1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
32 Let us demonstrate what is done on an example:
34 for (i = 0; i < 100; i++)
36 a[i+2] = a[i] + a[i+1];
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
68 In our example, we get the following chains (the chain for c is invalid).
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
94 e[i] + f[i+1] + e[i+1] + f[i]
96 can be reassociated as
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
100 and we can combine the chains for e and f into one chain.
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 upto RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
141 In our case, F = 2 and the (main loop of the) result is
143 for (i = 0; i < ...; i += 2)
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
171 for (i = 0; i < n; i++)
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
190 #include "coretypes.h"
195 #include "tree-flow.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
201 #include "tree-pretty-print.h"
202 #include "gimple-pretty-print.h"
203 #include "tree-pass.h"
204 #include "tree-affine.h"
205 #include "tree-inline.h"
207 /* The maximum number of iterations between the considered memory
210 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
212 /* Data references (or phi nodes that carry data reference values across
215 typedef struct dref_d
217 /* The reference itself. */
218 struct data_reference
*ref
;
220 /* The statement in that the reference appears. */
223 /* In case that STMT is a phi node, this field is set to the SSA name
224 defined by it in replace_phis_by_defined_names (in order to avoid
225 pointing to phi node that got reallocated in the meantime). */
226 tree name_defined_by_phi
;
228 /* Distance of the reference from the root of the chain (in number of
229 iterations of the loop). */
232 /* Number of iterations offset from the first reference in the component. */
235 /* Number of the reference in a component, in dominance ordering. */
238 /* True if the memory reference is always accessed when the loop is
240 unsigned always_accessed
: 1;
244 DEF_VEC_ALLOC_P (dref
, heap
);
246 /* Type of the chain of the references. */
250 /* The addresses of the references in the chain are constant. */
253 /* There are only loads in the chain. */
256 /* Root of the chain is store, the rest are loads. */
259 /* A combination of two chains. */
263 /* Chains of data references. */
267 /* Type of the chain. */
268 enum chain_type type
;
270 /* For combination chains, the operator and the two chains that are
271 combined, and the type of the result. */
274 struct chain
*ch1
, *ch2
;
276 /* The references in the chain. */
277 VEC(dref
,heap
) *refs
;
279 /* The maximum distance of the reference in the chain from the root. */
282 /* The variables used to copy the value throughout iterations. */
283 VEC(tree
,heap
) *vars
;
285 /* Initializers for the variables. */
286 VEC(tree
,heap
) *inits
;
288 /* True if there is a use of a variable with the maximal distance
289 that comes after the root in the loop. */
290 unsigned has_max_use_after
: 1;
292 /* True if all the memory references in the chain are always accessed. */
293 unsigned all_always_accessed
: 1;
295 /* True if this chain was combined together with some other chain. */
296 unsigned combined
: 1;
300 DEF_VEC_ALLOC_P (chain_p
, heap
);
302 /* Describes the knowledge about the step of the memory references in
307 /* The step is zero. */
310 /* The step is nonzero. */
313 /* The step may or may not be nonzero. */
317 /* Components of the data dependence graph. */
321 /* The references in the component. */
322 VEC(dref
,heap
) *refs
;
324 /* What we know about the step of the references in the component. */
325 enum ref_step_type comp_step
;
327 /* Next component in the list. */
328 struct component
*next
;
331 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
333 static bitmap looparound_phis
;
335 /* Cache used by tree_to_aff_combination_expand. */
337 static struct pointer_map_t
*name_expansions
;
339 /* Dumps data reference REF to FILE. */
341 extern void dump_dref (FILE *, dref
);
343 dump_dref (FILE *file
, dref ref
)
348 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
349 fprintf (file
, " (id %u%s)\n", ref
->pos
,
350 DR_IS_READ (ref
->ref
) ? "" : ", write");
352 fprintf (file
, " offset ");
353 dump_double_int (file
, ref
->offset
, false);
354 fprintf (file
, "\n");
356 fprintf (file
, " distance %u\n", ref
->distance
);
360 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
361 fprintf (file
, " looparound ref\n");
363 fprintf (file
, " combination ref\n");
364 fprintf (file
, " in statement ");
365 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
366 fprintf (file
, "\n");
367 fprintf (file
, " distance %u\n", ref
->distance
);
372 /* Dumps CHAIN to FILE. */
374 extern void dump_chain (FILE *, chain_p
);
376 dump_chain (FILE *file
, chain_p chain
)
379 const char *chain_type
;
386 chain_type
= "Load motion";
390 chain_type
= "Loads-only";
394 chain_type
= "Store-loads";
398 chain_type
= "Combination";
405 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
406 chain
->combined
? " (combined)" : "");
407 if (chain
->type
!= CT_INVARIANT
)
408 fprintf (file
, " max distance %u%s\n", chain
->length
,
409 chain
->has_max_use_after
? "" : ", may reuse first");
411 if (chain
->type
== CT_COMBINATION
)
413 fprintf (file
, " equal to %p %s %p in type ",
414 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
415 (void *) chain
->ch2
);
416 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
417 fprintf (file
, "\n");
422 fprintf (file
, " vars");
423 FOR_EACH_VEC_ELT (tree
, chain
->vars
, i
, var
)
426 print_generic_expr (file
, var
, TDF_SLIM
);
428 fprintf (file
, "\n");
433 fprintf (file
, " inits");
434 FOR_EACH_VEC_ELT (tree
, chain
->inits
, i
, var
)
437 print_generic_expr (file
, var
, TDF_SLIM
);
439 fprintf (file
, "\n");
442 fprintf (file
, " references:\n");
443 FOR_EACH_VEC_ELT (dref
, chain
->refs
, i
, a
)
446 fprintf (file
, "\n");
449 /* Dumps CHAINS to FILE. */
451 extern void dump_chains (FILE *, VEC (chain_p
, heap
) *);
453 dump_chains (FILE *file
, VEC (chain_p
, heap
) *chains
)
458 FOR_EACH_VEC_ELT (chain_p
, chains
, i
, chain
)
459 dump_chain (file
, chain
);
462 /* Dumps COMP to FILE. */
464 extern void dump_component (FILE *, struct component
*);
466 dump_component (FILE *file
, struct component
*comp
)
471 fprintf (file
, "Component%s:\n",
472 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
473 FOR_EACH_VEC_ELT (dref
, comp
->refs
, i
, a
)
475 fprintf (file
, "\n");
478 /* Dumps COMPS to FILE. */
480 extern void dump_components (FILE *, struct component
*);
482 dump_components (FILE *file
, struct component
*comps
)
484 struct component
*comp
;
486 for (comp
= comps
; comp
; comp
= comp
->next
)
487 dump_component (file
, comp
);
490 /* Frees a chain CHAIN. */
493 release_chain (chain_p chain
)
501 FOR_EACH_VEC_ELT (dref
, chain
->refs
, i
, ref
)
504 VEC_free (dref
, heap
, chain
->refs
);
505 VEC_free (tree
, heap
, chain
->vars
);
506 VEC_free (tree
, heap
, chain
->inits
);
514 release_chains (VEC (chain_p
, heap
) *chains
)
519 FOR_EACH_VEC_ELT (chain_p
, chains
, i
, chain
)
520 release_chain (chain
);
521 VEC_free (chain_p
, heap
, chains
);
524 /* Frees a component COMP. */
527 release_component (struct component
*comp
)
529 VEC_free (dref
, heap
, comp
->refs
);
533 /* Frees list of components COMPS. */
536 release_components (struct component
*comps
)
538 struct component
*act
, *next
;
540 for (act
= comps
; act
; act
= next
)
543 release_component (act
);
547 /* Finds a root of tree given by FATHERS containing A, and performs path
551 component_of (unsigned fathers
[], unsigned a
)
555 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
558 for (; a
!= root
; a
= n
)
567 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
568 components, A and B are components to merge. */
571 merge_comps (unsigned fathers
[], unsigned sizes
[], unsigned a
, unsigned b
)
573 unsigned ca
= component_of (fathers
, a
);
574 unsigned cb
= component_of (fathers
, b
);
579 if (sizes
[ca
] < sizes
[cb
])
581 sizes
[cb
] += sizes
[ca
];
586 sizes
[ca
] += sizes
[cb
];
591 /* Returns true if A is a reference that is suitable for predictive commoning
592 in the innermost loop that contains it. REF_STEP is set according to the
593 step of the reference A. */
596 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
598 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
601 || TREE_THIS_VOLATILE (ref
)
602 || !is_gimple_reg_type (TREE_TYPE (ref
))
603 || tree_could_throw_p (ref
))
606 if (integer_zerop (step
))
607 *ref_step
= RS_INVARIANT
;
608 else if (integer_nonzerop (step
))
609 *ref_step
= RS_NONZERO
;
616 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
619 aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
)
621 tree type
= TREE_TYPE (DR_OFFSET (dr
));
624 tree_to_aff_combination_expand (DR_OFFSET (dr
), type
, offset
,
626 aff_combination_const (&delta
, type
, tree_to_double_int (DR_INIT (dr
)));
627 aff_combination_add (offset
, &delta
);
630 /* Determines number of iterations of the innermost enclosing loop before B
631 refers to exactly the same location as A and stores it to OFF. If A and
632 B do not have the same step, they never meet, or anything else fails,
633 returns false, otherwise returns true. Both A and B are assumed to
634 satisfy suitable_reference_p. */
637 determine_offset (struct data_reference
*a
, struct data_reference
*b
,
640 aff_tree diff
, baseb
, step
;
643 /* Check that both the references access the location in the same type. */
644 typea
= TREE_TYPE (DR_REF (a
));
645 typeb
= TREE_TYPE (DR_REF (b
));
646 if (!useless_type_conversion_p (typeb
, typea
))
649 /* Check whether the base address and the step of both references is the
651 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
652 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
655 if (integer_zerop (DR_STEP (a
)))
657 /* If the references have loop invariant address, check that they access
658 exactly the same location. */
659 *off
= double_int_zero
;
660 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
661 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
664 /* Compare the offsets of the addresses, and check whether the difference
665 is a multiple of step. */
666 aff_combination_dr_offset (a
, &diff
);
667 aff_combination_dr_offset (b
, &baseb
);
668 aff_combination_scale (&baseb
, double_int_minus_one
);
669 aff_combination_add (&diff
, &baseb
);
671 tree_to_aff_combination_expand (DR_STEP (a
), TREE_TYPE (DR_STEP (a
)),
672 &step
, &name_expansions
);
673 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
676 /* Returns the last basic block in LOOP for that we are sure that
677 it is executed whenever the loop is entered. */
680 last_always_executed_block (struct loop
*loop
)
683 VEC (edge
, heap
) *exits
= get_loop_exit_edges (loop
);
685 basic_block last
= loop
->latch
;
687 FOR_EACH_VEC_ELT (edge
, exits
, i
, ex
)
688 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
689 VEC_free (edge
, heap
, exits
);
694 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
696 static struct component
*
697 split_data_refs_to_components (struct loop
*loop
,
698 VEC (data_reference_p
, heap
) *datarefs
,
699 VEC (ddr_p
, heap
) *depends
)
701 unsigned i
, n
= VEC_length (data_reference_p
, datarefs
);
702 unsigned ca
, ia
, ib
, bad
;
703 unsigned *comp_father
= XNEWVEC (unsigned, n
+ 1);
704 unsigned *comp_size
= XNEWVEC (unsigned, n
+ 1);
705 struct component
**comps
;
706 struct data_reference
*dr
, *dra
, *drb
;
707 struct data_dependence_relation
*ddr
;
708 struct component
*comp_list
= NULL
, *comp
;
710 basic_block last_always_executed
= last_always_executed_block (loop
);
712 FOR_EACH_VEC_ELT (data_reference_p
, datarefs
, i
, dr
)
716 /* A fake reference for call or asm_expr that may clobber memory;
720 dr
->aux
= (void *) (size_t) i
;
725 /* A component reserved for the "bad" data references. */
729 FOR_EACH_VEC_ELT (data_reference_p
, datarefs
, i
, dr
)
731 enum ref_step_type dummy
;
733 if (!suitable_reference_p (dr
, &dummy
))
735 ia
= (unsigned) (size_t) dr
->aux
;
736 merge_comps (comp_father
, comp_size
, n
, ia
);
740 FOR_EACH_VEC_ELT (ddr_p
, depends
, i
, ddr
)
742 double_int dummy_off
;
744 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
749 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
750 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
754 bad
= component_of (comp_father
, n
);
756 /* If both A and B are reads, we may ignore unsuitable dependences. */
757 if (DR_IS_READ (dra
) && DR_IS_READ (drb
)
758 && (ia
== bad
|| ib
== bad
759 || !determine_offset (dra
, drb
, &dummy_off
)))
762 merge_comps (comp_father
, comp_size
, ia
, ib
);
765 comps
= XCNEWVEC (struct component
*, n
);
766 bad
= component_of (comp_father
, n
);
767 FOR_EACH_VEC_ELT (data_reference_p
, datarefs
, i
, dr
)
769 ia
= (unsigned) (size_t) dr
->aux
;
770 ca
= component_of (comp_father
, ia
);
777 comp
= XCNEW (struct component
);
778 comp
->refs
= VEC_alloc (dref
, heap
, comp_size
[ca
]);
782 dataref
= XCNEW (struct dref_d
);
784 dataref
->stmt
= DR_STMT (dr
);
785 dataref
->offset
= double_int_zero
;
786 dataref
->distance
= 0;
788 dataref
->always_accessed
789 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
790 gimple_bb (dataref
->stmt
));
791 dataref
->pos
= VEC_length (dref
, comp
->refs
);
792 VEC_quick_push (dref
, comp
->refs
, dataref
);
795 for (i
= 0; i
< n
; i
++)
800 comp
->next
= comp_list
;
812 /* Returns true if the component COMP satisfies the conditions
813 described in 2) at the beginning of this file. LOOP is the current
817 suitable_component_p (struct loop
*loop
, struct component
*comp
)
821 basic_block ba
, bp
= loop
->header
;
822 bool ok
, has_write
= false;
824 FOR_EACH_VEC_ELT (dref
, comp
->refs
, i
, a
)
826 ba
= gimple_bb (a
->stmt
);
828 if (!just_once_each_iteration_p (loop
, ba
))
831 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
834 if (DR_IS_WRITE (a
->ref
))
838 first
= VEC_index (dref
, comp
->refs
, 0);
839 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
841 first
->offset
= double_int_zero
;
843 for (i
= 1; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
845 if (!determine_offset (first
->ref
, a
->ref
, &a
->offset
))
848 #ifdef ENABLE_CHECKING
850 enum ref_step_type a_step
;
851 ok
= suitable_reference_p (a
->ref
, &a_step
);
852 gcc_assert (ok
&& a_step
== comp
->comp_step
);
857 /* If there is a write inside the component, we must know whether the
858 step is nonzero or not -- we would not otherwise be able to recognize
859 whether the value accessed by reads comes from the OFFSET-th iteration
860 or the previous one. */
861 if (has_write
&& comp
->comp_step
== RS_ANY
)
867 /* Check the conditions on references inside each of components COMPS,
868 and remove the unsuitable components from the list. The new list
869 of components is returned. The conditions are described in 2) at
870 the beginning of this file. LOOP is the current loop. */
872 static struct component
*
873 filter_suitable_components (struct loop
*loop
, struct component
*comps
)
875 struct component
**comp
, *act
;
877 for (comp
= &comps
; *comp
; )
880 if (suitable_component_p (loop
, act
))
888 FOR_EACH_VEC_ELT (dref
, act
->refs
, i
, ref
)
890 release_component (act
);
897 /* Compares two drefs A and B by their offset and position. Callback for
901 order_drefs (const void *a
, const void *b
)
903 const dref
*const da
= (const dref
*) a
;
904 const dref
*const db
= (const dref
*) b
;
905 int offcmp
= double_int_scmp ((*da
)->offset
, (*db
)->offset
);
910 return (*da
)->pos
- (*db
)->pos
;
913 /* Returns root of the CHAIN. */
916 get_chain_root (chain_p chain
)
918 return VEC_index (dref
, chain
->refs
, 0);
921 /* Adds REF to the chain CHAIN. */
924 add_ref_to_chain (chain_p chain
, dref ref
)
926 dref root
= get_chain_root (chain
);
929 gcc_assert (double_int_scmp (root
->offset
, ref
->offset
) <= 0);
930 dist
= double_int_sub (ref
->offset
, root
->offset
);
931 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE
), dist
) <= 0)
936 gcc_assert (double_int_fits_in_uhwi_p (dist
));
938 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
940 ref
->distance
= double_int_to_uhwi (dist
);
942 if (ref
->distance
>= chain
->length
)
944 chain
->length
= ref
->distance
;
945 chain
->has_max_use_after
= false;
948 if (ref
->distance
== chain
->length
949 && ref
->pos
> root
->pos
)
950 chain
->has_max_use_after
= true;
952 chain
->all_always_accessed
&= ref
->always_accessed
;
955 /* Returns the chain for invariant component COMP. */
958 make_invariant_chain (struct component
*comp
)
960 chain_p chain
= XCNEW (struct chain
);
964 chain
->type
= CT_INVARIANT
;
966 chain
->all_always_accessed
= true;
968 FOR_EACH_VEC_ELT (dref
, comp
->refs
, i
, ref
)
970 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
971 chain
->all_always_accessed
&= ref
->always_accessed
;
977 /* Make a new chain rooted at REF. */
980 make_rooted_chain (dref ref
)
982 chain_p chain
= XCNEW (struct chain
);
984 chain
->type
= DR_IS_READ (ref
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
986 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
987 chain
->all_always_accessed
= ref
->always_accessed
;
994 /* Returns true if CHAIN is not trivial. */
997 nontrivial_chain_p (chain_p chain
)
999 return chain
!= NULL
&& VEC_length (dref
, chain
->refs
) > 1;
1002 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1006 name_for_ref (dref ref
)
1010 if (is_gimple_assign (ref
->stmt
))
1012 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1013 name
= gimple_assign_lhs (ref
->stmt
);
1015 name
= gimple_assign_rhs1 (ref
->stmt
);
1018 name
= PHI_RESULT (ref
->stmt
);
1020 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1023 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1024 iterations of the innermost enclosing loop). */
1027 valid_initializer_p (struct data_reference
*ref
,
1028 unsigned distance
, struct data_reference
*root
)
1030 aff_tree diff
, base
, step
;
1033 /* Both REF and ROOT must be accessing the same object. */
1034 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1037 /* The initializer is defined outside of loop, hence its address must be
1038 invariant inside the loop. */
1039 gcc_assert (integer_zerop (DR_STEP (ref
)));
1041 /* If the address of the reference is invariant, initializer must access
1042 exactly the same location. */
1043 if (integer_zerop (DR_STEP (root
)))
1044 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1045 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1047 /* Verify that this index of REF is equal to the root's index at
1048 -DISTANCE-th iteration. */
1049 aff_combination_dr_offset (root
, &diff
);
1050 aff_combination_dr_offset (ref
, &base
);
1051 aff_combination_scale (&base
, double_int_minus_one
);
1052 aff_combination_add (&diff
, &base
);
1054 tree_to_aff_combination_expand (DR_STEP (root
), TREE_TYPE (DR_STEP (root
)),
1055 &step
, &name_expansions
);
1056 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1059 if (!double_int_equal_p (off
, uhwi_to_double_int (distance
)))
1065 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1066 initial value is correct (equal to initial value of REF shifted by one
1067 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1068 is the root of the current chain. */
1071 find_looparound_phi (struct loop
*loop
, dref ref
, dref root
)
1073 tree name
, init
, init_ref
;
1074 gimple phi
= NULL
, init_stmt
;
1075 edge latch
= loop_latch_edge (loop
);
1076 struct data_reference init_dr
;
1077 gimple_stmt_iterator psi
;
1079 if (is_gimple_assign (ref
->stmt
))
1081 if (DR_IS_READ (ref
->ref
))
1082 name
= gimple_assign_lhs (ref
->stmt
);
1084 name
= gimple_assign_rhs1 (ref
->stmt
);
1087 name
= PHI_RESULT (ref
->stmt
);
1091 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1093 phi
= gsi_stmt (psi
);
1094 if (PHI_ARG_DEF_FROM_EDGE (phi
, latch
) == name
)
1098 if (gsi_end_p (psi
))
1101 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1102 if (TREE_CODE (init
) != SSA_NAME
)
1104 init_stmt
= SSA_NAME_DEF_STMT (init
);
1105 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1107 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1109 init_ref
= gimple_assign_rhs1 (init_stmt
);
1110 if (!REFERENCE_CLASS_P (init_ref
)
1111 && !DECL_P (init_ref
))
1114 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1115 loop enclosing PHI). */
1116 memset (&init_dr
, 0, sizeof (struct data_reference
));
1117 DR_REF (&init_dr
) = init_ref
;
1118 DR_STMT (&init_dr
) = phi
;
1119 if (!dr_analyze_innermost (&init_dr
, loop
))
1122 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1128 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1131 insert_looparound_copy (chain_p chain
, dref ref
, gimple phi
)
1133 dref nw
= XCNEW (struct dref_d
), aref
;
1137 nw
->distance
= ref
->distance
+ 1;
1138 nw
->always_accessed
= 1;
1140 FOR_EACH_VEC_ELT (dref
, chain
->refs
, i
, aref
)
1141 if (aref
->distance
>= nw
->distance
)
1143 VEC_safe_insert (dref
, heap
, chain
->refs
, i
, nw
);
1145 if (nw
->distance
> chain
->length
)
1147 chain
->length
= nw
->distance
;
1148 chain
->has_max_use_after
= false;
1152 /* For references in CHAIN that are copied around the LOOP (created previously
1153 by PRE, or by user), add the results of such copies to the chain. This
1154 enables us to remove the copies by unrolling, and may need less registers
1155 (also, it may allow us to combine chains together). */
1158 add_looparound_copies (struct loop
*loop
, chain_p chain
)
1161 dref ref
, root
= get_chain_root (chain
);
1164 FOR_EACH_VEC_ELT (dref
, chain
->refs
, i
, ref
)
1166 phi
= find_looparound_phi (loop
, ref
, root
);
1170 bitmap_set_bit (looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1171 insert_looparound_copy (chain
, ref
, phi
);
1175 /* Find roots of the values and determine distances in the component COMP.
1176 The references are redistributed into CHAINS. LOOP is the current
1180 determine_roots_comp (struct loop
*loop
,
1181 struct component
*comp
,
1182 VEC (chain_p
, heap
) **chains
)
1186 chain_p chain
= NULL
;
1187 double_int last_ofs
= double_int_zero
;
1189 /* Invariants are handled specially. */
1190 if (comp
->comp_step
== RS_INVARIANT
)
1192 chain
= make_invariant_chain (comp
);
1193 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1197 VEC_qsort (dref
, comp
->refs
, order_drefs
);
1199 FOR_EACH_VEC_ELT (dref
, comp
->refs
, i
, a
)
1201 if (!chain
|| DR_IS_WRITE (a
->ref
)
1202 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE
),
1203 double_int_sub (a
->offset
, last_ofs
)) <= 0)
1205 if (nontrivial_chain_p (chain
))
1207 add_looparound_copies (loop
, chain
);
1208 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1211 release_chain (chain
);
1212 chain
= make_rooted_chain (a
);
1213 last_ofs
= a
->offset
;
1217 add_ref_to_chain (chain
, a
);
1220 if (nontrivial_chain_p (chain
))
1222 add_looparound_copies (loop
, chain
);
1223 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1226 release_chain (chain
);
1229 /* Find roots of the values and determine distances in components COMPS, and
1230 separates the references to CHAINS. LOOP is the current loop. */
1233 determine_roots (struct loop
*loop
,
1234 struct component
*comps
, VEC (chain_p
, heap
) **chains
)
1236 struct component
*comp
;
1238 for (comp
= comps
; comp
; comp
= comp
->next
)
1239 determine_roots_comp (loop
, comp
, chains
);
1242 /* Replace the reference in statement STMT with temporary variable
1243 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1244 the reference in the statement. IN_LHS is true if the reference
1245 is in the lhs of STMT, false if it is in rhs. */
1248 replace_ref_with (gimple stmt
, tree new_tree
, bool set
, bool in_lhs
)
1252 gimple_stmt_iterator bsi
, psi
;
1254 if (gimple_code (stmt
) == GIMPLE_PHI
)
1256 gcc_assert (!in_lhs
&& !set
);
1258 val
= PHI_RESULT (stmt
);
1259 bsi
= gsi_after_labels (gimple_bb (stmt
));
1260 psi
= gsi_for_stmt (stmt
);
1261 remove_phi_node (&psi
, false);
1263 /* Turn the phi node into GIMPLE_ASSIGN. */
1264 new_stmt
= gimple_build_assign (val
, new_tree
);
1265 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1269 /* Since the reference is of gimple_reg type, it should only
1270 appear as lhs or rhs of modify statement. */
1271 gcc_assert (is_gimple_assign (stmt
));
1273 bsi
= gsi_for_stmt (stmt
);
1275 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1278 gcc_assert (!in_lhs
);
1279 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1280 stmt
= gsi_stmt (bsi
);
1287 /* We have statement
1291 If OLD is a memory reference, then VAL is gimple_val, and we transform
1297 Otherwise, we are replacing a combination chain,
1298 VAL is the expression that performs the combination, and OLD is an
1299 SSA name. In this case, we transform the assignment to
1306 val
= gimple_assign_lhs (stmt
);
1307 if (TREE_CODE (val
) != SSA_NAME
)
1309 val
= gimple_assign_rhs1 (stmt
);
1310 gcc_assert (gimple_assign_single_p (stmt
));
1311 if (TREE_CLOBBER_P (val
))
1313 val
= gimple_default_def (cfun
, SSA_NAME_VAR (new_tree
));
1314 if (val
== NULL_TREE
)
1316 val
= make_ssa_name (SSA_NAME_VAR (new_tree
),
1317 gimple_build_nop ());
1318 set_default_def (SSA_NAME_VAR (new_tree
), val
);
1322 gcc_assert (gimple_assign_copy_p (stmt
));
1334 val
= gimple_assign_lhs (stmt
);
1337 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1338 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1341 /* Returns the reference to the address of REF in the ITER-th iteration of
1342 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1343 try to preserve the original shape of the reference (not rewrite it
1344 as an indirect ref to the address), to make tree_could_trap_p in
1345 prepare_initializers_chain return false more often. */
1348 ref_at_iteration (struct loop
*loop
, tree ref
, int iter
)
1350 tree idx
, *idx_p
, type
, val
, op0
= NULL_TREE
, ret
;
1354 if (handled_component_p (ref
))
1356 op0
= ref_at_iteration (loop
, TREE_OPERAND (ref
, 0), iter
);
1360 else if (!INDIRECT_REF_P (ref
)
1361 && TREE_CODE (ref
) != MEM_REF
)
1362 return unshare_expr (ref
);
1364 if (TREE_CODE (ref
) == MEM_REF
)
1366 ret
= unshare_expr (ref
);
1367 idx
= TREE_OPERAND (ref
, 0);
1368 idx_p
= &TREE_OPERAND (ret
, 0);
1370 else if (TREE_CODE (ref
) == COMPONENT_REF
)
1372 /* Check that the offset is loop invariant. */
1373 if (TREE_OPERAND (ref
, 2)
1374 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 2)))
1377 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), op0
,
1378 unshare_expr (TREE_OPERAND (ref
, 1)),
1379 unshare_expr (TREE_OPERAND (ref
, 2)));
1381 else if (TREE_CODE (ref
) == ARRAY_REF
)
1383 /* Check that the lower bound and the step are loop invariant. */
1384 if (TREE_OPERAND (ref
, 2)
1385 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 2)))
1387 if (TREE_OPERAND (ref
, 3)
1388 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 3)))
1391 ret
= build4 (ARRAY_REF
, TREE_TYPE (ref
), op0
, NULL_TREE
,
1392 unshare_expr (TREE_OPERAND (ref
, 2)),
1393 unshare_expr (TREE_OPERAND (ref
, 3)));
1394 idx
= TREE_OPERAND (ref
, 1);
1395 idx_p
= &TREE_OPERAND (ret
, 1);
1400 ok
= simple_iv (loop
, loop
, idx
, &iv
, true);
1403 iv
.base
= expand_simple_operations (iv
.base
);
1404 if (integer_zerop (iv
.step
))
1405 *idx_p
= unshare_expr (iv
.base
);
1408 type
= TREE_TYPE (iv
.base
);
1409 if (POINTER_TYPE_P (type
))
1411 val
= fold_build2 (MULT_EXPR
, sizetype
, iv
.step
,
1413 val
= fold_build_pointer_plus (iv
.base
, val
);
1417 val
= fold_build2 (MULT_EXPR
, type
, iv
.step
,
1418 build_int_cst_type (type
, iter
));
1419 val
= fold_build2 (PLUS_EXPR
, type
, iv
.base
, val
);
1421 *idx_p
= unshare_expr (val
);
1427 /* Get the initialization expression for the INDEX-th temporary variable
1431 get_init_expr (chain_p chain
, unsigned index
)
1433 if (chain
->type
== CT_COMBINATION
)
1435 tree e1
= get_init_expr (chain
->ch1
, index
);
1436 tree e2
= get_init_expr (chain
->ch2
, index
);
1438 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1441 return VEC_index (tree
, chain
->inits
, index
);
1444 /* Marks all virtual operands of statement STMT for renaming. */
1447 mark_virtual_ops_for_renaming (gimple stmt
)
1451 if (gimple_code (stmt
) == GIMPLE_PHI
)
1453 var
= PHI_RESULT (stmt
);
1454 if (is_gimple_reg (var
))
1457 if (TREE_CODE (var
) == SSA_NAME
)
1458 var
= SSA_NAME_VAR (var
);
1459 mark_sym_for_renaming (var
);
1464 if (gimple_vuse (stmt
))
1465 mark_sym_for_renaming (gimple_vop (cfun
));
1468 /* Returns a new temporary variable used for the I-th variable carrying
1469 value of REF. The variable's uid is marked in TMP_VARS. */
1472 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1474 tree type
= TREE_TYPE (ref
);
1475 /* We never access the components of the temporary variable in predictive
1477 tree var
= create_tmp_reg (type
, get_lsm_tmp_name (ref
, i
));
1479 add_referenced_var (var
);
1480 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1484 /* Creates the variables for CHAIN, as well as phi nodes for them and
1485 initialization on entry to LOOP. Uids of the newly created
1486 temporary variables are marked in TMP_VARS. */
1489 initialize_root_vars (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1492 unsigned n
= chain
->length
;
1493 dref root
= get_chain_root (chain
);
1494 bool reuse_first
= !chain
->has_max_use_after
;
1495 tree ref
, init
, var
, next
;
1498 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1500 /* If N == 0, then all the references are within the single iteration. And
1501 since this is an nonempty chain, reuse_first cannot be true. */
1502 gcc_assert (n
> 0 || !reuse_first
);
1504 chain
->vars
= VEC_alloc (tree
, heap
, n
+ 1);
1506 if (chain
->type
== CT_COMBINATION
)
1507 ref
= gimple_assign_lhs (root
->stmt
);
1509 ref
= DR_REF (root
->ref
);
1511 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1513 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1514 VEC_quick_push (tree
, chain
->vars
, var
);
1517 VEC_quick_push (tree
, chain
->vars
, VEC_index (tree
, chain
->vars
, 0));
1519 FOR_EACH_VEC_ELT (tree
, chain
->vars
, i
, var
)
1520 VEC_replace (tree
, chain
->vars
, i
, make_ssa_name (var
, NULL
));
1522 for (i
= 0; i
< n
; i
++)
1524 var
= VEC_index (tree
, chain
->vars
, i
);
1525 next
= VEC_index (tree
, chain
->vars
, i
+ 1);
1526 init
= get_init_expr (chain
, i
);
1528 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1530 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1532 phi
= create_phi_node (var
, loop
->header
);
1533 SSA_NAME_DEF_STMT (var
) = phi
;
1534 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1535 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1539 /* Create the variables and initialization statement for root of chain
1540 CHAIN. Uids of the newly created temporary variables are marked
1544 initialize_root (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1546 dref root
= get_chain_root (chain
);
1547 bool in_lhs
= (chain
->type
== CT_STORE_LOAD
1548 || chain
->type
== CT_COMBINATION
);
1550 initialize_root_vars (loop
, chain
, tmp_vars
);
1551 replace_ref_with (root
->stmt
,
1552 VEC_index (tree
, chain
->vars
, chain
->length
),
1556 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1557 initialization on entry to LOOP if necessary. The ssa name for the variable
1558 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1559 around the loop is created. Uid of the newly created temporary variable
1560 is marked in TMP_VARS. INITS is the list containing the (single)
1564 initialize_root_vars_lm (struct loop
*loop
, dref root
, bool written
,
1565 VEC(tree
, heap
) **vars
, VEC(tree
, heap
) *inits
,
1569 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
1572 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1574 /* Find the initializer for the variable, and check that it cannot
1576 init
= VEC_index (tree
, inits
, 0);
1578 *vars
= VEC_alloc (tree
, heap
, written
? 2 : 1);
1579 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
1580 VEC_quick_push (tree
, *vars
, var
);
1582 VEC_quick_push (tree
, *vars
, VEC_index (tree
, *vars
, 0));
1584 FOR_EACH_VEC_ELT (tree
, *vars
, i
, var
)
1585 VEC_replace (tree
, *vars
, i
, make_ssa_name (var
, NULL
));
1587 var
= VEC_index (tree
, *vars
, 0);
1589 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
1591 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1595 next
= VEC_index (tree
, *vars
, 1);
1596 phi
= create_phi_node (var
, loop
->header
);
1597 SSA_NAME_DEF_STMT (var
) = phi
;
1598 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1599 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1603 gimple init_stmt
= gimple_build_assign (var
, init
);
1604 mark_virtual_ops_for_renaming (init_stmt
);
1605 gsi_insert_on_edge_immediate (entry
, init_stmt
);
1610 /* Execute load motion for references in chain CHAIN. Uids of the newly
1611 created temporary variables are marked in TMP_VARS. */
1614 execute_load_motion (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1616 VEC (tree
, heap
) *vars
;
1618 unsigned n_writes
= 0, ridx
, i
;
1621 gcc_assert (chain
->type
== CT_INVARIANT
);
1622 gcc_assert (!chain
->combined
);
1623 FOR_EACH_VEC_ELT (dref
, chain
->refs
, i
, a
)
1624 if (DR_IS_WRITE (a
->ref
))
1627 /* If there are no reads in the loop, there is nothing to do. */
1628 if (n_writes
== VEC_length (dref
, chain
->refs
))
1631 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
1632 &vars
, chain
->inits
, tmp_vars
);
1635 FOR_EACH_VEC_ELT (dref
, chain
->refs
, i
, a
)
1637 bool is_read
= DR_IS_READ (a
->ref
);
1638 mark_virtual_ops_for_renaming (a
->stmt
);
1640 if (DR_IS_WRITE (a
->ref
))
1645 var
= VEC_index (tree
, vars
, 0);
1646 var
= make_ssa_name (SSA_NAME_VAR (var
), NULL
);
1647 VEC_replace (tree
, vars
, 0, var
);
1653 replace_ref_with (a
->stmt
, VEC_index (tree
, vars
, ridx
),
1654 !is_read
, !is_read
);
1657 VEC_free (tree
, heap
, vars
);
1660 /* Returns the single statement in that NAME is used, excepting
1661 the looparound phi nodes contained in one of the chains. If there is no
1662 such statement, or more statements, NULL is returned. */
1665 single_nonlooparound_use (tree name
)
1668 imm_use_iterator it
;
1669 gimple stmt
, ret
= NULL
;
1671 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
1673 stmt
= USE_STMT (use
);
1675 if (gimple_code (stmt
) == GIMPLE_PHI
)
1677 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1678 could not be processed anyway, so just fail for them. */
1679 if (bitmap_bit_p (looparound_phis
,
1680 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
1685 else if (is_gimple_debug (stmt
))
1687 else if (ret
!= NULL
)
1696 /* Remove statement STMT, as well as the chain of assignments in that it is
1700 remove_stmt (gimple stmt
)
1704 gimple_stmt_iterator psi
;
1706 if (gimple_code (stmt
) == GIMPLE_PHI
)
1708 name
= PHI_RESULT (stmt
);
1709 next
= single_nonlooparound_use (name
);
1710 psi
= gsi_for_stmt (stmt
);
1711 remove_phi_node (&psi
, true);
1714 || !gimple_assign_ssa_name_copy_p (next
)
1715 || gimple_assign_rhs1 (next
) != name
)
1723 gimple_stmt_iterator bsi
;
1725 bsi
= gsi_for_stmt (stmt
);
1727 name
= gimple_assign_lhs (stmt
);
1728 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
1730 next
= single_nonlooparound_use (name
);
1732 mark_virtual_ops_for_renaming (stmt
);
1733 gsi_remove (&bsi
, true);
1734 release_defs (stmt
);
1737 || !gimple_assign_ssa_name_copy_p (next
)
1738 || gimple_assign_rhs1 (next
) != name
)
1745 /* Perform the predictive commoning optimization for a chain CHAIN.
1746 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1749 execute_pred_commoning_chain (struct loop
*loop
, chain_p chain
,
1756 if (chain
->combined
)
1758 /* For combined chains, just remove the statements that are used to
1759 compute the values of the expression (except for the root one). */
1760 for (i
= 1; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1761 remove_stmt (a
->stmt
);
1765 /* For non-combined chains, set up the variables that hold its value,
1766 and replace the uses of the original references by these
1768 root
= get_chain_root (chain
);
1769 mark_virtual_ops_for_renaming (root
->stmt
);
1771 initialize_root (loop
, chain
, tmp_vars
);
1772 for (i
= 1; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1774 mark_virtual_ops_for_renaming (a
->stmt
);
1775 var
= VEC_index (tree
, chain
->vars
, chain
->length
- a
->distance
);
1776 replace_ref_with (a
->stmt
, var
, false, false);
1781 /* Determines the unroll factor necessary to remove as many temporary variable
1782 copies as possible. CHAINS is the list of chains that will be
1786 determine_unroll_factor (VEC (chain_p
, heap
) *chains
)
1789 unsigned factor
= 1, af
, nfactor
, i
;
1790 unsigned max
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
1792 FOR_EACH_VEC_ELT (chain_p
, chains
, i
, chain
)
1794 if (chain
->type
== CT_INVARIANT
|| chain
->combined
)
1797 /* The best unroll factor for this chain is equal to the number of
1798 temporary variables that we create for it. */
1800 if (chain
->has_max_use_after
)
1803 nfactor
= factor
* af
/ gcd (factor
, af
);
1811 /* Perform the predictive commoning optimization for CHAINS.
1812 Uids of the newly created temporary variables are marked in TMP_VARS. */
1815 execute_pred_commoning (struct loop
*loop
, VEC (chain_p
, heap
) *chains
,
1821 FOR_EACH_VEC_ELT (chain_p
, chains
, i
, chain
)
1823 if (chain
->type
== CT_INVARIANT
)
1824 execute_load_motion (loop
, chain
, tmp_vars
);
1826 execute_pred_commoning_chain (loop
, chain
, tmp_vars
);
1829 update_ssa (TODO_update_ssa_only_virtuals
);
1832 /* For each reference in CHAINS, if its defining statement is
1833 phi node, record the ssa name that is defined by it. */
1836 replace_phis_by_defined_names (VEC (chain_p
, heap
) *chains
)
1842 FOR_EACH_VEC_ELT (chain_p
, chains
, i
, chain
)
1843 FOR_EACH_VEC_ELT (dref
, chain
->refs
, j
, a
)
1845 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
1847 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
1853 /* For each reference in CHAINS, if name_defined_by_phi is not
1854 NULL, use it to set the stmt field. */
1857 replace_names_by_phis (VEC (chain_p
, heap
) *chains
)
1863 FOR_EACH_VEC_ELT (chain_p
, chains
, i
, chain
)
1864 FOR_EACH_VEC_ELT (dref
, chain
->refs
, j
, a
)
1865 if (a
->stmt
== NULL
)
1867 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
1868 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
1869 a
->name_defined_by_phi
= NULL_TREE
;
1873 /* Wrapper over execute_pred_commoning, to pass it as a callback
1874 to tree_transform_and_unroll_loop. */
1878 VEC (chain_p
, heap
) *chains
;
1883 execute_pred_commoning_cbck (struct loop
*loop
, void *data
)
1885 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
1887 /* Restore phi nodes that were replaced by ssa names before
1888 tree_transform_and_unroll_loop (see detailed description in
1889 tree_predictive_commoning_loop). */
1890 replace_names_by_phis (dta
->chains
);
1891 execute_pred_commoning (loop
, dta
->chains
, dta
->tmp_vars
);
1894 /* Base NAME and all the names in the chain of phi nodes that use it
1895 on variable VAR. The phi nodes are recognized by being in the copies of
1896 the header of the LOOP. */
1899 base_names_in_chain_on (struct loop
*loop
, tree name
, tree var
)
1902 imm_use_iterator iter
;
1904 SSA_NAME_VAR (name
) = var
;
1909 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
1911 if (gimple_code (stmt
) == GIMPLE_PHI
1912 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
1915 BREAK_FROM_IMM_USE_STMT (iter
);
1921 name
= PHI_RESULT (phi
);
1922 SSA_NAME_VAR (name
) = var
;
1926 /* Given an unrolled LOOP after predictive commoning, remove the
1927 register copies arising from phi nodes by changing the base
1928 variables of SSA names. TMP_VARS is the set of the temporary variables
1929 for those we want to perform this. */
1932 eliminate_temp_copies (struct loop
*loop
, bitmap tmp_vars
)
1936 tree name
, use
, var
;
1937 gimple_stmt_iterator psi
;
1939 e
= loop_latch_edge (loop
);
1940 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1942 phi
= gsi_stmt (psi
);
1943 name
= PHI_RESULT (phi
);
1944 var
= SSA_NAME_VAR (name
);
1945 if (!bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
1947 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1948 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
1950 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1951 stmt
= SSA_NAME_DEF_STMT (use
);
1952 while (gimple_code (stmt
) == GIMPLE_PHI
1953 /* In case we could not unroll the loop enough to eliminate
1954 all copies, we may reach the loop header before the defining
1955 statement (in that case, some register copies will be present
1956 in loop latch in the final code, corresponding to the newly
1957 created looparound phi nodes). */
1958 && gimple_bb (stmt
) != loop
->header
)
1960 gcc_assert (single_pred_p (gimple_bb (stmt
)));
1961 use
= PHI_ARG_DEF (stmt
, 0);
1962 stmt
= SSA_NAME_DEF_STMT (use
);
1965 base_names_in_chain_on (loop
, use
, var
);
1969 /* Returns true if CHAIN is suitable to be combined. */
1972 chain_can_be_combined_p (chain_p chain
)
1974 return (!chain
->combined
1975 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
1978 /* Returns the modify statement that uses NAME. Skips over assignment
1979 statements, NAME is replaced with the actual name used in the returned
1983 find_use_stmt (tree
*name
)
1988 /* Skip over assignments. */
1991 stmt
= single_nonlooparound_use (*name
);
1995 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1998 lhs
= gimple_assign_lhs (stmt
);
1999 if (TREE_CODE (lhs
) != SSA_NAME
)
2002 if (gimple_assign_copy_p (stmt
))
2004 rhs
= gimple_assign_rhs1 (stmt
);
2010 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
2011 == GIMPLE_BINARY_RHS
)
2018 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2021 may_reassociate_p (tree type
, enum tree_code code
)
2023 if (FLOAT_TYPE_P (type
)
2024 && !flag_unsafe_math_optimizations
)
2027 return (commutative_tree_code (code
)
2028 && associative_tree_code (code
));
2031 /* If the operation used in STMT is associative and commutative, go through the
2032 tree of the same operations and returns its root. Distance to the root
2033 is stored in DISTANCE. */
2036 find_associative_operation_root (gimple stmt
, unsigned *distance
)
2040 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2041 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2044 if (!may_reassociate_p (type
, code
))
2049 lhs
= gimple_assign_lhs (stmt
);
2050 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2052 next
= find_use_stmt (&lhs
);
2054 || gimple_assign_rhs_code (next
) != code
)
2066 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2067 is no such statement, returns NULL_TREE. In case the operation used on
2068 NAME1 and NAME2 is associative and commutative, returns the root of the
2069 tree formed by this operation instead of the statement that uses NAME1 or
2073 find_common_use_stmt (tree
*name1
, tree
*name2
)
2075 gimple stmt1
, stmt2
;
2077 stmt1
= find_use_stmt (name1
);
2081 stmt2
= find_use_stmt (name2
);
2088 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2091 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2095 return (stmt1
== stmt2
? stmt1
: NULL
);
2098 /* Checks whether R1 and R2 are combined together using CODE, with the result
2099 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2100 if it is true. If CODE is ERROR_MARK, set these values instead. */
2103 combinable_refs_p (dref r1
, dref r2
,
2104 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2106 enum tree_code acode
;
2112 name1
= name_for_ref (r1
);
2113 name2
= name_for_ref (r2
);
2114 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2116 stmt
= find_common_use_stmt (&name1
, &name2
);
2121 acode
= gimple_assign_rhs_code (stmt
);
2122 aswap
= (!commutative_tree_code (acode
)
2123 && gimple_assign_rhs1 (stmt
) != name1
);
2124 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2126 if (*code
== ERROR_MARK
)
2134 return (*code
== acode
2136 && *rslt_type
== atype
);
2139 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2140 an assignment of the remaining operand. */
2143 remove_name_from_operation (gimple stmt
, tree op
)
2146 gimple_stmt_iterator si
;
2148 gcc_assert (is_gimple_assign (stmt
));
2150 if (gimple_assign_rhs1 (stmt
) == op
)
2151 other_op
= gimple_assign_rhs2 (stmt
);
2153 other_op
= gimple_assign_rhs1 (stmt
);
2155 si
= gsi_for_stmt (stmt
);
2156 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2158 /* We should not have reallocated STMT. */
2159 gcc_assert (gsi_stmt (si
) == stmt
);
2164 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2165 are combined in a single statement, and returns this statement. */
2168 reassociate_to_the_same_stmt (tree name1
, tree name2
)
2170 gimple stmt1
, stmt2
, root1
, root2
, s1
, s2
;
2171 gimple new_stmt
, tmp_stmt
;
2172 tree new_name
, tmp_name
, var
, r1
, r2
;
2173 unsigned dist1
, dist2
;
2174 enum tree_code code
;
2175 tree type
= TREE_TYPE (name1
);
2176 gimple_stmt_iterator bsi
;
2178 stmt1
= find_use_stmt (&name1
);
2179 stmt2
= find_use_stmt (&name2
);
2180 root1
= find_associative_operation_root (stmt1
, &dist1
);
2181 root2
= find_associative_operation_root (stmt2
, &dist2
);
2182 code
= gimple_assign_rhs_code (stmt1
);
2184 gcc_assert (root1
&& root2
&& root1
== root2
2185 && code
== gimple_assign_rhs_code (stmt2
));
2187 /* Find the root of the nearest expression in that both NAME1 and NAME2
2194 while (dist1
> dist2
)
2196 s1
= find_use_stmt (&r1
);
2197 r1
= gimple_assign_lhs (s1
);
2200 while (dist2
> dist1
)
2202 s2
= find_use_stmt (&r2
);
2203 r2
= gimple_assign_lhs (s2
);
2209 s1
= find_use_stmt (&r1
);
2210 r1
= gimple_assign_lhs (s1
);
2211 s2
= find_use_stmt (&r2
);
2212 r2
= gimple_assign_lhs (s2
);
2215 /* Remove NAME1 and NAME2 from the statements in that they are used
2217 remove_name_from_operation (stmt1
, name1
);
2218 remove_name_from_operation (stmt2
, name2
);
2220 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2221 combine it with the rhs of S1. */
2222 var
= create_tmp_reg (type
, "predreastmp");
2223 add_referenced_var (var
);
2224 new_name
= make_ssa_name (var
, NULL
);
2225 new_stmt
= gimple_build_assign_with_ops (code
, new_name
, name1
, name2
);
2227 var
= create_tmp_reg (type
, "predreastmp");
2228 add_referenced_var (var
);
2229 tmp_name
= make_ssa_name (var
, NULL
);
2231 /* Rhs of S1 may now be either a binary expression with operation
2232 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2233 so that name1 or name2 was removed from it). */
2234 tmp_stmt
= gimple_build_assign_with_ops (gimple_assign_rhs_code (s1
),
2236 gimple_assign_rhs1 (s1
),
2237 gimple_assign_rhs2 (s1
));
2239 bsi
= gsi_for_stmt (s1
);
2240 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2241 s1
= gsi_stmt (bsi
);
2244 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2245 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2250 /* Returns the statement that combines references R1 and R2. In case R1
2251 and R2 are not used in the same statement, but they are used with an
2252 associative and commutative operation in the same expression, reassociate
2253 the expression so that they are used in the same statement. */
2256 stmt_combining_refs (dref r1
, dref r2
)
2258 gimple stmt1
, stmt2
;
2259 tree name1
= name_for_ref (r1
);
2260 tree name2
= name_for_ref (r2
);
2262 stmt1
= find_use_stmt (&name1
);
2263 stmt2
= find_use_stmt (&name2
);
2267 return reassociate_to_the_same_stmt (name1
, name2
);
2270 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2271 description of the new chain is returned, otherwise we return NULL. */
2274 combine_chains (chain_p ch1
, chain_p ch2
)
2277 enum tree_code op
= ERROR_MARK
;
2282 tree rslt_type
= NULL_TREE
;
2286 if (ch1
->length
!= ch2
->length
)
2289 if (VEC_length (dref
, ch1
->refs
) != VEC_length (dref
, ch2
->refs
))
2292 for (i
= 0; (VEC_iterate (dref
, ch1
->refs
, i
, r1
)
2293 && VEC_iterate (dref
, ch2
->refs
, i
, r2
)); i
++)
2295 if (r1
->distance
!= r2
->distance
)
2298 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2309 new_chain
= XCNEW (struct chain
);
2310 new_chain
->type
= CT_COMBINATION
;
2312 new_chain
->ch1
= ch1
;
2313 new_chain
->ch2
= ch2
;
2314 new_chain
->rslt_type
= rslt_type
;
2315 new_chain
->length
= ch1
->length
;
2317 for (i
= 0; (VEC_iterate (dref
, ch1
->refs
, i
, r1
)
2318 && VEC_iterate (dref
, ch2
->refs
, i
, r2
)); i
++)
2320 nw
= XCNEW (struct dref_d
);
2321 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2322 nw
->distance
= r1
->distance
;
2324 VEC_safe_push (dref
, heap
, new_chain
->refs
, nw
);
2327 new_chain
->has_max_use_after
= false;
2328 root_stmt
= get_chain_root (new_chain
)->stmt
;
2329 for (i
= 1; VEC_iterate (dref
, new_chain
->refs
, i
, nw
); i
++)
2331 if (nw
->distance
== new_chain
->length
2332 && !stmt_dominates_stmt_p (nw
->stmt
, root_stmt
))
2334 new_chain
->has_max_use_after
= true;
2339 ch1
->combined
= true;
2340 ch2
->combined
= true;
2344 /* Try to combine the CHAINS. */
2347 try_combine_chains (VEC (chain_p
, heap
) **chains
)
2350 chain_p ch1
, ch2
, cch
;
2351 VEC (chain_p
, heap
) *worklist
= NULL
;
2353 FOR_EACH_VEC_ELT (chain_p
, *chains
, i
, ch1
)
2354 if (chain_can_be_combined_p (ch1
))
2355 VEC_safe_push (chain_p
, heap
, worklist
, ch1
);
2357 while (!VEC_empty (chain_p
, worklist
))
2359 ch1
= VEC_pop (chain_p
, worklist
);
2360 if (!chain_can_be_combined_p (ch1
))
2363 FOR_EACH_VEC_ELT (chain_p
, *chains
, j
, ch2
)
2365 if (!chain_can_be_combined_p (ch2
))
2368 cch
= combine_chains (ch1
, ch2
);
2371 VEC_safe_push (chain_p
, heap
, worklist
, cch
);
2372 VEC_safe_push (chain_p
, heap
, *chains
, cch
);
2379 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2380 impossible because one of these initializers may trap, true otherwise. */
2383 prepare_initializers_chain (struct loop
*loop
, chain_p chain
)
2385 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
2386 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2390 edge entry
= loop_preheader_edge (loop
);
2392 /* Find the initializers for the variables, and check that they cannot
2394 chain
->inits
= VEC_alloc (tree
, heap
, n
);
2395 for (i
= 0; i
< n
; i
++)
2396 VEC_quick_push (tree
, chain
->inits
, NULL_TREE
);
2398 /* If we have replaced some looparound phi nodes, use their initializers
2399 instead of creating our own. */
2400 FOR_EACH_VEC_ELT (dref
, chain
->refs
, i
, laref
)
2402 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
2405 gcc_assert (laref
->distance
> 0);
2406 VEC_replace (tree
, chain
->inits
, n
- laref
->distance
,
2407 PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
));
2410 for (i
= 0; i
< n
; i
++)
2412 if (VEC_index (tree
, chain
->inits
, i
) != NULL_TREE
)
2415 init
= ref_at_iteration (loop
, DR_REF (dr
), (int) i
- n
);
2419 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
2422 init
= force_gimple_operand (init
, &stmts
, false, NULL_TREE
);
2424 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2426 VEC_replace (tree
, chain
->inits
, i
, init
);
2432 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2433 be used because the initializers might trap. */
2436 prepare_initializers (struct loop
*loop
, VEC (chain_p
, heap
) *chains
)
2441 for (i
= 0; i
< VEC_length (chain_p
, chains
); )
2443 chain
= VEC_index (chain_p
, chains
, i
);
2444 if (prepare_initializers_chain (loop
, chain
))
2448 release_chain (chain
);
2449 VEC_unordered_remove (chain_p
, chains
, i
);
2454 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2458 tree_predictive_commoning_loop (struct loop
*loop
)
2460 VEC (loop_p
, heap
) *loop_nest
;
2461 VEC (data_reference_p
, heap
) *datarefs
;
2462 VEC (ddr_p
, heap
) *dependences
;
2463 struct component
*components
;
2464 VEC (chain_p
, heap
) *chains
= NULL
;
2465 unsigned unroll_factor
;
2466 struct tree_niter_desc desc
;
2467 bool unroll
= false;
2471 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2472 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
2474 /* Find the data references and split them into components according to their
2475 dependence relations. */
2476 datarefs
= VEC_alloc (data_reference_p
, heap
, 10);
2477 dependences
= VEC_alloc (ddr_p
, heap
, 10);
2478 loop_nest
= VEC_alloc (loop_p
, heap
, 3);
2479 if (! compute_data_dependences_for_loop (loop
, true, &loop_nest
, &datarefs
,
2482 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2483 fprintf (dump_file
, "Cannot analyze data dependencies\n");
2484 VEC_free (loop_p
, heap
, loop_nest
);
2485 free_data_refs (datarefs
);
2486 free_dependence_relations (dependences
);
2490 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2491 dump_data_dependence_relations (dump_file
, dependences
);
2493 components
= split_data_refs_to_components (loop
, datarefs
, dependences
);
2494 VEC_free (loop_p
, heap
, loop_nest
);
2495 free_dependence_relations (dependences
);
2498 free_data_refs (datarefs
);
2502 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2504 fprintf (dump_file
, "Initial state:\n\n");
2505 dump_components (dump_file
, components
);
2508 /* Find the suitable components and split them into chains. */
2509 components
= filter_suitable_components (loop
, components
);
2511 tmp_vars
= BITMAP_ALLOC (NULL
);
2512 looparound_phis
= BITMAP_ALLOC (NULL
);
2513 determine_roots (loop
, components
, &chains
);
2514 release_components (components
);
2518 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2520 "Predictive commoning failed: no suitable chains\n");
2523 prepare_initializers (loop
, chains
);
2525 /* Try to combine the chains that are always worked with together. */
2526 try_combine_chains (&chains
);
2528 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2530 fprintf (dump_file
, "Before commoning:\n\n");
2531 dump_chains (dump_file
, chains
);
2534 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2535 that its number of iterations is divisible by the factor. */
2536 unroll_factor
= determine_unroll_factor (chains
);
2538 unroll
= (unroll_factor
> 1
2539 && can_unroll_loop_p (loop
, unroll_factor
, &desc
));
2540 exit
= single_dom_exit (loop
);
2542 /* Execute the predictive commoning transformations, and possibly unroll the
2546 struct epcc_data dta
;
2548 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2549 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
2551 dta
.chains
= chains
;
2552 dta
.tmp_vars
= tmp_vars
;
2554 update_ssa (TODO_update_ssa_only_virtuals
);
2556 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2557 execute_pred_commoning_cbck is called may cause phi nodes to be
2558 reallocated, which is a problem since CHAINS may point to these
2559 statements. To fix this, we store the ssa names defined by the
2560 phi nodes here instead of the phi nodes themselves, and restore
2561 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2562 replace_phis_by_defined_names (chains
);
2564 tree_transform_and_unroll_loop (loop
, unroll_factor
, exit
, &desc
,
2565 execute_pred_commoning_cbck
, &dta
);
2566 eliminate_temp_copies (loop
, tmp_vars
);
2570 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2572 "Executing predictive commoning without unrolling.\n");
2573 execute_pred_commoning (loop
, chains
, tmp_vars
);
2577 release_chains (chains
);
2578 free_data_refs (datarefs
);
2579 BITMAP_FREE (tmp_vars
);
2580 BITMAP_FREE (looparound_phis
);
2582 free_affine_expand_cache (&name_expansions
);
2587 /* Runs predictive commoning. */
2590 tree_predictive_commoning (void)
2592 bool unrolled
= false;
2597 initialize_original_copy_tables ();
2598 FOR_EACH_LOOP (li
, loop
, LI_ONLY_INNERMOST
)
2599 if (optimize_loop_for_speed_p (loop
))
2601 unrolled
|= tree_predictive_commoning_loop (loop
);
2607 ret
= TODO_cleanup_cfg
;
2609 free_original_copy_tables ();