arm.c (arm_return_in_memory): Fix return type.
[official-gcc.git] / gcc / ada / s-imgrea.adb
blobbbcf225a1dd4c02657ed21f06c7accb1e437ac58
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- S Y S T E M . I M G _ R E A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 with System.Img_LLU; use System.Img_LLU;
35 with System.Img_Uns; use System.Img_Uns;
36 with System.Powten_Table; use System.Powten_Table;
37 with System.Unsigned_Types; use System.Unsigned_Types;
39 package body System.Img_Real is
41 -- The following defines the maximum number of digits that we can convert
42 -- accurately. This is limited by the precision of Long_Long_Float, and
43 -- also by the number of digits we can hold in Long_Long_Unsigned, which
44 -- is the integer type we use as an intermediate for the result.
46 -- We assume that in practice, the limitation will come from the digits
47 -- value, rather than the integer value. This is true for typical IEEE
48 -- implementations, and at worst, the only loss is for some precision
49 -- in very high precision floating-point output.
51 -- Note that in the following, the "-2" accounts for the sign and one
52 -- extra digits, since we need the maximum number of 9's that can be
53 -- supported, e.g. for the normal 64 bit case, Long_Long_Integer'Width
54 -- is 21, since the maximum value (approx 1.6 * 10**19) has 20 digits,
55 -- but the maximum number of 9's that can be supported is 19.
57 Maxdigs : constant :=
58 Natural'Min
59 (Long_Long_Unsigned'Width - 2, Long_Long_Float'Digits);
61 Unsdigs : constant := Unsigned'Width - 2;
62 -- Number of digits that can be converted using type Unsigned
63 -- See above for the explanation of the -2.
65 Maxscaling : constant := 5000;
66 -- Max decimal scaling required during conversion of floating-point
67 -- numbers to decimal. This is used to defend against infinite
68 -- looping in the conversion, as can be caused by erroneous executions.
69 -- The largest exponent used on any current system is 2**16383, which
70 -- is approximately 10**4932, and the highest number of decimal digits
71 -- is about 35 for 128-bit floating-point formats, so 5000 leaves
72 -- enough room for scaling such values
74 function Is_Negative (V : Long_Long_Float) return Boolean;
75 pragma Import (Intrinsic, Is_Negative);
77 --------------------------
78 -- Image_Floating_Point --
79 --------------------------
81 procedure Image_Floating_Point
82 (V : Long_Long_Float;
83 S : in out String;
84 P : out Natural;
85 Digs : Natural)
87 pragma Assert (S'First = 1);
89 begin
90 -- Decide whether a blank should be prepended before the call to
91 -- Set_Image_Real. We generate a blank for positive values, and
92 -- also for positive zeroes. For negative zeroes, we generate a
93 -- space only if Signed_Zeroes is True (the RM only permits the
94 -- output of -0.0 on targets where this is the case). We can of
95 -- course still see a -0.0 on a target where Signed_Zeroes is
96 -- False (since this attribute refers to the proper handling of
97 -- negative zeroes, not to their existence).
99 if not Is_Negative (V)
100 or else (not Long_Long_Float'Signed_Zeros and then V = -0.0)
101 then
102 S (1) := ' ';
103 P := 1;
104 else
105 P := 0;
106 end if;
108 Set_Image_Real (V, S, P, 1, Digs - 1, 3);
109 end Image_Floating_Point;
111 --------------------------------
112 -- Image_Ordinary_Fixed_Point --
113 --------------------------------
115 procedure Image_Ordinary_Fixed_Point
116 (V : Long_Long_Float;
117 S : in out String;
118 P : out Natural;
119 Aft : Natural)
121 pragma Assert (S'First = 1);
123 begin
124 -- Output space at start if non-negative
126 if V >= 0.0 then
127 S (1) := ' ';
128 P := 1;
129 else
130 P := 0;
131 end if;
133 Set_Image_Real (V, S, P, 1, Aft, 0);
134 end Image_Ordinary_Fixed_Point;
136 --------------------
137 -- Set_Image_Real --
138 --------------------
140 procedure Set_Image_Real
141 (V : Long_Long_Float;
142 S : out String;
143 P : in out Natural;
144 Fore : Natural;
145 Aft : Natural;
146 Exp : Natural)
148 procedure Reset;
149 pragma Import (C, Reset, "__gnat_init_float");
150 -- We import the floating-point processor reset routine so that we can
151 -- be sure the floating-point processor is properly set for conversion
152 -- calls (see description of Reset in GNAT.Float_Control (g-flocon.ads).
153 -- This is notably need on Windows, where calls to the operating system
154 -- randomly reset the processor into 64-bit mode.
156 NFrac : constant Natural := Natural'Max (Aft, 1);
157 Sign : Character;
158 X : aliased Long_Long_Float;
159 -- This is declared aliased because the expansion of X'Valid passes
160 -- X by access and JGNAT requires all access parameters to be aliased.
161 -- The Valid attribute probably needs to be handled via a different
162 -- expansion for JGNAT, and this use of aliased should be removed
163 -- once Valid is handled properly. ???
164 Scale : Integer;
165 Expon : Integer;
167 Field_Max : constant := 255;
168 -- This should be the same value as Ada.[Wide_]Text_IO.Field'Last.
169 -- It is not worth dragging in Ada.Text_IO to pick up this value,
170 -- since it really should never be necessary to change it!
172 Digs : String (1 .. 2 * Field_Max + 16);
173 -- Array used to hold digits of converted integer value. This is a
174 -- large enough buffer to accommodate ludicrous values of Fore and Aft.
176 Ndigs : Natural;
177 -- Number of digits stored in Digs (and also subscript of last digit)
179 procedure Adjust_Scale (S : Natural);
180 -- Adjusts the value in X by multiplying or dividing by a power of
181 -- ten so that it is in the range 10**(S-1) <= X < 10**S. Includes
182 -- adding 0.5 to round the result, readjusting if the rounding causes
183 -- the result to wander out of the range. Scale is adjusted to reflect
184 -- the power of ten used to divide the result (i.e. one is added to
185 -- the scale value for each division by 10.0, or one is subtracted
186 -- for each multiplication by 10.0).
188 procedure Convert_Integer;
189 -- Takes the value in X, outputs integer digits into Digs. On return,
190 -- Ndigs is set to the number of digits stored. The digits are stored
191 -- in Digs (1 .. Ndigs),
193 procedure Set (C : Character);
194 -- Sets character C in output buffer
196 procedure Set_Blanks_And_Sign (N : Integer);
197 -- Sets leading blanks and minus sign if needed. N is the number of
198 -- positions to be filled (a minus sign is output even if N is zero
199 -- or negative, but for a positive value, if N is non-positive, then
200 -- the call has no effect).
202 procedure Set_Digs (S, E : Natural);
203 -- Set digits S through E from Digs buffer. No effect if S > E
205 procedure Set_Special_Fill (N : Natural);
206 -- After outputting +Inf, -Inf or NaN, this routine fills out the
207 -- rest of the field with * characters. The argument is the number
208 -- of characters output so far (either 3 or 4)
210 procedure Set_Zeros (N : Integer);
211 -- Set N zeros, no effect if N is negative
213 pragma Inline (Set);
214 pragma Inline (Set_Digs);
215 pragma Inline (Set_Zeros);
217 ------------------
218 -- Adjust_Scale --
219 ------------------
221 procedure Adjust_Scale (S : Natural) is
222 Lo : Natural;
223 Hi : Natural;
224 Mid : Natural;
225 XP : Long_Long_Float;
227 begin
228 -- Cases where scaling up is required
230 if X < Powten (S - 1) then
232 -- What we are looking for is a power of ten to multiply X by
233 -- so that the result lies within the required range.
235 loop
236 XP := X * Powten (Maxpow);
237 exit when XP >= Powten (S - 1) or Scale < -Maxscaling;
238 X := XP;
239 Scale := Scale - Maxpow;
240 end loop;
242 -- The following exception is only raised in case of erroneous
243 -- execution, where a number was considered valid but still
244 -- fails to scale up. One situation where this can happen is
245 -- when a system which is supposed to be IEEE-compliant, but
246 -- has been reconfigured to flush denormals to zero.
248 if Scale < -Maxscaling then
249 raise Constraint_Error;
250 end if;
252 -- Here we know that we must multiply by at least 10**1 and that
253 -- 10**Maxpow takes us too far: binary search to find right one.
255 -- Because of roundoff errors, it is possible for the value
256 -- of XP to be just outside of the interval when Lo >= Hi. In
257 -- that case we adjust explicitly by a factor of 10. This
258 -- can only happen with a value that is very close to an
259 -- exact power of 10.
261 Lo := 1;
262 Hi := Maxpow;
264 loop
265 Mid := (Lo + Hi) / 2;
266 XP := X * Powten (Mid);
268 if XP < Powten (S - 1) then
270 if Lo >= Hi then
271 Mid := Mid + 1;
272 XP := XP * 10.0;
273 exit;
275 else
276 Lo := Mid + 1;
277 end if;
279 elsif XP >= Powten (S) then
281 if Lo >= Hi then
282 Mid := Mid - 1;
283 XP := XP / 10.0;
284 exit;
286 else
287 Hi := Mid - 1;
288 end if;
290 else
291 exit;
292 end if;
293 end loop;
295 X := XP;
296 Scale := Scale - Mid;
298 -- Cases where scaling down is required
300 elsif X >= Powten (S) then
302 -- What we are looking for is a power of ten to divide X by
303 -- so that the result lies within the required range.
305 loop
306 XP := X / Powten (Maxpow);
307 exit when XP < Powten (S) or Scale > Maxscaling;
308 X := XP;
309 Scale := Scale + Maxpow;
310 end loop;
312 -- The following exception is only raised in case of erroneous
313 -- execution, where a number was considered valid but still
314 -- fails to scale up. One situation where this can happen is
315 -- when a system which is supposed to be IEEE-compliant, but
316 -- has been reconfigured to flush denormals to zero.
318 if Scale > Maxscaling then
319 raise Constraint_Error;
320 end if;
322 -- Here we know that we must divide by at least 10**1 and that
323 -- 10**Maxpow takes us too far, binary search to find right one.
325 Lo := 1;
326 Hi := Maxpow;
328 loop
329 Mid := (Lo + Hi) / 2;
330 XP := X / Powten (Mid);
332 if XP < Powten (S - 1) then
334 if Lo >= Hi then
335 XP := XP * 10.0;
336 Mid := Mid - 1;
337 exit;
339 else
340 Hi := Mid - 1;
341 end if;
343 elsif XP >= Powten (S) then
345 if Lo >= Hi then
346 XP := XP / 10.0;
347 Mid := Mid + 1;
348 exit;
350 else
351 Lo := Mid + 1;
352 end if;
354 else
355 exit;
356 end if;
357 end loop;
359 X := XP;
360 Scale := Scale + Mid;
362 -- Here we are already scaled right
364 else
365 null;
366 end if;
368 -- Round, readjusting scale if needed. Note that if a readjustment
369 -- occurs, then it is never necessary to round again, because there
370 -- is no possibility of such a second rounding causing a change.
372 X := X + 0.5;
374 if X >= Powten (S) then
375 X := X / 10.0;
376 Scale := Scale + 1;
377 end if;
379 end Adjust_Scale;
381 ---------------------
382 -- Convert_Integer --
383 ---------------------
385 procedure Convert_Integer is
386 begin
387 -- Use Unsigned routine if possible, since on many machines it will
388 -- be significantly more efficient than the Long_Long_Unsigned one.
390 if X < Powten (Unsdigs) then
391 Ndigs := 0;
392 Set_Image_Unsigned
393 (Unsigned (Long_Long_Float'Truncation (X)),
394 Digs, Ndigs);
396 -- But if we want more digits than fit in Unsigned, we have to use
397 -- the Long_Long_Unsigned routine after all.
399 else
400 Ndigs := 0;
401 Set_Image_Long_Long_Unsigned
402 (Long_Long_Unsigned (Long_Long_Float'Truncation (X)),
403 Digs, Ndigs);
404 end if;
405 end Convert_Integer;
407 ---------
408 -- Set --
409 ---------
411 procedure Set (C : Character) is
412 begin
413 P := P + 1;
414 S (P) := C;
415 end Set;
417 -------------------------
418 -- Set_Blanks_And_Sign --
419 -------------------------
421 procedure Set_Blanks_And_Sign (N : Integer) is
422 begin
423 if Sign = '-' then
424 for J in 1 .. N - 1 loop
425 Set (' ');
426 end loop;
428 Set ('-');
430 else
431 for J in 1 .. N loop
432 Set (' ');
433 end loop;
434 end if;
435 end Set_Blanks_And_Sign;
437 --------------
438 -- Set_Digs --
439 --------------
441 procedure Set_Digs (S, E : Natural) is
442 begin
443 for J in S .. E loop
444 Set (Digs (J));
445 end loop;
446 end Set_Digs;
448 ----------------------
449 -- Set_Special_Fill --
450 ----------------------
452 procedure Set_Special_Fill (N : Natural) is
453 F : Natural;
455 begin
456 F := Fore + 1 + Aft - N;
458 if Exp /= 0 then
459 F := F + Exp + 1;
460 end if;
462 for J in 1 .. F loop
463 Set ('*');
464 end loop;
465 end Set_Special_Fill;
467 ---------------
468 -- Set_Zeros --
469 ---------------
471 procedure Set_Zeros (N : Integer) is
472 begin
473 for J in 1 .. N loop
474 Set ('0');
475 end loop;
476 end Set_Zeros;
478 -- Start of processing for Set_Image_Real
480 begin
481 Reset;
482 Scale := 0;
484 -- Deal with invalid values first,
486 if not V'Valid then
488 -- Note that we're taking our chances here, as V might be
489 -- an invalid bit pattern resulting from erroneous execution
490 -- (caused by using uninitialized variables for example).
492 -- No matter what, we'll at least get reasonable behaviour,
493 -- converting to infinity or some other value, or causing an
494 -- exception to be raised is fine.
496 -- If the following test succeeds, then we definitely have
497 -- an infinite value, so we print Inf.
499 if V > Long_Long_Float'Last then
500 Set ('+');
501 Set ('I');
502 Set ('n');
503 Set ('f');
504 Set_Special_Fill (4);
506 -- In all other cases we print NaN
508 elsif V < Long_Long_Float'First then
509 Set ('-');
510 Set ('I');
511 Set ('n');
512 Set ('f');
513 Set_Special_Fill (4);
515 else
516 Set ('N');
517 Set ('a');
518 Set ('N');
519 Set_Special_Fill (3);
520 end if;
522 return;
523 end if;
525 -- Positive values
527 if V > 0.0 then
528 X := V;
529 Sign := '+';
531 -- Negative values
533 elsif V < 0.0 then
534 X := -V;
535 Sign := '-';
537 -- Zero values
539 elsif V = 0.0 then
540 if Long_Long_Float'Signed_Zeros and then Is_Negative (V) then
541 Sign := '-';
542 else
543 Sign := '+';
544 end if;
546 Set_Blanks_And_Sign (Fore - 1);
547 Set ('0');
548 Set ('.');
549 Set_Zeros (NFrac);
551 if Exp /= 0 then
552 Set ('E');
553 Set ('+');
554 Set_Zeros (Natural'Max (1, Exp - 1));
555 end if;
557 return;
559 else
560 -- It should not be possible for a NaN to end up here.
561 -- Either the 'Valid test has failed, or we have some form
562 -- of erroneous execution. Raise Constraint_Error instead of
563 -- attempting to go ahead printing the value.
565 raise Constraint_Error;
566 end if;
568 -- X and Sign are set here, and X is known to be a valid,
569 -- non-zero floating-point number.
571 -- Case of non-zero value with Exp = 0
573 if Exp = 0 then
575 -- First step is to multiply by 10 ** Nfrac to get an integer
576 -- value to be output, an then add 0.5 to round the result.
578 declare
579 NF : Natural := NFrac;
581 begin
582 loop
583 -- If we are larger than Powten (Maxdigs) now, then
584 -- we have too many significant digits, and we have
585 -- not even finished multiplying by NFrac (NF shows
586 -- the number of unaccounted-for digits).
588 if X >= Powten (Maxdigs) then
590 -- In this situation, we only to generate a reasonable
591 -- number of significant digits, and then zeroes after.
592 -- So first we rescale to get:
594 -- 10 ** (Maxdigs - 1) <= X < 10 ** Maxdigs
596 -- and then convert the resulting integer
598 Adjust_Scale (Maxdigs);
599 Convert_Integer;
601 -- If that caused rescaling, then add zeros to the end
602 -- of the number to account for this scaling. Also add
603 -- zeroes to account for the undone multiplications
605 for J in 1 .. Scale + NF loop
606 Ndigs := Ndigs + 1;
607 Digs (Ndigs) := '0';
608 end loop;
610 exit;
612 -- If multiplication is complete, then convert the resulting
613 -- integer after rounding (note that X is non-negative)
615 elsif NF = 0 then
616 X := X + 0.5;
617 Convert_Integer;
618 exit;
620 -- Otherwise we can go ahead with the multiplication. If it
621 -- can be done in one step, then do it in one step.
623 elsif NF < Maxpow then
624 X := X * Powten (NF);
625 NF := 0;
627 -- If it cannot be done in one step, then do partial scaling
629 else
630 X := X * Powten (Maxpow);
631 NF := NF - Maxpow;
632 end if;
633 end loop;
634 end;
636 -- If number of available digits is less or equal to NFrac,
637 -- then we need an extra zero before the decimal point.
639 if Ndigs <= NFrac then
640 Set_Blanks_And_Sign (Fore - 1);
641 Set ('0');
642 Set ('.');
643 Set_Zeros (NFrac - Ndigs);
644 Set_Digs (1, Ndigs);
646 -- Normal case with some digits before the decimal point
648 else
649 Set_Blanks_And_Sign (Fore - (Ndigs - NFrac));
650 Set_Digs (1, Ndigs - NFrac);
651 Set ('.');
652 Set_Digs (Ndigs - NFrac + 1, Ndigs);
653 end if;
655 -- Case of non-zero value with non-zero Exp value
657 else
658 -- If NFrac is less than Maxdigs, then all the fraction digits are
659 -- significant, so we can scale the resulting integer accordingly.
661 if NFrac < Maxdigs then
662 Adjust_Scale (NFrac + 1);
663 Convert_Integer;
665 -- Otherwise, we get the maximum number of digits available
667 else
668 Adjust_Scale (Maxdigs);
669 Convert_Integer;
671 for J in 1 .. NFrac - Maxdigs + 1 loop
672 Ndigs := Ndigs + 1;
673 Digs (Ndigs) := '0';
674 Scale := Scale - 1;
675 end loop;
676 end if;
678 Set_Blanks_And_Sign (Fore - 1);
679 Set (Digs (1));
680 Set ('.');
681 Set_Digs (2, Ndigs);
683 -- The exponent is the scaling factor adjusted for the digits
684 -- that we output after the decimal point, since these were
685 -- included in the scaled digits that we output.
687 Expon := Scale + NFrac;
689 Set ('E');
690 Ndigs := 0;
692 if Expon >= 0 then
693 Set ('+');
694 Set_Image_Unsigned (Unsigned (Expon), Digs, Ndigs);
695 else
696 Set ('-');
697 Set_Image_Unsigned (Unsigned (-Expon), Digs, Ndigs);
698 end if;
700 Set_Zeros (Exp - Ndigs - 1);
701 Set_Digs (1, Ndigs);
702 end if;
704 end Set_Image_Real;
706 end System.Img_Real;