31370.cc: Skip this test on powerpc64-*-freebsd*.
[official-gcc.git] / gcc / ipa-cp.c
blobbb008c0387870d827ec0af8b93b8a417168621a5
1 /* Interprocedural constant propagation
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 Contributed by Razya Ladelsky <RAZYA@il.ibm.com> and Martin Jambor
6 <mjambor@suse.cz>
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Interprocedural constant propagation (IPA-CP).
26 The goal of this transformation is to
28 1) discover functions which are always invoked with some arguments with the
29 same known constant values and modify the functions so that the
30 subsequent optimizations can take advantage of the knowledge, and
32 2) partial specialization - create specialized versions of functions
33 transformed in this way if some parameters are known constants only in
34 certain contexts but the estimated tradeoff between speedup and cost size
35 is deemed good.
37 The algorithm also propagates types and attempts to perform type based
38 devirtualization. Types are propagated much like constants.
40 The algorithm basically consists of three stages. In the first, functions
41 are analyzed one at a time and jump functions are constructed for all known
42 call-sites. In the second phase, the pass propagates information from the
43 jump functions across the call to reveal what values are available at what
44 call sites, performs estimations of effects of known values on functions and
45 their callees, and finally decides what specialized extra versions should be
46 created. In the third, the special versions materialize and appropriate
47 calls are redirected.
49 The algorithm used is to a certain extent based on "Interprocedural Constant
50 Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
51 Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
52 Cooper, Mary W. Hall, and Ken Kennedy.
55 First stage - intraprocedural analysis
56 =======================================
58 This phase computes jump_function and modification flags.
60 A jump function for a call-site represents the values passed as an actual
61 arguments of a given call-site. In principle, there are three types of
62 values:
64 Pass through - the caller's formal parameter is passed as an actual
65 argument, plus an operation on it can be performed.
66 Constant - a constant is passed as an actual argument.
67 Unknown - neither of the above.
69 All jump function types are described in detail in ipa-prop.h, together with
70 the data structures that represent them and methods of accessing them.
72 ipcp_generate_summary() is the main function of the first stage.
74 Second stage - interprocedural analysis
75 ========================================
77 This stage is itself divided into two phases. In the first, we propagate
78 known values over the call graph, in the second, we make cloning decisions.
79 It uses a different algorithm than the original Callahan's paper.
81 First, we traverse the functions topologically from callers to callees and,
82 for each strongly connected component (SCC), we propagate constants
83 according to previously computed jump functions. We also record what known
84 values depend on other known values and estimate local effects. Finally, we
85 propagate cumulative information about these effects from dependant values
86 to those on which they depend.
88 Second, we again traverse the call graph in the same topological order and
89 make clones for functions which we know are called with the same values in
90 all contexts and decide about extra specialized clones of functions just for
91 some contexts - these decisions are based on both local estimates and
92 cumulative estimates propagated from callees.
94 ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
95 third stage.
97 Third phase - materialization of clones, call statement updates.
98 ============================================
100 This stage is currently performed by call graph code (mainly in cgraphunit.c
101 and tree-inline.c) according to instructions inserted to the call graph by
102 the second stage. */
104 #include "config.h"
105 #include "system.h"
106 #include "coretypes.h"
107 #include "tree.h"
108 #include "target.h"
109 #include "gimple.h"
110 #include "cgraph.h"
111 #include "ipa-prop.h"
112 #include "tree-flow.h"
113 #include "tree-pass.h"
114 #include "flags.h"
115 #include "timevar.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "tree-dump.h"
119 #include "tree-inline.h"
120 #include "fibheap.h"
121 #include "params.h"
122 #include "ipa-inline.h"
123 #include "ipa-utils.h"
125 struct ipcp_value;
127 /* Describes a particular source for an IPA-CP value. */
129 struct ipcp_value_source
131 /* The incoming edge that brought the value. */
132 struct cgraph_edge *cs;
133 /* If the jump function that resulted into his value was a pass-through or an
134 ancestor, this is the ipcp_value of the caller from which the described
135 value has been derived. Otherwise it is NULL. */
136 struct ipcp_value *val;
137 /* Next pointer in a linked list of sources of a value. */
138 struct ipcp_value_source *next;
139 /* If the jump function that resulted into his value was a pass-through or an
140 ancestor, this is the index of the parameter of the caller the jump
141 function references. */
142 int index;
145 /* Describes one particular value stored in struct ipcp_lattice. */
147 struct ipcp_value
149 /* The actual value for the given parameter. This is either an IPA invariant
150 or a TREE_BINFO describing a type that can be used for
151 devirtualization. */
152 tree value;
153 /* The list of sources from which this value originates. */
154 struct ipcp_value_source *sources;
155 /* Next pointers in a linked list of all values in a lattice. */
156 struct ipcp_value *next;
157 /* Next pointers in a linked list of values in a strongly connected component
158 of values. */
159 struct ipcp_value *scc_next;
160 /* Next pointers in a linked list of SCCs of values sorted topologically
161 according their sources. */
162 struct ipcp_value *topo_next;
163 /* A specialized node created for this value, NULL if none has been (so far)
164 created. */
165 struct cgraph_node *spec_node;
166 /* Depth first search number and low link for topological sorting of
167 values. */
168 int dfs, low_link;
169 /* Time benefit and size cost that specializing the function for this value
170 would bring about in this function alone. */
171 int local_time_benefit, local_size_cost;
172 /* Time benefit and size cost that specializing the function for this value
173 can bring about in it's callees (transitively). */
174 int prop_time_benefit, prop_size_cost;
175 /* True if this valye is currently on the topo-sort stack. */
176 bool on_stack;
179 /* Allocation pools for values and their sources in ipa-cp. */
181 alloc_pool ipcp_values_pool;
182 alloc_pool ipcp_sources_pool;
184 /* Lattice describing potential values of a formal parameter of a function and
185 some of their other properties. TOP is represented by a lattice with zero
186 values and with contains_variable and bottom flags cleared. BOTTOM is
187 represented by a lattice with the bottom flag set. In that case, values and
188 contains_variable flag should be disregarded. */
190 struct ipcp_lattice
192 /* The list of known values and types in this lattice. Note that values are
193 not deallocated if a lattice is set to bottom because there may be value
194 sources referencing them. */
195 struct ipcp_value *values;
196 /* Number of known values and types in this lattice. */
197 int values_count;
198 /* The lattice contains a variable component (in addition to values). */
199 bool contains_variable;
200 /* The value of the lattice is bottom (i.e. variable and unusable for any
201 propagation). */
202 bool bottom;
203 /* There is a virtual call based on this parameter. */
204 bool virt_call;
207 /* Maximal count found in program. */
209 static gcov_type max_count;
211 /* Original overall size of the program. */
213 static long overall_size, max_new_size;
215 /* Head of the linked list of topologically sorted values. */
217 static struct ipcp_value *values_topo;
219 /* Return the lattice corresponding to the Ith formal parameter of the function
220 described by INFO. */
221 static inline struct ipcp_lattice *
222 ipa_get_lattice (struct ipa_node_params *info, int i)
224 gcc_assert (i >= 0 && i < ipa_get_param_count (info));
225 gcc_checking_assert (!info->ipcp_orig_node);
226 gcc_checking_assert (info->lattices);
227 return &(info->lattices[i]);
230 /* Return whether LAT is a lattice with a single constant and without an
231 undefined value. */
233 static inline bool
234 ipa_lat_is_single_const (struct ipcp_lattice *lat)
236 if (lat->bottom
237 || lat->contains_variable
238 || lat->values_count != 1)
239 return false;
240 else
241 return true;
244 /* Return true iff the CS is an edge within a strongly connected component as
245 computed by ipa_reduced_postorder. */
247 static inline bool
248 edge_within_scc (struct cgraph_edge *cs)
250 struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->aux;
251 struct ipa_dfs_info *callee_dfs;
252 struct cgraph_node *callee = cgraph_function_node (cs->callee, NULL);
254 callee_dfs = (struct ipa_dfs_info *) callee->aux;
255 return (caller_dfs
256 && callee_dfs
257 && caller_dfs->scc_no == callee_dfs->scc_no);
260 /* Print V which is extracted from a value in a lattice to F. */
262 static void
263 print_ipcp_constant_value (FILE * f, tree v)
265 if (TREE_CODE (v) == TREE_BINFO)
267 fprintf (f, "BINFO ");
268 print_generic_expr (f, BINFO_TYPE (v), 0);
270 else if (TREE_CODE (v) == ADDR_EXPR
271 && TREE_CODE (TREE_OPERAND (v, 0)) == CONST_DECL)
273 fprintf (f, "& ");
274 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (v, 0)), 0);
276 else
277 print_generic_expr (f, v, 0);
280 /* Print all ipcp_lattices of all functions to F. */
282 static void
283 print_all_lattices (FILE * f, bool dump_sources, bool dump_benefits)
285 struct cgraph_node *node;
286 int i, count;
288 fprintf (f, "\nLattices:\n");
289 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
291 struct ipa_node_params *info;
293 info = IPA_NODE_REF (node);
294 fprintf (f, " Node: %s/%i:\n", cgraph_node_name (node), node->uid);
295 count = ipa_get_param_count (info);
296 for (i = 0; i < count; i++)
298 struct ipcp_lattice *lat = ipa_get_lattice (info, i);
299 struct ipcp_value *val;
300 bool prev = false;
302 fprintf (f, " param [%d]: ", i);
303 if (lat->bottom)
305 fprintf (f, "BOTTOM\n");
306 continue;
309 if (!lat->values_count && !lat->contains_variable)
311 fprintf (f, "TOP\n");
312 continue;
315 if (lat->contains_variable)
317 fprintf (f, "VARIABLE");
318 prev = true;
319 if (dump_benefits)
320 fprintf (f, "\n");
323 for (val = lat->values; val; val = val->next)
325 if (dump_benefits && prev)
326 fprintf (f, " ");
327 else if (!dump_benefits && prev)
328 fprintf (f, ", ");
329 else
330 prev = true;
332 print_ipcp_constant_value (f, val->value);
334 if (dump_sources)
336 struct ipcp_value_source *s;
338 fprintf (f, " [from:");
339 for (s = val->sources; s; s = s->next)
340 fprintf (f, " %i(%i)", s->cs->caller->uid,s->cs->frequency);
341 fprintf (f, "]");
344 if (dump_benefits)
345 fprintf (f, " [loc_time: %i, loc_size: %i, "
346 "prop_time: %i, prop_size: %i]\n",
347 val->local_time_benefit, val->local_size_cost,
348 val->prop_time_benefit, val->prop_size_cost);
350 if (!dump_benefits)
351 fprintf (f, "\n");
356 /* Determine whether it is at all technically possible to create clones of NODE
357 and store this information in the ipa_node_params structure associated
358 with NODE. */
360 static void
361 determine_versionability (struct cgraph_node *node)
363 const char *reason = NULL;
365 /* There are a number of generic reasons functions cannot be versioned. We
366 also cannot remove parameters if there are type attributes such as fnspec
367 present. */
368 if (node->alias || node->thunk.thunk_p)
369 reason = "alias or thunk";
370 else if (!node->local.versionable)
371 reason = "not a tree_versionable_function";
372 else if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
373 reason = "insufficient body availability";
375 if (reason && dump_file && !node->alias && !node->thunk.thunk_p)
376 fprintf (dump_file, "Function %s/%i is not versionable, reason: %s.\n",
377 cgraph_node_name (node), node->uid, reason);
379 node->local.versionable = (reason == NULL);
382 /* Return true if it is at all technically possible to create clones of a
383 NODE. */
385 static bool
386 ipcp_versionable_function_p (struct cgraph_node *node)
388 return node->local.versionable;
391 /* Structure holding accumulated information about callers of a node. */
393 struct caller_statistics
395 gcov_type count_sum;
396 int n_calls, n_hot_calls, freq_sum;
399 /* Initialize fields of STAT to zeroes. */
401 static inline void
402 init_caller_stats (struct caller_statistics *stats)
404 stats->count_sum = 0;
405 stats->n_calls = 0;
406 stats->n_hot_calls = 0;
407 stats->freq_sum = 0;
410 /* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
411 non-thunk incoming edges to NODE. */
413 static bool
414 gather_caller_stats (struct cgraph_node *node, void *data)
416 struct caller_statistics *stats = (struct caller_statistics *) data;
417 struct cgraph_edge *cs;
419 for (cs = node->callers; cs; cs = cs->next_caller)
420 if (cs->caller->thunk.thunk_p)
421 cgraph_for_node_and_aliases (cs->caller, gather_caller_stats,
422 stats, false);
423 else
425 stats->count_sum += cs->count;
426 stats->freq_sum += cs->frequency;
427 stats->n_calls++;
428 if (cgraph_maybe_hot_edge_p (cs))
429 stats->n_hot_calls ++;
431 return false;
435 /* Return true if this NODE is viable candidate for cloning. */
437 static bool
438 ipcp_cloning_candidate_p (struct cgraph_node *node)
440 struct caller_statistics stats;
442 gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
444 if (!flag_ipa_cp_clone)
446 if (dump_file)
447 fprintf (dump_file, "Not considering %s for cloning; "
448 "-fipa-cp-clone disabled.\n",
449 cgraph_node_name (node));
450 return false;
453 if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
455 if (dump_file)
456 fprintf (dump_file, "Not considering %s for cloning; "
457 "optimizing it for size.\n",
458 cgraph_node_name (node));
459 return false;
462 init_caller_stats (&stats);
463 cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
465 if (inline_summary (node)->self_size < stats.n_calls)
467 if (dump_file)
468 fprintf (dump_file, "Considering %s for cloning; code might shrink.\n",
469 cgraph_node_name (node));
470 return true;
473 /* When profile is available and function is hot, propagate into it even if
474 calls seems cold; constant propagation can improve function's speed
475 significantly. */
476 if (max_count)
478 if (stats.count_sum > node->count * 90 / 100)
480 if (dump_file)
481 fprintf (dump_file, "Considering %s for cloning; "
482 "usually called directly.\n",
483 cgraph_node_name (node));
484 return true;
487 if (!stats.n_hot_calls)
489 if (dump_file)
490 fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
491 cgraph_node_name (node));
492 return false;
494 if (dump_file)
495 fprintf (dump_file, "Considering %s for cloning.\n",
496 cgraph_node_name (node));
497 return true;
500 /* Arrays representing a topological ordering of call graph nodes and a stack
501 of noes used during constant propagation. */
503 struct topo_info
505 struct cgraph_node **order;
506 struct cgraph_node **stack;
507 int nnodes, stack_top;
510 /* Allocate the arrays in TOPO and topologically sort the nodes into order. */
512 static void
513 build_toporder_info (struct topo_info *topo)
515 topo->order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
516 topo->stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
517 topo->stack_top = 0;
518 topo->nnodes = ipa_reduced_postorder (topo->order, true, true, NULL);
521 /* Free information about strongly connected components and the arrays in
522 TOPO. */
524 static void
525 free_toporder_info (struct topo_info *topo)
527 ipa_free_postorder_info ();
528 free (topo->order);
529 free (topo->stack);
532 /* Add NODE to the stack in TOPO, unless it is already there. */
534 static inline void
535 push_node_to_stack (struct topo_info *topo, struct cgraph_node *node)
537 struct ipa_node_params *info = IPA_NODE_REF (node);
538 if (info->node_enqueued)
539 return;
540 info->node_enqueued = 1;
541 topo->stack[topo->stack_top++] = node;
544 /* Pop a node from the stack in TOPO and return it or return NULL if the stack
545 is empty. */
547 static struct cgraph_node *
548 pop_node_from_stack (struct topo_info *topo)
550 if (topo->stack_top)
552 struct cgraph_node *node;
553 topo->stack_top--;
554 node = topo->stack[topo->stack_top];
555 IPA_NODE_REF (node)->node_enqueued = 0;
556 return node;
558 else
559 return NULL;
562 /* Set lattice LAT to bottom and return true if it previously was not set as
563 such. */
565 static inline bool
566 set_lattice_to_bottom (struct ipcp_lattice *lat)
568 bool ret = !lat->bottom;
569 lat->bottom = true;
570 return ret;
573 /* Mark lattice as containing an unknown value and return true if it previously
574 was not marked as such. */
576 static inline bool
577 set_lattice_contains_variable (struct ipcp_lattice *lat)
579 bool ret = !lat->contains_variable;
580 lat->contains_variable = true;
581 return ret;
584 /* Initialize ipcp_lattices. */
586 static void
587 initialize_node_lattices (struct cgraph_node *node)
589 struct ipa_node_params *info = IPA_NODE_REF (node);
590 struct cgraph_edge *ie;
591 bool disable = false, variable = false;
592 int i;
594 gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
595 if (!node->local.local)
597 /* When cloning is allowed, we can assume that externally visible
598 functions are not called. We will compensate this by cloning
599 later. */
600 if (ipcp_versionable_function_p (node)
601 && ipcp_cloning_candidate_p (node))
602 variable = true;
603 else
604 disable = true;
607 if (disable || variable)
609 for (i = 0; i < ipa_get_param_count (info) ; i++)
611 struct ipcp_lattice *lat = ipa_get_lattice (info, i);
612 if (disable)
613 set_lattice_to_bottom (lat);
614 else
615 set_lattice_contains_variable (lat);
617 if (dump_file && (dump_flags & TDF_DETAILS)
618 && node->alias && node->thunk.thunk_p)
619 fprintf (dump_file, "Marking all lattices of %s/%i as %s\n",
620 cgraph_node_name (node), node->uid,
621 disable ? "BOTTOM" : "VARIABLE");
624 for (ie = node->indirect_calls; ie; ie = ie->next_callee)
625 if (ie->indirect_info->polymorphic)
627 gcc_checking_assert (ie->indirect_info->param_index >= 0);
628 ipa_get_lattice (info, ie->indirect_info->param_index)->virt_call = 1;
632 /* Return the result of a (possibly arithmetic) pass through jump function
633 JFUNC on the constant value INPUT. Return NULL_TREE if that cannot be
634 determined or itself is considered an interprocedural invariant. */
636 static tree
637 ipa_get_jf_pass_through_result (struct ipa_jump_func *jfunc, tree input)
639 tree restype, res;
641 gcc_checking_assert (is_gimple_ip_invariant (input));
642 if (jfunc->value.pass_through.operation == NOP_EXPR)
643 return input;
645 if (TREE_CODE_CLASS (jfunc->value.pass_through.operation)
646 == tcc_comparison)
647 restype = boolean_type_node;
648 else
649 restype = TREE_TYPE (input);
650 res = fold_binary (jfunc->value.pass_through.operation, restype,
651 input, jfunc->value.pass_through.operand);
653 if (res && !is_gimple_ip_invariant (res))
654 return NULL_TREE;
656 return res;
659 /* Return the result of an ancestor jump function JFUNC on the constant value
660 INPUT. Return NULL_TREE if that cannot be determined. */
662 static tree
663 ipa_get_jf_ancestor_result (struct ipa_jump_func *jfunc, tree input)
665 if (TREE_CODE (input) == ADDR_EXPR)
667 tree t = TREE_OPERAND (input, 0);
668 t = build_ref_for_offset (EXPR_LOCATION (t), t,
669 jfunc->value.ancestor.offset,
670 jfunc->value.ancestor.type, NULL, false);
671 return build_fold_addr_expr (t);
673 else
674 return NULL_TREE;
677 /* Extract the acual BINFO being described by JFUNC which must be a known type
678 jump function. */
680 static tree
681 ipa_value_from_known_type_jfunc (struct ipa_jump_func *jfunc)
683 tree base_binfo = TYPE_BINFO (jfunc->value.known_type.base_type);
684 if (!base_binfo)
685 return NULL_TREE;
686 return get_binfo_at_offset (base_binfo,
687 jfunc->value.known_type.offset,
688 jfunc->value.known_type.component_type);
691 /* Determine whether JFUNC evaluates to a known value (that is either a
692 constant or a binfo) and if so, return it. Otherwise return NULL. INFO
693 describes the caller node so that pass-through jump functions can be
694 evaluated. */
696 tree
697 ipa_value_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
699 if (jfunc->type == IPA_JF_CONST)
700 return jfunc->value.constant;
701 else if (jfunc->type == IPA_JF_KNOWN_TYPE)
702 return ipa_value_from_known_type_jfunc (jfunc);
703 else if (jfunc->type == IPA_JF_PASS_THROUGH
704 || jfunc->type == IPA_JF_ANCESTOR)
706 tree input;
707 int idx;
709 if (jfunc->type == IPA_JF_PASS_THROUGH)
710 idx = jfunc->value.pass_through.formal_id;
711 else
712 idx = jfunc->value.ancestor.formal_id;
714 if (info->ipcp_orig_node)
715 input = VEC_index (tree, info->known_vals, idx);
716 else
718 struct ipcp_lattice *lat;
720 if (!info->lattices)
722 gcc_checking_assert (!flag_ipa_cp);
723 return NULL_TREE;
725 lat = ipa_get_lattice (info, idx);
726 if (!ipa_lat_is_single_const (lat))
727 return NULL_TREE;
728 input = lat->values->value;
731 if (!input)
732 return NULL_TREE;
734 if (jfunc->type == IPA_JF_PASS_THROUGH)
736 if (jfunc->value.pass_through.operation == NOP_EXPR)
737 return input;
738 else if (TREE_CODE (input) == TREE_BINFO)
739 return NULL_TREE;
740 else
741 return ipa_get_jf_pass_through_result (jfunc, input);
743 else
745 if (TREE_CODE (input) == TREE_BINFO)
746 return get_binfo_at_offset (input, jfunc->value.ancestor.offset,
747 jfunc->value.ancestor.type);
748 else
749 return ipa_get_jf_ancestor_result (jfunc, input);
752 else
753 return NULL_TREE;
757 /* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
758 bottom, not containing a variable component and without any known value at
759 the same time. */
761 DEBUG_FUNCTION void
762 ipcp_verify_propagated_values (void)
764 struct cgraph_node *node;
766 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
768 struct ipa_node_params *info = IPA_NODE_REF (node);
769 int i, count = ipa_get_param_count (info);
771 for (i = 0; i < count; i++)
773 struct ipcp_lattice *lat = ipa_get_lattice (info, i);
775 if (!lat->bottom
776 && !lat->contains_variable
777 && lat->values_count == 0)
779 if (dump_file)
781 fprintf (dump_file, "\nIPA lattices after constant "
782 "propagation:\n");
783 print_all_lattices (dump_file, true, false);
786 gcc_unreachable ();
792 /* Return true iff X and Y should be considered equal values by IPA-CP. */
794 static bool
795 values_equal_for_ipcp_p (tree x, tree y)
797 gcc_checking_assert (x != NULL_TREE && y != NULL_TREE);
799 if (x == y)
800 return true;
802 if (TREE_CODE (x) == TREE_BINFO || TREE_CODE (y) == TREE_BINFO)
803 return false;
805 if (TREE_CODE (x) == ADDR_EXPR
806 && TREE_CODE (y) == ADDR_EXPR
807 && TREE_CODE (TREE_OPERAND (x, 0)) == CONST_DECL
808 && TREE_CODE (TREE_OPERAND (y, 0)) == CONST_DECL)
809 return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x, 0)),
810 DECL_INITIAL (TREE_OPERAND (y, 0)), 0);
811 else
812 return operand_equal_p (x, y, 0);
815 /* Add a new value source to VAL, marking that a value comes from edge CS and
816 (if the underlying jump function is a pass-through or an ancestor one) from
817 a caller value SRC_VAL of a caller parameter described by SRC_INDEX. */
819 static void
820 add_value_source (struct ipcp_value *val, struct cgraph_edge *cs,
821 struct ipcp_value *src_val, int src_idx)
823 struct ipcp_value_source *src;
825 src = (struct ipcp_value_source *) pool_alloc (ipcp_sources_pool);
826 src->cs = cs;
827 src->val = src_val;
828 src->index = src_idx;
830 src->next = val->sources;
831 val->sources = src;
835 /* Try to add NEWVAL to LAT, potentially creating a new struct ipcp_value for
836 it. CS, SRC_VAL and SRC_INDEX are meant for add_value_source and have the
837 same meaning. */
839 static bool
840 add_value_to_lattice (struct ipcp_lattice *lat, tree newval,
841 struct cgraph_edge *cs, struct ipcp_value *src_val,
842 int src_idx)
844 struct ipcp_value *val;
846 if (lat->bottom)
847 return false;
850 for (val = lat->values; val; val = val->next)
851 if (values_equal_for_ipcp_p (val->value, newval))
853 if (edge_within_scc (cs))
855 struct ipcp_value_source *s;
856 for (s = val->sources; s ; s = s->next)
857 if (s->cs == cs)
858 break;
859 if (s)
860 return false;
863 add_value_source (val, cs, src_val, src_idx);
864 return false;
867 if (lat->values_count == PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE))
869 /* We can only free sources, not the values themselves, because sources
870 of other values in this this SCC might point to them. */
871 for (val = lat->values; val; val = val->next)
873 while (val->sources)
875 struct ipcp_value_source *src = val->sources;
876 val->sources = src->next;
877 pool_free (ipcp_sources_pool, src);
881 lat->values = NULL;
882 return set_lattice_to_bottom (lat);
885 lat->values_count++;
886 val = (struct ipcp_value *) pool_alloc (ipcp_values_pool);
887 memset (val, 0, sizeof (*val));
889 add_value_source (val, cs, src_val, src_idx);
890 val->value = newval;
891 val->next = lat->values;
892 lat->values = val;
893 return true;
896 /* Propagate values through a pass-through jump function JFUNC associated with
897 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
898 is the index of the source parameter. */
900 static bool
901 propagate_vals_accross_pass_through (struct cgraph_edge *cs,
902 struct ipa_jump_func *jfunc,
903 struct ipcp_lattice *src_lat,
904 struct ipcp_lattice *dest_lat,
905 int src_idx)
907 struct ipcp_value *src_val;
908 bool ret = false;
910 if (jfunc->value.pass_through.operation == NOP_EXPR)
911 for (src_val = src_lat->values; src_val; src_val = src_val->next)
912 ret |= add_value_to_lattice (dest_lat, src_val->value, cs,
913 src_val, src_idx);
914 /* Do not create new values when propagating within an SCC because if there
915 arithmetic functions with circular dependencies, there is infinite number
916 of them and we would just make lattices bottom. */
917 else if (edge_within_scc (cs))
918 ret = set_lattice_contains_variable (dest_lat);
919 else
920 for (src_val = src_lat->values; src_val; src_val = src_val->next)
922 tree cstval = src_val->value;
924 if (TREE_CODE (cstval) == TREE_BINFO)
926 ret |= set_lattice_contains_variable (dest_lat);
927 continue;
929 cstval = ipa_get_jf_pass_through_result (jfunc, cstval);
931 if (cstval)
932 ret |= add_value_to_lattice (dest_lat, cstval, cs, src_val, src_idx);
933 else
934 ret |= set_lattice_contains_variable (dest_lat);
937 return ret;
940 /* Propagate values through an ancestor jump function JFUNC associated with
941 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
942 is the index of the source parameter. */
944 static bool
945 propagate_vals_accross_ancestor (struct cgraph_edge *cs,
946 struct ipa_jump_func *jfunc,
947 struct ipcp_lattice *src_lat,
948 struct ipcp_lattice *dest_lat,
949 int src_idx)
951 struct ipcp_value *src_val;
952 bool ret = false;
954 if (edge_within_scc (cs))
955 return set_lattice_contains_variable (dest_lat);
957 for (src_val = src_lat->values; src_val; src_val = src_val->next)
959 tree t = src_val->value;
961 if (TREE_CODE (t) == TREE_BINFO)
962 t = get_binfo_at_offset (t, jfunc->value.ancestor.offset,
963 jfunc->value.ancestor.type);
964 else
965 t = ipa_get_jf_ancestor_result (jfunc, t);
967 if (t)
968 ret |= add_value_to_lattice (dest_lat, t, cs, src_val, src_idx);
969 else
970 ret |= set_lattice_contains_variable (dest_lat);
973 return ret;
976 /* Propagate values across jump function JFUNC that is associated with edge CS
977 and put the values into DEST_LAT. */
979 static bool
980 propagate_accross_jump_function (struct cgraph_edge *cs,
981 struct ipa_jump_func *jfunc,
982 struct ipcp_lattice *dest_lat)
984 if (dest_lat->bottom)
985 return false;
987 if (jfunc->type == IPA_JF_CONST
988 || jfunc->type == IPA_JF_KNOWN_TYPE)
990 tree val;
992 if (jfunc->type == IPA_JF_KNOWN_TYPE)
994 val = ipa_value_from_known_type_jfunc (jfunc);
995 if (!val)
996 return set_lattice_contains_variable (dest_lat);
998 else
999 val = jfunc->value.constant;
1000 return add_value_to_lattice (dest_lat, val, cs, NULL, 0);
1002 else if (jfunc->type == IPA_JF_PASS_THROUGH
1003 || jfunc->type == IPA_JF_ANCESTOR)
1005 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1006 struct ipcp_lattice *src_lat;
1007 int src_idx;
1008 bool ret;
1010 if (jfunc->type == IPA_JF_PASS_THROUGH)
1011 src_idx = jfunc->value.pass_through.formal_id;
1012 else
1013 src_idx = jfunc->value.ancestor.formal_id;
1015 src_lat = ipa_get_lattice (caller_info, src_idx);
1016 if (src_lat->bottom)
1017 return set_lattice_contains_variable (dest_lat);
1019 /* If we would need to clone the caller and cannot, do not propagate. */
1020 if (!ipcp_versionable_function_p (cs->caller)
1021 && (src_lat->contains_variable
1022 || (src_lat->values_count > 1)))
1023 return set_lattice_contains_variable (dest_lat);
1025 if (jfunc->type == IPA_JF_PASS_THROUGH)
1026 ret = propagate_vals_accross_pass_through (cs, jfunc, src_lat,
1027 dest_lat, src_idx);
1028 else
1029 ret = propagate_vals_accross_ancestor (cs, jfunc, src_lat, dest_lat,
1030 src_idx);
1032 if (src_lat->contains_variable)
1033 ret |= set_lattice_contains_variable (dest_lat);
1035 return ret;
1038 /* TODO: We currently do not handle member method pointers in IPA-CP (we only
1039 use it for indirect inlining), we should propagate them too. */
1040 return set_lattice_contains_variable (dest_lat);
1043 /* Propagate constants from the caller to the callee of CS. INFO describes the
1044 caller. */
1046 static bool
1047 propagate_constants_accross_call (struct cgraph_edge *cs)
1049 struct ipa_node_params *callee_info;
1050 enum availability availability;
1051 struct cgraph_node *callee, *alias_or_thunk;
1052 struct ipa_edge_args *args;
1053 bool ret = false;
1054 int i, args_count, parms_count;
1056 callee = cgraph_function_node (cs->callee, &availability);
1057 if (!callee->analyzed)
1058 return false;
1059 gcc_checking_assert (cgraph_function_with_gimple_body_p (callee));
1060 callee_info = IPA_NODE_REF (callee);
1062 args = IPA_EDGE_REF (cs);
1063 args_count = ipa_get_cs_argument_count (args);
1064 parms_count = ipa_get_param_count (callee_info);
1066 /* If this call goes through a thunk we must not propagate to the first (0th)
1067 parameter. However, we might need to uncover a thunk from below a series
1068 of aliases first. */
1069 alias_or_thunk = cs->callee;
1070 while (alias_or_thunk->alias)
1071 alias_or_thunk = cgraph_alias_aliased_node (alias_or_thunk);
1072 if (alias_or_thunk->thunk.thunk_p)
1074 ret |= set_lattice_contains_variable (ipa_get_lattice (callee_info, 0));
1075 i = 1;
1077 else
1078 i = 0;
1080 for (; (i < args_count) && (i < parms_count); i++)
1082 struct ipa_jump_func *jump_func = ipa_get_ith_jump_func (args, i);
1083 struct ipcp_lattice *dest_lat = ipa_get_lattice (callee_info, i);
1085 if (availability == AVAIL_OVERWRITABLE)
1086 ret |= set_lattice_contains_variable (dest_lat);
1087 else
1088 ret |= propagate_accross_jump_function (cs, jump_func, dest_lat);
1090 for (; i < parms_count; i++)
1091 ret |= set_lattice_contains_variable (ipa_get_lattice (callee_info, i));
1093 return ret;
1096 /* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
1097 (which can contain both constants and binfos) or KNOWN_BINFOS (which can be
1098 NULL) return the destination. */
1100 tree
1101 ipa_get_indirect_edge_target (struct cgraph_edge *ie,
1102 VEC (tree, heap) *known_vals,
1103 VEC (tree, heap) *known_binfos)
1105 int param_index = ie->indirect_info->param_index;
1106 HOST_WIDE_INT token, anc_offset;
1107 tree otr_type;
1108 tree t;
1110 if (param_index == -1)
1111 return NULL_TREE;
1113 if (!ie->indirect_info->polymorphic)
1115 tree t = (VEC_length (tree, known_vals) > (unsigned int) param_index
1116 ? VEC_index (tree, known_vals, param_index) : NULL);
1117 if (t &&
1118 TREE_CODE (t) == ADDR_EXPR
1119 && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL)
1120 return TREE_OPERAND (t, 0);
1121 else
1122 return NULL_TREE;
1125 token = ie->indirect_info->otr_token;
1126 anc_offset = ie->indirect_info->anc_offset;
1127 otr_type = ie->indirect_info->otr_type;
1129 t = VEC_index (tree, known_vals, param_index);
1130 if (!t && known_binfos
1131 && VEC_length (tree, known_binfos) > (unsigned int) param_index)
1132 t = VEC_index (tree, known_binfos, param_index);
1133 if (!t)
1134 return NULL_TREE;
1136 if (TREE_CODE (t) != TREE_BINFO)
1138 tree binfo;
1139 binfo = gimple_extract_devirt_binfo_from_cst (t);
1140 if (!binfo)
1141 return NULL_TREE;
1142 binfo = get_binfo_at_offset (binfo, anc_offset, otr_type);
1143 if (!binfo)
1144 return NULL_TREE;
1145 return gimple_get_virt_method_for_binfo (token, binfo);
1147 else
1149 tree binfo;
1151 binfo = get_binfo_at_offset (t, anc_offset, otr_type);
1152 if (!binfo)
1153 return NULL_TREE;
1154 return gimple_get_virt_method_for_binfo (token, binfo);
1158 /* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS
1159 and KNOWN_BINFOS. */
1161 static int
1162 devirtualization_time_bonus (struct cgraph_node *node,
1163 VEC (tree, heap) *known_csts,
1164 VEC (tree, heap) *known_binfos)
1166 struct cgraph_edge *ie;
1167 int res = 0;
1169 for (ie = node->indirect_calls; ie; ie = ie->next_callee)
1171 struct cgraph_node *callee;
1172 struct inline_summary *isummary;
1173 tree target;
1175 target = ipa_get_indirect_edge_target (ie, known_csts, known_binfos);
1176 if (!target)
1177 continue;
1179 /* Only bare minimum benefit for clearly un-inlineable targets. */
1180 res += 1;
1181 callee = cgraph_get_node (target);
1182 if (!callee || !callee->analyzed)
1183 continue;
1184 isummary = inline_summary (callee);
1185 if (!isummary->inlinable)
1186 continue;
1188 /* FIXME: The values below need re-considering and perhaps also
1189 integrating into the cost metrics, at lest in some very basic way. */
1190 if (isummary->size <= MAX_INLINE_INSNS_AUTO / 4)
1191 res += 31;
1192 else if (isummary->size <= MAX_INLINE_INSNS_AUTO / 2)
1193 res += 15;
1194 else if (isummary->size <= MAX_INLINE_INSNS_AUTO
1195 || DECL_DECLARED_INLINE_P (callee->decl))
1196 res += 7;
1199 return res;
1202 /* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
1203 and SIZE_COST and with the sum of frequencies of incoming edges to the
1204 potential new clone in FREQUENCIES. */
1206 static bool
1207 good_cloning_opportunity_p (struct cgraph_node *node, int time_benefit,
1208 int freq_sum, gcov_type count_sum, int size_cost)
1210 if (time_benefit == 0
1211 || !flag_ipa_cp_clone
1212 || !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
1213 return false;
1215 gcc_assert (size_cost > 0);
1217 if (max_count)
1219 int factor = (count_sum * 1000) / max_count;
1220 HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * factor)
1221 / size_cost);
1223 if (dump_file && (dump_flags & TDF_DETAILS))
1224 fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
1225 "size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC
1226 ") -> evaluation: " HOST_WIDEST_INT_PRINT_DEC
1227 ", threshold: %i\n",
1228 time_benefit, size_cost, (HOST_WIDE_INT) count_sum,
1229 evaluation, 500);
1231 return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
1233 else
1235 HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * freq_sum)
1236 / size_cost);
1238 if (dump_file && (dump_flags & TDF_DETAILS))
1239 fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
1240 "size: %i, freq_sum: %i) -> evaluation: "
1241 HOST_WIDEST_INT_PRINT_DEC ", threshold: %i\n",
1242 time_benefit, size_cost, freq_sum, evaluation,
1243 CGRAPH_FREQ_BASE /2);
1245 return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
1250 /* Allocate KNOWN_CSTS and KNOWN_BINFOS and populate them with values of
1251 parameters that are known independent of the context. INFO describes the
1252 function. If REMOVABLE_PARAMS_COST is non-NULL, the movement cost of all
1253 removable parameters will be stored in it. */
1255 static bool
1256 gather_context_independent_values (struct ipa_node_params *info,
1257 VEC (tree, heap) **known_csts,
1258 VEC (tree, heap) **known_binfos,
1259 int *removable_params_cost)
1261 int i, count = ipa_get_param_count (info);
1262 bool ret = false;
1264 *known_csts = NULL;
1265 *known_binfos = NULL;
1266 VEC_safe_grow_cleared (tree, heap, *known_csts, count);
1267 VEC_safe_grow_cleared (tree, heap, *known_binfos, count);
1269 if (removable_params_cost)
1270 *removable_params_cost = 0;
1272 for (i = 0; i < count ; i++)
1274 struct ipcp_lattice *lat = ipa_get_lattice (info, i);
1276 if (ipa_lat_is_single_const (lat))
1278 struct ipcp_value *val = lat->values;
1279 if (TREE_CODE (val->value) != TREE_BINFO)
1281 VEC_replace (tree, *known_csts, i, val->value);
1282 if (removable_params_cost)
1283 *removable_params_cost
1284 += estimate_move_cost (TREE_TYPE (val->value));
1285 ret = true;
1287 else if (lat->virt_call)
1289 VEC_replace (tree, *known_binfos, i, val->value);
1290 ret = true;
1292 else if (removable_params_cost
1293 && !ipa_is_param_used (info, i))
1294 *removable_params_cost
1295 += estimate_move_cost (TREE_TYPE (ipa_get_param (info, i)));
1297 else if (removable_params_cost
1298 && !ipa_is_param_used (info, i))
1299 *removable_params_cost
1300 += estimate_move_cost (TREE_TYPE (ipa_get_param (info, i)));
1303 return ret;
1306 /* Iterate over known values of parameters of NODE and estimate the local
1307 effects in terms of time and size they have. */
1309 static void
1310 estimate_local_effects (struct cgraph_node *node)
1312 struct ipa_node_params *info = IPA_NODE_REF (node);
1313 int i, count = ipa_get_param_count (info);
1314 VEC (tree, heap) *known_csts, *known_binfos;
1315 bool always_const;
1316 int base_time = inline_summary (node)->time;
1317 int removable_params_cost;
1319 if (!count || !ipcp_versionable_function_p (node))
1320 return;
1322 if (dump_file && (dump_flags & TDF_DETAILS))
1323 fprintf (dump_file, "\nEstimating effects for %s/%i, base_time: %i.\n",
1324 cgraph_node_name (node), node->uid, base_time);
1326 always_const = gather_context_independent_values (info, &known_csts,
1327 &known_binfos,
1328 &removable_params_cost);
1329 if (always_const)
1331 struct caller_statistics stats;
1332 int time, size;
1334 init_caller_stats (&stats);
1335 cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
1336 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
1337 &size, &time);
1338 time -= devirtualization_time_bonus (node, known_csts, known_binfos);
1339 time -= removable_params_cost;
1340 size -= stats.n_calls * removable_params_cost;
1342 if (dump_file)
1343 fprintf (dump_file, " - context independent values, size: %i, "
1344 "time_benefit: %i\n", size, base_time - time);
1346 if (size <= 0
1347 || cgraph_will_be_removed_from_program_if_no_direct_calls (node))
1349 info->clone_for_all_contexts = true;
1350 base_time = time;
1352 if (dump_file)
1353 fprintf (dump_file, " Decided to specialize for all "
1354 "known contexts, code not going to grow.\n");
1356 else if (good_cloning_opportunity_p (node, base_time - time,
1357 stats.freq_sum, stats.count_sum,
1358 size))
1360 if (size + overall_size <= max_new_size)
1362 info->clone_for_all_contexts = true;
1363 base_time = time;
1364 overall_size += size;
1366 if (dump_file)
1367 fprintf (dump_file, " Decided to specialize for all "
1368 "known contexts, growth deemed beneficial.\n");
1370 else if (dump_file && (dump_flags & TDF_DETAILS))
1371 fprintf (dump_file, " Not cloning for all contexts because "
1372 "max_new_size would be reached with %li.\n",
1373 size + overall_size);
1377 for (i = 0; i < count ; i++)
1379 struct ipcp_lattice *lat = ipa_get_lattice (info, i);
1380 struct ipcp_value *val;
1381 int emc;
1383 if (lat->bottom
1384 || !lat->values
1385 || VEC_index (tree, known_csts, i)
1386 || VEC_index (tree, known_binfos, i))
1387 continue;
1389 for (val = lat->values; val; val = val->next)
1391 int time, size, time_benefit;
1393 if (TREE_CODE (val->value) != TREE_BINFO)
1395 VEC_replace (tree, known_csts, i, val->value);
1396 VEC_replace (tree, known_binfos, i, NULL_TREE);
1397 emc = estimate_move_cost (TREE_TYPE (val->value));
1399 else if (lat->virt_call)
1401 VEC_replace (tree, known_csts, i, NULL_TREE);
1402 VEC_replace (tree, known_binfos, i, val->value);
1403 emc = 0;
1405 else
1406 continue;
1408 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
1409 &size, &time);
1410 time_benefit = base_time - time
1411 + devirtualization_time_bonus (node, known_csts, known_binfos)
1412 + removable_params_cost + emc;
1414 gcc_checking_assert (size >=0);
1415 /* The inliner-heuristics based estimates may think that in certain
1416 contexts some functions do not have any size at all but we want
1417 all specializations to have at least a tiny cost, not least not to
1418 divide by zero. */
1419 if (size == 0)
1420 size = 1;
1422 if (dump_file && (dump_flags & TDF_DETAILS))
1424 fprintf (dump_file, " - estimates for value ");
1425 print_ipcp_constant_value (dump_file, val->value);
1426 fprintf (dump_file, " for parameter ");
1427 print_generic_expr (dump_file, ipa_get_param (info, i), 0);
1428 fprintf (dump_file, ": time_benefit: %i, size: %i\n",
1429 time_benefit, size);
1432 val->local_time_benefit = time_benefit;
1433 val->local_size_cost = size;
1437 VEC_free (tree, heap, known_csts);
1438 VEC_free (tree, heap, known_binfos);
1442 /* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
1443 topological sort of values. */
1445 static void
1446 add_val_to_toposort (struct ipcp_value *cur_val)
1448 static int dfs_counter = 0;
1449 static struct ipcp_value *stack;
1450 struct ipcp_value_source *src;
1452 if (cur_val->dfs)
1453 return;
1455 dfs_counter++;
1456 cur_val->dfs = dfs_counter;
1457 cur_val->low_link = dfs_counter;
1459 cur_val->topo_next = stack;
1460 stack = cur_val;
1461 cur_val->on_stack = true;
1463 for (src = cur_val->sources; src; src = src->next)
1464 if (src->val)
1466 if (src->val->dfs == 0)
1468 add_val_to_toposort (src->val);
1469 if (src->val->low_link < cur_val->low_link)
1470 cur_val->low_link = src->val->low_link;
1472 else if (src->val->on_stack
1473 && src->val->dfs < cur_val->low_link)
1474 cur_val->low_link = src->val->dfs;
1477 if (cur_val->dfs == cur_val->low_link)
1479 struct ipcp_value *v, *scc_list = NULL;
1483 v = stack;
1484 stack = v->topo_next;
1485 v->on_stack = false;
1487 v->scc_next = scc_list;
1488 scc_list = v;
1490 while (v != cur_val);
1492 cur_val->topo_next = values_topo;
1493 values_topo = cur_val;
1497 /* Add all values in lattices associated with NODE to the topological sort if
1498 they are not there yet. */
1500 static void
1501 add_all_node_vals_to_toposort (struct cgraph_node *node)
1503 struct ipa_node_params *info = IPA_NODE_REF (node);
1504 int i, count = ipa_get_param_count (info);
1506 for (i = 0; i < count ; i++)
1508 struct ipcp_lattice *lat = ipa_get_lattice (info, i);
1509 struct ipcp_value *val;
1511 if (lat->bottom || !lat->values)
1512 continue;
1513 for (val = lat->values; val; val = val->next)
1514 add_val_to_toposort (val);
1518 /* One pass of constants propagation along the call graph edges, from callers
1519 to callees (requires topological ordering in TOPO), iterate over strongly
1520 connected components. */
1522 static void
1523 propagate_constants_topo (struct topo_info *topo)
1525 int i;
1527 for (i = topo->nnodes - 1; i >= 0; i--)
1529 struct cgraph_node *v, *node = topo->order[i];
1530 struct ipa_dfs_info *node_dfs_info;
1532 if (!cgraph_function_with_gimple_body_p (node))
1533 continue;
1535 node_dfs_info = (struct ipa_dfs_info *) node->aux;
1536 /* First, iteratively propagate within the strongly connected component
1537 until all lattices stabilize. */
1538 v = node_dfs_info->next_cycle;
1539 while (v)
1541 push_node_to_stack (topo, v);
1542 v = ((struct ipa_dfs_info *) v->aux)->next_cycle;
1545 v = node;
1546 while (v)
1548 struct cgraph_edge *cs;
1550 for (cs = v->callees; cs; cs = cs->next_callee)
1551 if (edge_within_scc (cs)
1552 && propagate_constants_accross_call (cs))
1553 push_node_to_stack (topo, cs->callee);
1554 v = pop_node_from_stack (topo);
1557 /* Afterwards, propagate along edges leading out of the SCC, calculates
1558 the local effects of the discovered constants and all valid values to
1559 their topological sort. */
1560 v = node;
1561 while (v)
1563 struct cgraph_edge *cs;
1565 estimate_local_effects (v);
1566 add_all_node_vals_to_toposort (v);
1567 for (cs = v->callees; cs; cs = cs->next_callee)
1568 if (!edge_within_scc (cs))
1569 propagate_constants_accross_call (cs);
1571 v = ((struct ipa_dfs_info *) v->aux)->next_cycle;
1577 /* Return the sum of A and B if none of them is bigger than INT_MAX/2, return
1578 the bigger one if otherwise. */
1580 static int
1581 safe_add (int a, int b)
1583 if (a > INT_MAX/2 || b > INT_MAX/2)
1584 return a > b ? a : b;
1585 else
1586 return a + b;
1590 /* Propagate the estimated effects of individual values along the topological
1591 from the dependant values to those they depend on. */
1593 static void
1594 propagate_effects (void)
1596 struct ipcp_value *base;
1598 for (base = values_topo; base; base = base->topo_next)
1600 struct ipcp_value_source *src;
1601 struct ipcp_value *val;
1602 int time = 0, size = 0;
1604 for (val = base; val; val = val->scc_next)
1606 time = safe_add (time,
1607 val->local_time_benefit + val->prop_time_benefit);
1608 size = safe_add (size, val->local_size_cost + val->prop_size_cost);
1611 for (val = base; val; val = val->scc_next)
1612 for (src = val->sources; src; src = src->next)
1613 if (src->val
1614 && cgraph_maybe_hot_edge_p (src->cs))
1616 src->val->prop_time_benefit = safe_add (time,
1617 src->val->prop_time_benefit);
1618 src->val->prop_size_cost = safe_add (size,
1619 src->val->prop_size_cost);
1625 /* Propagate constants, binfos and their effects from the summaries
1626 interprocedurally. */
1628 static void
1629 ipcp_propagate_stage (struct topo_info *topo)
1631 struct cgraph_node *node;
1633 if (dump_file)
1634 fprintf (dump_file, "\n Propagating constants:\n\n");
1636 if (in_lto_p)
1637 ipa_update_after_lto_read ();
1640 FOR_EACH_DEFINED_FUNCTION (node)
1642 struct ipa_node_params *info = IPA_NODE_REF (node);
1644 determine_versionability (node);
1645 if (cgraph_function_with_gimple_body_p (node))
1647 info->lattices = XCNEWVEC (struct ipcp_lattice,
1648 ipa_get_param_count (info));
1649 initialize_node_lattices (node);
1651 if (node->count > max_count)
1652 max_count = node->count;
1653 overall_size += inline_summary (node)->self_size;
1656 max_new_size = overall_size;
1657 if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1658 max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1659 max_new_size += max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
1661 if (dump_file)
1662 fprintf (dump_file, "\noverall_size: %li, max_new_size: %li\n",
1663 overall_size, max_new_size);
1665 propagate_constants_topo (topo);
1666 #ifdef ENABLE_CHECKING
1667 ipcp_verify_propagated_values ();
1668 #endif
1669 propagate_effects ();
1671 if (dump_file)
1673 fprintf (dump_file, "\nIPA lattices after all propagation:\n");
1674 print_all_lattices (dump_file, (dump_flags & TDF_DETAILS), true);
1678 /* Discover newly direct outgoing edges from NODE which is a new clone with
1679 known KNOWN_VALS and make them direct. */
1681 static void
1682 ipcp_discover_new_direct_edges (struct cgraph_node *node,
1683 VEC (tree, heap) *known_vals)
1685 struct cgraph_edge *ie, *next_ie;
1687 for (ie = node->indirect_calls; ie; ie = next_ie)
1689 tree target;
1691 next_ie = ie->next_callee;
1692 target = ipa_get_indirect_edge_target (ie, known_vals, NULL);
1693 if (target)
1694 ipa_make_edge_direct_to_target (ie, target);
1698 /* Vector of pointers which for linked lists of clones of an original crgaph
1699 edge. */
1701 static VEC (cgraph_edge_p, heap) *next_edge_clone;
1703 static inline void
1704 grow_next_edge_clone_vector (void)
1706 if (VEC_length (cgraph_edge_p, next_edge_clone)
1707 <= (unsigned) cgraph_edge_max_uid)
1708 VEC_safe_grow_cleared (cgraph_edge_p, heap, next_edge_clone,
1709 cgraph_edge_max_uid + 1);
1712 /* Edge duplication hook to grow the appropriate linked list in
1713 next_edge_clone. */
1715 static void
1716 ipcp_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
1717 __attribute__((unused)) void *data)
1719 grow_next_edge_clone_vector ();
1720 VEC_replace (cgraph_edge_p, next_edge_clone, dst->uid,
1721 VEC_index (cgraph_edge_p, next_edge_clone, src->uid));
1722 VEC_replace (cgraph_edge_p, next_edge_clone, src->uid, dst);
1725 /* Get the next clone in the linked list of clones of an edge. */
1727 static inline struct cgraph_edge *
1728 get_next_cgraph_edge_clone (struct cgraph_edge *cs)
1730 return VEC_index (cgraph_edge_p, next_edge_clone, cs->uid);
1733 /* Return true if edge CS does bring about the value described by SRC. */
1735 static bool
1736 cgraph_edge_brings_value_p (struct cgraph_edge *cs,
1737 struct ipcp_value_source *src)
1739 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1741 if (IPA_NODE_REF (cs->callee)->ipcp_orig_node
1742 || caller_info->node_dead)
1743 return false;
1744 if (!src->val)
1745 return true;
1747 if (caller_info->ipcp_orig_node)
1749 tree t = VEC_index (tree, caller_info->known_vals, src->index);
1750 return (t != NULL_TREE
1751 && values_equal_for_ipcp_p (src->val->value, t));
1753 else
1755 struct ipcp_lattice *lat = ipa_get_lattice (caller_info, src->index);
1756 if (ipa_lat_is_single_const (lat)
1757 && values_equal_for_ipcp_p (src->val->value, lat->values->value))
1758 return true;
1759 else
1760 return false;
1764 /* Given VAL, iterate over all its sources and if they still hold, add their
1765 edge frequency and their number into *FREQUENCY and *CALLER_COUNT
1766 respectively. */
1768 static bool
1769 get_info_about_necessary_edges (struct ipcp_value *val, int *freq_sum,
1770 gcov_type *count_sum, int *caller_count)
1772 struct ipcp_value_source *src;
1773 int freq = 0, count = 0;
1774 gcov_type cnt = 0;
1775 bool hot = false;
1777 for (src = val->sources; src; src = src->next)
1779 struct cgraph_edge *cs = src->cs;
1780 while (cs)
1782 if (cgraph_edge_brings_value_p (cs, src))
1784 count++;
1785 freq += cs->frequency;
1786 cnt += cs->count;
1787 hot |= cgraph_maybe_hot_edge_p (cs);
1789 cs = get_next_cgraph_edge_clone (cs);
1793 *freq_sum = freq;
1794 *count_sum = cnt;
1795 *caller_count = count;
1796 return hot;
1799 /* Return a vector of incoming edges that do bring value VAL. It is assumed
1800 their number is known and equal to CALLER_COUNT. */
1802 static VEC (cgraph_edge_p,heap) *
1803 gather_edges_for_value (struct ipcp_value *val, int caller_count)
1805 struct ipcp_value_source *src;
1806 VEC (cgraph_edge_p,heap) *ret;
1808 ret = VEC_alloc (cgraph_edge_p, heap, caller_count);
1809 for (src = val->sources; src; src = src->next)
1811 struct cgraph_edge *cs = src->cs;
1812 while (cs)
1814 if (cgraph_edge_brings_value_p (cs, src))
1815 VEC_quick_push (cgraph_edge_p, ret, cs);
1816 cs = get_next_cgraph_edge_clone (cs);
1820 return ret;
1823 /* Construct a replacement map for a know VALUE for a formal parameter PARAM.
1824 Return it or NULL if for some reason it cannot be created. */
1826 static struct ipa_replace_map *
1827 get_replacement_map (tree value, tree parm)
1829 tree req_type = TREE_TYPE (parm);
1830 struct ipa_replace_map *replace_map;
1832 if (!useless_type_conversion_p (req_type, TREE_TYPE (value)))
1834 if (fold_convertible_p (req_type, value))
1835 value = fold_build1 (NOP_EXPR, req_type, value);
1836 else if (TYPE_SIZE (req_type) == TYPE_SIZE (TREE_TYPE (value)))
1837 value = fold_build1 (VIEW_CONVERT_EXPR, req_type, value);
1838 else
1840 if (dump_file)
1842 fprintf (dump_file, " const ");
1843 print_generic_expr (dump_file, value, 0);
1844 fprintf (dump_file, " can't be converted to param ");
1845 print_generic_expr (dump_file, parm, 0);
1846 fprintf (dump_file, "\n");
1848 return NULL;
1852 replace_map = ggc_alloc_ipa_replace_map ();
1853 if (dump_file)
1855 fprintf (dump_file, " replacing param ");
1856 print_generic_expr (dump_file, parm, 0);
1857 fprintf (dump_file, " with const ");
1858 print_generic_expr (dump_file, value, 0);
1859 fprintf (dump_file, "\n");
1861 replace_map->old_tree = parm;
1862 replace_map->new_tree = value;
1863 replace_map->replace_p = true;
1864 replace_map->ref_p = false;
1866 return replace_map;
1869 /* Dump new profiling counts */
1871 static void
1872 dump_profile_updates (struct cgraph_node *orig_node,
1873 struct cgraph_node *new_node)
1875 struct cgraph_edge *cs;
1877 fprintf (dump_file, " setting count of the specialized node to "
1878 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) new_node->count);
1879 for (cs = new_node->callees; cs ; cs = cs->next_callee)
1880 fprintf (dump_file, " edge to %s has count "
1881 HOST_WIDE_INT_PRINT_DEC "\n",
1882 cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
1884 fprintf (dump_file, " setting count of the original node to "
1885 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) orig_node->count);
1886 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
1887 fprintf (dump_file, " edge to %s is left with "
1888 HOST_WIDE_INT_PRINT_DEC "\n",
1889 cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
1892 /* After a specialized NEW_NODE version of ORIG_NODE has been created, update
1893 their profile information to reflect this. */
1895 static void
1896 update_profiling_info (struct cgraph_node *orig_node,
1897 struct cgraph_node *new_node)
1899 struct cgraph_edge *cs;
1900 struct caller_statistics stats;
1901 gcov_type new_sum, orig_sum;
1902 gcov_type remainder, orig_node_count = orig_node->count;
1904 if (orig_node_count == 0)
1905 return;
1907 init_caller_stats (&stats);
1908 cgraph_for_node_and_aliases (orig_node, gather_caller_stats, &stats, false);
1909 orig_sum = stats.count_sum;
1910 init_caller_stats (&stats);
1911 cgraph_for_node_and_aliases (new_node, gather_caller_stats, &stats, false);
1912 new_sum = stats.count_sum;
1914 if (orig_node_count < orig_sum + new_sum)
1916 if (dump_file)
1917 fprintf (dump_file, " Problem: node %s/%i has too low count "
1918 HOST_WIDE_INT_PRINT_DEC " while the sum of incoming "
1919 "counts is " HOST_WIDE_INT_PRINT_DEC "\n",
1920 cgraph_node_name (orig_node), orig_node->uid,
1921 (HOST_WIDE_INT) orig_node_count,
1922 (HOST_WIDE_INT) (orig_sum + new_sum));
1924 orig_node_count = (orig_sum + new_sum) * 12 / 10;
1925 if (dump_file)
1926 fprintf (dump_file, " proceeding by pretending it was "
1927 HOST_WIDE_INT_PRINT_DEC "\n",
1928 (HOST_WIDE_INT) orig_node_count);
1931 new_node->count = new_sum;
1932 remainder = orig_node_count - new_sum;
1933 orig_node->count = remainder;
1935 for (cs = new_node->callees; cs ; cs = cs->next_callee)
1936 if (cs->frequency)
1937 cs->count = cs->count * (new_sum * REG_BR_PROB_BASE
1938 / orig_node_count) / REG_BR_PROB_BASE;
1939 else
1940 cs->count = 0;
1942 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
1943 cs->count = cs->count * (remainder * REG_BR_PROB_BASE
1944 / orig_node_count) / REG_BR_PROB_BASE;
1946 if (dump_file)
1947 dump_profile_updates (orig_node, new_node);
1950 /* Update the respective profile of specialized NEW_NODE and the original
1951 ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
1952 have been redirected to the specialized version. */
1954 static void
1955 update_specialized_profile (struct cgraph_node *new_node,
1956 struct cgraph_node *orig_node,
1957 gcov_type redirected_sum)
1959 struct cgraph_edge *cs;
1960 gcov_type new_node_count, orig_node_count = orig_node->count;
1962 if (dump_file)
1963 fprintf (dump_file, " the sum of counts of redirected edges is "
1964 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) redirected_sum);
1965 if (orig_node_count == 0)
1966 return;
1968 gcc_assert (orig_node_count >= redirected_sum);
1970 new_node_count = new_node->count;
1971 new_node->count += redirected_sum;
1972 orig_node->count -= redirected_sum;
1974 for (cs = new_node->callees; cs ; cs = cs->next_callee)
1975 if (cs->frequency)
1976 cs->count += cs->count * redirected_sum / new_node_count;
1977 else
1978 cs->count = 0;
1980 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
1982 gcov_type dec = cs->count * (redirected_sum * REG_BR_PROB_BASE
1983 / orig_node_count) / REG_BR_PROB_BASE;
1984 if (dec < cs->count)
1985 cs->count -= dec;
1986 else
1987 cs->count = 0;
1990 if (dump_file)
1991 dump_profile_updates (orig_node, new_node);
1994 /* Create a specialized version of NODE with known constants and types of
1995 parameters in KNOWN_VALS and redirect all edges in CALLERS to it. */
1997 static struct cgraph_node *
1998 create_specialized_node (struct cgraph_node *node,
1999 VEC (tree, heap) *known_vals,
2000 VEC (cgraph_edge_p,heap) *callers)
2002 struct ipa_node_params *new_info, *info = IPA_NODE_REF (node);
2003 VEC (ipa_replace_map_p,gc)* replace_trees = NULL;
2004 struct cgraph_node *new_node;
2005 int i, count = ipa_get_param_count (info);
2006 bitmap args_to_skip;
2008 gcc_assert (!info->ipcp_orig_node);
2010 if (node->local.can_change_signature)
2012 args_to_skip = BITMAP_GGC_ALLOC ();
2013 for (i = 0; i < count; i++)
2015 tree t = VEC_index (tree, known_vals, i);
2017 if ((t && TREE_CODE (t) != TREE_BINFO)
2018 || !ipa_is_param_used (info, i))
2019 bitmap_set_bit (args_to_skip, i);
2022 else
2024 args_to_skip = NULL;
2025 if (dump_file && (dump_flags & TDF_DETAILS))
2026 fprintf (dump_file, " cannot change function signature\n");
2029 for (i = 0; i < count ; i++)
2031 tree t = VEC_index (tree, known_vals, i);
2032 if (t && TREE_CODE (t) != TREE_BINFO)
2034 struct ipa_replace_map *replace_map;
2036 replace_map = get_replacement_map (t, ipa_get_param (info, i));
2037 if (replace_map)
2038 VEC_safe_push (ipa_replace_map_p, gc, replace_trees, replace_map);
2042 new_node = cgraph_create_virtual_clone (node, callers, replace_trees,
2043 args_to_skip, "constprop");
2044 if (dump_file && (dump_flags & TDF_DETAILS))
2045 fprintf (dump_file, " the new node is %s/%i.\n",
2046 cgraph_node_name (new_node), new_node->uid);
2047 gcc_checking_assert (ipa_node_params_vector
2048 && (VEC_length (ipa_node_params_t,
2049 ipa_node_params_vector)
2050 > (unsigned) cgraph_max_uid));
2051 update_profiling_info (node, new_node);
2052 new_info = IPA_NODE_REF (new_node);
2053 new_info->ipcp_orig_node = node;
2054 new_info->known_vals = known_vals;
2056 ipcp_discover_new_direct_edges (new_node, known_vals);
2058 VEC_free (cgraph_edge_p, heap, callers);
2059 return new_node;
2062 /* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
2063 KNOWN_VALS with constants and types that are also known for all of the
2064 CALLERS. */
2066 static void
2067 find_more_values_for_callers_subset (struct cgraph_node *node,
2068 VEC (tree, heap) *known_vals,
2069 VEC (cgraph_edge_p,heap) *callers)
2071 struct ipa_node_params *info = IPA_NODE_REF (node);
2072 int i, count = ipa_get_param_count (info);
2074 for (i = 0; i < count ; i++)
2076 struct cgraph_edge *cs;
2077 tree newval = NULL_TREE;
2078 int j;
2080 if (ipa_get_lattice (info, i)->bottom
2081 || VEC_index (tree, known_vals, i))
2082 continue;
2084 FOR_EACH_VEC_ELT (cgraph_edge_p, callers, j, cs)
2086 struct ipa_jump_func *jump_func;
2087 tree t;
2089 if (i >= ipa_get_cs_argument_count (IPA_EDGE_REF (cs)))
2091 newval = NULL_TREE;
2092 break;
2094 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
2095 t = ipa_value_from_jfunc (IPA_NODE_REF (cs->caller), jump_func);
2096 if (!t
2097 || (newval
2098 && !values_equal_for_ipcp_p (t, newval)))
2100 newval = NULL_TREE;
2101 break;
2103 else
2104 newval = t;
2107 if (newval)
2109 if (dump_file && (dump_flags & TDF_DETAILS))
2111 fprintf (dump_file, " adding an extra known value ");
2112 print_ipcp_constant_value (dump_file, newval);
2113 fprintf (dump_file, " for parameter ");
2114 print_generic_expr (dump_file, ipa_get_param (info, i), 0);
2115 fprintf (dump_file, "\n");
2118 VEC_replace (tree, known_vals, i, newval);
2123 /* Given an original NODE and a VAL for which we have already created a
2124 specialized clone, look whether there are incoming edges that still lead
2125 into the old node but now also bring the requested value and also conform to
2126 all other criteria such that they can be redirected the the special node.
2127 This function can therefore redirect the final edge in a SCC. */
2129 static void
2130 perhaps_add_new_callers (struct cgraph_node *node, struct ipcp_value *val)
2132 struct ipa_node_params *dest_info = IPA_NODE_REF (val->spec_node);
2133 struct ipcp_value_source *src;
2134 int count = ipa_get_param_count (dest_info);
2135 gcov_type redirected_sum = 0;
2137 for (src = val->sources; src; src = src->next)
2139 struct cgraph_edge *cs = src->cs;
2140 while (cs)
2142 enum availability availability;
2143 bool insufficient = false;
2145 if (cgraph_function_node (cs->callee, &availability) == node
2146 && availability > AVAIL_OVERWRITABLE
2147 && cgraph_edge_brings_value_p (cs, src))
2149 struct ipa_node_params *caller_info;
2150 struct ipa_edge_args *args;
2151 int i;
2153 caller_info = IPA_NODE_REF (cs->caller);
2154 args = IPA_EDGE_REF (cs);
2155 for (i = 0; i < count; i++)
2157 struct ipa_jump_func *jump_func;
2158 tree val, t;
2160 val = VEC_index (tree, dest_info->known_vals, i);
2161 if (!val)
2162 continue;
2164 if (i >= ipa_get_cs_argument_count (args))
2166 insufficient = true;
2167 break;
2169 jump_func = ipa_get_ith_jump_func (args, i);
2170 t = ipa_value_from_jfunc (caller_info, jump_func);
2171 if (!t || !values_equal_for_ipcp_p (val, t))
2173 insufficient = true;
2174 break;
2178 if (!insufficient)
2180 if (dump_file)
2181 fprintf (dump_file, " - adding an extra caller %s/%i"
2182 " of %s/%i\n",
2183 cgraph_node_name (cs->caller), cs->caller->uid,
2184 cgraph_node_name (val->spec_node),
2185 val->spec_node->uid);
2187 cgraph_redirect_edge_callee (cs, val->spec_node);
2188 redirected_sum += cs->count;
2191 cs = get_next_cgraph_edge_clone (cs);
2195 if (redirected_sum)
2196 update_specialized_profile (val->spec_node, node, redirected_sum);
2200 /* Copy KNOWN_BINFOS to KNOWN_VALS. */
2202 static void
2203 move_binfos_to_values (VEC (tree, heap) *known_vals,
2204 VEC (tree, heap) *known_binfos)
2206 tree t;
2207 int i;
2209 for (i = 0; VEC_iterate (tree, known_binfos, i, t); i++)
2210 if (t)
2211 VEC_replace (tree, known_vals, i, t);
2215 /* Decide whether and what specialized clones of NODE should be created. */
2217 static bool
2218 decide_whether_version_node (struct cgraph_node *node)
2220 struct ipa_node_params *info = IPA_NODE_REF (node);
2221 int i, count = ipa_get_param_count (info);
2222 VEC (tree, heap) *known_csts, *known_binfos;
2223 bool ret = false;
2225 if (count == 0)
2226 return false;
2228 if (dump_file && (dump_flags & TDF_DETAILS))
2229 fprintf (dump_file, "\nEvaluating opportunities for %s/%i.\n",
2230 cgraph_node_name (node), node->uid);
2232 gather_context_independent_values (info, &known_csts, &known_binfos,
2233 NULL);
2235 for (i = 0; i < count ; i++)
2237 struct ipcp_lattice *lat = ipa_get_lattice (info, i);
2238 struct ipcp_value *val;
2240 if (lat->bottom
2241 || VEC_index (tree, known_csts, i)
2242 || VEC_index (tree, known_binfos, i))
2243 continue;
2245 for (val = lat->values; val; val = val->next)
2247 int freq_sum, caller_count;
2248 gcov_type count_sum;
2249 VEC (cgraph_edge_p, heap) *callers;
2250 VEC (tree, heap) *kv;
2252 if (val->spec_node)
2254 perhaps_add_new_callers (node, val);
2255 continue;
2257 else if (val->local_size_cost + overall_size > max_new_size)
2259 if (dump_file && (dump_flags & TDF_DETAILS))
2260 fprintf (dump_file, " Ignoring candidate value because "
2261 "max_new_size would be reached with %li.\n",
2262 val->local_size_cost + overall_size);
2263 continue;
2265 else if (!get_info_about_necessary_edges (val, &freq_sum, &count_sum,
2266 &caller_count))
2267 continue;
2269 if (dump_file && (dump_flags & TDF_DETAILS))
2271 fprintf (dump_file, " - considering value ");
2272 print_ipcp_constant_value (dump_file, val->value);
2273 fprintf (dump_file, " for parameter ");
2274 print_generic_expr (dump_file, ipa_get_param (info, i), 0);
2275 fprintf (dump_file, " (caller_count: %i)\n", caller_count);
2279 if (!good_cloning_opportunity_p (node, val->local_time_benefit,
2280 freq_sum, count_sum,
2281 val->local_size_cost)
2282 && !good_cloning_opportunity_p (node,
2283 val->local_time_benefit
2284 + val->prop_time_benefit,
2285 freq_sum, count_sum,
2286 val->local_size_cost
2287 + val->prop_size_cost))
2288 continue;
2290 if (dump_file)
2291 fprintf (dump_file, " Creating a specialized node of %s/%i.\n",
2292 cgraph_node_name (node), node->uid);
2294 callers = gather_edges_for_value (val, caller_count);
2295 kv = VEC_copy (tree, heap, known_csts);
2296 move_binfos_to_values (kv, known_binfos);
2297 VEC_replace (tree, kv, i, val->value);
2298 find_more_values_for_callers_subset (node, kv, callers);
2299 val->spec_node = create_specialized_node (node, kv, callers);
2300 overall_size += val->local_size_cost;
2301 info = IPA_NODE_REF (node);
2303 /* TODO: If for some lattice there is only one other known value
2304 left, make a special node for it too. */
2305 ret = true;
2307 VEC_replace (tree, kv, i, val->value);
2311 if (info->clone_for_all_contexts)
2313 VEC (cgraph_edge_p, heap) *callers;
2315 if (dump_file)
2316 fprintf (dump_file, " - Creating a specialized node of %s/%i "
2317 "for all known contexts.\n", cgraph_node_name (node),
2318 node->uid);
2320 callers = collect_callers_of_node (node);
2321 move_binfos_to_values (known_csts, known_binfos);
2322 create_specialized_node (node, known_csts, callers);
2323 info = IPA_NODE_REF (node);
2324 info->clone_for_all_contexts = false;
2325 ret = true;
2327 else
2328 VEC_free (tree, heap, known_csts);
2330 VEC_free (tree, heap, known_binfos);
2331 return ret;
2334 /* Transitively mark all callees of NODE within the same SCC as not dead. */
2336 static void
2337 spread_undeadness (struct cgraph_node *node)
2339 struct cgraph_edge *cs;
2341 for (cs = node->callees; cs; cs = cs->next_callee)
2342 if (edge_within_scc (cs))
2344 struct cgraph_node *callee;
2345 struct ipa_node_params *info;
2347 callee = cgraph_function_node (cs->callee, NULL);
2348 info = IPA_NODE_REF (callee);
2350 if (info->node_dead)
2352 info->node_dead = 0;
2353 spread_undeadness (callee);
2358 /* Return true if NODE has a caller from outside of its SCC that is not
2359 dead. Worker callback for cgraph_for_node_and_aliases. */
2361 static bool
2362 has_undead_caller_from_outside_scc_p (struct cgraph_node *node,
2363 void *data ATTRIBUTE_UNUSED)
2365 struct cgraph_edge *cs;
2367 for (cs = node->callers; cs; cs = cs->next_caller)
2368 if (cs->caller->thunk.thunk_p
2369 && cgraph_for_node_and_aliases (cs->caller,
2370 has_undead_caller_from_outside_scc_p,
2371 NULL, true))
2372 return true;
2373 else if (!edge_within_scc (cs)
2374 && !IPA_NODE_REF (cs->caller)->node_dead)
2375 return true;
2376 return false;
2380 /* Identify nodes within the same SCC as NODE which are no longer needed
2381 because of new clones and will be removed as unreachable. */
2383 static void
2384 identify_dead_nodes (struct cgraph_node *node)
2386 struct cgraph_node *v;
2387 for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
2388 if (cgraph_will_be_removed_from_program_if_no_direct_calls (v)
2389 && !cgraph_for_node_and_aliases (v,
2390 has_undead_caller_from_outside_scc_p,
2391 NULL, true))
2392 IPA_NODE_REF (v)->node_dead = 1;
2394 for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
2395 if (!IPA_NODE_REF (v)->node_dead)
2396 spread_undeadness (v);
2398 if (dump_file && (dump_flags & TDF_DETAILS))
2400 for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
2401 if (IPA_NODE_REF (v)->node_dead)
2402 fprintf (dump_file, " Marking node as dead: %s/%i.\n",
2403 cgraph_node_name (v), v->uid);
2407 /* The decision stage. Iterate over the topological order of call graph nodes
2408 TOPO and make specialized clones if deemed beneficial. */
2410 static void
2411 ipcp_decision_stage (struct topo_info *topo)
2413 int i;
2415 if (dump_file)
2416 fprintf (dump_file, "\nIPA decision stage:\n\n");
2418 for (i = topo->nnodes - 1; i >= 0; i--)
2420 struct cgraph_node *node = topo->order[i];
2421 bool change = false, iterate = true;
2423 while (iterate)
2425 struct cgraph_node *v;
2426 iterate = false;
2427 for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
2428 if (cgraph_function_with_gimple_body_p (v)
2429 && ipcp_versionable_function_p (v))
2430 iterate |= decide_whether_version_node (v);
2432 change |= iterate;
2434 if (change)
2435 identify_dead_nodes (node);
2439 /* The IPCP driver. */
2441 static unsigned int
2442 ipcp_driver (void)
2444 struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
2445 struct topo_info topo;
2447 cgraph_remove_unreachable_nodes (true,dump_file);
2448 ipa_check_create_node_params ();
2449 ipa_check_create_edge_args ();
2450 grow_next_edge_clone_vector ();
2451 edge_duplication_hook_holder =
2452 cgraph_add_edge_duplication_hook (&ipcp_edge_duplication_hook, NULL);
2453 ipcp_values_pool = create_alloc_pool ("IPA-CP values",
2454 sizeof (struct ipcp_value), 32);
2455 ipcp_sources_pool = create_alloc_pool ("IPA-CP value sources",
2456 sizeof (struct ipcp_value_source), 64);
2457 if (dump_file)
2459 fprintf (dump_file, "\nIPA structures before propagation:\n");
2460 if (dump_flags & TDF_DETAILS)
2461 ipa_print_all_params (dump_file);
2462 ipa_print_all_jump_functions (dump_file);
2465 /* Topological sort. */
2466 build_toporder_info (&topo);
2467 /* Do the interprocedural propagation. */
2468 ipcp_propagate_stage (&topo);
2469 /* Decide what constant propagation and cloning should be performed. */
2470 ipcp_decision_stage (&topo);
2472 /* Free all IPCP structures. */
2473 free_toporder_info (&topo);
2474 VEC_free (cgraph_edge_p, heap, next_edge_clone);
2475 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
2476 ipa_free_all_structures_after_ipa_cp ();
2477 if (dump_file)
2478 fprintf (dump_file, "\nIPA constant propagation end\n");
2479 return 0;
2482 /* Initialization and computation of IPCP data structures. This is the initial
2483 intraprocedural analysis of functions, which gathers information to be
2484 propagated later on. */
2486 static void
2487 ipcp_generate_summary (void)
2489 struct cgraph_node *node;
2491 if (dump_file)
2492 fprintf (dump_file, "\nIPA constant propagation start:\n");
2493 ipa_register_cgraph_hooks ();
2495 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
2497 /* Unreachable nodes should have been eliminated before ipcp. */
2498 gcc_assert (node->needed || node->reachable);
2499 node->local.versionable = tree_versionable_function_p (node->decl);
2500 ipa_analyze_node (node);
2504 /* Write ipcp summary for nodes in SET. */
2506 static void
2507 ipcp_write_summary (cgraph_node_set set,
2508 varpool_node_set vset ATTRIBUTE_UNUSED)
2510 ipa_prop_write_jump_functions (set);
2513 /* Read ipcp summary. */
2515 static void
2516 ipcp_read_summary (void)
2518 ipa_prop_read_jump_functions ();
2521 /* Gate for IPCP optimization. */
2523 static bool
2524 cgraph_gate_cp (void)
2526 /* FIXME: We should remove the optimize check after we ensure we never run
2527 IPA passes when not optimizing. */
2528 return flag_ipa_cp && optimize;
2531 struct ipa_opt_pass_d pass_ipa_cp =
2534 IPA_PASS,
2535 "cp", /* name */
2536 cgraph_gate_cp, /* gate */
2537 ipcp_driver, /* execute */
2538 NULL, /* sub */
2539 NULL, /* next */
2540 0, /* static_pass_number */
2541 TV_IPA_CONSTANT_PROP, /* tv_id */
2542 0, /* properties_required */
2543 0, /* properties_provided */
2544 0, /* properties_destroyed */
2545 0, /* todo_flags_start */
2546 TODO_dump_cgraph |
2547 TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
2549 ipcp_generate_summary, /* generate_summary */
2550 ipcp_write_summary, /* write_summary */
2551 ipcp_read_summary, /* read_summary */
2552 NULL, /* write_optimization_summary */
2553 NULL, /* read_optimization_summary */
2554 NULL, /* stmt_fixup */
2555 0, /* TODOs */
2556 NULL, /* function_transform */
2557 NULL, /* variable_transform */