALSE;
2020 if (MEM_P (c)
2021 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2022 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2023 c = get_pool_constant (XEXP (c, 0));
2025 /* Work around funny ideas get_condition has wrt canonicalization.
2026 Note that these rtx constants are known to be CONST_INT, and
2027 therefore imply integer comparisons. */
2028 if (c == constm1_rtx && GET_CODE (cond) == GT)
2030 else if (c == const1_rtx && GET_CODE (cond) == LT)
2032 else if (c != CONST0_RTX (GET_MODE (b)))
2033 return FALSE;
2035 /* Determine what sort of operation this is. */
2036 switch (GET_CODE (cond))
2038 case LT:
2039 case LE:
2040 case UNLT:
2041 case UNLE:
2042 negate = !negate;
2043 break;
2044 case GT:
2045 case GE:
2046 case UNGT:
2047 case UNGE:
2048 break;
2049 default:
2050 return FALSE;
2053 start_sequence ();
2054 if (one_cmpl)
2055 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2056 if_info->x);
2057 else
2058 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2060 /* ??? It's a quandary whether cmove would be better here, especially
2061 for integers. Perhaps combine will clean things up. */
2062 if (target && negate)
2064 if (one_cmpl)
2065 target = expand_simple_unop (GET_MODE (target), NOT, target,
2066 if_info->x, 0);
2067 else
2068 target = expand_simple_unop (GET_MODE (target), NEG, target,
2069 if_info->x, 0);
2072 if (! target)
2074 end_sequence ();
2075 return FALSE;
2078 if (target != if_info->x)
2079 noce_emit_move_insn (if_info->x, target);
2081 seq = end_ifcvt_sequence (if_info);
2082 if (!seq)
2083 return FALSE;
2085 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2086 if_info->cond = cond;
2087 if_info->cond_earliest = earliest;
2089 return TRUE;
2092 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2094 static int
2095 noce_try_sign_mask (struct noce_if_info *if_info)
2097 rtx cond, t, m, c, seq;
2098 enum machine_mode mode;
2099 enum rtx_code code;
2100 bool t_unconditional;
2102 cond = if_info->cond;
2103 code = GET_CODE (cond);
2104 m = XEXP (cond, 0);
2105 c = XEXP (cond, 1);
2107 t = NULL_RTX;
2108 if (if_info->a == const0_rtx)
2110 if ((code == LT && c == const0_rtx)
2111 || (code == LE && c == constm1_rtx))
2112 t = if_info->b;
2114 else if (if_info->b == const0_rtx)
2116 if ((code == GE && c == const0_rtx)
2117 || (code == GT && c == constm1_rtx))
2118 t = if_info->a;
2121 if (! t || side_effects_p (t))
2122 return FALSE;
2124 /* We currently don't handle different modes. */
2125 mode = GET_MODE (t);
2126 if (GET_MODE (m) != mode)
2127 return FALSE;
2129 /* This is only profitable if T is unconditionally executed/evaluated in the
2130 original insn sequence or T is cheap. The former happens if B is the
2131 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2132 INSN_B which can happen for e.g. conditional stores to memory. For the
2133 cost computation use the block TEST_BB where the evaluation will end up
2134 after the transformation. */
2135 t_unconditional =
2136 (t == if_info->b
2137 && (if_info->insn_b == NULL_RTX
2138 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2139 if (!(t_unconditional
2140 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2141 < COSTS_N_INSNS (2))))
2142 return FALSE;
2144 start_sequence ();
2145 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2146 "(signed) m >> 31" directly. This benefits targets with specialized
2147 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2148 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2149 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2150 : NULL_RTX;
2152 if (!t)
2154 end_sequence ();
2155 return FALSE;
2158 noce_emit_move_insn (if_info->x, t);
2160 seq = end_ifcvt_sequence (if_info);
2161 if (!seq)
2162 return FALSE;
2164 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2165 return TRUE;
2169 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2170 transformations. */
2172 static int
2173 noce_try_bitop (struct noce_if_info *if_info)
2175 rtx cond, x, a, result, seq;
2176 enum machine_mode mode;
2177 enum rtx_code code;
2178 int bitnum;
2180 x = if_info->x;
2181 cond = if_info->cond;
2182 code = GET_CODE (cond);
2184 /* Check for no else condition. */
2185 if (! rtx_equal_p (x, if_info->b))
2186 return FALSE;
2188 /* Check for a suitable condition. */
2189 if (code != NE && code != EQ)
2190 return FALSE;
2191 if (XEXP (cond, 1) != const0_rtx)
2192 return FALSE;
2193 cond = XEXP (cond, 0);
2195 /* ??? We could also handle AND here. */
2196 if (GET_CODE (cond) == ZERO_EXTRACT)
2198 if (XEXP (cond, 1) != const1_rtx
2199 || !CONST_INT_P (XEXP (cond, 2))
2200 || ! rtx_equal_p (x, XEXP (cond, 0)))
2201 return FALSE;
2202 bitnum = INTVAL (XEXP (cond, 2));
2203 mode = GET_MODE (x);
2204 if (BITS_BIG_ENDIAN)
2205 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2206 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2207 return FALSE;
2209 else
2210 return FALSE;
2212 a = if_info->a;
2213 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2215 /* Check for "if (X & C) x = x op C". */
2216 if (! rtx_equal_p (x, XEXP (a, 0))
2217 || !CONST_INT_P (XEXP (a, 1))
2218 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2219 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2220 return FALSE;
2222 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2223 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2224 if (GET_CODE (a) == IOR)
2225 result = (code == NE) ? a : NULL_RTX;
2226 else if (code == NE)
2228 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2229 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2230 result = simplify_gen_binary (IOR, mode, x, result);
2232 else
2234 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2235 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2236 result = simplify_gen_binary (AND, mode, x, result);
2239 else if (GET_CODE (a) == AND)
2241 /* Check for "if (X & C) x &= ~C". */
2242 if (! rtx_equal_p (x, XEXP (a, 0))
2243 || !CONST_INT_P (XEXP (a, 1))
2244 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2245 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2246 return FALSE;
2248 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2249 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2250 result = (code == EQ) ? a : NULL_RTX;
2252 else
2253 return FALSE;
2255 if (result)
2257 start_sequence ();
2258 noce_emit_move_insn (x, result);
2259 seq = end_ifcvt_sequence (if_info);
2260 if (!seq)
2261 return FALSE;
2263 emit_insn_before_setloc (seq, if_info->jump,
2264 INSN_LOCATOR (if_info->insn_a));
2266 return TRUE;
2270 /* Similar to get_condition, only the resulting condition must be
2271 valid at JUMP, instead of at EARLIEST.
2273 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2274 THEN block of the caller, and we have to reverse the condition. */
2276 static rtx
2277 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2279 rtx cond, set, tmp;
2280 bool reverse;
2282 if (! any_condjump_p (jump))
2283 return NULL_RTX;
2285 set = pc_set (jump);
2287 /* If this branches to JUMP_LABEL when the condition is false,
2288 reverse the condition. */
2289 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2290 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2292 /* We may have to reverse because the caller's if block is not canonical,
2293 i.e. the THEN block isn't the fallthrough block for the TEST block
2294 (see find_if_header). */
2295 if (then_else_reversed)
2296 reverse = !reverse;
2298 /* If the condition variable is a register and is MODE_INT, accept it. */
2300 cond = XEXP (SET_SRC (set), 0);
2301 tmp = XEXP (cond, 0);
2302 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2304 *earliest = jump;
2306 if (reverse)
2307 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2308 GET_MODE (cond), tmp, XEXP (cond, 1));
2309 return cond;
2312 /* Otherwise, fall back on canonicalize_condition to do the dirty
2313 work of manipulating MODE_CC values and COMPARE rtx codes. */
2314 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2315 NULL_RTX, false, true);
2317 /* We don't handle side-effects in the condition, like handling
2318 REG_INC notes and making sure no duplicate conditions are emitted. */
2319 if (tmp != NULL_RTX && side_effects_p (tmp))
2320 return NULL_RTX;
2322 return tmp;
2325 /* Return true if OP is ok for if-then-else processing. */
2327 static int
2328 noce_operand_ok (const_rtx op)
2330 if (side_effects_p (op))
2331 return FALSE;
2333 /* We special-case memories, so handle any of them with
2334 no address side effects. */
2335 if (MEM_P (op))
2336 return ! side_effects_p (XEXP (op, 0));
2338 return ! may_trap_p (op);
2341 /* Return true if a write into MEM may trap or fault. */
2343 static bool
2344 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2346 rtx addr;
2348 if (MEM_READONLY_P (mem))
2349 return true;
2351 if (may_trap_or_fault_p (mem))
2352 return true;
2354 addr = XEXP (mem, 0);
2356 /* Call target hook to avoid the effects of -fpic etc.... */
2357 addr = targetm.delegitimize_address (addr);
2359 while (addr)
2360 switch (GET_CODE (addr))
2362 case CONST:
2363 case PRE_DEC:
2364 case PRE_INC:
2365 case POST_DEC:
2366 case POST_INC:
2367 case POST_MODIFY:
2368 addr = XEXP (addr, 0);
2369 break;
2370 case LO_SUM:
2371 case PRE_MODIFY:
2372 addr = XEXP (addr, 1);
2373 break;
2374 case PLUS:
2375 if (CONST_INT_P (XEXP (addr, 1)))
2376 addr = XEXP (addr, 0);
2377 else
2378 return false;
2379 break;
2380 case LABEL_REF:
2381 return true;
2382 case SYMBOL_REF:
2383 if (SYMBOL_REF_DECL (addr)
2384 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2385 return true;
2386 return false;
2387 default:
2388 return false;
2391 return false;
2394 /* Return whether we can use store speculation for MEM. TOP_BB is the
2395 basic block above the conditional block where we are considering
2396 doing the speculative store. We look for whether MEM is set
2397 unconditionally later in the function. */
2399 static bool
2400 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2402 basic_block dominator;
2404 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2405 dominator != NULL;
2406 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2408 rtx insn;
2410 FOR_BB_INSNS (dominator, insn)
2412 /* If we see something that might be a memory barrier, we
2413 have to stop looking. Even if the MEM is set later in
2414 the function, we still don't want to set it
2415 unconditionally before the barrier. */
2416 if (INSN_P (insn)
2417 && (volatile_insn_p (PATTERN (insn))
2418 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2419 return false;
2421 if (memory_modified_in_insn_p (mem, insn))
2422 return true;
2423 if (modified_in_p (XEXP (mem, 0), insn))
2424 return false;
2429 return false;
2432 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2433 it without using conditional execution. Return TRUE if we were successful
2434 at converting the block. */
2436 static int
2437 noce_process_if_block (struct noce_if_info *if_info)
2439 basic_block test_bb = if_info->test_bb; /* test block */
2440 basic_block then_bb = if_info->then_bb; /* THEN */
2441 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2442 basic_block join_bb = if_info->join_bb; /* JOIN */
2443 rtx jump = if_info->jump;
2444 rtx cond = if_info->cond;
2445 rtx insn_a, insn_b;
2446 rtx set_a, set_b;
2447 rtx orig_x, x, a, b;
2449 /* We're looking for patterns of the form
2451 (1) if (...) x = a; else x = b;
2452 (2) x = b; if (...) x = a;
2453 (3) if (...) x = a; // as if with an initial x = x.
2455 The later patterns require jumps to be more expensive.
2457 ??? For future expansion, look for multiple X in such patterns. */
2459 /* Look for one of the potential sets. */
2460 insn_a = first_active_insn (then_bb);
2461 if (! insn_a
2462 || insn_a != last_active_insn (then_bb, FALSE)
2463 || (set_a = single_set (insn_a)) == NULL_RTX)
2464 return FALSE;
2466 x = SET_DEST (set_a);
2467 a = SET_SRC (set_a);
2469 /* Look for the other potential set. Make sure we've got equivalent
2470 destinations. */
2471 /* ??? This is overconservative. Storing to two different mems is
2472 as easy as conditionally computing the address. Storing to a
2473 single mem merely requires a scratch memory to use as one of the
2474 destination addresses; often the memory immediately below the
2475 stack pointer is available for this. */
2476 set_b = NULL_RTX;
2477 if (else_bb)
2479 insn_b = first_active_insn (else_bb);
2480 if (! insn_b
2481 || insn_b != last_active_insn (else_bb, FALSE)
2482 || (set_b = single_set (insn_b)) == NULL_RTX
2483 || ! rtx_equal_p (x, SET_DEST (set_b)))
2484 return FALSE;
2486 else
2488 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2489 /* We're going to be moving the evaluation of B down from above
2490 COND_EARLIEST to JUMP. Make sure the relevant data is still
2491 intact. */
2492 if (! insn_b
2493 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2494 || !NONJUMP_INSN_P (insn_b)
2495 || (set_b = single_set (insn_b)) == NULL_RTX
2496 || ! rtx_equal_p (x, SET_DEST (set_b))
2497 || ! noce_operand_ok (SET_SRC (set_b))
2498 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2499 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2500 /* Likewise with X. In particular this can happen when
2501 noce_get_condition looks farther back in the instruction
2502 stream than one might expect. */
2503 || reg_overlap_mentioned_p (x, cond)
2504 || reg_overlap_mentioned_p (x, a)
2505 || modified_between_p (x, insn_b, jump))
2506 insn_b = set_b = NULL_RTX;
2509 /* If x has side effects then only the if-then-else form is safe to
2510 convert. But even in that case we would need to restore any notes
2511 (such as REG_INC) at then end. That can be tricky if
2512 noce_emit_move_insn expands to more than one insn, so disable the
2513 optimization entirely for now if there are side effects. */
2514 if (side_effects_p (x))
2515 return FALSE;
2517 b = (set_b ? SET_SRC (set_b) : x);
2519 /* Only operate on register destinations, and even then avoid extending
2520 the lifetime of hard registers on small register class machines. */
2521 orig_x = x;
2522 if (!REG_P (x)
2523 || (HARD_REGISTER_P (x)
2524 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2526 if (GET_MODE (x) == BLKmode)
2527 return FALSE;
2529 if (GET_CODE (x) == ZERO_EXTRACT
2530 && (!CONST_INT_P (XEXP (x, 1))
2531 || !CONST_INT_P (XEXP (x, 2))))
2532 return FALSE;
2534 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2535 ? XEXP (x, 0) : x));
2538 /* Don't operate on sources that may trap or are volatile. */
2539 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2540 return FALSE;
2542 retry:
2543 /* Set up the info block for our subroutines. */
2544 if_info->insn_a = insn_a;
2545 if_info->insn_b = insn_b;
2546 if_info->x = x;
2547 if_info->a = a;
2548 if_info->b = b;
2550 /* Try optimizations in some approximation of a useful order. */
2551 /* ??? Should first look to see if X is live incoming at all. If it
2552 isn't, we don't need anything but an unconditional set. */
2554 /* Look and see if A and B are really the same. Avoid creating silly
2555 cmove constructs that no one will fix up later. */
2556 if (rtx_equal_p (a, b))
2558 /* If we have an INSN_B, we don't have to create any new rtl. Just
2559 move the instruction that we already have. If we don't have an
2560 INSN_B, that means that A == X, and we've got a noop move. In
2561 that case don't do anything and let the code below delete INSN_A. */
2562 if (insn_b && else_bb)
2564 rtx note;
2566 if (else_bb && insn_b == BB_END (else_bb))
2567 BB_END (else_bb) = PREV_INSN (insn_b);
2568 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2570 /* If there was a REG_EQUAL note, delete it since it may have been
2571 true due to this insn being after a jump. */
2572 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2573 remove_note (insn_b, note);
2575 insn_b = NULL_RTX;
2577 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2578 x must be executed twice. */
2579 else if (insn_b && side_effects_p (orig_x))
2580 return FALSE;
2582 x = orig_x;
2583 goto success;
2586 if (!set_b && MEM_P (orig_x))
2588 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2589 for optimizations if writing to x may trap or fault,
2590 i.e. it's a memory other than a static var or a stack slot,
2591 is misaligned on strict aligned machines or is read-only. If
2592 x is a read-only memory, then the program is valid only if we
2593 avoid the store into it. If there are stores on both the
2594 THEN and ELSE arms, then we can go ahead with the conversion;
2595 either the program is broken, or the condition is always
2596 false such that the other memory is selected. */
2597 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2598 return FALSE;
2600 /* Avoid store speculation: given "if (...) x = a" where x is a
2601 MEM, we only want to do the store if x is always set
2602 somewhere in the function. This avoids cases like
2603 if (pthread_mutex_trylock(mutex))
2604 ++global_variable;
2605 where we only want global_variable to be changed if the mutex
2606 is held. FIXME: This should ideally be expressed directly in
2607 RTL somehow. */
2608 if (!noce_can_store_speculate_p (test_bb, orig_x))
2609 return FALSE;
2612 if (noce_try_move (if_info))
2613 goto success;
2614 if (noce_try_store_flag (if_info))
2615 goto success;
2616 if (noce_try_bitop (if_info))
2617 goto success;
2618 if (noce_try_minmax (if_info))
2619 goto success;
2620 if (noce_try_abs (if_info))
2621 goto success;
2622 if (HAVE_conditional_move
2623 && noce_try_cmove (if_info))
2624 goto success;
2625 if (! targetm.have_conditional_execution ())
2627 if (noce_try_store_flag_constants (if_info))
2628 goto success;
2629 if (noce_try_addcc (if_info))
2630 goto success;
2631 if (noce_try_store_flag_mask (if_info))
2632 goto success;
2633 if (HAVE_conditional_move
2634 && noce_try_cmove_arith (if_info))
2635 goto success;
2636 if (noce_try_sign_mask (if_info))
2637 goto success;
2640 if (!else_bb && set_b)
2642 insn_b = set_b = NULL_RTX;
2643 b = orig_x;
2644 goto retry;
2647 return FALSE;
2649 success:
2651 /* If we used a temporary, fix it up now. */
2652 if (orig_x != x)
2654 rtx seq;
2656 start_sequence ();
2657 noce_emit_move_insn (orig_x, x);
2658 seq = get_insns ();
2659 set_used_flags (orig_x);
2660 unshare_all_rtl_in_chain (seq);
2661 end_sequence ();
2663 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2666 /* The original THEN and ELSE blocks may now be removed. The test block
2667 must now jump to the join block. If the test block and the join block
2668 can be merged, do so. */
2669 if (else_bb)
2671 delete_basic_block (else_bb);
2672 num_true_changes++;
2674 else
2675 remove_edge (find_edge (test_bb, join_bb));
2677 remove_edge (find_edge (then_bb, join_bb));
2678 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2679 delete_basic_block (then_bb);
2680 num_true_changes++;
2682 if (can_merge_blocks_p (test_bb, join_bb))
2684 merge_blocks (test_bb, join_bb);
2685 num_true_changes++;
2688 num_updated_if_blocks++;
2689 return TRUE;
2692 /* Check whether a block is suitable for conditional move conversion.
2693 Every insn must be a simple set of a register to a constant or a
2694 register. For each assignment, store the value in the array VALS,
2695 indexed by register number, then store the register number in
2696 REGS. COND is the condition we will test. */
2698 static int
2699 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs,
2700 rtx cond)
2702 rtx insn;
2704 /* We can only handle simple jumps at the end of the basic block.
2705 It is almost impossible to update the CFG otherwise. */
2706 insn = BB_END (bb);
2707 if (JUMP_P (insn) && !onlyjump_p (insn))
2708 return FALSE;
2710 FOR_BB_INSNS (bb, insn)
2712 rtx set, dest, src;
2714 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2715 continue;
2716 set = single_set (insn);
2717 if (!set)
2718 return FALSE;
2720 dest = SET_DEST (set);
2721 src = SET_SRC (set);
2722 if (!REG_P (dest)
2723 || (HARD_REGISTER_P (dest)
2724 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2725 return FALSE;
2727 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2728 return FALSE;
2730 if (side_effects_p (src) || side_effects_p (dest))
2731 return FALSE;
2733 if (may_trap_p (src) || may_trap_p (dest))
2734 return FALSE;
2736 /* Don't try to handle this if the source register was
2737 modified earlier in the block. */
2738 if ((REG_P (src)
2739 && vals[REGNO (src)] != NULL)
2740 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2741 && vals[REGNO (SUBREG_REG (src))] != NULL))
2742 return FALSE;
2744 /* Don't try to handle this if the destination register was
2745 modified earlier in the block. */
2746 if (vals[REGNO (dest)] != NULL)
2747 return FALSE;
2749 /* Don't try to handle this if the condition uses the
2750 destination register. */
2751 if (reg_overlap_mentioned_p (dest, cond))
2752 return FALSE;
2754 /* Don't try to handle this if the source register is modified
2755 later in the block. */
2756 if (!CONSTANT_P (src)
2757 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2758 return FALSE;
2760 vals[REGNO (dest)] = src;
2762 VEC_safe_push (int, heap, *regs, REGNO (dest));
2765 return TRUE;
2768 /* Given a basic block BB suitable for conditional move conversion,
2769 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2770 register values depending on COND, emit the insns in the block as
2771 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2772 processed. The caller has started a sequence for the conversion.
2773 Return true if successful, false if something goes wrong. */
2775 static bool
2776 cond_move_convert_if_block (struct noce_if_info *if_infop,
2777 basic_block bb, rtx cond,
2778 rtx *then_vals, rtx *else_vals,
2779 bool else_block_p)
2781 enum rtx_code code;
2782 rtx insn, cond_arg0, cond_arg1;
2784 code = GET_CODE (cond);
2785 cond_arg0 = XEXP (cond, 0);
2786 cond_arg1 = XEXP (cond, 1);
2788 FOR_BB_INSNS (bb, insn)
2790 rtx set, target, dest, t, e;
2791 unsigned int regno;
2793 /* ??? Maybe emit conditional debug insn? */
2794 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2795 continue;
2796 set = single_set (insn);
2797 gcc_assert (set && REG_P (SET_DEST (set)));
2799 dest = SET_DEST (set);
2800 regno = REGNO (dest);
2802 t = then_vals[regno];
2803 e = else_vals[regno];
2805 if (else_block_p)
2807 /* If this register was set in the then block, we already
2808 handled this case there. */
2809 if (t)
2810 continue;
2811 t = dest;
2812 gcc_assert (e);
2814 else
2816 gcc_assert (t);
2817 if (!e)
2818 e = dest;
2821 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2822 t, e);
2823 if (!target)
2824 return false;
2826 if (target != dest)
2827 noce_emit_move_insn (dest, target);
2830 return true;
2833 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2834 it using only conditional moves. Return TRUE if we were successful at
2835 converting the block. */
2837 static int
2838 cond_move_process_if_block (struct noce_if_info *if_info)
2840 basic_block test_bb = if_info->test_bb;
2841 basic_block then_bb = if_info->then_bb;
2842 basic_block else_bb = if_info->else_bb;
2843 basic_block join_bb = if_info->join_bb;
2844 rtx jump = if_info->jump;
2845 rtx cond = if_info->cond;
2846 rtx seq, loc_insn;
2847 int max_reg, size, c, reg;
2848 rtx *then_vals;
2849 rtx *else_vals;
2850 VEC (int, heap) *then_regs = NULL;
2851 VEC (int, heap) *else_regs = NULL;
2852 unsigned int i;
2854 /* Build a mapping for each block to the value used for each
2855 register. */
2856 max_reg = max_reg_num ();
2857 size = (max_reg + 1) * sizeof (rtx);
2858 then_vals = (rtx *) alloca (size);
2859 else_vals = (rtx *) alloca (size);
2860 memset (then_vals, 0, size);
2861 memset (else_vals, 0, size);
2863 /* Make sure the blocks are suitable. */
2864 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2865 || (else_bb
2866 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2868 VEC_free (int, heap, then_regs);
2869 VEC_free (int, heap, else_regs);
2870 return FALSE;
2873 /* Make sure the blocks can be used together. If the same register
2874 is set in both blocks, and is not set to a constant in both
2875 cases, then both blocks must set it to the same register. We
2876 have already verified that if it is set to a register, that the
2877 source register does not change after the assignment. Also count
2878 the number of registers set in only one of the blocks. */
2879 c = 0;
2880 FOR_EACH_VEC_ELT (int, then_regs, i, reg)
2882 if (!then_vals[reg] && !else_vals[reg])
2883 continue;
2885 if (!else_vals[reg])
2886 ++c;
2887 else
2889 if (!CONSTANT_P (then_vals[reg])
2890 && !CONSTANT_P (else_vals[reg])
2891 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2893 VEC_free (int, heap, then_regs);
2894 VEC_free (int, heap, else_regs);
2895 return FALSE;
2900 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2901 FOR_EACH_VEC_ELT (int, else_regs, i, reg)
2902 if (!then_vals[reg])
2903 ++c;
2905 /* Make sure it is reasonable to convert this block. What matters
2906 is the number of assignments currently made in only one of the
2907 branches, since if we convert we are going to always execute
2908 them. */
2909 if (c > MAX_CONDITIONAL_EXECUTE)
2911 VEC_free (int, heap, then_regs);
2912 VEC_free (int, heap, else_regs);
2913 return FALSE;
2916 /* Try to emit the conditional moves. First do the then block,
2917 then do anything left in the else blocks. */
2918 start_sequence ();
2919 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2920 then_vals, else_vals, false)
2921 || (else_bb
2922 && !cond_move_convert_if_block (if_info, else_bb, cond,
2923 then_vals, else_vals, true)))
2925 end_sequence ();
2926 VEC_free (int, heap, then_regs);
2927 VEC_free (int, heap, else_regs);
2928 return FALSE;
2930 seq = end_ifcvt_sequence (if_info);
2931 if (!seq)
2933 VEC_free (int, heap, then_regs);
2934 VEC_free (int, heap, else_regs);
2935 return FALSE;
2938 loc_insn = first_active_insn (then_bb);
2939 if (!loc_insn)
2941 loc_insn = first_active_insn (else_bb);
2942 gcc_assert (loc_insn);
2944 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2946 if (else_bb)
2948 delete_basic_block (else_bb);
2949 num_true_changes++;
2951 else
2952 remove_edge (find_edge (test_bb, join_bb));
2954 remove_edge (find_edge (then_bb, join_bb));
2955 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2956 delete_basic_block (then_bb);
2957 num_true_changes++;
2959 if (can_merge_blocks_p (test_bb, join_bb))
2961 merge_blocks (test_bb, join_bb);
2962 num_true_changes++;
2965 num_updated_if_blocks++;
2967 VEC_free (int, heap, then_regs);
2968 VEC_free (int, heap, else_regs);
2969 return TRUE;
2973 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2974 IF-THEN-ELSE-JOIN block.
2976 If so, we'll try to convert the insns to not require the branch,
2977 using only transformations that do not require conditional execution.
2979 Return TRUE if we were successful at converting the block. */
2981 static int
2982 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2983 int pass)
2985 basic_block then_bb, else_bb, join_bb;
2986 bool then_else_reversed = false;
2987 rtx jump, cond;
2988 rtx cond_earliest;
2989 struct noce_if_info if_info;
2991 /* We only ever should get here before reload. */
2992 gcc_assert (!reload_completed);
2994 /* Recognize an IF-THEN-ELSE-JOIN block. */
2995 if (single_pred_p (then_edge->dest)
2996 && single_succ_p (then_edge->dest)
2997 && single_pred_p (else_edge->dest)
2998 && single_succ_p (else_edge->dest)
2999 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3001 then_bb = then_edge->dest;
3002 else_bb = else_edge->dest;
3003 join_bb = single_succ (then_bb);
3005 /* Recognize an IF-THEN-JOIN block. */
3006 else if (single_pred_p (then_edge->dest)
3007 && single_succ_p (then_edge->dest)
3008 && single_succ (then_edge->dest) == else_edge->dest)
3010 then_bb = then_edge->dest;
3011 else_bb = NULL_BLOCK;
3012 join_bb = else_edge->dest;
3014 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3015 of basic blocks in cfglayout mode does not matter, so the fallthrough
3016 edge can go to any basic block (and not just to bb->next_bb, like in
3017 cfgrtl mode). */
3018 else if (single_pred_p (else_edge->dest)
3019 && single_succ_p (else_edge->dest)
3020 && single_succ (else_edge->dest) == then_edge->dest)
3022 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3023 To make this work, we have to invert the THEN and ELSE blocks
3024 and reverse the jump condition. */
3025 then_bb = else_edge->dest;
3026 else_bb = NULL_BLOCK;
3027 join_bb = single_succ (then_bb);
3028 then_else_reversed = true;
3030 else
3031 /* Not a form we can handle. */
3032 return FALSE;
3034 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3035 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3036 return FALSE;
3037 if (else_bb
3038 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3039 return FALSE;
3041 num_possible_if_blocks++;
3043 if (dump_file)
3045 fprintf (dump_file,
3046 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3047 (else_bb) ? "-ELSE" : "",
3048 pass, test_bb->index, then_bb->index);
3050 if (else_bb)
3051 fprintf (dump_file, ", else %d", else_bb->index);
3053 fprintf (dump_file, ", join %d\n", join_bb->index);
3056 /* If the conditional jump is more than just a conditional
3057 jump, then we can not do if-conversion on this block. */
3058 jump = BB_END (test_bb);
3059 if (! onlyjump_p (jump))
3060 return FALSE;
3062 /* If this is not a standard conditional jump, we can't parse it. */
3063 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3064 if (!cond)
3065 return FALSE;
3067 /* We must be comparing objects whose modes imply the size. */
3068 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3069 return FALSE;
3071 /* Initialize an IF_INFO struct to pass around. */
3072 memset (&if_info, 0, sizeof if_info);
3073 if_info.test_bb = test_bb;
3074 if_info.then_bb = then_bb;
3075 if_info.else_bb = else_bb;
3076 if_info.join_bb = join_bb;
3077 if_info.cond = cond;
3078 if_info.cond_earliest = cond_earliest;
3079 if_info.jump = jump;
3080 if_info.then_else_reversed = then_else_reversed;
3081 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3082 predictable_edge_p (then_edge));
3084 /* Do the real work. */
3086 if (noce_process_if_block (&if_info))
3087 return TRUE;
3089 if (HAVE_conditional_move
3090 && cond_move_process_if_block (&if_info))
3091 return TRUE;
3093 return FALSE;
3097 /* Merge the blocks and mark for local life update. */
3099 static void
3100 merge_if_block (struct ce_if_block * ce_info)
3102 basic_block test_bb = ce_info->test_bb; /* last test block */
3103 basic_block then_bb = ce_info->then_bb; /* THEN */
3104 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3105 basic_block join_bb = ce_info->join_bb; /* join block */
3106 basic_block combo_bb;
3108 /* All block merging is done into the lower block numbers. */
3110 combo_bb = test_bb;
3111 df_set_bb_dirty (test_bb);
3113 /* Merge any basic blocks to handle && and || subtests. Each of
3114 the blocks are on the fallthru path from the predecessor block. */
3115 if (ce_info->num_multiple_test_blocks > 0)
3117 basic_block bb = test_bb;
3118 basic_block last_test_bb = ce_info->last_test_bb;
3119 basic_block fallthru = block_fallthru (bb);
3123 bb = fallthru;
3124 fallthru = block_fallthru (bb);
3125 merge_blocks (combo_bb, bb);
3126 num_true_changes++;
3128 while (bb != last_test_bb);
3131 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3132 label, but it might if there were || tests. That label's count should be
3133 zero, and it normally should be removed. */
3135 if (then_bb)
3137 merge_blocks (combo_bb, then_bb);
3138 num_true_changes++;
3141 /* The ELSE block, if it existed, had a label. That label count
3142 will almost always be zero, but odd things can happen when labels
3143 get their addresses taken. */
3144 if (else_bb)
3146 merge_blocks (combo_bb, else_bb);
3147 num_true_changes++;
3150 /* If there was no join block reported, that means it was not adjacent
3151 to the others, and so we cannot merge them. */
3153 if (! join_bb)
3155 rtx last = BB_END (combo_bb);
3157 /* The outgoing edge for the current COMBO block should already
3158 be correct. Verify this. */
3159 if (EDGE_COUNT (combo_bb->succs) == 0)
3160 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3161 || (NONJUMP_INSN_P (last)
3162 && GET_CODE (PATTERN (last)) == TRAP_IF
3163 && (TRAP_CONDITION (PATTERN (last))
3164 == const_true_rtx)));
3166 else
3167 /* There should still be something at the end of the THEN or ELSE
3168 blocks taking us to our final destination. */
3169 gcc_assert (JUMP_P (last)
3170 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3171 && CALL_P (last)
3172 && SIBLING_CALL_P (last))
3173 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3174 && can_throw_internal (last)));
3177 /* The JOIN block may have had quite a number of other predecessors too.
3178 Since we've already merged the TEST, THEN and ELSE blocks, we should
3179 have only one remaining edge from our if-then-else diamond. If there
3180 is more than one remaining edge, it must come from elsewhere. There
3181 may be zero incoming edges if the THEN block didn't actually join
3182 back up (as with a call to a non-return function). */
3183 else if (EDGE_COUNT (join_bb->preds) < 2
3184 && join_bb != EXIT_BLOCK_PTR)
3186 /* We can merge the JOIN cleanly and update the dataflow try
3187 again on this pass.*/
3188 merge_blocks (combo_bb, join_bb);
3189 num_true_changes++;
3191 else
3193 /* We cannot merge the JOIN. */
3195 /* The outgoing edge for the current COMBO block should already
3196 be correct. Verify this. */
3197 gcc_assert (single_succ_p (combo_bb)
3198 && single_succ (combo_bb) == join_bb);
3200 /* Remove the jump and cruft from the end of the COMBO block. */
3201 if (join_bb != EXIT_BLOCK_PTR)
3202 tidy_fallthru_edge (single_succ_edge (combo_bb));
3205 num_updated_if_blocks++;
3208 /* Find a block ending in a simple IF condition and try to transform it
3209 in some way. When converting a multi-block condition, put the new code
3210 in the first such block and delete the rest. Return a pointer to this
3211 first block if some transformation was done. Return NULL otherwise. */
3213 static basic_block
3214 find_if_header (basic_block test_bb, int pass)
3216 ce_if_block_t ce_info;
3217 edge then_edge;
3218 edge else_edge;
3220 /* The kind of block we're looking for has exactly two successors. */
3221 if (EDGE_COUNT (test_bb->succs) != 2)
3222 return NULL;
3224 then_edge = EDGE_SUCC (test_bb, 0);
3225 else_edge = EDGE_SUCC (test_bb, 1);
3227 if (df_get_bb_dirty (then_edge->dest))
3228 return NULL;
3229 if (df_get_bb_dirty (else_edge->dest))
3230 return NULL;
3232 /* Neither edge should be abnormal. */
3233 if ((then_edge->flags & EDGE_COMPLEX)
3234 || (else_edge->flags & EDGE_COMPLEX))
3235 return NULL;
3237 /* Nor exit the loop. */
3238 if ((then_edge->flags & EDGE_LOOP_EXIT)
3239 || (else_edge->flags & EDGE_LOOP_EXIT))
3240 return NULL;
3242 /* The THEN edge is canonically the one that falls through. */
3243 if (then_edge->flags & EDGE_FALLTHRU)
3245 else if (else_edge->flags & EDGE_FALLTHRU)
3247 edge e = else_edge;
3248 else_edge = then_edge;
3249 then_edge = e;
3251 else
3252 /* Otherwise this must be a multiway branch of some sort. */
3253 return NULL;
3255 memset (&ce_info, 0, sizeof (ce_info));
3256 ce_info.test_bb = test_bb;
3257 ce_info.then_bb = then_edge->dest;
3258 ce_info.else_bb = else_edge->dest;
3259 ce_info.pass = pass;
3261 #ifdef IFCVT_INIT_EXTRA_FIELDS
3262 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3263 #endif
3265 if (!reload_completed
3266 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3267 goto success;
3269 if (reload_completed
3270 && targetm.have_conditional_execution ()
3271 && cond_exec_find_if_block (&ce_info))
3272 goto success;
3274 if (HAVE_trap
3275 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3276 && find_cond_trap (test_bb, then_edge, else_edge))
3277 goto success;
3279 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3280 && (reload_completed || !targetm.have_conditional_execution ()))
3282 if (find_if_case_1 (test_bb, then_edge, else_edge))
3283 goto success;
3284 if (find_if_case_2 (test_bb, then_edge, else_edge))
3285 goto success;
3288 return NULL;
3290 success:
3291 if (dump_file)
3292 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3293 /* Set this so we continue looking. */
3294 cond_exec_changed_p = TRUE;
3295 return ce_info.test_bb;
3298 /* Return true if a block has two edges, one of which falls through to the next
3299 block, and the other jumps to a specific block, so that we can tell if the
3300 block is part of an && test or an || test. Returns either -1 or the number
3301 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3303 static int
3304 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3306 edge cur_edge;
3307 int fallthru_p = FALSE;
3308 int jump_p = FALSE;
3309 rtx insn;
3310 rtx end;
3311 int n_insns = 0;
3312 edge_iterator ei;
3314 if (!cur_bb || !target_bb)
3315 return -1;
3317 /* If no edges, obviously it doesn't jump or fallthru. */
3318 if (EDGE_COUNT (cur_bb->succs) == 0)
3319 return FALSE;
3321 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3323 if (cur_edge->flags & EDGE_COMPLEX)
3324 /* Anything complex isn't what we want. */
3325 return -1;
3327 else if (cur_edge->flags & EDGE_FALLTHRU)
3328 fallthru_p = TRUE;
3330 else if (cur_edge->dest == target_bb)
3331 jump_p = TRUE;
3333 else
3334 return -1;
3337 if ((jump_p & fallthru_p) == 0)
3338 return -1;
3340 /* Don't allow calls in the block, since this is used to group && and ||
3341 together for conditional execution support. ??? we should support
3342 conditional execution support across calls for IA-64 some day, but
3343 for now it makes the code simpler. */
3344 end = BB_END (cur_bb);
3345 insn = BB_HEAD (cur_bb);
3347 while (insn != NULL_RTX)
3349 if (CALL_P (insn))
3350 return -1;
3352 if (INSN_P (insn)
3353 && !JUMP_P (insn)
3354 && !DEBUG_INSN_P (insn)
3355 && GET_CODE (PATTERN (insn)) != USE
3356 && GET_CODE (PATTERN (insn)) != CLOBBER)
3357 n_insns++;
3359 if (insn == end)
3360 break;
3362 insn = NEXT_INSN (insn);
3365 return n_insns;
3368 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3369 block. If so, we'll try to convert the insns to not require the branch.
3370 Return TRUE if we were successful at converting the block. */
3372 static int
3373 cond_exec_find_if_block (struct ce_if_block * ce_info)
3375 basic_block test_bb = ce_info->test_bb;
3376 basic_block then_bb = ce_info->then_bb;
3377 basic_block else_bb = ce_info->else_bb;
3378 basic_block join_bb = NULL_BLOCK;
3379 edge cur_edge;
3380 basic_block next;
3381 edge_iterator ei;
3383 ce_info->last_test_bb = test_bb;
3385 /* We only ever should get here after reload,
3386 and if we have conditional execution. */
3387 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3389 /* Discover if any fall through predecessors of the current test basic block
3390 were && tests (which jump to the else block) or || tests (which jump to
3391 the then block). */
3392 if (single_pred_p (test_bb)
3393 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3395 basic_block bb = single_pred (test_bb);
3396 basic_block target_bb;
3397 int max_insns = MAX_CONDITIONAL_EXECUTE;
3398 int n_insns;
3400 /* Determine if the preceding block is an && or || block. */
3401 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3403 ce_info->and_and_p = TRUE;
3404 target_bb = else_bb;
3406 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3408 ce_info->and_and_p = FALSE;
3409 target_bb = then_bb;
3411 else
3412 target_bb = NULL_BLOCK;
3414 if (target_bb && n_insns <= max_insns)
3416 int total_insns = 0;
3417 int blocks = 0;
3419 ce_info->last_test_bb = test_bb;
3421 /* Found at least one && or || block, look for more. */
3424 ce_info->test_bb = test_bb = bb;
3425 total_insns += n_insns;
3426 blocks++;
3428 if (!single_pred_p (bb))
3429 break;
3431 bb = single_pred (bb);
3432 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3434 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3436 ce_info->num_multiple_test_blocks = blocks;
3437 ce_info->num_multiple_test_insns = total_insns;
3439 if (ce_info->and_and_p)
3440 ce_info->num_and_and_blocks = blocks;
3441 else
3442 ce_info->num_or_or_blocks = blocks;
3446 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3447 other than any || blocks which jump to the THEN block. */
3448 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3449 return FALSE;
3451 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3452 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3454 if (cur_edge->flags & EDGE_COMPLEX)
3455 return FALSE;
3458 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3460 if (cur_edge->flags & EDGE_COMPLEX)
3461 return FALSE;
3464 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3465 if (EDGE_COUNT (then_bb->succs) > 0
3466 && (!single_succ_p (then_bb)
3467 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3468 || (epilogue_completed
3469 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3470 return FALSE;
3472 /* If the THEN block has no successors, conditional execution can still
3473 make a conditional call. Don't do this unless the ELSE block has
3474 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3475 Check for the last insn of the THEN block being an indirect jump, which
3476 is listed as not having any successors, but confuses the rest of the CE
3477 code processing. ??? we should fix this in the future. */
3478 if (EDGE_COUNT (then_bb->succs) == 0)
3480 if (single_pred_p (else_bb))
3482 rtx last_insn = BB_END (then_bb);
3484 while (last_insn
3485 && NOTE_P (last_insn)
3486 && last_insn != BB_HEAD (then_bb))
3487 last_insn = PREV_INSN (last_insn);
3489 if (last_insn
3490 && JUMP_P (last_insn)
3491 && ! simplejump_p (last_insn))
3492 return FALSE;
3494 join_bb = else_bb;
3495 else_bb = NULL_BLOCK;
3497 else
3498 return FALSE;
3501 /* If the THEN block's successor is the other edge out of the TEST block,
3502 then we have an IF-THEN combo without an ELSE. */
3503 else if (single_succ (then_bb) == else_bb)
3505 join_bb = else_bb;
3506 else_bb = NULL_BLOCK;
3509 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3510 has exactly one predecessor and one successor, and the outgoing edge
3511 is not complex, then we have an IF-THEN-ELSE combo. */
3512 else if (single_succ_p (else_bb)
3513 && single_succ (then_bb) == single_succ (else_bb)
3514 && single_pred_p (else_bb)
3515 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3516 && !(epilogue_completed
3517 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3518 join_bb = single_succ (else_bb);
3520 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3521 else
3522 return FALSE;
3524 num_possible_if_blocks++;
3526 if (dump_file)
3528 fprintf (dump_file,
3529 "\nIF-THEN%s block found, pass %d, start block %d "
3530 "[insn %d], then %d [%d]",
3531 (else_bb) ? "-ELSE" : "",
3532 ce_info->pass,
3533 test_bb->index,
3534 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3535 then_bb->index,
3536 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3538 if (else_bb)
3539 fprintf (dump_file, ", else %d [%d]",
3540 else_bb->index,
3541 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3543 fprintf (dump_file, ", join %d [%d]",
3544 join_bb->index,
3545 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3547 if (ce_info->num_multiple_test_blocks > 0)
3548 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3549 ce_info->num_multiple_test_blocks,
3550 (ce_info->and_and_p) ? "&&" : "||",
3551 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3552 ce_info->last_test_bb->index,
3553 ((BB_HEAD (ce_info->last_test_bb))
3554 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3555 : -1));
3557 fputc ('\n', dump_file);
3560 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3561 first condition for free, since we've already asserted that there's a
3562 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3563 we checked the FALLTHRU flag, those are already adjacent to the last IF
3564 block. */
3565 /* ??? As an enhancement, move the ELSE block. Have to deal with
3566 BLOCK notes, if by no other means than backing out the merge if they
3567 exist. Sticky enough I don't want to think about it now. */
3568 next = then_bb;
3569 if (else_bb && (next = next->next_bb) != else_bb)
3570 return FALSE;
3571 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3573 if (else_bb)
3574 join_bb = NULL;
3575 else
3576 return FALSE;
3579 /* Do the real work. */
3581 ce_info->else_bb = else_bb;
3582 ce_info->join_bb = join_bb;
3584 /* If we have && and || tests, try to first handle combining the && and ||
3585 tests into the conditional code, and if that fails, go back and handle
3586 it without the && and ||, which at present handles the && case if there
3587 was no ELSE block. */
3588 if (cond_exec_process_if_block (ce_info, TRUE))
3589 return TRUE;
3591 if (ce_info->num_multiple_test_blocks)
3593 cancel_changes (0);
3595 if (cond_exec_process_if_block (ce_info, FALSE))
3596 return TRUE;
3599 return FALSE;
3602 /* Convert a branch over a trap, or a branch
3603 to a trap, into a conditional trap. */
3605 static int
3606 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3608 basic_block then_bb = then_edge->dest;
3609 basic_block else_bb = else_edge->dest;
3610 basic_block other_bb, trap_bb;
3611 rtx trap, jump, cond, cond_earliest, seq;
3612 enum rtx_code code;
3614 /* Locate the block with the trap instruction. */
3615 /* ??? While we look for no successors, we really ought to allow
3616 EH successors. Need to fix merge_if_block for that to work. */
3617 if ((trap = block_has_only_trap (then_bb)) != NULL)
3618 trap_bb = then_bb, other_bb = else_bb;
3619 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3620 trap_bb = else_bb, other_bb = then_bb;
3621 else
3622 return FALSE;
3624 if (dump_file)
3626 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3627 test_bb->index, trap_bb->index);
3630 /* If this is not a standard conditional jump, we can't parse it. */
3631 jump = BB_END (test_bb);
3632 cond = noce_get_condition (jump, &cond_earliest, false);
3633 if (! cond)
3634 return FALSE;
3636 /* If the conditional jump is more than just a conditional jump, then
3637 we can not do if-conversion on this block. */
3638 if (! onlyjump_p (jump))
3639 return FALSE;
3641 /* We must be comparing objects whose modes imply the size. */
3642 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3643 return FALSE;
3645 /* Reverse the comparison code, if necessary. */
3646 code = GET_CODE (cond);
3647 if (then_bb == trap_bb)
3649 code = reversed_comparison_code (cond, jump);
3650 if (code == UNKNOWN)
3651 return FALSE;
3654 /* Attempt to generate the conditional trap. */
3655 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3656 copy_rtx (XEXP (cond, 1)),
3657 TRAP_CODE (PATTERN (trap)));
3658 if (seq == NULL)
3659 return FALSE;
3661 /* Emit the new insns before cond_earliest. */
3662 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3664 /* Delete the trap block if possible. */
3665 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3666 df_set_bb_dirty (test_bb);
3667 df_set_bb_dirty (then_bb);
3668 df_set_bb_dirty (else_bb);
3670 if (EDGE_COUNT (trap_bb->preds) == 0)
3672 delete_basic_block (trap_bb);
3673 num_true_changes++;
3676 /* Wire together the blocks again. */
3677 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3678 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3679 else
3681 rtx lab, newjump;
3683 lab = JUMP_LABEL (jump);
3684 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3685 LABEL_NUSES (lab) += 1;
3686 JUMP_LABEL (newjump) = lab;
3687 emit_barrier_after (newjump);
3689 delete_insn (jump);
3691 if (can_merge_blocks_p (test_bb, other_bb))
3693 merge_blocks (test_bb, other_bb);
3694 num_true_changes++;
3697 num_updated_if_blocks++;
3698 return TRUE;
3701 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3702 return it. */
3704 static rtx
3705 block_has_only_trap (basic_block bb)
3707 rtx trap;
3709 /* We're not the exit block. */
3710 if (bb == EXIT_BLOCK_PTR)
3711 return NULL_RTX;
3713 /* The block must have no successors. */
3714 if (EDGE_COUNT (bb->succs) > 0)
3715 return NULL_RTX;
3717 /* The only instruction in the THEN block must be the trap. */
3718 trap = first_active_insn (bb);
3719 if (! (trap == BB_END (bb)
3720 && GET_CODE (PATTERN (trap)) == TRAP_IF
3721 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3722 return NULL_RTX;
3724 return trap;
3727 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3728 transformable, but not necessarily the other. There need be no
3729 JOIN block.
3731 Return TRUE if we were successful at converting the block.
3733 Cases we'd like to look at:
3736 if (test) goto over; // x not live
3737 x = a;
3738 goto label;
3739 over:
3741 becomes
3743 x = a;
3744 if (! test) goto label;
3747 if (test) goto E; // x not live
3748 x = big();
3749 goto L;
3751 x = b;
3752 goto M;
3754 becomes
3756 x = b;
3757 if (test) goto M;
3758 x = big();
3759 goto L;
3761 (3) // This one's really only interesting for targets that can do
3762 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3763 // it results in multiple branches on a cache line, which often
3764 // does not sit well with predictors.
3766 if (test1) goto E; // predicted not taken
3767 x = a;
3768 if (test2) goto F;
3771 x = b;
3774 becomes
3776 x = a;
3777 if (test1) goto E;
3778 if (test2) goto F;
3780 Notes:
3782 (A) Don't do (2) if the branch is predicted against the block we're
3783 eliminating. Do it anyway if we can eliminate a branch; this requires
3784 that the sole successor of the eliminated block postdominate the other
3785 side of the if.
3787 (B) With CE, on (3) we can steal from both sides of the if, creating
3789 if (test1) x = a;
3790 if (!test1) x = b;
3791 if (test1) goto J;
3792 if (test2) goto F;
3796 Again, this is most useful if J postdominates.
3798 (C) CE substitutes for helpful life information.
3800 (D) These heuristics need a lot of work. */
3802 /* Tests for case 1 above. */
3804 static int
3805 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3807 basic_block then_bb = then_edge->dest;
3808 basic_block else_bb = else_edge->dest;
3809 basic_block new_bb;
3810 int then_bb_index, then_prob;
3811 rtx else_target = NULL_RTX;
3813 /* If we are partitioning hot/cold basic blocks, we don't want to
3814 mess up unconditional or indirect jumps that cross between hot
3815 and cold sections.
3817 Basic block partitioning may result in some jumps that appear to
3818 be optimizable (or blocks that appear to be mergeable), but which really
3819 must be left untouched (they are required to make it safely across
3820 partition boundaries). See the comments at the top of
3821 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3823 if ((BB_END (then_bb)
3824 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3825 || (BB_END (test_bb)
3826 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3827 || (BB_END (else_bb)
3828 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3829 NULL_RTX)))
3830 return FALSE;
3832 /* THEN has one successor. */
3833 if (!single_succ_p (then_bb))
3834 return FALSE;
3836 /* THEN does not fall through, but is not strange either. */
3837 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3838 return FALSE;
3840 /* THEN has one predecessor. */
3841 if (!single_pred_p (then_bb))
3842 return FALSE;
3844 /* THEN must do something. */
3845 if (forwarder_block_p (then_bb))
3846 return FALSE;
3848 num_possible_if_blocks++;
3849 if (dump_file)
3850 fprintf (dump_file,
3851 "\nIF-CASE-1 found, start %d, then %d\n",
3852 test_bb->index, then_bb->index);
3854 if (then_edge->probability)
3855 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3856 else
3857 then_prob = REG_BR_PROB_BASE / 2;
3859 /* We're speculating from the THEN path, we want to make sure the cost
3860 of speculation is within reason. */
3861 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3862 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3863 predictable_edge_p (then_edge)))))
3864 return FALSE;
3866 if (else_bb == EXIT_BLOCK_PTR)
3868 rtx jump = BB_END (else_edge->src);
3869 gcc_assert (JUMP_P (jump));
3870 else_target = JUMP_LABEL (jump);
3873 /* Registers set are dead, or are predicable. */
3874 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3875 single_succ_edge (then_bb), 1))
3876 return FALSE;
3878 /* Conversion went ok, including moving the insns and fixing up the
3879 jump. Adjust the CFG to match. */
3881 /* We can avoid creating a new basic block if then_bb is immediately
3882 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3883 thru to else_bb. */
3885 if (then_bb->next_bb == else_bb
3886 && then_bb->prev_bb == test_bb
3887 && else_bb != EXIT_BLOCK_PTR)
3889 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3890 new_bb = 0;
3892 else if (else_bb == EXIT_BLOCK_PTR)
3893 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3894 else_bb, else_target);
3895 else
3896 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3897 else_bb);
3899 df_set_bb_dirty (test_bb);
3900 df_set_bb_dirty (else_bb);
3902 then_bb_index = then_bb->index;
3903 delete_basic_block (then_bb);
3905 /* Make rest of code believe that the newly created block is the THEN_BB
3906 block we removed. */
3907 if (new_bb)
3909 df_bb_replace (then_bb_index, new_bb);
3910 /* Since the fallthru edge was redirected from test_bb to new_bb,
3911 we need to ensure that new_bb is in the same partition as
3912 test bb (you can not fall through across section boundaries). */
3913 BB_COPY_PARTITION (new_bb, test_bb);
3916 num_true_changes++;
3917 num_updated_if_blocks++;
3919 return TRUE;
3922 /* Test for case 2 above. */
3924 static int
3925 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3927 basic_block then_bb = then_edge->dest;
3928 basic_block else_bb = else_edge->dest;
3929 edge else_succ;
3930 int then_prob, else_prob;
3932 /* If we are partitioning hot/cold basic blocks, we don't want to
3933 mess up unconditional or indirect jumps that cross between hot
3934 and cold sections.
3936 Basic block partitioning may result in some jumps that appear to
3937 be optimizable (or blocks that appear to be mergeable), but which really
3938 must be left untouched (they are required to make it safely across
3939 partition boundaries). See the comments at the top of
3940 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3942 if ((BB_END (then_bb)
3943 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3944 || (BB_END (test_bb)
3945 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3946 || (BB_END (else_bb)
3947 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3948 NULL_RTX)))
3949 return FALSE;
3951 /* ELSE has one successor. */
3952 if (!single_succ_p (else_bb))
3953 return FALSE;
3954 else
3955 else_succ = single_succ_edge (else_bb);
3957 /* ELSE outgoing edge is not complex. */
3958 if (else_succ->flags & EDGE_COMPLEX)
3959 return FALSE;
3961 /* ELSE has one predecessor. */
3962 if (!single_pred_p (else_bb))
3963 return FALSE;
3965 /* THEN is not EXIT. */
3966 if (then_bb->index < NUM_FIXED_BLOCKS)
3967 return FALSE;
3969 if (else_edge->probability)
3971 else_prob = else_edge->probability;
3972 then_prob = REG_BR_PROB_BASE - else_prob;
3974 else
3976 else_prob = REG_BR_PROB_BASE / 2;
3977 then_prob = REG_BR_PROB_BASE / 2;
3980 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3981 if (else_prob > then_prob)
3983 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3984 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3985 else_succ->dest))
3987 else
3988 return FALSE;
3990 num_possible_if_blocks++;
3991 if (dump_file)
3992 fprintf (dump_file,
3993 "\nIF-CASE-2 found, start %d, else %d\n",
3994 test_bb->index, else_bb->index);
3996 /* We're speculating from the ELSE path, we want to make sure the cost
3997 of speculation is within reason. */
3998 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
3999 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4000 predictable_edge_p (else_edge)))))
4001 return FALSE;
4003 /* Registers set are dead, or are predicable. */
4004 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4005 return FALSE;
4007 /* Conversion went ok, including moving the insns and fixing up the
4008 jump. Adjust the CFG to match. */
4010 df_set_bb_dirty (test_bb);
4011 df_set_bb_dirty (then_bb);
4012 delete_basic_block (else_bb);
4014 num_true_changes++;
4015 num_updated_if_blocks++;
4017 /* ??? We may now fallthru from one of THEN's successors into a join
4018 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4020 return TRUE;
4023 /* Used by the code above to perform the actual rtl transformations.
4024 Return TRUE if successful.
4026 TEST_BB is the block containing the conditional branch. MERGE_BB
4027 is the block containing the code to manipulate. DEST_EDGE is an
4028 edge representing a jump to the join block; after the conversion,
4029 TEST_BB should be branching to its destination.
4030 REVERSEP is true if the sense of the branch should be reversed. */
4032 static int
4033 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4034 basic_block other_bb, edge dest_edge, int reversep)
4036 basic_block new_dest = dest_edge->dest;
4037 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4038 bitmap merge_set = NULL;
4039 /* Number of pending changes. */
4040 int n_validated_changes = 0;
4041 rtx new_dest_label = NULL_RTX;
4043 jump = BB_END (test_bb);
4045 /* Find the extent of the real code in the merge block. */
4046 head = BB_HEAD (merge_bb);
4047 end = BB_END (merge_bb);
4049 while (DEBUG_INSN_P (end) && end != head)
4050 end = PREV_INSN (end);
4052 /* If merge_bb ends with a tablejump, predicating/moving insn's
4053 into test_bb and then deleting merge_bb will result in the jumptable
4054 that follows merge_bb being removed along with merge_bb and then we
4055 get an unresolved reference to the jumptable. */
4056 if (tablejump_p (end, NULL, NULL))
4057 return FALSE;
4059 if (LABEL_P (head))
4060 head = NEXT_INSN (head);
4061 while (DEBUG_INSN_P (head) && head != end)
4062 head = NEXT_INSN (head);
4063 if (NOTE_P (head))
4065 if (head == end)
4067 head = end = NULL_RTX;
4068 goto no_body;
4070 head = NEXT_INSN (head);
4071 while (DEBUG_INSN_P (head) && head != end)
4072 head = NEXT_INSN (head);
4075 if (JUMP_P (end))
4077 if (head == end)
4079 head = end = NULL_RTX;
4080 goto no_body;
4082 end = PREV_INSN (end);
4083 while (DEBUG_INSN_P (end) && end != head)
4084 end = PREV_INSN (end);
4087 /* Disable handling dead code by conditional execution if the machine needs
4088 to do anything funny with the tests, etc. */
4089 #ifndef IFCVT_MODIFY_TESTS
4090 if (targetm.have_conditional_execution ())
4092 /* In the conditional execution case, we have things easy. We know
4093 the condition is reversible. We don't have to check life info
4094 because we're going to conditionally execute the code anyway.
4095 All that's left is making sure the insns involved can actually
4096 be predicated. */
4098 rtx cond, prob_val;
4100 cond = cond_exec_get_condition (jump);
4101 if (! cond)
4102 return FALSE;
4104 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4105 if (prob_val)
4106 prob_val = XEXP (prob_val, 0);
4108 if (reversep)
4110 enum rtx_code rev = reversed_comparison_code (cond, jump);
4111 if (rev == UNKNOWN)
4112 return FALSE;
4113 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4114 XEXP (cond, 1));
4115 if (prob_val)
4116 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4119 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4120 && verify_changes (0))
4121 n_validated_changes = num_validated_changes ();
4122 else
4123 cancel_changes (0);
4125 earliest = jump;
4127 #endif
4129 /* If we allocated new pseudos (e.g. in the conditional move
4130 expander called from noce_emit_cmove), we must resize the
4131 array first. */
4132 if (max_regno < max_reg_num ())
4133 max_regno = max_reg_num ();
4135 /* Try the NCE path if the CE path did not result in any changes. */
4136 if (n_validated_changes == 0)
4138 rtx cond, insn;
4139 regset live;
4140 bool success;
4142 /* In the non-conditional execution case, we have to verify that there
4143 are no trapping operations, no calls, no references to memory, and
4144 that any registers modified are dead at the branch site. */
4146 if (!any_condjump_p (jump))
4147 return FALSE;
4149 /* Find the extent of the conditional. */
4150 cond = noce_get_condition (jump, &earliest, false);
4151 if (!cond)
4152 return FALSE;
4154 live = BITMAP_ALLOC (&reg_obstack);
4155 simulate_backwards_to_point (merge_bb, live, end);
4156 success = can_move_insns_across (head, end, earliest, jump,
4157 merge_bb, live,
4158 df_get_live_in (other_bb), NULL);
4159 BITMAP_FREE (live);
4160 if (!success)
4161 return FALSE;
4163 /* Collect the set of registers set in MERGE_BB. */
4164 merge_set = BITMAP_ALLOC (&reg_obstack);
4166 FOR_BB_INSNS (merge_bb, insn)
4167 if (NONDEBUG_INSN_P (insn))
4168 df_simulate_find_defs (insn, merge_set);
4170 #ifdef HAVE_simple_return
4171 /* If shrink-wrapping, disable this optimization when test_bb is
4172 the first basic block and merge_bb exits. The idea is to not
4173 move code setting up a return register as that may clobber a
4174 register used to pass function parameters, which then must be
4175 saved in caller-saved regs. A caller-saved reg requires the
4176 prologue, killing a shrink-wrap opportunity. */
4177 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4178 && ENTRY_BLOCK_PTR->next_bb == test_bb
4179 && single_succ_p (new_dest)
4180 && single_succ (new_dest) == EXIT_BLOCK_PTR
4181 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4183 regset return_regs;
4184 unsigned int i;
4186 return_regs = BITMAP_ALLOC (&reg_obstack);
4188 /* Start off with the intersection of regs used to pass
4189 params and regs used to return values. */
4190 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4191 if (FUNCTION_ARG_REGNO_P (i)
4192 && targetm.calls.function_value_regno_p (i))
4193 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4195 bitmap_and_into (return_regs, df_get_live_out (ENTRY_BLOCK_PTR));
4196 bitmap_and_into (return_regs, df_get_live_in (EXIT_BLOCK_PTR));
4197 if (!bitmap_empty_p (return_regs))
4199 FOR_BB_INSNS_REVERSE (new_dest, insn)
4200 if (NONDEBUG_INSN_P (insn))
4202 df_ref *def_rec;
4203 unsigned int uid = INSN_UID (insn);
4205 /* If this insn sets any reg in return_regs.. */
4206 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4208 df_ref def = *def_rec;
4209 unsigned r = DF_REF_REGNO (def);
4211 if (bitmap_bit_p (return_regs, r))
4212 break;
4214 /* ..then add all reg uses to the set of regs
4215 we're interested in. */
4216 if (*def_rec)
4217 df_simulate_uses (insn, return_regs);
4219 if (bitmap_intersect_p (merge_set, return_regs))
4221 BITMAP_FREE (return_regs);
4222 BITMAP_FREE (merge_set);
4223 return FALSE;
4226 BITMAP_FREE (return_regs);
4228 #endif
4231 no_body:
4232 /* We don't want to use normal invert_jump or redirect_jump because
4233 we don't want to delete_insn called. Also, we want to do our own
4234 change group management. */
4236 old_dest = JUMP_LABEL (jump);
4237 if (other_bb != new_dest)
4239 if (JUMP_P (BB_END (dest_edge->src)))
4240 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4241 else if (new_dest == EXIT_BLOCK_PTR)
4242 new_dest_label = ret_rtx;
4243 else
4244 new_dest_label = block_label (new_dest);
4246 if (reversep
4247 ? ! invert_jump_1 (jump, new_dest_label)
4248 : ! redirect_jump_1 (jump, new_dest_label))
4249 goto cancel;
4252 if (verify_changes (n_validated_changes))
4253 confirm_change_group ();
4254 else
4255 goto cancel;
4257 if (other_bb != new_dest)
4259 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4261 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4262 if (reversep)
4264 gcov_type count, probability;
4265 count = BRANCH_EDGE (test_bb)->count;
4266 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4267 FALLTHRU_EDGE (test_bb)->count = count;
4268 probability = BRANCH_EDGE (test_bb)->probability;
4269 BRANCH_EDGE (test_bb)->probability
4270 = FALLTHRU_EDGE (test_bb)->probability;
4271 FALLTHRU_EDGE (test_bb)->probability = probability;
4272 update_br_prob_note (test_bb);
4276 /* Move the insns out of MERGE_BB to before the branch. */
4277 if (head != NULL)
4279 rtx insn;
4281 if (end == BB_END (merge_bb))
4282 BB_END (merge_bb) = PREV_INSN (head);
4284 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4285 notes being moved might become invalid. */
4286 insn = head;
4289 rtx note, set;
4291 if (! INSN_P (insn))
4292 continue;
4293 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4294 if (! note)
4295 continue;
4296 set = single_set (insn);
4297 if (!set || !function_invariant_p (SET_SRC (set))
4298 || !function_invariant_p (XEXP (note, 0)))
4299 remove_note (insn, note);
4300 } while (insn != end && (insn = NEXT_INSN (insn)));
4302 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4303 notes referring to the registers being set might become invalid. */
4304 if (merge_set)
4306 unsigned i;
4307 bitmap_iterator bi;
4309 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4310 remove_reg_equal_equiv_notes_for_regno (i);
4312 BITMAP_FREE (merge_set);
4315 reorder_insns (head, end, PREV_INSN (earliest));
4318 /* Remove the jump and edge if we can. */
4319 if (other_bb == new_dest)
4321 delete_insn (jump);
4322 remove_edge (BRANCH_EDGE (test_bb));
4323 /* ??? Can't merge blocks here, as then_bb is still in use.
4324 At minimum, the merge will get done just before bb-reorder. */
4327 return TRUE;
4329 cancel:
4330 cancel_changes (0);
4332 if (merge_set)
4333 BITMAP_FREE (merge_set);
4335 return FALSE;
4338 /* Main entry point for all if-conversion. */
4340 static void
4341 if_convert (void)
4343 basic_block bb;
4344 int pass;
4346 if (optimize == 1)
4348 df_live_add_problem ();
4349 df_live_set_all_dirty ();
4352 num_possible_if_blocks = 0;
4353 num_updated_if_blocks = 0;
4354 num_true_changes = 0;
4356 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4357 mark_loop_exit_edges ();
4358 loop_optimizer_finalize ();
4359 free_dominance_info (CDI_DOMINATORS);
4361 /* Compute postdominators. */
4362 calculate_dominance_info (CDI_POST_DOMINATORS);
4364 df_set_flags (DF_LR_RUN_DCE);
4366 /* Go through each of the basic blocks looking for things to convert. If we
4367 have conditional execution, we make multiple passes to allow us to handle
4368 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4369 pass = 0;
4372 df_analyze ();
4373 /* Only need to do dce on the first pass. */
4374 df_clear_flags (DF_LR_RUN_DCE);
4375 cond_exec_changed_p = FALSE;
4376 pass++;
4378 #ifdef IFCVT_MULTIPLE_DUMPS
4379 if (dump_file && pass > 1)
4380 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4381 #endif
4383 FOR_EACH_BB (bb)
4385 basic_block new_bb;
4386 while (!df_get_bb_dirty (bb)
4387 && (new_bb = find_if_header (bb, pass)) != NULL)
4388 bb = new_bb;
4391 #ifdef IFCVT_MULTIPLE_DUMPS
4392 if (dump_file && cond_exec_changed_p)
4394 if (dump_flags & TDF_SLIM)
4395 print_rtl_slim_with_bb (dump_file, get_insns (), dump_flags);
4396 else
4397 print_rtl_with_bb (dump_file, get_insns ());
4399 #endif
4401 while (cond_exec_changed_p);
4403 #ifdef IFCVT_MULTIPLE_DUMPS
4404 if (dump_file)
4405 fprintf (dump_file, "\n\n========== no more changes\n");
4406 #endif
4408 free_dominance_info (CDI_POST_DOMINATORS);
4410 if (dump_file)
4411 fflush (dump_file);
4413 clear_aux_for_blocks ();
4415 /* If we allocated new pseudos, we must resize the array for sched1. */
4416 if (max_regno < max_reg_num ())
4417 max_regno = max_reg_num ();
4419 /* Write the final stats. */
4420 if (dump_file && num_possible_if_blocks > 0)
4422 fprintf (dump_file,
4423 "\n%d possible IF blocks searched.\n",
4424 num_possible_if_blocks);
4425 fprintf (dump_file,
4426 "%d IF blocks converted.\n",
4427 num_updated_if_blocks);
4428 fprintf (dump_file,
4429 "%d true changes made.\n\n\n",
4430 num_true_changes);
4433 if (optimize == 1)
4434 df_remove_problem (df_live);
4436 #ifdef ENABLE_CHECKING
4437 verify_flow_info ();
4438 #endif
4441 static bool
4442 gate_handle_if_conversion (void)
4444 return (optimize > 0)
4445 && dbg_cnt (if_conversion);
4448 /* If-conversion and CFG cleanup. */
4449 static unsigned int
4450 rest_of_handle_if_conversion (void)
4452 if (flag_if_conversion)
4454 if (dump_file)
4455 dump_flow_info (dump_file, dump_flags);
4456 cleanup_cfg (CLEANUP_EXPENSIVE);
4457 if_convert ();
4460 cleanup_cfg (0);
4461 return 0;
4464 struct rtl_opt_pass pass_rtl_ifcvt =
4467 RTL_PASS,
4468 "ce1", /* name */
4469 gate_handle_if_conversion, /* gate */
4470 rest_of_handle_if_conversion, /* execute */
4471 NULL, /* sub */
4472 NULL, /* next */
4473 0, /* static_pass_number */
4474 TV_IFCVT, /* tv_id */
4475 0, /* properties_required */
4476 0, /* properties_provided */
4477 0, /* properties_destroyed */
4478 0, /* todo_flags_start */
4479 TODO_df_finish | TODO_verify_rtl_sharing |
4480 0 /* todo_flags_finish */
4484 static bool
4485 gate_handle_if_after_combine (void)
4487 return optimize > 0 && flag_if_conversion
4488 && dbg_cnt (if_after_combine);
4492 /* Rerun if-conversion, as combine may have simplified things enough
4493 to now meet sequence length restrictions. */
4494 static unsigned int
4495 rest_of_handle_if_after_combine (void)
4497 if_convert ();
4498 return 0;
4501 struct rtl_opt_pass pass_if_after_combine =
4504 RTL_PASS,
4505 "ce2", /* name */
4506 gate_handle_if_after_combine, /* gate */
4507 rest_of_handle_if_after_combine, /* execute */
4508 NULL, /* sub */
4509 NULL, /* next */
4510 0, /* static_pass_number */
4511 TV_IFCVT, /* tv_id */
4512 0, /* properties_required */
4513 0, /* properties_provided */
4514 0, /* properties_destroyed */
4515 0, /* todo_flags_start */
4516 TODO_df_finish | TODO_verify_rtl_sharing |
4517 TODO_ggc_collect /* todo_flags_finish */
4522 static bool
4523 gate_handle_if_after_reload (void)
4525 return optimize > 0 && flag_if_conversion2
4526 && dbg_cnt (if_after_reload);
4529 static unsigned int
4530 rest_of_handle_if_after_reload (void)
4532 if_convert ();
4533 return 0;
4537 struct rtl_opt_pass pass_if_after_reload =
4540 RTL_PASS,
4541 "ce3", /* name */
4542 gate_handle_if_after_reload, /* gate */
4543 rest_of_handle_if_after_reload, /* execute */
4544 NULL, /* sub */
4545 NULL, /* next */
4546 0, /* static_pass_number */
4547 TV_IFCVT2, /* tv_id */
4548 0, /* properties_required */
4549 0, /* properties_provided */
4550 0, /* properties_destroyed */
4551 0, /* todo_flags_start */
4552 TODO_df_finish | TODO_verify_rtl_sharing |
4553 TODO_ggc_collect /* todo_flags_finish */