* mkfixinc.sh: Check error code from 'cat'. Don't try running
[official-gcc.git] / gcc / expmed.c
blob23ae551f01f5d692c1d6cc5a35d35289000a171d
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
40 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
41 unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT, rtx);
43 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT, rtx, int);
49 static rtx mask_rtx (enum machine_mode, int, int, int);
50 static rtx lshift_value (enum machine_mode, rtx, int, int);
51 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT, int);
53 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
54 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
55 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 /* Nonzero means divides or modulus operations are relatively cheap for
58 powers of two, so don't use branches; emit the operation instead.
59 Usually, this will mean that the MD file will emit non-branch
60 sequences. */
62 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
63 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
65 #ifndef SLOW_UNALIGNED_ACCESS
66 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
67 #endif
69 /* For compilers that support multiple targets with different word sizes,
70 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
71 is the H8/300(H) compiler. */
73 #ifndef MAX_BITS_PER_WORD
74 #define MAX_BITS_PER_WORD BITS_PER_WORD
75 #endif
77 /* Reduce conditional compilation elsewhere. */
78 #ifndef HAVE_insv
79 #define HAVE_insv 0
80 #define CODE_FOR_insv CODE_FOR_nothing
81 #define gen_insv(a,b,c,d) NULL_RTX
82 #endif
83 #ifndef HAVE_extv
84 #define HAVE_extv 0
85 #define CODE_FOR_extv CODE_FOR_nothing
86 #define gen_extv(a,b,c,d) NULL_RTX
87 #endif
88 #ifndef HAVE_extzv
89 #define HAVE_extzv 0
90 #define CODE_FOR_extzv CODE_FOR_nothing
91 #define gen_extzv(a,b,c,d) NULL_RTX
92 #endif
94 /* Cost of various pieces of RTL. Note that some of these are indexed by
95 shift count and some by mode. */
96 static int zero_cost;
97 static int add_cost[NUM_MACHINE_MODES];
98 static int neg_cost[NUM_MACHINE_MODES];
99 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
100 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
101 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
102 static int mul_cost[NUM_MACHINE_MODES];
103 static int div_cost[NUM_MACHINE_MODES];
104 static int mul_widen_cost[NUM_MACHINE_MODES];
105 static int mul_highpart_cost[NUM_MACHINE_MODES];
107 void
108 init_expmed (void)
110 struct
112 struct rtx_def reg; rtunion reg_fld[2];
113 struct rtx_def plus; rtunion plus_fld1;
114 struct rtx_def neg;
115 struct rtx_def udiv; rtunion udiv_fld1;
116 struct rtx_def mult; rtunion mult_fld1;
117 struct rtx_def div; rtunion div_fld1;
118 struct rtx_def mod; rtunion mod_fld1;
119 struct rtx_def zext;
120 struct rtx_def wide_mult; rtunion wide_mult_fld1;
121 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
122 struct rtx_def wide_trunc;
123 struct rtx_def shift; rtunion shift_fld1;
124 struct rtx_def shift_mult; rtunion shift_mult_fld1;
125 struct rtx_def shift_add; rtunion shift_add_fld1;
126 struct rtx_def shift_sub; rtunion shift_sub_fld1;
127 } all;
129 rtx pow2[MAX_BITS_PER_WORD];
130 rtx cint[MAX_BITS_PER_WORD];
131 int m, n;
132 enum machine_mode mode, wider_mode;
134 zero_cost = rtx_cost (const0_rtx, 0);
136 for (m = 1; m < MAX_BITS_PER_WORD; m++)
138 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
139 cint[m] = GEN_INT (m);
142 memset (&all, 0, sizeof all);
144 PUT_CODE (&all.reg, REG);
145 REGNO (&all.reg) = 10000;
147 PUT_CODE (&all.plus, PLUS);
148 XEXP (&all.plus, 0) = &all.reg;
149 XEXP (&all.plus, 1) = &all.reg;
151 PUT_CODE (&all.neg, NEG);
152 XEXP (&all.neg, 0) = &all.reg;
154 PUT_CODE (&all.udiv, UDIV);
155 XEXP (&all.udiv, 0) = &all.reg;
156 XEXP (&all.udiv, 1) = &all.reg;
158 PUT_CODE (&all.mult, MULT);
159 XEXP (&all.mult, 0) = &all.reg;
160 XEXP (&all.mult, 1) = &all.reg;
162 PUT_CODE (&all.div, DIV);
163 XEXP (&all.div, 0) = &all.reg;
164 XEXP (&all.div, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
166 PUT_CODE (&all.mod, MOD);
167 XEXP (&all.mod, 0) = &all.reg;
168 XEXP (&all.mod, 1) = XEXP (&all.div, 1);
170 PUT_CODE (&all.zext, ZERO_EXTEND);
171 XEXP (&all.zext, 0) = &all.reg;
173 PUT_CODE (&all.wide_mult, MULT);
174 XEXP (&all.wide_mult, 0) = &all.zext;
175 XEXP (&all.wide_mult, 1) = &all.zext;
177 PUT_CODE (&all.wide_lshr, LSHIFTRT);
178 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
180 PUT_CODE (&all.wide_trunc, TRUNCATE);
181 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
183 PUT_CODE (&all.shift, ASHIFT);
184 XEXP (&all.shift, 0) = &all.reg;
186 PUT_CODE (&all.shift_mult, MULT);
187 XEXP (&all.shift_mult, 0) = &all.reg;
189 PUT_CODE (&all.shift_add, PLUS);
190 XEXP (&all.shift_add, 0) = &all.shift_mult;
191 XEXP (&all.shift_add, 1) = &all.reg;
193 PUT_CODE (&all.shift_sub, MINUS);
194 XEXP (&all.shift_sub, 0) = &all.shift_mult;
195 XEXP (&all.shift_sub, 1) = &all.reg;
197 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
198 mode != VOIDmode;
199 mode = GET_MODE_WIDER_MODE (mode))
201 PUT_MODE (&all.reg, mode);
202 PUT_MODE (&all.plus, mode);
203 PUT_MODE (&all.neg, mode);
204 PUT_MODE (&all.udiv, mode);
205 PUT_MODE (&all.mult, mode);
206 PUT_MODE (&all.div, mode);
207 PUT_MODE (&all.mod, mode);
208 PUT_MODE (&all.wide_trunc, mode);
209 PUT_MODE (&all.shift, mode);
210 PUT_MODE (&all.shift_mult, mode);
211 PUT_MODE (&all.shift_add, mode);
212 PUT_MODE (&all.shift_sub, mode);
214 add_cost[mode] = rtx_cost (&all.plus, SET);
215 neg_cost[mode] = rtx_cost (&all.neg, SET);
216 div_cost[mode] = rtx_cost (&all.udiv, SET);
217 mul_cost[mode] = rtx_cost (&all.mult, SET);
219 sdiv_pow2_cheap[mode] = (rtx_cost (&all.div, SET) <= 2 * add_cost[mode]);
220 smod_pow2_cheap[mode] = (rtx_cost (&all.mod, SET) <= 4 * add_cost[mode]);
222 wider_mode = GET_MODE_WIDER_MODE (mode);
223 if (wider_mode != VOIDmode)
225 PUT_MODE (&all.zext, wider_mode);
226 PUT_MODE (&all.wide_mult, wider_mode);
227 PUT_MODE (&all.wide_lshr, wider_mode);
228 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
230 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
231 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
234 shift_cost[mode][0] = 0;
235 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
237 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
238 for (m = 1; m < n; m++)
240 XEXP (&all.shift, 1) = cint[m];
241 XEXP (&all.shift_mult, 1) = pow2[m];
243 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
244 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
245 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
250 /* Return an rtx representing minus the value of X.
251 MODE is the intended mode of the result,
252 useful if X is a CONST_INT. */
255 negate_rtx (enum machine_mode mode, rtx x)
257 rtx result = simplify_unary_operation (NEG, mode, x, mode);
259 if (result == 0)
260 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
262 return result;
265 /* Report on the availability of insv/extv/extzv and the desired mode
266 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
267 is false; else the mode of the specified operand. If OPNO is -1,
268 all the caller cares about is whether the insn is available. */
269 enum machine_mode
270 mode_for_extraction (enum extraction_pattern pattern, int opno)
272 const struct insn_data *data;
274 switch (pattern)
276 case EP_insv:
277 if (HAVE_insv)
279 data = &insn_data[CODE_FOR_insv];
280 break;
282 return MAX_MACHINE_MODE;
284 case EP_extv:
285 if (HAVE_extv)
287 data = &insn_data[CODE_FOR_extv];
288 break;
290 return MAX_MACHINE_MODE;
292 case EP_extzv:
293 if (HAVE_extzv)
295 data = &insn_data[CODE_FOR_extzv];
296 break;
298 return MAX_MACHINE_MODE;
300 default:
301 gcc_unreachable ();
304 if (opno == -1)
305 return VOIDmode;
307 /* Everyone who uses this function used to follow it with
308 if (result == VOIDmode) result = word_mode; */
309 if (data->operand[opno].mode == VOIDmode)
310 return word_mode;
311 return data->operand[opno].mode;
315 /* Generate code to store value from rtx VALUE
316 into a bit-field within structure STR_RTX
317 containing BITSIZE bits starting at bit BITNUM.
318 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
319 ALIGN is the alignment that STR_RTX is known to have.
320 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
322 /* ??? Note that there are two different ideas here for how
323 to determine the size to count bits within, for a register.
324 One is BITS_PER_WORD, and the other is the size of operand 3
325 of the insv pattern.
327 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
328 else, we use the mode of operand 3. */
331 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
332 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
333 rtx value)
335 unsigned int unit
336 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
337 unsigned HOST_WIDE_INT offset = bitnum / unit;
338 unsigned HOST_WIDE_INT bitpos = bitnum % unit;
339 rtx op0 = str_rtx;
340 int byte_offset;
341 rtx orig_value;
343 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
345 while (GET_CODE (op0) == SUBREG)
347 /* The following line once was done only if WORDS_BIG_ENDIAN,
348 but I think that is a mistake. WORDS_BIG_ENDIAN is
349 meaningful at a much higher level; when structures are copied
350 between memory and regs, the higher-numbered regs
351 always get higher addresses. */
352 offset += (SUBREG_BYTE (op0) / UNITS_PER_WORD);
353 /* We used to adjust BITPOS here, but now we do the whole adjustment
354 right after the loop. */
355 op0 = SUBREG_REG (op0);
358 /* Use vec_set patterns for inserting parts of vectors whenever
359 available. */
360 if (VECTOR_MODE_P (GET_MODE (op0))
361 && !MEM_P (op0)
362 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
363 != CODE_FOR_nothing)
364 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
365 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
366 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
368 enum machine_mode outermode = GET_MODE (op0);
369 enum machine_mode innermode = GET_MODE_INNER (outermode);
370 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
371 int pos = bitnum / GET_MODE_BITSIZE (innermode);
372 rtx rtxpos = GEN_INT (pos);
373 rtx src = value;
374 rtx dest = op0;
375 rtx pat, seq;
376 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
377 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
378 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
380 start_sequence ();
382 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
383 src = copy_to_mode_reg (mode1, src);
385 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
386 rtxpos = copy_to_mode_reg (mode1, rtxpos);
388 /* We could handle this, but we should always be called with a pseudo
389 for our targets and all insns should take them as outputs. */
390 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
391 && (*insn_data[icode].operand[1].predicate) (src, mode1)
392 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
393 pat = GEN_FCN (icode) (dest, src, rtxpos);
394 seq = get_insns ();
395 end_sequence ();
396 if (pat)
398 emit_insn (seq);
399 emit_insn (pat);
400 return dest;
404 if (flag_force_mem)
406 int old_generating_concat_p = generating_concat_p;
407 generating_concat_p = 0;
408 value = force_not_mem (value);
409 generating_concat_p = old_generating_concat_p;
412 /* If the target is a register, overwriting the entire object, or storing
413 a full-word or multi-word field can be done with just a SUBREG.
415 If the target is memory, storing any naturally aligned field can be
416 done with a simple store. For targets that support fast unaligned
417 memory, any naturally sized, unit aligned field can be done directly. */
419 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
420 + (offset * UNITS_PER_WORD);
422 if (bitpos == 0
423 && bitsize == GET_MODE_BITSIZE (fieldmode)
424 && (!MEM_P (op0)
425 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
426 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
427 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
428 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
429 || (offset * BITS_PER_UNIT % bitsize == 0
430 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
432 if (GET_MODE (op0) != fieldmode)
434 if (GET_CODE (op0) == SUBREG)
436 /* Else we've got some float mode source being extracted
437 into a different float mode destination -- this
438 combination of subregs results in Severe Tire
439 Damage. */
440 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
441 || GET_MODE_CLASS (fieldmode) == MODE_INT
442 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
443 op0 = SUBREG_REG (op0);
445 if (REG_P (op0))
446 op0 = gen_rtx_SUBREG (fieldmode, op0, byte_offset);
447 else
448 op0 = adjust_address (op0, fieldmode, offset);
450 emit_move_insn (op0, value);
451 return value;
454 /* Make sure we are playing with integral modes. Pun with subregs
455 if we aren't. This must come after the entire register case above,
456 since that case is valid for any mode. The following cases are only
457 valid for integral modes. */
459 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
460 if (imode != GET_MODE (op0))
462 if (MEM_P (op0))
463 op0 = adjust_address (op0, imode, 0);
464 else
466 gcc_assert (imode != BLKmode);
467 op0 = gen_lowpart (imode, op0);
472 /* We may be accessing data outside the field, which means
473 we can alias adjacent data. */
474 if (MEM_P (op0))
476 op0 = shallow_copy_rtx (op0);
477 set_mem_alias_set (op0, 0);
478 set_mem_expr (op0, 0);
481 /* If OP0 is a register, BITPOS must count within a word.
482 But as we have it, it counts within whatever size OP0 now has.
483 On a bigendian machine, these are not the same, so convert. */
484 if (BYTES_BIG_ENDIAN
485 && !MEM_P (op0)
486 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
487 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
489 /* Storing an lsb-aligned field in a register
490 can be done with a movestrict instruction. */
492 if (!MEM_P (op0)
493 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
494 && bitsize == GET_MODE_BITSIZE (fieldmode)
495 && (movstrict_optab->handlers[fieldmode].insn_code
496 != CODE_FOR_nothing))
498 int icode = movstrict_optab->handlers[fieldmode].insn_code;
500 /* Get appropriate low part of the value being stored. */
501 if (GET_CODE (value) == CONST_INT || REG_P (value))
502 value = gen_lowpart (fieldmode, value);
503 else if (!(GET_CODE (value) == SYMBOL_REF
504 || GET_CODE (value) == LABEL_REF
505 || GET_CODE (value) == CONST))
506 value = convert_to_mode (fieldmode, value, 0);
508 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
509 value = copy_to_mode_reg (fieldmode, value);
511 if (GET_CODE (op0) == SUBREG)
513 /* Else we've got some float mode source being extracted into
514 a different float mode destination -- this combination of
515 subregs results in Severe Tire Damage. */
516 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
517 || GET_MODE_CLASS (fieldmode) == MODE_INT
518 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
519 op0 = SUBREG_REG (op0);
522 emit_insn (GEN_FCN (icode)
523 (gen_rtx_SUBREG (fieldmode, op0,
524 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
525 + (offset * UNITS_PER_WORD)),
526 value));
528 return value;
531 /* Handle fields bigger than a word. */
533 if (bitsize > BITS_PER_WORD)
535 /* Here we transfer the words of the field
536 in the order least significant first.
537 This is because the most significant word is the one which may
538 be less than full.
539 However, only do that if the value is not BLKmode. */
541 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
542 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
543 unsigned int i;
545 /* This is the mode we must force value to, so that there will be enough
546 subwords to extract. Note that fieldmode will often (always?) be
547 VOIDmode, because that is what store_field uses to indicate that this
548 is a bit field, but passing VOIDmode to operand_subword_force will
549 result in an abort. */
550 fieldmode = GET_MODE (value);
551 if (fieldmode == VOIDmode)
552 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
554 for (i = 0; i < nwords; i++)
556 /* If I is 0, use the low-order word in both field and target;
557 if I is 1, use the next to lowest word; and so on. */
558 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
559 unsigned int bit_offset = (backwards
560 ? MAX ((int) bitsize - ((int) i + 1)
561 * BITS_PER_WORD,
563 : (int) i * BITS_PER_WORD);
565 store_bit_field (op0, MIN (BITS_PER_WORD,
566 bitsize - i * BITS_PER_WORD),
567 bitnum + bit_offset, word_mode,
568 operand_subword_force (value, wordnum, fieldmode));
570 return value;
573 /* From here on we can assume that the field to be stored in is
574 a full-word (whatever type that is), since it is shorter than a word. */
576 /* OFFSET is the number of words or bytes (UNIT says which)
577 from STR_RTX to the first word or byte containing part of the field. */
579 if (!MEM_P (op0))
581 if (offset != 0
582 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
584 if (!REG_P (op0))
586 /* Since this is a destination (lvalue), we can't copy it to a
587 pseudo. We can trivially remove a SUBREG that does not
588 change the size of the operand. Such a SUBREG may have been
589 added above. Otherwise, abort. */
590 gcc_assert (GET_CODE (op0) == SUBREG
591 && (GET_MODE_SIZE (GET_MODE (op0))
592 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
593 op0 = SUBREG_REG (op0);
595 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
596 op0, (offset * UNITS_PER_WORD));
598 offset = 0;
601 /* If VALUE is a floating-point mode, access it as an integer of the
602 corresponding size. This can occur on a machine with 64 bit registers
603 that uses SFmode for float. This can also occur for unaligned float
604 structure fields. */
605 orig_value = value;
606 if (GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
607 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
608 value = gen_lowpart ((GET_MODE (value) == VOIDmode
609 ? word_mode : int_mode_for_mode (GET_MODE (value))),
610 value);
612 /* Now OFFSET is nonzero only if OP0 is memory
613 and is therefore always measured in bytes. */
615 if (HAVE_insv
616 && GET_MODE (value) != BLKmode
617 && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
618 /* Ensure insv's size is wide enough for this field. */
619 && (GET_MODE_BITSIZE (op_mode) >= bitsize)
620 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
621 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode))))
623 int xbitpos = bitpos;
624 rtx value1;
625 rtx xop0 = op0;
626 rtx last = get_last_insn ();
627 rtx pat;
628 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
629 int save_volatile_ok = volatile_ok;
631 volatile_ok = 1;
633 /* If this machine's insv can only insert into a register, copy OP0
634 into a register and save it back later. */
635 /* This used to check flag_force_mem, but that was a serious
636 de-optimization now that flag_force_mem is enabled by -O2. */
637 if (MEM_P (op0)
638 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
639 (op0, VOIDmode)))
641 rtx tempreg;
642 enum machine_mode bestmode;
644 /* Get the mode to use for inserting into this field. If OP0 is
645 BLKmode, get the smallest mode consistent with the alignment. If
646 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
647 mode. Otherwise, use the smallest mode containing the field. */
649 if (GET_MODE (op0) == BLKmode
650 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
651 bestmode
652 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
653 MEM_VOLATILE_P (op0));
654 else
655 bestmode = GET_MODE (op0);
657 if (bestmode == VOIDmode
658 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
659 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
660 goto insv_loses;
662 /* Adjust address to point to the containing unit of that mode.
663 Compute offset as multiple of this unit, counting in bytes. */
664 unit = GET_MODE_BITSIZE (bestmode);
665 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
666 bitpos = bitnum % unit;
667 op0 = adjust_address (op0, bestmode, offset);
669 /* Fetch that unit, store the bitfield in it, then store
670 the unit. */
671 tempreg = copy_to_reg (op0);
672 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
673 emit_move_insn (op0, tempreg);
674 return value;
676 volatile_ok = save_volatile_ok;
678 /* Add OFFSET into OP0's address. */
679 if (MEM_P (xop0))
680 xop0 = adjust_address (xop0, byte_mode, offset);
682 /* If xop0 is a register, we need it in MAXMODE
683 to make it acceptable to the format of insv. */
684 if (GET_CODE (xop0) == SUBREG)
685 /* We can't just change the mode, because this might clobber op0,
686 and we will need the original value of op0 if insv fails. */
687 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
688 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
689 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
691 /* On big-endian machines, we count bits from the most significant.
692 If the bit field insn does not, we must invert. */
694 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
695 xbitpos = unit - bitsize - xbitpos;
697 /* We have been counting XBITPOS within UNIT.
698 Count instead within the size of the register. */
699 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
700 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
702 unit = GET_MODE_BITSIZE (maxmode);
704 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
705 value1 = value;
706 if (GET_MODE (value) != maxmode)
708 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
710 /* Optimization: Don't bother really extending VALUE
711 if it has all the bits we will actually use. However,
712 if we must narrow it, be sure we do it correctly. */
714 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
716 rtx tmp;
718 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
719 if (! tmp)
720 tmp = simplify_gen_subreg (maxmode,
721 force_reg (GET_MODE (value),
722 value1),
723 GET_MODE (value), 0);
724 value1 = tmp;
726 else
727 value1 = gen_lowpart (maxmode, value1);
729 else if (GET_CODE (value) == CONST_INT)
730 value1 = gen_int_mode (INTVAL (value), maxmode);
731 else
732 /* Parse phase is supposed to make VALUE's data type
733 match that of the component reference, which is a type
734 at least as wide as the field; so VALUE should have
735 a mode that corresponds to that type. */
736 gcc_assert (CONSTANT_P (value));
739 /* If this machine's insv insists on a register,
740 get VALUE1 into a register. */
741 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
742 (value1, maxmode)))
743 value1 = force_reg (maxmode, value1);
745 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
746 if (pat)
747 emit_insn (pat);
748 else
750 delete_insns_since (last);
751 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
754 else
755 insv_loses:
756 /* Insv is not available; store using shifts and boolean ops. */
757 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
758 return value;
761 /* Use shifts and boolean operations to store VALUE
762 into a bit field of width BITSIZE
763 in a memory location specified by OP0 except offset by OFFSET bytes.
764 (OFFSET must be 0 if OP0 is a register.)
765 The field starts at position BITPOS within the byte.
766 (If OP0 is a register, it may be a full word or a narrower mode,
767 but BITPOS still counts within a full word,
768 which is significant on bigendian machines.) */
770 static void
771 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
772 unsigned HOST_WIDE_INT bitsize,
773 unsigned HOST_WIDE_INT bitpos, rtx value)
775 enum machine_mode mode;
776 unsigned int total_bits = BITS_PER_WORD;
777 rtx subtarget, temp;
778 int all_zero = 0;
779 int all_one = 0;
781 /* There is a case not handled here:
782 a structure with a known alignment of just a halfword
783 and a field split across two aligned halfwords within the structure.
784 Or likewise a structure with a known alignment of just a byte
785 and a field split across two bytes.
786 Such cases are not supposed to be able to occur. */
788 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
790 gcc_assert (!offset);
791 /* Special treatment for a bit field split across two registers. */
792 if (bitsize + bitpos > BITS_PER_WORD)
794 store_split_bit_field (op0, bitsize, bitpos, value);
795 return;
798 else
800 /* Get the proper mode to use for this field. We want a mode that
801 includes the entire field. If such a mode would be larger than
802 a word, we won't be doing the extraction the normal way.
803 We don't want a mode bigger than the destination. */
805 mode = GET_MODE (op0);
806 if (GET_MODE_BITSIZE (mode) == 0
807 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
808 mode = word_mode;
809 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
810 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
812 if (mode == VOIDmode)
814 /* The only way this should occur is if the field spans word
815 boundaries. */
816 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
817 value);
818 return;
821 total_bits = GET_MODE_BITSIZE (mode);
823 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
824 be in the range 0 to total_bits-1, and put any excess bytes in
825 OFFSET. */
826 if (bitpos >= total_bits)
828 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
829 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
830 * BITS_PER_UNIT);
833 /* Get ref to an aligned byte, halfword, or word containing the field.
834 Adjust BITPOS to be position within a word,
835 and OFFSET to be the offset of that word.
836 Then alter OP0 to refer to that word. */
837 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
838 offset -= (offset % (total_bits / BITS_PER_UNIT));
839 op0 = adjust_address (op0, mode, offset);
842 mode = GET_MODE (op0);
844 /* Now MODE is either some integral mode for a MEM as OP0,
845 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
846 The bit field is contained entirely within OP0.
847 BITPOS is the starting bit number within OP0.
848 (OP0's mode may actually be narrower than MODE.) */
850 if (BYTES_BIG_ENDIAN)
851 /* BITPOS is the distance between our msb
852 and that of the containing datum.
853 Convert it to the distance from the lsb. */
854 bitpos = total_bits - bitsize - bitpos;
856 /* Now BITPOS is always the distance between our lsb
857 and that of OP0. */
859 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
860 we must first convert its mode to MODE. */
862 if (GET_CODE (value) == CONST_INT)
864 HOST_WIDE_INT v = INTVAL (value);
866 if (bitsize < HOST_BITS_PER_WIDE_INT)
867 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
869 if (v == 0)
870 all_zero = 1;
871 else if ((bitsize < HOST_BITS_PER_WIDE_INT
872 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
873 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
874 all_one = 1;
876 value = lshift_value (mode, value, bitpos, bitsize);
878 else
880 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
881 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
883 if (GET_MODE (value) != mode)
885 if ((REG_P (value) || GET_CODE (value) == SUBREG)
886 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
887 value = gen_lowpart (mode, value);
888 else
889 value = convert_to_mode (mode, value, 1);
892 if (must_and)
893 value = expand_binop (mode, and_optab, value,
894 mask_rtx (mode, 0, bitsize, 0),
895 NULL_RTX, 1, OPTAB_LIB_WIDEN);
896 if (bitpos > 0)
897 value = expand_shift (LSHIFT_EXPR, mode, value,
898 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
901 /* Now clear the chosen bits in OP0,
902 except that if VALUE is -1 we need not bother. */
904 subtarget = (REG_P (op0) || ! flag_force_mem) ? op0 : 0;
906 if (! all_one)
908 temp = expand_binop (mode, and_optab, op0,
909 mask_rtx (mode, bitpos, bitsize, 1),
910 subtarget, 1, OPTAB_LIB_WIDEN);
911 subtarget = temp;
913 else
914 temp = op0;
916 /* Now logical-or VALUE into OP0, unless it is zero. */
918 if (! all_zero)
919 temp = expand_binop (mode, ior_optab, temp, value,
920 subtarget, 1, OPTAB_LIB_WIDEN);
921 if (op0 != temp)
922 emit_move_insn (op0, temp);
925 /* Store a bit field that is split across multiple accessible memory objects.
927 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
928 BITSIZE is the field width; BITPOS the position of its first bit
929 (within the word).
930 VALUE is the value to store.
932 This does not yet handle fields wider than BITS_PER_WORD. */
934 static void
935 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
936 unsigned HOST_WIDE_INT bitpos, rtx value)
938 unsigned int unit;
939 unsigned int bitsdone = 0;
941 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
942 much at a time. */
943 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
944 unit = BITS_PER_WORD;
945 else
946 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
948 /* If VALUE is a constant other than a CONST_INT, get it into a register in
949 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
950 that VALUE might be a floating-point constant. */
951 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
953 rtx word = gen_lowpart_common (word_mode, value);
955 if (word && (value != word))
956 value = word;
957 else
958 value = gen_lowpart_common (word_mode,
959 force_reg (GET_MODE (value) != VOIDmode
960 ? GET_MODE (value)
961 : word_mode, value));
964 while (bitsdone < bitsize)
966 unsigned HOST_WIDE_INT thissize;
967 rtx part, word;
968 unsigned HOST_WIDE_INT thispos;
969 unsigned HOST_WIDE_INT offset;
971 offset = (bitpos + bitsdone) / unit;
972 thispos = (bitpos + bitsdone) % unit;
974 /* THISSIZE must not overrun a word boundary. Otherwise,
975 store_fixed_bit_field will call us again, and we will mutually
976 recurse forever. */
977 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
978 thissize = MIN (thissize, unit - thispos);
980 if (BYTES_BIG_ENDIAN)
982 int total_bits;
984 /* We must do an endian conversion exactly the same way as it is
985 done in extract_bit_field, so that the two calls to
986 extract_fixed_bit_field will have comparable arguments. */
987 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
988 total_bits = BITS_PER_WORD;
989 else
990 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
992 /* Fetch successively less significant portions. */
993 if (GET_CODE (value) == CONST_INT)
994 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
995 >> (bitsize - bitsdone - thissize))
996 & (((HOST_WIDE_INT) 1 << thissize) - 1));
997 else
998 /* The args are chosen so that the last part includes the
999 lsb. Give extract_bit_field the value it needs (with
1000 endianness compensation) to fetch the piece we want. */
1001 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1002 total_bits - bitsize + bitsdone,
1003 NULL_RTX, 1);
1005 else
1007 /* Fetch successively more significant portions. */
1008 if (GET_CODE (value) == CONST_INT)
1009 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1010 >> bitsdone)
1011 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1012 else
1013 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1014 bitsdone, NULL_RTX, 1);
1017 /* If OP0 is a register, then handle OFFSET here.
1019 When handling multiword bitfields, extract_bit_field may pass
1020 down a word_mode SUBREG of a larger REG for a bitfield that actually
1021 crosses a word boundary. Thus, for a SUBREG, we must find
1022 the current word starting from the base register. */
1023 if (GET_CODE (op0) == SUBREG)
1025 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1026 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1027 GET_MODE (SUBREG_REG (op0)));
1028 offset = 0;
1030 else if (REG_P (op0))
1032 word = operand_subword_force (op0, offset, GET_MODE (op0));
1033 offset = 0;
1035 else
1036 word = op0;
1038 /* OFFSET is in UNITs, and UNIT is in bits.
1039 store_fixed_bit_field wants offset in bytes. */
1040 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1041 thispos, part);
1042 bitsdone += thissize;
1046 /* Generate code to extract a byte-field from STR_RTX
1047 containing BITSIZE bits, starting at BITNUM,
1048 and put it in TARGET if possible (if TARGET is nonzero).
1049 Regardless of TARGET, we return the rtx for where the value is placed.
1051 STR_RTX is the structure containing the byte (a REG or MEM).
1052 UNSIGNEDP is nonzero if this is an unsigned bit field.
1053 MODE is the natural mode of the field value once extracted.
1054 TMODE is the mode the caller would like the value to have;
1055 but the value may be returned with type MODE instead.
1057 TOTAL_SIZE is the size in bytes of the containing structure,
1058 or -1 if varying.
1060 If a TARGET is specified and we can store in it at no extra cost,
1061 we do so, and return TARGET.
1062 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1063 if they are equally easy. */
1066 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1067 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1068 enum machine_mode mode, enum machine_mode tmode)
1070 unsigned int unit
1071 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1072 unsigned HOST_WIDE_INT offset = bitnum / unit;
1073 unsigned HOST_WIDE_INT bitpos = bitnum % unit;
1074 rtx op0 = str_rtx;
1075 rtx spec_target = target;
1076 rtx spec_target_subreg = 0;
1077 enum machine_mode int_mode;
1078 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1079 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1080 enum machine_mode mode1;
1081 int byte_offset;
1083 if (tmode == VOIDmode)
1084 tmode = mode;
1086 while (GET_CODE (op0) == SUBREG)
1088 bitpos += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1089 if (bitpos > unit)
1091 offset += (bitpos / unit);
1092 bitpos %= unit;
1094 op0 = SUBREG_REG (op0);
1097 if (REG_P (op0)
1098 && mode == GET_MODE (op0)
1099 && bitnum == 0
1100 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1102 /* We're trying to extract a full register from itself. */
1103 return op0;
1106 /* Use vec_extract patterns for extracting parts of vectors whenever
1107 available. */
1108 if (VECTOR_MODE_P (GET_MODE (op0))
1109 && !MEM_P (op0)
1110 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1111 != CODE_FOR_nothing)
1112 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1113 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1115 enum machine_mode outermode = GET_MODE (op0);
1116 enum machine_mode innermode = GET_MODE_INNER (outermode);
1117 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1118 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1119 rtx rtxpos = GEN_INT (pos);
1120 rtx src = op0;
1121 rtx dest = NULL, pat, seq;
1122 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1123 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1124 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1126 if (innermode == tmode || innermode == mode)
1127 dest = target;
1129 if (!dest)
1130 dest = gen_reg_rtx (innermode);
1132 start_sequence ();
1134 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1135 dest = copy_to_mode_reg (mode0, dest);
1137 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1138 src = copy_to_mode_reg (mode1, src);
1140 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1141 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1143 /* We could handle this, but we should always be called with a pseudo
1144 for our targets and all insns should take them as outputs. */
1145 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1146 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1147 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1149 pat = GEN_FCN (icode) (dest, src, rtxpos);
1150 seq = get_insns ();
1151 end_sequence ();
1152 if (pat)
1154 emit_insn (seq);
1155 emit_insn (pat);
1156 return dest;
1160 /* Make sure we are playing with integral modes. Pun with subregs
1161 if we aren't. */
1163 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1164 if (imode != GET_MODE (op0))
1166 if (MEM_P (op0))
1167 op0 = adjust_address (op0, imode, 0);
1168 else
1170 gcc_assert (imode != BLKmode);
1171 op0 = gen_lowpart (imode, op0);
1176 /* We may be accessing data outside the field, which means
1177 we can alias adjacent data. */
1178 if (MEM_P (op0))
1180 op0 = shallow_copy_rtx (op0);
1181 set_mem_alias_set (op0, 0);
1182 set_mem_expr (op0, 0);
1185 /* Extraction of a full-word or multi-word value from a structure
1186 in a register or aligned memory can be done with just a SUBREG.
1187 A subword value in the least significant part of a register
1188 can also be extracted with a SUBREG. For this, we need the
1189 byte offset of the value in op0. */
1191 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1193 /* If OP0 is a register, BITPOS must count within a word.
1194 But as we have it, it counts within whatever size OP0 now has.
1195 On a bigendian machine, these are not the same, so convert. */
1196 if (BYTES_BIG_ENDIAN
1197 && !MEM_P (op0)
1198 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1199 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1201 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1202 If that's wrong, the solution is to test for it and set TARGET to 0
1203 if needed. */
1205 /* Only scalar integer modes can be converted via subregs. There is an
1206 additional problem for FP modes here in that they can have a precision
1207 which is different from the size. mode_for_size uses precision, but
1208 we want a mode based on the size, so we must avoid calling it for FP
1209 modes. */
1210 mode1 = (SCALAR_INT_MODE_P (tmode)
1211 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1212 : mode);
1214 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1215 && bitpos % BITS_PER_WORD == 0)
1216 || (mode1 != BLKmode
1217 /* ??? The big endian test here is wrong. This is correct
1218 if the value is in a register, and if mode_for_size is not
1219 the same mode as op0. This causes us to get unnecessarily
1220 inefficient code from the Thumb port when -mbig-endian. */
1221 && (BYTES_BIG_ENDIAN
1222 ? bitpos + bitsize == BITS_PER_WORD
1223 : bitpos == 0)))
1224 && ((!MEM_P (op0)
1225 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1226 GET_MODE_BITSIZE (GET_MODE (op0)))
1227 && GET_MODE_SIZE (mode1) != 0
1228 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1229 || (MEM_P (op0)
1230 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1231 || (offset * BITS_PER_UNIT % bitsize == 0
1232 && MEM_ALIGN (op0) % bitsize == 0)))))
1234 if (mode1 != GET_MODE (op0))
1236 if (GET_CODE (op0) == SUBREG)
1238 if (GET_MODE (SUBREG_REG (op0)) == mode1
1239 || GET_MODE_CLASS (mode1) == MODE_INT
1240 || GET_MODE_CLASS (mode1) == MODE_PARTIAL_INT)
1241 op0 = SUBREG_REG (op0);
1242 else
1243 /* Else we've got some float mode source being extracted into
1244 a different float mode destination -- this combination of
1245 subregs results in Severe Tire Damage. */
1246 goto no_subreg_mode_swap;
1248 if (REG_P (op0))
1249 op0 = gen_rtx_SUBREG (mode1, op0, byte_offset);
1250 else
1251 op0 = adjust_address (op0, mode1, offset);
1253 if (mode1 != mode)
1254 return convert_to_mode (tmode, op0, unsignedp);
1255 return op0;
1257 no_subreg_mode_swap:
1259 /* Handle fields bigger than a word. */
1261 if (bitsize > BITS_PER_WORD)
1263 /* Here we transfer the words of the field
1264 in the order least significant first.
1265 This is because the most significant word is the one which may
1266 be less than full. */
1268 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1269 unsigned int i;
1271 if (target == 0 || !REG_P (target))
1272 target = gen_reg_rtx (mode);
1274 /* Indicate for flow that the entire target reg is being set. */
1275 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1277 for (i = 0; i < nwords; i++)
1279 /* If I is 0, use the low-order word in both field and target;
1280 if I is 1, use the next to lowest word; and so on. */
1281 /* Word number in TARGET to use. */
1282 unsigned int wordnum
1283 = (WORDS_BIG_ENDIAN
1284 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1285 : i);
1286 /* Offset from start of field in OP0. */
1287 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1288 ? MAX (0, ((int) bitsize - ((int) i + 1)
1289 * (int) BITS_PER_WORD))
1290 : (int) i * BITS_PER_WORD);
1291 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1292 rtx result_part
1293 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1294 bitsize - i * BITS_PER_WORD),
1295 bitnum + bit_offset, 1, target_part, mode,
1296 word_mode);
1298 gcc_assert (target_part);
1300 if (result_part != target_part)
1301 emit_move_insn (target_part, result_part);
1304 if (unsignedp)
1306 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1307 need to be zero'd out. */
1308 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1310 unsigned int i, total_words;
1312 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1313 for (i = nwords; i < total_words; i++)
1314 emit_move_insn
1315 (operand_subword (target,
1316 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1317 1, VOIDmode),
1318 const0_rtx);
1320 return target;
1323 /* Signed bit field: sign-extend with two arithmetic shifts. */
1324 target = expand_shift (LSHIFT_EXPR, mode, target,
1325 build_int_cst (NULL_TREE,
1326 GET_MODE_BITSIZE (mode) - bitsize),
1327 NULL_RTX, 0);
1328 return expand_shift (RSHIFT_EXPR, mode, target,
1329 build_int_cst (NULL_TREE,
1330 GET_MODE_BITSIZE (mode) - bitsize),
1331 NULL_RTX, 0);
1334 /* From here on we know the desired field is smaller than a word. */
1336 /* Check if there is a correspondingly-sized integer field, so we can
1337 safely extract it as one size of integer, if necessary; then
1338 truncate or extend to the size that is wanted; then use SUBREGs or
1339 convert_to_mode to get one of the modes we really wanted. */
1341 int_mode = int_mode_for_mode (tmode);
1342 if (int_mode == BLKmode)
1343 int_mode = int_mode_for_mode (mode);
1344 /* Should probably push op0 out to memory and then do a load. */
1345 gcc_assert (int_mode != BLKmode);
1347 /* OFFSET is the number of words or bytes (UNIT says which)
1348 from STR_RTX to the first word or byte containing part of the field. */
1349 if (!MEM_P (op0))
1351 if (offset != 0
1352 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1354 if (!REG_P (op0))
1355 op0 = copy_to_reg (op0);
1356 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1357 op0, (offset * UNITS_PER_WORD));
1359 offset = 0;
1362 /* Now OFFSET is nonzero only for memory operands. */
1364 if (unsignedp)
1366 if (HAVE_extzv
1367 && (GET_MODE_BITSIZE (extzv_mode) >= bitsize)
1368 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1369 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1371 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1372 rtx bitsize_rtx, bitpos_rtx;
1373 rtx last = get_last_insn ();
1374 rtx xop0 = op0;
1375 rtx xtarget = target;
1376 rtx xspec_target = spec_target;
1377 rtx xspec_target_subreg = spec_target_subreg;
1378 rtx pat;
1379 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1381 if (MEM_P (xop0))
1383 int save_volatile_ok = volatile_ok;
1384 volatile_ok = 1;
1386 /* Is the memory operand acceptable? */
1387 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1388 (xop0, GET_MODE (xop0))))
1390 /* No, load into a reg and extract from there. */
1391 enum machine_mode bestmode;
1393 /* Get the mode to use for inserting into this field. If
1394 OP0 is BLKmode, get the smallest mode consistent with the
1395 alignment. If OP0 is a non-BLKmode object that is no
1396 wider than MAXMODE, use its mode. Otherwise, use the
1397 smallest mode containing the field. */
1399 if (GET_MODE (xop0) == BLKmode
1400 || (GET_MODE_SIZE (GET_MODE (op0))
1401 > GET_MODE_SIZE (maxmode)))
1402 bestmode = get_best_mode (bitsize, bitnum,
1403 MEM_ALIGN (xop0), maxmode,
1404 MEM_VOLATILE_P (xop0));
1405 else
1406 bestmode = GET_MODE (xop0);
1408 if (bestmode == VOIDmode
1409 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1410 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1411 goto extzv_loses;
1413 /* Compute offset as multiple of this unit,
1414 counting in bytes. */
1415 unit = GET_MODE_BITSIZE (bestmode);
1416 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1417 xbitpos = bitnum % unit;
1418 xop0 = adjust_address (xop0, bestmode, xoffset);
1420 /* Fetch it to a register in that size. */
1421 xop0 = force_reg (bestmode, xop0);
1423 /* XBITPOS counts within UNIT, which is what is expected. */
1425 else
1426 /* Get ref to first byte containing part of the field. */
1427 xop0 = adjust_address (xop0, byte_mode, xoffset);
1429 volatile_ok = save_volatile_ok;
1432 /* If op0 is a register, we need it in MAXMODE (which is usually
1433 SImode). to make it acceptable to the format of extzv. */
1434 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1435 goto extzv_loses;
1436 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1437 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1439 /* On big-endian machines, we count bits from the most significant.
1440 If the bit field insn does not, we must invert. */
1441 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1442 xbitpos = unit - bitsize - xbitpos;
1444 /* Now convert from counting within UNIT to counting in MAXMODE. */
1445 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1446 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1448 unit = GET_MODE_BITSIZE (maxmode);
1450 if (xtarget == 0
1451 || (flag_force_mem && MEM_P (xtarget)))
1452 xtarget = xspec_target = gen_reg_rtx (tmode);
1454 if (GET_MODE (xtarget) != maxmode)
1456 if (REG_P (xtarget))
1458 int wider = (GET_MODE_SIZE (maxmode)
1459 > GET_MODE_SIZE (GET_MODE (xtarget)));
1460 xtarget = gen_lowpart (maxmode, xtarget);
1461 if (wider)
1462 xspec_target_subreg = xtarget;
1464 else
1465 xtarget = gen_reg_rtx (maxmode);
1468 /* If this machine's extzv insists on a register target,
1469 make sure we have one. */
1470 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1471 (xtarget, maxmode)))
1472 xtarget = gen_reg_rtx (maxmode);
1474 bitsize_rtx = GEN_INT (bitsize);
1475 bitpos_rtx = GEN_INT (xbitpos);
1477 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1478 if (pat)
1480 emit_insn (pat);
1481 target = xtarget;
1482 spec_target = xspec_target;
1483 spec_target_subreg = xspec_target_subreg;
1485 else
1487 delete_insns_since (last);
1488 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1489 bitpos, target, 1);
1492 else
1493 extzv_loses:
1494 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1495 bitpos, target, 1);
1497 else
1499 if (HAVE_extv
1500 && (GET_MODE_BITSIZE (extv_mode) >= bitsize)
1501 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1502 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1504 int xbitpos = bitpos, xoffset = offset;
1505 rtx bitsize_rtx, bitpos_rtx;
1506 rtx last = get_last_insn ();
1507 rtx xop0 = op0, xtarget = target;
1508 rtx xspec_target = spec_target;
1509 rtx xspec_target_subreg = spec_target_subreg;
1510 rtx pat;
1511 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1513 if (MEM_P (xop0))
1515 /* Is the memory operand acceptable? */
1516 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1517 (xop0, GET_MODE (xop0))))
1519 /* No, load into a reg and extract from there. */
1520 enum machine_mode bestmode;
1522 /* Get the mode to use for inserting into this field. If
1523 OP0 is BLKmode, get the smallest mode consistent with the
1524 alignment. If OP0 is a non-BLKmode object that is no
1525 wider than MAXMODE, use its mode. Otherwise, use the
1526 smallest mode containing the field. */
1528 if (GET_MODE (xop0) == BLKmode
1529 || (GET_MODE_SIZE (GET_MODE (op0))
1530 > GET_MODE_SIZE (maxmode)))
1531 bestmode = get_best_mode (bitsize, bitnum,
1532 MEM_ALIGN (xop0), maxmode,
1533 MEM_VOLATILE_P (xop0));
1534 else
1535 bestmode = GET_MODE (xop0);
1537 if (bestmode == VOIDmode
1538 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1539 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1540 goto extv_loses;
1542 /* Compute offset as multiple of this unit,
1543 counting in bytes. */
1544 unit = GET_MODE_BITSIZE (bestmode);
1545 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1546 xbitpos = bitnum % unit;
1547 xop0 = adjust_address (xop0, bestmode, xoffset);
1549 /* Fetch it to a register in that size. */
1550 xop0 = force_reg (bestmode, xop0);
1552 /* XBITPOS counts within UNIT, which is what is expected. */
1554 else
1555 /* Get ref to first byte containing part of the field. */
1556 xop0 = adjust_address (xop0, byte_mode, xoffset);
1559 /* If op0 is a register, we need it in MAXMODE (which is usually
1560 SImode) to make it acceptable to the format of extv. */
1561 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1562 goto extv_loses;
1563 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1564 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1566 /* On big-endian machines, we count bits from the most significant.
1567 If the bit field insn does not, we must invert. */
1568 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1569 xbitpos = unit - bitsize - xbitpos;
1571 /* XBITPOS counts within a size of UNIT.
1572 Adjust to count within a size of MAXMODE. */
1573 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1574 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1576 unit = GET_MODE_BITSIZE (maxmode);
1578 if (xtarget == 0
1579 || (flag_force_mem && MEM_P (xtarget)))
1580 xtarget = xspec_target = gen_reg_rtx (tmode);
1582 if (GET_MODE (xtarget) != maxmode)
1584 if (REG_P (xtarget))
1586 int wider = (GET_MODE_SIZE (maxmode)
1587 > GET_MODE_SIZE (GET_MODE (xtarget)));
1588 xtarget = gen_lowpart (maxmode, xtarget);
1589 if (wider)
1590 xspec_target_subreg = xtarget;
1592 else
1593 xtarget = gen_reg_rtx (maxmode);
1596 /* If this machine's extv insists on a register target,
1597 make sure we have one. */
1598 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1599 (xtarget, maxmode)))
1600 xtarget = gen_reg_rtx (maxmode);
1602 bitsize_rtx = GEN_INT (bitsize);
1603 bitpos_rtx = GEN_INT (xbitpos);
1605 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1606 if (pat)
1608 emit_insn (pat);
1609 target = xtarget;
1610 spec_target = xspec_target;
1611 spec_target_subreg = xspec_target_subreg;
1613 else
1615 delete_insns_since (last);
1616 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1617 bitpos, target, 0);
1620 else
1621 extv_loses:
1622 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1623 bitpos, target, 0);
1625 if (target == spec_target)
1626 return target;
1627 if (target == spec_target_subreg)
1628 return spec_target;
1629 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1631 /* If the target mode is floating-point, first convert to the
1632 integer mode of that size and then access it as a floating-point
1633 value via a SUBREG. */
1634 if (GET_MODE_CLASS (tmode) != MODE_INT
1635 && GET_MODE_CLASS (tmode) != MODE_PARTIAL_INT)
1637 target = convert_to_mode (mode_for_size (GET_MODE_BITSIZE (tmode),
1638 MODE_INT, 0),
1639 target, unsignedp);
1640 return gen_lowpart (tmode, target);
1642 else
1643 return convert_to_mode (tmode, target, unsignedp);
1645 return target;
1648 /* Extract a bit field using shifts and boolean operations
1649 Returns an rtx to represent the value.
1650 OP0 addresses a register (word) or memory (byte).
1651 BITPOS says which bit within the word or byte the bit field starts in.
1652 OFFSET says how many bytes farther the bit field starts;
1653 it is 0 if OP0 is a register.
1654 BITSIZE says how many bits long the bit field is.
1655 (If OP0 is a register, it may be narrower than a full word,
1656 but BITPOS still counts within a full word,
1657 which is significant on bigendian machines.)
1659 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1660 If TARGET is nonzero, attempts to store the value there
1661 and return TARGET, but this is not guaranteed.
1662 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1664 static rtx
1665 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1666 unsigned HOST_WIDE_INT offset,
1667 unsigned HOST_WIDE_INT bitsize,
1668 unsigned HOST_WIDE_INT bitpos, rtx target,
1669 int unsignedp)
1671 unsigned int total_bits = BITS_PER_WORD;
1672 enum machine_mode mode;
1674 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1676 /* Special treatment for a bit field split across two registers. */
1677 if (bitsize + bitpos > BITS_PER_WORD)
1678 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1680 else
1682 /* Get the proper mode to use for this field. We want a mode that
1683 includes the entire field. If such a mode would be larger than
1684 a word, we won't be doing the extraction the normal way. */
1686 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1687 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1689 if (mode == VOIDmode)
1690 /* The only way this should occur is if the field spans word
1691 boundaries. */
1692 return extract_split_bit_field (op0, bitsize,
1693 bitpos + offset * BITS_PER_UNIT,
1694 unsignedp);
1696 total_bits = GET_MODE_BITSIZE (mode);
1698 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1699 be in the range 0 to total_bits-1, and put any excess bytes in
1700 OFFSET. */
1701 if (bitpos >= total_bits)
1703 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1704 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1705 * BITS_PER_UNIT);
1708 /* Get ref to an aligned byte, halfword, or word containing the field.
1709 Adjust BITPOS to be position within a word,
1710 and OFFSET to be the offset of that word.
1711 Then alter OP0 to refer to that word. */
1712 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1713 offset -= (offset % (total_bits / BITS_PER_UNIT));
1714 op0 = adjust_address (op0, mode, offset);
1717 mode = GET_MODE (op0);
1719 if (BYTES_BIG_ENDIAN)
1720 /* BITPOS is the distance between our msb and that of OP0.
1721 Convert it to the distance from the lsb. */
1722 bitpos = total_bits - bitsize - bitpos;
1724 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1725 We have reduced the big-endian case to the little-endian case. */
1727 if (unsignedp)
1729 if (bitpos)
1731 /* If the field does not already start at the lsb,
1732 shift it so it does. */
1733 tree amount = build_int_cst (NULL_TREE, bitpos);
1734 /* Maybe propagate the target for the shift. */
1735 /* But not if we will return it--could confuse integrate.c. */
1736 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1737 if (tmode != mode) subtarget = 0;
1738 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1740 /* Convert the value to the desired mode. */
1741 if (mode != tmode)
1742 op0 = convert_to_mode (tmode, op0, 1);
1744 /* Unless the msb of the field used to be the msb when we shifted,
1745 mask out the upper bits. */
1747 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1748 return expand_binop (GET_MODE (op0), and_optab, op0,
1749 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1750 target, 1, OPTAB_LIB_WIDEN);
1751 return op0;
1754 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1755 then arithmetic-shift its lsb to the lsb of the word. */
1756 op0 = force_reg (mode, op0);
1757 if (mode != tmode)
1758 target = 0;
1760 /* Find the narrowest integer mode that contains the field. */
1762 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1763 mode = GET_MODE_WIDER_MODE (mode))
1764 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1766 op0 = convert_to_mode (mode, op0, 0);
1767 break;
1770 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1772 tree amount
1773 = build_int_cst (NULL_TREE,
1774 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1775 /* Maybe propagate the target for the shift. */
1776 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1777 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1780 return expand_shift (RSHIFT_EXPR, mode, op0,
1781 build_int_cst (NULL_TREE,
1782 GET_MODE_BITSIZE (mode) - bitsize),
1783 target, 0);
1786 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1787 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1788 complement of that if COMPLEMENT. The mask is truncated if
1789 necessary to the width of mode MODE. The mask is zero-extended if
1790 BITSIZE+BITPOS is too small for MODE. */
1792 static rtx
1793 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1795 HOST_WIDE_INT masklow, maskhigh;
1797 if (bitsize == 0)
1798 masklow = 0;
1799 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1800 masklow = (HOST_WIDE_INT) -1 << bitpos;
1801 else
1802 masklow = 0;
1804 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1805 masklow &= ((unsigned HOST_WIDE_INT) -1
1806 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1808 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1809 maskhigh = -1;
1810 else
1811 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1813 if (bitsize == 0)
1814 maskhigh = 0;
1815 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1816 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1817 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1818 else
1819 maskhigh = 0;
1821 if (complement)
1823 maskhigh = ~maskhigh;
1824 masklow = ~masklow;
1827 return immed_double_const (masklow, maskhigh, mode);
1830 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1831 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1833 static rtx
1834 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1836 unsigned HOST_WIDE_INT v = INTVAL (value);
1837 HOST_WIDE_INT low, high;
1839 if (bitsize < HOST_BITS_PER_WIDE_INT)
1840 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1842 if (bitpos < HOST_BITS_PER_WIDE_INT)
1844 low = v << bitpos;
1845 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1847 else
1849 low = 0;
1850 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1853 return immed_double_const (low, high, mode);
1856 /* Extract a bit field from a memory by forcing the alignment of the
1857 memory. This efficient only if the field spans at least 4 boundaries.
1859 OP0 is the MEM.
1860 BITSIZE is the field width; BITPOS is the position of the first bit.
1861 UNSIGNEDP is true if the result should be zero-extended. */
1863 static rtx
1864 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1865 unsigned HOST_WIDE_INT bitpos,
1866 int unsignedp)
1868 enum machine_mode mode, dmode;
1869 unsigned int m_bitsize, m_size;
1870 unsigned int sign_shift_up, sign_shift_dn;
1871 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1873 /* Choose a mode that will fit BITSIZE. */
1874 mode = smallest_mode_for_size (bitsize, MODE_INT);
1875 m_size = GET_MODE_SIZE (mode);
1876 m_bitsize = GET_MODE_BITSIZE (mode);
1878 /* Choose a mode twice as wide. Fail if no such mode exists. */
1879 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1880 if (dmode == BLKmode)
1881 return NULL;
1883 do_pending_stack_adjust ();
1884 start = get_last_insn ();
1886 /* At the end, we'll need an additional shift to deal with sign/zero
1887 extension. By default this will be a left+right shift of the
1888 appropriate size. But we may be able to eliminate one of them. */
1889 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1891 if (STRICT_ALIGNMENT)
1893 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1894 bitpos %= BITS_PER_UNIT;
1896 /* We load two values to be concatenate. There's an edge condition
1897 that bears notice -- an aligned value at the end of a page can
1898 only load one value lest we segfault. So the two values we load
1899 are at "base & -size" and "(base + size - 1) & -size". If base
1900 is unaligned, the addresses will be aligned and sequential; if
1901 base is aligned, the addresses will both be equal to base. */
1903 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1904 GEN_INT (-(HOST_WIDE_INT)m_size),
1905 NULL, true, OPTAB_LIB_WIDEN);
1906 mark_reg_pointer (a1, m_bitsize);
1907 v1 = gen_rtx_MEM (mode, a1);
1908 set_mem_align (v1, m_bitsize);
1909 v1 = force_reg (mode, validize_mem (v1));
1911 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1912 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1913 GEN_INT (-(HOST_WIDE_INT)m_size),
1914 NULL, true, OPTAB_LIB_WIDEN);
1915 v2 = gen_rtx_MEM (mode, a2);
1916 set_mem_align (v2, m_bitsize);
1917 v2 = force_reg (mode, validize_mem (v2));
1919 /* Combine these two values into a double-word value. */
1920 if (m_bitsize == BITS_PER_WORD)
1922 comb = gen_reg_rtx (dmode);
1923 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1924 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1925 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1927 else
1929 if (BYTES_BIG_ENDIAN)
1930 comb = v1, v1 = v2, v2 = comb;
1931 v1 = convert_modes (dmode, mode, v1, true);
1932 if (v1 == NULL)
1933 goto fail;
1934 v2 = convert_modes (dmode, mode, v2, true);
1935 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1936 NULL, true, OPTAB_LIB_WIDEN);
1937 if (v2 == NULL)
1938 goto fail;
1939 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1940 true, OPTAB_LIB_WIDEN);
1941 if (comb == NULL)
1942 goto fail;
1945 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1946 NULL, true, OPTAB_LIB_WIDEN);
1947 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1949 if (bitpos != 0)
1951 if (sign_shift_up <= bitpos)
1952 bitpos -= sign_shift_up, sign_shift_up = 0;
1953 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1954 NULL, true, OPTAB_LIB_WIDEN);
1957 else
1959 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1960 bitpos %= BITS_PER_UNIT;
1962 /* When strict alignment is not required, we can just load directly
1963 from memory without masking. If the remaining BITPOS offset is
1964 small enough, we may be able to do all operations in MODE as
1965 opposed to DMODE. */
1966 if (bitpos + bitsize <= m_bitsize)
1967 dmode = mode;
1968 comb = adjust_address (op0, dmode, offset);
1970 if (sign_shift_up <= bitpos)
1971 bitpos -= sign_shift_up, sign_shift_up = 0;
1972 shift = GEN_INT (bitpos);
1975 /* Shift down the double-word such that the requested value is at bit 0. */
1976 if (shift != const0_rtx)
1977 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
1978 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
1979 if (comb == NULL)
1980 goto fail;
1982 /* If the field exactly matches MODE, then all we need to do is return the
1983 lowpart. Otherwise, shift to get the sign bits set properly. */
1984 result = force_reg (mode, gen_lowpart (mode, comb));
1986 if (sign_shift_up)
1987 result = expand_simple_binop (mode, ASHIFT, result,
1988 GEN_INT (sign_shift_up),
1989 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1990 if (sign_shift_dn)
1991 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
1992 result, GEN_INT (sign_shift_dn),
1993 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1995 return result;
1997 fail:
1998 delete_insns_since (start);
1999 return NULL;
2002 /* Extract a bit field that is split across two words
2003 and return an RTX for the result.
2005 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2006 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2007 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2009 static rtx
2010 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2011 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2013 unsigned int unit;
2014 unsigned int bitsdone = 0;
2015 rtx result = NULL_RTX;
2016 int first = 1;
2018 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2019 much at a time. */
2020 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2021 unit = BITS_PER_WORD;
2022 else
2024 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2025 if (0 && bitsize / unit > 2)
2027 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2028 unsignedp);
2029 if (tmp)
2030 return tmp;
2034 while (bitsdone < bitsize)
2036 unsigned HOST_WIDE_INT thissize;
2037 rtx part, word;
2038 unsigned HOST_WIDE_INT thispos;
2039 unsigned HOST_WIDE_INT offset;
2041 offset = (bitpos + bitsdone) / unit;
2042 thispos = (bitpos + bitsdone) % unit;
2044 /* THISSIZE must not overrun a word boundary. Otherwise,
2045 extract_fixed_bit_field will call us again, and we will mutually
2046 recurse forever. */
2047 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2048 thissize = MIN (thissize, unit - thispos);
2050 /* If OP0 is a register, then handle OFFSET here.
2052 When handling multiword bitfields, extract_bit_field may pass
2053 down a word_mode SUBREG of a larger REG for a bitfield that actually
2054 crosses a word boundary. Thus, for a SUBREG, we must find
2055 the current word starting from the base register. */
2056 if (GET_CODE (op0) == SUBREG)
2058 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2059 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2060 GET_MODE (SUBREG_REG (op0)));
2061 offset = 0;
2063 else if (REG_P (op0))
2065 word = operand_subword_force (op0, offset, GET_MODE (op0));
2066 offset = 0;
2068 else
2069 word = op0;
2071 /* Extract the parts in bit-counting order,
2072 whose meaning is determined by BYTES_PER_UNIT.
2073 OFFSET is in UNITs, and UNIT is in bits.
2074 extract_fixed_bit_field wants offset in bytes. */
2075 part = extract_fixed_bit_field (word_mode, word,
2076 offset * unit / BITS_PER_UNIT,
2077 thissize, thispos, 0, 1);
2078 bitsdone += thissize;
2080 /* Shift this part into place for the result. */
2081 if (BYTES_BIG_ENDIAN)
2083 if (bitsize != bitsdone)
2084 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2085 build_int_cst (NULL_TREE, bitsize - bitsdone),
2086 0, 1);
2088 else
2090 if (bitsdone != thissize)
2091 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2092 build_int_cst (NULL_TREE,
2093 bitsdone - thissize), 0, 1);
2096 if (first)
2097 result = part;
2098 else
2099 /* Combine the parts with bitwise or. This works
2100 because we extracted each part as an unsigned bit field. */
2101 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2102 OPTAB_LIB_WIDEN);
2104 first = 0;
2107 /* Unsigned bit field: we are done. */
2108 if (unsignedp)
2109 return result;
2110 /* Signed bit field: sign-extend with two arithmetic shifts. */
2111 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2112 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2113 NULL_RTX, 0);
2114 return expand_shift (RSHIFT_EXPR, word_mode, result,
2115 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2116 NULL_RTX, 0);
2119 /* Add INC into TARGET. */
2121 void
2122 expand_inc (rtx target, rtx inc)
2124 rtx value = expand_binop (GET_MODE (target), add_optab,
2125 target, inc,
2126 target, 0, OPTAB_LIB_WIDEN);
2127 if (value != target)
2128 emit_move_insn (target, value);
2131 /* Subtract DEC from TARGET. */
2133 void
2134 expand_dec (rtx target, rtx dec)
2136 rtx value = expand_binop (GET_MODE (target), sub_optab,
2137 target, dec,
2138 target, 0, OPTAB_LIB_WIDEN);
2139 if (value != target)
2140 emit_move_insn (target, value);
2143 /* Output a shift instruction for expression code CODE,
2144 with SHIFTED being the rtx for the value to shift,
2145 and AMOUNT the tree for the amount to shift by.
2146 Store the result in the rtx TARGET, if that is convenient.
2147 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2148 Return the rtx for where the value is. */
2151 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2152 tree amount, rtx target, int unsignedp)
2154 rtx op1, temp = 0;
2155 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2156 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2157 int try;
2159 /* Previously detected shift-counts computed by NEGATE_EXPR
2160 and shifted in the other direction; but that does not work
2161 on all machines. */
2163 op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
2165 if (SHIFT_COUNT_TRUNCATED)
2167 if (GET_CODE (op1) == CONST_INT
2168 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2169 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2170 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2171 % GET_MODE_BITSIZE (mode));
2172 else if (GET_CODE (op1) == SUBREG
2173 && subreg_lowpart_p (op1))
2174 op1 = SUBREG_REG (op1);
2177 if (op1 == const0_rtx)
2178 return shifted;
2180 /* Check whether its cheaper to implement a left shift by a constant
2181 bit count by a sequence of additions. */
2182 if (code == LSHIFT_EXPR
2183 && GET_CODE (op1) == CONST_INT
2184 && INTVAL (op1) > 0
2185 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2186 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
2188 int i;
2189 for (i = 0; i < INTVAL (op1); i++)
2191 temp = force_reg (mode, shifted);
2192 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2193 unsignedp, OPTAB_LIB_WIDEN);
2195 return shifted;
2198 for (try = 0; temp == 0 && try < 3; try++)
2200 enum optab_methods methods;
2202 if (try == 0)
2203 methods = OPTAB_DIRECT;
2204 else if (try == 1)
2205 methods = OPTAB_WIDEN;
2206 else
2207 methods = OPTAB_LIB_WIDEN;
2209 if (rotate)
2211 /* Widening does not work for rotation. */
2212 if (methods == OPTAB_WIDEN)
2213 continue;
2214 else if (methods == OPTAB_LIB_WIDEN)
2216 /* If we have been unable to open-code this by a rotation,
2217 do it as the IOR of two shifts. I.e., to rotate A
2218 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2219 where C is the bitsize of A.
2221 It is theoretically possible that the target machine might
2222 not be able to perform either shift and hence we would
2223 be making two libcalls rather than just the one for the
2224 shift (similarly if IOR could not be done). We will allow
2225 this extremely unlikely lossage to avoid complicating the
2226 code below. */
2228 rtx subtarget = target == shifted ? 0 : target;
2229 rtx temp1;
2230 tree type = TREE_TYPE (amount);
2231 tree new_amount = make_tree (type, op1);
2232 tree other_amount
2233 = fold (build2 (MINUS_EXPR, type, convert
2234 (type, build_int_cst
2235 (NULL_TREE, GET_MODE_BITSIZE (mode))),
2236 amount));
2238 shifted = force_reg (mode, shifted);
2240 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2241 mode, shifted, new_amount, subtarget, 1);
2242 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2243 mode, shifted, other_amount, 0, 1);
2244 return expand_binop (mode, ior_optab, temp, temp1, target,
2245 unsignedp, methods);
2248 temp = expand_binop (mode,
2249 left ? rotl_optab : rotr_optab,
2250 shifted, op1, target, unsignedp, methods);
2252 /* If we don't have the rotate, but we are rotating by a constant
2253 that is in range, try a rotate in the opposite direction. */
2255 if (temp == 0 && GET_CODE (op1) == CONST_INT
2256 && INTVAL (op1) > 0
2257 && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
2258 temp = expand_binop (mode,
2259 left ? rotr_optab : rotl_optab,
2260 shifted,
2261 GEN_INT (GET_MODE_BITSIZE (mode)
2262 - INTVAL (op1)),
2263 target, unsignedp, methods);
2265 else if (unsignedp)
2266 temp = expand_binop (mode,
2267 left ? ashl_optab : lshr_optab,
2268 shifted, op1, target, unsignedp, methods);
2270 /* Do arithmetic shifts.
2271 Also, if we are going to widen the operand, we can just as well
2272 use an arithmetic right-shift instead of a logical one. */
2273 if (temp == 0 && ! rotate
2274 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2276 enum optab_methods methods1 = methods;
2278 /* If trying to widen a log shift to an arithmetic shift,
2279 don't accept an arithmetic shift of the same size. */
2280 if (unsignedp)
2281 methods1 = OPTAB_MUST_WIDEN;
2283 /* Arithmetic shift */
2285 temp = expand_binop (mode,
2286 left ? ashl_optab : ashr_optab,
2287 shifted, op1, target, unsignedp, methods1);
2290 /* We used to try extzv here for logical right shifts, but that was
2291 only useful for one machine, the VAX, and caused poor code
2292 generation there for lshrdi3, so the code was deleted and a
2293 define_expand for lshrsi3 was added to vax.md. */
2296 gcc_assert (temp);
2297 return temp;
2300 enum alg_code { alg_unknown, alg_zero, alg_m, alg_shift,
2301 alg_add_t_m2, alg_sub_t_m2,
2302 alg_add_factor, alg_sub_factor,
2303 alg_add_t2_m, alg_sub_t2_m };
2305 /* This structure holds the "cost" of a multiply sequence. The
2306 "cost" field holds the total rtx_cost of every operator in the
2307 synthetic multiplication sequence, hence cost(a op b) is defined
2308 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2309 The "latency" field holds the minimum possible latency of the
2310 synthetic multiply, on a hypothetical infinitely parallel CPU.
2311 This is the critical path, or the maximum height, of the expression
2312 tree which is the sum of rtx_costs on the most expensive path from
2313 any leaf to the root. Hence latency(a op b) is defined as zero for
2314 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2316 struct mult_cost {
2317 short cost; /* Total rtx_cost of the multiplication sequence. */
2318 short latency; /* The latency of the multiplication sequence. */
2321 /* This macro is used to compare a pointer to a mult_cost against an
2322 single integer "rtx_cost" value. This is equivalent to the macro
2323 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2324 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2325 || ((X)->cost == (Y) && (X)->latency < (Y)))
2327 /* This macro is used to compare two pointers to mult_costs against
2328 each other. The macro returns true if X is cheaper than Y.
2329 Currently, the cheaper of two mult_costs is the one with the
2330 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2331 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2332 || ((X)->cost == (Y)->cost \
2333 && (X)->latency < (Y)->latency))
2335 /* This structure records a sequence of operations.
2336 `ops' is the number of operations recorded.
2337 `cost' is their total cost.
2338 The operations are stored in `op' and the corresponding
2339 logarithms of the integer coefficients in `log'.
2341 These are the operations:
2342 alg_zero total := 0;
2343 alg_m total := multiplicand;
2344 alg_shift total := total * coeff
2345 alg_add_t_m2 total := total + multiplicand * coeff;
2346 alg_sub_t_m2 total := total - multiplicand * coeff;
2347 alg_add_factor total := total * coeff + total;
2348 alg_sub_factor total := total * coeff - total;
2349 alg_add_t2_m total := total * coeff + multiplicand;
2350 alg_sub_t2_m total := total * coeff - multiplicand;
2352 The first operand must be either alg_zero or alg_m. */
2354 struct algorithm
2356 struct mult_cost cost;
2357 short ops;
2358 /* The size of the OP and LOG fields are not directly related to the
2359 word size, but the worst-case algorithms will be if we have few
2360 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2361 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2362 in total wordsize operations. */
2363 enum alg_code op[MAX_BITS_PER_WORD];
2364 char log[MAX_BITS_PER_WORD];
2367 /* The entry for our multiplication cache/hash table. */
2368 struct alg_hash_entry {
2369 /* The number we are multiplying by. */
2370 unsigned int t;
2372 /* The mode in which we are multiplying something by T. */
2373 enum machine_mode mode;
2375 /* The best multiplication algorithm for t. */
2376 enum alg_code alg;
2379 /* The number of cache/hash entries. */
2380 #define NUM_ALG_HASH_ENTRIES 307
2382 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2383 actually a hash table. If we have a collision, that the older
2384 entry is kicked out. */
2385 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2387 /* Indicates the type of fixup needed after a constant multiplication.
2388 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2389 the result should be negated, and ADD_VARIANT means that the
2390 multiplicand should be added to the result. */
2391 enum mult_variant {basic_variant, negate_variant, add_variant};
2393 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2394 const struct mult_cost *, enum machine_mode mode);
2395 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2396 struct algorithm *, enum mult_variant *, int);
2397 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2398 const struct algorithm *, enum mult_variant);
2399 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2400 int, unsigned HOST_WIDE_INT *,
2401 int *, int *);
2402 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2403 static rtx extract_high_half (enum machine_mode, rtx);
2404 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2405 int, int);
2406 /* Compute and return the best algorithm for multiplying by T.
2407 The algorithm must cost less than cost_limit
2408 If retval.cost >= COST_LIMIT, no algorithm was found and all
2409 other field of the returned struct are undefined.
2410 MODE is the machine mode of the multiplication. */
2412 static void
2413 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2414 const struct mult_cost *cost_limit, enum machine_mode mode)
2416 int m;
2417 struct algorithm *alg_in, *best_alg;
2418 struct mult_cost best_cost;
2419 struct mult_cost new_limit;
2420 int op_cost, op_latency;
2421 unsigned HOST_WIDE_INT q;
2422 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2423 int hash_index;
2424 bool cache_hit = false;
2425 enum alg_code cache_alg = alg_zero;
2427 /* Indicate that no algorithm is yet found. If no algorithm
2428 is found, this value will be returned and indicate failure. */
2429 alg_out->cost.cost = cost_limit->cost + 1;
2430 alg_out->cost.latency = cost_limit->latency + 1;
2432 if (cost_limit->cost < 0
2433 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2434 return;
2436 /* Restrict the bits of "t" to the multiplication's mode. */
2437 t &= GET_MODE_MASK (mode);
2439 /* t == 1 can be done in zero cost. */
2440 if (t == 1)
2442 alg_out->ops = 1;
2443 alg_out->cost.cost = 0;
2444 alg_out->cost.latency = 0;
2445 alg_out->op[0] = alg_m;
2446 return;
2449 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2450 fail now. */
2451 if (t == 0)
2453 if (MULT_COST_LESS (cost_limit, zero_cost))
2454 return;
2455 else
2457 alg_out->ops = 1;
2458 alg_out->cost.cost = zero_cost;
2459 alg_out->cost.latency = zero_cost;
2460 alg_out->op[0] = alg_zero;
2461 return;
2465 /* We'll be needing a couple extra algorithm structures now. */
2467 alg_in = alloca (sizeof (struct algorithm));
2468 best_alg = alloca (sizeof (struct algorithm));
2469 best_cost = *cost_limit;
2471 /* Compute the hash index. */
2472 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2474 /* See if we already know what to do for T. */
2475 if (alg_hash[hash_index].t == t
2476 && alg_hash[hash_index].mode == mode
2477 && alg_hash[hash_index].alg != alg_unknown)
2479 cache_hit = true;
2480 cache_alg = alg_hash[hash_index].alg;
2481 switch (cache_alg)
2483 case alg_shift:
2484 goto do_alg_shift;
2486 case alg_add_t_m2:
2487 case alg_sub_t_m2:
2488 goto do_alg_addsub_t_m2;
2490 case alg_add_factor:
2491 case alg_sub_factor:
2492 goto do_alg_addsub_factor;
2494 case alg_add_t2_m:
2495 goto do_alg_add_t2_m;
2497 case alg_sub_t2_m:
2498 goto do_alg_sub_t2_m;
2500 default:
2501 gcc_unreachable ();
2505 /* If we have a group of zero bits at the low-order part of T, try
2506 multiplying by the remaining bits and then doing a shift. */
2508 if ((t & 1) == 0)
2510 do_alg_shift:
2511 m = floor_log2 (t & -t); /* m = number of low zero bits */
2512 if (m < maxm)
2514 q = t >> m;
2515 /* The function expand_shift will choose between a shift and
2516 a sequence of additions, so the observed cost is given as
2517 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2518 op_cost = m * add_cost[mode];
2519 if (shift_cost[mode][m] < op_cost)
2520 op_cost = shift_cost[mode][m];
2521 new_limit.cost = best_cost.cost - op_cost;
2522 new_limit.latency = best_cost.latency - op_cost;
2523 synth_mult (alg_in, q, &new_limit, mode);
2525 alg_in->cost.cost += op_cost;
2526 alg_in->cost.latency += op_cost;
2527 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2529 struct algorithm *x;
2530 best_cost = alg_in->cost;
2531 x = alg_in, alg_in = best_alg, best_alg = x;
2532 best_alg->log[best_alg->ops] = m;
2533 best_alg->op[best_alg->ops] = alg_shift;
2536 if (cache_hit)
2537 goto done;
2540 /* If we have an odd number, add or subtract one. */
2541 if ((t & 1) != 0)
2543 unsigned HOST_WIDE_INT w;
2545 do_alg_addsub_t_m2:
2546 for (w = 1; (w & t) != 0; w <<= 1)
2548 /* If T was -1, then W will be zero after the loop. This is another
2549 case where T ends with ...111. Handling this with (T + 1) and
2550 subtract 1 produces slightly better code and results in algorithm
2551 selection much faster than treating it like the ...0111 case
2552 below. */
2553 if (w == 0
2554 || (w > 2
2555 /* Reject the case where t is 3.
2556 Thus we prefer addition in that case. */
2557 && t != 3))
2559 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2561 op_cost = add_cost[mode];
2562 new_limit.cost = best_cost.cost - op_cost;
2563 new_limit.latency = best_cost.latency - op_cost;
2564 synth_mult (alg_in, t + 1, &new_limit, mode);
2566 alg_in->cost.cost += op_cost;
2567 alg_in->cost.latency += op_cost;
2568 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2570 struct algorithm *x;
2571 best_cost = alg_in->cost;
2572 x = alg_in, alg_in = best_alg, best_alg = x;
2573 best_alg->log[best_alg->ops] = 0;
2574 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2577 else
2579 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2581 op_cost = add_cost[mode];
2582 new_limit.cost = best_cost.cost - op_cost;
2583 new_limit.latency = best_cost.latency - op_cost;
2584 synth_mult (alg_in, t - 1, &new_limit, mode);
2586 alg_in->cost.cost += op_cost;
2587 alg_in->cost.latency += op_cost;
2588 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2590 struct algorithm *x;
2591 best_cost = alg_in->cost;
2592 x = alg_in, alg_in = best_alg, best_alg = x;
2593 best_alg->log[best_alg->ops] = 0;
2594 best_alg->op[best_alg->ops] = alg_add_t_m2;
2597 if (cache_hit)
2598 goto done;
2601 /* Look for factors of t of the form
2602 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2603 If we find such a factor, we can multiply by t using an algorithm that
2604 multiplies by q, shift the result by m and add/subtract it to itself.
2606 We search for large factors first and loop down, even if large factors
2607 are less probable than small; if we find a large factor we will find a
2608 good sequence quickly, and therefore be able to prune (by decreasing
2609 COST_LIMIT) the search. */
2611 do_alg_addsub_factor:
2612 for (m = floor_log2 (t - 1); m >= 2; m--)
2614 unsigned HOST_WIDE_INT d;
2616 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2617 if (t % d == 0 && t > d && m < maxm
2618 && (!cache_hit || cache_alg == alg_add_factor))
2620 /* If the target has a cheap shift-and-add instruction use
2621 that in preference to a shift insn followed by an add insn.
2622 Assume that the shift-and-add is "atomic" with a latency
2623 equal to its cost, otherwise assume that on superscalar
2624 hardware the shift may be executed concurrently with the
2625 earlier steps in the algorithm. */
2626 op_cost = add_cost[mode] + shift_cost[mode][m];
2627 if (shiftadd_cost[mode][m] < op_cost)
2629 op_cost = shiftadd_cost[mode][m];
2630 op_latency = op_cost;
2632 else
2633 op_latency = add_cost[mode];
2635 new_limit.cost = best_cost.cost - op_cost;
2636 new_limit.latency = best_cost.latency - op_latency;
2637 synth_mult (alg_in, t / d, &new_limit, mode);
2639 alg_in->cost.cost += op_cost;
2640 alg_in->cost.latency += op_latency;
2641 if (alg_in->cost.latency < op_cost)
2642 alg_in->cost.latency = op_cost;
2643 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2645 struct algorithm *x;
2646 best_cost = alg_in->cost;
2647 x = alg_in, alg_in = best_alg, best_alg = x;
2648 best_alg->log[best_alg->ops] = m;
2649 best_alg->op[best_alg->ops] = alg_add_factor;
2651 /* Other factors will have been taken care of in the recursion. */
2652 break;
2655 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2656 if (t % d == 0 && t > d && m < maxm
2657 && (!cache_hit || cache_alg == alg_sub_factor))
2659 /* If the target has a cheap shift-and-subtract insn use
2660 that in preference to a shift insn followed by a sub insn.
2661 Assume that the shift-and-sub is "atomic" with a latency
2662 equal to it's cost, otherwise assume that on superscalar
2663 hardware the shift may be executed concurrently with the
2664 earlier steps in the algorithm. */
2665 op_cost = add_cost[mode] + shift_cost[mode][m];
2666 if (shiftsub_cost[mode][m] < op_cost)
2668 op_cost = shiftsub_cost[mode][m];
2669 op_latency = op_cost;
2671 else
2672 op_latency = add_cost[mode];
2674 new_limit.cost = best_cost.cost - op_cost;
2675 new_limit.cost = best_cost.cost - op_latency;
2676 synth_mult (alg_in, t / d, &new_limit, mode);
2678 alg_in->cost.cost += op_cost;
2679 alg_in->cost.latency += op_latency;
2680 if (alg_in->cost.latency < op_cost)
2681 alg_in->cost.latency = op_cost;
2682 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2684 struct algorithm *x;
2685 best_cost = alg_in->cost;
2686 x = alg_in, alg_in = best_alg, best_alg = x;
2687 best_alg->log[best_alg->ops] = m;
2688 best_alg->op[best_alg->ops] = alg_sub_factor;
2690 break;
2693 if (cache_hit)
2694 goto done;
2696 /* Try shift-and-add (load effective address) instructions,
2697 i.e. do a*3, a*5, a*9. */
2698 if ((t & 1) != 0)
2700 do_alg_add_t2_m:
2701 q = t - 1;
2702 q = q & -q;
2703 m = exact_log2 (q);
2704 if (m >= 0 && m < maxm)
2706 op_cost = shiftadd_cost[mode][m];
2707 new_limit.cost = best_cost.cost - op_cost;
2708 new_limit.latency = best_cost.latency - op_cost;
2709 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2711 alg_in->cost.cost += op_cost;
2712 alg_in->cost.latency += op_cost;
2713 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2715 struct algorithm *x;
2716 best_cost = alg_in->cost;
2717 x = alg_in, alg_in = best_alg, best_alg = x;
2718 best_alg->log[best_alg->ops] = m;
2719 best_alg->op[best_alg->ops] = alg_add_t2_m;
2722 if (cache_hit)
2723 goto done;
2725 do_alg_sub_t2_m:
2726 q = t + 1;
2727 q = q & -q;
2728 m = exact_log2 (q);
2729 if (m >= 0 && m < maxm)
2731 op_cost = shiftsub_cost[mode][m];
2732 new_limit.cost = best_cost.cost - op_cost;
2733 new_limit.latency = best_cost.latency - op_cost;
2734 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2736 alg_in->cost.cost += op_cost;
2737 alg_in->cost.latency += op_cost;
2738 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2740 struct algorithm *x;
2741 best_cost = alg_in->cost;
2742 x = alg_in, alg_in = best_alg, best_alg = x;
2743 best_alg->log[best_alg->ops] = m;
2744 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2747 if (cache_hit)
2748 goto done;
2751 done:
2752 /* If best_cost has not decreased, we have not found any algorithm. */
2753 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2754 return;
2756 /* Cache the result. */
2757 if (!cache_hit)
2759 alg_hash[hash_index].t = t;
2760 alg_hash[hash_index].mode = mode;
2761 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2764 /* If we are getting a too long sequence for `struct algorithm'
2765 to record, make this search fail. */
2766 if (best_alg->ops == MAX_BITS_PER_WORD)
2767 return;
2769 /* Copy the algorithm from temporary space to the space at alg_out.
2770 We avoid using structure assignment because the majority of
2771 best_alg is normally undefined, and this is a critical function. */
2772 alg_out->ops = best_alg->ops + 1;
2773 alg_out->cost = best_cost;
2774 memcpy (alg_out->op, best_alg->op,
2775 alg_out->ops * sizeof *alg_out->op);
2776 memcpy (alg_out->log, best_alg->log,
2777 alg_out->ops * sizeof *alg_out->log);
2780 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2781 Try three variations:
2783 - a shift/add sequence based on VAL itself
2784 - a shift/add sequence based on -VAL, followed by a negation
2785 - a shift/add sequence based on VAL - 1, followed by an addition.
2787 Return true if the cheapest of these cost less than MULT_COST,
2788 describing the algorithm in *ALG and final fixup in *VARIANT. */
2790 static bool
2791 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2792 struct algorithm *alg, enum mult_variant *variant,
2793 int mult_cost)
2795 struct algorithm alg2;
2796 struct mult_cost limit;
2797 int op_cost;
2799 *variant = basic_variant;
2800 limit.cost = mult_cost;
2801 limit.latency = mult_cost;
2802 synth_mult (alg, val, &limit, mode);
2804 /* This works only if the inverted value actually fits in an
2805 `unsigned int' */
2806 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2808 op_cost = neg_cost[mode];
2809 if (MULT_COST_LESS (&alg->cost, mult_cost))
2811 limit.cost = alg->cost.cost - op_cost;
2812 limit.latency = alg->cost.latency - op_cost;
2814 else
2816 limit.cost = mult_cost - op_cost;
2817 limit.latency = mult_cost - op_cost;
2820 synth_mult (&alg2, -val, &limit, mode);
2821 alg2.cost.cost += op_cost;
2822 alg2.cost.latency += op_cost;
2823 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2824 *alg = alg2, *variant = negate_variant;
2827 /* This proves very useful for division-by-constant. */
2828 op_cost = add_cost[mode];
2829 if (MULT_COST_LESS (&alg->cost, mult_cost))
2831 limit.cost = alg->cost.cost - op_cost;
2832 limit.latency = alg->cost.latency - op_cost;
2834 else
2836 limit.cost = mult_cost - op_cost;
2837 limit.latency = mult_cost - op_cost;
2840 synth_mult (&alg2, val - 1, &limit, mode);
2841 alg2.cost.cost += op_cost;
2842 alg2.cost.latency += op_cost;
2843 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2844 *alg = alg2, *variant = add_variant;
2846 return MULT_COST_LESS (&alg->cost, mult_cost);
2849 /* A subroutine of expand_mult, used for constant multiplications.
2850 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2851 convenient. Use the shift/add sequence described by ALG and apply
2852 the final fixup specified by VARIANT. */
2854 static rtx
2855 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2856 rtx target, const struct algorithm *alg,
2857 enum mult_variant variant)
2859 HOST_WIDE_INT val_so_far;
2860 rtx insn, accum, tem;
2861 int opno;
2862 enum machine_mode nmode;
2864 /* Avoid referencing memory over and over.
2865 For speed, but also for correctness when mem is volatile. */
2866 if (MEM_P (op0))
2867 op0 = force_reg (mode, op0);
2869 /* ACCUM starts out either as OP0 or as a zero, depending on
2870 the first operation. */
2872 if (alg->op[0] == alg_zero)
2874 accum = copy_to_mode_reg (mode, const0_rtx);
2875 val_so_far = 0;
2877 else if (alg->op[0] == alg_m)
2879 accum = copy_to_mode_reg (mode, op0);
2880 val_so_far = 1;
2882 else
2883 gcc_unreachable ();
2885 for (opno = 1; opno < alg->ops; opno++)
2887 int log = alg->log[opno];
2888 rtx shift_subtarget = optimize ? 0 : accum;
2889 rtx add_target
2890 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2891 && !optimize)
2892 ? target : 0;
2893 rtx accum_target = optimize ? 0 : accum;
2895 switch (alg->op[opno])
2897 case alg_shift:
2898 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2899 build_int_cst (NULL_TREE, log),
2900 NULL_RTX, 0);
2901 val_so_far <<= log;
2902 break;
2904 case alg_add_t_m2:
2905 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2906 build_int_cst (NULL_TREE, log),
2907 NULL_RTX, 0);
2908 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2909 add_target ? add_target : accum_target);
2910 val_so_far += (HOST_WIDE_INT) 1 << log;
2911 break;
2913 case alg_sub_t_m2:
2914 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2915 build_int_cst (NULL_TREE, log),
2916 NULL_RTX, 0);
2917 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2918 add_target ? add_target : accum_target);
2919 val_so_far -= (HOST_WIDE_INT) 1 << log;
2920 break;
2922 case alg_add_t2_m:
2923 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2924 build_int_cst (NULL_TREE, log),
2925 shift_subtarget,
2927 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2928 add_target ? add_target : accum_target);
2929 val_so_far = (val_so_far << log) + 1;
2930 break;
2932 case alg_sub_t2_m:
2933 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2934 build_int_cst (NULL_TREE, log),
2935 shift_subtarget, 0);
2936 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2937 add_target ? add_target : accum_target);
2938 val_so_far = (val_so_far << log) - 1;
2939 break;
2941 case alg_add_factor:
2942 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2943 build_int_cst (NULL_TREE, log),
2944 NULL_RTX, 0);
2945 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2946 add_target ? add_target : accum_target);
2947 val_so_far += val_so_far << log;
2948 break;
2950 case alg_sub_factor:
2951 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2952 build_int_cst (NULL_TREE, log),
2953 NULL_RTX, 0);
2954 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2955 (add_target
2956 ? add_target : (optimize ? 0 : tem)));
2957 val_so_far = (val_so_far << log) - val_so_far;
2958 break;
2960 default:
2961 gcc_unreachable ();
2964 /* Write a REG_EQUAL note on the last insn so that we can cse
2965 multiplication sequences. Note that if ACCUM is a SUBREG,
2966 we've set the inner register and must properly indicate
2967 that. */
2969 tem = op0, nmode = mode;
2970 if (GET_CODE (accum) == SUBREG)
2972 nmode = GET_MODE (SUBREG_REG (accum));
2973 tem = gen_lowpart (nmode, op0);
2976 insn = get_last_insn ();
2977 set_unique_reg_note (insn, REG_EQUAL,
2978 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
2981 if (variant == negate_variant)
2983 val_so_far = -val_so_far;
2984 accum = expand_unop (mode, neg_optab, accum, target, 0);
2986 else if (variant == add_variant)
2988 val_so_far = val_so_far + 1;
2989 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
2992 /* Compare only the bits of val and val_so_far that are significant
2993 in the result mode, to avoid sign-/zero-extension confusion. */
2994 val &= GET_MODE_MASK (mode);
2995 val_so_far &= GET_MODE_MASK (mode);
2996 gcc_assert (val == val_so_far);
2998 return accum;
3001 /* Perform a multiplication and return an rtx for the result.
3002 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3003 TARGET is a suggestion for where to store the result (an rtx).
3005 We check specially for a constant integer as OP1.
3006 If you want this check for OP0 as well, then before calling
3007 you should swap the two operands if OP0 would be constant. */
3010 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3011 int unsignedp)
3013 rtx const_op1 = op1;
3014 enum mult_variant variant;
3015 struct algorithm algorithm;
3017 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3018 less than or equal in size to `unsigned int' this doesn't matter.
3019 If the mode is larger than `unsigned int', then synth_mult works only
3020 if the constant value exactly fits in an `unsigned int' without any
3021 truncation. This means that multiplying by negative values does
3022 not work; results are off by 2^32 on a 32 bit machine. */
3024 /* If we are multiplying in DImode, it may still be a win
3025 to try to work with shifts and adds. */
3026 if (GET_CODE (op1) == CONST_DOUBLE
3027 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_INT
3028 && HOST_BITS_PER_INT >= BITS_PER_WORD
3029 && CONST_DOUBLE_HIGH (op1) == 0)
3030 const_op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
3031 else if (HOST_BITS_PER_INT < GET_MODE_BITSIZE (mode)
3032 && GET_CODE (op1) == CONST_INT
3033 && INTVAL (op1) < 0)
3034 const_op1 = 0;
3036 /* We used to test optimize here, on the grounds that it's better to
3037 produce a smaller program when -O is not used.
3038 But this causes such a terrible slowdown sometimes
3039 that it seems better to use synth_mult always. */
3041 if (const_op1 && GET_CODE (const_op1) == CONST_INT
3042 && (unsignedp || !flag_trapv))
3044 int mult_cost = rtx_cost (gen_rtx_MULT (mode, op0, op1), SET);
3046 if (choose_mult_variant (mode, INTVAL (const_op1), &algorithm, &variant,
3047 mult_cost))
3048 return expand_mult_const (mode, op0, INTVAL (const_op1), target,
3049 &algorithm, variant);
3052 if (GET_CODE (op0) == CONST_DOUBLE)
3054 rtx temp = op0;
3055 op0 = op1;
3056 op1 = temp;
3059 /* Expand x*2.0 as x+x. */
3060 if (GET_CODE (op1) == CONST_DOUBLE
3061 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3063 REAL_VALUE_TYPE d;
3064 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3066 if (REAL_VALUES_EQUAL (d, dconst2))
3068 op0 = force_reg (GET_MODE (op0), op0);
3069 return expand_binop (mode, add_optab, op0, op0,
3070 target, unsignedp, OPTAB_LIB_WIDEN);
3074 /* This used to use umul_optab if unsigned, but for non-widening multiply
3075 there is no difference between signed and unsigned. */
3076 op0 = expand_binop (mode,
3077 ! unsignedp
3078 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3079 ? smulv_optab : smul_optab,
3080 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3081 gcc_assert (op0);
3082 return op0;
3085 /* Return the smallest n such that 2**n >= X. */
3088 ceil_log2 (unsigned HOST_WIDE_INT x)
3090 return floor_log2 (x - 1) + 1;
3093 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3094 replace division by D, and put the least significant N bits of the result
3095 in *MULTIPLIER_PTR and return the most significant bit.
3097 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3098 needed precision is in PRECISION (should be <= N).
3100 PRECISION should be as small as possible so this function can choose
3101 multiplier more freely.
3103 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3104 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3106 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3107 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3109 static
3110 unsigned HOST_WIDE_INT
3111 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3112 unsigned HOST_WIDE_INT *multiplier_ptr,
3113 int *post_shift_ptr, int *lgup_ptr)
3115 HOST_WIDE_INT mhigh_hi, mlow_hi;
3116 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3117 int lgup, post_shift;
3118 int pow, pow2;
3119 unsigned HOST_WIDE_INT nl, dummy1;
3120 HOST_WIDE_INT nh, dummy2;
3122 /* lgup = ceil(log2(divisor)); */
3123 lgup = ceil_log2 (d);
3125 gcc_assert (lgup <= n);
3127 pow = n + lgup;
3128 pow2 = n + lgup - precision;
3130 /* We could handle this with some effort, but this case is much
3131 better handled directly with a scc insn, so rely on caller using
3132 that. */
3133 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3135 /* mlow = 2^(N + lgup)/d */
3136 if (pow >= HOST_BITS_PER_WIDE_INT)
3138 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3139 nl = 0;
3141 else
3143 nh = 0;
3144 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3146 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3147 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3149 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3150 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3151 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3152 else
3153 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3154 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3155 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3157 gcc_assert (!mhigh_hi || nh - d < d);
3158 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3159 /* Assert that mlow < mhigh. */
3160 gcc_assert (mlow_hi < mhigh_hi
3161 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3163 /* If precision == N, then mlow, mhigh exceed 2^N
3164 (but they do not exceed 2^(N+1)). */
3166 /* Reduce to lowest terms. */
3167 for (post_shift = lgup; post_shift > 0; post_shift--)
3169 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3170 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3171 if (ml_lo >= mh_lo)
3172 break;
3174 mlow_hi = 0;
3175 mlow_lo = ml_lo;
3176 mhigh_hi = 0;
3177 mhigh_lo = mh_lo;
3180 *post_shift_ptr = post_shift;
3181 *lgup_ptr = lgup;
3182 if (n < HOST_BITS_PER_WIDE_INT)
3184 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3185 *multiplier_ptr = mhigh_lo & mask;
3186 return mhigh_lo >= mask;
3188 else
3190 *multiplier_ptr = mhigh_lo;
3191 return mhigh_hi;
3195 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3196 congruent to 1 (mod 2**N). */
3198 static unsigned HOST_WIDE_INT
3199 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3201 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3203 /* The algorithm notes that the choice y = x satisfies
3204 x*y == 1 mod 2^3, since x is assumed odd.
3205 Each iteration doubles the number of bits of significance in y. */
3207 unsigned HOST_WIDE_INT mask;
3208 unsigned HOST_WIDE_INT y = x;
3209 int nbit = 3;
3211 mask = (n == HOST_BITS_PER_WIDE_INT
3212 ? ~(unsigned HOST_WIDE_INT) 0
3213 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3215 while (nbit < n)
3217 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3218 nbit *= 2;
3220 return y;
3223 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3224 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3225 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3226 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3227 become signed.
3229 The result is put in TARGET if that is convenient.
3231 MODE is the mode of operation. */
3234 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3235 rtx op1, rtx target, int unsignedp)
3237 rtx tem;
3238 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3240 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3241 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3242 NULL_RTX, 0);
3243 tem = expand_and (mode, tem, op1, NULL_RTX);
3244 adj_operand
3245 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3246 adj_operand);
3248 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3249 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3250 NULL_RTX, 0);
3251 tem = expand_and (mode, tem, op0, NULL_RTX);
3252 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3253 target);
3255 return target;
3258 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3260 static rtx
3261 extract_high_half (enum machine_mode mode, rtx op)
3263 enum machine_mode wider_mode;
3265 if (mode == word_mode)
3266 return gen_highpart (mode, op);
3268 wider_mode = GET_MODE_WIDER_MODE (mode);
3269 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3270 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3271 return convert_modes (mode, wider_mode, op, 0);
3274 /* Like expand_mult_highpart, but only consider using a multiplication
3275 optab. OP1 is an rtx for the constant operand. */
3277 static rtx
3278 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3279 rtx target, int unsignedp, int max_cost)
3281 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3282 enum machine_mode wider_mode;
3283 optab moptab;
3284 rtx tem;
3285 int size;
3287 wider_mode = GET_MODE_WIDER_MODE (mode);
3288 size = GET_MODE_BITSIZE (mode);
3290 /* Firstly, try using a multiplication insn that only generates the needed
3291 high part of the product, and in the sign flavor of unsignedp. */
3292 if (mul_highpart_cost[mode] < max_cost)
3294 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3295 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3296 unsignedp, OPTAB_DIRECT);
3297 if (tem)
3298 return tem;
3301 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3302 Need to adjust the result after the multiplication. */
3303 if (size - 1 < BITS_PER_WORD
3304 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3305 + 4 * add_cost[mode] < max_cost))
3307 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3308 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3309 unsignedp, OPTAB_DIRECT);
3310 if (tem)
3311 /* We used the wrong signedness. Adjust the result. */
3312 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3313 tem, unsignedp);
3316 /* Try widening multiplication. */
3317 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3318 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3319 && mul_widen_cost[wider_mode] < max_cost)
3321 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3322 unsignedp, OPTAB_WIDEN);
3323 if (tem)
3324 return extract_high_half (mode, tem);
3327 /* Try widening the mode and perform a non-widening multiplication. */
3328 moptab = smul_optab;
3329 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3330 && size - 1 < BITS_PER_WORD
3331 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3333 tem = expand_binop (wider_mode, moptab, op0, op1, 0,
3334 unsignedp, OPTAB_WIDEN);
3335 if (tem)
3336 return extract_high_half (mode, tem);
3339 /* Try widening multiplication of opposite signedness, and adjust. */
3340 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3341 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3342 && size - 1 < BITS_PER_WORD
3343 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3344 + 4 * add_cost[mode] < max_cost))
3346 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3347 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3348 if (tem != 0)
3350 tem = extract_high_half (mode, tem);
3351 /* We used the wrong signedness. Adjust the result. */
3352 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3353 target, unsignedp);
3357 return 0;
3360 /* Emit code to multiply OP0 and CNST1, putting the high half of the result
3361 in TARGET if that is convenient, and return where the result is. If the
3362 operation can not be performed, 0 is returned.
3364 MODE is the mode of operation and result.
3366 UNSIGNEDP nonzero means unsigned multiply.
3368 MAX_COST is the total allowed cost for the expanded RTL. */
3371 expand_mult_highpart (enum machine_mode mode, rtx op0,
3372 unsigned HOST_WIDE_INT cnst1, rtx target,
3373 int unsignedp, int max_cost)
3375 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3376 int extra_cost;
3377 bool sign_adjust = false;
3378 enum mult_variant variant;
3379 struct algorithm alg;
3380 rtx op1, tem;
3382 /* We can't support modes wider than HOST_BITS_PER_INT. */
3383 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3385 op1 = gen_int_mode (cnst1, wider_mode);
3386 cnst1 &= GET_MODE_MASK (mode);
3388 /* We can't optimize modes wider than BITS_PER_WORD.
3389 ??? We might be able to perform double-word arithmetic if
3390 mode == word_mode, however all the cost calculations in
3391 synth_mult etc. assume single-word operations. */
3392 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3393 return expand_mult_highpart_optab (mode, op0, op1, target,
3394 unsignedp, max_cost);
3396 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3398 /* Check whether we try to multiply by a negative constant. */
3399 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3401 sign_adjust = true;
3402 extra_cost += add_cost[mode];
3405 /* See whether shift/add multiplication is cheap enough. */
3406 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3407 max_cost - extra_cost))
3409 /* See whether the specialized multiplication optabs are
3410 cheaper than the shift/add version. */
3411 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3412 alg.cost.cost + extra_cost);
3413 if (tem)
3414 return tem;
3416 tem = convert_to_mode (wider_mode, op0, unsignedp);
3417 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3418 tem = extract_high_half (mode, tem);
3420 /* Adjust result for signedness. */
3421 if (sign_adjust)
3422 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3424 return tem;
3426 return expand_mult_highpart_optab (mode, op0, op1, target,
3427 unsignedp, max_cost);
3431 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3433 static rtx
3434 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3436 unsigned HOST_WIDE_INT masklow, maskhigh;
3437 rtx result, temp, shift, label;
3438 int logd;
3440 logd = floor_log2 (d);
3441 result = gen_reg_rtx (mode);
3443 /* Avoid conditional branches when they're expensive. */
3444 if (BRANCH_COST >= 2
3445 && !optimize_size)
3447 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3448 mode, 0, -1);
3449 if (signmask)
3451 signmask = force_reg (mode, signmask);
3452 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3453 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3455 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3456 which instruction sequence to use. If logical right shifts
3457 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3458 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3460 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3461 if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3462 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3464 temp = expand_binop (mode, xor_optab, op0, signmask,
3465 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3466 temp = expand_binop (mode, sub_optab, temp, signmask,
3467 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3468 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3469 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3470 temp = expand_binop (mode, xor_optab, temp, signmask,
3471 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3472 temp = expand_binop (mode, sub_optab, temp, signmask,
3473 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3475 else
3477 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3478 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3479 signmask = force_reg (mode, signmask);
3481 temp = expand_binop (mode, add_optab, op0, signmask,
3482 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3483 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3484 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3485 temp = expand_binop (mode, sub_optab, temp, signmask,
3486 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3488 return temp;
3492 /* Mask contains the mode's signbit and the significant bits of the
3493 modulus. By including the signbit in the operation, many targets
3494 can avoid an explicit compare operation in the following comparison
3495 against zero. */
3497 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3498 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3500 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3501 maskhigh = -1;
3503 else
3504 maskhigh = (HOST_WIDE_INT) -1
3505 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3507 temp = expand_binop (mode, and_optab, op0,
3508 immed_double_const (masklow, maskhigh, mode),
3509 result, 1, OPTAB_LIB_WIDEN);
3510 if (temp != result)
3511 emit_move_insn (result, temp);
3513 label = gen_label_rtx ();
3514 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3516 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3517 0, OPTAB_LIB_WIDEN);
3518 masklow = (HOST_WIDE_INT) -1 << logd;
3519 maskhigh = -1;
3520 temp = expand_binop (mode, ior_optab, temp,
3521 immed_double_const (masklow, maskhigh, mode),
3522 result, 1, OPTAB_LIB_WIDEN);
3523 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3524 0, OPTAB_LIB_WIDEN);
3525 if (temp != result)
3526 emit_move_insn (result, temp);
3527 emit_label (label);
3528 return result;
3531 /* Expand signed division of OP0 by a power of two D in mode MODE.
3532 This routine is only called for positive values of D. */
3534 static rtx
3535 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3537 rtx temp, label;
3538 tree shift;
3539 int logd;
3541 logd = floor_log2 (d);
3542 shift = build_int_cst (NULL_TREE, logd);
3544 if (d == 2 && BRANCH_COST >= 1)
3546 temp = gen_reg_rtx (mode);
3547 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3548 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3549 0, OPTAB_LIB_WIDEN);
3550 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3553 #ifdef HAVE_conditional_move
3554 if (BRANCH_COST >= 2)
3556 rtx temp2;
3558 /* ??? emit_conditional_move forces a stack adjustment via
3559 compare_from_rtx so, if the sequence is discarded, it will
3560 be lost. Do it now instead. */
3561 do_pending_stack_adjust ();
3563 start_sequence ();
3564 temp2 = copy_to_mode_reg (mode, op0);
3565 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3566 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3567 temp = force_reg (mode, temp);
3569 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3570 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3571 mode, temp, temp2, mode, 0);
3572 if (temp2)
3574 rtx seq = get_insns ();
3575 end_sequence ();
3576 emit_insn (seq);
3577 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3579 end_sequence ();
3581 #endif
3583 if (BRANCH_COST >= 2)
3585 int ushift = GET_MODE_BITSIZE (mode) - logd;
3587 temp = gen_reg_rtx (mode);
3588 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3589 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3590 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3591 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3592 else
3593 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3594 build_int_cst (NULL_TREE, ushift),
3595 NULL_RTX, 1);
3596 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3597 0, OPTAB_LIB_WIDEN);
3598 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3601 label = gen_label_rtx ();
3602 temp = copy_to_mode_reg (mode, op0);
3603 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3604 expand_inc (temp, GEN_INT (d - 1));
3605 emit_label (label);
3606 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3609 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3610 if that is convenient, and returning where the result is.
3611 You may request either the quotient or the remainder as the result;
3612 specify REM_FLAG nonzero to get the remainder.
3614 CODE is the expression code for which kind of division this is;
3615 it controls how rounding is done. MODE is the machine mode to use.
3616 UNSIGNEDP nonzero means do unsigned division. */
3618 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3619 and then correct it by or'ing in missing high bits
3620 if result of ANDI is nonzero.
3621 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3622 This could optimize to a bfexts instruction.
3623 But C doesn't use these operations, so their optimizations are
3624 left for later. */
3625 /* ??? For modulo, we don't actually need the highpart of the first product,
3626 the low part will do nicely. And for small divisors, the second multiply
3627 can also be a low-part only multiply or even be completely left out.
3628 E.g. to calculate the remainder of a division by 3 with a 32 bit
3629 multiply, multiply with 0x55555556 and extract the upper two bits;
3630 the result is exact for inputs up to 0x1fffffff.
3631 The input range can be reduced by using cross-sum rules.
3632 For odd divisors >= 3, the following table gives right shift counts
3633 so that if a number is shifted by an integer multiple of the given
3634 amount, the remainder stays the same:
3635 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3636 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3637 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3638 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3639 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3641 Cross-sum rules for even numbers can be derived by leaving as many bits
3642 to the right alone as the divisor has zeros to the right.
3643 E.g. if x is an unsigned 32 bit number:
3644 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3647 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
3650 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3651 rtx op0, rtx op1, rtx target, int unsignedp)
3653 enum machine_mode compute_mode;
3654 rtx tquotient;
3655 rtx quotient = 0, remainder = 0;
3656 rtx last;
3657 int size;
3658 rtx insn, set;
3659 optab optab1, optab2;
3660 int op1_is_constant, op1_is_pow2 = 0;
3661 int max_cost, extra_cost;
3662 static HOST_WIDE_INT last_div_const = 0;
3663 static HOST_WIDE_INT ext_op1;
3665 op1_is_constant = GET_CODE (op1) == CONST_INT;
3666 if (op1_is_constant)
3668 ext_op1 = INTVAL (op1);
3669 if (unsignedp)
3670 ext_op1 &= GET_MODE_MASK (mode);
3671 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3672 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3676 This is the structure of expand_divmod:
3678 First comes code to fix up the operands so we can perform the operations
3679 correctly and efficiently.
3681 Second comes a switch statement with code specific for each rounding mode.
3682 For some special operands this code emits all RTL for the desired
3683 operation, for other cases, it generates only a quotient and stores it in
3684 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3685 to indicate that it has not done anything.
3687 Last comes code that finishes the operation. If QUOTIENT is set and
3688 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3689 QUOTIENT is not set, it is computed using trunc rounding.
3691 We try to generate special code for division and remainder when OP1 is a
3692 constant. If |OP1| = 2**n we can use shifts and some other fast
3693 operations. For other values of OP1, we compute a carefully selected
3694 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3695 by m.
3697 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3698 half of the product. Different strategies for generating the product are
3699 implemented in expand_mult_highpart.
3701 If what we actually want is the remainder, we generate that by another
3702 by-constant multiplication and a subtraction. */
3704 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3705 code below will malfunction if we are, so check here and handle
3706 the special case if so. */
3707 if (op1 == const1_rtx)
3708 return rem_flag ? const0_rtx : op0;
3710 /* When dividing by -1, we could get an overflow.
3711 negv_optab can handle overflows. */
3712 if (! unsignedp && op1 == constm1_rtx)
3714 if (rem_flag)
3715 return const0_rtx;
3716 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3717 ? negv_optab : neg_optab, op0, target, 0);
3720 if (target
3721 /* Don't use the function value register as a target
3722 since we have to read it as well as write it,
3723 and function-inlining gets confused by this. */
3724 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3725 /* Don't clobber an operand while doing a multi-step calculation. */
3726 || ((rem_flag || op1_is_constant)
3727 && (reg_mentioned_p (target, op0)
3728 || (MEM_P (op0) && MEM_P (target))))
3729 || reg_mentioned_p (target, op1)
3730 || (MEM_P (op1) && MEM_P (target))))
3731 target = 0;
3733 /* Get the mode in which to perform this computation. Normally it will
3734 be MODE, but sometimes we can't do the desired operation in MODE.
3735 If so, pick a wider mode in which we can do the operation. Convert
3736 to that mode at the start to avoid repeated conversions.
3738 First see what operations we need. These depend on the expression
3739 we are evaluating. (We assume that divxx3 insns exist under the
3740 same conditions that modxx3 insns and that these insns don't normally
3741 fail. If these assumptions are not correct, we may generate less
3742 efficient code in some cases.)
3744 Then see if we find a mode in which we can open-code that operation
3745 (either a division, modulus, or shift). Finally, check for the smallest
3746 mode for which we can do the operation with a library call. */
3748 /* We might want to refine this now that we have division-by-constant
3749 optimization. Since expand_mult_highpart tries so many variants, it is
3750 not straightforward to generalize this. Maybe we should make an array
3751 of possible modes in init_expmed? Save this for GCC 2.7. */
3753 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3754 ? (unsignedp ? lshr_optab : ashr_optab)
3755 : (unsignedp ? udiv_optab : sdiv_optab));
3756 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3757 ? optab1
3758 : (unsignedp ? udivmod_optab : sdivmod_optab));
3760 for (compute_mode = mode; compute_mode != VOIDmode;
3761 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3762 if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3763 || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3764 break;
3766 if (compute_mode == VOIDmode)
3767 for (compute_mode = mode; compute_mode != VOIDmode;
3768 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3769 if (optab1->handlers[compute_mode].libfunc
3770 || optab2->handlers[compute_mode].libfunc)
3771 break;
3773 /* If we still couldn't find a mode, use MODE, but we'll probably abort
3774 in expand_binop. */
3775 if (compute_mode == VOIDmode)
3776 compute_mode = mode;
3778 if (target && GET_MODE (target) == compute_mode)
3779 tquotient = target;
3780 else
3781 tquotient = gen_reg_rtx (compute_mode);
3783 size = GET_MODE_BITSIZE (compute_mode);
3784 #if 0
3785 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3786 (mode), and thereby get better code when OP1 is a constant. Do that
3787 later. It will require going over all usages of SIZE below. */
3788 size = GET_MODE_BITSIZE (mode);
3789 #endif
3791 /* Only deduct something for a REM if the last divide done was
3792 for a different constant. Then set the constant of the last
3793 divide. */
3794 max_cost = div_cost[compute_mode]
3795 - (rem_flag && ! (last_div_const != 0 && op1_is_constant
3796 && INTVAL (op1) == last_div_const)
3797 ? mul_cost[compute_mode] + add_cost[compute_mode]
3798 : 0);
3800 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3802 /* Now convert to the best mode to use. */
3803 if (compute_mode != mode)
3805 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3806 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3808 /* convert_modes may have placed op1 into a register, so we
3809 must recompute the following. */
3810 op1_is_constant = GET_CODE (op1) == CONST_INT;
3811 op1_is_pow2 = (op1_is_constant
3812 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3813 || (! unsignedp
3814 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3817 /* If one of the operands is a volatile MEM, copy it into a register. */
3819 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3820 op0 = force_reg (compute_mode, op0);
3821 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3822 op1 = force_reg (compute_mode, op1);
3824 /* If we need the remainder or if OP1 is constant, we need to
3825 put OP0 in a register in case it has any queued subexpressions. */
3826 if (rem_flag || op1_is_constant)
3827 op0 = force_reg (compute_mode, op0);
3829 last = get_last_insn ();
3831 /* Promote floor rounding to trunc rounding for unsigned operations. */
3832 if (unsignedp)
3834 if (code == FLOOR_DIV_EXPR)
3835 code = TRUNC_DIV_EXPR;
3836 if (code == FLOOR_MOD_EXPR)
3837 code = TRUNC_MOD_EXPR;
3838 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3839 code = TRUNC_DIV_EXPR;
3842 if (op1 != const0_rtx)
3843 switch (code)
3845 case TRUNC_MOD_EXPR:
3846 case TRUNC_DIV_EXPR:
3847 if (op1_is_constant)
3849 if (unsignedp)
3851 unsigned HOST_WIDE_INT mh, ml;
3852 int pre_shift, post_shift;
3853 int dummy;
3854 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3855 & GET_MODE_MASK (compute_mode));
3857 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3859 pre_shift = floor_log2 (d);
3860 if (rem_flag)
3862 remainder
3863 = expand_binop (compute_mode, and_optab, op0,
3864 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3865 remainder, 1,
3866 OPTAB_LIB_WIDEN);
3867 if (remainder)
3868 return gen_lowpart (mode, remainder);
3870 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3871 build_int_cst (NULL_TREE,
3872 pre_shift),
3873 tquotient, 1);
3875 else if (size <= HOST_BITS_PER_WIDE_INT)
3877 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3879 /* Most significant bit of divisor is set; emit an scc
3880 insn. */
3881 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3882 compute_mode, 1, 1);
3883 if (quotient == 0)
3884 goto fail1;
3886 else
3888 /* Find a suitable multiplier and right shift count
3889 instead of multiplying with D. */
3891 mh = choose_multiplier (d, size, size,
3892 &ml, &post_shift, &dummy);
3894 /* If the suggested multiplier is more than SIZE bits,
3895 we can do better for even divisors, using an
3896 initial right shift. */
3897 if (mh != 0 && (d & 1) == 0)
3899 pre_shift = floor_log2 (d & -d);
3900 mh = choose_multiplier (d >> pre_shift, size,
3901 size - pre_shift,
3902 &ml, &post_shift, &dummy);
3903 gcc_assert (!mh);
3905 else
3906 pre_shift = 0;
3908 if (mh != 0)
3910 rtx t1, t2, t3, t4;
3912 if (post_shift - 1 >= BITS_PER_WORD)
3913 goto fail1;
3915 extra_cost
3916 = (shift_cost[compute_mode][post_shift - 1]
3917 + shift_cost[compute_mode][1]
3918 + 2 * add_cost[compute_mode]);
3919 t1 = expand_mult_highpart (compute_mode, op0, ml,
3920 NULL_RTX, 1,
3921 max_cost - extra_cost);
3922 if (t1 == 0)
3923 goto fail1;
3924 t2 = force_operand (gen_rtx_MINUS (compute_mode,
3925 op0, t1),
3926 NULL_RTX);
3927 t3 = expand_shift
3928 (RSHIFT_EXPR, compute_mode, t2,
3929 build_int_cst (NULL_TREE, 1),
3930 NULL_RTX,1);
3931 t4 = force_operand (gen_rtx_PLUS (compute_mode,
3932 t1, t3),
3933 NULL_RTX);
3934 quotient = expand_shift
3935 (RSHIFT_EXPR, compute_mode, t4,
3936 build_int_cst (NULL_TREE, post_shift - 1),
3937 tquotient, 1);
3939 else
3941 rtx t1, t2;
3943 if (pre_shift >= BITS_PER_WORD
3944 || post_shift >= BITS_PER_WORD)
3945 goto fail1;
3947 t1 = expand_shift
3948 (RSHIFT_EXPR, compute_mode, op0,
3949 build_int_cst (NULL_TREE, pre_shift),
3950 NULL_RTX, 1);
3951 extra_cost
3952 = (shift_cost[compute_mode][pre_shift]
3953 + shift_cost[compute_mode][post_shift]);
3954 t2 = expand_mult_highpart (compute_mode, t1, ml,
3955 NULL_RTX, 1,
3956 max_cost - extra_cost);
3957 if (t2 == 0)
3958 goto fail1;
3959 quotient = expand_shift
3960 (RSHIFT_EXPR, compute_mode, t2,
3961 build_int_cst (NULL_TREE, post_shift),
3962 tquotient, 1);
3966 else /* Too wide mode to use tricky code */
3967 break;
3969 insn = get_last_insn ();
3970 if (insn != last
3971 && (set = single_set (insn)) != 0
3972 && SET_DEST (set) == quotient)
3973 set_unique_reg_note (insn,
3974 REG_EQUAL,
3975 gen_rtx_UDIV (compute_mode, op0, op1));
3977 else /* TRUNC_DIV, signed */
3979 unsigned HOST_WIDE_INT ml;
3980 int lgup, post_shift;
3981 HOST_WIDE_INT d = INTVAL (op1);
3982 unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
3984 /* n rem d = n rem -d */
3985 if (rem_flag && d < 0)
3987 d = abs_d;
3988 op1 = gen_int_mode (abs_d, compute_mode);
3991 if (d == 1)
3992 quotient = op0;
3993 else if (d == -1)
3994 quotient = expand_unop (compute_mode, neg_optab, op0,
3995 tquotient, 0);
3996 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
3998 /* This case is not handled correctly below. */
3999 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4000 compute_mode, 1, 1);
4001 if (quotient == 0)
4002 goto fail1;
4004 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4005 && (rem_flag ? smod_pow2_cheap[compute_mode]
4006 : sdiv_pow2_cheap[compute_mode])
4007 /* We assume that cheap metric is true if the
4008 optab has an expander for this mode. */
4009 && (((rem_flag ? smod_optab : sdiv_optab)
4010 ->handlers[compute_mode].insn_code
4011 != CODE_FOR_nothing)
4012 || (sdivmod_optab->handlers[compute_mode]
4013 .insn_code != CODE_FOR_nothing)))
4015 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4017 if (rem_flag)
4019 remainder = expand_smod_pow2 (compute_mode, op0, d);
4020 if (remainder)
4021 return gen_lowpart (mode, remainder);
4024 if (sdiv_pow2_cheap[compute_mode]
4025 && ((sdiv_optab->handlers[compute_mode].insn_code
4026 != CODE_FOR_nothing)
4027 || (sdivmod_optab->handlers[compute_mode].insn_code
4028 != CODE_FOR_nothing)))
4029 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4030 compute_mode, op0,
4031 gen_int_mode (abs_d,
4032 compute_mode),
4033 NULL_RTX, 0);
4034 else
4035 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4037 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4038 negate the quotient. */
4039 if (d < 0)
4041 insn = get_last_insn ();
4042 if (insn != last
4043 && (set = single_set (insn)) != 0
4044 && SET_DEST (set) == quotient
4045 && abs_d < ((unsigned HOST_WIDE_INT) 1
4046 << (HOST_BITS_PER_WIDE_INT - 1)))
4047 set_unique_reg_note (insn,
4048 REG_EQUAL,
4049 gen_rtx_DIV (compute_mode,
4050 op0,
4051 GEN_INT
4052 (trunc_int_for_mode
4053 (abs_d,
4054 compute_mode))));
4056 quotient = expand_unop (compute_mode, neg_optab,
4057 quotient, quotient, 0);
4060 else if (size <= HOST_BITS_PER_WIDE_INT)
4062 choose_multiplier (abs_d, size, size - 1,
4063 &ml, &post_shift, &lgup);
4064 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4066 rtx t1, t2, t3;
4068 if (post_shift >= BITS_PER_WORD
4069 || size - 1 >= BITS_PER_WORD)
4070 goto fail1;
4072 extra_cost = (shift_cost[compute_mode][post_shift]
4073 + shift_cost[compute_mode][size - 1]
4074 + add_cost[compute_mode]);
4075 t1 = expand_mult_highpart (compute_mode, op0, ml,
4076 NULL_RTX, 0,
4077 max_cost - extra_cost);
4078 if (t1 == 0)
4079 goto fail1;
4080 t2 = expand_shift
4081 (RSHIFT_EXPR, compute_mode, t1,
4082 build_int_cst (NULL_TREE, post_shift),
4083 NULL_RTX, 0);
4084 t3 = expand_shift
4085 (RSHIFT_EXPR, compute_mode, op0,
4086 build_int_cst (NULL_TREE, size - 1),
4087 NULL_RTX, 0);
4088 if (d < 0)
4089 quotient
4090 = force_operand (gen_rtx_MINUS (compute_mode,
4091 t3, t2),
4092 tquotient);
4093 else
4094 quotient
4095 = force_operand (gen_rtx_MINUS (compute_mode,
4096 t2, t3),
4097 tquotient);
4099 else
4101 rtx t1, t2, t3, t4;
4103 if (post_shift >= BITS_PER_WORD
4104 || size - 1 >= BITS_PER_WORD)
4105 goto fail1;
4107 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4108 extra_cost = (shift_cost[compute_mode][post_shift]
4109 + shift_cost[compute_mode][size - 1]
4110 + 2 * add_cost[compute_mode]);
4111 t1 = expand_mult_highpart (compute_mode, op0, ml,
4112 NULL_RTX, 0,
4113 max_cost - extra_cost);
4114 if (t1 == 0)
4115 goto fail1;
4116 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4117 t1, op0),
4118 NULL_RTX);
4119 t3 = expand_shift
4120 (RSHIFT_EXPR, compute_mode, t2,
4121 build_int_cst (NULL_TREE, post_shift),
4122 NULL_RTX, 0);
4123 t4 = expand_shift
4124 (RSHIFT_EXPR, compute_mode, op0,
4125 build_int_cst (NULL_TREE, size - 1),
4126 NULL_RTX, 0);
4127 if (d < 0)
4128 quotient
4129 = force_operand (gen_rtx_MINUS (compute_mode,
4130 t4, t3),
4131 tquotient);
4132 else
4133 quotient
4134 = force_operand (gen_rtx_MINUS (compute_mode,
4135 t3, t4),
4136 tquotient);
4139 else /* Too wide mode to use tricky code */
4140 break;
4142 insn = get_last_insn ();
4143 if (insn != last
4144 && (set = single_set (insn)) != 0
4145 && SET_DEST (set) == quotient)
4146 set_unique_reg_note (insn,
4147 REG_EQUAL,
4148 gen_rtx_DIV (compute_mode, op0, op1));
4150 break;
4152 fail1:
4153 delete_insns_since (last);
4154 break;
4156 case FLOOR_DIV_EXPR:
4157 case FLOOR_MOD_EXPR:
4158 /* We will come here only for signed operations. */
4159 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4161 unsigned HOST_WIDE_INT mh, ml;
4162 int pre_shift, lgup, post_shift;
4163 HOST_WIDE_INT d = INTVAL (op1);
4165 if (d > 0)
4167 /* We could just as easily deal with negative constants here,
4168 but it does not seem worth the trouble for GCC 2.6. */
4169 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4171 pre_shift = floor_log2 (d);
4172 if (rem_flag)
4174 remainder = expand_binop (compute_mode, and_optab, op0,
4175 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4176 remainder, 0, OPTAB_LIB_WIDEN);
4177 if (remainder)
4178 return gen_lowpart (mode, remainder);
4180 quotient = expand_shift
4181 (RSHIFT_EXPR, compute_mode, op0,
4182 build_int_cst (NULL_TREE, pre_shift),
4183 tquotient, 0);
4185 else
4187 rtx t1, t2, t3, t4;
4189 mh = choose_multiplier (d, size, size - 1,
4190 &ml, &post_shift, &lgup);
4191 gcc_assert (!mh);
4193 if (post_shift < BITS_PER_WORD
4194 && size - 1 < BITS_PER_WORD)
4196 t1 = expand_shift
4197 (RSHIFT_EXPR, compute_mode, op0,
4198 build_int_cst (NULL_TREE, size - 1),
4199 NULL_RTX, 0);
4200 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4201 NULL_RTX, 0, OPTAB_WIDEN);
4202 extra_cost = (shift_cost[compute_mode][post_shift]
4203 + shift_cost[compute_mode][size - 1]
4204 + 2 * add_cost[compute_mode]);
4205 t3 = expand_mult_highpart (compute_mode, t2, ml,
4206 NULL_RTX, 1,
4207 max_cost - extra_cost);
4208 if (t3 != 0)
4210 t4 = expand_shift
4211 (RSHIFT_EXPR, compute_mode, t3,
4212 build_int_cst (NULL_TREE, post_shift),
4213 NULL_RTX, 1);
4214 quotient = expand_binop (compute_mode, xor_optab,
4215 t4, t1, tquotient, 0,
4216 OPTAB_WIDEN);
4221 else
4223 rtx nsign, t1, t2, t3, t4;
4224 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4225 op0, constm1_rtx), NULL_RTX);
4226 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4227 0, OPTAB_WIDEN);
4228 nsign = expand_shift
4229 (RSHIFT_EXPR, compute_mode, t2,
4230 build_int_cst (NULL_TREE, size - 1),
4231 NULL_RTX, 0);
4232 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4233 NULL_RTX);
4234 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4235 NULL_RTX, 0);
4236 if (t4)
4238 rtx t5;
4239 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4240 NULL_RTX, 0);
4241 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4242 t4, t5),
4243 tquotient);
4248 if (quotient != 0)
4249 break;
4250 delete_insns_since (last);
4252 /* Try using an instruction that produces both the quotient and
4253 remainder, using truncation. We can easily compensate the quotient
4254 or remainder to get floor rounding, once we have the remainder.
4255 Notice that we compute also the final remainder value here,
4256 and return the result right away. */
4257 if (target == 0 || GET_MODE (target) != compute_mode)
4258 target = gen_reg_rtx (compute_mode);
4260 if (rem_flag)
4262 remainder
4263 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4264 quotient = gen_reg_rtx (compute_mode);
4266 else
4268 quotient
4269 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4270 remainder = gen_reg_rtx (compute_mode);
4273 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4274 quotient, remainder, 0))
4276 /* This could be computed with a branch-less sequence.
4277 Save that for later. */
4278 rtx tem;
4279 rtx label = gen_label_rtx ();
4280 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4281 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4282 NULL_RTX, 0, OPTAB_WIDEN);
4283 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4284 expand_dec (quotient, const1_rtx);
4285 expand_inc (remainder, op1);
4286 emit_label (label);
4287 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4290 /* No luck with division elimination or divmod. Have to do it
4291 by conditionally adjusting op0 *and* the result. */
4293 rtx label1, label2, label3, label4, label5;
4294 rtx adjusted_op0;
4295 rtx tem;
4297 quotient = gen_reg_rtx (compute_mode);
4298 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4299 label1 = gen_label_rtx ();
4300 label2 = gen_label_rtx ();
4301 label3 = gen_label_rtx ();
4302 label4 = gen_label_rtx ();
4303 label5 = gen_label_rtx ();
4304 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4305 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4306 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4307 quotient, 0, OPTAB_LIB_WIDEN);
4308 if (tem != quotient)
4309 emit_move_insn (quotient, tem);
4310 emit_jump_insn (gen_jump (label5));
4311 emit_barrier ();
4312 emit_label (label1);
4313 expand_inc (adjusted_op0, const1_rtx);
4314 emit_jump_insn (gen_jump (label4));
4315 emit_barrier ();
4316 emit_label (label2);
4317 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4318 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4319 quotient, 0, OPTAB_LIB_WIDEN);
4320 if (tem != quotient)
4321 emit_move_insn (quotient, tem);
4322 emit_jump_insn (gen_jump (label5));
4323 emit_barrier ();
4324 emit_label (label3);
4325 expand_dec (adjusted_op0, const1_rtx);
4326 emit_label (label4);
4327 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4328 quotient, 0, OPTAB_LIB_WIDEN);
4329 if (tem != quotient)
4330 emit_move_insn (quotient, tem);
4331 expand_dec (quotient, const1_rtx);
4332 emit_label (label5);
4334 break;
4336 case CEIL_DIV_EXPR:
4337 case CEIL_MOD_EXPR:
4338 if (unsignedp)
4340 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4342 rtx t1, t2, t3;
4343 unsigned HOST_WIDE_INT d = INTVAL (op1);
4344 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4345 build_int_cst (NULL_TREE, floor_log2 (d)),
4346 tquotient, 1);
4347 t2 = expand_binop (compute_mode, and_optab, op0,
4348 GEN_INT (d - 1),
4349 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4350 t3 = gen_reg_rtx (compute_mode);
4351 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4352 compute_mode, 1, 1);
4353 if (t3 == 0)
4355 rtx lab;
4356 lab = gen_label_rtx ();
4357 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4358 expand_inc (t1, const1_rtx);
4359 emit_label (lab);
4360 quotient = t1;
4362 else
4363 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4364 t1, t3),
4365 tquotient);
4366 break;
4369 /* Try using an instruction that produces both the quotient and
4370 remainder, using truncation. We can easily compensate the
4371 quotient or remainder to get ceiling rounding, once we have the
4372 remainder. Notice that we compute also the final remainder
4373 value here, and return the result right away. */
4374 if (target == 0 || GET_MODE (target) != compute_mode)
4375 target = gen_reg_rtx (compute_mode);
4377 if (rem_flag)
4379 remainder = (REG_P (target)
4380 ? target : gen_reg_rtx (compute_mode));
4381 quotient = gen_reg_rtx (compute_mode);
4383 else
4385 quotient = (REG_P (target)
4386 ? target : gen_reg_rtx (compute_mode));
4387 remainder = gen_reg_rtx (compute_mode);
4390 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4391 remainder, 1))
4393 /* This could be computed with a branch-less sequence.
4394 Save that for later. */
4395 rtx label = gen_label_rtx ();
4396 do_cmp_and_jump (remainder, const0_rtx, EQ,
4397 compute_mode, label);
4398 expand_inc (quotient, const1_rtx);
4399 expand_dec (remainder, op1);
4400 emit_label (label);
4401 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4404 /* No luck with division elimination or divmod. Have to do it
4405 by conditionally adjusting op0 *and* the result. */
4407 rtx label1, label2;
4408 rtx adjusted_op0, tem;
4410 quotient = gen_reg_rtx (compute_mode);
4411 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4412 label1 = gen_label_rtx ();
4413 label2 = gen_label_rtx ();
4414 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4415 compute_mode, label1);
4416 emit_move_insn (quotient, const0_rtx);
4417 emit_jump_insn (gen_jump (label2));
4418 emit_barrier ();
4419 emit_label (label1);
4420 expand_dec (adjusted_op0, const1_rtx);
4421 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4422 quotient, 1, OPTAB_LIB_WIDEN);
4423 if (tem != quotient)
4424 emit_move_insn (quotient, tem);
4425 expand_inc (quotient, const1_rtx);
4426 emit_label (label2);
4429 else /* signed */
4431 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4432 && INTVAL (op1) >= 0)
4434 /* This is extremely similar to the code for the unsigned case
4435 above. For 2.7 we should merge these variants, but for
4436 2.6.1 I don't want to touch the code for unsigned since that
4437 get used in C. The signed case will only be used by other
4438 languages (Ada). */
4440 rtx t1, t2, t3;
4441 unsigned HOST_WIDE_INT d = INTVAL (op1);
4442 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4443 build_int_cst (NULL_TREE, floor_log2 (d)),
4444 tquotient, 0);
4445 t2 = expand_binop (compute_mode, and_optab, op0,
4446 GEN_INT (d - 1),
4447 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4448 t3 = gen_reg_rtx (compute_mode);
4449 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4450 compute_mode, 1, 1);
4451 if (t3 == 0)
4453 rtx lab;
4454 lab = gen_label_rtx ();
4455 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4456 expand_inc (t1, const1_rtx);
4457 emit_label (lab);
4458 quotient = t1;
4460 else
4461 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4462 t1, t3),
4463 tquotient);
4464 break;
4467 /* Try using an instruction that produces both the quotient and
4468 remainder, using truncation. We can easily compensate the
4469 quotient or remainder to get ceiling rounding, once we have the
4470 remainder. Notice that we compute also the final remainder
4471 value here, and return the result right away. */
4472 if (target == 0 || GET_MODE (target) != compute_mode)
4473 target = gen_reg_rtx (compute_mode);
4474 if (rem_flag)
4476 remainder= (REG_P (target)
4477 ? target : gen_reg_rtx (compute_mode));
4478 quotient = gen_reg_rtx (compute_mode);
4480 else
4482 quotient = (REG_P (target)
4483 ? target : gen_reg_rtx (compute_mode));
4484 remainder = gen_reg_rtx (compute_mode);
4487 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4488 remainder, 0))
4490 /* This could be computed with a branch-less sequence.
4491 Save that for later. */
4492 rtx tem;
4493 rtx label = gen_label_rtx ();
4494 do_cmp_and_jump (remainder, const0_rtx, EQ,
4495 compute_mode, label);
4496 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4497 NULL_RTX, 0, OPTAB_WIDEN);
4498 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4499 expand_inc (quotient, const1_rtx);
4500 expand_dec (remainder, op1);
4501 emit_label (label);
4502 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4505 /* No luck with division elimination or divmod. Have to do it
4506 by conditionally adjusting op0 *and* the result. */
4508 rtx label1, label2, label3, label4, label5;
4509 rtx adjusted_op0;
4510 rtx tem;
4512 quotient = gen_reg_rtx (compute_mode);
4513 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4514 label1 = gen_label_rtx ();
4515 label2 = gen_label_rtx ();
4516 label3 = gen_label_rtx ();
4517 label4 = gen_label_rtx ();
4518 label5 = gen_label_rtx ();
4519 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4520 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4521 compute_mode, label1);
4522 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4523 quotient, 0, OPTAB_LIB_WIDEN);
4524 if (tem != quotient)
4525 emit_move_insn (quotient, tem);
4526 emit_jump_insn (gen_jump (label5));
4527 emit_barrier ();
4528 emit_label (label1);
4529 expand_dec (adjusted_op0, const1_rtx);
4530 emit_jump_insn (gen_jump (label4));
4531 emit_barrier ();
4532 emit_label (label2);
4533 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4534 compute_mode, label3);
4535 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4536 quotient, 0, OPTAB_LIB_WIDEN);
4537 if (tem != quotient)
4538 emit_move_insn (quotient, tem);
4539 emit_jump_insn (gen_jump (label5));
4540 emit_barrier ();
4541 emit_label (label3);
4542 expand_inc (adjusted_op0, const1_rtx);
4543 emit_label (label4);
4544 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4545 quotient, 0, OPTAB_LIB_WIDEN);
4546 if (tem != quotient)
4547 emit_move_insn (quotient, tem);
4548 expand_inc (quotient, const1_rtx);
4549 emit_label (label5);
4552 break;
4554 case EXACT_DIV_EXPR:
4555 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4557 HOST_WIDE_INT d = INTVAL (op1);
4558 unsigned HOST_WIDE_INT ml;
4559 int pre_shift;
4560 rtx t1;
4562 pre_shift = floor_log2 (d & -d);
4563 ml = invert_mod2n (d >> pre_shift, size);
4564 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4565 build_int_cst (NULL_TREE, pre_shift),
4566 NULL_RTX, unsignedp);
4567 quotient = expand_mult (compute_mode, t1,
4568 gen_int_mode (ml, compute_mode),
4569 NULL_RTX, 1);
4571 insn = get_last_insn ();
4572 set_unique_reg_note (insn,
4573 REG_EQUAL,
4574 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4575 compute_mode,
4576 op0, op1));
4578 break;
4580 case ROUND_DIV_EXPR:
4581 case ROUND_MOD_EXPR:
4582 if (unsignedp)
4584 rtx tem;
4585 rtx label;
4586 label = gen_label_rtx ();
4587 quotient = gen_reg_rtx (compute_mode);
4588 remainder = gen_reg_rtx (compute_mode);
4589 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4591 rtx tem;
4592 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4593 quotient, 1, OPTAB_LIB_WIDEN);
4594 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4595 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4596 remainder, 1, OPTAB_LIB_WIDEN);
4598 tem = plus_constant (op1, -1);
4599 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4600 build_int_cst (NULL_TREE, 1),
4601 NULL_RTX, 1);
4602 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4603 expand_inc (quotient, const1_rtx);
4604 expand_dec (remainder, op1);
4605 emit_label (label);
4607 else
4609 rtx abs_rem, abs_op1, tem, mask;
4610 rtx label;
4611 label = gen_label_rtx ();
4612 quotient = gen_reg_rtx (compute_mode);
4613 remainder = gen_reg_rtx (compute_mode);
4614 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4616 rtx tem;
4617 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4618 quotient, 0, OPTAB_LIB_WIDEN);
4619 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4620 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4621 remainder, 0, OPTAB_LIB_WIDEN);
4623 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4624 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4625 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4626 build_int_cst (NULL_TREE, 1),
4627 NULL_RTX, 1);
4628 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4629 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4630 NULL_RTX, 0, OPTAB_WIDEN);
4631 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4632 build_int_cst (NULL_TREE, size - 1),
4633 NULL_RTX, 0);
4634 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4635 NULL_RTX, 0, OPTAB_WIDEN);
4636 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4637 NULL_RTX, 0, OPTAB_WIDEN);
4638 expand_inc (quotient, tem);
4639 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4640 NULL_RTX, 0, OPTAB_WIDEN);
4641 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4642 NULL_RTX, 0, OPTAB_WIDEN);
4643 expand_dec (remainder, tem);
4644 emit_label (label);
4646 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4648 default:
4649 gcc_unreachable ();
4652 if (quotient == 0)
4654 if (target && GET_MODE (target) != compute_mode)
4655 target = 0;
4657 if (rem_flag)
4659 /* Try to produce the remainder without producing the quotient.
4660 If we seem to have a divmod pattern that does not require widening,
4661 don't try widening here. We should really have a WIDEN argument
4662 to expand_twoval_binop, since what we'd really like to do here is
4663 1) try a mod insn in compute_mode
4664 2) try a divmod insn in compute_mode
4665 3) try a div insn in compute_mode and multiply-subtract to get
4666 remainder
4667 4) try the same things with widening allowed. */
4668 remainder
4669 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4670 op0, op1, target,
4671 unsignedp,
4672 ((optab2->handlers[compute_mode].insn_code
4673 != CODE_FOR_nothing)
4674 ? OPTAB_DIRECT : OPTAB_WIDEN));
4675 if (remainder == 0)
4677 /* No luck there. Can we do remainder and divide at once
4678 without a library call? */
4679 remainder = gen_reg_rtx (compute_mode);
4680 if (! expand_twoval_binop ((unsignedp
4681 ? udivmod_optab
4682 : sdivmod_optab),
4683 op0, op1,
4684 NULL_RTX, remainder, unsignedp))
4685 remainder = 0;
4688 if (remainder)
4689 return gen_lowpart (mode, remainder);
4692 /* Produce the quotient. Try a quotient insn, but not a library call.
4693 If we have a divmod in this mode, use it in preference to widening
4694 the div (for this test we assume it will not fail). Note that optab2
4695 is set to the one of the two optabs that the call below will use. */
4696 quotient
4697 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4698 op0, op1, rem_flag ? NULL_RTX : target,
4699 unsignedp,
4700 ((optab2->handlers[compute_mode].insn_code
4701 != CODE_FOR_nothing)
4702 ? OPTAB_DIRECT : OPTAB_WIDEN));
4704 if (quotient == 0)
4706 /* No luck there. Try a quotient-and-remainder insn,
4707 keeping the quotient alone. */
4708 quotient = gen_reg_rtx (compute_mode);
4709 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4710 op0, op1,
4711 quotient, NULL_RTX, unsignedp))
4713 quotient = 0;
4714 if (! rem_flag)
4715 /* Still no luck. If we are not computing the remainder,
4716 use a library call for the quotient. */
4717 quotient = sign_expand_binop (compute_mode,
4718 udiv_optab, sdiv_optab,
4719 op0, op1, target,
4720 unsignedp, OPTAB_LIB_WIDEN);
4725 if (rem_flag)
4727 if (target && GET_MODE (target) != compute_mode)
4728 target = 0;
4730 if (quotient == 0)
4732 /* No divide instruction either. Use library for remainder. */
4733 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4734 op0, op1, target,
4735 unsignedp, OPTAB_LIB_WIDEN);
4736 /* No remainder function. Try a quotient-and-remainder
4737 function, keeping the remainder. */
4738 if (!remainder)
4740 remainder = gen_reg_rtx (compute_mode);
4741 if (!expand_twoval_binop_libfunc
4742 (unsignedp ? udivmod_optab : sdivmod_optab,
4743 op0, op1,
4744 NULL_RTX, remainder,
4745 unsignedp ? UMOD : MOD))
4746 remainder = NULL_RTX;
4749 else
4751 /* We divided. Now finish doing X - Y * (X / Y). */
4752 remainder = expand_mult (compute_mode, quotient, op1,
4753 NULL_RTX, unsignedp);
4754 remainder = expand_binop (compute_mode, sub_optab, op0,
4755 remainder, target, unsignedp,
4756 OPTAB_LIB_WIDEN);
4760 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4763 /* Return a tree node with data type TYPE, describing the value of X.
4764 Usually this is an VAR_DECL, if there is no obvious better choice.
4765 X may be an expression, however we only support those expressions
4766 generated by loop.c. */
4768 tree
4769 make_tree (tree type, rtx x)
4771 tree t;
4773 switch (GET_CODE (x))
4775 case CONST_INT:
4777 HOST_WIDE_INT hi = 0;
4779 if (INTVAL (x) < 0
4780 && !(TYPE_UNSIGNED (type)
4781 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4782 < HOST_BITS_PER_WIDE_INT)))
4783 hi = -1;
4785 t = build_int_cst_wide (type, INTVAL (x), hi);
4787 return t;
4790 case CONST_DOUBLE:
4791 if (GET_MODE (x) == VOIDmode)
4792 t = build_int_cst_wide (type,
4793 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4794 else
4796 REAL_VALUE_TYPE d;
4798 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4799 t = build_real (type, d);
4802 return t;
4804 case CONST_VECTOR:
4806 int i, units;
4807 rtx elt;
4808 tree t = NULL_TREE;
4810 units = CONST_VECTOR_NUNITS (x);
4812 /* Build a tree with vector elements. */
4813 for (i = units - 1; i >= 0; --i)
4815 elt = CONST_VECTOR_ELT (x, i);
4816 t = tree_cons (NULL_TREE, make_tree (type, elt), t);
4819 return build_vector (type, t);
4822 case PLUS:
4823 return fold (build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4824 make_tree (type, XEXP (x, 1))));
4826 case MINUS:
4827 return fold (build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4828 make_tree (type, XEXP (x, 1))));
4830 case NEG:
4831 return fold (build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0))));
4833 case MULT:
4834 return fold (build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4835 make_tree (type, XEXP (x, 1))));
4837 case ASHIFT:
4838 return fold (build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4839 make_tree (type, XEXP (x, 1))));
4841 case LSHIFTRT:
4842 t = lang_hooks.types.unsigned_type (type);
4843 return fold (convert (type,
4844 build2 (RSHIFT_EXPR, t,
4845 make_tree (t, XEXP (x, 0)),
4846 make_tree (type, XEXP (x, 1)))));
4848 case ASHIFTRT:
4849 t = lang_hooks.types.signed_type (type);
4850 return fold (convert (type,
4851 build2 (RSHIFT_EXPR, t,
4852 make_tree (t, XEXP (x, 0)),
4853 make_tree (type, XEXP (x, 1)))));
4855 case DIV:
4856 if (TREE_CODE (type) != REAL_TYPE)
4857 t = lang_hooks.types.signed_type (type);
4858 else
4859 t = type;
4861 return fold (convert (type,
4862 build2 (TRUNC_DIV_EXPR, t,
4863 make_tree (t, XEXP (x, 0)),
4864 make_tree (t, XEXP (x, 1)))));
4865 case UDIV:
4866 t = lang_hooks.types.unsigned_type (type);
4867 return fold (convert (type,
4868 build2 (TRUNC_DIV_EXPR, t,
4869 make_tree (t, XEXP (x, 0)),
4870 make_tree (t, XEXP (x, 1)))));
4872 case SIGN_EXTEND:
4873 case ZERO_EXTEND:
4874 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
4875 GET_CODE (x) == ZERO_EXTEND);
4876 return fold (convert (type, make_tree (t, XEXP (x, 0))));
4878 default:
4879 t = build_decl (VAR_DECL, NULL_TREE, type);
4881 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4882 ptr_mode. So convert. */
4883 if (POINTER_TYPE_P (type))
4884 x = convert_memory_address (TYPE_MODE (type), x);
4886 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4887 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4888 t->decl.rtl = x;
4890 return t;
4894 /* Check whether the multiplication X * MULT + ADD overflows.
4895 X, MULT and ADD must be CONST_*.
4896 MODE is the machine mode for the computation.
4897 X and MULT must have mode MODE. ADD may have a different mode.
4898 So can X (defaults to same as MODE).
4899 UNSIGNEDP is nonzero to do unsigned multiplication. */
4901 bool
4902 const_mult_add_overflow_p (rtx x, rtx mult, rtx add,
4903 enum machine_mode mode, int unsignedp)
4905 tree type, mult_type, add_type, result;
4907 type = lang_hooks.types.type_for_mode (mode, unsignedp);
4909 /* In order to get a proper overflow indication from an unsigned
4910 type, we have to pretend that it's a sizetype. */
4911 mult_type = type;
4912 if (unsignedp)
4914 /* FIXME:It would be nice if we could step directly from this
4915 type to its sizetype equivalent. */
4916 mult_type = build_distinct_type_copy (type);
4917 TYPE_IS_SIZETYPE (mult_type) = 1;
4920 add_type = (GET_MODE (add) == VOIDmode ? mult_type
4921 : lang_hooks.types.type_for_mode (GET_MODE (add), unsignedp));
4923 result = fold (build2 (PLUS_EXPR, mult_type,
4924 fold (build2 (MULT_EXPR, mult_type,
4925 make_tree (mult_type, x),
4926 make_tree (mult_type, mult))),
4927 make_tree (add_type, add)));
4929 return TREE_CONSTANT_OVERFLOW (result);
4932 /* Return an rtx representing the value of X * MULT + ADD.
4933 TARGET is a suggestion for where to store the result (an rtx).
4934 MODE is the machine mode for the computation.
4935 X and MULT must have mode MODE. ADD may have a different mode.
4936 So can X (defaults to same as MODE).
4937 UNSIGNEDP is nonzero to do unsigned multiplication.
4938 This may emit insns. */
4941 expand_mult_add (rtx x, rtx target, rtx mult, rtx add, enum machine_mode mode,
4942 int unsignedp)
4944 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
4945 tree add_type = (GET_MODE (add) == VOIDmode
4946 ? type: lang_hooks.types.type_for_mode (GET_MODE (add),
4947 unsignedp));
4948 tree result = fold (build2 (PLUS_EXPR, type,
4949 fold (build2 (MULT_EXPR, type,
4950 make_tree (type, x),
4951 make_tree (type, mult))),
4952 make_tree (add_type, add)));
4954 return expand_expr (result, target, VOIDmode, 0);
4957 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
4958 and returning TARGET.
4960 If TARGET is 0, a pseudo-register or constant is returned. */
4963 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
4965 rtx tem = 0;
4967 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
4968 tem = simplify_binary_operation (AND, mode, op0, op1);
4969 if (tem == 0)
4970 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
4972 if (target == 0)
4973 target = tem;
4974 else if (tem != target)
4975 emit_move_insn (target, tem);
4976 return target;
4979 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
4980 and storing in TARGET. Normally return TARGET.
4981 Return 0 if that cannot be done.
4983 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
4984 it is VOIDmode, they cannot both be CONST_INT.
4986 UNSIGNEDP is for the case where we have to widen the operands
4987 to perform the operation. It says to use zero-extension.
4989 NORMALIZEP is 1 if we should convert the result to be either zero
4990 or one. Normalize is -1 if we should convert the result to be
4991 either zero or -1. If NORMALIZEP is zero, the result will be left
4992 "raw" out of the scc insn. */
4995 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
4996 enum machine_mode mode, int unsignedp, int normalizep)
4998 rtx subtarget;
4999 enum insn_code icode;
5000 enum machine_mode compare_mode;
5001 enum machine_mode target_mode = GET_MODE (target);
5002 rtx tem;
5003 rtx last = get_last_insn ();
5004 rtx pattern, comparison;
5006 if (unsignedp)
5007 code = unsigned_condition (code);
5009 /* If one operand is constant, make it the second one. Only do this
5010 if the other operand is not constant as well. */
5012 if (swap_commutative_operands_p (op0, op1))
5014 tem = op0;
5015 op0 = op1;
5016 op1 = tem;
5017 code = swap_condition (code);
5020 if (mode == VOIDmode)
5021 mode = GET_MODE (op0);
5023 /* For some comparisons with 1 and -1, we can convert this to
5024 comparisons with zero. This will often produce more opportunities for
5025 store-flag insns. */
5027 switch (code)
5029 case LT:
5030 if (op1 == const1_rtx)
5031 op1 = const0_rtx, code = LE;
5032 break;
5033 case LE:
5034 if (op1 == constm1_rtx)
5035 op1 = const0_rtx, code = LT;
5036 break;
5037 case GE:
5038 if (op1 == const1_rtx)
5039 op1 = const0_rtx, code = GT;
5040 break;
5041 case GT:
5042 if (op1 == constm1_rtx)
5043 op1 = const0_rtx, code = GE;
5044 break;
5045 case GEU:
5046 if (op1 == const1_rtx)
5047 op1 = const0_rtx, code = NE;
5048 break;
5049 case LTU:
5050 if (op1 == const1_rtx)
5051 op1 = const0_rtx, code = EQ;
5052 break;
5053 default:
5054 break;
5057 /* If we are comparing a double-word integer with zero or -1, we can
5058 convert the comparison into one involving a single word. */
5059 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5060 && GET_MODE_CLASS (mode) == MODE_INT
5061 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5063 if ((code == EQ || code == NE)
5064 && (op1 == const0_rtx || op1 == constm1_rtx))
5066 rtx op00, op01, op0both;
5068 /* Do a logical OR or AND of the two words and compare the result. */
5069 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5070 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5071 op0both = expand_binop (word_mode,
5072 op1 == const0_rtx ? ior_optab : and_optab,
5073 op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
5075 if (op0both != 0)
5076 return emit_store_flag (target, code, op0both, op1, word_mode,
5077 unsignedp, normalizep);
5079 else if ((code == LT || code == GE) && op1 == const0_rtx)
5081 rtx op0h;
5083 /* If testing the sign bit, can just test on high word. */
5084 op0h = simplify_gen_subreg (word_mode, op0, mode,
5085 subreg_highpart_offset (word_mode, mode));
5086 return emit_store_flag (target, code, op0h, op1, word_mode,
5087 unsignedp, normalizep);
5091 /* From now on, we won't change CODE, so set ICODE now. */
5092 icode = setcc_gen_code[(int) code];
5094 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5095 complement of A (for GE) and shifting the sign bit to the low bit. */
5096 if (op1 == const0_rtx && (code == LT || code == GE)
5097 && GET_MODE_CLASS (mode) == MODE_INT
5098 && (normalizep || STORE_FLAG_VALUE == 1
5099 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5100 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5101 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
5103 subtarget = target;
5105 /* If the result is to be wider than OP0, it is best to convert it
5106 first. If it is to be narrower, it is *incorrect* to convert it
5107 first. */
5108 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5110 op0 = convert_modes (target_mode, mode, op0, 0);
5111 mode = target_mode;
5114 if (target_mode != mode)
5115 subtarget = 0;
5117 if (code == GE)
5118 op0 = expand_unop (mode, one_cmpl_optab, op0,
5119 ((STORE_FLAG_VALUE == 1 || normalizep)
5120 ? 0 : subtarget), 0);
5122 if (STORE_FLAG_VALUE == 1 || normalizep)
5123 /* If we are supposed to produce a 0/1 value, we want to do
5124 a logical shift from the sign bit to the low-order bit; for
5125 a -1/0 value, we do an arithmetic shift. */
5126 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5127 size_int (GET_MODE_BITSIZE (mode) - 1),
5128 subtarget, normalizep != -1);
5130 if (mode != target_mode)
5131 op0 = convert_modes (target_mode, mode, op0, 0);
5133 return op0;
5136 if (icode != CODE_FOR_nothing)
5138 insn_operand_predicate_fn pred;
5140 /* We think we may be able to do this with a scc insn. Emit the
5141 comparison and then the scc insn. */
5143 do_pending_stack_adjust ();
5144 last = get_last_insn ();
5146 comparison
5147 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5148 if (CONSTANT_P (comparison))
5150 switch (GET_CODE (comparison))
5152 case CONST_INT:
5153 if (comparison == const0_rtx)
5154 return const0_rtx;
5155 break;
5157 #ifdef FLOAT_STORE_FLAG_VALUE
5158 case CONST_DOUBLE:
5159 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5160 return const0_rtx;
5161 break;
5162 #endif
5163 default:
5164 gcc_unreachable ();
5167 if (normalizep == 1)
5168 return const1_rtx;
5169 if (normalizep == -1)
5170 return constm1_rtx;
5171 return const_true_rtx;
5174 /* The code of COMPARISON may not match CODE if compare_from_rtx
5175 decided to swap its operands and reverse the original code.
5177 We know that compare_from_rtx returns either a CONST_INT or
5178 a new comparison code, so it is safe to just extract the
5179 code from COMPARISON. */
5180 code = GET_CODE (comparison);
5182 /* Get a reference to the target in the proper mode for this insn. */
5183 compare_mode = insn_data[(int) icode].operand[0].mode;
5184 subtarget = target;
5185 pred = insn_data[(int) icode].operand[0].predicate;
5186 if (optimize || ! (*pred) (subtarget, compare_mode))
5187 subtarget = gen_reg_rtx (compare_mode);
5189 pattern = GEN_FCN (icode) (subtarget);
5190 if (pattern)
5192 emit_insn (pattern);
5194 /* If we are converting to a wider mode, first convert to
5195 TARGET_MODE, then normalize. This produces better combining
5196 opportunities on machines that have a SIGN_EXTRACT when we are
5197 testing a single bit. This mostly benefits the 68k.
5199 If STORE_FLAG_VALUE does not have the sign bit set when
5200 interpreted in COMPARE_MODE, we can do this conversion as
5201 unsigned, which is usually more efficient. */
5202 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
5204 convert_move (target, subtarget,
5205 (GET_MODE_BITSIZE (compare_mode)
5206 <= HOST_BITS_PER_WIDE_INT)
5207 && 0 == (STORE_FLAG_VALUE
5208 & ((HOST_WIDE_INT) 1
5209 << (GET_MODE_BITSIZE (compare_mode) -1))));
5210 op0 = target;
5211 compare_mode = target_mode;
5213 else
5214 op0 = subtarget;
5216 /* If we want to keep subexpressions around, don't reuse our
5217 last target. */
5219 if (optimize)
5220 subtarget = 0;
5222 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5223 we don't have to do anything. */
5224 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5226 /* STORE_FLAG_VALUE might be the most negative number, so write
5227 the comparison this way to avoid a compiler-time warning. */
5228 else if (- normalizep == STORE_FLAG_VALUE)
5229 op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
5231 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5232 makes it hard to use a value of just the sign bit due to
5233 ANSI integer constant typing rules. */
5234 else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
5235 && (STORE_FLAG_VALUE
5236 & ((HOST_WIDE_INT) 1
5237 << (GET_MODE_BITSIZE (compare_mode) - 1))))
5238 op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
5239 size_int (GET_MODE_BITSIZE (compare_mode) - 1),
5240 subtarget, normalizep == 1);
5241 else
5243 gcc_assert (STORE_FLAG_VALUE & 1);
5245 op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
5246 if (normalizep == -1)
5247 op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
5250 /* If we were converting to a smaller mode, do the
5251 conversion now. */
5252 if (target_mode != compare_mode)
5254 convert_move (target, op0, 0);
5255 return target;
5257 else
5258 return op0;
5262 delete_insns_since (last);
5264 /* If optimizing, use different pseudo registers for each insn, instead
5265 of reusing the same pseudo. This leads to better CSE, but slows
5266 down the compiler, since there are more pseudos */
5267 subtarget = (!optimize
5268 && (target_mode == mode)) ? target : NULL_RTX;
5270 /* If we reached here, we can't do this with a scc insn. However, there
5271 are some comparisons that can be done directly. For example, if
5272 this is an equality comparison of integers, we can try to exclusive-or
5273 (or subtract) the two operands and use a recursive call to try the
5274 comparison with zero. Don't do any of these cases if branches are
5275 very cheap. */
5277 if (BRANCH_COST > 0
5278 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5279 && op1 != const0_rtx)
5281 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5282 OPTAB_WIDEN);
5284 if (tem == 0)
5285 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5286 OPTAB_WIDEN);
5287 if (tem != 0)
5288 tem = emit_store_flag (target, code, tem, const0_rtx,
5289 mode, unsignedp, normalizep);
5290 if (tem == 0)
5291 delete_insns_since (last);
5292 return tem;
5295 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5296 the constant zero. Reject all other comparisons at this point. Only
5297 do LE and GT if branches are expensive since they are expensive on
5298 2-operand machines. */
5300 if (BRANCH_COST == 0
5301 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5302 || (code != EQ && code != NE
5303 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5304 return 0;
5306 /* See what we need to return. We can only return a 1, -1, or the
5307 sign bit. */
5309 if (normalizep == 0)
5311 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5312 normalizep = STORE_FLAG_VALUE;
5314 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5315 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5316 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5318 else
5319 return 0;
5322 /* Try to put the result of the comparison in the sign bit. Assume we can't
5323 do the necessary operation below. */
5325 tem = 0;
5327 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5328 the sign bit set. */
5330 if (code == LE)
5332 /* This is destructive, so SUBTARGET can't be OP0. */
5333 if (rtx_equal_p (subtarget, op0))
5334 subtarget = 0;
5336 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5337 OPTAB_WIDEN);
5338 if (tem)
5339 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5340 OPTAB_WIDEN);
5343 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5344 number of bits in the mode of OP0, minus one. */
5346 if (code == GT)
5348 if (rtx_equal_p (subtarget, op0))
5349 subtarget = 0;
5351 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5352 size_int (GET_MODE_BITSIZE (mode) - 1),
5353 subtarget, 0);
5354 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5355 OPTAB_WIDEN);
5358 if (code == EQ || code == NE)
5360 /* For EQ or NE, one way to do the comparison is to apply an operation
5361 that converts the operand into a positive number if it is nonzero
5362 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5363 for NE we negate. This puts the result in the sign bit. Then we
5364 normalize with a shift, if needed.
5366 Two operations that can do the above actions are ABS and FFS, so try
5367 them. If that doesn't work, and MODE is smaller than a full word,
5368 we can use zero-extension to the wider mode (an unsigned conversion)
5369 as the operation. */
5371 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5372 that is compensated by the subsequent overflow when subtracting
5373 one / negating. */
5375 if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5376 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5377 else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5378 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5379 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5381 tem = convert_modes (word_mode, mode, op0, 1);
5382 mode = word_mode;
5385 if (tem != 0)
5387 if (code == EQ)
5388 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5389 0, OPTAB_WIDEN);
5390 else
5391 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5394 /* If we couldn't do it that way, for NE we can "or" the two's complement
5395 of the value with itself. For EQ, we take the one's complement of
5396 that "or", which is an extra insn, so we only handle EQ if branches
5397 are expensive. */
5399 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5401 if (rtx_equal_p (subtarget, op0))
5402 subtarget = 0;
5404 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5405 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5406 OPTAB_WIDEN);
5408 if (tem && code == EQ)
5409 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5413 if (tem && normalizep)
5414 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5415 size_int (GET_MODE_BITSIZE (mode) - 1),
5416 subtarget, normalizep == 1);
5418 if (tem)
5420 if (GET_MODE (tem) != target_mode)
5422 convert_move (target, tem, 0);
5423 tem = target;
5425 else if (!subtarget)
5427 emit_move_insn (target, tem);
5428 tem = target;
5431 else
5432 delete_insns_since (last);
5434 return tem;
5437 /* Like emit_store_flag, but always succeeds. */
5440 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5441 enum machine_mode mode, int unsignedp, int normalizep)
5443 rtx tem, label;
5445 /* First see if emit_store_flag can do the job. */
5446 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5447 if (tem != 0)
5448 return tem;
5450 if (normalizep == 0)
5451 normalizep = 1;
5453 /* If this failed, we have to do this with set/compare/jump/set code. */
5455 if (!REG_P (target)
5456 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5457 target = gen_reg_rtx (GET_MODE (target));
5459 emit_move_insn (target, const1_rtx);
5460 label = gen_label_rtx ();
5461 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5462 NULL_RTX, label);
5464 emit_move_insn (target, const0_rtx);
5465 emit_label (label);
5467 return target;
5470 /* Perform possibly multi-word comparison and conditional jump to LABEL
5471 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
5473 The algorithm is based on the code in expr.c:do_jump.
5475 Note that this does not perform a general comparison. Only variants
5476 generated within expmed.c are correctly handled, others abort (but could
5477 be handled if needed). */
5479 static void
5480 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5481 rtx label)
5483 /* If this mode is an integer too wide to compare properly,
5484 compare word by word. Rely on cse to optimize constant cases. */
5486 if (GET_MODE_CLASS (mode) == MODE_INT
5487 && ! can_compare_p (op, mode, ccp_jump))
5489 rtx label2 = gen_label_rtx ();
5491 switch (op)
5493 case LTU:
5494 do_jump_by_parts_greater_rtx (mode, 1, arg2, arg1, label2, label);
5495 break;
5497 case LEU:
5498 do_jump_by_parts_greater_rtx (mode, 1, arg1, arg2, label, label2);
5499 break;
5501 case LT:
5502 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label2, label);
5503 break;
5505 case GT:
5506 do_jump_by_parts_greater_rtx (mode, 0, arg1, arg2, label2, label);
5507 break;
5509 case GE:
5510 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label, label2);
5511 break;
5513 /* do_jump_by_parts_equality_rtx compares with zero. Luckily
5514 that's the only equality operations we do */
5515 case EQ:
5516 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5517 do_jump_by_parts_equality_rtx (arg1, label2, label);
5518 break;
5520 case NE:
5521 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5522 do_jump_by_parts_equality_rtx (arg1, label, label2);
5523 break;
5525 default:
5526 gcc_unreachable ();
5529 emit_label (label2);
5531 else
5532 emit_cmp_and_jump_insns (arg1, arg2, op, NULL_RTX, mode, 0, label);