1 /* Gimple IR support functions.
3 Copyright 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
38 #include "langhooks.h"
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node
)))
46 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node
)))
47 htab_t gimple_canonical_types
;
48 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map
)))
49 htab_t type_hash_cache
;
50 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map
)))
51 htab_t canonical_type_hash_cache
;
53 /* All the tuples have their operand vector (if present) at the very bottom
54 of the structure. Therefore, the offset required to find the
55 operands vector the size of the structure minus the size of the 1
56 element tree array at the end (see gimple_ops). */
57 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
58 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
59 EXPORTED_CONST
size_t gimple_ops_offset_
[] = {
60 #include "gsstruct.def"
64 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
65 static const size_t gsstruct_code_size
[] = {
66 #include "gsstruct.def"
70 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
71 const char *const gimple_code_name
[] = {
76 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
77 EXPORTED_CONST
enum gimple_statement_structure_enum gss_for_code_
[] = {
82 #ifdef GATHER_STATISTICS
85 int gimple_alloc_counts
[(int) gimple_alloc_kind_all
];
86 int gimple_alloc_sizes
[(int) gimple_alloc_kind_all
];
88 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
89 static const char * const gimple_alloc_kind_names
[] = {
97 #endif /* GATHER_STATISTICS */
99 /* A cache of gimple_seq objects. Sequences are created and destroyed
100 fairly often during gimplification. */
101 static GTY ((deletable
)) struct gimple_seq_d
*gimple_seq_cache
;
103 /* Private API manipulation functions shared only with some
105 extern void gimple_set_stored_syms (gimple
, bitmap
, bitmap_obstack
*);
106 extern void gimple_set_loaded_syms (gimple
, bitmap
, bitmap_obstack
*);
108 /* Gimple tuple constructors.
109 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
110 be passed a NULL to start with an empty sequence. */
112 /* Set the code for statement G to CODE. */
115 gimple_set_code (gimple g
, enum gimple_code code
)
117 g
->gsbase
.code
= code
;
120 /* Return the number of bytes needed to hold a GIMPLE statement with
124 gimple_size (enum gimple_code code
)
126 return gsstruct_code_size
[gss_for_code (code
)];
129 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
133 gimple_alloc_stat (enum gimple_code code
, unsigned num_ops MEM_STAT_DECL
)
138 size
= gimple_size (code
);
140 size
+= sizeof (tree
) * (num_ops
- 1);
142 #ifdef GATHER_STATISTICS
144 enum gimple_alloc_kind kind
= gimple_alloc_kind (code
);
145 gimple_alloc_counts
[(int) kind
]++;
146 gimple_alloc_sizes
[(int) kind
] += size
;
150 stmt
= ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT
);
151 gimple_set_code (stmt
, code
);
152 gimple_set_num_ops (stmt
, num_ops
);
154 /* Do not call gimple_set_modified here as it has other side
155 effects and this tuple is still not completely built. */
156 stmt
->gsbase
.modified
= 1;
161 /* Set SUBCODE to be the code of the expression computed by statement G. */
164 gimple_set_subcode (gimple g
, unsigned subcode
)
166 /* We only have 16 bits for the RHS code. Assert that we are not
168 gcc_assert (subcode
< (1 << 16));
169 g
->gsbase
.subcode
= subcode
;
174 /* Build a tuple with operands. CODE is the statement to build (which
175 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
176 for the new tuple. NUM_OPS is the number of operands to allocate. */
178 #define gimple_build_with_ops(c, s, n) \
179 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
182 gimple_build_with_ops_stat (enum gimple_code code
, unsigned subcode
,
183 unsigned num_ops MEM_STAT_DECL
)
185 gimple s
= gimple_alloc_stat (code
, num_ops PASS_MEM_STAT
);
186 gimple_set_subcode (s
, subcode
);
192 /* Build a GIMPLE_RETURN statement returning RETVAL. */
195 gimple_build_return (tree retval
)
197 gimple s
= gimple_build_with_ops (GIMPLE_RETURN
, ERROR_MARK
, 1);
199 gimple_return_set_retval (s
, retval
);
203 /* Reset alias information on call S. */
206 gimple_call_reset_alias_info (gimple s
)
208 if (gimple_call_flags (s
) & ECF_CONST
)
209 memset (gimple_call_use_set (s
), 0, sizeof (struct pt_solution
));
211 pt_solution_reset (gimple_call_use_set (s
));
212 if (gimple_call_flags (s
) & (ECF_CONST
|ECF_PURE
|ECF_NOVOPS
))
213 memset (gimple_call_clobber_set (s
), 0, sizeof (struct pt_solution
));
215 pt_solution_reset (gimple_call_clobber_set (s
));
218 /* Helper for gimple_build_call, gimple_build_call_valist,
219 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
220 components of a GIMPLE_CALL statement to function FN with NARGS
224 gimple_build_call_1 (tree fn
, unsigned nargs
)
226 gimple s
= gimple_build_with_ops (GIMPLE_CALL
, ERROR_MARK
, nargs
+ 3);
227 if (TREE_CODE (fn
) == FUNCTION_DECL
)
228 fn
= build_fold_addr_expr (fn
);
229 gimple_set_op (s
, 1, fn
);
230 gimple_call_set_fntype (s
, TREE_TYPE (TREE_TYPE (fn
)));
231 gimple_call_reset_alias_info (s
);
236 /* Build a GIMPLE_CALL statement to function FN with the arguments
237 specified in vector ARGS. */
240 gimple_build_call_vec (tree fn
, VEC(tree
, heap
) *args
)
243 unsigned nargs
= VEC_length (tree
, args
);
244 gimple call
= gimple_build_call_1 (fn
, nargs
);
246 for (i
= 0; i
< nargs
; i
++)
247 gimple_call_set_arg (call
, i
, VEC_index (tree
, args
, i
));
253 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
254 arguments. The ... are the arguments. */
257 gimple_build_call (tree fn
, unsigned nargs
, ...)
263 gcc_assert (TREE_CODE (fn
) == FUNCTION_DECL
|| is_gimple_call_addr (fn
));
265 call
= gimple_build_call_1 (fn
, nargs
);
267 va_start (ap
, nargs
);
268 for (i
= 0; i
< nargs
; i
++)
269 gimple_call_set_arg (call
, i
, va_arg (ap
, tree
));
276 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
277 arguments. AP contains the arguments. */
280 gimple_build_call_valist (tree fn
, unsigned nargs
, va_list ap
)
285 gcc_assert (TREE_CODE (fn
) == FUNCTION_DECL
|| is_gimple_call_addr (fn
));
287 call
= gimple_build_call_1 (fn
, nargs
);
289 for (i
= 0; i
< nargs
; i
++)
290 gimple_call_set_arg (call
, i
, va_arg (ap
, tree
));
296 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
297 Build the basic components of a GIMPLE_CALL statement to internal
298 function FN with NARGS arguments. */
301 gimple_build_call_internal_1 (enum internal_fn fn
, unsigned nargs
)
303 gimple s
= gimple_build_with_ops (GIMPLE_CALL
, ERROR_MARK
, nargs
+ 3);
304 s
->gsbase
.subcode
|= GF_CALL_INTERNAL
;
305 gimple_call_set_internal_fn (s
, fn
);
306 gimple_call_reset_alias_info (s
);
311 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
312 the number of arguments. The ... are the arguments. */
315 gimple_build_call_internal (enum internal_fn fn
, unsigned nargs
, ...)
321 call
= gimple_build_call_internal_1 (fn
, nargs
);
322 va_start (ap
, nargs
);
323 for (i
= 0; i
< nargs
; i
++)
324 gimple_call_set_arg (call
, i
, va_arg (ap
, tree
));
331 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
332 specified in vector ARGS. */
335 gimple_build_call_internal_vec (enum internal_fn fn
, VEC(tree
, heap
) *args
)
340 nargs
= VEC_length (tree
, args
);
341 call
= gimple_build_call_internal_1 (fn
, nargs
);
342 for (i
= 0; i
< nargs
; i
++)
343 gimple_call_set_arg (call
, i
, VEC_index (tree
, args
, i
));
349 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
350 assumed to be in GIMPLE form already. Minimal checking is done of
354 gimple_build_call_from_tree (tree t
)
358 tree fndecl
= get_callee_fndecl (t
);
360 gcc_assert (TREE_CODE (t
) == CALL_EXPR
);
362 nargs
= call_expr_nargs (t
);
363 call
= gimple_build_call_1 (fndecl
? fndecl
: CALL_EXPR_FN (t
), nargs
);
365 for (i
= 0; i
< nargs
; i
++)
366 gimple_call_set_arg (call
, i
, CALL_EXPR_ARG (t
, i
));
368 gimple_set_block (call
, TREE_BLOCK (t
));
370 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
371 gimple_call_set_chain (call
, CALL_EXPR_STATIC_CHAIN (t
));
372 gimple_call_set_tail (call
, CALL_EXPR_TAILCALL (t
));
373 gimple_call_set_return_slot_opt (call
, CALL_EXPR_RETURN_SLOT_OPT (t
));
375 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
376 && (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA
377 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA_WITH_ALIGN
))
378 gimple_call_set_alloca_for_var (call
, CALL_ALLOCA_FOR_VAR_P (t
));
380 gimple_call_set_from_thunk (call
, CALL_FROM_THUNK_P (t
));
381 gimple_call_set_va_arg_pack (call
, CALL_EXPR_VA_ARG_PACK (t
));
382 gimple_call_set_nothrow (call
, TREE_NOTHROW (t
));
383 gimple_set_no_warning (call
, TREE_NO_WARNING (t
));
389 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
390 *OP1_P, *OP2_P and *OP3_P respectively. */
393 extract_ops_from_tree_1 (tree expr
, enum tree_code
*subcode_p
, tree
*op1_p
,
394 tree
*op2_p
, tree
*op3_p
)
396 enum gimple_rhs_class grhs_class
;
398 *subcode_p
= TREE_CODE (expr
);
399 grhs_class
= get_gimple_rhs_class (*subcode_p
);
401 if (grhs_class
== GIMPLE_TERNARY_RHS
)
403 *op1_p
= TREE_OPERAND (expr
, 0);
404 *op2_p
= TREE_OPERAND (expr
, 1);
405 *op3_p
= TREE_OPERAND (expr
, 2);
407 else if (grhs_class
== GIMPLE_BINARY_RHS
)
409 *op1_p
= TREE_OPERAND (expr
, 0);
410 *op2_p
= TREE_OPERAND (expr
, 1);
413 else if (grhs_class
== GIMPLE_UNARY_RHS
)
415 *op1_p
= TREE_OPERAND (expr
, 0);
419 else if (grhs_class
== GIMPLE_SINGLE_RHS
)
430 /* Build a GIMPLE_ASSIGN statement.
432 LHS of the assignment.
433 RHS of the assignment which can be unary or binary. */
436 gimple_build_assign_stat (tree lhs
, tree rhs MEM_STAT_DECL
)
438 enum tree_code subcode
;
441 extract_ops_from_tree_1 (rhs
, &subcode
, &op1
, &op2
, &op3
);
442 return gimple_build_assign_with_ops_stat (subcode
, lhs
, op1
, op2
, op3
447 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
448 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
449 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
452 gimple_build_assign_with_ops_stat (enum tree_code subcode
, tree lhs
, tree op1
,
453 tree op2
, tree op3 MEM_STAT_DECL
)
458 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
460 num_ops
= get_gimple_rhs_num_ops (subcode
) + 1;
462 p
= gimple_build_with_ops_stat (GIMPLE_ASSIGN
, (unsigned)subcode
, num_ops
464 gimple_assign_set_lhs (p
, lhs
);
465 gimple_assign_set_rhs1 (p
, op1
);
468 gcc_assert (num_ops
> 2);
469 gimple_assign_set_rhs2 (p
, op2
);
474 gcc_assert (num_ops
> 3);
475 gimple_assign_set_rhs3 (p
, op3
);
482 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
484 DST/SRC are the destination and source respectively. You can pass
485 ungimplified trees in DST or SRC, in which case they will be
486 converted to a gimple operand if necessary.
488 This function returns the newly created GIMPLE_ASSIGN tuple. */
491 gimplify_assign (tree dst
, tree src
, gimple_seq
*seq_p
)
493 tree t
= build2 (MODIFY_EXPR
, TREE_TYPE (dst
), dst
, src
);
494 gimplify_and_add (t
, seq_p
);
496 return gimple_seq_last_stmt (*seq_p
);
500 /* Build a GIMPLE_COND statement.
502 PRED is the condition used to compare LHS and the RHS.
503 T_LABEL is the label to jump to if the condition is true.
504 F_LABEL is the label to jump to otherwise. */
507 gimple_build_cond (enum tree_code pred_code
, tree lhs
, tree rhs
,
508 tree t_label
, tree f_label
)
512 gcc_assert (TREE_CODE_CLASS (pred_code
) == tcc_comparison
);
513 p
= gimple_build_with_ops (GIMPLE_COND
, pred_code
, 4);
514 gimple_cond_set_lhs (p
, lhs
);
515 gimple_cond_set_rhs (p
, rhs
);
516 gimple_cond_set_true_label (p
, t_label
);
517 gimple_cond_set_false_label (p
, f_label
);
522 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
525 gimple_cond_get_ops_from_tree (tree cond
, enum tree_code
*code_p
,
526 tree
*lhs_p
, tree
*rhs_p
)
528 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond
)) == tcc_comparison
529 || TREE_CODE (cond
) == TRUTH_NOT_EXPR
530 || is_gimple_min_invariant (cond
)
531 || SSA_VAR_P (cond
));
533 extract_ops_from_tree (cond
, code_p
, lhs_p
, rhs_p
);
535 /* Canonicalize conditionals of the form 'if (!VAL)'. */
536 if (*code_p
== TRUTH_NOT_EXPR
)
539 gcc_assert (*lhs_p
&& *rhs_p
== NULL_TREE
);
540 *rhs_p
= build_zero_cst (TREE_TYPE (*lhs_p
));
542 /* Canonicalize conditionals of the form 'if (VAL)' */
543 else if (TREE_CODE_CLASS (*code_p
) != tcc_comparison
)
546 gcc_assert (*lhs_p
&& *rhs_p
== NULL_TREE
);
547 *rhs_p
= build_zero_cst (TREE_TYPE (*lhs_p
));
552 /* Build a GIMPLE_COND statement from the conditional expression tree
553 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
556 gimple_build_cond_from_tree (tree cond
, tree t_label
, tree f_label
)
561 gimple_cond_get_ops_from_tree (cond
, &code
, &lhs
, &rhs
);
562 return gimple_build_cond (code
, lhs
, rhs
, t_label
, f_label
);
565 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
566 boolean expression tree COND. */
569 gimple_cond_set_condition_from_tree (gimple stmt
, tree cond
)
574 gimple_cond_get_ops_from_tree (cond
, &code
, &lhs
, &rhs
);
575 gimple_cond_set_condition (stmt
, code
, lhs
, rhs
);
578 /* Build a GIMPLE_LABEL statement for LABEL. */
581 gimple_build_label (tree label
)
583 gimple p
= gimple_build_with_ops (GIMPLE_LABEL
, ERROR_MARK
, 1);
584 gimple_label_set_label (p
, label
);
588 /* Build a GIMPLE_GOTO statement to label DEST. */
591 gimple_build_goto (tree dest
)
593 gimple p
= gimple_build_with_ops (GIMPLE_GOTO
, ERROR_MARK
, 1);
594 gimple_goto_set_dest (p
, dest
);
599 /* Build a GIMPLE_NOP statement. */
602 gimple_build_nop (void)
604 return gimple_alloc (GIMPLE_NOP
, 0);
608 /* Build a GIMPLE_BIND statement.
609 VARS are the variables in BODY.
610 BLOCK is the containing block. */
613 gimple_build_bind (tree vars
, gimple_seq body
, tree block
)
615 gimple p
= gimple_alloc (GIMPLE_BIND
, 0);
616 gimple_bind_set_vars (p
, vars
);
618 gimple_bind_set_body (p
, body
);
620 gimple_bind_set_block (p
, block
);
624 /* Helper function to set the simple fields of a asm stmt.
626 STRING is a pointer to a string that is the asm blocks assembly code.
627 NINPUT is the number of register inputs.
628 NOUTPUT is the number of register outputs.
629 NCLOBBERS is the number of clobbered registers.
633 gimple_build_asm_1 (const char *string
, unsigned ninputs
, unsigned noutputs
,
634 unsigned nclobbers
, unsigned nlabels
)
637 int size
= strlen (string
);
639 /* ASMs with labels cannot have outputs. This should have been
640 enforced by the front end. */
641 gcc_assert (nlabels
== 0 || noutputs
== 0);
643 p
= gimple_build_with_ops (GIMPLE_ASM
, ERROR_MARK
,
644 ninputs
+ noutputs
+ nclobbers
+ nlabels
);
646 p
->gimple_asm
.ni
= ninputs
;
647 p
->gimple_asm
.no
= noutputs
;
648 p
->gimple_asm
.nc
= nclobbers
;
649 p
->gimple_asm
.nl
= nlabels
;
650 p
->gimple_asm
.string
= ggc_alloc_string (string
, size
);
652 #ifdef GATHER_STATISTICS
653 gimple_alloc_sizes
[(int) gimple_alloc_kind (GIMPLE_ASM
)] += size
;
659 /* Build a GIMPLE_ASM statement.
661 STRING is the assembly code.
662 NINPUT is the number of register inputs.
663 NOUTPUT is the number of register outputs.
664 NCLOBBERS is the number of clobbered registers.
665 INPUTS is a vector of the input register parameters.
666 OUTPUTS is a vector of the output register parameters.
667 CLOBBERS is a vector of the clobbered register parameters.
668 LABELS is a vector of destination labels. */
671 gimple_build_asm_vec (const char *string
, VEC(tree
,gc
)* inputs
,
672 VEC(tree
,gc
)* outputs
, VEC(tree
,gc
)* clobbers
,
673 VEC(tree
,gc
)* labels
)
678 p
= gimple_build_asm_1 (string
,
679 VEC_length (tree
, inputs
),
680 VEC_length (tree
, outputs
),
681 VEC_length (tree
, clobbers
),
682 VEC_length (tree
, labels
));
684 for (i
= 0; i
< VEC_length (tree
, inputs
); i
++)
685 gimple_asm_set_input_op (p
, i
, VEC_index (tree
, inputs
, i
));
687 for (i
= 0; i
< VEC_length (tree
, outputs
); i
++)
688 gimple_asm_set_output_op (p
, i
, VEC_index (tree
, outputs
, i
));
690 for (i
= 0; i
< VEC_length (tree
, clobbers
); i
++)
691 gimple_asm_set_clobber_op (p
, i
, VEC_index (tree
, clobbers
, i
));
693 for (i
= 0; i
< VEC_length (tree
, labels
); i
++)
694 gimple_asm_set_label_op (p
, i
, VEC_index (tree
, labels
, i
));
699 /* Build a GIMPLE_CATCH statement.
701 TYPES are the catch types.
702 HANDLER is the exception handler. */
705 gimple_build_catch (tree types
, gimple_seq handler
)
707 gimple p
= gimple_alloc (GIMPLE_CATCH
, 0);
708 gimple_catch_set_types (p
, types
);
710 gimple_catch_set_handler (p
, handler
);
715 /* Build a GIMPLE_EH_FILTER statement.
717 TYPES are the filter's types.
718 FAILURE is the filter's failure action. */
721 gimple_build_eh_filter (tree types
, gimple_seq failure
)
723 gimple p
= gimple_alloc (GIMPLE_EH_FILTER
, 0);
724 gimple_eh_filter_set_types (p
, types
);
726 gimple_eh_filter_set_failure (p
, failure
);
731 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
734 gimple_build_eh_must_not_throw (tree decl
)
736 gimple p
= gimple_alloc (GIMPLE_EH_MUST_NOT_THROW
, 0);
738 gcc_assert (TREE_CODE (decl
) == FUNCTION_DECL
);
739 gcc_assert (flags_from_decl_or_type (decl
) & ECF_NORETURN
);
740 gimple_eh_must_not_throw_set_fndecl (p
, decl
);
745 /* Build a GIMPLE_EH_ELSE statement. */
748 gimple_build_eh_else (gimple_seq n_body
, gimple_seq e_body
)
750 gimple p
= gimple_alloc (GIMPLE_EH_ELSE
, 0);
751 gimple_eh_else_set_n_body (p
, n_body
);
752 gimple_eh_else_set_e_body (p
, e_body
);
756 /* Build a GIMPLE_TRY statement.
758 EVAL is the expression to evaluate.
759 CLEANUP is the cleanup expression.
760 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
761 whether this is a try/catch or a try/finally respectively. */
764 gimple_build_try (gimple_seq eval
, gimple_seq cleanup
,
765 enum gimple_try_flags kind
)
769 gcc_assert (kind
== GIMPLE_TRY_CATCH
|| kind
== GIMPLE_TRY_FINALLY
);
770 p
= gimple_alloc (GIMPLE_TRY
, 0);
771 gimple_set_subcode (p
, kind
);
773 gimple_try_set_eval (p
, eval
);
775 gimple_try_set_cleanup (p
, cleanup
);
780 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
782 CLEANUP is the cleanup expression. */
785 gimple_build_wce (gimple_seq cleanup
)
787 gimple p
= gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR
, 0);
789 gimple_wce_set_cleanup (p
, cleanup
);
795 /* Build a GIMPLE_RESX statement. */
798 gimple_build_resx (int region
)
800 gimple p
= gimple_build_with_ops (GIMPLE_RESX
, ERROR_MARK
, 0);
801 p
->gimple_eh_ctrl
.region
= region
;
806 /* The helper for constructing a gimple switch statement.
807 INDEX is the switch's index.
808 NLABELS is the number of labels in the switch excluding the default.
809 DEFAULT_LABEL is the default label for the switch statement. */
812 gimple_build_switch_nlabels (unsigned nlabels
, tree index
, tree default_label
)
814 /* nlabels + 1 default label + 1 index. */
815 gimple p
= gimple_build_with_ops (GIMPLE_SWITCH
, ERROR_MARK
,
816 1 + (default_label
!= NULL
) + nlabels
);
817 gimple_switch_set_index (p
, index
);
819 gimple_switch_set_default_label (p
, default_label
);
824 /* Build a GIMPLE_SWITCH statement.
826 INDEX is the switch's index.
827 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
828 ... are the labels excluding the default. */
831 gimple_build_switch (unsigned nlabels
, tree index
, tree default_label
, ...)
835 gimple p
= gimple_build_switch_nlabels (nlabels
, index
, default_label
);
837 /* Store the rest of the labels. */
838 va_start (al
, default_label
);
839 offset
= (default_label
!= NULL
);
840 for (i
= 0; i
< nlabels
; i
++)
841 gimple_switch_set_label (p
, i
+ offset
, va_arg (al
, tree
));
848 /* Build a GIMPLE_SWITCH statement.
850 INDEX is the switch's index.
851 DEFAULT_LABEL is the default label
852 ARGS is a vector of labels excluding the default. */
855 gimple_build_switch_vec (tree index
, tree default_label
, VEC(tree
, heap
) *args
)
857 unsigned i
, offset
, nlabels
= VEC_length (tree
, args
);
858 gimple p
= gimple_build_switch_nlabels (nlabels
, index
, default_label
);
860 /* Copy the labels from the vector to the switch statement. */
861 offset
= (default_label
!= NULL
);
862 for (i
= 0; i
< nlabels
; i
++)
863 gimple_switch_set_label (p
, i
+ offset
, VEC_index (tree
, args
, i
));
868 /* Build a GIMPLE_EH_DISPATCH statement. */
871 gimple_build_eh_dispatch (int region
)
873 gimple p
= gimple_build_with_ops (GIMPLE_EH_DISPATCH
, ERROR_MARK
, 0);
874 p
->gimple_eh_ctrl
.region
= region
;
878 /* Build a new GIMPLE_DEBUG_BIND statement.
880 VAR is bound to VALUE; block and location are taken from STMT. */
883 gimple_build_debug_bind_stat (tree var
, tree value
, gimple stmt MEM_STAT_DECL
)
885 gimple p
= gimple_build_with_ops_stat (GIMPLE_DEBUG
,
886 (unsigned)GIMPLE_DEBUG_BIND
, 2
889 gimple_debug_bind_set_var (p
, var
);
890 gimple_debug_bind_set_value (p
, value
);
893 gimple_set_block (p
, gimple_block (stmt
));
894 gimple_set_location (p
, gimple_location (stmt
));
901 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
903 VAR is bound to VALUE; block and location are taken from STMT. */
906 gimple_build_debug_source_bind_stat (tree var
, tree value
,
907 gimple stmt MEM_STAT_DECL
)
909 gimple p
= gimple_build_with_ops_stat (GIMPLE_DEBUG
,
910 (unsigned)GIMPLE_DEBUG_SOURCE_BIND
, 2
913 gimple_debug_source_bind_set_var (p
, var
);
914 gimple_debug_source_bind_set_value (p
, value
);
917 gimple_set_block (p
, gimple_block (stmt
));
918 gimple_set_location (p
, gimple_location (stmt
));
925 /* Build a GIMPLE_OMP_CRITICAL statement.
927 BODY is the sequence of statements for which only one thread can execute.
928 NAME is optional identifier for this critical block. */
931 gimple_build_omp_critical (gimple_seq body
, tree name
)
933 gimple p
= gimple_alloc (GIMPLE_OMP_CRITICAL
, 0);
934 gimple_omp_critical_set_name (p
, name
);
936 gimple_omp_set_body (p
, body
);
941 /* Build a GIMPLE_OMP_FOR statement.
943 BODY is sequence of statements inside the for loop.
944 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
945 lastprivate, reductions, ordered, schedule, and nowait.
946 COLLAPSE is the collapse count.
947 PRE_BODY is the sequence of statements that are loop invariant. */
950 gimple_build_omp_for (gimple_seq body
, tree clauses
, size_t collapse
,
953 gimple p
= gimple_alloc (GIMPLE_OMP_FOR
, 0);
955 gimple_omp_set_body (p
, body
);
956 gimple_omp_for_set_clauses (p
, clauses
);
957 p
->gimple_omp_for
.collapse
= collapse
;
958 p
->gimple_omp_for
.iter
959 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse
);
961 gimple_omp_for_set_pre_body (p
, pre_body
);
967 /* Build a GIMPLE_OMP_PARALLEL statement.
969 BODY is sequence of statements which are executed in parallel.
970 CLAUSES, are the OMP parallel construct's clauses.
971 CHILD_FN is the function created for the parallel threads to execute.
972 DATA_ARG are the shared data argument(s). */
975 gimple_build_omp_parallel (gimple_seq body
, tree clauses
, tree child_fn
,
978 gimple p
= gimple_alloc (GIMPLE_OMP_PARALLEL
, 0);
980 gimple_omp_set_body (p
, body
);
981 gimple_omp_parallel_set_clauses (p
, clauses
);
982 gimple_omp_parallel_set_child_fn (p
, child_fn
);
983 gimple_omp_parallel_set_data_arg (p
, data_arg
);
989 /* Build a GIMPLE_OMP_TASK statement.
991 BODY is sequence of statements which are executed by the explicit task.
992 CLAUSES, are the OMP parallel construct's clauses.
993 CHILD_FN is the function created for the parallel threads to execute.
994 DATA_ARG are the shared data argument(s).
995 COPY_FN is the optional function for firstprivate initialization.
996 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
999 gimple_build_omp_task (gimple_seq body
, tree clauses
, tree child_fn
,
1000 tree data_arg
, tree copy_fn
, tree arg_size
,
1003 gimple p
= gimple_alloc (GIMPLE_OMP_TASK
, 0);
1005 gimple_omp_set_body (p
, body
);
1006 gimple_omp_task_set_clauses (p
, clauses
);
1007 gimple_omp_task_set_child_fn (p
, child_fn
);
1008 gimple_omp_task_set_data_arg (p
, data_arg
);
1009 gimple_omp_task_set_copy_fn (p
, copy_fn
);
1010 gimple_omp_task_set_arg_size (p
, arg_size
);
1011 gimple_omp_task_set_arg_align (p
, arg_align
);
1017 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
1019 BODY is the sequence of statements in the section. */
1022 gimple_build_omp_section (gimple_seq body
)
1024 gimple p
= gimple_alloc (GIMPLE_OMP_SECTION
, 0);
1026 gimple_omp_set_body (p
, body
);
1032 /* Build a GIMPLE_OMP_MASTER statement.
1034 BODY is the sequence of statements to be executed by just the master. */
1037 gimple_build_omp_master (gimple_seq body
)
1039 gimple p
= gimple_alloc (GIMPLE_OMP_MASTER
, 0);
1041 gimple_omp_set_body (p
, body
);
1047 /* Build a GIMPLE_OMP_CONTINUE statement.
1049 CONTROL_DEF is the definition of the control variable.
1050 CONTROL_USE is the use of the control variable. */
1053 gimple_build_omp_continue (tree control_def
, tree control_use
)
1055 gimple p
= gimple_alloc (GIMPLE_OMP_CONTINUE
, 0);
1056 gimple_omp_continue_set_control_def (p
, control_def
);
1057 gimple_omp_continue_set_control_use (p
, control_use
);
1061 /* Build a GIMPLE_OMP_ORDERED statement.
1063 BODY is the sequence of statements inside a loop that will executed in
1067 gimple_build_omp_ordered (gimple_seq body
)
1069 gimple p
= gimple_alloc (GIMPLE_OMP_ORDERED
, 0);
1071 gimple_omp_set_body (p
, body
);
1077 /* Build a GIMPLE_OMP_RETURN statement.
1078 WAIT_P is true if this is a non-waiting return. */
1081 gimple_build_omp_return (bool wait_p
)
1083 gimple p
= gimple_alloc (GIMPLE_OMP_RETURN
, 0);
1085 gimple_omp_return_set_nowait (p
);
1091 /* Build a GIMPLE_OMP_SECTIONS statement.
1093 BODY is a sequence of section statements.
1094 CLAUSES are any of the OMP sections contsruct's clauses: private,
1095 firstprivate, lastprivate, reduction, and nowait. */
1098 gimple_build_omp_sections (gimple_seq body
, tree clauses
)
1100 gimple p
= gimple_alloc (GIMPLE_OMP_SECTIONS
, 0);
1102 gimple_omp_set_body (p
, body
);
1103 gimple_omp_sections_set_clauses (p
, clauses
);
1109 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1112 gimple_build_omp_sections_switch (void)
1114 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH
, 0);
1118 /* Build a GIMPLE_OMP_SINGLE statement.
1120 BODY is the sequence of statements that will be executed once.
1121 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1122 copyprivate, nowait. */
1125 gimple_build_omp_single (gimple_seq body
, tree clauses
)
1127 gimple p
= gimple_alloc (GIMPLE_OMP_SINGLE
, 0);
1129 gimple_omp_set_body (p
, body
);
1130 gimple_omp_single_set_clauses (p
, clauses
);
1136 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1139 gimple_build_omp_atomic_load (tree lhs
, tree rhs
)
1141 gimple p
= gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD
, 0);
1142 gimple_omp_atomic_load_set_lhs (p
, lhs
);
1143 gimple_omp_atomic_load_set_rhs (p
, rhs
);
1147 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1149 VAL is the value we are storing. */
1152 gimple_build_omp_atomic_store (tree val
)
1154 gimple p
= gimple_alloc (GIMPLE_OMP_ATOMIC_STORE
, 0);
1155 gimple_omp_atomic_store_set_val (p
, val
);
1159 /* Build a GIMPLE_TRANSACTION statement. */
1162 gimple_build_transaction (gimple_seq body
, tree label
)
1164 gimple p
= gimple_alloc (GIMPLE_TRANSACTION
, 0);
1165 gimple_transaction_set_body (p
, body
);
1166 gimple_transaction_set_label (p
, label
);
1170 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1171 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1174 gimple_build_predict (enum br_predictor predictor
, enum prediction outcome
)
1176 gimple p
= gimple_alloc (GIMPLE_PREDICT
, 0);
1177 /* Ensure all the predictors fit into the lower bits of the subcode. */
1178 gcc_assert ((int) END_PREDICTORS
<= GF_PREDICT_TAKEN
);
1179 gimple_predict_set_predictor (p
, predictor
);
1180 gimple_predict_set_outcome (p
, outcome
);
1184 #if defined ENABLE_GIMPLE_CHECKING
1185 /* Complain of a gimple type mismatch and die. */
1188 gimple_check_failed (const_gimple gs
, const char *file
, int line
,
1189 const char *function
, enum gimple_code code
,
1190 enum tree_code subcode
)
1192 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1193 gimple_code_name
[code
],
1194 tree_code_name
[subcode
],
1195 gimple_code_name
[gimple_code (gs
)],
1196 gs
->gsbase
.subcode
> 0
1197 ? tree_code_name
[gs
->gsbase
.subcode
]
1199 function
, trim_filename (file
), line
);
1201 #endif /* ENABLE_GIMPLE_CHECKING */
1204 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1205 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1209 gimple_seq_alloc (void)
1211 gimple_seq seq
= gimple_seq_cache
;
1214 gimple_seq_cache
= gimple_seq_cache
->next_free
;
1215 gcc_assert (gimple_seq_cache
!= seq
);
1216 memset (seq
, 0, sizeof (*seq
));
1220 seq
= ggc_alloc_cleared_gimple_seq_d ();
1221 #ifdef GATHER_STATISTICS
1222 gimple_alloc_counts
[(int) gimple_alloc_kind_seq
]++;
1223 gimple_alloc_sizes
[(int) gimple_alloc_kind_seq
] += sizeof (*seq
);
1230 /* Return SEQ to the free pool of GIMPLE sequences. */
1233 gimple_seq_free (gimple_seq seq
)
1238 gcc_assert (gimple_seq_first (seq
) == NULL
);
1239 gcc_assert (gimple_seq_last (seq
) == NULL
);
1241 /* If this triggers, it's a sign that the same list is being freed
1243 gcc_assert (seq
!= gimple_seq_cache
|| gimple_seq_cache
== NULL
);
1245 /* Add SEQ to the pool of free sequences. */
1246 seq
->next_free
= gimple_seq_cache
;
1247 gimple_seq_cache
= seq
;
1251 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1252 *SEQ_P is NULL, a new sequence is allocated. */
1255 gimple_seq_add_stmt (gimple_seq
*seq_p
, gimple gs
)
1257 gimple_stmt_iterator si
;
1263 *seq_p
= gimple_seq_alloc ();
1265 si
= gsi_last (*seq_p
);
1266 gsi_insert_after (&si
, gs
, GSI_NEW_STMT
);
1270 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1271 NULL, a new sequence is allocated. */
1274 gimple_seq_add_seq (gimple_seq
*dst_p
, gimple_seq src
)
1276 gimple_stmt_iterator si
;
1282 *dst_p
= gimple_seq_alloc ();
1284 si
= gsi_last (*dst_p
);
1285 gsi_insert_seq_after (&si
, src
, GSI_NEW_STMT
);
1289 /* Helper function of empty_body_p. Return true if STMT is an empty
1293 empty_stmt_p (gimple stmt
)
1295 if (gimple_code (stmt
) == GIMPLE_NOP
)
1297 if (gimple_code (stmt
) == GIMPLE_BIND
)
1298 return empty_body_p (gimple_bind_body (stmt
));
1303 /* Return true if BODY contains nothing but empty statements. */
1306 empty_body_p (gimple_seq body
)
1308 gimple_stmt_iterator i
;
1310 if (gimple_seq_empty_p (body
))
1312 for (i
= gsi_start (body
); !gsi_end_p (i
); gsi_next (&i
))
1313 if (!empty_stmt_p (gsi_stmt (i
))
1314 && !is_gimple_debug (gsi_stmt (i
)))
1321 /* Perform a deep copy of sequence SRC and return the result. */
1324 gimple_seq_copy (gimple_seq src
)
1326 gimple_stmt_iterator gsi
;
1327 gimple_seq new_seq
= gimple_seq_alloc ();
1330 for (gsi
= gsi_start (src
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1332 stmt
= gimple_copy (gsi_stmt (gsi
));
1333 gimple_seq_add_stmt (&new_seq
, stmt
);
1340 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1341 on each one. WI is as in walk_gimple_stmt.
1343 If walk_gimple_stmt returns non-NULL, the walk is stopped, and the
1344 value is stored in WI->CALLBACK_RESULT. Also, the statement that
1345 produced the value is returned if this statement has not been
1346 removed by a callback (wi->removed_stmt). If the statement has
1347 been removed, NULL is returned.
1349 Otherwise, all the statements are walked and NULL returned. */
1352 walk_gimple_seq (gimple_seq seq
, walk_stmt_fn callback_stmt
,
1353 walk_tree_fn callback_op
, struct walk_stmt_info
*wi
)
1355 gimple_stmt_iterator gsi
;
1357 for (gsi
= gsi_start (seq
); !gsi_end_p (gsi
); )
1359 tree ret
= walk_gimple_stmt (&gsi
, callback_stmt
, callback_op
, wi
);
1362 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1365 wi
->callback_result
= ret
;
1367 return wi
->removed_stmt
? NULL
: gsi_stmt (gsi
);
1370 if (!wi
->removed_stmt
)
1375 wi
->callback_result
= NULL_TREE
;
1381 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1384 walk_gimple_asm (gimple stmt
, walk_tree_fn callback_op
,
1385 struct walk_stmt_info
*wi
)
1389 const char **oconstraints
;
1391 const char *constraint
;
1392 bool allows_mem
, allows_reg
, is_inout
;
1394 noutputs
= gimple_asm_noutputs (stmt
);
1395 oconstraints
= (const char **) alloca ((noutputs
) * sizeof (const char *));
1400 for (i
= 0; i
< noutputs
; i
++)
1402 op
= gimple_asm_output_op (stmt
, i
);
1403 constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op
)));
1404 oconstraints
[i
] = constraint
;
1405 parse_output_constraint (&constraint
, i
, 0, 0, &allows_mem
, &allows_reg
,
1408 wi
->val_only
= (allows_reg
|| !allows_mem
);
1409 ret
= walk_tree (&TREE_VALUE (op
), callback_op
, wi
, NULL
);
1414 n
= gimple_asm_ninputs (stmt
);
1415 for (i
= 0; i
< n
; i
++)
1417 op
= gimple_asm_input_op (stmt
, i
);
1418 constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op
)));
1419 parse_input_constraint (&constraint
, 0, 0, noutputs
, 0,
1420 oconstraints
, &allows_mem
, &allows_reg
);
1423 wi
->val_only
= (allows_reg
|| !allows_mem
);
1424 /* Although input "m" is not really a LHS, we need a lvalue. */
1425 wi
->is_lhs
= !wi
->val_only
;
1427 ret
= walk_tree (&TREE_VALUE (op
), callback_op
, wi
, NULL
);
1435 wi
->val_only
= true;
1438 n
= gimple_asm_nlabels (stmt
);
1439 for (i
= 0; i
< n
; i
++)
1441 op
= gimple_asm_label_op (stmt
, i
);
1442 ret
= walk_tree (&TREE_VALUE (op
), callback_op
, wi
, NULL
);
1451 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1452 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1454 CALLBACK_OP is called on each operand of STMT via walk_tree.
1455 Additional parameters to walk_tree must be stored in WI. For each operand
1456 OP, walk_tree is called as:
1458 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1460 If CALLBACK_OP returns non-NULL for an operand, the remaining
1461 operands are not scanned.
1463 The return value is that returned by the last call to walk_tree, or
1464 NULL_TREE if no CALLBACK_OP is specified. */
1467 walk_gimple_op (gimple stmt
, walk_tree_fn callback_op
,
1468 struct walk_stmt_info
*wi
)
1470 struct pointer_set_t
*pset
= (wi
) ? wi
->pset
: NULL
;
1472 tree ret
= NULL_TREE
;
1474 switch (gimple_code (stmt
))
1477 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1478 is a register variable, we may use a COMPONENT_REF on the RHS. */
1481 tree lhs
= gimple_assign_lhs (stmt
);
1483 = (is_gimple_reg_type (TREE_TYPE (lhs
)) && !is_gimple_reg (lhs
))
1484 || gimple_assign_rhs_class (stmt
) != GIMPLE_SINGLE_RHS
;
1487 for (i
= 1; i
< gimple_num_ops (stmt
); i
++)
1489 ret
= walk_tree (gimple_op_ptr (stmt
, i
), callback_op
, wi
,
1495 /* Walk the LHS. If the RHS is appropriate for a memory, we
1496 may use a COMPONENT_REF on the LHS. */
1499 /* If the RHS has more than 1 operand, it is not appropriate
1501 ??? A lhs always requires an lvalue, checking the val_only flag
1502 does not make any sense, so we should be able to avoid computing
1504 tree rhs1
= gimple_assign_rhs1 (stmt
);
1505 wi
->val_only
= !(is_gimple_mem_rhs (rhs1
)
1506 || TREE_CODE (rhs1
) == CONSTRUCTOR
)
1507 || gimple_assign_rhs_class (stmt
) != GIMPLE_SINGLE_RHS
;
1511 ret
= walk_tree (gimple_op_ptr (stmt
, 0), callback_op
, wi
, pset
);
1517 wi
->val_only
= true;
1526 wi
->val_only
= true;
1529 ret
= walk_tree (gimple_call_chain_ptr (stmt
), callback_op
, wi
, pset
);
1533 ret
= walk_tree (gimple_call_fn_ptr (stmt
), callback_op
, wi
, pset
);
1537 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
1541 = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt
, i
)));
1542 ret
= walk_tree (gimple_call_arg_ptr (stmt
, i
), callback_op
, wi
,
1548 if (gimple_call_lhs (stmt
))
1554 = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt
)));
1557 ret
= walk_tree (gimple_call_lhs_ptr (stmt
), callback_op
, wi
, pset
);
1565 wi
->val_only
= true;
1570 ret
= walk_tree (gimple_catch_types_ptr (stmt
), callback_op
, wi
,
1576 case GIMPLE_EH_FILTER
:
1577 ret
= walk_tree (gimple_eh_filter_types_ptr (stmt
), callback_op
, wi
,
1584 ret
= walk_gimple_asm (stmt
, callback_op
, wi
);
1589 case GIMPLE_OMP_CONTINUE
:
1590 ret
= walk_tree (gimple_omp_continue_control_def_ptr (stmt
),
1591 callback_op
, wi
, pset
);
1595 ret
= walk_tree (gimple_omp_continue_control_use_ptr (stmt
),
1596 callback_op
, wi
, pset
);
1601 case GIMPLE_OMP_CRITICAL
:
1602 ret
= walk_tree (gimple_omp_critical_name_ptr (stmt
), callback_op
, wi
,
1608 case GIMPLE_OMP_FOR
:
1609 ret
= walk_tree (gimple_omp_for_clauses_ptr (stmt
), callback_op
, wi
,
1613 for (i
= 0; i
< gimple_omp_for_collapse (stmt
); i
++)
1615 ret
= walk_tree (gimple_omp_for_index_ptr (stmt
, i
), callback_op
,
1619 ret
= walk_tree (gimple_omp_for_initial_ptr (stmt
, i
), callback_op
,
1623 ret
= walk_tree (gimple_omp_for_final_ptr (stmt
, i
), callback_op
,
1627 ret
= walk_tree (gimple_omp_for_incr_ptr (stmt
, i
), callback_op
,
1634 case GIMPLE_OMP_PARALLEL
:
1635 ret
= walk_tree (gimple_omp_parallel_clauses_ptr (stmt
), callback_op
,
1639 ret
= walk_tree (gimple_omp_parallel_child_fn_ptr (stmt
), callback_op
,
1643 ret
= walk_tree (gimple_omp_parallel_data_arg_ptr (stmt
), callback_op
,
1649 case GIMPLE_OMP_TASK
:
1650 ret
= walk_tree (gimple_omp_task_clauses_ptr (stmt
), callback_op
,
1654 ret
= walk_tree (gimple_omp_task_child_fn_ptr (stmt
), callback_op
,
1658 ret
= walk_tree (gimple_omp_task_data_arg_ptr (stmt
), callback_op
,
1662 ret
= walk_tree (gimple_omp_task_copy_fn_ptr (stmt
), callback_op
,
1666 ret
= walk_tree (gimple_omp_task_arg_size_ptr (stmt
), callback_op
,
1670 ret
= walk_tree (gimple_omp_task_arg_align_ptr (stmt
), callback_op
,
1676 case GIMPLE_OMP_SECTIONS
:
1677 ret
= walk_tree (gimple_omp_sections_clauses_ptr (stmt
), callback_op
,
1682 ret
= walk_tree (gimple_omp_sections_control_ptr (stmt
), callback_op
,
1689 case GIMPLE_OMP_SINGLE
:
1690 ret
= walk_tree (gimple_omp_single_clauses_ptr (stmt
), callback_op
, wi
,
1696 case GIMPLE_OMP_ATOMIC_LOAD
:
1697 ret
= walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt
), callback_op
, wi
,
1702 ret
= walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt
), callback_op
, wi
,
1708 case GIMPLE_OMP_ATOMIC_STORE
:
1709 ret
= walk_tree (gimple_omp_atomic_store_val_ptr (stmt
), callback_op
,
1715 case GIMPLE_TRANSACTION
:
1716 ret
= walk_tree (gimple_transaction_label_ptr (stmt
), callback_op
,
1722 /* Tuples that do not have operands. */
1725 case GIMPLE_OMP_RETURN
:
1726 case GIMPLE_PREDICT
:
1731 enum gimple_statement_structure_enum gss
;
1732 gss
= gimple_statement_structure (stmt
);
1733 if (gss
== GSS_WITH_OPS
|| gss
== GSS_WITH_MEM_OPS
)
1734 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1736 ret
= walk_tree (gimple_op_ptr (stmt
, i
), callback_op
, wi
, pset
);
1748 /* Walk the current statement in GSI (optionally using traversal state
1749 stored in WI). If WI is NULL, no state is kept during traversal.
1750 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1751 that it has handled all the operands of the statement, its return
1752 value is returned. Otherwise, the return value from CALLBACK_STMT
1753 is discarded and its operands are scanned.
1755 If CALLBACK_STMT is NULL or it didn't handle the operands,
1756 CALLBACK_OP is called on each operand of the statement via
1757 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1758 operand, the remaining operands are not scanned. In this case, the
1759 return value from CALLBACK_OP is returned.
1761 In any other case, NULL_TREE is returned. */
1764 walk_gimple_stmt (gimple_stmt_iterator
*gsi
, walk_stmt_fn callback_stmt
,
1765 walk_tree_fn callback_op
, struct walk_stmt_info
*wi
)
1769 gimple stmt
= gsi_stmt (*gsi
);
1774 wi
->removed_stmt
= false;
1776 if (wi
->want_locations
&& gimple_has_location (stmt
))
1777 input_location
= gimple_location (stmt
);
1782 /* Invoke the statement callback. Return if the callback handled
1783 all of STMT operands by itself. */
1786 bool handled_ops
= false;
1787 tree_ret
= callback_stmt (gsi
, &handled_ops
, wi
);
1791 /* If CALLBACK_STMT did not handle operands, it should not have
1792 a value to return. */
1793 gcc_assert (tree_ret
== NULL
);
1795 if (wi
&& wi
->removed_stmt
)
1798 /* Re-read stmt in case the callback changed it. */
1799 stmt
= gsi_stmt (*gsi
);
1802 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1805 tree_ret
= walk_gimple_op (stmt
, callback_op
, wi
);
1810 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1811 switch (gimple_code (stmt
))
1814 ret
= walk_gimple_seq (gimple_bind_body (stmt
), callback_stmt
,
1817 return wi
->callback_result
;
1821 ret
= walk_gimple_seq (gimple_catch_handler (stmt
), callback_stmt
,
1824 return wi
->callback_result
;
1827 case GIMPLE_EH_FILTER
:
1828 ret
= walk_gimple_seq (gimple_eh_filter_failure (stmt
), callback_stmt
,
1831 return wi
->callback_result
;
1834 case GIMPLE_EH_ELSE
:
1835 ret
= walk_gimple_seq (gimple_eh_else_n_body (stmt
),
1836 callback_stmt
, callback_op
, wi
);
1838 return wi
->callback_result
;
1839 ret
= walk_gimple_seq (gimple_eh_else_e_body (stmt
),
1840 callback_stmt
, callback_op
, wi
);
1842 return wi
->callback_result
;
1846 ret
= walk_gimple_seq (gimple_try_eval (stmt
), callback_stmt
, callback_op
,
1849 return wi
->callback_result
;
1851 ret
= walk_gimple_seq (gimple_try_cleanup (stmt
), callback_stmt
,
1854 return wi
->callback_result
;
1857 case GIMPLE_OMP_FOR
:
1858 ret
= walk_gimple_seq (gimple_omp_for_pre_body (stmt
), callback_stmt
,
1861 return wi
->callback_result
;
1864 case GIMPLE_OMP_CRITICAL
:
1865 case GIMPLE_OMP_MASTER
:
1866 case GIMPLE_OMP_ORDERED
:
1867 case GIMPLE_OMP_SECTION
:
1868 case GIMPLE_OMP_PARALLEL
:
1869 case GIMPLE_OMP_TASK
:
1870 case GIMPLE_OMP_SECTIONS
:
1871 case GIMPLE_OMP_SINGLE
:
1872 ret
= walk_gimple_seq (gimple_omp_body (stmt
), callback_stmt
,
1875 return wi
->callback_result
;
1878 case GIMPLE_WITH_CLEANUP_EXPR
:
1879 ret
= walk_gimple_seq (gimple_wce_cleanup (stmt
), callback_stmt
,
1882 return wi
->callback_result
;
1885 case GIMPLE_TRANSACTION
:
1886 ret
= walk_gimple_seq (gimple_transaction_body (stmt
),
1887 callback_stmt
, callback_op
, wi
);
1889 return wi
->callback_result
;
1893 gcc_assert (!gimple_has_substatements (stmt
));
1901 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1904 gimple_set_body (tree fndecl
, gimple_seq seq
)
1906 struct function
*fn
= DECL_STRUCT_FUNCTION (fndecl
);
1909 /* If FNDECL still does not have a function structure associated
1910 with it, then it does not make sense for it to receive a
1912 gcc_assert (seq
== NULL
);
1915 fn
->gimple_body
= seq
;
1919 /* Return the body of GIMPLE statements for function FN. After the
1920 CFG pass, the function body doesn't exist anymore because it has
1921 been split up into basic blocks. In this case, it returns
1925 gimple_body (tree fndecl
)
1927 struct function
*fn
= DECL_STRUCT_FUNCTION (fndecl
);
1928 return fn
? fn
->gimple_body
: NULL
;
1931 /* Return true when FNDECL has Gimple body either in unlowered
1934 gimple_has_body_p (tree fndecl
)
1936 struct function
*fn
= DECL_STRUCT_FUNCTION (fndecl
);
1937 return (gimple_body (fndecl
) || (fn
&& fn
->cfg
));
1940 /* Return true if calls C1 and C2 are known to go to the same function. */
1943 gimple_call_same_target_p (const_gimple c1
, const_gimple c2
)
1945 if (gimple_call_internal_p (c1
))
1946 return (gimple_call_internal_p (c2
)
1947 && gimple_call_internal_fn (c1
) == gimple_call_internal_fn (c2
));
1949 return (gimple_call_fn (c1
) == gimple_call_fn (c2
)
1950 || (gimple_call_fndecl (c1
)
1951 && gimple_call_fndecl (c1
) == gimple_call_fndecl (c2
)));
1954 /* Detect flags from a GIMPLE_CALL. This is just like
1955 call_expr_flags, but for gimple tuples. */
1958 gimple_call_flags (const_gimple stmt
)
1961 tree decl
= gimple_call_fndecl (stmt
);
1964 flags
= flags_from_decl_or_type (decl
);
1965 else if (gimple_call_internal_p (stmt
))
1966 flags
= internal_fn_flags (gimple_call_internal_fn (stmt
));
1968 flags
= flags_from_decl_or_type (gimple_call_fntype (stmt
));
1970 if (stmt
->gsbase
.subcode
& GF_CALL_NOTHROW
)
1971 flags
|= ECF_NOTHROW
;
1976 /* Return the "fn spec" string for call STMT. */
1979 gimple_call_fnspec (const_gimple stmt
)
1983 type
= gimple_call_fntype (stmt
);
1987 attr
= lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type
));
1991 return TREE_VALUE (TREE_VALUE (attr
));
1994 /* Detects argument flags for argument number ARG on call STMT. */
1997 gimple_call_arg_flags (const_gimple stmt
, unsigned arg
)
1999 tree attr
= gimple_call_fnspec (stmt
);
2001 if (!attr
|| 1 + arg
>= (unsigned) TREE_STRING_LENGTH (attr
))
2004 switch (TREE_STRING_POINTER (attr
)[1 + arg
])
2011 return EAF_DIRECT
| EAF_NOCLOBBER
| EAF_NOESCAPE
;
2014 return EAF_NOCLOBBER
| EAF_NOESCAPE
;
2017 return EAF_DIRECT
| EAF_NOESCAPE
;
2020 return EAF_NOESCAPE
;
2028 /* Detects return flags for the call STMT. */
2031 gimple_call_return_flags (const_gimple stmt
)
2035 if (gimple_call_flags (stmt
) & ECF_MALLOC
)
2038 attr
= gimple_call_fnspec (stmt
);
2039 if (!attr
|| TREE_STRING_LENGTH (attr
) < 1)
2042 switch (TREE_STRING_POINTER (attr
)[0])
2048 return ERF_RETURNS_ARG
| (TREE_STRING_POINTER (attr
)[0] - '1');
2060 /* Return true if GS is a copy assignment. */
2063 gimple_assign_copy_p (gimple gs
)
2065 return (gimple_assign_single_p (gs
)
2066 && is_gimple_val (gimple_op (gs
, 1)));
2070 /* Return true if GS is a SSA_NAME copy assignment. */
2073 gimple_assign_ssa_name_copy_p (gimple gs
)
2075 return (gimple_assign_single_p (gs
)
2076 && TREE_CODE (gimple_assign_lhs (gs
)) == SSA_NAME
2077 && TREE_CODE (gimple_assign_rhs1 (gs
)) == SSA_NAME
);
2081 /* Return true if GS is an assignment with a unary RHS, but the
2082 operator has no effect on the assigned value. The logic is adapted
2083 from STRIP_NOPS. This predicate is intended to be used in tuplifying
2084 instances in which STRIP_NOPS was previously applied to the RHS of
2087 NOTE: In the use cases that led to the creation of this function
2088 and of gimple_assign_single_p, it is typical to test for either
2089 condition and to proceed in the same manner. In each case, the
2090 assigned value is represented by the single RHS operand of the
2091 assignment. I suspect there may be cases where gimple_assign_copy_p,
2092 gimple_assign_single_p, or equivalent logic is used where a similar
2093 treatment of unary NOPs is appropriate. */
2096 gimple_assign_unary_nop_p (gimple gs
)
2098 return (is_gimple_assign (gs
)
2099 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs
))
2100 || gimple_assign_rhs_code (gs
) == NON_LVALUE_EXPR
)
2101 && gimple_assign_rhs1 (gs
) != error_mark_node
2102 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs
)))
2103 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs
)))));
2106 /* Set BB to be the basic block holding G. */
2109 gimple_set_bb (gimple stmt
, basic_block bb
)
2111 stmt
->gsbase
.bb
= bb
;
2113 /* If the statement is a label, add the label to block-to-labels map
2114 so that we can speed up edge creation for GIMPLE_GOTOs. */
2115 if (cfun
->cfg
&& gimple_code (stmt
) == GIMPLE_LABEL
)
2120 t
= gimple_label_label (stmt
);
2121 uid
= LABEL_DECL_UID (t
);
2124 unsigned old_len
= VEC_length (basic_block
, label_to_block_map
);
2125 LABEL_DECL_UID (t
) = uid
= cfun
->cfg
->last_label_uid
++;
2126 if (old_len
<= (unsigned) uid
)
2128 unsigned new_len
= 3 * uid
/ 2 + 1;
2130 VEC_safe_grow_cleared (basic_block
, gc
, label_to_block_map
,
2135 VEC_replace (basic_block
, label_to_block_map
, uid
, bb
);
2140 /* Modify the RHS of the assignment pointed-to by GSI using the
2141 operands in the expression tree EXPR.
2143 NOTE: The statement pointed-to by GSI may be reallocated if it
2144 did not have enough operand slots.
2146 This function is useful to convert an existing tree expression into
2147 the flat representation used for the RHS of a GIMPLE assignment.
2148 It will reallocate memory as needed to expand or shrink the number
2149 of operand slots needed to represent EXPR.
2151 NOTE: If you find yourself building a tree and then calling this
2152 function, you are most certainly doing it the slow way. It is much
2153 better to build a new assignment or to use the function
2154 gimple_assign_set_rhs_with_ops, which does not require an
2155 expression tree to be built. */
2158 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator
*gsi
, tree expr
)
2160 enum tree_code subcode
;
2163 extract_ops_from_tree_1 (expr
, &subcode
, &op1
, &op2
, &op3
);
2164 gimple_assign_set_rhs_with_ops_1 (gsi
, subcode
, op1
, op2
, op3
);
2168 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2169 operands OP1, OP2 and OP3.
2171 NOTE: The statement pointed-to by GSI may be reallocated if it
2172 did not have enough operand slots. */
2175 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
2176 tree op1
, tree op2
, tree op3
)
2178 unsigned new_rhs_ops
= get_gimple_rhs_num_ops (code
);
2179 gimple stmt
= gsi_stmt (*gsi
);
2181 /* If the new CODE needs more operands, allocate a new statement. */
2182 if (gimple_num_ops (stmt
) < new_rhs_ops
+ 1)
2184 tree lhs
= gimple_assign_lhs (stmt
);
2185 gimple new_stmt
= gimple_alloc (gimple_code (stmt
), new_rhs_ops
+ 1);
2186 memcpy (new_stmt
, stmt
, gimple_size (gimple_code (stmt
)));
2187 gsi_replace (gsi
, new_stmt
, true);
2190 /* The LHS needs to be reset as this also changes the SSA name
2192 gimple_assign_set_lhs (stmt
, lhs
);
2195 gimple_set_num_ops (stmt
, new_rhs_ops
+ 1);
2196 gimple_set_subcode (stmt
, code
);
2197 gimple_assign_set_rhs1 (stmt
, op1
);
2198 if (new_rhs_ops
> 1)
2199 gimple_assign_set_rhs2 (stmt
, op2
);
2200 if (new_rhs_ops
> 2)
2201 gimple_assign_set_rhs3 (stmt
, op3
);
2205 /* Return the LHS of a statement that performs an assignment,
2206 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2207 for a call to a function that returns no value, or for a
2208 statement other than an assignment or a call. */
2211 gimple_get_lhs (const_gimple stmt
)
2213 enum gimple_code code
= gimple_code (stmt
);
2215 if (code
== GIMPLE_ASSIGN
)
2216 return gimple_assign_lhs (stmt
);
2217 else if (code
== GIMPLE_CALL
)
2218 return gimple_call_lhs (stmt
);
2224 /* Set the LHS of a statement that performs an assignment,
2225 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2228 gimple_set_lhs (gimple stmt
, tree lhs
)
2230 enum gimple_code code
= gimple_code (stmt
);
2232 if (code
== GIMPLE_ASSIGN
)
2233 gimple_assign_set_lhs (stmt
, lhs
);
2234 else if (code
== GIMPLE_CALL
)
2235 gimple_call_set_lhs (stmt
, lhs
);
2240 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2241 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2242 expression with a different value.
2244 This will update any annotations (say debug bind stmts) referring
2245 to the original LHS, so that they use the RHS instead. This is
2246 done even if NLHS and LHS are the same, for it is understood that
2247 the RHS will be modified afterwards, and NLHS will not be assigned
2248 an equivalent value.
2250 Adjusting any non-annotation uses of the LHS, if needed, is a
2251 responsibility of the caller.
2253 The effect of this call should be pretty much the same as that of
2254 inserting a copy of STMT before STMT, and then removing the
2255 original stmt, at which time gsi_remove() would have update
2256 annotations, but using this function saves all the inserting,
2257 copying and removing. */
2260 gimple_replace_lhs (gimple stmt
, tree nlhs
)
2262 if (MAY_HAVE_DEBUG_STMTS
)
2264 tree lhs
= gimple_get_lhs (stmt
);
2266 gcc_assert (SSA_NAME_DEF_STMT (lhs
) == stmt
);
2268 insert_debug_temp_for_var_def (NULL
, lhs
);
2271 gimple_set_lhs (stmt
, nlhs
);
2274 /* Return a deep copy of statement STMT. All the operands from STMT
2275 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2276 and VUSE operand arrays are set to empty in the new copy. */
2279 gimple_copy (gimple stmt
)
2281 enum gimple_code code
= gimple_code (stmt
);
2282 unsigned num_ops
= gimple_num_ops (stmt
);
2283 gimple copy
= gimple_alloc (code
, num_ops
);
2286 /* Shallow copy all the fields from STMT. */
2287 memcpy (copy
, stmt
, gimple_size (code
));
2289 /* If STMT has sub-statements, deep-copy them as well. */
2290 if (gimple_has_substatements (stmt
))
2295 switch (gimple_code (stmt
))
2298 new_seq
= gimple_seq_copy (gimple_bind_body (stmt
));
2299 gimple_bind_set_body (copy
, new_seq
);
2300 gimple_bind_set_vars (copy
, unshare_expr (gimple_bind_vars (stmt
)));
2301 gimple_bind_set_block (copy
, gimple_bind_block (stmt
));
2305 new_seq
= gimple_seq_copy (gimple_catch_handler (stmt
));
2306 gimple_catch_set_handler (copy
, new_seq
);
2307 t
= unshare_expr (gimple_catch_types (stmt
));
2308 gimple_catch_set_types (copy
, t
);
2311 case GIMPLE_EH_FILTER
:
2312 new_seq
= gimple_seq_copy (gimple_eh_filter_failure (stmt
));
2313 gimple_eh_filter_set_failure (copy
, new_seq
);
2314 t
= unshare_expr (gimple_eh_filter_types (stmt
));
2315 gimple_eh_filter_set_types (copy
, t
);
2318 case GIMPLE_EH_ELSE
:
2319 new_seq
= gimple_seq_copy (gimple_eh_else_n_body (stmt
));
2320 gimple_eh_else_set_n_body (copy
, new_seq
);
2321 new_seq
= gimple_seq_copy (gimple_eh_else_e_body (stmt
));
2322 gimple_eh_else_set_e_body (copy
, new_seq
);
2326 new_seq
= gimple_seq_copy (gimple_try_eval (stmt
));
2327 gimple_try_set_eval (copy
, new_seq
);
2328 new_seq
= gimple_seq_copy (gimple_try_cleanup (stmt
));
2329 gimple_try_set_cleanup (copy
, new_seq
);
2332 case GIMPLE_OMP_FOR
:
2333 new_seq
= gimple_seq_copy (gimple_omp_for_pre_body (stmt
));
2334 gimple_omp_for_set_pre_body (copy
, new_seq
);
2335 t
= unshare_expr (gimple_omp_for_clauses (stmt
));
2336 gimple_omp_for_set_clauses (copy
, t
);
2337 copy
->gimple_omp_for
.iter
2338 = ggc_alloc_vec_gimple_omp_for_iter
2339 (gimple_omp_for_collapse (stmt
));
2340 for (i
= 0; i
< gimple_omp_for_collapse (stmt
); i
++)
2342 gimple_omp_for_set_cond (copy
, i
,
2343 gimple_omp_for_cond (stmt
, i
));
2344 gimple_omp_for_set_index (copy
, i
,
2345 gimple_omp_for_index (stmt
, i
));
2346 t
= unshare_expr (gimple_omp_for_initial (stmt
, i
));
2347 gimple_omp_for_set_initial (copy
, i
, t
);
2348 t
= unshare_expr (gimple_omp_for_final (stmt
, i
));
2349 gimple_omp_for_set_final (copy
, i
, t
);
2350 t
= unshare_expr (gimple_omp_for_incr (stmt
, i
));
2351 gimple_omp_for_set_incr (copy
, i
, t
);
2355 case GIMPLE_OMP_PARALLEL
:
2356 t
= unshare_expr (gimple_omp_parallel_clauses (stmt
));
2357 gimple_omp_parallel_set_clauses (copy
, t
);
2358 t
= unshare_expr (gimple_omp_parallel_child_fn (stmt
));
2359 gimple_omp_parallel_set_child_fn (copy
, t
);
2360 t
= unshare_expr (gimple_omp_parallel_data_arg (stmt
));
2361 gimple_omp_parallel_set_data_arg (copy
, t
);
2364 case GIMPLE_OMP_TASK
:
2365 t
= unshare_expr (gimple_omp_task_clauses (stmt
));
2366 gimple_omp_task_set_clauses (copy
, t
);
2367 t
= unshare_expr (gimple_omp_task_child_fn (stmt
));
2368 gimple_omp_task_set_child_fn (copy
, t
);
2369 t
= unshare_expr (gimple_omp_task_data_arg (stmt
));
2370 gimple_omp_task_set_data_arg (copy
, t
);
2371 t
= unshare_expr (gimple_omp_task_copy_fn (stmt
));
2372 gimple_omp_task_set_copy_fn (copy
, t
);
2373 t
= unshare_expr (gimple_omp_task_arg_size (stmt
));
2374 gimple_omp_task_set_arg_size (copy
, t
);
2375 t
= unshare_expr (gimple_omp_task_arg_align (stmt
));
2376 gimple_omp_task_set_arg_align (copy
, t
);
2379 case GIMPLE_OMP_CRITICAL
:
2380 t
= unshare_expr (gimple_omp_critical_name (stmt
));
2381 gimple_omp_critical_set_name (copy
, t
);
2384 case GIMPLE_OMP_SECTIONS
:
2385 t
= unshare_expr (gimple_omp_sections_clauses (stmt
));
2386 gimple_omp_sections_set_clauses (copy
, t
);
2387 t
= unshare_expr (gimple_omp_sections_control (stmt
));
2388 gimple_omp_sections_set_control (copy
, t
);
2391 case GIMPLE_OMP_SINGLE
:
2392 case GIMPLE_OMP_SECTION
:
2393 case GIMPLE_OMP_MASTER
:
2394 case GIMPLE_OMP_ORDERED
:
2396 new_seq
= gimple_seq_copy (gimple_omp_body (stmt
));
2397 gimple_omp_set_body (copy
, new_seq
);
2400 case GIMPLE_TRANSACTION
:
2401 new_seq
= gimple_seq_copy (gimple_transaction_body (stmt
));
2402 gimple_transaction_set_body (copy
, new_seq
);
2405 case GIMPLE_WITH_CLEANUP_EXPR
:
2406 new_seq
= gimple_seq_copy (gimple_wce_cleanup (stmt
));
2407 gimple_wce_set_cleanup (copy
, new_seq
);
2415 /* Make copy of operands. */
2418 for (i
= 0; i
< num_ops
; i
++)
2419 gimple_set_op (copy
, i
, unshare_expr (gimple_op (stmt
, i
)));
2421 /* Clear out SSA operand vectors on COPY. */
2422 if (gimple_has_ops (stmt
))
2424 gimple_set_def_ops (copy
, NULL
);
2425 gimple_set_use_ops (copy
, NULL
);
2428 if (gimple_has_mem_ops (stmt
))
2430 gimple_set_vdef (copy
, gimple_vdef (stmt
));
2431 gimple_set_vuse (copy
, gimple_vuse (stmt
));
2434 /* SSA operands need to be updated. */
2435 gimple_set_modified (copy
, true);
2442 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2443 a MODIFIED field. */
2446 gimple_set_modified (gimple s
, bool modifiedp
)
2448 if (gimple_has_ops (s
))
2449 s
->gsbase
.modified
= (unsigned) modifiedp
;
2453 /* Return true if statement S has side-effects. We consider a
2454 statement to have side effects if:
2456 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2457 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2460 gimple_has_side_effects (const_gimple s
)
2462 if (is_gimple_debug (s
))
2465 /* We don't have to scan the arguments to check for
2466 volatile arguments, though, at present, we still
2467 do a scan to check for TREE_SIDE_EFFECTS. */
2468 if (gimple_has_volatile_ops (s
))
2471 if (gimple_code (s
) == GIMPLE_ASM
2472 && gimple_asm_volatile_p (s
))
2475 if (is_gimple_call (s
))
2477 int flags
= gimple_call_flags (s
);
2479 /* An infinite loop is considered a side effect. */
2480 if (!(flags
& (ECF_CONST
| ECF_PURE
))
2481 || (flags
& ECF_LOOPING_CONST_OR_PURE
))
2490 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2491 Return true if S can trap. When INCLUDE_MEM is true, check whether
2492 the memory operations could trap. When INCLUDE_STORES is true and
2493 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2496 gimple_could_trap_p_1 (gimple s
, bool include_mem
, bool include_stores
)
2498 tree t
, div
= NULL_TREE
;
2503 unsigned i
, start
= (is_gimple_assign (s
) && !include_stores
) ? 1 : 0;
2505 for (i
= start
; i
< gimple_num_ops (s
); i
++)
2506 if (tree_could_trap_p (gimple_op (s
, i
)))
2510 switch (gimple_code (s
))
2513 return gimple_asm_volatile_p (s
);
2516 t
= gimple_call_fndecl (s
);
2517 /* Assume that calls to weak functions may trap. */
2518 if (!t
|| !DECL_P (t
) || DECL_WEAK (t
))
2523 t
= gimple_expr_type (s
);
2524 op
= gimple_assign_rhs_code (s
);
2525 if (get_gimple_rhs_class (op
) == GIMPLE_BINARY_RHS
)
2526 div
= gimple_assign_rhs2 (s
);
2527 return (operation_could_trap_p (op
, FLOAT_TYPE_P (t
),
2528 (INTEGRAL_TYPE_P (t
)
2529 && TYPE_OVERFLOW_TRAPS (t
)),
2539 /* Return true if statement S can trap. */
2542 gimple_could_trap_p (gimple s
)
2544 return gimple_could_trap_p_1 (s
, true, true);
2547 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2550 gimple_assign_rhs_could_trap_p (gimple s
)
2552 gcc_assert (is_gimple_assign (s
));
2553 return gimple_could_trap_p_1 (s
, true, false);
2557 /* Print debugging information for gimple stmts generated. */
2560 dump_gimple_statistics (void)
2562 #ifdef GATHER_STATISTICS
2563 int i
, total_tuples
= 0, total_bytes
= 0;
2565 fprintf (stderr
, "\nGIMPLE statements\n");
2566 fprintf (stderr
, "Kind Stmts Bytes\n");
2567 fprintf (stderr
, "---------------------------------------\n");
2568 for (i
= 0; i
< (int) gimple_alloc_kind_all
; ++i
)
2570 fprintf (stderr
, "%-20s %7d %10d\n", gimple_alloc_kind_names
[i
],
2571 gimple_alloc_counts
[i
], gimple_alloc_sizes
[i
]);
2572 total_tuples
+= gimple_alloc_counts
[i
];
2573 total_bytes
+= gimple_alloc_sizes
[i
];
2575 fprintf (stderr
, "---------------------------------------\n");
2576 fprintf (stderr
, "%-20s %7d %10d\n", "Total", total_tuples
, total_bytes
);
2577 fprintf (stderr
, "---------------------------------------\n");
2579 fprintf (stderr
, "No gimple statistics\n");
2584 /* Return the number of operands needed on the RHS of a GIMPLE
2585 assignment for an expression with tree code CODE. */
2588 get_gimple_rhs_num_ops (enum tree_code code
)
2590 enum gimple_rhs_class rhs_class
= get_gimple_rhs_class (code
);
2592 if (rhs_class
== GIMPLE_UNARY_RHS
|| rhs_class
== GIMPLE_SINGLE_RHS
)
2594 else if (rhs_class
== GIMPLE_BINARY_RHS
)
2596 else if (rhs_class
== GIMPLE_TERNARY_RHS
)
2602 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2604 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2605 : ((TYPE) == tcc_binary \
2606 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2607 : ((TYPE) == tcc_constant \
2608 || (TYPE) == tcc_declaration \
2609 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2610 : ((SYM) == TRUTH_AND_EXPR \
2611 || (SYM) == TRUTH_OR_EXPR \
2612 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2613 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2614 : ((SYM) == COND_EXPR \
2615 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2616 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2617 || (SYM) == DOT_PROD_EXPR \
2618 || (SYM) == REALIGN_LOAD_EXPR \
2619 || (SYM) == VEC_COND_EXPR \
2620 || (SYM) == VEC_PERM_EXPR \
2621 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2622 : ((SYM) == CONSTRUCTOR \
2623 || (SYM) == OBJ_TYPE_REF \
2624 || (SYM) == ASSERT_EXPR \
2625 || (SYM) == ADDR_EXPR \
2626 || (SYM) == WITH_SIZE_EXPR \
2627 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2628 : GIMPLE_INVALID_RHS),
2629 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2631 const unsigned char gimple_rhs_class_table
[] = {
2632 #include "all-tree.def"
2636 #undef END_OF_BASE_TREE_CODES
2638 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2640 /* Validation of GIMPLE expressions. */
2642 /* Returns true iff T is a valid RHS for an assignment to a renamed
2643 user -- or front-end generated artificial -- variable. */
2646 is_gimple_reg_rhs (tree t
)
2648 return get_gimple_rhs_class (TREE_CODE (t
)) != GIMPLE_INVALID_RHS
;
2651 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2652 LHS, or for a call argument. */
2655 is_gimple_mem_rhs (tree t
)
2657 /* If we're dealing with a renamable type, either source or dest must be
2658 a renamed variable. */
2659 if (is_gimple_reg_type (TREE_TYPE (t
)))
2660 return is_gimple_val (t
);
2662 return is_gimple_val (t
) || is_gimple_lvalue (t
);
2665 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2668 is_gimple_lvalue (tree t
)
2670 return (is_gimple_addressable (t
)
2671 || TREE_CODE (t
) == WITH_SIZE_EXPR
2672 /* These are complex lvalues, but don't have addresses, so they
2674 || TREE_CODE (t
) == BIT_FIELD_REF
);
2677 /* Return true if T is a GIMPLE condition. */
2680 is_gimple_condexpr (tree t
)
2682 return (is_gimple_val (t
) || (COMPARISON_CLASS_P (t
)
2683 && !tree_could_throw_p (t
)
2684 && is_gimple_val (TREE_OPERAND (t
, 0))
2685 && is_gimple_val (TREE_OPERAND (t
, 1))));
2688 /* Return true if T is something whose address can be taken. */
2691 is_gimple_addressable (tree t
)
2693 return (is_gimple_id (t
) || handled_component_p (t
)
2694 || TREE_CODE (t
) == MEM_REF
);
2697 /* Return true if T is a valid gimple constant. */
2700 is_gimple_constant (const_tree t
)
2702 switch (TREE_CODE (t
))
2712 /* Vector constant constructors are gimple invariant. */
2714 if (TREE_TYPE (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2715 return TREE_CONSTANT (t
);
2724 /* Return true if T is a gimple address. */
2727 is_gimple_address (const_tree t
)
2731 if (TREE_CODE (t
) != ADDR_EXPR
)
2734 op
= TREE_OPERAND (t
, 0);
2735 while (handled_component_p (op
))
2737 if ((TREE_CODE (op
) == ARRAY_REF
2738 || TREE_CODE (op
) == ARRAY_RANGE_REF
)
2739 && !is_gimple_val (TREE_OPERAND (op
, 1)))
2742 op
= TREE_OPERAND (op
, 0);
2745 if (CONSTANT_CLASS_P (op
) || TREE_CODE (op
) == MEM_REF
)
2748 switch (TREE_CODE (op
))
2763 /* Return true if T is a gimple invariant address. */
2766 is_gimple_invariant_address (const_tree t
)
2770 if (TREE_CODE (t
) != ADDR_EXPR
)
2773 op
= strip_invariant_refs (TREE_OPERAND (t
, 0));
2777 if (TREE_CODE (op
) == MEM_REF
)
2779 const_tree op0
= TREE_OPERAND (op
, 0);
2780 return (TREE_CODE (op0
) == ADDR_EXPR
2781 && (CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0))
2782 || decl_address_invariant_p (TREE_OPERAND (op0
, 0))));
2785 return CONSTANT_CLASS_P (op
) || decl_address_invariant_p (op
);
2788 /* Return true if T is a gimple invariant address at IPA level
2789 (so addresses of variables on stack are not allowed). */
2792 is_gimple_ip_invariant_address (const_tree t
)
2796 if (TREE_CODE (t
) != ADDR_EXPR
)
2799 op
= strip_invariant_refs (TREE_OPERAND (t
, 0));
2803 if (TREE_CODE (op
) == MEM_REF
)
2805 const_tree op0
= TREE_OPERAND (op
, 0);
2806 return (TREE_CODE (op0
) == ADDR_EXPR
2807 && (CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0))
2808 || decl_address_ip_invariant_p (TREE_OPERAND (op0
, 0))));
2811 return CONSTANT_CLASS_P (op
) || decl_address_ip_invariant_p (op
);
2814 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2815 form of function invariant. */
2818 is_gimple_min_invariant (const_tree t
)
2820 if (TREE_CODE (t
) == ADDR_EXPR
)
2821 return is_gimple_invariant_address (t
);
2823 return is_gimple_constant (t
);
2826 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2827 form of gimple minimal invariant. */
2830 is_gimple_ip_invariant (const_tree t
)
2832 if (TREE_CODE (t
) == ADDR_EXPR
)
2833 return is_gimple_ip_invariant_address (t
);
2835 return is_gimple_constant (t
);
2838 /* Return true if T looks like a valid GIMPLE statement. */
2841 is_gimple_stmt (tree t
)
2843 const enum tree_code code
= TREE_CODE (t
);
2848 /* The only valid NOP_EXPR is the empty statement. */
2849 return IS_EMPTY_STMT (t
);
2853 /* These are only valid if they're void. */
2854 return TREE_TYPE (t
) == NULL
|| VOID_TYPE_P (TREE_TYPE (t
));
2860 case CASE_LABEL_EXPR
:
2861 case TRY_CATCH_EXPR
:
2862 case TRY_FINALLY_EXPR
:
2863 case EH_FILTER_EXPR
:
2866 case STATEMENT_LIST
:
2876 /* These are always void. */
2882 /* These are valid regardless of their type. */
2890 /* Return true if T is a variable. */
2893 is_gimple_variable (tree t
)
2895 return (TREE_CODE (t
) == VAR_DECL
2896 || TREE_CODE (t
) == PARM_DECL
2897 || TREE_CODE (t
) == RESULT_DECL
2898 || TREE_CODE (t
) == SSA_NAME
);
2901 /* Return true if T is a GIMPLE identifier (something with an address). */
2904 is_gimple_id (tree t
)
2906 return (is_gimple_variable (t
)
2907 || TREE_CODE (t
) == FUNCTION_DECL
2908 || TREE_CODE (t
) == LABEL_DECL
2909 || TREE_CODE (t
) == CONST_DECL
2910 /* Allow string constants, since they are addressable. */
2911 || TREE_CODE (t
) == STRING_CST
);
2914 /* Return true if T is a non-aggregate register variable. */
2917 is_gimple_reg (tree t
)
2919 if (TREE_CODE (t
) == SSA_NAME
)
2920 t
= SSA_NAME_VAR (t
);
2922 if (!is_gimple_variable (t
))
2925 if (!is_gimple_reg_type (TREE_TYPE (t
)))
2928 /* A volatile decl is not acceptable because we can't reuse it as
2929 needed. We need to copy it into a temp first. */
2930 if (TREE_THIS_VOLATILE (t
))
2933 /* We define "registers" as things that can be renamed as needed,
2934 which with our infrastructure does not apply to memory. */
2935 if (needs_to_live_in_memory (t
))
2938 /* Hard register variables are an interesting case. For those that
2939 are call-clobbered, we don't know where all the calls are, since
2940 we don't (want to) take into account which operations will turn
2941 into libcalls at the rtl level. For those that are call-saved,
2942 we don't currently model the fact that calls may in fact change
2943 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2944 level, and so miss variable changes that might imply. All around,
2945 it seems safest to not do too much optimization with these at the
2946 tree level at all. We'll have to rely on the rtl optimizers to
2947 clean this up, as there we've got all the appropriate bits exposed. */
2948 if (TREE_CODE (t
) == VAR_DECL
&& DECL_HARD_REGISTER (t
))
2951 /* Complex and vector values must have been put into SSA-like form.
2952 That is, no assignments to the individual components. */
2953 if (TREE_CODE (TREE_TYPE (t
)) == COMPLEX_TYPE
2954 || TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2955 return DECL_GIMPLE_REG_P (t
);
2961 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2964 is_gimple_val (tree t
)
2966 /* Make loads from volatiles and memory vars explicit. */
2967 if (is_gimple_variable (t
)
2968 && is_gimple_reg_type (TREE_TYPE (t
))
2969 && !is_gimple_reg (t
))
2972 return (is_gimple_variable (t
) || is_gimple_min_invariant (t
));
2975 /* Similarly, but accept hard registers as inputs to asm statements. */
2978 is_gimple_asm_val (tree t
)
2980 if (TREE_CODE (t
) == VAR_DECL
&& DECL_HARD_REGISTER (t
))
2983 return is_gimple_val (t
);
2986 /* Return true if T is a GIMPLE minimal lvalue. */
2989 is_gimple_min_lval (tree t
)
2991 if (!(t
= CONST_CAST_TREE (strip_invariant_refs (t
))))
2993 return (is_gimple_id (t
) || TREE_CODE (t
) == MEM_REF
);
2996 /* Return true if T is a valid function operand of a CALL_EXPR. */
2999 is_gimple_call_addr (tree t
)
3001 return (TREE_CODE (t
) == OBJ_TYPE_REF
|| is_gimple_val (t
));
3004 /* Return true if T is a valid address operand of a MEM_REF. */
3007 is_gimple_mem_ref_addr (tree t
)
3009 return (is_gimple_reg (t
)
3010 || TREE_CODE (t
) == INTEGER_CST
3011 || (TREE_CODE (t
) == ADDR_EXPR
3012 && (CONSTANT_CLASS_P (TREE_OPERAND (t
, 0))
3013 || decl_address_invariant_p (TREE_OPERAND (t
, 0)))));
3017 /* Given a memory reference expression T, return its base address.
3018 The base address of a memory reference expression is the main
3019 object being referenced. For instance, the base address for
3020 'array[i].fld[j]' is 'array'. You can think of this as stripping
3021 away the offset part from a memory address.
3023 This function calls handled_component_p to strip away all the inner
3024 parts of the memory reference until it reaches the base object. */
3027 get_base_address (tree t
)
3029 while (handled_component_p (t
))
3030 t
= TREE_OPERAND (t
, 0);
3032 if ((TREE_CODE (t
) == MEM_REF
3033 || TREE_CODE (t
) == TARGET_MEM_REF
)
3034 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
)
3035 t
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
3037 if (TREE_CODE (t
) == SSA_NAME
3039 || TREE_CODE (t
) == STRING_CST
3040 || TREE_CODE (t
) == CONSTRUCTOR
3041 || INDIRECT_REF_P (t
)
3042 || TREE_CODE (t
) == MEM_REF
3043 || TREE_CODE (t
) == TARGET_MEM_REF
)
3050 recalculate_side_effects (tree t
)
3052 enum tree_code code
= TREE_CODE (t
);
3053 int len
= TREE_OPERAND_LENGTH (t
);
3056 switch (TREE_CODE_CLASS (code
))
3058 case tcc_expression
:
3064 case PREDECREMENT_EXPR
:
3065 case PREINCREMENT_EXPR
:
3066 case POSTDECREMENT_EXPR
:
3067 case POSTINCREMENT_EXPR
:
3068 /* All of these have side-effects, no matter what their
3077 case tcc_comparison
: /* a comparison expression */
3078 case tcc_unary
: /* a unary arithmetic expression */
3079 case tcc_binary
: /* a binary arithmetic expression */
3080 case tcc_reference
: /* a reference */
3081 case tcc_vl_exp
: /* a function call */
3082 TREE_SIDE_EFFECTS (t
) = TREE_THIS_VOLATILE (t
);
3083 for (i
= 0; i
< len
; ++i
)
3085 tree op
= TREE_OPERAND (t
, i
);
3086 if (op
&& TREE_SIDE_EFFECTS (op
))
3087 TREE_SIDE_EFFECTS (t
) = 1;
3092 /* No side-effects. */
3100 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3101 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3102 we failed to create one. */
3105 canonicalize_cond_expr_cond (tree t
)
3107 /* Strip conversions around boolean operations. */
3108 if (CONVERT_EXPR_P (t
)
3109 && (truth_value_p (TREE_CODE (TREE_OPERAND (t
, 0)))
3110 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t
, 0)))
3112 t
= TREE_OPERAND (t
, 0);
3114 /* For !x use x == 0. */
3115 if (TREE_CODE (t
) == TRUTH_NOT_EXPR
)
3117 tree top0
= TREE_OPERAND (t
, 0);
3118 t
= build2 (EQ_EXPR
, TREE_TYPE (t
),
3119 top0
, build_int_cst (TREE_TYPE (top0
), 0));
3121 /* For cmp ? 1 : 0 use cmp. */
3122 else if (TREE_CODE (t
) == COND_EXPR
3123 && COMPARISON_CLASS_P (TREE_OPERAND (t
, 0))
3124 && integer_onep (TREE_OPERAND (t
, 1))
3125 && integer_zerop (TREE_OPERAND (t
, 2)))
3127 tree top0
= TREE_OPERAND (t
, 0);
3128 t
= build2 (TREE_CODE (top0
), TREE_TYPE (t
),
3129 TREE_OPERAND (top0
, 0), TREE_OPERAND (top0
, 1));
3132 if (is_gimple_condexpr (t
))
3138 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3139 the positions marked by the set ARGS_TO_SKIP. */
3142 gimple_call_copy_skip_args (gimple stmt
, bitmap args_to_skip
)
3145 int nargs
= gimple_call_num_args (stmt
);
3146 VEC(tree
, heap
) *vargs
= VEC_alloc (tree
, heap
, nargs
);
3149 for (i
= 0; i
< nargs
; i
++)
3150 if (!bitmap_bit_p (args_to_skip
, i
))
3151 VEC_quick_push (tree
, vargs
, gimple_call_arg (stmt
, i
));
3153 if (gimple_call_internal_p (stmt
))
3154 new_stmt
= gimple_build_call_internal_vec (gimple_call_internal_fn (stmt
),
3157 new_stmt
= gimple_build_call_vec (gimple_call_fn (stmt
), vargs
);
3158 VEC_free (tree
, heap
, vargs
);
3159 if (gimple_call_lhs (stmt
))
3160 gimple_call_set_lhs (new_stmt
, gimple_call_lhs (stmt
));
3162 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
3163 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
3165 gimple_set_block (new_stmt
, gimple_block (stmt
));
3166 if (gimple_has_location (stmt
))
3167 gimple_set_location (new_stmt
, gimple_location (stmt
));
3168 gimple_call_copy_flags (new_stmt
, stmt
);
3169 gimple_call_set_chain (new_stmt
, gimple_call_chain (stmt
));
3171 gimple_set_modified (new_stmt
, true);
3177 enum gtc_mode
{ GTC_MERGE
= 0, GTC_DIAG
= 1 };
3179 static hashval_t
gimple_type_hash (const void *);
3181 /* Structure used to maintain a cache of some type pairs compared by
3182 gimple_types_compatible_p when comparing aggregate types. There are
3183 three possible values for SAME_P:
3185 -2: The pair (T1, T2) has just been inserted in the table.
3186 0: T1 and T2 are different types.
3187 1: T1 and T2 are the same type.
3189 The two elements in the SAME_P array are indexed by the comparison
3196 signed char same_p
[2];
3198 typedef struct type_pair_d
*type_pair_t
;
3199 DEF_VEC_P(type_pair_t
);
3200 DEF_VEC_ALLOC_P(type_pair_t
,heap
);
3202 #define GIMPLE_TYPE_PAIR_SIZE 16381
3203 struct type_pair_d
*type_pair_cache
;
3206 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3207 entry if none existed. */
3209 static inline type_pair_t
3210 lookup_type_pair (tree t1
, tree t2
)
3213 unsigned int uid1
, uid2
;
3215 if (type_pair_cache
== NULL
)
3216 type_pair_cache
= XCNEWVEC (struct type_pair_d
, GIMPLE_TYPE_PAIR_SIZE
);
3218 if (TYPE_UID (t1
) < TYPE_UID (t2
))
3220 uid1
= TYPE_UID (t1
);
3221 uid2
= TYPE_UID (t2
);
3225 uid1
= TYPE_UID (t2
);
3226 uid2
= TYPE_UID (t1
);
3228 gcc_checking_assert (uid1
!= uid2
);
3230 /* iterative_hash_hashval_t imply an function calls.
3231 We know that UIDS are in limited range. */
3232 index
= ((((unsigned HOST_WIDE_INT
)uid1
<< HOST_BITS_PER_WIDE_INT
/ 2) + uid2
)
3233 % GIMPLE_TYPE_PAIR_SIZE
);
3234 if (type_pair_cache
[index
].uid1
== uid1
3235 && type_pair_cache
[index
].uid2
== uid2
)
3236 return &type_pair_cache
[index
];
3238 type_pair_cache
[index
].uid1
= uid1
;
3239 type_pair_cache
[index
].uid2
= uid2
;
3240 type_pair_cache
[index
].same_p
[0] = -2;
3241 type_pair_cache
[index
].same_p
[1] = -2;
3243 return &type_pair_cache
[index
];
3246 /* Per pointer state for the SCC finding. The on_sccstack flag
3247 is not strictly required, it is true when there is no hash value
3248 recorded for the type and false otherwise. But querying that
3253 unsigned int dfsnum
;
3262 static unsigned int next_dfs_num
;
3263 static unsigned int gtc_next_dfs_num
;
3266 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3268 typedef struct GTY(()) gimple_type_leader_entry_s
{
3271 } gimple_type_leader_entry
;
3273 #define GIMPLE_TYPE_LEADER_SIZE 16381
3274 static GTY((deletable
, length("GIMPLE_TYPE_LEADER_SIZE")))
3275 gimple_type_leader_entry
*gimple_type_leader
;
3277 /* Lookup an existing leader for T and return it or NULL_TREE, if
3278 there is none in the cache. */
3281 gimple_lookup_type_leader (tree t
)
3283 gimple_type_leader_entry
*leader
;
3285 if (!gimple_type_leader
)
3288 leader
= &gimple_type_leader
[TYPE_UID (t
) % GIMPLE_TYPE_LEADER_SIZE
];
3289 if (leader
->type
!= t
)
3292 return leader
->leader
;
3295 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3296 true then if any type has no name return false, otherwise return
3297 true if both types have no names. */
3300 compare_type_names_p (tree t1
, tree t2
)
3302 tree name1
= TYPE_NAME (t1
);
3303 tree name2
= TYPE_NAME (t2
);
3305 if ((name1
!= NULL_TREE
) != (name2
!= NULL_TREE
))
3308 if (name1
== NULL_TREE
)
3311 /* Either both should be a TYPE_DECL or both an IDENTIFIER_NODE. */
3312 if (TREE_CODE (name1
) != TREE_CODE (name2
))
3315 if (TREE_CODE (name1
) == TYPE_DECL
)
3316 name1
= DECL_NAME (name1
);
3317 gcc_checking_assert (!name1
|| TREE_CODE (name1
) == IDENTIFIER_NODE
);
3319 if (TREE_CODE (name2
) == TYPE_DECL
)
3320 name2
= DECL_NAME (name2
);
3321 gcc_checking_assert (!name2
|| TREE_CODE (name2
) == IDENTIFIER_NODE
);
3323 /* Identifiers can be compared with pointer equality rather
3324 than a string comparison. */
3331 /* Return true if the field decls F1 and F2 are at the same offset.
3333 This is intended to be used on GIMPLE types only. */
3336 gimple_compare_field_offset (tree f1
, tree f2
)
3338 if (DECL_OFFSET_ALIGN (f1
) == DECL_OFFSET_ALIGN (f2
))
3340 tree offset1
= DECL_FIELD_OFFSET (f1
);
3341 tree offset2
= DECL_FIELD_OFFSET (f2
);
3342 return ((offset1
== offset2
3343 /* Once gimplification is done, self-referential offsets are
3344 instantiated as operand #2 of the COMPONENT_REF built for
3345 each access and reset. Therefore, they are not relevant
3346 anymore and fields are interchangeable provided that they
3347 represent the same access. */
3348 || (TREE_CODE (offset1
) == PLACEHOLDER_EXPR
3349 && TREE_CODE (offset2
) == PLACEHOLDER_EXPR
3350 && (DECL_SIZE (f1
) == DECL_SIZE (f2
)
3351 || (TREE_CODE (DECL_SIZE (f1
)) == PLACEHOLDER_EXPR
3352 && TREE_CODE (DECL_SIZE (f2
)) == PLACEHOLDER_EXPR
)
3353 || operand_equal_p (DECL_SIZE (f1
), DECL_SIZE (f2
), 0))
3354 && DECL_ALIGN (f1
) == DECL_ALIGN (f2
))
3355 || operand_equal_p (offset1
, offset2
, 0))
3356 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1
),
3357 DECL_FIELD_BIT_OFFSET (f2
)));
3360 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3361 should be, so handle differing ones specially by decomposing
3362 the offset into a byte and bit offset manually. */
3363 if (host_integerp (DECL_FIELD_OFFSET (f1
), 0)
3364 && host_integerp (DECL_FIELD_OFFSET (f2
), 0))
3366 unsigned HOST_WIDE_INT byte_offset1
, byte_offset2
;
3367 unsigned HOST_WIDE_INT bit_offset1
, bit_offset2
;
3368 bit_offset1
= TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1
));
3369 byte_offset1
= (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1
))
3370 + bit_offset1
/ BITS_PER_UNIT
);
3371 bit_offset2
= TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2
));
3372 byte_offset2
= (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2
))
3373 + bit_offset2
/ BITS_PER_UNIT
);
3374 if (byte_offset1
!= byte_offset2
)
3376 return bit_offset1
% BITS_PER_UNIT
== bit_offset2
% BITS_PER_UNIT
;
3383 gimple_types_compatible_p_1 (tree
, tree
, type_pair_t
,
3384 VEC(type_pair_t
, heap
) **,
3385 struct pointer_map_t
*, struct obstack
*);
3387 /* DFS visit the edge from the callers type pair with state *STATE to
3388 the pair T1, T2 while operating in FOR_MERGING_P mode.
3389 Update the merging status if it is not part of the SCC containing the
3390 callers pair and return it.
3391 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3394 gtc_visit (tree t1
, tree t2
,
3396 VEC(type_pair_t
, heap
) **sccstack
,
3397 struct pointer_map_t
*sccstate
,
3398 struct obstack
*sccstate_obstack
)
3400 struct sccs
*cstate
= NULL
;
3403 tree leader1
, leader2
;
3405 /* Check first for the obvious case of pointer identity. */
3409 /* Check that we have two types to compare. */
3410 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
3413 /* Can't be the same type if the types don't have the same code. */
3414 if (TREE_CODE (t1
) != TREE_CODE (t2
))
3417 /* Can't be the same type if they have different CV qualifiers. */
3418 if (TYPE_QUALS (t1
) != TYPE_QUALS (t2
))
3421 if (TREE_ADDRESSABLE (t1
) != TREE_ADDRESSABLE (t2
))
3424 /* Void types and nullptr types are always the same. */
3425 if (TREE_CODE (t1
) == VOID_TYPE
3426 || TREE_CODE (t1
) == NULLPTR_TYPE
)
3429 /* Can't be the same type if they have different alignment or mode. */
3430 if (TYPE_ALIGN (t1
) != TYPE_ALIGN (t2
)
3431 || TYPE_MODE (t1
) != TYPE_MODE (t2
))
3434 /* Do some simple checks before doing three hashtable queries. */
3435 if (INTEGRAL_TYPE_P (t1
)
3436 || SCALAR_FLOAT_TYPE_P (t1
)
3437 || FIXED_POINT_TYPE_P (t1
)
3438 || TREE_CODE (t1
) == VECTOR_TYPE
3439 || TREE_CODE (t1
) == COMPLEX_TYPE
3440 || TREE_CODE (t1
) == OFFSET_TYPE
3441 || POINTER_TYPE_P (t1
))
3443 /* Can't be the same type if they have different sign or precision. */
3444 if (TYPE_PRECISION (t1
) != TYPE_PRECISION (t2
)
3445 || TYPE_UNSIGNED (t1
) != TYPE_UNSIGNED (t2
))
3448 if (TREE_CODE (t1
) == INTEGER_TYPE
3449 && (TYPE_IS_SIZETYPE (t1
) != TYPE_IS_SIZETYPE (t2
)
3450 || TYPE_STRING_FLAG (t1
) != TYPE_STRING_FLAG (t2
)))
3453 /* That's all we need to check for float and fixed-point types. */
3454 if (SCALAR_FLOAT_TYPE_P (t1
)
3455 || FIXED_POINT_TYPE_P (t1
))
3458 /* For other types fall thru to more complex checks. */
3461 /* If the types have been previously registered and found equal
3463 leader1
= gimple_lookup_type_leader (t1
);
3464 leader2
= gimple_lookup_type_leader (t2
);
3467 || (leader1
&& leader1
== leader2
))
3470 /* If the hash values of t1 and t2 are different the types can't
3471 possibly be the same. This helps keeping the type-pair hashtable
3472 small, only tracking comparisons for hash collisions. */
3473 if (gimple_type_hash (t1
) != gimple_type_hash (t2
))
3476 /* Allocate a new cache entry for this comparison. */
3477 p
= lookup_type_pair (t1
, t2
);
3478 if (p
->same_p
[GTC_MERGE
] == 0 || p
->same_p
[GTC_MERGE
] == 1)
3480 /* We have already decided whether T1 and T2 are the
3481 same, return the cached result. */
3482 return p
->same_p
[GTC_MERGE
] == 1;
3485 if ((slot
= pointer_map_contains (sccstate
, p
)) != NULL
)
3486 cstate
= (struct sccs
*)*slot
;
3487 /* Not yet visited. DFS recurse. */
3490 gimple_types_compatible_p_1 (t1
, t2
, p
,
3491 sccstack
, sccstate
, sccstate_obstack
);
3492 cstate
= (struct sccs
*)* pointer_map_contains (sccstate
, p
);
3493 state
->low
= MIN (state
->low
, cstate
->low
);
3495 /* If the type is still on the SCC stack adjust the parents low. */
3496 if (cstate
->dfsnum
< state
->dfsnum
3497 && cstate
->on_sccstack
)
3498 state
->low
= MIN (cstate
->dfsnum
, state
->low
);
3500 /* Return the current lattice value. We start with an equality
3501 assumption so types part of a SCC will be optimistically
3502 treated equal unless proven otherwise. */
3503 return cstate
->u
.same_p
;
3506 /* Worker for gimple_types_compatible.
3507 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3510 gimple_types_compatible_p_1 (tree t1
, tree t2
, type_pair_t p
,
3511 VEC(type_pair_t
, heap
) **sccstack
,
3512 struct pointer_map_t
*sccstate
,
3513 struct obstack
*sccstate_obstack
)
3517 gcc_assert (p
->same_p
[GTC_MERGE
] == -2);
3519 state
= XOBNEW (sccstate_obstack
, struct sccs
);
3520 *pointer_map_insert (sccstate
, p
) = state
;
3522 VEC_safe_push (type_pair_t
, heap
, *sccstack
, p
);
3523 state
->dfsnum
= gtc_next_dfs_num
++;
3524 state
->low
= state
->dfsnum
;
3525 state
->on_sccstack
= true;
3526 /* Start with an equality assumption. As we DFS recurse into child
3527 SCCs this assumption may get revisited. */
3528 state
->u
.same_p
= 1;
3530 /* The struct tags shall compare equal. */
3531 if (!compare_type_names_p (t1
, t2
))
3532 goto different_types
;
3534 /* We may not merge typedef types to the same type in different
3537 && TREE_CODE (TYPE_NAME (t1
)) == TYPE_DECL
3538 && DECL_CONTEXT (TYPE_NAME (t1
))
3539 && TYPE_P (DECL_CONTEXT (TYPE_NAME (t1
))))
3541 if (!gtc_visit (DECL_CONTEXT (TYPE_NAME (t1
)),
3542 DECL_CONTEXT (TYPE_NAME (t2
)),
3543 state
, sccstack
, sccstate
, sccstate_obstack
))
3544 goto different_types
;
3547 /* If their attributes are not the same they can't be the same type. */
3548 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1
), TYPE_ATTRIBUTES (t2
)))
3549 goto different_types
;
3551 /* Do type-specific comparisons. */
3552 switch (TREE_CODE (t1
))
3556 if (!gtc_visit (TREE_TYPE (t1
), TREE_TYPE (t2
),
3557 state
, sccstack
, sccstate
, sccstate_obstack
))
3558 goto different_types
;
3562 /* Array types are the same if the element types are the same and
3563 the number of elements are the same. */
3564 if (!gtc_visit (TREE_TYPE (t1
), TREE_TYPE (t2
),
3565 state
, sccstack
, sccstate
, sccstate_obstack
)
3566 || TYPE_STRING_FLAG (t1
) != TYPE_STRING_FLAG (t2
)
3567 || TYPE_NONALIASED_COMPONENT (t1
) != TYPE_NONALIASED_COMPONENT (t2
))
3568 goto different_types
;
3571 tree i1
= TYPE_DOMAIN (t1
);
3572 tree i2
= TYPE_DOMAIN (t2
);
3574 /* For an incomplete external array, the type domain can be
3575 NULL_TREE. Check this condition also. */
3576 if (i1
== NULL_TREE
&& i2
== NULL_TREE
)
3578 else if (i1
== NULL_TREE
|| i2
== NULL_TREE
)
3579 goto different_types
;
3580 /* If for a complete array type the possibly gimplified sizes
3581 are different the types are different. */
3582 else if (((TYPE_SIZE (i1
) != NULL
) ^ (TYPE_SIZE (i2
) != NULL
))
3585 && !operand_equal_p (TYPE_SIZE (i1
), TYPE_SIZE (i2
), 0)))
3586 goto different_types
;
3589 tree min1
= TYPE_MIN_VALUE (i1
);
3590 tree min2
= TYPE_MIN_VALUE (i2
);
3591 tree max1
= TYPE_MAX_VALUE (i1
);
3592 tree max2
= TYPE_MAX_VALUE (i2
);
3594 /* The minimum/maximum values have to be the same. */
3597 && ((TREE_CODE (min1
) == PLACEHOLDER_EXPR
3598 && TREE_CODE (min2
) == PLACEHOLDER_EXPR
)
3599 || operand_equal_p (min1
, min2
, 0))))
3602 && ((TREE_CODE (max1
) == PLACEHOLDER_EXPR
3603 && TREE_CODE (max2
) == PLACEHOLDER_EXPR
)
3604 || operand_equal_p (max1
, max2
, 0)))))
3607 goto different_types
;
3612 /* Method types should belong to the same class. */
3613 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1
), TYPE_METHOD_BASETYPE (t2
),
3614 state
, sccstack
, sccstate
, sccstate_obstack
))
3615 goto different_types
;
3620 /* Function types are the same if the return type and arguments types
3622 if (!gtc_visit (TREE_TYPE (t1
), TREE_TYPE (t2
),
3623 state
, sccstack
, sccstate
, sccstate_obstack
))
3624 goto different_types
;
3626 if (!comp_type_attributes (t1
, t2
))
3627 goto different_types
;
3629 if (TYPE_ARG_TYPES (t1
) == TYPE_ARG_TYPES (t2
))
3633 tree parms1
, parms2
;
3635 for (parms1
= TYPE_ARG_TYPES (t1
), parms2
= TYPE_ARG_TYPES (t2
);
3637 parms1
= TREE_CHAIN (parms1
), parms2
= TREE_CHAIN (parms2
))
3639 if (!gtc_visit (TREE_VALUE (parms1
), TREE_VALUE (parms2
),
3640 state
, sccstack
, sccstate
, sccstate_obstack
))
3641 goto different_types
;
3644 if (parms1
|| parms2
)
3645 goto different_types
;
3652 if (!gtc_visit (TREE_TYPE (t1
), TREE_TYPE (t2
),
3653 state
, sccstack
, sccstate
, sccstate_obstack
)
3654 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1
),
3655 TYPE_OFFSET_BASETYPE (t2
),
3656 state
, sccstack
, sccstate
, sccstate_obstack
))
3657 goto different_types
;
3663 case REFERENCE_TYPE
:
3665 /* If the two pointers have different ref-all attributes,
3666 they can't be the same type. */
3667 if (TYPE_REF_CAN_ALIAS_ALL (t1
) != TYPE_REF_CAN_ALIAS_ALL (t2
))
3668 goto different_types
;
3670 /* Otherwise, pointer and reference types are the same if the
3671 pointed-to types are the same. */
3672 if (gtc_visit (TREE_TYPE (t1
), TREE_TYPE (t2
),
3673 state
, sccstack
, sccstate
, sccstate_obstack
))
3676 goto different_types
;
3682 tree min1
= TYPE_MIN_VALUE (t1
);
3683 tree max1
= TYPE_MAX_VALUE (t1
);
3684 tree min2
= TYPE_MIN_VALUE (t2
);
3685 tree max2
= TYPE_MAX_VALUE (t2
);
3686 bool min_equal_p
= false;
3687 bool max_equal_p
= false;
3689 /* If either type has a minimum value, the other type must
3691 if (min1
== NULL_TREE
&& min2
== NULL_TREE
)
3693 else if (min1
&& min2
&& operand_equal_p (min1
, min2
, 0))
3696 /* Likewise, if either type has a maximum value, the other
3697 type must have the same. */
3698 if (max1
== NULL_TREE
&& max2
== NULL_TREE
)
3700 else if (max1
&& max2
&& operand_equal_p (max1
, max2
, 0))
3703 if (!min_equal_p
|| !max_equal_p
)
3704 goto different_types
;
3711 /* FIXME lto, we cannot check bounds on enumeral types because
3712 different front ends will produce different values.
3713 In C, enumeral types are integers, while in C++ each element
3714 will have its own symbolic value. We should decide how enums
3715 are to be represented in GIMPLE and have each front end lower
3719 /* For enumeral types, all the values must be the same. */
3720 if (TYPE_VALUES (t1
) == TYPE_VALUES (t2
))
3723 for (v1
= TYPE_VALUES (t1
), v2
= TYPE_VALUES (t2
);
3725 v1
= TREE_CHAIN (v1
), v2
= TREE_CHAIN (v2
))
3727 tree c1
= TREE_VALUE (v1
);
3728 tree c2
= TREE_VALUE (v2
);
3730 if (TREE_CODE (c1
) == CONST_DECL
)
3731 c1
= DECL_INITIAL (c1
);
3733 if (TREE_CODE (c2
) == CONST_DECL
)
3734 c2
= DECL_INITIAL (c2
);
3736 if (tree_int_cst_equal (c1
, c2
) != 1)
3737 goto different_types
;
3739 if (TREE_PURPOSE (v1
) != TREE_PURPOSE (v2
))
3740 goto different_types
;
3743 /* If one enumeration has more values than the other, they
3744 are not the same. */
3746 goto different_types
;
3753 case QUAL_UNION_TYPE
:
3757 /* For aggregate types, all the fields must be the same. */
3758 for (f1
= TYPE_FIELDS (t1
), f2
= TYPE_FIELDS (t2
);
3760 f1
= TREE_CHAIN (f1
), f2
= TREE_CHAIN (f2
))
3762 /* Different field kinds are not compatible. */
3763 if (TREE_CODE (f1
) != TREE_CODE (f2
))
3764 goto different_types
;
3765 /* Field decls must have the same name and offset. */
3766 if (TREE_CODE (f1
) == FIELD_DECL
3767 && (DECL_NONADDRESSABLE_P (f1
) != DECL_NONADDRESSABLE_P (f2
)
3768 || !gimple_compare_field_offset (f1
, f2
)))
3769 goto different_types
;
3770 /* All entities should have the same name and type. */
3771 if (DECL_NAME (f1
) != DECL_NAME (f2
)
3772 || !gtc_visit (TREE_TYPE (f1
), TREE_TYPE (f2
),
3773 state
, sccstack
, sccstate
, sccstate_obstack
))
3774 goto different_types
;
3777 /* If one aggregate has more fields than the other, they
3778 are not the same. */
3780 goto different_types
;
3789 /* Common exit path for types that are not compatible. */
3791 state
->u
.same_p
= 0;
3794 /* Common exit path for types that are compatible. */
3796 gcc_assert (state
->u
.same_p
== 1);
3799 if (state
->low
== state
->dfsnum
)
3803 /* Pop off the SCC and set its cache values to the final
3804 comparison result. */
3807 struct sccs
*cstate
;
3808 x
= VEC_pop (type_pair_t
, *sccstack
);
3809 cstate
= (struct sccs
*)*pointer_map_contains (sccstate
, x
);
3810 cstate
->on_sccstack
= false;
3811 x
->same_p
[GTC_MERGE
] = state
->u
.same_p
;
3816 return state
->u
.same_p
;
3819 /* Return true iff T1 and T2 are structurally identical. When
3820 FOR_MERGING_P is true the an incomplete type and a complete type
3821 are considered different, otherwise they are considered compatible. */
3824 gimple_types_compatible_p (tree t1
, tree t2
)
3826 VEC(type_pair_t
, heap
) *sccstack
= NULL
;
3827 struct pointer_map_t
*sccstate
;
3828 struct obstack sccstate_obstack
;
3829 type_pair_t p
= NULL
;
3831 tree leader1
, leader2
;
3833 /* Before starting to set up the SCC machinery handle simple cases. */
3835 /* Check first for the obvious case of pointer identity. */
3839 /* Check that we have two types to compare. */
3840 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
3843 /* Can't be the same type if the types don't have the same code. */
3844 if (TREE_CODE (t1
) != TREE_CODE (t2
))
3847 /* Can't be the same type if they have different CV qualifiers. */
3848 if (TYPE_QUALS (t1
) != TYPE_QUALS (t2
))
3851 if (TREE_ADDRESSABLE (t1
) != TREE_ADDRESSABLE (t2
))
3854 /* Void types and nullptr types are always the same. */
3855 if (TREE_CODE (t1
) == VOID_TYPE
3856 || TREE_CODE (t1
) == NULLPTR_TYPE
)
3859 /* Can't be the same type if they have different alignment or mode. */
3860 if (TYPE_ALIGN (t1
) != TYPE_ALIGN (t2
)
3861 || TYPE_MODE (t1
) != TYPE_MODE (t2
))
3864 /* Do some simple checks before doing three hashtable queries. */
3865 if (INTEGRAL_TYPE_P (t1
)
3866 || SCALAR_FLOAT_TYPE_P (t1
)
3867 || FIXED_POINT_TYPE_P (t1
)
3868 || TREE_CODE (t1
) == VECTOR_TYPE
3869 || TREE_CODE (t1
) == COMPLEX_TYPE
3870 || TREE_CODE (t1
) == OFFSET_TYPE
3871 || POINTER_TYPE_P (t1
))
3873 /* Can't be the same type if they have different sign or precision. */
3874 if (TYPE_PRECISION (t1
) != TYPE_PRECISION (t2
)
3875 || TYPE_UNSIGNED (t1
) != TYPE_UNSIGNED (t2
))
3878 if (TREE_CODE (t1
) == INTEGER_TYPE
3879 && (TYPE_IS_SIZETYPE (t1
) != TYPE_IS_SIZETYPE (t2
)
3880 || TYPE_STRING_FLAG (t1
) != TYPE_STRING_FLAG (t2
)))
3883 /* That's all we need to check for float and fixed-point types. */
3884 if (SCALAR_FLOAT_TYPE_P (t1
)
3885 || FIXED_POINT_TYPE_P (t1
))
3888 /* For other types fall thru to more complex checks. */
3891 /* If the types have been previously registered and found equal
3893 leader1
= gimple_lookup_type_leader (t1
);
3894 leader2
= gimple_lookup_type_leader (t2
);
3897 || (leader1
&& leader1
== leader2
))
3900 /* If the hash values of t1 and t2 are different the types can't
3901 possibly be the same. This helps keeping the type-pair hashtable
3902 small, only tracking comparisons for hash collisions. */
3903 if (gimple_type_hash (t1
) != gimple_type_hash (t2
))
3906 /* If we've visited this type pair before (in the case of aggregates
3907 with self-referential types), and we made a decision, return it. */
3908 p
= lookup_type_pair (t1
, t2
);
3909 if (p
->same_p
[GTC_MERGE
] == 0 || p
->same_p
[GTC_MERGE
] == 1)
3911 /* We have already decided whether T1 and T2 are the
3912 same, return the cached result. */
3913 return p
->same_p
[GTC_MERGE
] == 1;
3916 /* Now set up the SCC machinery for the comparison. */
3917 gtc_next_dfs_num
= 1;
3918 sccstate
= pointer_map_create ();
3919 gcc_obstack_init (&sccstate_obstack
);
3920 res
= gimple_types_compatible_p_1 (t1
, t2
, p
,
3921 &sccstack
, sccstate
, &sccstate_obstack
);
3922 VEC_free (type_pair_t
, heap
, sccstack
);
3923 pointer_map_destroy (sccstate
);
3924 obstack_free (&sccstate_obstack
, NULL
);
3931 iterative_hash_gimple_type (tree
, hashval_t
, VEC(tree
, heap
) **,
3932 struct pointer_map_t
*, struct obstack
*);
3934 /* DFS visit the edge from the callers type with state *STATE to T.
3935 Update the callers type hash V with the hash for T if it is not part
3936 of the SCC containing the callers type and return it.
3937 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3940 visit (tree t
, struct sccs
*state
, hashval_t v
,
3941 VEC (tree
, heap
) **sccstack
,
3942 struct pointer_map_t
*sccstate
,
3943 struct obstack
*sccstate_obstack
)
3945 struct sccs
*cstate
= NULL
;
3946 struct tree_int_map m
;
3949 /* If there is a hash value recorded for this type then it can't
3950 possibly be part of our parent SCC. Simply mix in its hash. */
3952 if ((slot
= htab_find_slot (type_hash_cache
, &m
, NO_INSERT
))
3954 return iterative_hash_hashval_t (((struct tree_int_map
*) *slot
)->to
, v
);
3956 if ((slot
= pointer_map_contains (sccstate
, t
)) != NULL
)
3957 cstate
= (struct sccs
*)*slot
;
3961 /* Not yet visited. DFS recurse. */
3962 tem
= iterative_hash_gimple_type (t
, v
,
3963 sccstack
, sccstate
, sccstate_obstack
);
3965 cstate
= (struct sccs
*)* pointer_map_contains (sccstate
, t
);
3966 state
->low
= MIN (state
->low
, cstate
->low
);
3967 /* If the type is no longer on the SCC stack and thus is not part
3968 of the parents SCC mix in its hash value. Otherwise we will
3969 ignore the type for hashing purposes and return the unaltered
3971 if (!cstate
->on_sccstack
)
3974 if (cstate
->dfsnum
< state
->dfsnum
3975 && cstate
->on_sccstack
)
3976 state
->low
= MIN (cstate
->dfsnum
, state
->low
);
3978 /* We are part of our parents SCC, skip this type during hashing
3979 and return the unaltered hash value. */
3983 /* Hash NAME with the previous hash value V and return it. */
3986 iterative_hash_name (tree name
, hashval_t v
)
3990 v
= iterative_hash_hashval_t (TREE_CODE (name
), v
);
3991 if (TREE_CODE (name
) == TYPE_DECL
)
3992 name
= DECL_NAME (name
);
3995 gcc_assert (TREE_CODE (name
) == IDENTIFIER_NODE
);
3996 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name
), v
);
3999 /* A type, hashvalue pair for sorting SCC members. */
4001 struct type_hash_pair
{
4006 /* Compare two type, hashvalue pairs. */
4009 type_hash_pair_compare (const void *p1_
, const void *p2_
)
4011 const struct type_hash_pair
*p1
= (const struct type_hash_pair
*) p1_
;
4012 const struct type_hash_pair
*p2
= (const struct type_hash_pair
*) p2_
;
4013 if (p1
->hash
< p2
->hash
)
4015 else if (p1
->hash
> p2
->hash
)
4020 /* Returning a hash value for gimple type TYPE combined with VAL.
4021 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4023 To hash a type we end up hashing in types that are reachable.
4024 Through pointers we can end up with cycles which messes up the
4025 required property that we need to compute the same hash value
4026 for structurally equivalent types. To avoid this we have to
4027 hash all types in a cycle (the SCC) in a commutative way. The
4028 easiest way is to not mix in the hashes of the SCC members at
4029 all. To make this work we have to delay setting the hash
4030 values of the SCC until it is complete. */
4033 iterative_hash_gimple_type (tree type
, hashval_t val
,
4034 VEC(tree
, heap
) **sccstack
,
4035 struct pointer_map_t
*sccstate
,
4036 struct obstack
*sccstate_obstack
)
4042 /* Not visited during this DFS walk. */
4043 gcc_checking_assert (!pointer_map_contains (sccstate
, type
));
4044 state
= XOBNEW (sccstate_obstack
, struct sccs
);
4045 *pointer_map_insert (sccstate
, type
) = state
;
4047 VEC_safe_push (tree
, heap
, *sccstack
, type
);
4048 state
->dfsnum
= next_dfs_num
++;
4049 state
->low
= state
->dfsnum
;
4050 state
->on_sccstack
= true;
4052 /* Combine a few common features of types so that types are grouped into
4053 smaller sets; when searching for existing matching types to merge,
4054 only existing types having the same features as the new type will be
4056 v
= iterative_hash_name (TYPE_NAME (type
), 0);
4057 if (TYPE_NAME (type
)
4058 && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
4059 && DECL_CONTEXT (TYPE_NAME (type
))
4060 && TYPE_P (DECL_CONTEXT (TYPE_NAME (type
))))
4061 v
= visit (DECL_CONTEXT (TYPE_NAME (type
)), state
, v
,
4062 sccstack
, sccstate
, sccstate_obstack
);
4063 v
= iterative_hash_hashval_t (TREE_CODE (type
), v
);
4064 v
= iterative_hash_hashval_t (TYPE_QUALS (type
), v
);
4065 v
= iterative_hash_hashval_t (TREE_ADDRESSABLE (type
), v
);
4067 /* Do not hash the types size as this will cause differences in
4068 hash values for the complete vs. the incomplete type variant. */
4070 /* Incorporate common features of numerical types. */
4071 if (INTEGRAL_TYPE_P (type
)
4072 || SCALAR_FLOAT_TYPE_P (type
)
4073 || FIXED_POINT_TYPE_P (type
))
4075 v
= iterative_hash_hashval_t (TYPE_PRECISION (type
), v
);
4076 v
= iterative_hash_hashval_t (TYPE_MODE (type
), v
);
4077 v
= iterative_hash_hashval_t (TYPE_UNSIGNED (type
), v
);
4080 /* For pointer and reference types, fold in information about the type
4082 if (POINTER_TYPE_P (type
))
4083 v
= visit (TREE_TYPE (type
), state
, v
,
4084 sccstack
, sccstate
, sccstate_obstack
);
4086 /* For integer types hash the types min/max values and the string flag. */
4087 if (TREE_CODE (type
) == INTEGER_TYPE
)
4089 /* OMP lowering can introduce error_mark_node in place of
4090 random local decls in types. */
4091 if (TYPE_MIN_VALUE (type
) != error_mark_node
)
4092 v
= iterative_hash_expr (TYPE_MIN_VALUE (type
), v
);
4093 if (TYPE_MAX_VALUE (type
) != error_mark_node
)
4094 v
= iterative_hash_expr (TYPE_MAX_VALUE (type
), v
);
4095 v
= iterative_hash_hashval_t (TYPE_STRING_FLAG (type
), v
);
4098 /* For array types hash their domain and the string flag. */
4099 if (TREE_CODE (type
) == ARRAY_TYPE
4100 && TYPE_DOMAIN (type
))
4102 v
= iterative_hash_hashval_t (TYPE_STRING_FLAG (type
), v
);
4103 v
= visit (TYPE_DOMAIN (type
), state
, v
,
4104 sccstack
, sccstate
, sccstate_obstack
);
4107 /* Recurse for aggregates with a single element type. */
4108 if (TREE_CODE (type
) == ARRAY_TYPE
4109 || TREE_CODE (type
) == COMPLEX_TYPE
4110 || TREE_CODE (type
) == VECTOR_TYPE
)
4111 v
= visit (TREE_TYPE (type
), state
, v
,
4112 sccstack
, sccstate
, sccstate_obstack
);
4114 /* Incorporate function return and argument types. */
4115 if (TREE_CODE (type
) == FUNCTION_TYPE
|| TREE_CODE (type
) == METHOD_TYPE
)
4120 /* For method types also incorporate their parent class. */
4121 if (TREE_CODE (type
) == METHOD_TYPE
)
4122 v
= visit (TYPE_METHOD_BASETYPE (type
), state
, v
,
4123 sccstack
, sccstate
, sccstate_obstack
);
4125 /* Check result and argument types. */
4126 v
= visit (TREE_TYPE (type
), state
, v
,
4127 sccstack
, sccstate
, sccstate_obstack
);
4128 for (p
= TYPE_ARG_TYPES (type
), na
= 0; p
; p
= TREE_CHAIN (p
))
4130 v
= visit (TREE_VALUE (p
), state
, v
,
4131 sccstack
, sccstate
, sccstate_obstack
);
4135 v
= iterative_hash_hashval_t (na
, v
);
4138 if (RECORD_OR_UNION_TYPE_P (type
))
4143 for (f
= TYPE_FIELDS (type
), nf
= 0; f
; f
= TREE_CHAIN (f
))
4145 v
= iterative_hash_name (DECL_NAME (f
), v
);
4146 v
= visit (TREE_TYPE (f
), state
, v
,
4147 sccstack
, sccstate
, sccstate_obstack
);
4151 v
= iterative_hash_hashval_t (nf
, v
);
4154 /* Record hash for us. */
4157 /* See if we found an SCC. */
4158 if (state
->low
== state
->dfsnum
)
4161 struct tree_int_map
*m
;
4163 /* Pop off the SCC and set its hash values. */
4164 x
= VEC_pop (tree
, *sccstack
);
4165 /* Optimize SCC size one. */
4168 state
->on_sccstack
= false;
4169 m
= ggc_alloc_cleared_tree_int_map ();
4172 slot
= htab_find_slot (type_hash_cache
, m
, INSERT
);
4173 gcc_assert (!*slot
);
4178 struct sccs
*cstate
;
4179 unsigned first
, i
, size
, j
;
4180 struct type_hash_pair
*pairs
;
4181 /* Pop off the SCC and build an array of type, hash pairs. */
4182 first
= VEC_length (tree
, *sccstack
) - 1;
4183 while (VEC_index (tree
, *sccstack
, first
) != type
)
4185 size
= VEC_length (tree
, *sccstack
) - first
+ 1;
4186 pairs
= XALLOCAVEC (struct type_hash_pair
, size
);
4188 cstate
= (struct sccs
*)*pointer_map_contains (sccstate
, x
);
4189 cstate
->on_sccstack
= false;
4191 pairs
[i
].hash
= cstate
->u
.hash
;
4194 x
= VEC_pop (tree
, *sccstack
);
4195 cstate
= (struct sccs
*)*pointer_map_contains (sccstate
, x
);
4196 cstate
->on_sccstack
= false;
4199 pairs
[i
].hash
= cstate
->u
.hash
;
4202 gcc_assert (i
+ 1 == size
);
4203 /* Sort the arrays of type, hash pairs so that when we mix in
4204 all members of the SCC the hash value becomes independent on
4205 the order we visited the SCC. Disregard hashes equal to
4206 the hash of the type we mix into because we cannot guarantee
4207 a stable sort for those across different TUs. */
4208 qsort (pairs
, size
, sizeof (struct type_hash_pair
),
4209 type_hash_pair_compare
);
4210 for (i
= 0; i
< size
; ++i
)
4213 m
= ggc_alloc_cleared_tree_int_map ();
4214 m
->base
.from
= pairs
[i
].type
;
4215 hash
= pairs
[i
].hash
;
4216 /* Skip same hashes. */
4217 for (j
= i
+ 1; j
< size
&& pairs
[j
].hash
== pairs
[i
].hash
; ++j
)
4219 for (; j
< size
; ++j
)
4220 hash
= iterative_hash_hashval_t (pairs
[j
].hash
, hash
);
4221 for (j
= 0; pairs
[j
].hash
!= pairs
[i
].hash
; ++j
)
4222 hash
= iterative_hash_hashval_t (pairs
[j
].hash
, hash
);
4224 if (pairs
[i
].type
== type
)
4226 slot
= htab_find_slot (type_hash_cache
, m
, INSERT
);
4227 gcc_assert (!*slot
);
4233 return iterative_hash_hashval_t (v
, val
);
4237 /* Returns a hash value for P (assumed to be a type). The hash value
4238 is computed using some distinguishing features of the type. Note
4239 that we cannot use pointer hashing here as we may be dealing with
4240 two distinct instances of the same type.
4242 This function should produce the same hash value for two compatible
4243 types according to gimple_types_compatible_p. */
4246 gimple_type_hash (const void *p
)
4248 const_tree t
= (const_tree
) p
;
4249 VEC(tree
, heap
) *sccstack
= NULL
;
4250 struct pointer_map_t
*sccstate
;
4251 struct obstack sccstate_obstack
;
4254 struct tree_int_map m
;
4256 if (type_hash_cache
== NULL
)
4257 type_hash_cache
= htab_create_ggc (512, tree_int_map_hash
,
4258 tree_int_map_eq
, NULL
);
4260 m
.base
.from
= CONST_CAST_TREE (t
);
4261 if ((slot
= htab_find_slot (type_hash_cache
, &m
, NO_INSERT
))
4263 return iterative_hash_hashval_t (((struct tree_int_map
*) *slot
)->to
, 0);
4265 /* Perform a DFS walk and pre-hash all reachable types. */
4267 sccstate
= pointer_map_create ();
4268 gcc_obstack_init (&sccstate_obstack
);
4269 val
= iterative_hash_gimple_type (CONST_CAST_TREE (t
), 0,
4270 &sccstack
, sccstate
, &sccstate_obstack
);
4271 VEC_free (tree
, heap
, sccstack
);
4272 pointer_map_destroy (sccstate
);
4273 obstack_free (&sccstate_obstack
, NULL
);
4278 /* Returning a hash value for gimple type TYPE combined with VAL.
4280 The hash value returned is equal for types considered compatible
4281 by gimple_canonical_types_compatible_p. */
4284 iterative_hash_canonical_type (tree type
, hashval_t val
)
4288 struct tree_int_map
*mp
, m
;
4291 if ((slot
= htab_find_slot (canonical_type_hash_cache
, &m
, INSERT
))
4293 return iterative_hash_hashval_t (((struct tree_int_map
*) *slot
)->to
, val
);
4295 /* Combine a few common features of types so that types are grouped into
4296 smaller sets; when searching for existing matching types to merge,
4297 only existing types having the same features as the new type will be
4299 v
= iterative_hash_hashval_t (TREE_CODE (type
), 0);
4300 v
= iterative_hash_hashval_t (TREE_ADDRESSABLE (type
), v
);
4301 v
= iterative_hash_hashval_t (TYPE_ALIGN (type
), v
);
4302 v
= iterative_hash_hashval_t (TYPE_MODE (type
), v
);
4304 /* Incorporate common features of numerical types. */
4305 if (INTEGRAL_TYPE_P (type
)
4306 || SCALAR_FLOAT_TYPE_P (type
)
4307 || FIXED_POINT_TYPE_P (type
)
4308 || TREE_CODE (type
) == VECTOR_TYPE
4309 || TREE_CODE (type
) == COMPLEX_TYPE
4310 || TREE_CODE (type
) == OFFSET_TYPE
4311 || POINTER_TYPE_P (type
))
4313 v
= iterative_hash_hashval_t (TYPE_PRECISION (type
), v
);
4314 v
= iterative_hash_hashval_t (TYPE_UNSIGNED (type
), v
);
4317 /* For pointer and reference types, fold in information about the type
4318 pointed to but do not recurse to the pointed-to type. */
4319 if (POINTER_TYPE_P (type
))
4321 v
= iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type
), v
);
4322 v
= iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type
)), v
);
4323 v
= iterative_hash_hashval_t (TYPE_RESTRICT (type
), v
);
4324 v
= iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type
)), v
);
4327 /* For integer types hash the types min/max values and the string flag. */
4328 if (TREE_CODE (type
) == INTEGER_TYPE
)
4330 v
= iterative_hash_hashval_t (TYPE_STRING_FLAG (type
), v
);
4331 v
= iterative_hash_hashval_t (TYPE_IS_SIZETYPE (type
), v
);
4334 /* For array types hash their domain and the string flag. */
4335 if (TREE_CODE (type
) == ARRAY_TYPE
4336 && TYPE_DOMAIN (type
))
4338 v
= iterative_hash_hashval_t (TYPE_STRING_FLAG (type
), v
);
4339 v
= iterative_hash_canonical_type (TYPE_DOMAIN (type
), v
);
4342 /* Recurse for aggregates with a single element type. */
4343 if (TREE_CODE (type
) == ARRAY_TYPE
4344 || TREE_CODE (type
) == COMPLEX_TYPE
4345 || TREE_CODE (type
) == VECTOR_TYPE
)
4346 v
= iterative_hash_canonical_type (TREE_TYPE (type
), v
);
4348 /* Incorporate function return and argument types. */
4349 if (TREE_CODE (type
) == FUNCTION_TYPE
|| TREE_CODE (type
) == METHOD_TYPE
)
4354 /* For method types also incorporate their parent class. */
4355 if (TREE_CODE (type
) == METHOD_TYPE
)
4356 v
= iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type
), v
);
4358 v
= iterative_hash_canonical_type (TREE_TYPE (type
), v
);
4360 for (p
= TYPE_ARG_TYPES (type
), na
= 0; p
; p
= TREE_CHAIN (p
))
4362 v
= iterative_hash_canonical_type (TREE_VALUE (p
), v
);
4366 v
= iterative_hash_hashval_t (na
, v
);
4369 if (RECORD_OR_UNION_TYPE_P (type
))
4374 for (f
= TYPE_FIELDS (type
), nf
= 0; f
; f
= TREE_CHAIN (f
))
4375 if (TREE_CODE (f
) == FIELD_DECL
)
4377 v
= iterative_hash_canonical_type (TREE_TYPE (f
), v
);
4381 v
= iterative_hash_hashval_t (nf
, v
);
4384 /* Cache the just computed hash value. */
4385 mp
= ggc_alloc_cleared_tree_int_map ();
4386 mp
->base
.from
= type
;
4388 *slot
= (void *) mp
;
4390 return iterative_hash_hashval_t (v
, val
);
4394 gimple_canonical_type_hash (const void *p
)
4396 if (canonical_type_hash_cache
== NULL
)
4397 canonical_type_hash_cache
= htab_create_ggc (512, tree_int_map_hash
,
4398 tree_int_map_eq
, NULL
);
4400 return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree
) p
), 0);
4404 /* Returns nonzero if P1 and P2 are equal. */
4407 gimple_type_eq (const void *p1
, const void *p2
)
4409 const_tree t1
= (const_tree
) p1
;
4410 const_tree t2
= (const_tree
) p2
;
4411 return gimple_types_compatible_p (CONST_CAST_TREE (t1
),
4412 CONST_CAST_TREE (t2
));
4416 /* Worker for gimple_register_type.
4417 Register type T in the global type table gimple_types.
4418 When REGISTERING_MV is false first recurse for the main variant of T. */
4421 gimple_register_type_1 (tree t
, bool registering_mv
)
4424 gimple_type_leader_entry
*leader
;
4426 /* If we registered this type before return the cached result. */
4427 leader
= &gimple_type_leader
[TYPE_UID (t
) % GIMPLE_TYPE_LEADER_SIZE
];
4428 if (leader
->type
== t
)
4429 return leader
->leader
;
4431 /* Always register the main variant first. This is important so we
4432 pick up the non-typedef variants as canonical, otherwise we'll end
4433 up taking typedef ids for structure tags during comparison.
4434 It also makes sure that main variants will be merged to main variants.
4435 As we are operating on a possibly partially fixed up type graph
4436 do not bother to recurse more than once, otherwise we may end up
4438 If we are registering a main variant it will either remain its
4439 own main variant or it will be merged to something else in which
4440 case we do not care for the main variant leader. */
4442 && TYPE_MAIN_VARIANT (t
) != t
)
4443 gimple_register_type_1 (TYPE_MAIN_VARIANT (t
), true);
4445 /* See if we already have an equivalent type registered. */
4446 slot
= htab_find_slot (gimple_types
, t
, INSERT
);
4448 && *(tree
*)slot
!= t
)
4450 tree new_type
= (tree
) *((tree
*) slot
);
4452 leader
->leader
= new_type
;
4456 /* If not, insert it to the cache and the hash. */
4463 /* Register type T in the global type table gimple_types.
4464 If another type T', compatible with T, already existed in
4465 gimple_types then return T', otherwise return T. This is used by
4466 LTO to merge identical types read from different TUs. */
4469 gimple_register_type (tree t
)
4471 gcc_assert (TYPE_P (t
));
4473 if (!gimple_type_leader
)
4474 gimple_type_leader
= ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4475 (GIMPLE_TYPE_LEADER_SIZE
);
4477 if (gimple_types
== NULL
)
4478 gimple_types
= htab_create_ggc (16381, gimple_type_hash
, gimple_type_eq
, 0);
4480 return gimple_register_type_1 (t
, false);
4483 /* The TYPE_CANONICAL merging machinery. It should closely resemble
4484 the middle-end types_compatible_p function. It needs to avoid
4485 claiming types are different for types that should be treated
4486 the same with respect to TBAA. Canonical types are also used
4487 for IL consistency checks via the useless_type_conversion_p
4488 predicate which does not handle all type kinds itself but falls
4489 back to pointer-comparison of TYPE_CANONICAL for aggregates
4492 /* Return true iff T1 and T2 are structurally identical for what
4493 TBAA is concerned. */
4496 gimple_canonical_types_compatible_p (tree t1
, tree t2
)
4498 /* Before starting to set up the SCC machinery handle simple cases. */
4500 /* Check first for the obvious case of pointer identity. */
4504 /* Check that we have two types to compare. */
4505 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
4508 /* If the types have been previously registered and found equal
4510 if (TYPE_CANONICAL (t1
)
4511 && TYPE_CANONICAL (t1
) == TYPE_CANONICAL (t2
))
4514 /* Can't be the same type if the types don't have the same code. */
4515 if (TREE_CODE (t1
) != TREE_CODE (t2
))
4518 if (TREE_ADDRESSABLE (t1
) != TREE_ADDRESSABLE (t2
))
4521 /* Qualifiers do not matter for canonical type comparison purposes. */
4523 /* Void types and nullptr types are always the same. */
4524 if (TREE_CODE (t1
) == VOID_TYPE
4525 || TREE_CODE (t1
) == NULLPTR_TYPE
)
4528 /* Can't be the same type if they have different alignment, or mode. */
4529 if (TYPE_ALIGN (t1
) != TYPE_ALIGN (t2
)
4530 || TYPE_MODE (t1
) != TYPE_MODE (t2
))
4533 /* Non-aggregate types can be handled cheaply. */
4534 if (INTEGRAL_TYPE_P (t1
)
4535 || SCALAR_FLOAT_TYPE_P (t1
)
4536 || FIXED_POINT_TYPE_P (t1
)
4537 || TREE_CODE (t1
) == VECTOR_TYPE
4538 || TREE_CODE (t1
) == COMPLEX_TYPE
4539 || TREE_CODE (t1
) == OFFSET_TYPE
4540 || POINTER_TYPE_P (t1
))
4542 /* Can't be the same type if they have different sign or precision. */
4543 if (TYPE_PRECISION (t1
) != TYPE_PRECISION (t2
)
4544 || TYPE_UNSIGNED (t1
) != TYPE_UNSIGNED (t2
))
4547 if (TREE_CODE (t1
) == INTEGER_TYPE
4548 && (TYPE_IS_SIZETYPE (t1
) != TYPE_IS_SIZETYPE (t2
)
4549 || TYPE_STRING_FLAG (t1
) != TYPE_STRING_FLAG (t2
)))
4552 /* For canonical type comparisons we do not want to build SCCs
4553 so we cannot compare pointed-to types. But we can, for now,
4554 require the same pointed-to type kind and match what
4555 useless_type_conversion_p would do. */
4556 if (POINTER_TYPE_P (t1
))
4558 /* If the two pointers have different ref-all attributes,
4559 they can't be the same type. */
4560 if (TYPE_REF_CAN_ALIAS_ALL (t1
) != TYPE_REF_CAN_ALIAS_ALL (t2
))
4563 if (TYPE_ADDR_SPACE (TREE_TYPE (t1
))
4564 != TYPE_ADDR_SPACE (TREE_TYPE (t2
)))
4567 if (TYPE_RESTRICT (t1
) != TYPE_RESTRICT (t2
))
4570 if (TREE_CODE (TREE_TYPE (t1
)) != TREE_CODE (TREE_TYPE (t2
)))
4574 /* Tail-recurse to components. */
4575 if (TREE_CODE (t1
) == VECTOR_TYPE
4576 || TREE_CODE (t1
) == COMPLEX_TYPE
)
4577 return gimple_canonical_types_compatible_p (TREE_TYPE (t1
),
4583 /* If their attributes are not the same they can't be the same type. */
4584 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1
), TYPE_ATTRIBUTES (t2
)))
4587 /* Do type-specific comparisons. */
4588 switch (TREE_CODE (t1
))
4591 /* Array types are the same if the element types are the same and
4592 the number of elements are the same. */
4593 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1
), TREE_TYPE (t2
))
4594 || TYPE_STRING_FLAG (t1
) != TYPE_STRING_FLAG (t2
)
4595 || TYPE_NONALIASED_COMPONENT (t1
) != TYPE_NONALIASED_COMPONENT (t2
))
4599 tree i1
= TYPE_DOMAIN (t1
);
4600 tree i2
= TYPE_DOMAIN (t2
);
4602 /* For an incomplete external array, the type domain can be
4603 NULL_TREE. Check this condition also. */
4604 if (i1
== NULL_TREE
&& i2
== NULL_TREE
)
4606 else if (i1
== NULL_TREE
|| i2
== NULL_TREE
)
4608 /* If for a complete array type the possibly gimplified sizes
4609 are different the types are different. */
4610 else if (((TYPE_SIZE (i1
) != NULL
) ^ (TYPE_SIZE (i2
) != NULL
))
4613 && !operand_equal_p (TYPE_SIZE (i1
), TYPE_SIZE (i2
), 0)))
4617 tree min1
= TYPE_MIN_VALUE (i1
);
4618 tree min2
= TYPE_MIN_VALUE (i2
);
4619 tree max1
= TYPE_MAX_VALUE (i1
);
4620 tree max2
= TYPE_MAX_VALUE (i2
);
4622 /* The minimum/maximum values have to be the same. */
4625 && ((TREE_CODE (min1
) == PLACEHOLDER_EXPR
4626 && TREE_CODE (min2
) == PLACEHOLDER_EXPR
)
4627 || operand_equal_p (min1
, min2
, 0))))
4630 && ((TREE_CODE (max1
) == PLACEHOLDER_EXPR
4631 && TREE_CODE (max2
) == PLACEHOLDER_EXPR
)
4632 || operand_equal_p (max1
, max2
, 0)))))
4640 /* Method types should belong to the same class. */
4641 if (!gimple_canonical_types_compatible_p
4642 (TYPE_METHOD_BASETYPE (t1
), TYPE_METHOD_BASETYPE (t2
)))
4648 /* Function types are the same if the return type and arguments types
4650 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1
), TREE_TYPE (t2
)))
4653 if (!comp_type_attributes (t1
, t2
))
4656 if (TYPE_ARG_TYPES (t1
) == TYPE_ARG_TYPES (t2
))
4660 tree parms1
, parms2
;
4662 for (parms1
= TYPE_ARG_TYPES (t1
), parms2
= TYPE_ARG_TYPES (t2
);
4664 parms1
= TREE_CHAIN (parms1
), parms2
= TREE_CHAIN (parms2
))
4666 if (!gimple_canonical_types_compatible_p
4667 (TREE_VALUE (parms1
), TREE_VALUE (parms2
)))
4671 if (parms1
|| parms2
)
4679 case QUAL_UNION_TYPE
:
4683 /* For aggregate types, all the fields must be the same. */
4684 for (f1
= TYPE_FIELDS (t1
), f2
= TYPE_FIELDS (t2
);
4686 f1
= TREE_CHAIN (f1
), f2
= TREE_CHAIN (f2
))
4688 /* Skip non-fields. */
4689 while (f1
&& TREE_CODE (f1
) != FIELD_DECL
)
4690 f1
= TREE_CHAIN (f1
);
4691 while (f2
&& TREE_CODE (f2
) != FIELD_DECL
)
4692 f2
= TREE_CHAIN (f2
);
4695 /* The fields must have the same name, offset and type. */
4696 if (DECL_NONADDRESSABLE_P (f1
) != DECL_NONADDRESSABLE_P (f2
)
4697 || !gimple_compare_field_offset (f1
, f2
)
4698 || !gimple_canonical_types_compatible_p
4699 (TREE_TYPE (f1
), TREE_TYPE (f2
)))
4703 /* If one aggregate has more fields than the other, they
4704 are not the same. */
4717 /* Returns nonzero if P1 and P2 are equal. */
4720 gimple_canonical_type_eq (const void *p1
, const void *p2
)
4722 const_tree t1
= (const_tree
) p1
;
4723 const_tree t2
= (const_tree
) p2
;
4724 return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1
),
4725 CONST_CAST_TREE (t2
));
4728 /* Register type T in the global type table gimple_types.
4729 If another type T', compatible with T, already existed in
4730 gimple_types then return T', otherwise return T. This is used by
4731 LTO to merge identical types read from different TUs.
4733 ??? This merging does not exactly match how the tree.c middle-end
4734 functions will assign TYPE_CANONICAL when new types are created
4735 during optimization (which at least happens for pointer and array
4739 gimple_register_canonical_type (tree t
)
4743 gcc_assert (TYPE_P (t
));
4745 if (TYPE_CANONICAL (t
))
4746 return TYPE_CANONICAL (t
);
4748 if (gimple_canonical_types
== NULL
)
4749 gimple_canonical_types
= htab_create_ggc (16381, gimple_canonical_type_hash
,
4750 gimple_canonical_type_eq
, 0);
4752 slot
= htab_find_slot (gimple_canonical_types
, t
, INSERT
);
4754 && *(tree
*)slot
!= t
)
4756 tree new_type
= (tree
) *((tree
*) slot
);
4758 TYPE_CANONICAL (t
) = new_type
;
4763 TYPE_CANONICAL (t
) = t
;
4771 /* Show statistics on references to the global type table gimple_types. */
4774 print_gimple_types_stats (void)
4777 fprintf (stderr
, "GIMPLE type table: size %ld, %ld elements, "
4778 "%ld searches, %ld collisions (ratio: %f)\n",
4779 (long) htab_size (gimple_types
),
4780 (long) htab_elements (gimple_types
),
4781 (long) gimple_types
->searches
,
4782 (long) gimple_types
->collisions
,
4783 htab_collisions (gimple_types
));
4785 fprintf (stderr
, "GIMPLE type table is empty\n");
4786 if (type_hash_cache
)
4787 fprintf (stderr
, "GIMPLE type hash table: size %ld, %ld elements, "
4788 "%ld searches, %ld collisions (ratio: %f)\n",
4789 (long) htab_size (type_hash_cache
),
4790 (long) htab_elements (type_hash_cache
),
4791 (long) type_hash_cache
->searches
,
4792 (long) type_hash_cache
->collisions
,
4793 htab_collisions (type_hash_cache
));
4795 fprintf (stderr
, "GIMPLE type hash table is empty\n");
4796 if (gimple_canonical_types
)
4797 fprintf (stderr
, "GIMPLE canonical type table: size %ld, %ld elements, "
4798 "%ld searches, %ld collisions (ratio: %f)\n",
4799 (long) htab_size (gimple_canonical_types
),
4800 (long) htab_elements (gimple_canonical_types
),
4801 (long) gimple_canonical_types
->searches
,
4802 (long) gimple_canonical_types
->collisions
,
4803 htab_collisions (gimple_canonical_types
));
4805 fprintf (stderr
, "GIMPLE canonical type table is empty\n");
4806 if (canonical_type_hash_cache
)
4807 fprintf (stderr
, "GIMPLE canonical type hash table: size %ld, %ld elements, "
4808 "%ld searches, %ld collisions (ratio: %f)\n",
4809 (long) htab_size (canonical_type_hash_cache
),
4810 (long) htab_elements (canonical_type_hash_cache
),
4811 (long) canonical_type_hash_cache
->searches
,
4812 (long) canonical_type_hash_cache
->collisions
,
4813 htab_collisions (canonical_type_hash_cache
));
4815 fprintf (stderr
, "GIMPLE canonical type hash table is empty\n");
4818 /* Free the gimple type hashtables used for LTO type merging. */
4821 free_gimple_type_tables (void)
4823 /* Last chance to print stats for the tables. */
4824 if (flag_lto_report
)
4825 print_gimple_types_stats ();
4829 htab_delete (gimple_types
);
4830 gimple_types
= NULL
;
4832 if (gimple_canonical_types
)
4834 htab_delete (gimple_canonical_types
);
4835 gimple_canonical_types
= NULL
;
4837 if (type_hash_cache
)
4839 htab_delete (type_hash_cache
);
4840 type_hash_cache
= NULL
;
4842 if (canonical_type_hash_cache
)
4844 htab_delete (canonical_type_hash_cache
);
4845 canonical_type_hash_cache
= NULL
;
4847 if (type_pair_cache
)
4849 free (type_pair_cache
);
4850 type_pair_cache
= NULL
;
4852 gimple_type_leader
= NULL
;
4856 /* Return a type the same as TYPE except unsigned or
4857 signed according to UNSIGNEDP. */
4860 gimple_signed_or_unsigned_type (bool unsignedp
, tree type
)
4864 type1
= TYPE_MAIN_VARIANT (type
);
4865 if (type1
== signed_char_type_node
4866 || type1
== char_type_node
4867 || type1
== unsigned_char_type_node
)
4868 return unsignedp
? unsigned_char_type_node
: signed_char_type_node
;
4869 if (type1
== integer_type_node
|| type1
== unsigned_type_node
)
4870 return unsignedp
? unsigned_type_node
: integer_type_node
;
4871 if (type1
== short_integer_type_node
|| type1
== short_unsigned_type_node
)
4872 return unsignedp
? short_unsigned_type_node
: short_integer_type_node
;
4873 if (type1
== long_integer_type_node
|| type1
== long_unsigned_type_node
)
4874 return unsignedp
? long_unsigned_type_node
: long_integer_type_node
;
4875 if (type1
== long_long_integer_type_node
4876 || type1
== long_long_unsigned_type_node
)
4878 ? long_long_unsigned_type_node
4879 : long_long_integer_type_node
;
4880 if (int128_integer_type_node
&& (type1
== int128_integer_type_node
|| type1
== int128_unsigned_type_node
))
4882 ? int128_unsigned_type_node
4883 : int128_integer_type_node
;
4884 #if HOST_BITS_PER_WIDE_INT >= 64
4885 if (type1
== intTI_type_node
|| type1
== unsigned_intTI_type_node
)
4886 return unsignedp
? unsigned_intTI_type_node
: intTI_type_node
;
4888 if (type1
== intDI_type_node
|| type1
== unsigned_intDI_type_node
)
4889 return unsignedp
? unsigned_intDI_type_node
: intDI_type_node
;
4890 if (type1
== intSI_type_node
|| type1
== unsigned_intSI_type_node
)
4891 return unsignedp
? unsigned_intSI_type_node
: intSI_type_node
;
4892 if (type1
== intHI_type_node
|| type1
== unsigned_intHI_type_node
)
4893 return unsignedp
? unsigned_intHI_type_node
: intHI_type_node
;
4894 if (type1
== intQI_type_node
|| type1
== unsigned_intQI_type_node
)
4895 return unsignedp
? unsigned_intQI_type_node
: intQI_type_node
;
4897 #define GIMPLE_FIXED_TYPES(NAME) \
4898 if (type1 == short_ ## NAME ## _type_node \
4899 || type1 == unsigned_short_ ## NAME ## _type_node) \
4900 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4901 : short_ ## NAME ## _type_node; \
4902 if (type1 == NAME ## _type_node \
4903 || type1 == unsigned_ ## NAME ## _type_node) \
4904 return unsignedp ? unsigned_ ## NAME ## _type_node \
4905 : NAME ## _type_node; \
4906 if (type1 == long_ ## NAME ## _type_node \
4907 || type1 == unsigned_long_ ## NAME ## _type_node) \
4908 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4909 : long_ ## NAME ## _type_node; \
4910 if (type1 == long_long_ ## NAME ## _type_node \
4911 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4912 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4913 : long_long_ ## NAME ## _type_node;
4915 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4916 if (type1 == NAME ## _type_node \
4917 || type1 == u ## NAME ## _type_node) \
4918 return unsignedp ? u ## NAME ## _type_node \
4919 : NAME ## _type_node;
4921 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4922 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4923 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4924 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4925 : sat_ ## short_ ## NAME ## _type_node; \
4926 if (type1 == sat_ ## NAME ## _type_node \
4927 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4928 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4929 : sat_ ## NAME ## _type_node; \
4930 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4931 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4932 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4933 : sat_ ## long_ ## NAME ## _type_node; \
4934 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4935 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4936 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4937 : sat_ ## long_long_ ## NAME ## _type_node;
4939 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4940 if (type1 == sat_ ## NAME ## _type_node \
4941 || type1 == sat_ ## u ## NAME ## _type_node) \
4942 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4943 : sat_ ## NAME ## _type_node;
4945 GIMPLE_FIXED_TYPES (fract
);
4946 GIMPLE_FIXED_TYPES_SAT (fract
);
4947 GIMPLE_FIXED_TYPES (accum
);
4948 GIMPLE_FIXED_TYPES_SAT (accum
);
4950 GIMPLE_FIXED_MODE_TYPES (qq
);
4951 GIMPLE_FIXED_MODE_TYPES (hq
);
4952 GIMPLE_FIXED_MODE_TYPES (sq
);
4953 GIMPLE_FIXED_MODE_TYPES (dq
);
4954 GIMPLE_FIXED_MODE_TYPES (tq
);
4955 GIMPLE_FIXED_MODE_TYPES_SAT (qq
);
4956 GIMPLE_FIXED_MODE_TYPES_SAT (hq
);
4957 GIMPLE_FIXED_MODE_TYPES_SAT (sq
);
4958 GIMPLE_FIXED_MODE_TYPES_SAT (dq
);
4959 GIMPLE_FIXED_MODE_TYPES_SAT (tq
);
4960 GIMPLE_FIXED_MODE_TYPES (ha
);
4961 GIMPLE_FIXED_MODE_TYPES (sa
);
4962 GIMPLE_FIXED_MODE_TYPES (da
);
4963 GIMPLE_FIXED_MODE_TYPES (ta
);
4964 GIMPLE_FIXED_MODE_TYPES_SAT (ha
);
4965 GIMPLE_FIXED_MODE_TYPES_SAT (sa
);
4966 GIMPLE_FIXED_MODE_TYPES_SAT (da
);
4967 GIMPLE_FIXED_MODE_TYPES_SAT (ta
);
4969 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4970 the precision; they have precision set to match their range, but
4971 may use a wider mode to match an ABI. If we change modes, we may
4972 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4973 the precision as well, so as to yield correct results for
4974 bit-field types. C++ does not have these separate bit-field
4975 types, and producing a signed or unsigned variant of an
4976 ENUMERAL_TYPE may cause other problems as well. */
4977 if (!INTEGRAL_TYPE_P (type
)
4978 || TYPE_UNSIGNED (type
) == unsignedp
)
4981 #define TYPE_OK(node) \
4982 (TYPE_MODE (type) == TYPE_MODE (node) \
4983 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4984 if (TYPE_OK (signed_char_type_node
))
4985 return unsignedp
? unsigned_char_type_node
: signed_char_type_node
;
4986 if (TYPE_OK (integer_type_node
))
4987 return unsignedp
? unsigned_type_node
: integer_type_node
;
4988 if (TYPE_OK (short_integer_type_node
))
4989 return unsignedp
? short_unsigned_type_node
: short_integer_type_node
;
4990 if (TYPE_OK (long_integer_type_node
))
4991 return unsignedp
? long_unsigned_type_node
: long_integer_type_node
;
4992 if (TYPE_OK (long_long_integer_type_node
))
4994 ? long_long_unsigned_type_node
4995 : long_long_integer_type_node
);
4996 if (int128_integer_type_node
&& TYPE_OK (int128_integer_type_node
))
4998 ? int128_unsigned_type_node
4999 : int128_integer_type_node
);
5001 #if HOST_BITS_PER_WIDE_INT >= 64
5002 if (TYPE_OK (intTI_type_node
))
5003 return unsignedp
? unsigned_intTI_type_node
: intTI_type_node
;
5005 if (TYPE_OK (intDI_type_node
))
5006 return unsignedp
? unsigned_intDI_type_node
: intDI_type_node
;
5007 if (TYPE_OK (intSI_type_node
))
5008 return unsignedp
? unsigned_intSI_type_node
: intSI_type_node
;
5009 if (TYPE_OK (intHI_type_node
))
5010 return unsignedp
? unsigned_intHI_type_node
: intHI_type_node
;
5011 if (TYPE_OK (intQI_type_node
))
5012 return unsignedp
? unsigned_intQI_type_node
: intQI_type_node
;
5014 #undef GIMPLE_FIXED_TYPES
5015 #undef GIMPLE_FIXED_MODE_TYPES
5016 #undef GIMPLE_FIXED_TYPES_SAT
5017 #undef GIMPLE_FIXED_MODE_TYPES_SAT
5020 return build_nonstandard_integer_type (TYPE_PRECISION (type
), unsignedp
);
5024 /* Return an unsigned type the same as TYPE in other respects. */
5027 gimple_unsigned_type (tree type
)
5029 return gimple_signed_or_unsigned_type (true, type
);
5033 /* Return a signed type the same as TYPE in other respects. */
5036 gimple_signed_type (tree type
)
5038 return gimple_signed_or_unsigned_type (false, type
);
5042 /* Return the typed-based alias set for T, which may be an expression
5043 or a type. Return -1 if we don't do anything special. */
5046 gimple_get_alias_set (tree t
)
5050 /* Permit type-punning when accessing a union, provided the access
5051 is directly through the union. For example, this code does not
5052 permit taking the address of a union member and then storing
5053 through it. Even the type-punning allowed here is a GCC
5054 extension, albeit a common and useful one; the C standard says
5055 that such accesses have implementation-defined behavior. */
5057 TREE_CODE (u
) == COMPONENT_REF
|| TREE_CODE (u
) == ARRAY_REF
;
5058 u
= TREE_OPERAND (u
, 0))
5059 if (TREE_CODE (u
) == COMPONENT_REF
5060 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u
, 0))) == UNION_TYPE
)
5063 /* That's all the expressions we handle specially. */
5067 /* For convenience, follow the C standard when dealing with
5068 character types. Any object may be accessed via an lvalue that
5069 has character type. */
5070 if (t
== char_type_node
5071 || t
== signed_char_type_node
5072 || t
== unsigned_char_type_node
)
5075 /* Allow aliasing between signed and unsigned variants of the same
5076 type. We treat the signed variant as canonical. */
5077 if (TREE_CODE (t
) == INTEGER_TYPE
&& TYPE_UNSIGNED (t
))
5079 tree t1
= gimple_signed_type (t
);
5081 /* t1 == t can happen for boolean nodes which are always unsigned. */
5083 return get_alias_set (t1
);
5090 /* Data structure used to count the number of dereferences to PTR
5091 inside an expression. */
5095 unsigned num_stores
;
5099 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
5100 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
5103 count_ptr_derefs (tree
*tp
, int *walk_subtrees
, void *data
)
5105 struct walk_stmt_info
*wi_p
= (struct walk_stmt_info
*) data
;
5106 struct count_ptr_d
*count_p
= (struct count_ptr_d
*) wi_p
->info
;
5108 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
5109 pointer 'ptr' is *not* dereferenced, it is simply used to compute
5110 the address of 'fld' as 'ptr + offsetof(fld)'. */
5111 if (TREE_CODE (*tp
) == ADDR_EXPR
)
5117 if (TREE_CODE (*tp
) == MEM_REF
&& TREE_OPERAND (*tp
, 0) == count_p
->ptr
)
5120 count_p
->num_stores
++;
5122 count_p
->num_loads
++;
5128 /* Count the number of direct and indirect uses for pointer PTR in
5129 statement STMT. The number of direct uses is stored in
5130 *NUM_USES_P. Indirect references are counted separately depending
5131 on whether they are store or load operations. The counts are
5132 stored in *NUM_STORES_P and *NUM_LOADS_P. */
5135 count_uses_and_derefs (tree ptr
, gimple stmt
, unsigned *num_uses_p
,
5136 unsigned *num_loads_p
, unsigned *num_stores_p
)
5145 /* Find out the total number of uses of PTR in STMT. */
5146 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
5150 /* Now count the number of indirect references to PTR. This is
5151 truly awful, but we don't have much choice. There are no parent
5152 pointers inside INDIRECT_REFs, so an expression like
5153 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
5154 find all the indirect and direct uses of x_1 inside. The only
5155 shortcut we can take is the fact that GIMPLE only allows
5156 INDIRECT_REFs inside the expressions below. */
5157 if (is_gimple_assign (stmt
)
5158 || gimple_code (stmt
) == GIMPLE_RETURN
5159 || gimple_code (stmt
) == GIMPLE_ASM
5160 || is_gimple_call (stmt
))
5162 struct walk_stmt_info wi
;
5163 struct count_ptr_d count
;
5166 count
.num_stores
= 0;
5167 count
.num_loads
= 0;
5169 memset (&wi
, 0, sizeof (wi
));
5171 walk_gimple_op (stmt
, count_ptr_derefs
, &wi
);
5173 *num_stores_p
= count
.num_stores
;
5174 *num_loads_p
= count
.num_loads
;
5177 gcc_assert (*num_uses_p
>= *num_loads_p
+ *num_stores_p
);
5180 /* From a tree operand OP return the base of a load or store operation
5181 or NULL_TREE if OP is not a load or a store. */
5184 get_base_loadstore (tree op
)
5186 while (handled_component_p (op
))
5187 op
= TREE_OPERAND (op
, 0);
5189 || INDIRECT_REF_P (op
)
5190 || TREE_CODE (op
) == MEM_REF
5191 || TREE_CODE (op
) == TARGET_MEM_REF
)
5196 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
5197 VISIT_ADDR if non-NULL on loads, store and address-taken operands
5198 passing the STMT, the base of the operand and DATA to it. The base
5199 will be either a decl, an indirect reference (including TARGET_MEM_REF)
5200 or the argument of an address expression.
5201 Returns the results of these callbacks or'ed. */
5204 walk_stmt_load_store_addr_ops (gimple stmt
, void *data
,
5205 bool (*visit_load
)(gimple
, tree
, void *),
5206 bool (*visit_store
)(gimple
, tree
, void *),
5207 bool (*visit_addr
)(gimple
, tree
, void *))
5211 if (gimple_assign_single_p (stmt
))
5216 lhs
= get_base_loadstore (gimple_assign_lhs (stmt
));
5218 ret
|= visit_store (stmt
, lhs
, data
);
5220 rhs
= gimple_assign_rhs1 (stmt
);
5221 while (handled_component_p (rhs
))
5222 rhs
= TREE_OPERAND (rhs
, 0);
5225 if (TREE_CODE (rhs
) == ADDR_EXPR
)
5226 ret
|= visit_addr (stmt
, TREE_OPERAND (rhs
, 0), data
);
5227 else if (TREE_CODE (rhs
) == TARGET_MEM_REF
5228 && TREE_CODE (TMR_BASE (rhs
)) == ADDR_EXPR
)
5229 ret
|= visit_addr (stmt
, TREE_OPERAND (TMR_BASE (rhs
), 0), data
);
5230 else if (TREE_CODE (rhs
) == OBJ_TYPE_REF
5231 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs
)) == ADDR_EXPR
)
5232 ret
|= visit_addr (stmt
, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs
),
5234 else if (TREE_CODE (rhs
) == CONSTRUCTOR
)
5239 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs
), ix
, val
)
5240 if (TREE_CODE (val
) == ADDR_EXPR
)
5241 ret
|= visit_addr (stmt
, TREE_OPERAND (val
, 0), data
);
5242 else if (TREE_CODE (val
) == OBJ_TYPE_REF
5243 && TREE_CODE (OBJ_TYPE_REF_OBJECT (val
)) == ADDR_EXPR
)
5244 ret
|= visit_addr (stmt
,
5245 TREE_OPERAND (OBJ_TYPE_REF_OBJECT (val
),
5248 lhs
= gimple_assign_lhs (stmt
);
5249 if (TREE_CODE (lhs
) == TARGET_MEM_REF
5250 && TREE_CODE (TMR_BASE (lhs
)) == ADDR_EXPR
)
5251 ret
|= visit_addr (stmt
, TREE_OPERAND (TMR_BASE (lhs
), 0), data
);
5255 rhs
= get_base_loadstore (rhs
);
5257 ret
|= visit_load (stmt
, rhs
, data
);
5261 && (is_gimple_assign (stmt
)
5262 || gimple_code (stmt
) == GIMPLE_COND
))
5264 for (i
= 0; i
< gimple_num_ops (stmt
); ++i
)
5266 tree op
= gimple_op (stmt
, i
);
5267 if (op
== NULL_TREE
)
5269 else if (TREE_CODE (op
) == ADDR_EXPR
)
5270 ret
|= visit_addr (stmt
, TREE_OPERAND (op
, 0), data
);
5271 /* COND_EXPR and VCOND_EXPR rhs1 argument is a comparison
5272 tree with two operands. */
5273 else if (i
== 1 && COMPARISON_CLASS_P (op
))
5275 if (TREE_CODE (TREE_OPERAND (op
, 0)) == ADDR_EXPR
)
5276 ret
|= visit_addr (stmt
, TREE_OPERAND (TREE_OPERAND (op
, 0),
5278 if (TREE_CODE (TREE_OPERAND (op
, 1)) == ADDR_EXPR
)
5279 ret
|= visit_addr (stmt
, TREE_OPERAND (TREE_OPERAND (op
, 1),
5284 else if (is_gimple_call (stmt
))
5288 tree lhs
= gimple_call_lhs (stmt
);
5291 lhs
= get_base_loadstore (lhs
);
5293 ret
|= visit_store (stmt
, lhs
, data
);
5296 if (visit_load
|| visit_addr
)
5297 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
5299 tree rhs
= gimple_call_arg (stmt
, i
);
5301 && TREE_CODE (rhs
) == ADDR_EXPR
)
5302 ret
|= visit_addr (stmt
, TREE_OPERAND (rhs
, 0), data
);
5303 else if (visit_load
)
5305 rhs
= get_base_loadstore (rhs
);
5307 ret
|= visit_load (stmt
, rhs
, data
);
5311 && gimple_call_chain (stmt
)
5312 && TREE_CODE (gimple_call_chain (stmt
)) == ADDR_EXPR
)
5313 ret
|= visit_addr (stmt
, TREE_OPERAND (gimple_call_chain (stmt
), 0),
5316 && gimple_call_return_slot_opt_p (stmt
)
5317 && gimple_call_lhs (stmt
) != NULL_TREE
5318 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt
))))
5319 ret
|= visit_addr (stmt
, gimple_call_lhs (stmt
), data
);
5321 else if (gimple_code (stmt
) == GIMPLE_ASM
)
5324 const char *constraint
;
5325 const char **oconstraints
;
5326 bool allows_mem
, allows_reg
, is_inout
;
5327 noutputs
= gimple_asm_noutputs (stmt
);
5328 oconstraints
= XALLOCAVEC (const char *, noutputs
);
5329 if (visit_store
|| visit_addr
)
5330 for (i
= 0; i
< gimple_asm_noutputs (stmt
); ++i
)
5332 tree link
= gimple_asm_output_op (stmt
, i
);
5333 tree op
= get_base_loadstore (TREE_VALUE (link
));
5334 if (op
&& visit_store
)
5335 ret
|= visit_store (stmt
, op
, data
);
5338 constraint
= TREE_STRING_POINTER
5339 (TREE_VALUE (TREE_PURPOSE (link
)));
5340 oconstraints
[i
] = constraint
;
5341 parse_output_constraint (&constraint
, i
, 0, 0, &allows_mem
,
5342 &allows_reg
, &is_inout
);
5343 if (op
&& !allows_reg
&& allows_mem
)
5344 ret
|= visit_addr (stmt
, op
, data
);
5347 if (visit_load
|| visit_addr
)
5348 for (i
= 0; i
< gimple_asm_ninputs (stmt
); ++i
)
5350 tree link
= gimple_asm_input_op (stmt
, i
);
5351 tree op
= TREE_VALUE (link
);
5353 && TREE_CODE (op
) == ADDR_EXPR
)
5354 ret
|= visit_addr (stmt
, TREE_OPERAND (op
, 0), data
);
5355 else if (visit_load
|| visit_addr
)
5357 op
= get_base_loadstore (op
);
5361 ret
|= visit_load (stmt
, op
, data
);
5364 constraint
= TREE_STRING_POINTER
5365 (TREE_VALUE (TREE_PURPOSE (link
)));
5366 parse_input_constraint (&constraint
, 0, 0, noutputs
,
5368 &allows_mem
, &allows_reg
);
5369 if (!allows_reg
&& allows_mem
)
5370 ret
|= visit_addr (stmt
, op
, data
);
5376 else if (gimple_code (stmt
) == GIMPLE_RETURN
)
5378 tree op
= gimple_return_retval (stmt
);
5382 && TREE_CODE (op
) == ADDR_EXPR
)
5383 ret
|= visit_addr (stmt
, TREE_OPERAND (op
, 0), data
);
5384 else if (visit_load
)
5386 op
= get_base_loadstore (op
);
5388 ret
|= visit_load (stmt
, op
, data
);
5393 && gimple_code (stmt
) == GIMPLE_PHI
)
5395 for (i
= 0; i
< gimple_phi_num_args (stmt
); ++i
)
5397 tree op
= PHI_ARG_DEF (stmt
, i
);
5398 if (TREE_CODE (op
) == ADDR_EXPR
)
5399 ret
|= visit_addr (stmt
, TREE_OPERAND (op
, 0), data
);
5406 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5407 should make a faster clone for this case. */
5410 walk_stmt_load_store_ops (gimple stmt
, void *data
,
5411 bool (*visit_load
)(gimple
, tree
, void *),
5412 bool (*visit_store
)(gimple
, tree
, void *))
5414 return walk_stmt_load_store_addr_ops (stmt
, data
,
5415 visit_load
, visit_store
, NULL
);
5418 /* Helper for gimple_ior_addresses_taken_1. */
5421 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED
,
5422 tree addr
, void *data
)
5424 bitmap addresses_taken
= (bitmap
)data
;
5425 addr
= get_base_address (addr
);
5429 bitmap_set_bit (addresses_taken
, DECL_UID (addr
));
5435 /* Set the bit for the uid of all decls that have their address taken
5436 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5437 were any in this stmt. */
5440 gimple_ior_addresses_taken (bitmap addresses_taken
, gimple stmt
)
5442 return walk_stmt_load_store_addr_ops (stmt
, addresses_taken
, NULL
, NULL
,
5443 gimple_ior_addresses_taken_1
);
5447 /* Return a printable name for symbol DECL. */
5450 gimple_decl_printable_name (tree decl
, int verbosity
)
5452 if (!DECL_NAME (decl
))
5455 if (DECL_ASSEMBLER_NAME_SET_P (decl
))
5457 const char *str
, *mangled_str
;
5458 int dmgl_opts
= DMGL_NO_OPTS
;
5462 dmgl_opts
= DMGL_VERBOSE
5466 if (TREE_CODE (decl
) == FUNCTION_DECL
)
5467 dmgl_opts
|= DMGL_PARAMS
;
5470 mangled_str
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
));
5471 str
= cplus_demangle_v3 (mangled_str
, dmgl_opts
);
5472 return (str
) ? str
: mangled_str
;
5475 return IDENTIFIER_POINTER (DECL_NAME (decl
));
5478 /* Return true when STMT is builtins call to CODE. */
5481 gimple_call_builtin_p (gimple stmt
, enum built_in_function code
)
5484 return (is_gimple_call (stmt
)
5485 && (fndecl
= gimple_call_fndecl (stmt
)) != NULL
5486 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
5487 && DECL_FUNCTION_CODE (fndecl
) == code
);
5490 /* Return true if STMT clobbers memory. STMT is required to be a
5494 gimple_asm_clobbers_memory_p (const_gimple stmt
)
5498 for (i
= 0; i
< gimple_asm_nclobbers (stmt
); i
++)
5500 tree op
= gimple_asm_clobber_op (stmt
, i
);
5501 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op
)), "memory") == 0)
5507 #include "gt-gimple.h"