net/internal/socktest: build sys_unix.go on AIX
[official-gcc.git] / gcc / lra-constraints.c
blobcefa31968da6fbd228267ebcc39b81f77b8e8bf8
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2017 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "target.h"
114 #include "rtl.h"
115 #include "tree.h"
116 #include "predict.h"
117 #include "df.h"
118 #include "memmodel.h"
119 #include "tm_p.h"
120 #include "expmed.h"
121 #include "optabs.h"
122 #include "regs.h"
123 #include "ira.h"
124 #include "recog.h"
125 #include "output.h"
126 #include "addresses.h"
127 #include "expr.h"
128 #include "cfgrtl.h"
129 #include "rtl-error.h"
130 #include "params.h"
131 #include "lra.h"
132 #include "lra-int.h"
133 #include "print-rtl.h"
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
137 reload insns. */
138 static int bb_reload_num;
140 /* The current insn being processed and corresponding its single set
141 (NULL otherwise), its data (basic block, the insn data, the insn
142 static data, and the mode of each operand). */
143 static rtx_insn *curr_insn;
144 static rtx curr_insn_set;
145 static basic_block curr_bb;
146 static lra_insn_recog_data_t curr_id;
147 static struct lra_static_insn_data *curr_static_id;
148 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150 (e.g. constant) and whose subreg is given operand of the current
151 insn. VOIDmode in all other cases. */
152 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
156 /* Start numbers for new registers and insns at the current constraints
157 pass start. */
158 static int new_regno_start;
159 static int new_insn_uid_start;
161 /* If LOC is nonnull, strip any outer subreg from it. */
162 static inline rtx *
163 strip_subreg (rtx *loc)
165 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169 register, use a hard register from its allocno class. */
170 static int
171 get_try_hard_regno (int regno)
173 int hard_regno;
174 enum reg_class rclass;
176 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
177 hard_regno = lra_get_regno_hard_regno (regno);
178 if (hard_regno >= 0)
179 return hard_regno;
180 rclass = lra_get_allocno_class (regno);
181 if (rclass == NO_REGS)
182 return -1;
183 return ira_class_hard_regs[rclass][0];
186 /* Return the hard regno of X after removing its subreg. If X is not
187 a register or a subreg of a register, return -1. If X is a pseudo,
188 use its assignment. If FINAL_P return the final hard regno which will
189 be after elimination. */
190 static int
191 get_hard_regno (rtx x, bool final_p)
193 rtx reg;
194 int hard_regno;
196 reg = x;
197 if (SUBREG_P (x))
198 reg = SUBREG_REG (x);
199 if (! REG_P (reg))
200 return -1;
201 if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
202 hard_regno = lra_get_regno_hard_regno (hard_regno);
203 if (hard_regno < 0)
204 return -1;
205 if (final_p)
206 hard_regno = lra_get_elimination_hard_regno (hard_regno);
207 if (SUBREG_P (x))
208 hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
209 SUBREG_BYTE (x), GET_MODE (x));
210 return hard_regno;
213 /* If REGNO is a hard register or has been allocated a hard register,
214 return the class of that register. If REGNO is a reload pseudo
215 created by the current constraints pass, return its allocno class.
216 Return NO_REGS otherwise. */
217 static enum reg_class
218 get_reg_class (int regno)
220 int hard_regno;
222 if (! HARD_REGISTER_NUM_P (hard_regno = regno))
223 hard_regno = lra_get_regno_hard_regno (regno);
224 if (hard_regno >= 0)
226 hard_regno = lra_get_elimination_hard_regno (hard_regno);
227 return REGNO_REG_CLASS (hard_regno);
229 if (regno >= new_regno_start)
230 return lra_get_allocno_class (regno);
231 return NO_REGS;
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235 CL. Use elimination first if REG is a hard register. If REG is a
236 reload pseudo created by this constraints pass, assume that it will
237 be allocated a hard register from its allocno class, but allow that
238 class to be narrowed to CL if it is currently a superset of CL.
240 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241 REGNO (reg), or NO_REGS if no change in its class was needed. */
242 static bool
243 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
245 enum reg_class rclass, common_class;
246 machine_mode reg_mode;
247 int class_size, hard_regno, nregs, i, j;
248 int regno = REGNO (reg);
250 if (new_class != NULL)
251 *new_class = NO_REGS;
252 if (regno < FIRST_PSEUDO_REGISTER)
254 rtx final_reg = reg;
255 rtx *final_loc = &final_reg;
257 lra_eliminate_reg_if_possible (final_loc);
258 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
260 reg_mode = GET_MODE (reg);
261 rclass = get_reg_class (regno);
262 if (regno < new_regno_start
263 /* Do not allow the constraints for reload instructions to
264 influence the classes of new pseudos. These reloads are
265 typically moves that have many alternatives, and restricting
266 reload pseudos for one alternative may lead to situations
267 where other reload pseudos are no longer allocatable. */
268 || (INSN_UID (curr_insn) >= new_insn_uid_start
269 && curr_insn_set != NULL
270 && ((OBJECT_P (SET_SRC (curr_insn_set))
271 && ! CONSTANT_P (SET_SRC (curr_insn_set)))
272 || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
273 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
274 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
275 /* When we don't know what class will be used finally for reload
276 pseudos, we use ALL_REGS. */
277 return ((regno >= new_regno_start && rclass == ALL_REGS)
278 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
279 && ! hard_reg_set_subset_p (reg_class_contents[cl],
280 lra_no_alloc_regs)));
281 else
283 common_class = ira_reg_class_subset[rclass][cl];
284 if (new_class != NULL)
285 *new_class = common_class;
286 if (hard_reg_set_subset_p (reg_class_contents[common_class],
287 lra_no_alloc_regs))
288 return false;
289 /* Check that there are enough allocatable regs. */
290 class_size = ira_class_hard_regs_num[common_class];
291 for (i = 0; i < class_size; i++)
293 hard_regno = ira_class_hard_regs[common_class][i];
294 nregs = hard_regno_nregs[hard_regno][reg_mode];
295 if (nregs == 1)
296 return true;
297 for (j = 0; j < nregs; j++)
298 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
299 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
300 hard_regno + j))
301 break;
302 if (j >= nregs)
303 return true;
305 return false;
309 /* Return true if REGNO satisfies a memory constraint. */
310 static bool
311 in_mem_p (int regno)
313 return get_reg_class (regno) == NO_REGS;
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317 space AS, and check that each pseudo has the proper kind of hard
318 reg. */
319 static int
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
321 rtx addr, addr_space_t as)
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324 lra_assert (ADDR_SPACE_GENERIC_P (as));
325 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
326 return 0;
328 win:
329 return 1;
330 #else
331 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
332 #endif
335 namespace {
336 /* Temporarily eliminates registers in an address (for the lifetime of
337 the object). */
338 class address_eliminator {
339 public:
340 address_eliminator (struct address_info *ad);
341 ~address_eliminator ();
343 private:
344 struct address_info *m_ad;
345 rtx *m_base_loc;
346 rtx m_base_reg;
347 rtx *m_index_loc;
348 rtx m_index_reg;
352 address_eliminator::address_eliminator (struct address_info *ad)
353 : m_ad (ad),
354 m_base_loc (strip_subreg (ad->base_term)),
355 m_base_reg (NULL_RTX),
356 m_index_loc (strip_subreg (ad->index_term)),
357 m_index_reg (NULL_RTX)
359 if (m_base_loc != NULL)
361 m_base_reg = *m_base_loc;
362 lra_eliminate_reg_if_possible (m_base_loc);
363 if (m_ad->base_term2 != NULL)
364 *m_ad->base_term2 = *m_ad->base_term;
366 if (m_index_loc != NULL)
368 m_index_reg = *m_index_loc;
369 lra_eliminate_reg_if_possible (m_index_loc);
373 address_eliminator::~address_eliminator ()
375 if (m_base_loc && *m_base_loc != m_base_reg)
377 *m_base_loc = m_base_reg;
378 if (m_ad->base_term2 != NULL)
379 *m_ad->base_term2 = *m_ad->base_term;
381 if (m_index_loc && *m_index_loc != m_index_reg)
382 *m_index_loc = m_index_reg;
385 /* Return true if the eliminated form of AD is a legitimate target address. */
386 static bool
387 valid_address_p (struct address_info *ad)
389 address_eliminator eliminator (ad);
390 return valid_address_p (ad->mode, *ad->outer, ad->as);
393 /* Return true if the eliminated form of memory reference OP satisfies
394 extra (special) memory constraint CONSTRAINT. */
395 static bool
396 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
398 struct address_info ad;
400 decompose_mem_address (&ad, op);
401 address_eliminator eliminator (&ad);
402 return constraint_satisfied_p (op, constraint);
405 /* Return true if the eliminated form of address AD satisfies extra
406 address constraint CONSTRAINT. */
407 static bool
408 satisfies_address_constraint_p (struct address_info *ad,
409 enum constraint_num constraint)
411 address_eliminator eliminator (ad);
412 return constraint_satisfied_p (*ad->outer, constraint);
415 /* Return true if the eliminated form of address OP satisfies extra
416 address constraint CONSTRAINT. */
417 static bool
418 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
420 struct address_info ad;
422 decompose_lea_address (&ad, &op);
423 return satisfies_address_constraint_p (&ad, constraint);
426 /* Initiate equivalences for LRA. As we keep original equivalences
427 before any elimination, we need to make copies otherwise any change
428 in insns might change the equivalences. */
429 void
430 lra_init_equiv (void)
432 ira_expand_reg_equiv ();
433 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
435 rtx res;
437 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
438 ira_reg_equiv[i].memory = copy_rtx (res);
439 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
440 ira_reg_equiv[i].invariant = copy_rtx (res);
444 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
446 /* Update equivalence for REGNO. We need to this as the equivalence
447 might contain other pseudos which are changed by their
448 equivalences. */
449 static void
450 update_equiv (int regno)
452 rtx x;
454 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
455 ira_reg_equiv[regno].memory
456 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
457 NULL_RTX);
458 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
459 ira_reg_equiv[regno].invariant
460 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
461 NULL_RTX);
464 /* If we have decided to substitute X with another value, return that
465 value, otherwise return X. */
466 static rtx
467 get_equiv (rtx x)
469 int regno;
470 rtx res;
472 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
473 || ! ira_reg_equiv[regno].defined_p
474 || ! ira_reg_equiv[regno].profitable_p
475 || lra_get_regno_hard_regno (regno) >= 0)
476 return x;
477 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
479 if (targetm.cannot_substitute_mem_equiv_p (res))
480 return x;
481 return res;
483 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
484 return res;
485 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
486 return res;
487 gcc_unreachable ();
490 /* If we have decided to substitute X with the equivalent value,
491 return that value after elimination for INSN, otherwise return
492 X. */
493 static rtx
494 get_equiv_with_elimination (rtx x, rtx_insn *insn)
496 rtx res = get_equiv (x);
498 if (x == res || CONSTANT_P (res))
499 return res;
500 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
501 false, false, 0, true);
504 /* Set up curr_operand_mode. */
505 static void
506 init_curr_operand_mode (void)
508 int nop = curr_static_id->n_operands;
509 for (int i = 0; i < nop; i++)
511 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
512 if (mode == VOIDmode)
514 /* The .md mode for address operands is the mode of the
515 addressed value rather than the mode of the address itself. */
516 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
517 mode = Pmode;
518 else
519 mode = curr_static_id->operand[i].mode;
521 curr_operand_mode[i] = mode;
527 /* The page contains code to reuse input reloads. */
529 /* Structure describes input reload of the current insns. */
530 struct input_reload
532 /* True for input reload of matched operands. */
533 bool match_p;
534 /* Reloaded value. */
535 rtx input;
536 /* Reload pseudo used. */
537 rtx reg;
540 /* The number of elements in the following array. */
541 static int curr_insn_input_reloads_num;
542 /* Array containing info about input reloads. It is used to find the
543 same input reload and reuse the reload pseudo in this case. */
544 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
546 /* Initiate data concerning reuse of input reloads for the current
547 insn. */
548 static void
549 init_curr_insn_input_reloads (void)
551 curr_insn_input_reloads_num = 0;
554 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
555 created input reload pseudo (only if TYPE is not OP_OUT). Don't
556 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
557 wrapped up in SUBREG. The result pseudo is returned through
558 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
559 reused the already created input reload pseudo. Use TITLE to
560 describe new registers for debug purposes. */
561 static bool
562 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
563 enum reg_class rclass, bool in_subreg_p,
564 const char *title, rtx *result_reg)
566 int i, regno;
567 enum reg_class new_class;
568 bool unique_p = false;
570 if (type == OP_OUT)
572 *result_reg
573 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
574 return true;
576 /* Prevent reuse value of expression with side effects,
577 e.g. volatile memory. */
578 if (! side_effects_p (original))
579 for (i = 0; i < curr_insn_input_reloads_num; i++)
581 if (! curr_insn_input_reloads[i].match_p
582 && rtx_equal_p (curr_insn_input_reloads[i].input, original)
583 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
585 rtx reg = curr_insn_input_reloads[i].reg;
586 regno = REGNO (reg);
587 /* If input is equal to original and both are VOIDmode,
588 GET_MODE (reg) might be still different from mode.
589 Ensure we don't return *result_reg with wrong mode. */
590 if (GET_MODE (reg) != mode)
592 if (in_subreg_p)
593 continue;
594 if (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (mode))
595 continue;
596 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
597 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
598 continue;
600 *result_reg = reg;
601 if (lra_dump_file != NULL)
603 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
604 dump_value_slim (lra_dump_file, original, 1);
606 if (new_class != lra_get_allocno_class (regno))
607 lra_change_class (regno, new_class, ", change to", false);
608 if (lra_dump_file != NULL)
609 fprintf (lra_dump_file, "\n");
610 return false;
612 /* If we have an input reload with a different mode, make sure it
613 will get a different hard reg. */
614 else if (REG_P (original)
615 && REG_P (curr_insn_input_reloads[i].input)
616 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
617 && (GET_MODE (original)
618 != GET_MODE (curr_insn_input_reloads[i].input)))
619 unique_p = true;
621 *result_reg = (unique_p
622 ? lra_create_new_reg_with_unique_value
623 : lra_create_new_reg) (mode, original, rclass, title);
624 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
625 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
626 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
627 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
628 return true;
633 /* The page contains code to extract memory address parts. */
635 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */
636 static inline bool
637 ok_for_index_p_nonstrict (rtx reg)
639 unsigned regno = REGNO (reg);
641 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
644 /* A version of regno_ok_for_base_p for use here, when all pseudos
645 should count as OK. Arguments as for regno_ok_for_base_p. */
646 static inline bool
647 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
648 enum rtx_code outer_code, enum rtx_code index_code)
650 unsigned regno = REGNO (reg);
652 if (regno >= FIRST_PSEUDO_REGISTER)
653 return true;
654 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
659 /* The page contains major code to choose the current insn alternative
660 and generate reloads for it. */
662 /* Return the offset from REGNO of the least significant register
663 in (reg:MODE REGNO).
665 This function is used to tell whether two registers satisfy
666 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
668 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
669 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
671 lra_constraint_offset (int regno, machine_mode mode)
673 lra_assert (regno < FIRST_PSEUDO_REGISTER);
674 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (mode) > UNITS_PER_WORD
675 && SCALAR_INT_MODE_P (mode))
676 return hard_regno_nregs[regno][mode] - 1;
677 return 0;
680 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
681 if they are the same hard reg, and has special hacks for
682 auto-increment and auto-decrement. This is specifically intended for
683 process_alt_operands to use in determining whether two operands
684 match. X is the operand whose number is the lower of the two.
686 It is supposed that X is the output operand and Y is the input
687 operand. Y_HARD_REGNO is the final hard regno of register Y or
688 register in subreg Y as we know it now. Otherwise, it is a
689 negative value. */
690 static bool
691 operands_match_p (rtx x, rtx y, int y_hard_regno)
693 int i;
694 RTX_CODE code = GET_CODE (x);
695 const char *fmt;
697 if (x == y)
698 return true;
699 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
700 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
702 int j;
704 i = get_hard_regno (x, false);
705 if (i < 0)
706 goto slow;
708 if ((j = y_hard_regno) < 0)
709 goto slow;
711 i += lra_constraint_offset (i, GET_MODE (x));
712 j += lra_constraint_offset (j, GET_MODE (y));
714 return i == j;
717 /* If two operands must match, because they are really a single
718 operand of an assembler insn, then two post-increments are invalid
719 because the assembler insn would increment only once. On the
720 other hand, a post-increment matches ordinary indexing if the
721 post-increment is the output operand. */
722 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
723 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
725 /* Two pre-increments are invalid because the assembler insn would
726 increment only once. On the other hand, a pre-increment matches
727 ordinary indexing if the pre-increment is the input operand. */
728 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
729 || GET_CODE (y) == PRE_MODIFY)
730 return operands_match_p (x, XEXP (y, 0), -1);
732 slow:
734 if (code == REG && REG_P (y))
735 return REGNO (x) == REGNO (y);
737 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
738 && x == SUBREG_REG (y))
739 return true;
740 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
741 && SUBREG_REG (x) == y)
742 return true;
744 /* Now we have disposed of all the cases in which different rtx
745 codes can match. */
746 if (code != GET_CODE (y))
747 return false;
749 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
750 if (GET_MODE (x) != GET_MODE (y))
751 return false;
753 switch (code)
755 CASE_CONST_UNIQUE:
756 return false;
758 case LABEL_REF:
759 return label_ref_label (x) == label_ref_label (y);
760 case SYMBOL_REF:
761 return XSTR (x, 0) == XSTR (y, 0);
763 default:
764 break;
767 /* Compare the elements. If any pair of corresponding elements fail
768 to match, return false for the whole things. */
770 fmt = GET_RTX_FORMAT (code);
771 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
773 int val, j;
774 switch (fmt[i])
776 case 'w':
777 if (XWINT (x, i) != XWINT (y, i))
778 return false;
779 break;
781 case 'i':
782 if (XINT (x, i) != XINT (y, i))
783 return false;
784 break;
786 case 'e':
787 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
788 if (val == 0)
789 return false;
790 break;
792 case '0':
793 break;
795 case 'E':
796 if (XVECLEN (x, i) != XVECLEN (y, i))
797 return false;
798 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
800 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
801 if (val == 0)
802 return false;
804 break;
806 /* It is believed that rtx's at this level will never
807 contain anything but integers and other rtx's, except for
808 within LABEL_REFs and SYMBOL_REFs. */
809 default:
810 gcc_unreachable ();
813 return true;
816 /* True if X is a constant that can be forced into the constant pool.
817 MODE is the mode of the operand, or VOIDmode if not known. */
818 #define CONST_POOL_OK_P(MODE, X) \
819 ((MODE) != VOIDmode \
820 && CONSTANT_P (X) \
821 && GET_CODE (X) != HIGH \
822 && !targetm.cannot_force_const_mem (MODE, X))
824 /* True if C is a non-empty register class that has too few registers
825 to be safely used as a reload target class. */
826 #define SMALL_REGISTER_CLASS_P(C) \
827 (ira_class_hard_regs_num [(C)] == 1 \
828 || (ira_class_hard_regs_num [(C)] >= 1 \
829 && targetm.class_likely_spilled_p (C)))
831 /* If REG is a reload pseudo, try to make its class satisfying CL. */
832 static void
833 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
835 enum reg_class rclass;
837 /* Do not make more accurate class from reloads generated. They are
838 mostly moves with a lot of constraints. Making more accurate
839 class may results in very narrow class and impossibility of find
840 registers for several reloads of one insn. */
841 if (INSN_UID (curr_insn) >= new_insn_uid_start)
842 return;
843 if (GET_CODE (reg) == SUBREG)
844 reg = SUBREG_REG (reg);
845 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
846 return;
847 if (in_class_p (reg, cl, &rclass) && rclass != cl)
848 lra_change_class (REGNO (reg), rclass, " Change to", true);
851 /* Searches X for any reference to a reg with the same value as REGNO,
852 returning the rtx of the reference found if any. Otherwise,
853 returns NULL_RTX. */
854 static rtx
855 regno_val_use_in (unsigned int regno, rtx x)
857 const char *fmt;
858 int i, j;
859 rtx tem;
861 if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
862 return x;
864 fmt = GET_RTX_FORMAT (GET_CODE (x));
865 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
867 if (fmt[i] == 'e')
869 if ((tem = regno_val_use_in (regno, XEXP (x, i))))
870 return tem;
872 else if (fmt[i] == 'E')
873 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
874 if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
875 return tem;
878 return NULL_RTX;
881 /* Return true if all current insn non-output operands except INS (it
882 has a negaitve end marker) do not use pseudos with the same value
883 as REGNO. */
884 static bool
885 check_conflict_input_operands (int regno, signed char *ins)
887 int in;
888 int n_operands = curr_static_id->n_operands;
890 for (int nop = 0; nop < n_operands; nop++)
891 if (! curr_static_id->operand[nop].is_operator
892 && curr_static_id->operand[nop].type != OP_OUT)
894 for (int i = 0; (in = ins[i]) >= 0; i++)
895 if (in == nop)
896 break;
897 if (in < 0
898 && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
899 return false;
901 return true;
904 /* Generate reloads for matching OUT and INS (array of input operand
905 numbers with end marker -1) with reg class GOAL_CLASS, considering
906 output operands OUTS (similar array to INS) needing to be in different
907 registers. Add input and output reloads correspondingly to the lists
908 *BEFORE and *AFTER. OUT might be negative. In this case we generate
909 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
910 that the output operand is early clobbered for chosen alternative. */
911 static void
912 match_reload (signed char out, signed char *ins, signed char *outs,
913 enum reg_class goal_class, rtx_insn **before,
914 rtx_insn **after, bool early_clobber_p)
916 bool out_conflict;
917 int i, in;
918 rtx new_in_reg, new_out_reg, reg;
919 machine_mode inmode, outmode;
920 rtx in_rtx = *curr_id->operand_loc[ins[0]];
921 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
923 inmode = curr_operand_mode[ins[0]];
924 outmode = out < 0 ? inmode : curr_operand_mode[out];
925 push_to_sequence (*before);
926 if (inmode != outmode)
928 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
930 reg = new_in_reg
931 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
932 goal_class, "");
933 if (SCALAR_INT_MODE_P (inmode))
934 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
935 else
936 new_out_reg = gen_rtx_SUBREG (outmode, reg, 0);
937 LRA_SUBREG_P (new_out_reg) = 1;
938 /* If the input reg is dying here, we can use the same hard
939 register for REG and IN_RTX. We do it only for original
940 pseudos as reload pseudos can die although original
941 pseudos still live where reload pseudos dies. */
942 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
943 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
944 && (!early_clobber_p
945 || check_conflict_input_operands(REGNO (in_rtx), ins)))
946 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
948 else
950 reg = new_out_reg
951 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
952 goal_class, "");
953 if (SCALAR_INT_MODE_P (outmode))
954 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
955 else
956 new_in_reg = gen_rtx_SUBREG (inmode, reg, 0);
957 /* NEW_IN_REG is non-paradoxical subreg. We don't want
958 NEW_OUT_REG living above. We add clobber clause for
959 this. This is just a temporary clobber. We can remove
960 it at the end of LRA work. */
961 rtx_insn *clobber = emit_clobber (new_out_reg);
962 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
963 LRA_SUBREG_P (new_in_reg) = 1;
964 if (GET_CODE (in_rtx) == SUBREG)
966 rtx subreg_reg = SUBREG_REG (in_rtx);
968 /* If SUBREG_REG is dying here and sub-registers IN_RTX
969 and NEW_IN_REG are similar, we can use the same hard
970 register for REG and SUBREG_REG. */
971 if (REG_P (subreg_reg)
972 && (int) REGNO (subreg_reg) < lra_new_regno_start
973 && GET_MODE (subreg_reg) == outmode
974 && SUBREG_BYTE (in_rtx) == SUBREG_BYTE (new_in_reg)
975 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
976 && (! early_clobber_p
977 || check_conflict_input_operands (REGNO (subreg_reg),
978 ins)))
979 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
983 else
985 /* Pseudos have values -- see comments for lra_reg_info.
986 Different pseudos with the same value do not conflict even if
987 they live in the same place. When we create a pseudo we
988 assign value of original pseudo (if any) from which we
989 created the new pseudo. If we create the pseudo from the
990 input pseudo, the new pseudo will have no conflict with the
991 input pseudo which is wrong when the input pseudo lives after
992 the insn and as the new pseudo value is changed by the insn
993 output. Therefore we create the new pseudo from the output
994 except the case when we have single matched dying input
995 pseudo.
997 We cannot reuse the current output register because we might
998 have a situation like "a <- a op b", where the constraints
999 force the second input operand ("b") to match the output
1000 operand ("a"). "b" must then be copied into a new register
1001 so that it doesn't clobber the current value of "a".
1003 We can not use the same value if the output pseudo is
1004 early clobbered or the input pseudo is mentioned in the
1005 output, e.g. as an address part in memory, because
1006 output reload will actually extend the pseudo liveness.
1007 We don't care about eliminable hard regs here as we are
1008 interesting only in pseudos. */
1010 /* Matching input's register value is the same as one of the other
1011 output operand. Output operands in a parallel insn must be in
1012 different registers. */
1013 out_conflict = false;
1014 if (REG_P (in_rtx))
1016 for (i = 0; outs[i] >= 0; i++)
1018 rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
1019 if (REG_P (other_out_rtx)
1020 && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1021 != NULL_RTX))
1023 out_conflict = true;
1024 break;
1029 new_in_reg = new_out_reg
1030 = (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1031 && (int) REGNO (in_rtx) < lra_new_regno_start
1032 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1033 && (! early_clobber_p
1034 || check_conflict_input_operands (REGNO (in_rtx), ins))
1035 && (out < 0
1036 || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1037 && !out_conflict
1038 ? lra_create_new_reg (inmode, in_rtx, goal_class, "")
1039 : lra_create_new_reg_with_unique_value (outmode, out_rtx,
1040 goal_class, ""));
1042 /* In operand can be got from transformations before processing insn
1043 constraints. One example of such transformations is subreg
1044 reloading (see function simplify_operand_subreg). The new
1045 pseudos created by the transformations might have inaccurate
1046 class (ALL_REGS) and we should make their classes more
1047 accurate. */
1048 narrow_reload_pseudo_class (in_rtx, goal_class);
1049 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1050 *before = get_insns ();
1051 end_sequence ();
1052 /* Add the new pseudo to consider values of subsequent input reload
1053 pseudos. */
1054 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1055 curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1056 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1057 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1058 for (i = 0; (in = ins[i]) >= 0; i++)
1060 lra_assert
1061 (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1062 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
1063 *curr_id->operand_loc[in] = new_in_reg;
1065 lra_update_dups (curr_id, ins);
1066 if (out < 0)
1067 return;
1068 /* See a comment for the input operand above. */
1069 narrow_reload_pseudo_class (out_rtx, goal_class);
1070 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1072 start_sequence ();
1073 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1074 emit_insn (*after);
1075 *after = get_insns ();
1076 end_sequence ();
1078 *curr_id->operand_loc[out] = new_out_reg;
1079 lra_update_dup (curr_id, out);
1082 /* Return register class which is union of all reg classes in insn
1083 constraint alternative string starting with P. */
1084 static enum reg_class
1085 reg_class_from_constraints (const char *p)
1087 int c, len;
1088 enum reg_class op_class = NO_REGS;
1091 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1093 case '#':
1094 case ',':
1095 return op_class;
1097 case 'g':
1098 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1099 break;
1101 default:
1102 enum constraint_num cn = lookup_constraint (p);
1103 enum reg_class cl = reg_class_for_constraint (cn);
1104 if (cl == NO_REGS)
1106 if (insn_extra_address_constraint (cn))
1107 op_class
1108 = (reg_class_subunion
1109 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1110 ADDRESS, SCRATCH)]);
1111 break;
1114 op_class = reg_class_subunion[op_class][cl];
1115 break;
1117 while ((p += len), c);
1118 return op_class;
1121 /* If OP is a register, return the class of the register as per
1122 get_reg_class, otherwise return NO_REGS. */
1123 static inline enum reg_class
1124 get_op_class (rtx op)
1126 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1129 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1130 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1131 SUBREG for VAL to make them equal. */
1132 static rtx_insn *
1133 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1135 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1137 /* Usually size of mem_pseudo is greater than val size but in
1138 rare cases it can be less as it can be defined by target
1139 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1140 if (! MEM_P (val))
1142 val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1143 GET_CODE (val) == SUBREG
1144 ? SUBREG_REG (val) : val);
1145 LRA_SUBREG_P (val) = 1;
1147 else
1149 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1150 LRA_SUBREG_P (mem_pseudo) = 1;
1153 return to_p ? gen_move_insn (mem_pseudo, val)
1154 : gen_move_insn (val, mem_pseudo);
1157 /* Process a special case insn (register move), return true if we
1158 don't need to process it anymore. INSN should be a single set
1159 insn. Set up that RTL was changed through CHANGE_P and macro
1160 SECONDARY_MEMORY_NEEDED says to use secondary memory through
1161 SEC_MEM_P. */
1162 static bool
1163 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1165 int sregno, dregno;
1166 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1167 rtx_insn *before;
1168 enum reg_class dclass, sclass, secondary_class;
1169 secondary_reload_info sri;
1171 lra_assert (curr_insn_set != NULL_RTX);
1172 dreg = dest = SET_DEST (curr_insn_set);
1173 sreg = src = SET_SRC (curr_insn_set);
1174 if (GET_CODE (dest) == SUBREG)
1175 dreg = SUBREG_REG (dest);
1176 if (GET_CODE (src) == SUBREG)
1177 sreg = SUBREG_REG (src);
1178 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1179 return false;
1180 sclass = dclass = NO_REGS;
1181 if (REG_P (dreg))
1182 dclass = get_reg_class (REGNO (dreg));
1183 gcc_assert (dclass < LIM_REG_CLASSES);
1184 if (dclass == ALL_REGS)
1185 /* ALL_REGS is used for new pseudos created by transformations
1186 like reload of SUBREG_REG (see function
1187 simplify_operand_subreg). We don't know their class yet. We
1188 should figure out the class from processing the insn
1189 constraints not in this fast path function. Even if ALL_REGS
1190 were a right class for the pseudo, secondary_... hooks usually
1191 are not define for ALL_REGS. */
1192 return false;
1193 if (REG_P (sreg))
1194 sclass = get_reg_class (REGNO (sreg));
1195 gcc_assert (sclass < LIM_REG_CLASSES);
1196 if (sclass == ALL_REGS)
1197 /* See comments above. */
1198 return false;
1199 if (sclass == NO_REGS && dclass == NO_REGS)
1200 return false;
1201 #ifdef SECONDARY_MEMORY_NEEDED
1202 if (SECONDARY_MEMORY_NEEDED (sclass, dclass, GET_MODE (src))
1203 #ifdef SECONDARY_MEMORY_NEEDED_MODE
1204 && ((sclass != NO_REGS && dclass != NO_REGS)
1205 || GET_MODE (src) != SECONDARY_MEMORY_NEEDED_MODE (GET_MODE (src)))
1206 #endif
1209 *sec_mem_p = true;
1210 return false;
1212 #endif
1213 if (! REG_P (dreg) || ! REG_P (sreg))
1214 return false;
1215 sri.prev_sri = NULL;
1216 sri.icode = CODE_FOR_nothing;
1217 sri.extra_cost = 0;
1218 secondary_class = NO_REGS;
1219 /* Set up hard register for a reload pseudo for hook
1220 secondary_reload because some targets just ignore unassigned
1221 pseudos in the hook. */
1222 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1224 dregno = REGNO (dreg);
1225 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1227 else
1228 dregno = -1;
1229 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1231 sregno = REGNO (sreg);
1232 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1234 else
1235 sregno = -1;
1236 if (sclass != NO_REGS)
1237 secondary_class
1238 = (enum reg_class) targetm.secondary_reload (false, dest,
1239 (reg_class_t) sclass,
1240 GET_MODE (src), &sri);
1241 if (sclass == NO_REGS
1242 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1243 && dclass != NO_REGS))
1245 enum reg_class old_sclass = secondary_class;
1246 secondary_reload_info old_sri = sri;
1248 sri.prev_sri = NULL;
1249 sri.icode = CODE_FOR_nothing;
1250 sri.extra_cost = 0;
1251 secondary_class
1252 = (enum reg_class) targetm.secondary_reload (true, src,
1253 (reg_class_t) dclass,
1254 GET_MODE (src), &sri);
1255 /* Check the target hook consistency. */
1256 lra_assert
1257 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1258 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1259 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1261 if (sregno >= 0)
1262 reg_renumber [sregno] = -1;
1263 if (dregno >= 0)
1264 reg_renumber [dregno] = -1;
1265 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1266 return false;
1267 *change_p = true;
1268 new_reg = NULL_RTX;
1269 if (secondary_class != NO_REGS)
1270 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1271 secondary_class,
1272 "secondary");
1273 start_sequence ();
1274 if (sri.icode == CODE_FOR_nothing)
1275 lra_emit_move (new_reg, src);
1276 else
1278 enum reg_class scratch_class;
1280 scratch_class = (reg_class_from_constraints
1281 (insn_data[sri.icode].operand[2].constraint));
1282 scratch_reg = (lra_create_new_reg_with_unique_value
1283 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1284 scratch_class, "scratch"));
1285 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1286 src, scratch_reg));
1288 before = get_insns ();
1289 end_sequence ();
1290 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1291 if (new_reg != NULL_RTX)
1292 SET_SRC (curr_insn_set) = new_reg;
1293 else
1295 if (lra_dump_file != NULL)
1297 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1298 dump_insn_slim (lra_dump_file, curr_insn);
1300 lra_set_insn_deleted (curr_insn);
1301 return true;
1303 return false;
1306 /* The following data describe the result of process_alt_operands.
1307 The data are used in curr_insn_transform to generate reloads. */
1309 /* The chosen reg classes which should be used for the corresponding
1310 operands. */
1311 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1312 /* True if the operand should be the same as another operand and that
1313 other operand does not need a reload. */
1314 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1315 /* True if the operand does not need a reload. */
1316 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1317 /* True if the operand can be offsetable memory. */
1318 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1319 /* The number of an operand to which given operand can be matched to. */
1320 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1321 /* The number of elements in the following array. */
1322 static int goal_alt_dont_inherit_ops_num;
1323 /* Numbers of operands whose reload pseudos should not be inherited. */
1324 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1325 /* True if the insn commutative operands should be swapped. */
1326 static bool goal_alt_swapped;
1327 /* The chosen insn alternative. */
1328 static int goal_alt_number;
1330 /* True if the corresponding operand is the result of an equivalence
1331 substitution. */
1332 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1334 /* The following five variables are used to choose the best insn
1335 alternative. They reflect final characteristics of the best
1336 alternative. */
1338 /* Number of necessary reloads and overall cost reflecting the
1339 previous value and other unpleasantness of the best alternative. */
1340 static int best_losers, best_overall;
1341 /* Overall number hard registers used for reloads. For example, on
1342 some targets we need 2 general registers to reload DFmode and only
1343 one floating point register. */
1344 static int best_reload_nregs;
1345 /* Overall number reflecting distances of previous reloading the same
1346 value. The distances are counted from the current BB start. It is
1347 used to improve inheritance chances. */
1348 static int best_reload_sum;
1350 /* True if the current insn should have no correspondingly input or
1351 output reloads. */
1352 static bool no_input_reloads_p, no_output_reloads_p;
1354 /* True if we swapped the commutative operands in the current
1355 insn. */
1356 static int curr_swapped;
1358 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1359 register of class CL. Add any input reloads to list BEFORE. AFTER
1360 is nonnull if *LOC is an automodified value; handle that case by
1361 adding the required output reloads to list AFTER. Return true if
1362 the RTL was changed.
1364 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1365 register. Return false if the address register is correct. */
1366 static bool
1367 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1368 enum reg_class cl)
1370 int regno;
1371 enum reg_class rclass, new_class;
1372 rtx reg;
1373 rtx new_reg;
1374 machine_mode mode;
1375 bool subreg_p, before_p = false;
1377 subreg_p = GET_CODE (*loc) == SUBREG;
1378 if (subreg_p)
1380 reg = SUBREG_REG (*loc);
1381 mode = GET_MODE (reg);
1383 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1384 between two registers with different classes, but there normally will
1385 be "mov" which transfers element of vector register into the general
1386 register, and this normally will be a subreg which should be reloaded
1387 as a whole. This is particularly likely to be triggered when
1388 -fno-split-wide-types specified. */
1389 if (!REG_P (reg)
1390 || in_class_p (reg, cl, &new_class)
1391 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (ptr_mode))
1392 loc = &SUBREG_REG (*loc);
1395 reg = *loc;
1396 mode = GET_MODE (reg);
1397 if (! REG_P (reg))
1399 if (check_only_p)
1400 return true;
1401 /* Always reload memory in an address even if the target supports
1402 such addresses. */
1403 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1404 before_p = true;
1406 else
1408 regno = REGNO (reg);
1409 rclass = get_reg_class (regno);
1410 if (! check_only_p
1411 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1413 if (lra_dump_file != NULL)
1415 fprintf (lra_dump_file,
1416 "Changing pseudo %d in address of insn %u on equiv ",
1417 REGNO (reg), INSN_UID (curr_insn));
1418 dump_value_slim (lra_dump_file, *loc, 1);
1419 fprintf (lra_dump_file, "\n");
1421 *loc = copy_rtx (*loc);
1423 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1425 if (check_only_p)
1426 return true;
1427 reg = *loc;
1428 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1429 mode, reg, cl, subreg_p, "address", &new_reg))
1430 before_p = true;
1432 else if (new_class != NO_REGS && rclass != new_class)
1434 if (check_only_p)
1435 return true;
1436 lra_change_class (regno, new_class, " Change to", true);
1437 return false;
1439 else
1440 return false;
1442 if (before_p)
1444 push_to_sequence (*before);
1445 lra_emit_move (new_reg, reg);
1446 *before = get_insns ();
1447 end_sequence ();
1449 *loc = new_reg;
1450 if (after != NULL)
1452 start_sequence ();
1453 lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1454 emit_insn (*after);
1455 *after = get_insns ();
1456 end_sequence ();
1458 return true;
1461 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1462 the insn to be inserted before curr insn. AFTER returns the
1463 the insn to be inserted after curr insn. ORIGREG and NEWREG
1464 are the original reg and new reg for reload. */
1465 static void
1466 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1467 rtx newreg)
1469 if (before)
1471 push_to_sequence (*before);
1472 lra_emit_move (newreg, origreg);
1473 *before = get_insns ();
1474 end_sequence ();
1476 if (after)
1478 start_sequence ();
1479 lra_emit_move (origreg, newreg);
1480 emit_insn (*after);
1481 *after = get_insns ();
1482 end_sequence ();
1486 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1487 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1489 /* Make reloads for subreg in operand NOP with internal subreg mode
1490 REG_MODE, add new reloads for further processing. Return true if
1491 any change was done. */
1492 static bool
1493 simplify_operand_subreg (int nop, machine_mode reg_mode)
1495 int hard_regno;
1496 rtx_insn *before, *after;
1497 machine_mode mode, innermode;
1498 rtx reg, new_reg;
1499 rtx operand = *curr_id->operand_loc[nop];
1500 enum reg_class regclass;
1501 enum op_type type;
1503 before = after = NULL;
1505 if (GET_CODE (operand) != SUBREG)
1506 return false;
1508 mode = GET_MODE (operand);
1509 reg = SUBREG_REG (operand);
1510 innermode = GET_MODE (reg);
1511 type = curr_static_id->operand[nop].type;
1512 if (MEM_P (reg))
1514 const bool addr_was_valid
1515 = valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1516 alter_subreg (curr_id->operand_loc[nop], false);
1517 rtx subst = *curr_id->operand_loc[nop];
1518 lra_assert (MEM_P (subst));
1520 if (!addr_was_valid
1521 || valid_address_p (GET_MODE (subst), XEXP (subst, 0),
1522 MEM_ADDR_SPACE (subst))
1523 || ((get_constraint_type (lookup_constraint
1524 (curr_static_id->operand[nop].constraint))
1525 != CT_SPECIAL_MEMORY)
1526 /* We still can reload address and if the address is
1527 valid, we can remove subreg without reloading its
1528 inner memory. */
1529 && valid_address_p (GET_MODE (subst),
1530 regno_reg_rtx
1531 [ira_class_hard_regs
1532 [base_reg_class (GET_MODE (subst),
1533 MEM_ADDR_SPACE (subst),
1534 ADDRESS, SCRATCH)][0]],
1535 MEM_ADDR_SPACE (subst))))
1537 /* If we change the address for a paradoxical subreg of memory, the
1538 new address might violate the necessary alignment or the access
1539 might be slow; take this into consideration. We need not worry
1540 about accesses beyond allocated memory for paradoxical memory
1541 subregs as we don't substitute such equiv memory (see processing
1542 equivalences in function lra_constraints) and because for spilled
1543 pseudos we allocate stack memory enough for the biggest
1544 corresponding paradoxical subreg.
1546 However, do not blindly simplify a (subreg (mem ...)) for
1547 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1548 data into a register when the inner is narrower than outer or
1549 missing important data from memory when the inner is wider than
1550 outer. This rule only applies to modes that are no wider than
1551 a word. */
1552 if (!(GET_MODE_PRECISION (mode) != GET_MODE_PRECISION (innermode)
1553 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
1554 && GET_MODE_SIZE (innermode) <= UNITS_PER_WORD
1555 && WORD_REGISTER_OPERATIONS)
1556 && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1557 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (subst)))
1558 || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1559 && SLOW_UNALIGNED_ACCESS (innermode, MEM_ALIGN (reg)))))
1560 return true;
1562 *curr_id->operand_loc[nop] = operand;
1564 /* But if the address was not valid, we cannot reload the MEM without
1565 reloading the address first. */
1566 if (!addr_was_valid)
1567 process_address (nop, false, &before, &after);
1569 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1570 enum reg_class rclass
1571 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1572 if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1573 reg, rclass, TRUE, "slow mem", &new_reg))
1575 bool insert_before, insert_after;
1576 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1578 insert_before = (type != OP_OUT
1579 || GET_MODE_SIZE (innermode)
1580 > GET_MODE_SIZE (mode));
1581 insert_after = type != OP_IN;
1582 insert_move_for_subreg (insert_before ? &before : NULL,
1583 insert_after ? &after : NULL,
1584 reg, new_reg);
1586 SUBREG_REG (operand) = new_reg;
1588 /* Convert to MODE. */
1589 reg = operand;
1590 rclass
1591 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1592 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1593 rclass, TRUE, "slow mem", &new_reg))
1595 bool insert_before, insert_after;
1596 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1598 insert_before = type != OP_OUT;
1599 insert_after = type != OP_IN;
1600 insert_move_for_subreg (insert_before ? &before : NULL,
1601 insert_after ? &after : NULL,
1602 reg, new_reg);
1604 *curr_id->operand_loc[nop] = new_reg;
1605 lra_process_new_insns (curr_insn, before, after,
1606 "Inserting slow mem reload");
1607 return true;
1610 /* If the address was valid and became invalid, prefer to reload
1611 the memory. Typical case is when the index scale should
1612 correspond the memory. */
1613 *curr_id->operand_loc[nop] = operand;
1614 /* Do not return false here as the MEM_P (reg) will be processed
1615 later in this function. */
1617 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1619 alter_subreg (curr_id->operand_loc[nop], false);
1620 return true;
1622 else if (CONSTANT_P (reg))
1624 /* Try to simplify subreg of constant. It is usually result of
1625 equivalence substitution. */
1626 if (innermode == VOIDmode
1627 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1628 innermode = curr_static_id->operand[nop].mode;
1629 if ((new_reg = simplify_subreg (mode, reg, innermode,
1630 SUBREG_BYTE (operand))) != NULL_RTX)
1632 *curr_id->operand_loc[nop] = new_reg;
1633 return true;
1636 /* Put constant into memory when we have mixed modes. It generates
1637 a better code in most cases as it does not need a secondary
1638 reload memory. It also prevents LRA looping when LRA is using
1639 secondary reload memory again and again. */
1640 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1641 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1643 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1644 alter_subreg (curr_id->operand_loc[nop], false);
1645 return true;
1647 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1648 if there may be a problem accessing OPERAND in the outer
1649 mode. */
1650 if ((REG_P (reg)
1651 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1652 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1653 /* Don't reload paradoxical subregs because we could be looping
1654 having repeatedly final regno out of hard regs range. */
1655 && (hard_regno_nregs[hard_regno][innermode]
1656 >= hard_regno_nregs[hard_regno][mode])
1657 && simplify_subreg_regno (hard_regno, innermode,
1658 SUBREG_BYTE (operand), mode) < 0
1659 /* Don't reload subreg for matching reload. It is actually
1660 valid subreg in LRA. */
1661 && ! LRA_SUBREG_P (operand))
1662 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1664 enum reg_class rclass;
1666 if (REG_P (reg))
1667 /* There is a big probability that we will get the same class
1668 for the new pseudo and we will get the same insn which
1669 means infinite looping. So spill the new pseudo. */
1670 rclass = NO_REGS;
1671 else
1672 /* The class will be defined later in curr_insn_transform. */
1673 rclass
1674 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1676 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1677 rclass, TRUE, "subreg reg", &new_reg))
1679 bool insert_before, insert_after;
1680 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1682 insert_before = (type != OP_OUT
1683 || GET_MODE_SIZE (innermode) > GET_MODE_SIZE (mode));
1684 insert_after = (type != OP_IN);
1685 insert_move_for_subreg (insert_before ? &before : NULL,
1686 insert_after ? &after : NULL,
1687 reg, new_reg);
1689 SUBREG_REG (operand) = new_reg;
1690 lra_process_new_insns (curr_insn, before, after,
1691 "Inserting subreg reload");
1692 return true;
1694 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1695 IRA allocates hardreg to the inner pseudo reg according to its mode
1696 instead of the outermode, so the size of the hardreg may not be enough
1697 to contain the outermode operand, in that case we may need to insert
1698 reload for the reg. For the following two types of paradoxical subreg,
1699 we need to insert reload:
1700 1. If the op_type is OP_IN, and the hardreg could not be paired with
1701 other hardreg to contain the outermode operand
1702 (checked by in_hard_reg_set_p), we need to insert the reload.
1703 2. If the op_type is OP_OUT or OP_INOUT.
1705 Here is a paradoxical subreg example showing how the reload is generated:
1707 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1708 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1710 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1711 here, if reg107 is assigned to hardreg R15, because R15 is the last
1712 hardreg, compiler cannot find another hardreg to pair with R15 to
1713 contain TImode data. So we insert a TImode reload reg180 for it.
1714 After reload is inserted:
1716 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1717 (reg:DI 107 [ __comp ])) -1
1718 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1719 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1721 Two reload hard registers will be allocated to reg180 to save TImode data
1722 in LRA_assign. */
1723 else if (REG_P (reg)
1724 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1725 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1726 && (hard_regno_nregs[hard_regno][innermode]
1727 < hard_regno_nregs[hard_regno][mode])
1728 && (regclass = lra_get_allocno_class (REGNO (reg)))
1729 && (type != OP_IN
1730 || !in_hard_reg_set_p (reg_class_contents[regclass],
1731 mode, hard_regno)))
1733 /* The class will be defined later in curr_insn_transform. */
1734 enum reg_class rclass
1735 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1737 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1738 rclass, TRUE, "paradoxical subreg", &new_reg))
1740 rtx subreg;
1741 bool insert_before, insert_after;
1743 PUT_MODE (new_reg, mode);
1744 subreg = gen_lowpart_SUBREG (innermode, new_reg);
1745 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1747 insert_before = (type != OP_OUT);
1748 insert_after = (type != OP_IN);
1749 insert_move_for_subreg (insert_before ? &before : NULL,
1750 insert_after ? &after : NULL,
1751 reg, subreg);
1753 SUBREG_REG (operand) = new_reg;
1754 lra_process_new_insns (curr_insn, before, after,
1755 "Inserting paradoxical subreg reload");
1756 return true;
1758 return false;
1761 /* Return TRUE if X refers for a hard register from SET. */
1762 static bool
1763 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1765 int i, j, x_hard_regno;
1766 machine_mode mode;
1767 const char *fmt;
1768 enum rtx_code code;
1770 if (x == NULL_RTX)
1771 return false;
1772 code = GET_CODE (x);
1773 mode = GET_MODE (x);
1774 if (code == SUBREG)
1776 x = SUBREG_REG (x);
1777 code = GET_CODE (x);
1778 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
1779 mode = GET_MODE (x);
1782 if (REG_P (x))
1784 x_hard_regno = get_hard_regno (x, true);
1785 return (x_hard_regno >= 0
1786 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1788 if (MEM_P (x))
1790 struct address_info ad;
1792 decompose_mem_address (&ad, x);
1793 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1794 return true;
1795 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1796 return true;
1798 fmt = GET_RTX_FORMAT (code);
1799 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1801 if (fmt[i] == 'e')
1803 if (uses_hard_regs_p (XEXP (x, i), set))
1804 return true;
1806 else if (fmt[i] == 'E')
1808 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1809 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1810 return true;
1813 return false;
1816 /* Return true if OP is a spilled pseudo. */
1817 static inline bool
1818 spilled_pseudo_p (rtx op)
1820 return (REG_P (op)
1821 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1824 /* Return true if X is a general constant. */
1825 static inline bool
1826 general_constant_p (rtx x)
1828 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1831 static bool
1832 reg_in_class_p (rtx reg, enum reg_class cl)
1834 if (cl == NO_REGS)
1835 return get_reg_class (REGNO (reg)) == NO_REGS;
1836 return in_class_p (reg, cl, NULL);
1839 /* Return true if SET of RCLASS contains no hard regs which can be
1840 used in MODE. */
1841 static bool
1842 prohibited_class_reg_set_mode_p (enum reg_class rclass,
1843 HARD_REG_SET &set,
1844 machine_mode mode)
1846 HARD_REG_SET temp;
1848 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
1849 COPY_HARD_REG_SET (temp, set);
1850 AND_COMPL_HARD_REG_SET (temp, lra_no_alloc_regs);
1851 return (hard_reg_set_subset_p
1852 (temp, ira_prohibited_class_mode_regs[rclass][mode]));
1856 /* Used to check validity info about small class input operands. It
1857 should be incremented at start of processing an insn
1858 alternative. */
1859 static unsigned int curr_small_class_check = 0;
1861 /* Update number of used inputs of class OP_CLASS for operand NOP.
1862 Return true if we have more such class operands than the number of
1863 available regs. */
1864 static bool
1865 update_and_check_small_class_inputs (int nop, enum reg_class op_class)
1867 static unsigned int small_class_check[LIM_REG_CLASSES];
1868 static int small_class_input_nums[LIM_REG_CLASSES];
1870 if (SMALL_REGISTER_CLASS_P (op_class)
1871 /* We are interesting in classes became small because of fixing
1872 some hard regs, e.g. by an user through GCC options. */
1873 && hard_reg_set_intersect_p (reg_class_contents[op_class],
1874 ira_no_alloc_regs)
1875 && (curr_static_id->operand[nop].type != OP_OUT
1876 || curr_static_id->operand[nop].early_clobber))
1878 if (small_class_check[op_class] == curr_small_class_check)
1879 small_class_input_nums[op_class]++;
1880 else
1882 small_class_check[op_class] = curr_small_class_check;
1883 small_class_input_nums[op_class] = 1;
1885 if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
1886 return true;
1888 return false;
1891 /* Major function to choose the current insn alternative and what
1892 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1893 negative we should consider only this alternative. Return false if
1894 we can not choose the alternative or find how to reload the
1895 operands. */
1896 static bool
1897 process_alt_operands (int only_alternative)
1899 bool ok_p = false;
1900 int nop, overall, nalt;
1901 int n_alternatives = curr_static_id->n_alternatives;
1902 int n_operands = curr_static_id->n_operands;
1903 /* LOSERS counts the operands that don't fit this alternative and
1904 would require loading. */
1905 int losers;
1906 int addr_losers;
1907 /* REJECT is a count of how undesirable this alternative says it is
1908 if any reloading is required. If the alternative matches exactly
1909 then REJECT is ignored, but otherwise it gets this much counted
1910 against it in addition to the reloading needed. */
1911 int reject;
1912 /* This is defined by '!' or '?' alternative constraint and added to
1913 reject. But in some cases it can be ignored. */
1914 int static_reject;
1915 int op_reject;
1916 /* The number of elements in the following array. */
1917 int early_clobbered_regs_num;
1918 /* Numbers of operands which are early clobber registers. */
1919 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1920 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1921 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1922 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1923 bool curr_alt_win[MAX_RECOG_OPERANDS];
1924 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1925 int curr_alt_matches[MAX_RECOG_OPERANDS];
1926 /* The number of elements in the following array. */
1927 int curr_alt_dont_inherit_ops_num;
1928 /* Numbers of operands whose reload pseudos should not be inherited. */
1929 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1930 rtx op;
1931 /* The register when the operand is a subreg of register, otherwise the
1932 operand itself. */
1933 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1934 /* The register if the operand is a register or subreg of register,
1935 otherwise NULL. */
1936 rtx operand_reg[MAX_RECOG_OPERANDS];
1937 int hard_regno[MAX_RECOG_OPERANDS];
1938 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1939 int reload_nregs, reload_sum;
1940 bool costly_p;
1941 enum reg_class cl;
1943 /* Calculate some data common for all alternatives to speed up the
1944 function. */
1945 for (nop = 0; nop < n_operands; nop++)
1947 rtx reg;
1949 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1950 /* The real hard regno of the operand after the allocation. */
1951 hard_regno[nop] = get_hard_regno (op, true);
1953 operand_reg[nop] = reg = op;
1954 biggest_mode[nop] = GET_MODE (op);
1955 if (GET_CODE (op) == SUBREG)
1957 operand_reg[nop] = reg = SUBREG_REG (op);
1958 if (GET_MODE_SIZE (biggest_mode[nop])
1959 < GET_MODE_SIZE (GET_MODE (reg)))
1960 biggest_mode[nop] = GET_MODE (reg);
1962 if (! REG_P (reg))
1963 operand_reg[nop] = NULL_RTX;
1964 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1965 || ((int) REGNO (reg)
1966 == lra_get_elimination_hard_regno (REGNO (reg))))
1967 no_subreg_reg_operand[nop] = reg;
1968 else
1969 operand_reg[nop] = no_subreg_reg_operand[nop]
1970 /* Just use natural mode for elimination result. It should
1971 be enough for extra constraints hooks. */
1972 = regno_reg_rtx[hard_regno[nop]];
1975 /* The constraints are made of several alternatives. Each operand's
1976 constraint looks like foo,bar,... with commas separating the
1977 alternatives. The first alternatives for all operands go
1978 together, the second alternatives go together, etc.
1980 First loop over alternatives. */
1981 alternative_mask preferred = curr_id->preferred_alternatives;
1982 if (only_alternative >= 0)
1983 preferred &= ALTERNATIVE_BIT (only_alternative);
1985 for (nalt = 0; nalt < n_alternatives; nalt++)
1987 /* Loop over operands for one constraint alternative. */
1988 if (!TEST_BIT (preferred, nalt))
1989 continue;
1991 curr_small_class_check++;
1992 overall = losers = addr_losers = 0;
1993 static_reject = reject = reload_nregs = reload_sum = 0;
1994 for (nop = 0; nop < n_operands; nop++)
1996 int inc = (curr_static_id
1997 ->operand_alternative[nalt * n_operands + nop].reject);
1998 if (lra_dump_file != NULL && inc != 0)
1999 fprintf (lra_dump_file,
2000 " Staticly defined alt reject+=%d\n", inc);
2001 static_reject += inc;
2003 reject += static_reject;
2004 early_clobbered_regs_num = 0;
2006 for (nop = 0; nop < n_operands; nop++)
2008 const char *p;
2009 char *end;
2010 int len, c, m, i, opalt_num, this_alternative_matches;
2011 bool win, did_match, offmemok, early_clobber_p;
2012 /* false => this operand can be reloaded somehow for this
2013 alternative. */
2014 bool badop;
2015 /* true => this operand can be reloaded if the alternative
2016 allows regs. */
2017 bool winreg;
2018 /* True if a constant forced into memory would be OK for
2019 this operand. */
2020 bool constmemok;
2021 enum reg_class this_alternative, this_costly_alternative;
2022 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2023 bool this_alternative_match_win, this_alternative_win;
2024 bool this_alternative_offmemok;
2025 bool scratch_p;
2026 machine_mode mode;
2027 enum constraint_num cn;
2029 opalt_num = nalt * n_operands + nop;
2030 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2032 /* Fast track for no constraints at all. */
2033 curr_alt[nop] = NO_REGS;
2034 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2035 curr_alt_win[nop] = true;
2036 curr_alt_match_win[nop] = false;
2037 curr_alt_offmemok[nop] = false;
2038 curr_alt_matches[nop] = -1;
2039 continue;
2042 op = no_subreg_reg_operand[nop];
2043 mode = curr_operand_mode[nop];
2045 win = did_match = winreg = offmemok = constmemok = false;
2046 badop = true;
2048 early_clobber_p = false;
2049 p = curr_static_id->operand_alternative[opalt_num].constraint;
2051 this_costly_alternative = this_alternative = NO_REGS;
2052 /* We update set of possible hard regs besides its class
2053 because reg class might be inaccurate. For example,
2054 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2055 is translated in HI_REGS because classes are merged by
2056 pairs and there is no accurate intermediate class. */
2057 CLEAR_HARD_REG_SET (this_alternative_set);
2058 CLEAR_HARD_REG_SET (this_costly_alternative_set);
2059 this_alternative_win = false;
2060 this_alternative_match_win = false;
2061 this_alternative_offmemok = false;
2062 this_alternative_matches = -1;
2064 /* An empty constraint should be excluded by the fast
2065 track. */
2066 lra_assert (*p != 0 && *p != ',');
2068 op_reject = 0;
2069 /* Scan this alternative's specs for this operand; set WIN
2070 if the operand fits any letter in this alternative.
2071 Otherwise, clear BADOP if this operand could fit some
2072 letter after reloads, or set WINREG if this operand could
2073 fit after reloads provided the constraint allows some
2074 registers. */
2075 costly_p = false;
2078 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2080 case '\0':
2081 len = 0;
2082 break;
2083 case ',':
2084 c = '\0';
2085 break;
2087 case '&':
2088 early_clobber_p = true;
2089 break;
2091 case '$':
2092 op_reject += LRA_MAX_REJECT;
2093 break;
2094 case '^':
2095 op_reject += LRA_LOSER_COST_FACTOR;
2096 break;
2098 case '#':
2099 /* Ignore rest of this alternative. */
2100 c = '\0';
2101 break;
2103 case '0': case '1': case '2': case '3': case '4':
2104 case '5': case '6': case '7': case '8': case '9':
2106 int m_hregno;
2107 bool match_p;
2109 m = strtoul (p, &end, 10);
2110 p = end;
2111 len = 0;
2112 lra_assert (nop > m);
2114 this_alternative_matches = m;
2115 m_hregno = get_hard_regno (*curr_id->operand_loc[m], false);
2116 /* We are supposed to match a previous operand.
2117 If we do, we win if that one did. If we do
2118 not, count both of the operands as losers.
2119 (This is too conservative, since most of the
2120 time only a single reload insn will be needed
2121 to make the two operands win. As a result,
2122 this alternative may be rejected when it is
2123 actually desirable.) */
2124 match_p = false;
2125 if (operands_match_p (*curr_id->operand_loc[nop],
2126 *curr_id->operand_loc[m], m_hregno))
2128 /* We should reject matching of an early
2129 clobber operand if the matching operand is
2130 not dying in the insn. */
2131 if (! curr_static_id->operand[m].early_clobber
2132 || operand_reg[nop] == NULL_RTX
2133 || (find_regno_note (curr_insn, REG_DEAD,
2134 REGNO (op))
2135 || REGNO (op) == REGNO (operand_reg[m])))
2136 match_p = true;
2138 if (match_p)
2140 /* If we are matching a non-offsettable
2141 address where an offsettable address was
2142 expected, then we must reject this
2143 combination, because we can't reload
2144 it. */
2145 if (curr_alt_offmemok[m]
2146 && MEM_P (*curr_id->operand_loc[m])
2147 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2148 continue;
2150 else
2152 /* Operands don't match. Both operands must
2153 allow a reload register, otherwise we
2154 cannot make them match. */
2155 if (curr_alt[m] == NO_REGS)
2156 break;
2157 /* Retroactively mark the operand we had to
2158 match as a loser, if it wasn't already and
2159 it wasn't matched to a register constraint
2160 (e.g it might be matched by memory). */
2161 if (curr_alt_win[m]
2162 && (operand_reg[m] == NULL_RTX
2163 || hard_regno[m] < 0))
2165 losers++;
2166 reload_nregs
2167 += (ira_reg_class_max_nregs[curr_alt[m]]
2168 [GET_MODE (*curr_id->operand_loc[m])]);
2171 /* Prefer matching earlyclobber alternative as
2172 it results in less hard regs required for
2173 the insn than a non-matching earlyclobber
2174 alternative. */
2175 if (curr_static_id->operand[m].early_clobber)
2177 if (lra_dump_file != NULL)
2178 fprintf
2179 (lra_dump_file,
2180 " %d Matching earlyclobber alt:"
2181 " reject--\n",
2182 nop);
2183 reject--;
2185 /* Otherwise we prefer no matching
2186 alternatives because it gives more freedom
2187 in RA. */
2188 else if (operand_reg[nop] == NULL_RTX
2189 || (find_regno_note (curr_insn, REG_DEAD,
2190 REGNO (operand_reg[nop]))
2191 == NULL_RTX))
2193 if (lra_dump_file != NULL)
2194 fprintf
2195 (lra_dump_file,
2196 " %d Matching alt: reject+=2\n",
2197 nop);
2198 reject += 2;
2201 /* If we have to reload this operand and some
2202 previous operand also had to match the same
2203 thing as this operand, we don't know how to do
2204 that. */
2205 if (!match_p || !curr_alt_win[m])
2207 for (i = 0; i < nop; i++)
2208 if (curr_alt_matches[i] == m)
2209 break;
2210 if (i < nop)
2211 break;
2213 else
2214 did_match = true;
2216 /* This can be fixed with reloads if the operand
2217 we are supposed to match can be fixed with
2218 reloads. */
2219 badop = false;
2220 this_alternative = curr_alt[m];
2221 COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
2222 winreg = this_alternative != NO_REGS;
2223 break;
2226 case 'g':
2227 if (MEM_P (op)
2228 || general_constant_p (op)
2229 || spilled_pseudo_p (op))
2230 win = true;
2231 cl = GENERAL_REGS;
2232 goto reg;
2234 default:
2235 cn = lookup_constraint (p);
2236 switch (get_constraint_type (cn))
2238 case CT_REGISTER:
2239 cl = reg_class_for_constraint (cn);
2240 if (cl != NO_REGS)
2241 goto reg;
2242 break;
2244 case CT_CONST_INT:
2245 if (CONST_INT_P (op)
2246 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2247 win = true;
2248 break;
2250 case CT_MEMORY:
2251 if (MEM_P (op)
2252 && satisfies_memory_constraint_p (op, cn))
2253 win = true;
2254 else if (spilled_pseudo_p (op))
2255 win = true;
2257 /* If we didn't already win, we can reload constants
2258 via force_const_mem or put the pseudo value into
2259 memory, or make other memory by reloading the
2260 address like for 'o'. */
2261 if (CONST_POOL_OK_P (mode, op)
2262 || MEM_P (op) || REG_P (op)
2263 /* We can restore the equiv insn by a
2264 reload. */
2265 || equiv_substition_p[nop])
2266 badop = false;
2267 constmemok = true;
2268 offmemok = true;
2269 break;
2271 case CT_ADDRESS:
2272 /* If we didn't already win, we can reload the address
2273 into a base register. */
2274 if (satisfies_address_constraint_p (op, cn))
2275 win = true;
2276 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2277 ADDRESS, SCRATCH);
2278 badop = false;
2279 goto reg;
2281 case CT_FIXED_FORM:
2282 if (constraint_satisfied_p (op, cn))
2283 win = true;
2284 break;
2286 case CT_SPECIAL_MEMORY:
2287 if (MEM_P (op)
2288 && satisfies_memory_constraint_p (op, cn))
2289 win = true;
2290 else if (spilled_pseudo_p (op))
2291 win = true;
2292 break;
2294 break;
2296 reg:
2297 this_alternative = reg_class_subunion[this_alternative][cl];
2298 IOR_HARD_REG_SET (this_alternative_set,
2299 reg_class_contents[cl]);
2300 if (costly_p)
2302 this_costly_alternative
2303 = reg_class_subunion[this_costly_alternative][cl];
2304 IOR_HARD_REG_SET (this_costly_alternative_set,
2305 reg_class_contents[cl]);
2307 if (mode == BLKmode)
2308 break;
2309 winreg = true;
2310 if (REG_P (op))
2312 if (hard_regno[nop] >= 0
2313 && in_hard_reg_set_p (this_alternative_set,
2314 mode, hard_regno[nop]))
2315 win = true;
2316 else if (hard_regno[nop] < 0
2317 && in_class_p (op, this_alternative, NULL))
2318 win = true;
2320 break;
2322 if (c != ' ' && c != '\t')
2323 costly_p = c == '*';
2325 while ((p += len), c);
2327 scratch_p = (operand_reg[nop] != NULL_RTX
2328 && lra_former_scratch_p (REGNO (operand_reg[nop])));
2329 /* Record which operands fit this alternative. */
2330 if (win)
2332 this_alternative_win = true;
2333 if (operand_reg[nop] != NULL_RTX)
2335 if (hard_regno[nop] >= 0)
2337 if (in_hard_reg_set_p (this_costly_alternative_set,
2338 mode, hard_regno[nop]))
2340 if (lra_dump_file != NULL)
2341 fprintf (lra_dump_file,
2342 " %d Costly set: reject++\n",
2343 nop);
2344 reject++;
2347 else
2349 /* Prefer won reg to spilled pseudo under other
2350 equal conditions for possibe inheritance. */
2351 if (! scratch_p)
2353 if (lra_dump_file != NULL)
2354 fprintf
2355 (lra_dump_file,
2356 " %d Non pseudo reload: reject++\n",
2357 nop);
2358 reject++;
2360 if (in_class_p (operand_reg[nop],
2361 this_costly_alternative, NULL))
2363 if (lra_dump_file != NULL)
2364 fprintf
2365 (lra_dump_file,
2366 " %d Non pseudo costly reload:"
2367 " reject++\n",
2368 nop);
2369 reject++;
2372 /* We simulate the behavior of old reload here.
2373 Although scratches need hard registers and it
2374 might result in spilling other pseudos, no reload
2375 insns are generated for the scratches. So it
2376 might cost something but probably less than old
2377 reload pass believes. */
2378 if (scratch_p)
2380 if (lra_dump_file != NULL)
2381 fprintf (lra_dump_file,
2382 " %d Scratch win: reject+=2\n",
2383 nop);
2384 reject += 2;
2388 else if (did_match)
2389 this_alternative_match_win = true;
2390 else
2392 int const_to_mem = 0;
2393 bool no_regs_p;
2395 reject += op_reject;
2396 /* Never do output reload of stack pointer. It makes
2397 impossible to do elimination when SP is changed in
2398 RTL. */
2399 if (op == stack_pointer_rtx && ! frame_pointer_needed
2400 && curr_static_id->operand[nop].type != OP_IN)
2401 goto fail;
2403 /* If this alternative asks for a specific reg class, see if there
2404 is at least one allocatable register in that class. */
2405 no_regs_p
2406 = (this_alternative == NO_REGS
2407 || (hard_reg_set_subset_p
2408 (reg_class_contents[this_alternative],
2409 lra_no_alloc_regs)));
2411 /* For asms, verify that the class for this alternative is possible
2412 for the mode that is specified. */
2413 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2415 int i;
2416 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2417 if (HARD_REGNO_MODE_OK (i, mode)
2418 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2419 mode, i))
2420 break;
2421 if (i == FIRST_PSEUDO_REGISTER)
2422 winreg = false;
2425 /* If this operand accepts a register, and if the
2426 register class has at least one allocatable register,
2427 then this operand can be reloaded. */
2428 if (winreg && !no_regs_p)
2429 badop = false;
2431 if (badop)
2433 if (lra_dump_file != NULL)
2434 fprintf (lra_dump_file,
2435 " alt=%d: Bad operand -- refuse\n",
2436 nalt);
2437 goto fail;
2440 if (this_alternative != NO_REGS)
2442 HARD_REG_SET available_regs;
2444 COPY_HARD_REG_SET (available_regs,
2445 reg_class_contents[this_alternative]);
2446 AND_COMPL_HARD_REG_SET
2447 (available_regs,
2448 ira_prohibited_class_mode_regs[this_alternative][mode]);
2449 AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs);
2450 if (hard_reg_set_empty_p (available_regs))
2452 /* There are no hard regs holding a value of given
2453 mode. */
2454 if (offmemok)
2456 this_alternative = NO_REGS;
2457 if (lra_dump_file != NULL)
2458 fprintf (lra_dump_file,
2459 " %d Using memory because of"
2460 " a bad mode: reject+=2\n",
2461 nop);
2462 reject += 2;
2464 else
2466 if (lra_dump_file != NULL)
2467 fprintf (lra_dump_file,
2468 " alt=%d: Wrong mode -- refuse\n",
2469 nalt);
2470 goto fail;
2475 /* If not assigned pseudo has a class which a subset of
2476 required reg class, it is a less costly alternative
2477 as the pseudo still can get a hard reg of necessary
2478 class. */
2479 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2480 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2481 && ira_class_subset_p[this_alternative][cl])
2483 if (lra_dump_file != NULL)
2484 fprintf
2485 (lra_dump_file,
2486 " %d Super set class reg: reject-=3\n", nop);
2487 reject -= 3;
2490 this_alternative_offmemok = offmemok;
2491 if (this_costly_alternative != NO_REGS)
2493 if (lra_dump_file != NULL)
2494 fprintf (lra_dump_file,
2495 " %d Costly loser: reject++\n", nop);
2496 reject++;
2498 /* If the operand is dying, has a matching constraint,
2499 and satisfies constraints of the matched operand
2500 which failed to satisfy the own constraints, most probably
2501 the reload for this operand will be gone. */
2502 if (this_alternative_matches >= 0
2503 && !curr_alt_win[this_alternative_matches]
2504 && REG_P (op)
2505 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2506 && (hard_regno[nop] >= 0
2507 ? in_hard_reg_set_p (this_alternative_set,
2508 mode, hard_regno[nop])
2509 : in_class_p (op, this_alternative, NULL)))
2511 if (lra_dump_file != NULL)
2512 fprintf
2513 (lra_dump_file,
2514 " %d Dying matched operand reload: reject++\n",
2515 nop);
2516 reject++;
2518 else
2520 /* Strict_low_part requires to reload the register
2521 not the sub-register. In this case we should
2522 check that a final reload hard reg can hold the
2523 value mode. */
2524 if (curr_static_id->operand[nop].strict_low
2525 && REG_P (op)
2526 && hard_regno[nop] < 0
2527 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2528 && ira_class_hard_regs_num[this_alternative] > 0
2529 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2530 [this_alternative][0],
2531 GET_MODE
2532 (*curr_id->operand_loc[nop])))
2534 if (lra_dump_file != NULL)
2535 fprintf
2536 (lra_dump_file,
2537 " alt=%d: Strict low subreg reload -- refuse\n",
2538 nalt);
2539 goto fail;
2541 losers++;
2543 if (operand_reg[nop] != NULL_RTX
2544 /* Output operands and matched input operands are
2545 not inherited. The following conditions do not
2546 exactly describe the previous statement but they
2547 are pretty close. */
2548 && curr_static_id->operand[nop].type != OP_OUT
2549 && (this_alternative_matches < 0
2550 || curr_static_id->operand[nop].type != OP_IN))
2552 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2553 (operand_reg[nop])]
2554 .last_reload);
2556 /* The value of reload_sum has sense only if we
2557 process insns in their order. It happens only on
2558 the first constraints sub-pass when we do most of
2559 reload work. */
2560 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2561 reload_sum += last_reload - bb_reload_num;
2563 /* If this is a constant that is reloaded into the
2564 desired class by copying it to memory first, count
2565 that as another reload. This is consistent with
2566 other code and is required to avoid choosing another
2567 alternative when the constant is moved into memory.
2568 Note that the test here is precisely the same as in
2569 the code below that calls force_const_mem. */
2570 if (CONST_POOL_OK_P (mode, op)
2571 && ((targetm.preferred_reload_class
2572 (op, this_alternative) == NO_REGS)
2573 || no_input_reloads_p))
2575 const_to_mem = 1;
2576 if (! no_regs_p)
2577 losers++;
2580 /* Alternative loses if it requires a type of reload not
2581 permitted for this insn. We can always reload
2582 objects with a REG_UNUSED note. */
2583 if ((curr_static_id->operand[nop].type != OP_IN
2584 && no_output_reloads_p
2585 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2586 || (curr_static_id->operand[nop].type != OP_OUT
2587 && no_input_reloads_p && ! const_to_mem)
2588 || (this_alternative_matches >= 0
2589 && (no_input_reloads_p
2590 || (no_output_reloads_p
2591 && (curr_static_id->operand
2592 [this_alternative_matches].type != OP_IN)
2593 && ! find_reg_note (curr_insn, REG_UNUSED,
2594 no_subreg_reg_operand
2595 [this_alternative_matches])))))
2597 if (lra_dump_file != NULL)
2598 fprintf
2599 (lra_dump_file,
2600 " alt=%d: No input/otput reload -- refuse\n",
2601 nalt);
2602 goto fail;
2605 /* Alternative loses if it required class pseudo can not
2606 hold value of required mode. Such insns can be
2607 described by insn definitions with mode iterators. */
2608 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2609 && ! hard_reg_set_empty_p (this_alternative_set)
2610 /* It is common practice for constraints to use a
2611 class which does not have actually enough regs to
2612 hold the value (e.g. x86 AREG for mode requiring
2613 more one general reg). Therefore we have 2
2614 conditions to check that the reload pseudo can
2615 not hold the mode value. */
2616 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2617 [this_alternative][0],
2618 GET_MODE (*curr_id->operand_loc[nop]))
2619 /* The above condition is not enough as the first
2620 reg in ira_class_hard_regs can be not aligned for
2621 multi-words mode values. */
2622 && (prohibited_class_reg_set_mode_p
2623 (this_alternative, this_alternative_set,
2624 GET_MODE (*curr_id->operand_loc[nop]))))
2626 if (lra_dump_file != NULL)
2627 fprintf (lra_dump_file,
2628 " alt=%d: reload pseudo for op %d "
2629 " can not hold the mode value -- refuse\n",
2630 nalt, nop);
2631 goto fail;
2634 /* Check strong discouragement of reload of non-constant
2635 into class THIS_ALTERNATIVE. */
2636 if (! CONSTANT_P (op) && ! no_regs_p
2637 && (targetm.preferred_reload_class
2638 (op, this_alternative) == NO_REGS
2639 || (curr_static_id->operand[nop].type == OP_OUT
2640 && (targetm.preferred_output_reload_class
2641 (op, this_alternative) == NO_REGS))))
2643 if (lra_dump_file != NULL)
2644 fprintf (lra_dump_file,
2645 " %d Non-prefered reload: reject+=%d\n",
2646 nop, LRA_MAX_REJECT);
2647 reject += LRA_MAX_REJECT;
2650 if (! (MEM_P (op) && offmemok)
2651 && ! (const_to_mem && constmemok))
2653 /* We prefer to reload pseudos over reloading other
2654 things, since such reloads may be able to be
2655 eliminated later. So bump REJECT in other cases.
2656 Don't do this in the case where we are forcing a
2657 constant into memory and it will then win since
2658 we don't want to have a different alternative
2659 match then. */
2660 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2662 if (lra_dump_file != NULL)
2663 fprintf
2664 (lra_dump_file,
2665 " %d Non-pseudo reload: reject+=2\n",
2666 nop);
2667 reject += 2;
2670 if (! no_regs_p)
2671 reload_nregs
2672 += ira_reg_class_max_nregs[this_alternative][mode];
2674 if (SMALL_REGISTER_CLASS_P (this_alternative))
2676 if (lra_dump_file != NULL)
2677 fprintf
2678 (lra_dump_file,
2679 " %d Small class reload: reject+=%d\n",
2680 nop, LRA_LOSER_COST_FACTOR / 2);
2681 reject += LRA_LOSER_COST_FACTOR / 2;
2685 /* We are trying to spill pseudo into memory. It is
2686 usually more costly than moving to a hard register
2687 although it might takes the same number of
2688 reloads.
2690 Non-pseudo spill may happen also. Suppose a target allows both
2691 register and memory in the operand constraint alternatives,
2692 then it's typical that an eliminable register has a substition
2693 of "base + offset" which can either be reloaded by a simple
2694 "new_reg <= base + offset" which will match the register
2695 constraint, or a similar reg addition followed by further spill
2696 to and reload from memory which will match the memory
2697 constraint, but this memory spill will be much more costly
2698 usually.
2700 Code below increases the reject for both pseudo and non-pseudo
2701 spill. */
2702 if (no_regs_p
2703 && !(MEM_P (op) && offmemok)
2704 && !(REG_P (op) && hard_regno[nop] < 0))
2706 if (lra_dump_file != NULL)
2707 fprintf
2708 (lra_dump_file,
2709 " %d Spill %spseudo into memory: reject+=3\n",
2710 nop, REG_P (op) ? "" : "Non-");
2711 reject += 3;
2712 if (VECTOR_MODE_P (mode))
2714 /* Spilling vectors into memory is usually more
2715 costly as they contain big values. */
2716 if (lra_dump_file != NULL)
2717 fprintf
2718 (lra_dump_file,
2719 " %d Spill vector pseudo: reject+=2\n",
2720 nop);
2721 reject += 2;
2725 /* When we use an operand requiring memory in given
2726 alternative, the insn should write *and* read the
2727 value to/from memory it is costly in comparison with
2728 an insn alternative which does not use memory
2729 (e.g. register or immediate operand). We exclude
2730 memory operand for such case as we can satisfy the
2731 memory constraints by reloading address. */
2732 if (no_regs_p && offmemok && !MEM_P (op))
2734 if (lra_dump_file != NULL)
2735 fprintf
2736 (lra_dump_file,
2737 " Using memory insn operand %d: reject+=3\n",
2738 nop);
2739 reject += 3;
2742 #ifdef SECONDARY_MEMORY_NEEDED
2743 /* If reload requires moving value through secondary
2744 memory, it will need one more insn at least. */
2745 if (this_alternative != NO_REGS
2746 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2747 && ((curr_static_id->operand[nop].type != OP_OUT
2748 && SECONDARY_MEMORY_NEEDED (cl, this_alternative,
2749 GET_MODE (op)))
2750 || (curr_static_id->operand[nop].type != OP_IN
2751 && SECONDARY_MEMORY_NEEDED (this_alternative, cl,
2752 GET_MODE (op)))))
2753 losers++;
2754 #endif
2755 /* Input reloads can be inherited more often than output
2756 reloads can be removed, so penalize output
2757 reloads. */
2758 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2760 if (lra_dump_file != NULL)
2761 fprintf
2762 (lra_dump_file,
2763 " %d Non input pseudo reload: reject++\n",
2764 nop);
2765 reject++;
2768 if (MEM_P (op) && offmemok)
2769 addr_losers++;
2770 else if (curr_static_id->operand[nop].type == OP_INOUT)
2772 if (lra_dump_file != NULL)
2773 fprintf
2774 (lra_dump_file,
2775 " %d Input/Output reload: reject+=%d\n",
2776 nop, LRA_LOSER_COST_FACTOR);
2777 reject += LRA_LOSER_COST_FACTOR;
2781 if (early_clobber_p && ! scratch_p)
2783 if (lra_dump_file != NULL)
2784 fprintf (lra_dump_file,
2785 " %d Early clobber: reject++\n", nop);
2786 reject++;
2788 /* ??? We check early clobbers after processing all operands
2789 (see loop below) and there we update the costs more.
2790 Should we update the cost (may be approximately) here
2791 because of early clobber register reloads or it is a rare
2792 or non-important thing to be worth to do it. */
2793 overall = (losers * LRA_LOSER_COST_FACTOR + reject
2794 - (addr_losers == losers ? static_reject : 0));
2795 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2797 if (lra_dump_file != NULL)
2798 fprintf (lra_dump_file,
2799 " alt=%d,overall=%d,losers=%d -- refuse\n",
2800 nalt, overall, losers);
2801 goto fail;
2804 if (update_and_check_small_class_inputs (nop, this_alternative))
2806 if (lra_dump_file != NULL)
2807 fprintf (lra_dump_file,
2808 " alt=%d, not enough small class regs -- refuse\n",
2809 nalt);
2810 goto fail;
2812 curr_alt[nop] = this_alternative;
2813 COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2814 curr_alt_win[nop] = this_alternative_win;
2815 curr_alt_match_win[nop] = this_alternative_match_win;
2816 curr_alt_offmemok[nop] = this_alternative_offmemok;
2817 curr_alt_matches[nop] = this_alternative_matches;
2819 if (this_alternative_matches >= 0
2820 && !did_match && !this_alternative_win)
2821 curr_alt_win[this_alternative_matches] = false;
2823 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2824 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2827 if (curr_insn_set != NULL_RTX && n_operands == 2
2828 /* Prevent processing non-move insns. */
2829 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2830 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2831 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2832 && REG_P (no_subreg_reg_operand[0])
2833 && REG_P (no_subreg_reg_operand[1])
2834 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2835 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2836 || (! curr_alt_win[0] && curr_alt_win[1]
2837 && REG_P (no_subreg_reg_operand[1])
2838 /* Check that we reload memory not the memory
2839 address. */
2840 && ! (curr_alt_offmemok[0]
2841 && MEM_P (no_subreg_reg_operand[0]))
2842 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2843 || (curr_alt_win[0] && ! curr_alt_win[1]
2844 && REG_P (no_subreg_reg_operand[0])
2845 /* Check that we reload memory not the memory
2846 address. */
2847 && ! (curr_alt_offmemok[1]
2848 && MEM_P (no_subreg_reg_operand[1]))
2849 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2850 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2851 no_subreg_reg_operand[1])
2852 || (targetm.preferred_reload_class
2853 (no_subreg_reg_operand[1],
2854 (enum reg_class) curr_alt[1]) != NO_REGS))
2855 /* If it is a result of recent elimination in move
2856 insn we can transform it into an add still by
2857 using this alternative. */
2858 && GET_CODE (no_subreg_reg_operand[1]) != PLUS)))
2860 /* We have a move insn and a new reload insn will be similar
2861 to the current insn. We should avoid such situation as
2862 it results in LRA cycling. */
2863 if (lra_dump_file != NULL)
2864 fprintf (lra_dump_file,
2865 " Cycle danger: overall += LRA_MAX_REJECT\n");
2866 overall += LRA_MAX_REJECT;
2868 ok_p = true;
2869 curr_alt_dont_inherit_ops_num = 0;
2870 for (nop = 0; nop < early_clobbered_regs_num; nop++)
2872 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2873 HARD_REG_SET temp_set;
2875 i = early_clobbered_nops[nop];
2876 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2877 || hard_regno[i] < 0)
2878 continue;
2879 lra_assert (operand_reg[i] != NULL_RTX);
2880 clobbered_hard_regno = hard_regno[i];
2881 CLEAR_HARD_REG_SET (temp_set);
2882 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2883 first_conflict_j = last_conflict_j = -1;
2884 for (j = 0; j < n_operands; j++)
2885 if (j == i
2886 /* We don't want process insides of match_operator and
2887 match_parallel because otherwise we would process
2888 their operands once again generating a wrong
2889 code. */
2890 || curr_static_id->operand[j].is_operator)
2891 continue;
2892 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2893 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2894 continue;
2895 /* If we don't reload j-th operand, check conflicts. */
2896 else if ((curr_alt_win[j] || curr_alt_match_win[j])
2897 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2899 if (first_conflict_j < 0)
2900 first_conflict_j = j;
2901 last_conflict_j = j;
2903 if (last_conflict_j < 0)
2904 continue;
2905 /* If earlyclobber operand conflicts with another
2906 non-matching operand which is actually the same register
2907 as the earlyclobber operand, it is better to reload the
2908 another operand as an operand matching the earlyclobber
2909 operand can be also the same. */
2910 if (first_conflict_j == last_conflict_j
2911 && operand_reg[last_conflict_j] != NULL_RTX
2912 && ! curr_alt_match_win[last_conflict_j]
2913 && REGNO (operand_reg[i]) == REGNO (operand_reg[last_conflict_j]))
2915 curr_alt_win[last_conflict_j] = false;
2916 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2917 = last_conflict_j;
2918 losers++;
2919 /* Early clobber was already reflected in REJECT. */
2920 lra_assert (reject > 0);
2921 if (lra_dump_file != NULL)
2922 fprintf
2923 (lra_dump_file,
2924 " %d Conflict early clobber reload: reject--\n",
2926 reject--;
2927 overall += LRA_LOSER_COST_FACTOR - 1;
2929 else
2931 /* We need to reload early clobbered register and the
2932 matched registers. */
2933 for (j = 0; j < n_operands; j++)
2934 if (curr_alt_matches[j] == i)
2936 curr_alt_match_win[j] = false;
2937 losers++;
2938 overall += LRA_LOSER_COST_FACTOR;
2940 if (! curr_alt_match_win[i])
2941 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
2942 else
2944 /* Remember pseudos used for match reloads are never
2945 inherited. */
2946 lra_assert (curr_alt_matches[i] >= 0);
2947 curr_alt_win[curr_alt_matches[i]] = false;
2949 curr_alt_win[i] = curr_alt_match_win[i] = false;
2950 losers++;
2951 /* Early clobber was already reflected in REJECT. */
2952 lra_assert (reject > 0);
2953 if (lra_dump_file != NULL)
2954 fprintf
2955 (lra_dump_file,
2956 " %d Matched conflict early clobber reloads: "
2957 "reject--\n",
2959 reject--;
2960 overall += LRA_LOSER_COST_FACTOR - 1;
2963 if (lra_dump_file != NULL)
2964 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2965 nalt, overall, losers, reload_nregs);
2967 /* If this alternative can be made to work by reloading, and it
2968 needs less reloading than the others checked so far, record
2969 it as the chosen goal for reloading. */
2970 if ((best_losers != 0 && losers == 0)
2971 || (((best_losers == 0 && losers == 0)
2972 || (best_losers != 0 && losers != 0))
2973 && (best_overall > overall
2974 || (best_overall == overall
2975 /* If the cost of the reloads is the same,
2976 prefer alternative which requires minimal
2977 number of reload regs. */
2978 && (reload_nregs < best_reload_nregs
2979 || (reload_nregs == best_reload_nregs
2980 && (best_reload_sum < reload_sum
2981 || (best_reload_sum == reload_sum
2982 && nalt < goal_alt_number))))))))
2984 for (nop = 0; nop < n_operands; nop++)
2986 goal_alt_win[nop] = curr_alt_win[nop];
2987 goal_alt_match_win[nop] = curr_alt_match_win[nop];
2988 goal_alt_matches[nop] = curr_alt_matches[nop];
2989 goal_alt[nop] = curr_alt[nop];
2990 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
2992 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
2993 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
2994 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
2995 goal_alt_swapped = curr_swapped;
2996 best_overall = overall;
2997 best_losers = losers;
2998 best_reload_nregs = reload_nregs;
2999 best_reload_sum = reload_sum;
3000 goal_alt_number = nalt;
3002 if (losers == 0)
3003 /* Everything is satisfied. Do not process alternatives
3004 anymore. */
3005 break;
3006 fail:
3009 return ok_p;
3012 /* Make reload base reg from address AD. */
3013 static rtx
3014 base_to_reg (struct address_info *ad)
3016 enum reg_class cl;
3017 int code = -1;
3018 rtx new_inner = NULL_RTX;
3019 rtx new_reg = NULL_RTX;
3020 rtx_insn *insn;
3021 rtx_insn *last_insn = get_last_insn();
3023 lra_assert (ad->disp == ad->disp_term);
3024 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3025 get_index_code (ad));
3026 new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX,
3027 cl, "base");
3028 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3029 ad->disp_term == NULL
3030 ? const0_rtx
3031 : *ad->disp_term);
3032 if (!valid_address_p (ad->mode, new_inner, ad->as))
3033 return NULL_RTX;
3034 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3035 code = recog_memoized (insn);
3036 if (code < 0)
3038 delete_insns_since (last_insn);
3039 return NULL_RTX;
3042 return new_inner;
3045 /* Make reload base reg + disp from address AD. Return the new pseudo. */
3046 static rtx
3047 base_plus_disp_to_reg (struct address_info *ad)
3049 enum reg_class cl;
3050 rtx new_reg;
3052 lra_assert (ad->base == ad->base_term && ad->disp == ad->disp_term);
3053 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3054 get_index_code (ad));
3055 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
3056 cl, "base + disp");
3057 lra_emit_add (new_reg, *ad->base_term, *ad->disp_term);
3058 return new_reg;
3061 /* Make reload of index part of address AD. Return the new
3062 pseudo. */
3063 static rtx
3064 index_part_to_reg (struct address_info *ad)
3066 rtx new_reg;
3068 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3069 INDEX_REG_CLASS, "index term");
3070 expand_mult (GET_MODE (*ad->index), *ad->index_term,
3071 GEN_INT (get_index_scale (ad)), new_reg, 1);
3072 return new_reg;
3075 /* Return true if we can add a displacement to address AD, even if that
3076 makes the address invalid. The fix-up code requires any new address
3077 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3078 static bool
3079 can_add_disp_p (struct address_info *ad)
3081 return (!ad->autoinc_p
3082 && ad->segment == NULL
3083 && ad->base == ad->base_term
3084 && ad->disp == ad->disp_term);
3087 /* Make equiv substitution in address AD. Return true if a substitution
3088 was made. */
3089 static bool
3090 equiv_address_substitution (struct address_info *ad)
3092 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3093 HOST_WIDE_INT disp, scale;
3094 bool change_p;
3096 base_term = strip_subreg (ad->base_term);
3097 if (base_term == NULL)
3098 base_reg = new_base_reg = NULL_RTX;
3099 else
3101 base_reg = *base_term;
3102 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3104 index_term = strip_subreg (ad->index_term);
3105 if (index_term == NULL)
3106 index_reg = new_index_reg = NULL_RTX;
3107 else
3109 index_reg = *index_term;
3110 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3112 if (base_reg == new_base_reg && index_reg == new_index_reg)
3113 return false;
3114 disp = 0;
3115 change_p = false;
3116 if (lra_dump_file != NULL)
3118 fprintf (lra_dump_file, "Changing address in insn %d ",
3119 INSN_UID (curr_insn));
3120 dump_value_slim (lra_dump_file, *ad->outer, 1);
3122 if (base_reg != new_base_reg)
3124 if (REG_P (new_base_reg))
3126 *base_term = new_base_reg;
3127 change_p = true;
3129 else if (GET_CODE (new_base_reg) == PLUS
3130 && REG_P (XEXP (new_base_reg, 0))
3131 && CONST_INT_P (XEXP (new_base_reg, 1))
3132 && can_add_disp_p (ad))
3134 disp += INTVAL (XEXP (new_base_reg, 1));
3135 *base_term = XEXP (new_base_reg, 0);
3136 change_p = true;
3138 if (ad->base_term2 != NULL)
3139 *ad->base_term2 = *ad->base_term;
3141 if (index_reg != new_index_reg)
3143 if (REG_P (new_index_reg))
3145 *index_term = new_index_reg;
3146 change_p = true;
3148 else if (GET_CODE (new_index_reg) == PLUS
3149 && REG_P (XEXP (new_index_reg, 0))
3150 && CONST_INT_P (XEXP (new_index_reg, 1))
3151 && can_add_disp_p (ad)
3152 && (scale = get_index_scale (ad)))
3154 disp += INTVAL (XEXP (new_index_reg, 1)) * scale;
3155 *index_term = XEXP (new_index_reg, 0);
3156 change_p = true;
3159 if (disp != 0)
3161 if (ad->disp != NULL)
3162 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3163 else
3165 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3166 update_address (ad);
3168 change_p = true;
3170 if (lra_dump_file != NULL)
3172 if (! change_p)
3173 fprintf (lra_dump_file, " -- no change\n");
3174 else
3176 fprintf (lra_dump_file, " on equiv ");
3177 dump_value_slim (lra_dump_file, *ad->outer, 1);
3178 fprintf (lra_dump_file, "\n");
3181 return change_p;
3184 /* Major function to make reloads for an address in operand NOP or
3185 check its correctness (If CHECK_ONLY_P is true). The supported
3186 cases are:
3188 1) an address that existed before LRA started, at which point it
3189 must have been valid. These addresses are subject to elimination
3190 and may have become invalid due to the elimination offset being out
3191 of range.
3193 2) an address created by forcing a constant to memory
3194 (force_const_to_mem). The initial form of these addresses might
3195 not be valid, and it is this function's job to make them valid.
3197 3) a frame address formed from a register and a (possibly zero)
3198 constant offset. As above, these addresses might not be valid and
3199 this function must make them so.
3201 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3202 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3203 address. Return true for any RTL change.
3205 The function is a helper function which does not produce all
3206 transformations (when CHECK_ONLY_P is false) which can be
3207 necessary. It does just basic steps. To do all necessary
3208 transformations use function process_address. */
3209 static bool
3210 process_address_1 (int nop, bool check_only_p,
3211 rtx_insn **before, rtx_insn **after)
3213 struct address_info ad;
3214 rtx new_reg;
3215 HOST_WIDE_INT scale;
3216 rtx op = *curr_id->operand_loc[nop];
3217 const char *constraint = curr_static_id->operand[nop].constraint;
3218 enum constraint_num cn = lookup_constraint (constraint);
3219 bool change_p = false;
3221 if (MEM_P (op)
3222 && GET_MODE (op) == BLKmode
3223 && GET_CODE (XEXP (op, 0)) == SCRATCH)
3224 return false;
3226 if (insn_extra_address_constraint (cn))
3227 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3228 /* Do not attempt to decompose arbitrary addresses generated by combine
3229 for asm operands with loose constraints, e.g 'X'. */
3230 else if (MEM_P (op)
3231 && !(get_constraint_type (cn) == CT_FIXED_FORM
3232 && constraint_satisfied_p (op, cn)))
3233 decompose_mem_address (&ad, op);
3234 else if (GET_CODE (op) == SUBREG
3235 && MEM_P (SUBREG_REG (op)))
3236 decompose_mem_address (&ad, SUBREG_REG (op));
3237 else
3238 return false;
3239 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3240 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3241 when INDEX_REG_CLASS is a single register class. */
3242 if (ad.base_term != NULL
3243 && ad.index_term != NULL
3244 && ira_class_hard_regs_num[INDEX_REG_CLASS] == 1
3245 && REG_P (*ad.base_term)
3246 && REG_P (*ad.index_term)
3247 && in_class_p (*ad.base_term, INDEX_REG_CLASS, NULL)
3248 && ! in_class_p (*ad.index_term, INDEX_REG_CLASS, NULL))
3250 std::swap (ad.base, ad.index);
3251 std::swap (ad.base_term, ad.index_term);
3253 if (! check_only_p)
3254 change_p = equiv_address_substitution (&ad);
3255 if (ad.base_term != NULL
3256 && (process_addr_reg
3257 (ad.base_term, check_only_p, before,
3258 (ad.autoinc_p
3259 && !(REG_P (*ad.base_term)
3260 && find_regno_note (curr_insn, REG_DEAD,
3261 REGNO (*ad.base_term)) != NULL_RTX)
3262 ? after : NULL),
3263 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3264 get_index_code (&ad)))))
3266 change_p = true;
3267 if (ad.base_term2 != NULL)
3268 *ad.base_term2 = *ad.base_term;
3270 if (ad.index_term != NULL
3271 && process_addr_reg (ad.index_term, check_only_p,
3272 before, NULL, INDEX_REG_CLASS))
3273 change_p = true;
3275 /* Target hooks sometimes don't treat extra-constraint addresses as
3276 legitimate address_operands, so handle them specially. */
3277 if (insn_extra_address_constraint (cn)
3278 && satisfies_address_constraint_p (&ad, cn))
3279 return change_p;
3281 if (check_only_p)
3282 return change_p;
3284 /* There are three cases where the shape of *AD.INNER may now be invalid:
3286 1) the original address was valid, but either elimination or
3287 equiv_address_substitution was applied and that made
3288 the address invalid.
3290 2) the address is an invalid symbolic address created by
3291 force_const_to_mem.
3293 3) the address is a frame address with an invalid offset.
3295 4) the address is a frame address with an invalid base.
3297 All these cases involve a non-autoinc address, so there is no
3298 point revalidating other types. */
3299 if (ad.autoinc_p || valid_address_p (&ad))
3300 return change_p;
3302 /* Any index existed before LRA started, so we can assume that the
3303 presence and shape of the index is valid. */
3304 push_to_sequence (*before);
3305 lra_assert (ad.disp == ad.disp_term);
3306 if (ad.base == NULL)
3308 if (ad.index == NULL)
3310 rtx_insn *insn;
3311 rtx_insn *last = get_last_insn ();
3312 int code = -1;
3313 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3314 SCRATCH, SCRATCH);
3315 rtx addr = *ad.inner;
3317 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3318 if (HAVE_lo_sum)
3320 /* addr => lo_sum (new_base, addr), case (2) above. */
3321 insn = emit_insn (gen_rtx_SET
3322 (new_reg,
3323 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3324 code = recog_memoized (insn);
3325 if (code >= 0)
3327 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3328 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3330 /* Try to put lo_sum into register. */
3331 insn = emit_insn (gen_rtx_SET
3332 (new_reg,
3333 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3334 code = recog_memoized (insn);
3335 if (code >= 0)
3337 *ad.inner = new_reg;
3338 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3340 *ad.inner = addr;
3341 code = -1;
3347 if (code < 0)
3348 delete_insns_since (last);
3351 if (code < 0)
3353 /* addr => new_base, case (2) above. */
3354 lra_emit_move (new_reg, addr);
3356 for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3357 insn != NULL_RTX;
3358 insn = NEXT_INSN (insn))
3359 if (recog_memoized (insn) < 0)
3360 break;
3361 if (insn != NULL_RTX)
3363 /* Do nothing if we cannot generate right insns.
3364 This is analogous to reload pass behavior. */
3365 delete_insns_since (last);
3366 end_sequence ();
3367 return false;
3369 *ad.inner = new_reg;
3372 else
3374 /* index * scale + disp => new base + index * scale,
3375 case (1) above. */
3376 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3377 GET_CODE (*ad.index));
3379 lra_assert (INDEX_REG_CLASS != NO_REGS);
3380 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
3381 lra_emit_move (new_reg, *ad.disp);
3382 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3383 new_reg, *ad.index);
3386 else if (ad.index == NULL)
3388 int regno;
3389 enum reg_class cl;
3390 rtx set;
3391 rtx_insn *insns, *last_insn;
3392 /* Try to reload base into register only if the base is invalid
3393 for the address but with valid offset, case (4) above. */
3394 start_sequence ();
3395 new_reg = base_to_reg (&ad);
3397 /* base + disp => new base, cases (1) and (3) above. */
3398 /* Another option would be to reload the displacement into an
3399 index register. However, postreload has code to optimize
3400 address reloads that have the same base and different
3401 displacements, so reloading into an index register would
3402 not necessarily be a win. */
3403 if (new_reg == NULL_RTX)
3404 new_reg = base_plus_disp_to_reg (&ad);
3405 insns = get_insns ();
3406 last_insn = get_last_insn ();
3407 /* If we generated at least two insns, try last insn source as
3408 an address. If we succeed, we generate one less insn. */
3409 if (last_insn != insns && (set = single_set (last_insn)) != NULL_RTX
3410 && GET_CODE (SET_SRC (set)) == PLUS
3411 && REG_P (XEXP (SET_SRC (set), 0))
3412 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3414 *ad.inner = SET_SRC (set);
3415 if (valid_address_p (ad.mode, *ad.outer, ad.as))
3417 *ad.base_term = XEXP (SET_SRC (set), 0);
3418 *ad.disp_term = XEXP (SET_SRC (set), 1);
3419 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3420 get_index_code (&ad));
3421 regno = REGNO (*ad.base_term);
3422 if (regno >= FIRST_PSEUDO_REGISTER
3423 && cl != lra_get_allocno_class (regno))
3424 lra_change_class (regno, cl, " Change to", true);
3425 new_reg = SET_SRC (set);
3426 delete_insns_since (PREV_INSN (last_insn));
3429 /* Try if target can split displacement into legitimite new disp
3430 and offset. If it's the case, we replace the last insn with
3431 insns for base + offset => new_reg and set new_reg + new disp
3432 to *ad.inner. */
3433 last_insn = get_last_insn ();
3434 if ((set = single_set (last_insn)) != NULL_RTX
3435 && GET_CODE (SET_SRC (set)) == PLUS
3436 && REG_P (XEXP (SET_SRC (set), 0))
3437 && REGNO (XEXP (SET_SRC (set), 0)) < FIRST_PSEUDO_REGISTER
3438 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3440 rtx addend, disp = XEXP (SET_SRC (set), 1);
3441 if (targetm.legitimize_address_displacement (&disp, &addend,
3442 ad.mode))
3444 rtx_insn *new_insns;
3445 start_sequence ();
3446 lra_emit_add (new_reg, XEXP (SET_SRC (set), 0), addend);
3447 new_insns = get_insns ();
3448 end_sequence ();
3449 new_reg = gen_rtx_PLUS (Pmode, new_reg, disp);
3450 delete_insns_since (PREV_INSN (last_insn));
3451 add_insn (new_insns);
3452 insns = get_insns ();
3455 end_sequence ();
3456 emit_insn (insns);
3457 *ad.inner = new_reg;
3459 else if (ad.disp_term != NULL)
3461 /* base + scale * index + disp => new base + scale * index,
3462 case (1) above. */
3463 new_reg = base_plus_disp_to_reg (&ad);
3464 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3465 new_reg, *ad.index);
3467 else if ((scale = get_index_scale (&ad)) == 1)
3469 /* The last transformation to one reg will be made in
3470 curr_insn_transform function. */
3471 end_sequence ();
3472 return false;
3474 else if (scale != 0)
3476 /* base + scale * index => base + new_reg,
3477 case (1) above.
3478 Index part of address may become invalid. For example, we
3479 changed pseudo on the equivalent memory and a subreg of the
3480 pseudo onto the memory of different mode for which the scale is
3481 prohibitted. */
3482 new_reg = index_part_to_reg (&ad);
3483 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3484 *ad.base_term, new_reg);
3486 else
3488 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3489 SCRATCH, SCRATCH);
3490 rtx addr = *ad.inner;
3492 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3493 /* addr => new_base. */
3494 lra_emit_move (new_reg, addr);
3495 *ad.inner = new_reg;
3497 *before = get_insns ();
3498 end_sequence ();
3499 return true;
3502 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3503 Use process_address_1 as a helper function. Return true for any
3504 RTL changes.
3506 If CHECK_ONLY_P is true, just check address correctness. Return
3507 false if the address correct. */
3508 static bool
3509 process_address (int nop, bool check_only_p,
3510 rtx_insn **before, rtx_insn **after)
3512 bool res = false;
3514 while (process_address_1 (nop, check_only_p, before, after))
3516 if (check_only_p)
3517 return true;
3518 res = true;
3520 return res;
3523 /* Emit insns to reload VALUE into a new register. VALUE is an
3524 auto-increment or auto-decrement RTX whose operand is a register or
3525 memory location; so reloading involves incrementing that location.
3526 IN is either identical to VALUE, or some cheaper place to reload
3527 value being incremented/decremented from.
3529 INC_AMOUNT is the number to increment or decrement by (always
3530 positive and ignored for POST_MODIFY/PRE_MODIFY).
3532 Return pseudo containing the result. */
3533 static rtx
3534 emit_inc (enum reg_class new_rclass, rtx in, rtx value, int inc_amount)
3536 /* REG or MEM to be copied and incremented. */
3537 rtx incloc = XEXP (value, 0);
3538 /* Nonzero if increment after copying. */
3539 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3540 || GET_CODE (value) == POST_MODIFY);
3541 rtx_insn *last;
3542 rtx inc;
3543 rtx_insn *add_insn;
3544 int code;
3545 rtx real_in = in == value ? incloc : in;
3546 rtx result;
3547 bool plus_p = true;
3549 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3551 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3552 || GET_CODE (XEXP (value, 1)) == MINUS);
3553 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3554 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3555 inc = XEXP (XEXP (value, 1), 1);
3557 else
3559 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3560 inc_amount = -inc_amount;
3562 inc = GEN_INT (inc_amount);
3565 if (! post && REG_P (incloc))
3566 result = incloc;
3567 else
3568 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3569 "INC/DEC result");
3571 if (real_in != result)
3573 /* First copy the location to the result register. */
3574 lra_assert (REG_P (result));
3575 emit_insn (gen_move_insn (result, real_in));
3578 /* We suppose that there are insns to add/sub with the constant
3579 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3580 old reload worked with this assumption. If the assumption
3581 becomes wrong, we should use approach in function
3582 base_plus_disp_to_reg. */
3583 if (in == value)
3585 /* See if we can directly increment INCLOC. */
3586 last = get_last_insn ();
3587 add_insn = emit_insn (plus_p
3588 ? gen_add2_insn (incloc, inc)
3589 : gen_sub2_insn (incloc, inc));
3591 code = recog_memoized (add_insn);
3592 if (code >= 0)
3594 if (! post && result != incloc)
3595 emit_insn (gen_move_insn (result, incloc));
3596 return result;
3598 delete_insns_since (last);
3601 /* If couldn't do the increment directly, must increment in RESULT.
3602 The way we do this depends on whether this is pre- or
3603 post-increment. For pre-increment, copy INCLOC to the reload
3604 register, increment it there, then save back. */
3605 if (! post)
3607 if (real_in != result)
3608 emit_insn (gen_move_insn (result, real_in));
3609 if (plus_p)
3610 emit_insn (gen_add2_insn (result, inc));
3611 else
3612 emit_insn (gen_sub2_insn (result, inc));
3613 if (result != incloc)
3614 emit_insn (gen_move_insn (incloc, result));
3616 else
3618 /* Post-increment.
3620 Because this might be a jump insn or a compare, and because
3621 RESULT may not be available after the insn in an input
3622 reload, we must do the incrementing before the insn being
3623 reloaded for.
3625 We have already copied IN to RESULT. Increment the copy in
3626 RESULT, save that back, then decrement RESULT so it has
3627 the original value. */
3628 if (plus_p)
3629 emit_insn (gen_add2_insn (result, inc));
3630 else
3631 emit_insn (gen_sub2_insn (result, inc));
3632 emit_insn (gen_move_insn (incloc, result));
3633 /* Restore non-modified value for the result. We prefer this
3634 way because it does not require an additional hard
3635 register. */
3636 if (plus_p)
3638 if (CONST_INT_P (inc))
3639 emit_insn (gen_add2_insn (result,
3640 gen_int_mode (-INTVAL (inc),
3641 GET_MODE (result))));
3642 else
3643 emit_insn (gen_sub2_insn (result, inc));
3645 else
3646 emit_insn (gen_add2_insn (result, inc));
3648 return result;
3651 /* Return true if the current move insn does not need processing as we
3652 already know that it satisfies its constraints. */
3653 static bool
3654 simple_move_p (void)
3656 rtx dest, src;
3657 enum reg_class dclass, sclass;
3659 lra_assert (curr_insn_set != NULL_RTX);
3660 dest = SET_DEST (curr_insn_set);
3661 src = SET_SRC (curr_insn_set);
3663 /* If the instruction has multiple sets we need to process it even if it
3664 is single_set. This can happen if one or more of the SETs are dead.
3665 See PR73650. */
3666 if (multiple_sets (curr_insn))
3667 return false;
3669 return ((dclass = get_op_class (dest)) != NO_REGS
3670 && (sclass = get_op_class (src)) != NO_REGS
3671 /* The backend guarantees that register moves of cost 2
3672 never need reloads. */
3673 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
3676 /* Swap operands NOP and NOP + 1. */
3677 static inline void
3678 swap_operands (int nop)
3680 std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
3681 std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
3682 std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
3683 std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
3684 /* Swap the duplicates too. */
3685 lra_update_dup (curr_id, nop);
3686 lra_update_dup (curr_id, nop + 1);
3689 /* Main entry point of the constraint code: search the body of the
3690 current insn to choose the best alternative. It is mimicking insn
3691 alternative cost calculation model of former reload pass. That is
3692 because machine descriptions were written to use this model. This
3693 model can be changed in future. Make commutative operand exchange
3694 if it is chosen.
3696 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3697 constraints. Return true if any change happened during function
3698 call.
3700 If CHECK_ONLY_P is true then don't do any transformation. Just
3701 check that the insn satisfies all constraints. If the insn does
3702 not satisfy any constraint, return true. */
3703 static bool
3704 curr_insn_transform (bool check_only_p)
3706 int i, j, k;
3707 int n_operands;
3708 int n_alternatives;
3709 int n_outputs;
3710 int commutative;
3711 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3712 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3713 signed char outputs[MAX_RECOG_OPERANDS + 1];
3714 rtx_insn *before, *after;
3715 bool alt_p = false;
3716 /* Flag that the insn has been changed through a transformation. */
3717 bool change_p;
3718 bool sec_mem_p;
3719 #ifdef SECONDARY_MEMORY_NEEDED
3720 bool use_sec_mem_p;
3721 #endif
3722 int max_regno_before;
3723 int reused_alternative_num;
3725 curr_insn_set = single_set (curr_insn);
3726 if (curr_insn_set != NULL_RTX && simple_move_p ())
3727 return false;
3729 no_input_reloads_p = no_output_reloads_p = false;
3730 goal_alt_number = -1;
3731 change_p = sec_mem_p = false;
3732 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3733 reloads; neither are insns that SET cc0. Insns that use CC0 are
3734 not allowed to have any input reloads. */
3735 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3736 no_output_reloads_p = true;
3738 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3739 no_input_reloads_p = true;
3740 if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3741 no_output_reloads_p = true;
3743 n_operands = curr_static_id->n_operands;
3744 n_alternatives = curr_static_id->n_alternatives;
3746 /* Just return "no reloads" if insn has no operands with
3747 constraints. */
3748 if (n_operands == 0 || n_alternatives == 0)
3749 return false;
3751 max_regno_before = max_reg_num ();
3753 for (i = 0; i < n_operands; i++)
3755 goal_alt_matched[i][0] = -1;
3756 goal_alt_matches[i] = -1;
3759 commutative = curr_static_id->commutative;
3761 /* Now see what we need for pseudos that didn't get hard regs or got
3762 the wrong kind of hard reg. For this, we must consider all the
3763 operands together against the register constraints. */
3765 best_losers = best_overall = INT_MAX;
3766 best_reload_sum = 0;
3768 curr_swapped = false;
3769 goal_alt_swapped = false;
3771 if (! check_only_p)
3772 /* Make equivalence substitution and memory subreg elimination
3773 before address processing because an address legitimacy can
3774 depend on memory mode. */
3775 for (i = 0; i < n_operands; i++)
3777 rtx op, subst, old;
3778 bool op_change_p = false;
3780 if (curr_static_id->operand[i].is_operator)
3781 continue;
3783 old = op = *curr_id->operand_loc[i];
3784 if (GET_CODE (old) == SUBREG)
3785 old = SUBREG_REG (old);
3786 subst = get_equiv_with_elimination (old, curr_insn);
3787 original_subreg_reg_mode[i] = VOIDmode;
3788 equiv_substition_p[i] = false;
3789 if (subst != old)
3791 equiv_substition_p[i] = true;
3792 subst = copy_rtx (subst);
3793 lra_assert (REG_P (old));
3794 if (GET_CODE (op) != SUBREG)
3795 *curr_id->operand_loc[i] = subst;
3796 else
3798 SUBREG_REG (op) = subst;
3799 if (GET_MODE (subst) == VOIDmode)
3800 original_subreg_reg_mode[i] = GET_MODE (old);
3802 if (lra_dump_file != NULL)
3804 fprintf (lra_dump_file,
3805 "Changing pseudo %d in operand %i of insn %u on equiv ",
3806 REGNO (old), i, INSN_UID (curr_insn));
3807 dump_value_slim (lra_dump_file, subst, 1);
3808 fprintf (lra_dump_file, "\n");
3810 op_change_p = change_p = true;
3812 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3814 change_p = true;
3815 lra_update_dup (curr_id, i);
3819 /* Reload address registers and displacements. We do it before
3820 finding an alternative because of memory constraints. */
3821 before = after = NULL;
3822 for (i = 0; i < n_operands; i++)
3823 if (! curr_static_id->operand[i].is_operator
3824 && process_address (i, check_only_p, &before, &after))
3826 if (check_only_p)
3827 return true;
3828 change_p = true;
3829 lra_update_dup (curr_id, i);
3832 if (change_p)
3833 /* If we've changed the instruction then any alternative that
3834 we chose previously may no longer be valid. */
3835 lra_set_used_insn_alternative (curr_insn, -1);
3837 if (! check_only_p && curr_insn_set != NULL_RTX
3838 && check_and_process_move (&change_p, &sec_mem_p))
3839 return change_p;
3841 try_swapped:
3843 reused_alternative_num = check_only_p ? -1 : curr_id->used_insn_alternative;
3844 if (lra_dump_file != NULL && reused_alternative_num >= 0)
3845 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3846 reused_alternative_num, INSN_UID (curr_insn));
3848 if (process_alt_operands (reused_alternative_num))
3849 alt_p = true;
3851 if (check_only_p)
3852 return ! alt_p || best_losers != 0;
3854 /* If insn is commutative (it's safe to exchange a certain pair of
3855 operands) then we need to try each alternative twice, the second
3856 time matching those two operands as if we had exchanged them. To
3857 do this, really exchange them in operands.
3859 If we have just tried the alternatives the second time, return
3860 operands to normal and drop through. */
3862 if (reused_alternative_num < 0 && commutative >= 0)
3864 curr_swapped = !curr_swapped;
3865 if (curr_swapped)
3867 swap_operands (commutative);
3868 goto try_swapped;
3870 else
3871 swap_operands (commutative);
3874 if (! alt_p && ! sec_mem_p)
3876 /* No alternative works with reloads?? */
3877 if (INSN_CODE (curr_insn) >= 0)
3878 fatal_insn ("unable to generate reloads for:", curr_insn);
3879 error_for_asm (curr_insn,
3880 "inconsistent operand constraints in an %<asm%>");
3881 /* Avoid further trouble with this insn. Don't generate use
3882 pattern here as we could use the insn SP offset. */
3883 lra_set_insn_deleted (curr_insn);
3884 return true;
3887 /* If the best alternative is with operands 1 and 2 swapped, swap
3888 them. Update the operand numbers of any reloads already
3889 pushed. */
3891 if (goal_alt_swapped)
3893 if (lra_dump_file != NULL)
3894 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
3895 INSN_UID (curr_insn));
3897 /* Swap the duplicates too. */
3898 swap_operands (commutative);
3899 change_p = true;
3902 #ifdef SECONDARY_MEMORY_NEEDED
3903 /* Some target macros SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3904 too conservatively. So we use the secondary memory only if there
3905 is no any alternative without reloads. */
3906 use_sec_mem_p = false;
3907 if (! alt_p)
3908 use_sec_mem_p = true;
3909 else if (sec_mem_p)
3911 for (i = 0; i < n_operands; i++)
3912 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3913 break;
3914 use_sec_mem_p = i < n_operands;
3917 if (use_sec_mem_p)
3919 int in = -1, out = -1;
3920 rtx new_reg, src, dest, rld;
3921 machine_mode sec_mode, rld_mode;
3923 lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
3924 dest = SET_DEST (curr_insn_set);
3925 src = SET_SRC (curr_insn_set);
3926 for (i = 0; i < n_operands; i++)
3927 if (*curr_id->operand_loc[i] == dest)
3928 out = i;
3929 else if (*curr_id->operand_loc[i] == src)
3930 in = i;
3931 for (i = 0; i < curr_static_id->n_dups; i++)
3932 if (out < 0 && *curr_id->dup_loc[i] == dest)
3933 out = curr_static_id->dup_num[i];
3934 else if (in < 0 && *curr_id->dup_loc[i] == src)
3935 in = curr_static_id->dup_num[i];
3936 lra_assert (out >= 0 && in >= 0
3937 && curr_static_id->operand[out].type == OP_OUT
3938 && curr_static_id->operand[in].type == OP_IN);
3939 rld = (GET_MODE_SIZE (GET_MODE (dest)) <= GET_MODE_SIZE (GET_MODE (src))
3940 ? dest : src);
3941 rld_mode = GET_MODE (rld);
3942 #ifdef SECONDARY_MEMORY_NEEDED_MODE
3943 sec_mode = SECONDARY_MEMORY_NEEDED_MODE (rld_mode);
3944 #else
3945 sec_mode = rld_mode;
3946 #endif
3947 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
3948 NO_REGS, "secondary");
3949 /* If the mode is changed, it should be wider. */
3950 lra_assert (GET_MODE_SIZE (sec_mode) >= GET_MODE_SIZE (rld_mode));
3951 if (sec_mode != rld_mode)
3953 /* If the target says specifically to use another mode for
3954 secondary memory moves we can not reuse the original
3955 insn. */
3956 after = emit_spill_move (false, new_reg, dest);
3957 lra_process_new_insns (curr_insn, NULL, after,
3958 "Inserting the sec. move");
3959 /* We may have non null BEFORE here (e.g. after address
3960 processing. */
3961 push_to_sequence (before);
3962 before = emit_spill_move (true, new_reg, src);
3963 emit_insn (before);
3964 before = get_insns ();
3965 end_sequence ();
3966 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
3967 lra_set_insn_deleted (curr_insn);
3969 else if (dest == rld)
3971 *curr_id->operand_loc[out] = new_reg;
3972 lra_update_dup (curr_id, out);
3973 after = emit_spill_move (false, new_reg, dest);
3974 lra_process_new_insns (curr_insn, NULL, after,
3975 "Inserting the sec. move");
3977 else
3979 *curr_id->operand_loc[in] = new_reg;
3980 lra_update_dup (curr_id, in);
3981 /* See comments above. */
3982 push_to_sequence (before);
3983 before = emit_spill_move (true, new_reg, src);
3984 emit_insn (before);
3985 before = get_insns ();
3986 end_sequence ();
3987 lra_process_new_insns (curr_insn, before, NULL,
3988 "Inserting the sec. move");
3990 lra_update_insn_regno_info (curr_insn);
3991 return true;
3993 #endif
3995 lra_assert (goal_alt_number >= 0);
3996 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
3998 if (lra_dump_file != NULL)
4000 const char *p;
4002 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
4003 goal_alt_number, INSN_UID (curr_insn));
4004 for (i = 0; i < n_operands; i++)
4006 p = (curr_static_id->operand_alternative
4007 [goal_alt_number * n_operands + i].constraint);
4008 if (*p == '\0')
4009 continue;
4010 fprintf (lra_dump_file, " (%d) ", i);
4011 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
4012 fputc (*p, lra_dump_file);
4014 if (INSN_CODE (curr_insn) >= 0
4015 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4016 fprintf (lra_dump_file, " {%s}", p);
4017 if (curr_id->sp_offset != 0)
4018 fprintf (lra_dump_file, " (sp_off=%" HOST_WIDE_INT_PRINT "d)",
4019 curr_id->sp_offset);
4020 fprintf (lra_dump_file, "\n");
4023 /* Right now, for any pair of operands I and J that are required to
4024 match, with J < I, goal_alt_matches[I] is J. Add I to
4025 goal_alt_matched[J]. */
4027 for (i = 0; i < n_operands; i++)
4028 if ((j = goal_alt_matches[i]) >= 0)
4030 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4032 /* We allow matching one output operand and several input
4033 operands. */
4034 lra_assert (k == 0
4035 || (curr_static_id->operand[j].type == OP_OUT
4036 && curr_static_id->operand[i].type == OP_IN
4037 && (curr_static_id->operand
4038 [goal_alt_matched[j][0]].type == OP_IN)));
4039 goal_alt_matched[j][k] = i;
4040 goal_alt_matched[j][k + 1] = -1;
4043 for (i = 0; i < n_operands; i++)
4044 goal_alt_win[i] |= goal_alt_match_win[i];
4046 /* Any constants that aren't allowed and can't be reloaded into
4047 registers are here changed into memory references. */
4048 for (i = 0; i < n_operands; i++)
4049 if (goal_alt_win[i])
4051 int regno;
4052 enum reg_class new_class;
4053 rtx reg = *curr_id->operand_loc[i];
4055 if (GET_CODE (reg) == SUBREG)
4056 reg = SUBREG_REG (reg);
4058 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4060 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
4062 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4064 lra_assert (ok_p);
4065 lra_change_class (regno, new_class, " Change to", true);
4069 else
4071 const char *constraint;
4072 char c;
4073 rtx op = *curr_id->operand_loc[i];
4074 rtx subreg = NULL_RTX;
4075 machine_mode mode = curr_operand_mode[i];
4077 if (GET_CODE (op) == SUBREG)
4079 subreg = op;
4080 op = SUBREG_REG (op);
4081 mode = GET_MODE (op);
4084 if (CONST_POOL_OK_P (mode, op)
4085 && ((targetm.preferred_reload_class
4086 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4087 || no_input_reloads_p))
4089 rtx tem = force_const_mem (mode, op);
4091 change_p = true;
4092 if (subreg != NULL_RTX)
4093 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4095 *curr_id->operand_loc[i] = tem;
4096 lra_update_dup (curr_id, i);
4097 process_address (i, false, &before, &after);
4099 /* If the alternative accepts constant pool refs directly
4100 there will be no reload needed at all. */
4101 if (subreg != NULL_RTX)
4102 continue;
4103 /* Skip alternatives before the one requested. */
4104 constraint = (curr_static_id->operand_alternative
4105 [goal_alt_number * n_operands + i].constraint);
4106 for (;
4107 (c = *constraint) && c != ',' && c != '#';
4108 constraint += CONSTRAINT_LEN (c, constraint))
4110 enum constraint_num cn = lookup_constraint (constraint);
4111 if ((insn_extra_memory_constraint (cn)
4112 || insn_extra_special_memory_constraint (cn))
4113 && satisfies_memory_constraint_p (tem, cn))
4114 break;
4116 if (c == '\0' || c == ',' || c == '#')
4117 continue;
4119 goal_alt_win[i] = true;
4123 n_outputs = 0;
4124 outputs[0] = -1;
4125 for (i = 0; i < n_operands; i++)
4127 int regno;
4128 bool optional_p = false;
4129 rtx old, new_reg;
4130 rtx op = *curr_id->operand_loc[i];
4132 if (goal_alt_win[i])
4134 if (goal_alt[i] == NO_REGS
4135 && REG_P (op)
4136 /* When we assign NO_REGS it means that we will not
4137 assign a hard register to the scratch pseudo by
4138 assigment pass and the scratch pseudo will be
4139 spilled. Spilled scratch pseudos are transformed
4140 back to scratches at the LRA end. */
4141 && lra_former_scratch_operand_p (curr_insn, i)
4142 && lra_former_scratch_p (REGNO (op)))
4144 int regno = REGNO (op);
4145 lra_change_class (regno, NO_REGS, " Change to", true);
4146 if (lra_get_regno_hard_regno (regno) >= 0)
4147 /* We don't have to mark all insn affected by the
4148 spilled pseudo as there is only one such insn, the
4149 current one. */
4150 reg_renumber[regno] = -1;
4151 lra_assert (bitmap_single_bit_set_p
4152 (&lra_reg_info[REGNO (op)].insn_bitmap));
4154 /* We can do an optional reload. If the pseudo got a hard
4155 reg, we might improve the code through inheritance. If
4156 it does not get a hard register we coalesce memory/memory
4157 moves later. Ignore move insns to avoid cycling. */
4158 if (! lra_simple_p
4159 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4160 && goal_alt[i] != NO_REGS && REG_P (op)
4161 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4162 && regno < new_regno_start
4163 && ! lra_former_scratch_p (regno)
4164 && reg_renumber[regno] < 0
4165 /* Check that the optional reload pseudo will be able to
4166 hold given mode value. */
4167 && ! (prohibited_class_reg_set_mode_p
4168 (goal_alt[i], reg_class_contents[goal_alt[i]],
4169 PSEUDO_REGNO_MODE (regno)))
4170 && (curr_insn_set == NULL_RTX
4171 || !((REG_P (SET_SRC (curr_insn_set))
4172 || MEM_P (SET_SRC (curr_insn_set))
4173 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4174 && (REG_P (SET_DEST (curr_insn_set))
4175 || MEM_P (SET_DEST (curr_insn_set))
4176 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4177 optional_p = true;
4178 else
4179 continue;
4182 /* Operands that match previous ones have already been handled. */
4183 if (goal_alt_matches[i] >= 0)
4184 continue;
4186 /* We should not have an operand with a non-offsettable address
4187 appearing where an offsettable address will do. It also may
4188 be a case when the address should be special in other words
4189 not a general one (e.g. it needs no index reg). */
4190 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4192 enum reg_class rclass;
4193 rtx *loc = &XEXP (op, 0);
4194 enum rtx_code code = GET_CODE (*loc);
4196 push_to_sequence (before);
4197 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4198 MEM, SCRATCH);
4199 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4200 new_reg = emit_inc (rclass, *loc, *loc,
4201 /* This value does not matter for MODIFY. */
4202 GET_MODE_SIZE (GET_MODE (op)));
4203 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
4204 "offsetable address", &new_reg))
4205 lra_emit_move (new_reg, *loc);
4206 before = get_insns ();
4207 end_sequence ();
4208 *loc = new_reg;
4209 lra_update_dup (curr_id, i);
4211 else if (goal_alt_matched[i][0] == -1)
4213 machine_mode mode;
4214 rtx reg, *loc;
4215 int hard_regno, byte;
4216 enum op_type type = curr_static_id->operand[i].type;
4218 loc = curr_id->operand_loc[i];
4219 mode = curr_operand_mode[i];
4220 if (GET_CODE (*loc) == SUBREG)
4222 reg = SUBREG_REG (*loc);
4223 byte = SUBREG_BYTE (*loc);
4224 if (REG_P (reg)
4225 /* Strict_low_part requires reload the register not
4226 the sub-register. */
4227 && (curr_static_id->operand[i].strict_low
4228 || (!paradoxical_subreg_p (mode, GET_MODE (reg))
4229 && (hard_regno
4230 = get_try_hard_regno (REGNO (reg))) >= 0
4231 && (simplify_subreg_regno
4232 (hard_regno,
4233 GET_MODE (reg), byte, mode) < 0)
4234 && (goal_alt[i] == NO_REGS
4235 || (simplify_subreg_regno
4236 (ira_class_hard_regs[goal_alt[i]][0],
4237 GET_MODE (reg), byte, mode) >= 0)))))
4239 /* An OP_INOUT is required when reloading a subreg of a
4240 mode wider than a word to ensure that data beyond the
4241 word being reloaded is preserved. Also automatically
4242 ensure that strict_low_part reloads are made into
4243 OP_INOUT which should already be true from the backend
4244 constraints. */
4245 if (type == OP_OUT
4246 && (curr_static_id->operand[i].strict_low
4247 || (GET_MODE_SIZE (GET_MODE (reg)) > UNITS_PER_WORD
4248 && (GET_MODE_SIZE (mode)
4249 < GET_MODE_SIZE (GET_MODE (reg))))))
4250 type = OP_INOUT;
4251 loc = &SUBREG_REG (*loc);
4252 mode = GET_MODE (*loc);
4255 old = *loc;
4256 if (get_reload_reg (type, mode, old, goal_alt[i],
4257 loc != curr_id->operand_loc[i], "", &new_reg)
4258 && type != OP_OUT)
4260 push_to_sequence (before);
4261 lra_emit_move (new_reg, old);
4262 before = get_insns ();
4263 end_sequence ();
4265 *loc = new_reg;
4266 if (type != OP_IN
4267 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4269 start_sequence ();
4270 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4271 emit_insn (after);
4272 after = get_insns ();
4273 end_sequence ();
4274 *loc = new_reg;
4276 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4277 if (goal_alt_dont_inherit_ops[j] == i)
4279 lra_set_regno_unique_value (REGNO (new_reg));
4280 break;
4282 lra_update_dup (curr_id, i);
4284 else if (curr_static_id->operand[i].type == OP_IN
4285 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4286 == OP_OUT))
4288 /* generate reloads for input and matched outputs. */
4289 match_inputs[0] = i;
4290 match_inputs[1] = -1;
4291 match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4292 goal_alt[i], &before, &after,
4293 curr_static_id->operand_alternative
4294 [goal_alt_number * n_operands + goal_alt_matched[i][0]]
4295 .earlyclobber);
4297 else if (curr_static_id->operand[i].type == OP_OUT
4298 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4299 == OP_IN))
4300 /* Generate reloads for output and matched inputs. */
4301 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4302 &after, curr_static_id->operand_alternative
4303 [goal_alt_number * n_operands + i].earlyclobber);
4304 else if (curr_static_id->operand[i].type == OP_IN
4305 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4306 == OP_IN))
4308 /* Generate reloads for matched inputs. */
4309 match_inputs[0] = i;
4310 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4311 match_inputs[j + 1] = k;
4312 match_inputs[j + 1] = -1;
4313 match_reload (-1, match_inputs, outputs, goal_alt[i], &before,
4314 &after, false);
4316 else
4317 /* We must generate code in any case when function
4318 process_alt_operands decides that it is possible. */
4319 gcc_unreachable ();
4321 /* Memorise processed outputs so that output remaining to be processed
4322 can avoid using the same register value (see match_reload). */
4323 if (curr_static_id->operand[i].type == OP_OUT)
4325 outputs[n_outputs++] = i;
4326 outputs[n_outputs] = -1;
4329 if (optional_p)
4331 rtx reg = op;
4333 lra_assert (REG_P (reg));
4334 regno = REGNO (reg);
4335 op = *curr_id->operand_loc[i]; /* Substitution. */
4336 if (GET_CODE (op) == SUBREG)
4337 op = SUBREG_REG (op);
4338 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4339 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4340 lra_reg_info[REGNO (op)].restore_rtx = reg;
4341 if (lra_dump_file != NULL)
4342 fprintf (lra_dump_file,
4343 " Making reload reg %d for reg %d optional\n",
4344 REGNO (op), regno);
4347 if (before != NULL_RTX || after != NULL_RTX
4348 || max_regno_before != max_reg_num ())
4349 change_p = true;
4350 if (change_p)
4352 lra_update_operator_dups (curr_id);
4353 /* Something changes -- process the insn. */
4354 lra_update_insn_regno_info (curr_insn);
4356 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4357 return change_p;
4360 /* Return true if INSN satisfies all constraints. In other words, no
4361 reload insns are needed. */
4362 bool
4363 lra_constrain_insn (rtx_insn *insn)
4365 int saved_new_regno_start = new_regno_start;
4366 int saved_new_insn_uid_start = new_insn_uid_start;
4367 bool change_p;
4369 curr_insn = insn;
4370 curr_id = lra_get_insn_recog_data (curr_insn);
4371 curr_static_id = curr_id->insn_static_data;
4372 new_insn_uid_start = get_max_uid ();
4373 new_regno_start = max_reg_num ();
4374 change_p = curr_insn_transform (true);
4375 new_regno_start = saved_new_regno_start;
4376 new_insn_uid_start = saved_new_insn_uid_start;
4377 return ! change_p;
4380 /* Return true if X is in LIST. */
4381 static bool
4382 in_list_p (rtx x, rtx list)
4384 for (; list != NULL_RTX; list = XEXP (list, 1))
4385 if (XEXP (list, 0) == x)
4386 return true;
4387 return false;
4390 /* Return true if X contains an allocatable hard register (if
4391 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4392 static bool
4393 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4395 int i, j;
4396 const char *fmt;
4397 enum rtx_code code;
4399 code = GET_CODE (x);
4400 if (REG_P (x))
4402 int regno = REGNO (x);
4403 HARD_REG_SET alloc_regs;
4405 if (hard_reg_p)
4407 if (regno >= FIRST_PSEUDO_REGISTER)
4408 regno = lra_get_regno_hard_regno (regno);
4409 if (regno < 0)
4410 return false;
4411 COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
4412 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4414 else
4416 if (regno < FIRST_PSEUDO_REGISTER)
4417 return false;
4418 if (! spilled_p)
4419 return true;
4420 return lra_get_regno_hard_regno (regno) < 0;
4423 fmt = GET_RTX_FORMAT (code);
4424 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4426 if (fmt[i] == 'e')
4428 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4429 return true;
4431 else if (fmt[i] == 'E')
4433 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4434 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4435 return true;
4438 return false;
4441 /* Process all regs in location *LOC and change them on equivalent
4442 substitution. Return true if any change was done. */
4443 static bool
4444 loc_equivalence_change_p (rtx *loc)
4446 rtx subst, reg, x = *loc;
4447 bool result = false;
4448 enum rtx_code code = GET_CODE (x);
4449 const char *fmt;
4450 int i, j;
4452 if (code == SUBREG)
4454 reg = SUBREG_REG (x);
4455 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4456 && GET_MODE (subst) == VOIDmode)
4458 /* We cannot reload debug location. Simplify subreg here
4459 while we know the inner mode. */
4460 *loc = simplify_gen_subreg (GET_MODE (x), subst,
4461 GET_MODE (reg), SUBREG_BYTE (x));
4462 return true;
4465 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4467 *loc = subst;
4468 return true;
4471 /* Scan all the operand sub-expressions. */
4472 fmt = GET_RTX_FORMAT (code);
4473 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4475 if (fmt[i] == 'e')
4476 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4477 else if (fmt[i] == 'E')
4478 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4479 result
4480 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4482 return result;
4485 /* Similar to loc_equivalence_change_p, but for use as
4486 simplify_replace_fn_rtx callback. DATA is insn for which the
4487 elimination is done. If it null we don't do the elimination. */
4488 static rtx
4489 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4491 if (!REG_P (loc))
4492 return NULL_RTX;
4494 rtx subst = (data == NULL
4495 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4496 if (subst != loc)
4497 return subst;
4499 return NULL_RTX;
4502 /* Maximum number of generated reload insns per an insn. It is for
4503 preventing this pass cycling in a bug case. */
4504 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4506 /* The current iteration number of this LRA pass. */
4507 int lra_constraint_iter;
4509 /* True if we substituted equiv which needs checking register
4510 allocation correctness because the equivalent value contains
4511 allocatable hard registers or when we restore multi-register
4512 pseudo. */
4513 bool lra_risky_transformations_p;
4515 /* Return true if REGNO is referenced in more than one block. */
4516 static bool
4517 multi_block_pseudo_p (int regno)
4519 basic_block bb = NULL;
4520 unsigned int uid;
4521 bitmap_iterator bi;
4523 if (regno < FIRST_PSEUDO_REGISTER)
4524 return false;
4526 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4527 if (bb == NULL)
4528 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4529 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4530 return true;
4531 return false;
4534 /* Return true if LIST contains a deleted insn. */
4535 static bool
4536 contains_deleted_insn_p (rtx_insn_list *list)
4538 for (; list != NULL_RTX; list = list->next ())
4539 if (NOTE_P (list->insn ())
4540 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
4541 return true;
4542 return false;
4545 /* Return true if X contains a pseudo dying in INSN. */
4546 static bool
4547 dead_pseudo_p (rtx x, rtx_insn *insn)
4549 int i, j;
4550 const char *fmt;
4551 enum rtx_code code;
4553 if (REG_P (x))
4554 return (insn != NULL_RTX
4555 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4556 code = GET_CODE (x);
4557 fmt = GET_RTX_FORMAT (code);
4558 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4560 if (fmt[i] == 'e')
4562 if (dead_pseudo_p (XEXP (x, i), insn))
4563 return true;
4565 else if (fmt[i] == 'E')
4567 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4568 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4569 return true;
4572 return false;
4575 /* Return true if INSN contains a dying pseudo in INSN right hand
4576 side. */
4577 static bool
4578 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4580 rtx set = single_set (insn);
4582 gcc_assert (set != NULL);
4583 return dead_pseudo_p (SET_SRC (set), insn);
4586 /* Return true if any init insn of REGNO contains a dying pseudo in
4587 insn right hand side. */
4588 static bool
4589 init_insn_rhs_dead_pseudo_p (int regno)
4591 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4593 if (insns == NULL)
4594 return false;
4595 for (; insns != NULL_RTX; insns = insns->next ())
4596 if (insn_rhs_dead_pseudo_p (insns->insn ()))
4597 return true;
4598 return false;
4601 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4602 reverse only if we have one init insn with given REGNO as a
4603 source. */
4604 static bool
4605 reverse_equiv_p (int regno)
4607 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4608 rtx set;
4610 if (insns == NULL)
4611 return false;
4612 if (! INSN_P (insns->insn ())
4613 || insns->next () != NULL)
4614 return false;
4615 if ((set = single_set (insns->insn ())) == NULL_RTX)
4616 return false;
4617 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4620 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4621 call this function only for non-reverse equivalence. */
4622 static bool
4623 contains_reloaded_insn_p (int regno)
4625 rtx set;
4626 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4628 for (; list != NULL; list = list->next ())
4629 if ((set = single_set (list->insn ())) == NULL_RTX
4630 || ! REG_P (SET_DEST (set))
4631 || (int) REGNO (SET_DEST (set)) != regno)
4632 return true;
4633 return false;
4636 /* Entry function of LRA constraint pass. Return true if the
4637 constraint pass did change the code. */
4638 bool
4639 lra_constraints (bool first_p)
4641 bool changed_p;
4642 int i, hard_regno, new_insns_num;
4643 unsigned int min_len, new_min_len, uid;
4644 rtx set, x, reg, dest_reg;
4645 basic_block last_bb;
4646 bitmap_iterator bi;
4648 lra_constraint_iter++;
4649 if (lra_dump_file != NULL)
4650 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4651 lra_constraint_iter);
4652 changed_p = false;
4653 if (pic_offset_table_rtx
4654 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4655 lra_risky_transformations_p = true;
4656 else
4657 /* On the first iteration we should check IRA assignment
4658 correctness. In rare cases, the assignments can be wrong as
4659 early clobbers operands are ignored in IRA. */
4660 lra_risky_transformations_p = first_p;
4661 new_insn_uid_start = get_max_uid ();
4662 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4663 /* Mark used hard regs for target stack size calulations. */
4664 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4665 if (lra_reg_info[i].nrefs != 0
4666 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4668 int j, nregs;
4670 nregs = hard_regno_nregs[hard_regno][lra_reg_info[i].biggest_mode];
4671 for (j = 0; j < nregs; j++)
4672 df_set_regs_ever_live (hard_regno + j, true);
4674 /* Do elimination before the equivalence processing as we can spill
4675 some pseudos during elimination. */
4676 lra_eliminate (false, first_p);
4677 auto_bitmap equiv_insn_bitmap (&reg_obstack);
4678 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4679 if (lra_reg_info[i].nrefs != 0)
4681 ira_reg_equiv[i].profitable_p = true;
4682 reg = regno_reg_rtx[i];
4683 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4685 bool pseudo_p = contains_reg_p (x, false, false);
4687 /* After RTL transformation, we can not guarantee that
4688 pseudo in the substitution was not reloaded which might
4689 make equivalence invalid. For example, in reverse
4690 equiv of p0
4692 p0 <- ...
4694 equiv_mem <- p0
4696 the memory address register was reloaded before the 2nd
4697 insn. */
4698 if ((! first_p && pseudo_p)
4699 /* We don't use DF for compilation speed sake. So it
4700 is problematic to update live info when we use an
4701 equivalence containing pseudos in more than one
4702 BB. */
4703 || (pseudo_p && multi_block_pseudo_p (i))
4704 /* If an init insn was deleted for some reason, cancel
4705 the equiv. We could update the equiv insns after
4706 transformations including an equiv insn deletion
4707 but it is not worthy as such cases are extremely
4708 rare. */
4709 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4710 /* If it is not a reverse equivalence, we check that a
4711 pseudo in rhs of the init insn is not dying in the
4712 insn. Otherwise, the live info at the beginning of
4713 the corresponding BB might be wrong after we
4714 removed the insn. When the equiv can be a
4715 constant, the right hand side of the init insn can
4716 be a pseudo. */
4717 || (! reverse_equiv_p (i)
4718 && (init_insn_rhs_dead_pseudo_p (i)
4719 /* If we reloaded the pseudo in an equivalence
4720 init insn, we can not remove the equiv init
4721 insns and the init insns might write into
4722 const memory in this case. */
4723 || contains_reloaded_insn_p (i)))
4724 /* Prevent access beyond equivalent memory for
4725 paradoxical subregs. */
4726 || (MEM_P (x)
4727 && (GET_MODE_SIZE (lra_reg_info[i].biggest_mode)
4728 > GET_MODE_SIZE (GET_MODE (x))))
4729 || (pic_offset_table_rtx
4730 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4731 && (targetm.preferred_reload_class
4732 (x, lra_get_allocno_class (i)) == NO_REGS))
4733 || contains_symbol_ref_p (x))))
4734 ira_reg_equiv[i].defined_p = false;
4735 if (contains_reg_p (x, false, true))
4736 ira_reg_equiv[i].profitable_p = false;
4737 if (get_equiv (reg) != reg)
4738 bitmap_ior_into (equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4741 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4742 update_equiv (i);
4743 /* We should add all insns containing pseudos which should be
4744 substituted by their equivalences. */
4745 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap, 0, uid, bi)
4746 lra_push_insn_by_uid (uid);
4747 min_len = lra_insn_stack_length ();
4748 new_insns_num = 0;
4749 last_bb = NULL;
4750 changed_p = false;
4751 while ((new_min_len = lra_insn_stack_length ()) != 0)
4753 curr_insn = lra_pop_insn ();
4754 --new_min_len;
4755 curr_bb = BLOCK_FOR_INSN (curr_insn);
4756 if (curr_bb != last_bb)
4758 last_bb = curr_bb;
4759 bb_reload_num = lra_curr_reload_num;
4761 if (min_len > new_min_len)
4763 min_len = new_min_len;
4764 new_insns_num = 0;
4766 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4767 internal_error
4768 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4769 MAX_RELOAD_INSNS_NUMBER);
4770 new_insns_num++;
4771 if (DEBUG_INSN_P (curr_insn))
4773 /* We need to check equivalence in debug insn and change
4774 pseudo to the equivalent value if necessary. */
4775 curr_id = lra_get_insn_recog_data (curr_insn);
4776 if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn)))
4778 rtx old = *curr_id->operand_loc[0];
4779 *curr_id->operand_loc[0]
4780 = simplify_replace_fn_rtx (old, NULL_RTX,
4781 loc_equivalence_callback, curr_insn);
4782 if (old != *curr_id->operand_loc[0])
4784 lra_update_insn_regno_info (curr_insn);
4785 changed_p = true;
4789 else if (INSN_P (curr_insn))
4791 if ((set = single_set (curr_insn)) != NULL_RTX)
4793 dest_reg = SET_DEST (set);
4794 /* The equivalence pseudo could be set up as SUBREG in a
4795 case when it is a call restore insn in a mode
4796 different from the pseudo mode. */
4797 if (GET_CODE (dest_reg) == SUBREG)
4798 dest_reg = SUBREG_REG (dest_reg);
4799 if ((REG_P (dest_reg)
4800 && (x = get_equiv (dest_reg)) != dest_reg
4801 /* Remove insns which set up a pseudo whose value
4802 can not be changed. Such insns might be not in
4803 init_insns because we don't update equiv data
4804 during insn transformations.
4806 As an example, let suppose that a pseudo got
4807 hard register and on the 1st pass was not
4808 changed to equivalent constant. We generate an
4809 additional insn setting up the pseudo because of
4810 secondary memory movement. Then the pseudo is
4811 spilled and we use the equiv constant. In this
4812 case we should remove the additional insn and
4813 this insn is not init_insns list. */
4814 && (! MEM_P (x) || MEM_READONLY_P (x)
4815 /* Check that this is actually an insn setting
4816 up the equivalence. */
4817 || in_list_p (curr_insn,
4818 ira_reg_equiv
4819 [REGNO (dest_reg)].init_insns)))
4820 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4821 && in_list_p (curr_insn,
4822 ira_reg_equiv
4823 [REGNO (SET_SRC (set))].init_insns)))
4825 /* This is equiv init insn of pseudo which did not get a
4826 hard register -- remove the insn. */
4827 if (lra_dump_file != NULL)
4829 fprintf (lra_dump_file,
4830 " Removing equiv init insn %i (freq=%d)\n",
4831 INSN_UID (curr_insn),
4832 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4833 dump_insn_slim (lra_dump_file, curr_insn);
4835 if (contains_reg_p (x, true, false))
4836 lra_risky_transformations_p = true;
4837 lra_set_insn_deleted (curr_insn);
4838 continue;
4841 curr_id = lra_get_insn_recog_data (curr_insn);
4842 curr_static_id = curr_id->insn_static_data;
4843 init_curr_insn_input_reloads ();
4844 init_curr_operand_mode ();
4845 if (curr_insn_transform (false))
4846 changed_p = true;
4847 /* Check non-transformed insns too for equiv change as USE
4848 or CLOBBER don't need reloads but can contain pseudos
4849 being changed on their equivalences. */
4850 else if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn))
4851 && loc_equivalence_change_p (&PATTERN (curr_insn)))
4853 lra_update_insn_regno_info (curr_insn);
4854 changed_p = true;
4859 /* If we used a new hard regno, changed_p should be true because the
4860 hard reg is assigned to a new pseudo. */
4861 if (flag_checking && !changed_p)
4863 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4864 if (lra_reg_info[i].nrefs != 0
4865 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4867 int j, nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (i)];
4869 for (j = 0; j < nregs; j++)
4870 lra_assert (df_regs_ever_live_p (hard_regno + j));
4873 return changed_p;
4876 static void initiate_invariants (void);
4877 static void finish_invariants (void);
4879 /* Initiate the LRA constraint pass. It is done once per
4880 function. */
4881 void
4882 lra_constraints_init (void)
4884 initiate_invariants ();
4887 /* Finalize the LRA constraint pass. It is done once per
4888 function. */
4889 void
4890 lra_constraints_finish (void)
4892 finish_invariants ();
4897 /* Structure describes invariants for ineheritance. */
4898 struct lra_invariant
4900 /* The order number of the invariant. */
4901 int num;
4902 /* The invariant RTX. */
4903 rtx invariant_rtx;
4904 /* The origin insn of the invariant. */
4905 rtx_insn *insn;
4908 typedef lra_invariant invariant_t;
4909 typedef invariant_t *invariant_ptr_t;
4910 typedef const invariant_t *const_invariant_ptr_t;
4912 /* Pointer to the inheritance invariants. */
4913 static vec<invariant_ptr_t> invariants;
4915 /* Allocation pool for the invariants. */
4916 static object_allocator<lra_invariant> *invariants_pool;
4918 /* Hash table for the invariants. */
4919 static htab_t invariant_table;
4921 /* Hash function for INVARIANT. */
4922 static hashval_t
4923 invariant_hash (const void *invariant)
4925 rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
4926 return lra_rtx_hash (inv);
4929 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
4930 static int
4931 invariant_eq_p (const void *invariant1, const void *invariant2)
4933 rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
4934 rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
4936 return rtx_equal_p (inv1, inv2);
4939 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
4940 invariant which is in the table. */
4941 static invariant_ptr_t
4942 insert_invariant (rtx invariant_rtx)
4944 void **entry_ptr;
4945 invariant_t invariant;
4946 invariant_ptr_t invariant_ptr;
4948 invariant.invariant_rtx = invariant_rtx;
4949 entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
4950 if (*entry_ptr == NULL)
4952 invariant_ptr = invariants_pool->allocate ();
4953 invariant_ptr->invariant_rtx = invariant_rtx;
4954 invariant_ptr->insn = NULL;
4955 invariants.safe_push (invariant_ptr);
4956 *entry_ptr = (void *) invariant_ptr;
4958 return (invariant_ptr_t) *entry_ptr;
4961 /* Initiate the invariant table. */
4962 static void
4963 initiate_invariants (void)
4965 invariants.create (100);
4966 invariants_pool
4967 = new object_allocator<lra_invariant> ("Inheritance invariants");
4968 invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
4971 /* Finish the invariant table. */
4972 static void
4973 finish_invariants (void)
4975 htab_delete (invariant_table);
4976 delete invariants_pool;
4977 invariants.release ();
4980 /* Make the invariant table empty. */
4981 static void
4982 clear_invariants (void)
4984 htab_empty (invariant_table);
4985 invariants_pool->release ();
4986 invariants.truncate (0);
4991 /* This page contains code to do inheritance/split
4992 transformations. */
4994 /* Number of reloads passed so far in current EBB. */
4995 static int reloads_num;
4997 /* Number of calls passed so far in current EBB. */
4998 static int calls_num;
5000 /* Current reload pseudo check for validity of elements in
5001 USAGE_INSNS. */
5002 static int curr_usage_insns_check;
5004 /* Info about last usage of registers in EBB to do inheritance/split
5005 transformation. Inheritance transformation is done from a spilled
5006 pseudo and split transformations from a hard register or a pseudo
5007 assigned to a hard register. */
5008 struct usage_insns
5010 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5011 value INSNS is valid. The insns is chain of optional debug insns
5012 and a finishing non-debug insn using the corresponding reg. The
5013 value is also used to mark the registers which are set up in the
5014 current insn. The negated insn uid is used for this. */
5015 int check;
5016 /* Value of global reloads_num at the last insn in INSNS. */
5017 int reloads_num;
5018 /* Value of global reloads_nums at the last insn in INSNS. */
5019 int calls_num;
5020 /* It can be true only for splitting. And it means that the restore
5021 insn should be put after insn given by the following member. */
5022 bool after_p;
5023 /* Next insns in the current EBB which use the original reg and the
5024 original reg value is not changed between the current insn and
5025 the next insns. In order words, e.g. for inheritance, if we need
5026 to use the original reg value again in the next insns we can try
5027 to use the value in a hard register from a reload insn of the
5028 current insn. */
5029 rtx insns;
5032 /* Map: regno -> corresponding pseudo usage insns. */
5033 static struct usage_insns *usage_insns;
5035 static void
5036 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5038 usage_insns[regno].check = curr_usage_insns_check;
5039 usage_insns[regno].insns = insn;
5040 usage_insns[regno].reloads_num = reloads_num;
5041 usage_insns[regno].calls_num = calls_num;
5042 usage_insns[regno].after_p = after_p;
5045 /* The function is used to form list REGNO usages which consists of
5046 optional debug insns finished by a non-debug insn using REGNO.
5047 RELOADS_NUM is current number of reload insns processed so far. */
5048 static void
5049 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5051 rtx next_usage_insns;
5053 if (usage_insns[regno].check == curr_usage_insns_check
5054 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5055 && DEBUG_INSN_P (insn))
5057 /* Check that we did not add the debug insn yet. */
5058 if (next_usage_insns != insn
5059 && (GET_CODE (next_usage_insns) != INSN_LIST
5060 || XEXP (next_usage_insns, 0) != insn))
5061 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5062 next_usage_insns);
5064 else if (NONDEBUG_INSN_P (insn))
5065 setup_next_usage_insn (regno, insn, reloads_num, false);
5066 else
5067 usage_insns[regno].check = 0;
5070 /* Return first non-debug insn in list USAGE_INSNS. */
5071 static rtx_insn *
5072 skip_usage_debug_insns (rtx usage_insns)
5074 rtx insn;
5076 /* Skip debug insns. */
5077 for (insn = usage_insns;
5078 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5079 insn = XEXP (insn, 1))
5081 return safe_as_a <rtx_insn *> (insn);
5084 /* Return true if we need secondary memory moves for insn in
5085 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5086 into the insn. */
5087 static bool
5088 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5089 rtx usage_insns ATTRIBUTE_UNUSED)
5091 #ifndef SECONDARY_MEMORY_NEEDED
5092 return false;
5093 #else
5094 rtx_insn *insn;
5095 rtx set, dest;
5096 enum reg_class cl;
5098 if (inher_cl == ALL_REGS
5099 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5100 return false;
5101 lra_assert (INSN_P (insn));
5102 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5103 return false;
5104 dest = SET_DEST (set);
5105 if (! REG_P (dest))
5106 return false;
5107 lra_assert (inher_cl != NO_REGS);
5108 cl = get_reg_class (REGNO (dest));
5109 return (cl != NO_REGS && cl != ALL_REGS
5110 && SECONDARY_MEMORY_NEEDED (inher_cl, cl, GET_MODE (dest)));
5111 #endif
5114 /* Registers involved in inheritance/split in the current EBB
5115 (inheritance/split pseudos and original registers). */
5116 static bitmap_head check_only_regs;
5118 /* Reload pseudos can not be involded in invariant inheritance in the
5119 current EBB. */
5120 static bitmap_head invalid_invariant_regs;
5122 /* Do inheritance transformations for insn INSN, which defines (if
5123 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5124 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5125 form as the "insns" field of usage_insns. Return true if we
5126 succeed in such transformation.
5128 The transformations look like:
5130 p <- ... i <- ...
5131 ... p <- i (new insn)
5132 ... =>
5133 <- ... p ... <- ... i ...
5135 ... i <- p (new insn)
5136 <- ... p ... <- ... i ...
5137 ... =>
5138 <- ... p ... <- ... i ...
5139 where p is a spilled original pseudo and i is a new inheritance pseudo.
5142 The inheritance pseudo has the smallest class of two classes CL and
5143 class of ORIGINAL REGNO. */
5144 static bool
5145 inherit_reload_reg (bool def_p, int original_regno,
5146 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5148 if (optimize_function_for_size_p (cfun))
5149 return false;
5151 enum reg_class rclass = lra_get_allocno_class (original_regno);
5152 rtx original_reg = regno_reg_rtx[original_regno];
5153 rtx new_reg, usage_insn;
5154 rtx_insn *new_insns;
5156 lra_assert (! usage_insns[original_regno].after_p);
5157 if (lra_dump_file != NULL)
5158 fprintf (lra_dump_file,
5159 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5160 if (! ira_reg_classes_intersect_p[cl][rclass])
5162 if (lra_dump_file != NULL)
5164 fprintf (lra_dump_file,
5165 " Rejecting inheritance for %d "
5166 "because of disjoint classes %s and %s\n",
5167 original_regno, reg_class_names[cl],
5168 reg_class_names[rclass]);
5169 fprintf (lra_dump_file,
5170 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5172 return false;
5174 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5175 /* We don't use a subset of two classes because it can be
5176 NO_REGS. This transformation is still profitable in most
5177 cases even if the classes are not intersected as register
5178 move is probably cheaper than a memory load. */
5179 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5181 if (lra_dump_file != NULL)
5182 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
5183 reg_class_names[cl], reg_class_names[rclass]);
5185 rclass = cl;
5187 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5189 /* Reject inheritance resulting in secondary memory moves.
5190 Otherwise, there is a danger in LRA cycling. Also such
5191 transformation will be unprofitable. */
5192 if (lra_dump_file != NULL)
5194 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5195 rtx set = single_set (insn);
5197 lra_assert (set != NULL_RTX);
5199 rtx dest = SET_DEST (set);
5201 lra_assert (REG_P (dest));
5202 fprintf (lra_dump_file,
5203 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5204 "as secondary mem is needed\n",
5205 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5206 original_regno, reg_class_names[rclass]);
5207 fprintf (lra_dump_file,
5208 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5210 return false;
5212 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5213 rclass, "inheritance");
5214 start_sequence ();
5215 if (def_p)
5216 lra_emit_move (original_reg, new_reg);
5217 else
5218 lra_emit_move (new_reg, original_reg);
5219 new_insns = get_insns ();
5220 end_sequence ();
5221 if (NEXT_INSN (new_insns) != NULL_RTX)
5223 if (lra_dump_file != NULL)
5225 fprintf (lra_dump_file,
5226 " Rejecting inheritance %d->%d "
5227 "as it results in 2 or more insns:\n",
5228 original_regno, REGNO (new_reg));
5229 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5230 fprintf (lra_dump_file,
5231 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5233 return false;
5235 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5236 lra_update_insn_regno_info (insn);
5237 if (! def_p)
5238 /* We now have a new usage insn for original regno. */
5239 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5240 if (lra_dump_file != NULL)
5241 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
5242 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5243 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5244 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5245 bitmap_set_bit (&check_only_regs, original_regno);
5246 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5247 if (def_p)
5248 lra_process_new_insns (insn, NULL, new_insns,
5249 "Add original<-inheritance");
5250 else
5251 lra_process_new_insns (insn, new_insns, NULL,
5252 "Add inheritance<-original");
5253 while (next_usage_insns != NULL_RTX)
5255 if (GET_CODE (next_usage_insns) != INSN_LIST)
5257 usage_insn = next_usage_insns;
5258 lra_assert (NONDEBUG_INSN_P (usage_insn));
5259 next_usage_insns = NULL;
5261 else
5263 usage_insn = XEXP (next_usage_insns, 0);
5264 lra_assert (DEBUG_INSN_P (usage_insn));
5265 next_usage_insns = XEXP (next_usage_insns, 1);
5267 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false);
5268 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5269 if (lra_dump_file != NULL)
5271 fprintf (lra_dump_file,
5272 " Inheritance reuse change %d->%d (bb%d):\n",
5273 original_regno, REGNO (new_reg),
5274 BLOCK_FOR_INSN (usage_insn)->index);
5275 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5278 if (lra_dump_file != NULL)
5279 fprintf (lra_dump_file,
5280 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5281 return true;
5284 /* Return true if we need a caller save/restore for pseudo REGNO which
5285 was assigned to a hard register. */
5286 static inline bool
5287 need_for_call_save_p (int regno)
5289 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5290 return (usage_insns[regno].calls_num < calls_num
5291 && (overlaps_hard_reg_set_p
5292 ((flag_ipa_ra &&
5293 ! hard_reg_set_empty_p (lra_reg_info[regno].actual_call_used_reg_set))
5294 ? lra_reg_info[regno].actual_call_used_reg_set
5295 : call_used_reg_set,
5296 PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
5297 || HARD_REGNO_CALL_PART_CLOBBERED (reg_renumber[regno],
5298 PSEUDO_REGNO_MODE (regno))));
5301 /* Global registers occurring in the current EBB. */
5302 static bitmap_head ebb_global_regs;
5304 /* Return true if we need a split for hard register REGNO or pseudo
5305 REGNO which was assigned to a hard register.
5306 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5307 used for reloads since the EBB end. It is an approximation of the
5308 used hard registers in the split range. The exact value would
5309 require expensive calculations. If we were aggressive with
5310 splitting because of the approximation, the split pseudo will save
5311 the same hard register assignment and will be removed in the undo
5312 pass. We still need the approximation because too aggressive
5313 splitting would result in too inaccurate cost calculation in the
5314 assignment pass because of too many generated moves which will be
5315 probably removed in the undo pass. */
5316 static inline bool
5317 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5319 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5321 lra_assert (hard_regno >= 0);
5322 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5323 /* Don't split eliminable hard registers, otherwise we can
5324 split hard registers like hard frame pointer, which
5325 lives on BB start/end according to DF-infrastructure,
5326 when there is a pseudo assigned to the register and
5327 living in the same BB. */
5328 && (regno >= FIRST_PSEUDO_REGISTER
5329 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5330 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5331 /* Don't split call clobbered hard regs living through
5332 calls, otherwise we might have a check problem in the
5333 assign sub-pass as in the most cases (exception is a
5334 situation when lra_risky_transformations_p value is
5335 true) the assign pass assumes that all pseudos living
5336 through calls are assigned to call saved hard regs. */
5337 && (regno >= FIRST_PSEUDO_REGISTER
5338 || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
5339 || usage_insns[regno].calls_num == calls_num)
5340 /* We need at least 2 reloads to make pseudo splitting
5341 profitable. We should provide hard regno splitting in
5342 any case to solve 1st insn scheduling problem when
5343 moving hard register definition up might result in
5344 impossibility to find hard register for reload pseudo of
5345 small register class. */
5346 && (usage_insns[regno].reloads_num
5347 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
5348 && (regno < FIRST_PSEUDO_REGISTER
5349 /* For short living pseudos, spilling + inheritance can
5350 be considered a substitution for splitting.
5351 Therefore we do not splitting for local pseudos. It
5352 decreases also aggressiveness of splitting. The
5353 minimal number of references is chosen taking into
5354 account that for 2 references splitting has no sense
5355 as we can just spill the pseudo. */
5356 || (regno >= FIRST_PSEUDO_REGISTER
5357 && lra_reg_info[regno].nrefs > 3
5358 && bitmap_bit_p (&ebb_global_regs, regno))))
5359 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
5362 /* Return class for the split pseudo created from original pseudo with
5363 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5364 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5365 results in no secondary memory movements. */
5366 static enum reg_class
5367 choose_split_class (enum reg_class allocno_class,
5368 int hard_regno ATTRIBUTE_UNUSED,
5369 machine_mode mode ATTRIBUTE_UNUSED)
5371 #ifndef SECONDARY_MEMORY_NEEDED
5372 return allocno_class;
5373 #else
5374 int i;
5375 enum reg_class cl, best_cl = NO_REGS;
5376 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5377 = REGNO_REG_CLASS (hard_regno);
5379 if (! SECONDARY_MEMORY_NEEDED (allocno_class, allocno_class, mode)
5380 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
5381 return allocno_class;
5382 for (i = 0;
5383 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
5384 i++)
5385 if (! SECONDARY_MEMORY_NEEDED (cl, hard_reg_class, mode)
5386 && ! SECONDARY_MEMORY_NEEDED (hard_reg_class, cl, mode)
5387 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
5388 && (best_cl == NO_REGS
5389 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
5390 best_cl = cl;
5391 return best_cl;
5392 #endif
5395 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO.
5396 It only makes sense to call this function if NEW_REGNO is always
5397 equal to ORIGINAL_REGNO. */
5399 static void
5400 lra_copy_reg_equiv (unsigned int new_regno, unsigned int original_regno)
5402 if (!ira_reg_equiv[original_regno].defined_p)
5403 return;
5405 ira_expand_reg_equiv ();
5406 ira_reg_equiv[new_regno].defined_p = true;
5407 if (ira_reg_equiv[original_regno].memory)
5408 ira_reg_equiv[new_regno].memory
5409 = copy_rtx (ira_reg_equiv[original_regno].memory);
5410 if (ira_reg_equiv[original_regno].constant)
5411 ira_reg_equiv[new_regno].constant
5412 = copy_rtx (ira_reg_equiv[original_regno].constant);
5413 if (ira_reg_equiv[original_regno].invariant)
5414 ira_reg_equiv[new_regno].invariant
5415 = copy_rtx (ira_reg_equiv[original_regno].invariant);
5418 /* Do split transformations for insn INSN, which defines or uses
5419 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5420 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5421 "insns" field of usage_insns.
5423 The transformations look like:
5425 p <- ... p <- ...
5426 ... s <- p (new insn -- save)
5427 ... =>
5428 ... p <- s (new insn -- restore)
5429 <- ... p ... <- ... p ...
5431 <- ... p ... <- ... p ...
5432 ... s <- p (new insn -- save)
5433 ... =>
5434 ... p <- s (new insn -- restore)
5435 <- ... p ... <- ... p ...
5437 where p is an original pseudo got a hard register or a hard
5438 register and s is a new split pseudo. The save is put before INSN
5439 if BEFORE_P is true. Return true if we succeed in such
5440 transformation. */
5441 static bool
5442 split_reg (bool before_p, int original_regno, rtx_insn *insn,
5443 rtx next_usage_insns)
5445 enum reg_class rclass;
5446 rtx original_reg;
5447 int hard_regno, nregs;
5448 rtx new_reg, usage_insn;
5449 rtx_insn *restore, *save;
5450 bool after_p;
5451 bool call_save_p;
5452 machine_mode mode;
5454 if (original_regno < FIRST_PSEUDO_REGISTER)
5456 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
5457 hard_regno = original_regno;
5458 call_save_p = false;
5459 nregs = 1;
5460 mode = lra_reg_info[hard_regno].biggest_mode;
5461 machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
5462 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5463 as part of a multi-word register. In that case, or if the biggest
5464 mode was larger than a register, just use the reg_rtx. Otherwise,
5465 limit the size to that of the biggest access in the function. */
5466 if (mode == VOIDmode
5467 || paradoxical_subreg_p (mode, reg_rtx_mode))
5469 original_reg = regno_reg_rtx[hard_regno];
5470 mode = reg_rtx_mode;
5472 else
5473 original_reg = gen_rtx_REG (mode, hard_regno);
5475 else
5477 mode = PSEUDO_REGNO_MODE (original_regno);
5478 hard_regno = reg_renumber[original_regno];
5479 nregs = hard_regno_nregs[hard_regno][mode];
5480 rclass = lra_get_allocno_class (original_regno);
5481 original_reg = regno_reg_rtx[original_regno];
5482 call_save_p = need_for_call_save_p (original_regno);
5484 lra_assert (hard_regno >= 0);
5485 if (lra_dump_file != NULL)
5486 fprintf (lra_dump_file,
5487 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5489 if (call_save_p)
5491 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
5492 hard_regno_nregs[hard_regno][mode],
5493 mode);
5494 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
5496 else
5498 rclass = choose_split_class (rclass, hard_regno, mode);
5499 if (rclass == NO_REGS)
5501 if (lra_dump_file != NULL)
5503 fprintf (lra_dump_file,
5504 " Rejecting split of %d(%s): "
5505 "no good reg class for %d(%s)\n",
5506 original_regno,
5507 reg_class_names[lra_get_allocno_class (original_regno)],
5508 hard_regno,
5509 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
5510 fprintf
5511 (lra_dump_file,
5512 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5514 return false;
5516 /* Split_if_necessary can split hard registers used as part of a
5517 multi-register mode but splits each register individually. The
5518 mode used for each independent register may not be supported
5519 so reject the split. Splitting the wider mode should theoretically
5520 be possible but is not implemented. */
5521 if (! HARD_REGNO_MODE_OK (hard_regno, mode))
5523 if (lra_dump_file != NULL)
5525 fprintf (lra_dump_file,
5526 " Rejecting split of %d(%s): unsuitable mode %s\n",
5527 original_regno,
5528 reg_class_names[lra_get_allocno_class (original_regno)],
5529 GET_MODE_NAME (mode));
5530 fprintf
5531 (lra_dump_file,
5532 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5534 return false;
5536 new_reg = lra_create_new_reg (mode, original_reg, rclass, "split");
5537 reg_renumber[REGNO (new_reg)] = hard_regno;
5539 int new_regno = REGNO (new_reg);
5540 save = emit_spill_move (true, new_reg, original_reg);
5541 if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
5543 if (lra_dump_file != NULL)
5545 fprintf
5546 (lra_dump_file,
5547 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5548 original_regno, new_regno);
5549 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
5550 fprintf (lra_dump_file,
5551 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5553 return false;
5555 restore = emit_spill_move (false, new_reg, original_reg);
5556 if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
5558 if (lra_dump_file != NULL)
5560 fprintf (lra_dump_file,
5561 " Rejecting split %d->%d "
5562 "resulting in > 2 restore insns:\n",
5563 original_regno, new_regno);
5564 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
5565 fprintf (lra_dump_file,
5566 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5568 return false;
5570 /* Transfer equivalence information to the spill register, so that
5571 if we fail to allocate the spill register, we have the option of
5572 rematerializing the original value instead of spilling to the stack. */
5573 if (!HARD_REGISTER_NUM_P (original_regno)
5574 && mode == PSEUDO_REGNO_MODE (original_regno))
5575 lra_copy_reg_equiv (new_regno, original_regno);
5576 after_p = usage_insns[original_regno].after_p;
5577 lra_reg_info[new_regno].restore_rtx = regno_reg_rtx[original_regno];
5578 bitmap_set_bit (&check_only_regs, new_regno);
5579 bitmap_set_bit (&check_only_regs, original_regno);
5580 bitmap_set_bit (&lra_split_regs, new_regno);
5581 for (;;)
5583 if (GET_CODE (next_usage_insns) != INSN_LIST)
5585 usage_insn = next_usage_insns;
5586 break;
5588 usage_insn = XEXP (next_usage_insns, 0);
5589 lra_assert (DEBUG_INSN_P (usage_insn));
5590 next_usage_insns = XEXP (next_usage_insns, 1);
5591 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false);
5592 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5593 if (lra_dump_file != NULL)
5595 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
5596 original_regno, new_regno);
5597 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5600 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
5601 lra_assert (usage_insn != insn || (after_p && before_p));
5602 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
5603 after_p ? NULL : restore,
5604 after_p ? restore : NULL,
5605 call_save_p
5606 ? "Add reg<-save" : "Add reg<-split");
5607 lra_process_new_insns (insn, before_p ? save : NULL,
5608 before_p ? NULL : save,
5609 call_save_p
5610 ? "Add save<-reg" : "Add split<-reg");
5611 if (nregs > 1)
5612 /* If we are trying to split multi-register. We should check
5613 conflicts on the next assignment sub-pass. IRA can allocate on
5614 sub-register levels, LRA do this on pseudos level right now and
5615 this discrepancy may create allocation conflicts after
5616 splitting. */
5617 lra_risky_transformations_p = true;
5618 if (lra_dump_file != NULL)
5619 fprintf (lra_dump_file,
5620 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5621 return true;
5624 /* Recognize that we need a split transformation for insn INSN, which
5625 defines or uses REGNO in its insn biggest MODE (we use it only if
5626 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5627 hard registers which might be used for reloads since the EBB end.
5628 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5629 uid before starting INSN processing. Return true if we succeed in
5630 such transformation. */
5631 static bool
5632 split_if_necessary (int regno, machine_mode mode,
5633 HARD_REG_SET potential_reload_hard_regs,
5634 bool before_p, rtx_insn *insn, int max_uid)
5636 bool res = false;
5637 int i, nregs = 1;
5638 rtx next_usage_insns;
5640 if (regno < FIRST_PSEUDO_REGISTER)
5641 nregs = hard_regno_nregs[regno][mode];
5642 for (i = 0; i < nregs; i++)
5643 if (usage_insns[regno + i].check == curr_usage_insns_check
5644 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
5645 /* To avoid processing the register twice or more. */
5646 && ((GET_CODE (next_usage_insns) != INSN_LIST
5647 && INSN_UID (next_usage_insns) < max_uid)
5648 || (GET_CODE (next_usage_insns) == INSN_LIST
5649 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
5650 && need_for_split_p (potential_reload_hard_regs, regno + i)
5651 && split_reg (before_p, regno + i, insn, next_usage_insns))
5652 res = true;
5653 return res;
5656 /* Return TRUE if rtx X is considered as an invariant for
5657 inheritance. */
5658 static bool
5659 invariant_p (const_rtx x)
5661 machine_mode mode;
5662 const char *fmt;
5663 enum rtx_code code;
5664 int i, j;
5666 code = GET_CODE (x);
5667 mode = GET_MODE (x);
5668 if (code == SUBREG)
5670 x = SUBREG_REG (x);
5671 code = GET_CODE (x);
5672 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
5673 mode = GET_MODE (x);
5676 if (MEM_P (x))
5677 return false;
5679 if (REG_P (x))
5681 int i, nregs, regno = REGNO (x);
5683 if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
5684 || TEST_HARD_REG_BIT (eliminable_regset, regno)
5685 || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
5686 return false;
5687 nregs = hard_regno_nregs[regno][mode];
5688 for (i = 0; i < nregs; i++)
5689 if (! fixed_regs[regno + i]
5690 /* A hard register may be clobbered in the current insn
5691 but we can ignore this case because if the hard
5692 register is used it should be set somewhere after the
5693 clobber. */
5694 || bitmap_bit_p (&invalid_invariant_regs, regno + i))
5695 return false;
5697 fmt = GET_RTX_FORMAT (code);
5698 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5700 if (fmt[i] == 'e')
5702 if (! invariant_p (XEXP (x, i)))
5703 return false;
5705 else if (fmt[i] == 'E')
5707 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5708 if (! invariant_p (XVECEXP (x, i, j)))
5709 return false;
5712 return true;
5715 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
5716 inheritance transformation (using dest_reg instead invariant in a
5717 subsequent insn). */
5718 static bool
5719 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
5721 invariant_ptr_t invariant_ptr;
5722 rtx_insn *insn, *new_insns;
5723 rtx insn_set, insn_reg, new_reg;
5724 int insn_regno;
5725 bool succ_p = false;
5726 int dst_regno = REGNO (dst_reg);
5727 machine_mode dst_mode = GET_MODE (dst_reg);
5728 enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
5730 invariant_ptr = insert_invariant (invariant_rtx);
5731 if ((insn = invariant_ptr->insn) != NULL_RTX)
5733 /* We have a subsequent insn using the invariant. */
5734 insn_set = single_set (insn);
5735 lra_assert (insn_set != NULL);
5736 insn_reg = SET_DEST (insn_set);
5737 lra_assert (REG_P (insn_reg));
5738 insn_regno = REGNO (insn_reg);
5739 insn_reg_cl = lra_get_allocno_class (insn_regno);
5741 if (dst_mode == GET_MODE (insn_reg)
5742 /* We should consider only result move reg insns which are
5743 cheap. */
5744 && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
5745 && targetm.register_move_cost (dst_mode, cl, cl) == 2)
5747 if (lra_dump_file != NULL)
5748 fprintf (lra_dump_file,
5749 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5750 new_reg = lra_create_new_reg (dst_mode, dst_reg,
5751 cl, "invariant inheritance");
5752 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5753 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5754 lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
5755 start_sequence ();
5756 lra_emit_move (new_reg, dst_reg);
5757 new_insns = get_insns ();
5758 end_sequence ();
5759 lra_process_new_insns (curr_insn, NULL, new_insns,
5760 "Add invariant inheritance<-original");
5761 start_sequence ();
5762 lra_emit_move (SET_DEST (insn_set), new_reg);
5763 new_insns = get_insns ();
5764 end_sequence ();
5765 lra_process_new_insns (insn, NULL, new_insns,
5766 "Changing reload<-inheritance");
5767 lra_set_insn_deleted (insn);
5768 succ_p = true;
5769 if (lra_dump_file != NULL)
5771 fprintf (lra_dump_file,
5772 " Invariant inheritance reuse change %d (bb%d):\n",
5773 REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5774 dump_insn_slim (lra_dump_file, insn);
5775 fprintf (lra_dump_file,
5776 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5780 invariant_ptr->insn = curr_insn;
5781 return succ_p;
5784 /* Check only registers living at the current program point in the
5785 current EBB. */
5786 static bitmap_head live_regs;
5788 /* Update live info in EBB given by its HEAD and TAIL insns after
5789 inheritance/split transformation. The function removes dead moves
5790 too. */
5791 static void
5792 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
5794 unsigned int j;
5795 int i, regno;
5796 bool live_p;
5797 rtx_insn *prev_insn;
5798 rtx set;
5799 bool remove_p;
5800 basic_block last_bb, prev_bb, curr_bb;
5801 bitmap_iterator bi;
5802 struct lra_insn_reg *reg;
5803 edge e;
5804 edge_iterator ei;
5806 last_bb = BLOCK_FOR_INSN (tail);
5807 prev_bb = NULL;
5808 for (curr_insn = tail;
5809 curr_insn != PREV_INSN (head);
5810 curr_insn = prev_insn)
5812 prev_insn = PREV_INSN (curr_insn);
5813 /* We need to process empty blocks too. They contain
5814 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
5815 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
5816 continue;
5817 curr_bb = BLOCK_FOR_INSN (curr_insn);
5818 if (curr_bb != prev_bb)
5820 if (prev_bb != NULL)
5822 /* Update df_get_live_in (prev_bb): */
5823 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5824 if (bitmap_bit_p (&live_regs, j))
5825 bitmap_set_bit (df_get_live_in (prev_bb), j);
5826 else
5827 bitmap_clear_bit (df_get_live_in (prev_bb), j);
5829 if (curr_bb != last_bb)
5831 /* Update df_get_live_out (curr_bb): */
5832 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5834 live_p = bitmap_bit_p (&live_regs, j);
5835 if (! live_p)
5836 FOR_EACH_EDGE (e, ei, curr_bb->succs)
5837 if (bitmap_bit_p (df_get_live_in (e->dest), j))
5839 live_p = true;
5840 break;
5842 if (live_p)
5843 bitmap_set_bit (df_get_live_out (curr_bb), j);
5844 else
5845 bitmap_clear_bit (df_get_live_out (curr_bb), j);
5848 prev_bb = curr_bb;
5849 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
5851 if (! NONDEBUG_INSN_P (curr_insn))
5852 continue;
5853 curr_id = lra_get_insn_recog_data (curr_insn);
5854 curr_static_id = curr_id->insn_static_data;
5855 remove_p = false;
5856 if ((set = single_set (curr_insn)) != NULL_RTX
5857 && REG_P (SET_DEST (set))
5858 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
5859 && SET_DEST (set) != pic_offset_table_rtx
5860 && bitmap_bit_p (&check_only_regs, regno)
5861 && ! bitmap_bit_p (&live_regs, regno))
5862 remove_p = true;
5863 /* See which defined values die here. */
5864 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5865 if (reg->type == OP_OUT && ! reg->subreg_p)
5866 bitmap_clear_bit (&live_regs, reg->regno);
5867 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5868 if (reg->type == OP_OUT && ! reg->subreg_p)
5869 bitmap_clear_bit (&live_regs, reg->regno);
5870 if (curr_id->arg_hard_regs != NULL)
5871 /* Make clobbered argument hard registers die. */
5872 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5873 if (regno >= FIRST_PSEUDO_REGISTER)
5874 bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
5875 /* Mark each used value as live. */
5876 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5877 if (reg->type != OP_OUT
5878 && bitmap_bit_p (&check_only_regs, reg->regno))
5879 bitmap_set_bit (&live_regs, reg->regno);
5880 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5881 if (reg->type != OP_OUT
5882 && bitmap_bit_p (&check_only_regs, reg->regno))
5883 bitmap_set_bit (&live_regs, reg->regno);
5884 if (curr_id->arg_hard_regs != NULL)
5885 /* Make used argument hard registers live. */
5886 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5887 if (regno < FIRST_PSEUDO_REGISTER
5888 && bitmap_bit_p (&check_only_regs, regno))
5889 bitmap_set_bit (&live_regs, regno);
5890 /* It is quite important to remove dead move insns because it
5891 means removing dead store. We don't need to process them for
5892 constraints. */
5893 if (remove_p)
5895 if (lra_dump_file != NULL)
5897 fprintf (lra_dump_file, " Removing dead insn:\n ");
5898 dump_insn_slim (lra_dump_file, curr_insn);
5900 lra_set_insn_deleted (curr_insn);
5905 /* The structure describes info to do an inheritance for the current
5906 insn. We need to collect such info first before doing the
5907 transformations because the transformations change the insn
5908 internal representation. */
5909 struct to_inherit
5911 /* Original regno. */
5912 int regno;
5913 /* Subsequent insns which can inherit original reg value. */
5914 rtx insns;
5917 /* Array containing all info for doing inheritance from the current
5918 insn. */
5919 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
5921 /* Number elements in the previous array. */
5922 static int to_inherit_num;
5924 /* Add inheritance info REGNO and INSNS. Their meaning is described in
5925 structure to_inherit. */
5926 static void
5927 add_to_inherit (int regno, rtx insns)
5929 int i;
5931 for (i = 0; i < to_inherit_num; i++)
5932 if (to_inherit[i].regno == regno)
5933 return;
5934 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
5935 to_inherit[to_inherit_num].regno = regno;
5936 to_inherit[to_inherit_num++].insns = insns;
5939 /* Return the last non-debug insn in basic block BB, or the block begin
5940 note if none. */
5941 static rtx_insn *
5942 get_last_insertion_point (basic_block bb)
5944 rtx_insn *insn;
5946 FOR_BB_INSNS_REVERSE (bb, insn)
5947 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
5948 return insn;
5949 gcc_unreachable ();
5952 /* Set up RES by registers living on edges FROM except the edge (FROM,
5953 TO) or by registers set up in a jump insn in BB FROM. */
5954 static void
5955 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
5957 rtx_insn *last;
5958 struct lra_insn_reg *reg;
5959 edge e;
5960 edge_iterator ei;
5962 lra_assert (to != NULL);
5963 bitmap_clear (res);
5964 FOR_EACH_EDGE (e, ei, from->succs)
5965 if (e->dest != to)
5966 bitmap_ior_into (res, df_get_live_in (e->dest));
5967 last = get_last_insertion_point (from);
5968 if (! JUMP_P (last))
5969 return;
5970 curr_id = lra_get_insn_recog_data (last);
5971 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5972 if (reg->type != OP_IN)
5973 bitmap_set_bit (res, reg->regno);
5976 /* Used as a temporary results of some bitmap calculations. */
5977 static bitmap_head temp_bitmap;
5979 /* We split for reloads of small class of hard regs. The following
5980 defines how many hard regs the class should have to be qualified as
5981 small. The code is mostly oriented to x86/x86-64 architecture
5982 where some insns need to use only specific register or pair of
5983 registers and these register can live in RTL explicitly, e.g. for
5984 parameter passing. */
5985 static const int max_small_class_regs_num = 2;
5987 /* Do inheritance/split transformations in EBB starting with HEAD and
5988 finishing on TAIL. We process EBB insns in the reverse order.
5989 Return true if we did any inheritance/split transformation in the
5990 EBB.
5992 We should avoid excessive splitting which results in worse code
5993 because of inaccurate cost calculations for spilling new split
5994 pseudos in such case. To achieve this we do splitting only if
5995 register pressure is high in given basic block and there are reload
5996 pseudos requiring hard registers. We could do more register
5997 pressure calculations at any given program point to avoid necessary
5998 splitting even more but it is to expensive and the current approach
5999 works well enough. */
6000 static bool
6001 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
6003 int i, src_regno, dst_regno, nregs;
6004 bool change_p, succ_p, update_reloads_num_p;
6005 rtx_insn *prev_insn, *last_insn;
6006 rtx next_usage_insns, curr_set;
6007 enum reg_class cl;
6008 struct lra_insn_reg *reg;
6009 basic_block last_processed_bb, curr_bb = NULL;
6010 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6011 bitmap to_process;
6012 unsigned int j;
6013 bitmap_iterator bi;
6014 bool head_p, after_p;
6016 change_p = false;
6017 curr_usage_insns_check++;
6018 clear_invariants ();
6019 reloads_num = calls_num = 0;
6020 bitmap_clear (&check_only_regs);
6021 bitmap_clear (&invalid_invariant_regs);
6022 last_processed_bb = NULL;
6023 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6024 COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
6025 IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
6026 /* We don't process new insns generated in the loop. */
6027 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
6029 prev_insn = PREV_INSN (curr_insn);
6030 if (BLOCK_FOR_INSN (curr_insn) != NULL)
6031 curr_bb = BLOCK_FOR_INSN (curr_insn);
6032 if (last_processed_bb != curr_bb)
6034 /* We are at the end of BB. Add qualified living
6035 pseudos for potential splitting. */
6036 to_process = df_get_live_out (curr_bb);
6037 if (last_processed_bb != NULL)
6039 /* We are somewhere in the middle of EBB. */
6040 get_live_on_other_edges (curr_bb, last_processed_bb,
6041 &temp_bitmap);
6042 to_process = &temp_bitmap;
6044 last_processed_bb = curr_bb;
6045 last_insn = get_last_insertion_point (curr_bb);
6046 after_p = (! JUMP_P (last_insn)
6047 && (! CALL_P (last_insn)
6048 || (find_reg_note (last_insn,
6049 REG_NORETURN, NULL_RTX) == NULL_RTX
6050 && ! SIBLING_CALL_P (last_insn))));
6051 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6052 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6054 if ((int) j >= lra_constraint_new_regno_start)
6055 break;
6056 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6058 if (j < FIRST_PSEUDO_REGISTER)
6059 SET_HARD_REG_BIT (live_hard_regs, j);
6060 else
6061 add_to_hard_reg_set (&live_hard_regs,
6062 PSEUDO_REGNO_MODE (j),
6063 reg_renumber[j]);
6064 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6068 src_regno = dst_regno = -1;
6069 curr_set = single_set (curr_insn);
6070 if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6071 dst_regno = REGNO (SET_DEST (curr_set));
6072 if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6073 src_regno = REGNO (SET_SRC (curr_set));
6074 update_reloads_num_p = true;
6075 if (src_regno < lra_constraint_new_regno_start
6076 && src_regno >= FIRST_PSEUDO_REGISTER
6077 && reg_renumber[src_regno] < 0
6078 && dst_regno >= lra_constraint_new_regno_start
6079 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6081 /* 'reload_pseudo <- original_pseudo'. */
6082 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6083 reloads_num++;
6084 update_reloads_num_p = false;
6085 succ_p = false;
6086 if (usage_insns[src_regno].check == curr_usage_insns_check
6087 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6088 succ_p = inherit_reload_reg (false, src_regno, cl,
6089 curr_insn, next_usage_insns);
6090 if (succ_p)
6091 change_p = true;
6092 else
6093 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6094 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6095 IOR_HARD_REG_SET (potential_reload_hard_regs,
6096 reg_class_contents[cl]);
6098 else if (src_regno < 0
6099 && dst_regno >= lra_constraint_new_regno_start
6100 && invariant_p (SET_SRC (curr_set))
6101 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6102 && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6103 && ! bitmap_bit_p (&invalid_invariant_regs,
6104 ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6106 /* 'reload_pseudo <- invariant'. */
6107 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6108 reloads_num++;
6109 update_reloads_num_p = false;
6110 if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6111 change_p = true;
6112 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6113 IOR_HARD_REG_SET (potential_reload_hard_regs,
6114 reg_class_contents[cl]);
6116 else if (src_regno >= lra_constraint_new_regno_start
6117 && dst_regno < lra_constraint_new_regno_start
6118 && dst_regno >= FIRST_PSEUDO_REGISTER
6119 && reg_renumber[dst_regno] < 0
6120 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6121 && usage_insns[dst_regno].check == curr_usage_insns_check
6122 && (next_usage_insns
6123 = usage_insns[dst_regno].insns) != NULL_RTX)
6125 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6126 reloads_num++;
6127 update_reloads_num_p = false;
6128 /* 'original_pseudo <- reload_pseudo'. */
6129 if (! JUMP_P (curr_insn)
6130 && inherit_reload_reg (true, dst_regno, cl,
6131 curr_insn, next_usage_insns))
6132 change_p = true;
6133 /* Invalidate. */
6134 usage_insns[dst_regno].check = 0;
6135 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6136 IOR_HARD_REG_SET (potential_reload_hard_regs,
6137 reg_class_contents[cl]);
6139 else if (INSN_P (curr_insn))
6141 int iter;
6142 int max_uid = get_max_uid ();
6144 curr_id = lra_get_insn_recog_data (curr_insn);
6145 curr_static_id = curr_id->insn_static_data;
6146 to_inherit_num = 0;
6147 /* Process insn definitions. */
6148 for (iter = 0; iter < 2; iter++)
6149 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6150 reg != NULL;
6151 reg = reg->next)
6152 if (reg->type != OP_IN
6153 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6155 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6156 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6157 && usage_insns[dst_regno].check == curr_usage_insns_check
6158 && (next_usage_insns
6159 = usage_insns[dst_regno].insns) != NULL_RTX)
6161 struct lra_insn_reg *r;
6163 for (r = curr_id->regs; r != NULL; r = r->next)
6164 if (r->type != OP_OUT && r->regno == dst_regno)
6165 break;
6166 /* Don't do inheritance if the pseudo is also
6167 used in the insn. */
6168 if (r == NULL)
6169 /* We can not do inheritance right now
6170 because the current insn reg info (chain
6171 regs) can change after that. */
6172 add_to_inherit (dst_regno, next_usage_insns);
6174 /* We can not process one reg twice here because of
6175 usage_insns invalidation. */
6176 if ((dst_regno < FIRST_PSEUDO_REGISTER
6177 || reg_renumber[dst_regno] >= 0)
6178 && ! reg->subreg_p && reg->type != OP_IN)
6180 HARD_REG_SET s;
6182 if (split_if_necessary (dst_regno, reg->biggest_mode,
6183 potential_reload_hard_regs,
6184 false, curr_insn, max_uid))
6185 change_p = true;
6186 CLEAR_HARD_REG_SET (s);
6187 if (dst_regno < FIRST_PSEUDO_REGISTER)
6188 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6189 else
6190 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6191 reg_renumber[dst_regno]);
6192 AND_COMPL_HARD_REG_SET (live_hard_regs, s);
6194 /* We should invalidate potential inheritance or
6195 splitting for the current insn usages to the next
6196 usage insns (see code below) as the output pseudo
6197 prevents this. */
6198 if ((dst_regno >= FIRST_PSEUDO_REGISTER
6199 && reg_renumber[dst_regno] < 0)
6200 || (reg->type == OP_OUT && ! reg->subreg_p
6201 && (dst_regno < FIRST_PSEUDO_REGISTER
6202 || reg_renumber[dst_regno] >= 0)))
6204 /* Invalidate and mark definitions. */
6205 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6206 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6207 else
6209 nregs = hard_regno_nregs[dst_regno][reg->biggest_mode];
6210 for (i = 0; i < nregs; i++)
6211 usage_insns[dst_regno + i].check
6212 = -(int) INSN_UID (curr_insn);
6216 /* Process clobbered call regs. */
6217 if (curr_id->arg_hard_regs != NULL)
6218 for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6219 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6220 usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6221 = -(int) INSN_UID (curr_insn);
6222 if (! JUMP_P (curr_insn))
6223 for (i = 0; i < to_inherit_num; i++)
6224 if (inherit_reload_reg (true, to_inherit[i].regno,
6225 ALL_REGS, curr_insn,
6226 to_inherit[i].insns))
6227 change_p = true;
6228 if (CALL_P (curr_insn))
6230 rtx cheap, pat, dest;
6231 rtx_insn *restore;
6232 int regno, hard_regno;
6234 calls_num++;
6235 if ((cheap = find_reg_note (curr_insn,
6236 REG_RETURNED, NULL_RTX)) != NULL_RTX
6237 && ((cheap = XEXP (cheap, 0)), true)
6238 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6239 && (hard_regno = reg_renumber[regno]) >= 0
6240 /* If there are pending saves/restores, the
6241 optimization is not worth. */
6242 && usage_insns[regno].calls_num == calls_num - 1
6243 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
6245 /* Restore the pseudo from the call result as
6246 REG_RETURNED note says that the pseudo value is
6247 in the call result and the pseudo is an argument
6248 of the call. */
6249 pat = PATTERN (curr_insn);
6250 if (GET_CODE (pat) == PARALLEL)
6251 pat = XVECEXP (pat, 0, 0);
6252 dest = SET_DEST (pat);
6253 /* For multiple return values dest is PARALLEL.
6254 Currently we handle only single return value case. */
6255 if (REG_P (dest))
6257 start_sequence ();
6258 emit_move_insn (cheap, copy_rtx (dest));
6259 restore = get_insns ();
6260 end_sequence ();
6261 lra_process_new_insns (curr_insn, NULL, restore,
6262 "Inserting call parameter restore");
6263 /* We don't need to save/restore of the pseudo from
6264 this call. */
6265 usage_insns[regno].calls_num = calls_num;
6266 bitmap_set_bit (&check_only_regs, regno);
6270 to_inherit_num = 0;
6271 /* Process insn usages. */
6272 for (iter = 0; iter < 2; iter++)
6273 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6274 reg != NULL;
6275 reg = reg->next)
6276 if ((reg->type != OP_OUT
6277 || (reg->type == OP_OUT && reg->subreg_p))
6278 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
6280 if (src_regno >= FIRST_PSEUDO_REGISTER
6281 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
6283 if (usage_insns[src_regno].check == curr_usage_insns_check
6284 && (next_usage_insns
6285 = usage_insns[src_regno].insns) != NULL_RTX
6286 && NONDEBUG_INSN_P (curr_insn))
6287 add_to_inherit (src_regno, next_usage_insns);
6288 else if (usage_insns[src_regno].check
6289 != -(int) INSN_UID (curr_insn))
6290 /* Add usages but only if the reg is not set up
6291 in the same insn. */
6292 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6294 else if (src_regno < FIRST_PSEUDO_REGISTER
6295 || reg_renumber[src_regno] >= 0)
6297 bool before_p;
6298 rtx_insn *use_insn = curr_insn;
6300 before_p = (JUMP_P (curr_insn)
6301 || (CALL_P (curr_insn) && reg->type == OP_IN));
6302 if (NONDEBUG_INSN_P (curr_insn)
6303 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
6304 && split_if_necessary (src_regno, reg->biggest_mode,
6305 potential_reload_hard_regs,
6306 before_p, curr_insn, max_uid))
6308 if (reg->subreg_p)
6309 lra_risky_transformations_p = true;
6310 change_p = true;
6311 /* Invalidate. */
6312 usage_insns[src_regno].check = 0;
6313 if (before_p)
6314 use_insn = PREV_INSN (curr_insn);
6316 if (NONDEBUG_INSN_P (curr_insn))
6318 if (src_regno < FIRST_PSEUDO_REGISTER)
6319 add_to_hard_reg_set (&live_hard_regs,
6320 reg->biggest_mode, src_regno);
6321 else
6322 add_to_hard_reg_set (&live_hard_regs,
6323 PSEUDO_REGNO_MODE (src_regno),
6324 reg_renumber[src_regno]);
6326 add_next_usage_insn (src_regno, use_insn, reloads_num);
6329 /* Process used call regs. */
6330 if (curr_id->arg_hard_regs != NULL)
6331 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6332 if (src_regno < FIRST_PSEUDO_REGISTER)
6334 SET_HARD_REG_BIT (live_hard_regs, src_regno);
6335 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6337 for (i = 0; i < to_inherit_num; i++)
6339 src_regno = to_inherit[i].regno;
6340 if (inherit_reload_reg (false, src_regno, ALL_REGS,
6341 curr_insn, to_inherit[i].insns))
6342 change_p = true;
6343 else
6344 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6347 if (update_reloads_num_p
6348 && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
6350 int regno = -1;
6351 if ((REG_P (SET_DEST (curr_set))
6352 && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
6353 && reg_renumber[regno] < 0
6354 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
6355 || (REG_P (SET_SRC (curr_set))
6356 && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
6357 && reg_renumber[regno] < 0
6358 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
6360 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6361 reloads_num++;
6362 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6363 IOR_HARD_REG_SET (potential_reload_hard_regs,
6364 reg_class_contents[cl]);
6367 if (NONDEBUG_INSN_P (curr_insn))
6369 int regno;
6371 /* Invalidate invariants with changed regs. */
6372 curr_id = lra_get_insn_recog_data (curr_insn);
6373 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6374 if (reg->type != OP_IN)
6376 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6377 bitmap_set_bit (&invalid_invariant_regs,
6378 ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
6380 curr_static_id = curr_id->insn_static_data;
6381 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6382 if (reg->type != OP_IN)
6383 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6384 if (curr_id->arg_hard_regs != NULL)
6385 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6386 if (regno >= FIRST_PSEUDO_REGISTER)
6387 bitmap_set_bit (&invalid_invariant_regs,
6388 regno - FIRST_PSEUDO_REGISTER);
6390 /* We reached the start of the current basic block. */
6391 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
6392 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
6394 /* We reached the beginning of the current block -- do
6395 rest of spliting in the current BB. */
6396 to_process = df_get_live_in (curr_bb);
6397 if (BLOCK_FOR_INSN (head) != curr_bb)
6399 /* We are somewhere in the middle of EBB. */
6400 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
6401 curr_bb, &temp_bitmap);
6402 to_process = &temp_bitmap;
6404 head_p = true;
6405 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6407 if ((int) j >= lra_constraint_new_regno_start)
6408 break;
6409 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6410 && usage_insns[j].check == curr_usage_insns_check
6411 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
6413 if (need_for_split_p (potential_reload_hard_regs, j))
6415 if (lra_dump_file != NULL && head_p)
6417 fprintf (lra_dump_file,
6418 " ----------------------------------\n");
6419 head_p = false;
6421 if (split_reg (false, j, bb_note (curr_bb),
6422 next_usage_insns))
6423 change_p = true;
6425 usage_insns[j].check = 0;
6430 return change_p;
6433 /* This value affects EBB forming. If probability of edge from EBB to
6434 a BB is not greater than the following value, we don't add the BB
6435 to EBB. */
6436 #define EBB_PROBABILITY_CUTOFF \
6437 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6439 /* Current number of inheritance/split iteration. */
6440 int lra_inheritance_iter;
6442 /* Entry function for inheritance/split pass. */
6443 void
6444 lra_inheritance (void)
6446 int i;
6447 basic_block bb, start_bb;
6448 edge e;
6450 lra_inheritance_iter++;
6451 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6452 return;
6453 timevar_push (TV_LRA_INHERITANCE);
6454 if (lra_dump_file != NULL)
6455 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
6456 lra_inheritance_iter);
6457 curr_usage_insns_check = 0;
6458 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
6459 for (i = 0; i < lra_constraint_new_regno_start; i++)
6460 usage_insns[i].check = 0;
6461 bitmap_initialize (&check_only_regs, &reg_obstack);
6462 bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
6463 bitmap_initialize (&live_regs, &reg_obstack);
6464 bitmap_initialize (&temp_bitmap, &reg_obstack);
6465 bitmap_initialize (&ebb_global_regs, &reg_obstack);
6466 FOR_EACH_BB_FN (bb, cfun)
6468 start_bb = bb;
6469 if (lra_dump_file != NULL)
6470 fprintf (lra_dump_file, "EBB");
6471 /* Form a EBB starting with BB. */
6472 bitmap_clear (&ebb_global_regs);
6473 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
6474 for (;;)
6476 if (lra_dump_file != NULL)
6477 fprintf (lra_dump_file, " %d", bb->index);
6478 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
6479 || LABEL_P (BB_HEAD (bb->next_bb)))
6480 break;
6481 e = find_fallthru_edge (bb->succs);
6482 if (! e)
6483 break;
6484 if (e->probability.initialized_p ()
6485 && e->probability.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF)
6486 break;
6487 bb = bb->next_bb;
6489 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
6490 if (lra_dump_file != NULL)
6491 fprintf (lra_dump_file, "\n");
6492 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
6493 /* Remember that the EBB head and tail can change in
6494 inherit_in_ebb. */
6495 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
6497 bitmap_clear (&ebb_global_regs);
6498 bitmap_clear (&temp_bitmap);
6499 bitmap_clear (&live_regs);
6500 bitmap_clear (&invalid_invariant_regs);
6501 bitmap_clear (&check_only_regs);
6502 free (usage_insns);
6504 timevar_pop (TV_LRA_INHERITANCE);
6509 /* This page contains code to undo failed inheritance/split
6510 transformations. */
6512 /* Current number of iteration undoing inheritance/split. */
6513 int lra_undo_inheritance_iter;
6515 /* Fix BB live info LIVE after removing pseudos created on pass doing
6516 inheritance/split which are REMOVED_PSEUDOS. */
6517 static void
6518 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
6520 unsigned int regno;
6521 bitmap_iterator bi;
6523 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
6524 if (bitmap_clear_bit (live, regno)
6525 && REG_P (lra_reg_info[regno].restore_rtx))
6526 bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
6529 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6530 number. */
6531 static int
6532 get_regno (rtx reg)
6534 if (GET_CODE (reg) == SUBREG)
6535 reg = SUBREG_REG (reg);
6536 if (REG_P (reg))
6537 return REGNO (reg);
6538 return -1;
6541 /* Delete a move INSN with destination reg DREGNO and a previous
6542 clobber insn with the same regno. The inheritance/split code can
6543 generate moves with preceding clobber and when we delete such moves
6544 we should delete the clobber insn too to keep the correct life
6545 info. */
6546 static void
6547 delete_move_and_clobber (rtx_insn *insn, int dregno)
6549 rtx_insn *prev_insn = PREV_INSN (insn);
6551 lra_set_insn_deleted (insn);
6552 lra_assert (dregno >= 0);
6553 if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
6554 && GET_CODE (PATTERN (prev_insn)) == CLOBBER
6555 && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
6556 lra_set_insn_deleted (prev_insn);
6559 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6560 return true if we did any change. The undo transformations for
6561 inheritance looks like
6562 i <- i2
6563 p <- i => p <- i2
6564 or removing
6565 p <- i, i <- p, and i <- i3
6566 where p is original pseudo from which inheritance pseudo i was
6567 created, i and i3 are removed inheritance pseudos, i2 is another
6568 not removed inheritance pseudo. All split pseudos or other
6569 occurrences of removed inheritance pseudos are changed on the
6570 corresponding original pseudos.
6572 The function also schedules insns changed and created during
6573 inheritance/split pass for processing by the subsequent constraint
6574 pass. */
6575 static bool
6576 remove_inheritance_pseudos (bitmap remove_pseudos)
6578 basic_block bb;
6579 int regno, sregno, prev_sregno, dregno;
6580 rtx restore_rtx;
6581 rtx set, prev_set;
6582 rtx_insn *prev_insn;
6583 bool change_p, done_p;
6585 change_p = ! bitmap_empty_p (remove_pseudos);
6586 /* We can not finish the function right away if CHANGE_P is true
6587 because we need to marks insns affected by previous
6588 inheritance/split pass for processing by the subsequent
6589 constraint pass. */
6590 FOR_EACH_BB_FN (bb, cfun)
6592 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
6593 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
6594 FOR_BB_INSNS_REVERSE (bb, curr_insn)
6596 if (! INSN_P (curr_insn))
6597 continue;
6598 done_p = false;
6599 sregno = dregno = -1;
6600 if (change_p && NONDEBUG_INSN_P (curr_insn)
6601 && (set = single_set (curr_insn)) != NULL_RTX)
6603 dregno = get_regno (SET_DEST (set));
6604 sregno = get_regno (SET_SRC (set));
6607 if (sregno >= 0 && dregno >= 0)
6609 if (bitmap_bit_p (remove_pseudos, dregno)
6610 && ! REG_P (lra_reg_info[dregno].restore_rtx))
6612 /* invariant inheritance pseudo <- original pseudo */
6613 if (lra_dump_file != NULL)
6615 fprintf (lra_dump_file, " Removing invariant inheritance:\n");
6616 dump_insn_slim (lra_dump_file, curr_insn);
6617 fprintf (lra_dump_file, "\n");
6619 delete_move_and_clobber (curr_insn, dregno);
6620 done_p = true;
6622 else if (bitmap_bit_p (remove_pseudos, sregno)
6623 && ! REG_P (lra_reg_info[sregno].restore_rtx))
6625 /* reload pseudo <- invariant inheritance pseudo */
6626 start_sequence ();
6627 /* We can not just change the source. It might be
6628 an insn different from the move. */
6629 emit_insn (lra_reg_info[sregno].restore_rtx);
6630 rtx_insn *new_insns = get_insns ();
6631 end_sequence ();
6632 lra_assert (single_set (new_insns) != NULL
6633 && SET_DEST (set) == SET_DEST (single_set (new_insns)));
6634 lra_process_new_insns (curr_insn, NULL, new_insns,
6635 "Changing reload<-invariant inheritance");
6636 delete_move_and_clobber (curr_insn, dregno);
6637 done_p = true;
6639 else if ((bitmap_bit_p (remove_pseudos, sregno)
6640 && (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
6641 || (bitmap_bit_p (remove_pseudos, dregno)
6642 && get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6643 && (get_regno (lra_reg_info[sregno].restore_rtx)
6644 == get_regno (lra_reg_info[dregno].restore_rtx)))))
6645 || (bitmap_bit_p (remove_pseudos, dregno)
6646 && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
6647 /* One of the following cases:
6648 original <- removed inheritance pseudo
6649 removed inherit pseudo <- another removed inherit pseudo
6650 removed inherit pseudo <- original pseudo
6652 removed_split_pseudo <- original_reg
6653 original_reg <- removed_split_pseudo */
6655 if (lra_dump_file != NULL)
6657 fprintf (lra_dump_file, " Removing %s:\n",
6658 bitmap_bit_p (&lra_split_regs, sregno)
6659 || bitmap_bit_p (&lra_split_regs, dregno)
6660 ? "split" : "inheritance");
6661 dump_insn_slim (lra_dump_file, curr_insn);
6663 delete_move_and_clobber (curr_insn, dregno);
6664 done_p = true;
6666 else if (bitmap_bit_p (remove_pseudos, sregno)
6667 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
6669 /* Search the following pattern:
6670 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6671 original_pseudo <- inherit_or_split_pseudo1
6672 where the 2nd insn is the current insn and
6673 inherit_or_split_pseudo2 is not removed. If it is found,
6674 change the current insn onto:
6675 original_pseudo <- inherit_or_split_pseudo2. */
6676 for (prev_insn = PREV_INSN (curr_insn);
6677 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
6678 prev_insn = PREV_INSN (prev_insn))
6680 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
6681 && (prev_set = single_set (prev_insn)) != NULL_RTX
6682 /* There should be no subregs in insn we are
6683 searching because only the original reg might
6684 be in subreg when we changed the mode of
6685 load/store for splitting. */
6686 && REG_P (SET_DEST (prev_set))
6687 && REG_P (SET_SRC (prev_set))
6688 && (int) REGNO (SET_DEST (prev_set)) == sregno
6689 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
6690 >= FIRST_PSEUDO_REGISTER)
6691 && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
6693 /* As we consider chain of inheritance or
6694 splitting described in above comment we should
6695 check that sregno and prev_sregno were
6696 inheritance/split pseudos created from the
6697 same original regno. */
6698 (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6699 && (get_regno (lra_reg_info[sregno].restore_rtx)
6700 == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
6701 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
6703 lra_assert (GET_MODE (SET_SRC (prev_set))
6704 == GET_MODE (regno_reg_rtx[sregno]));
6705 if (GET_CODE (SET_SRC (set)) == SUBREG)
6706 SUBREG_REG (SET_SRC (set)) = SET_SRC (prev_set);
6707 else
6708 SET_SRC (set) = SET_SRC (prev_set);
6709 /* As we are finishing with processing the insn
6710 here, check the destination too as it might
6711 inheritance pseudo for another pseudo. */
6712 if (bitmap_bit_p (remove_pseudos, dregno)
6713 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
6714 && (restore_rtx
6715 = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
6717 if (GET_CODE (SET_DEST (set)) == SUBREG)
6718 SUBREG_REG (SET_DEST (set)) = restore_rtx;
6719 else
6720 SET_DEST (set) = restore_rtx;
6722 lra_push_insn_and_update_insn_regno_info (curr_insn);
6723 lra_set_used_insn_alternative_by_uid
6724 (INSN_UID (curr_insn), -1);
6725 done_p = true;
6726 if (lra_dump_file != NULL)
6728 fprintf (lra_dump_file, " Change reload insn:\n");
6729 dump_insn_slim (lra_dump_file, curr_insn);
6734 if (! done_p)
6736 struct lra_insn_reg *reg;
6737 bool restored_regs_p = false;
6738 bool kept_regs_p = false;
6740 curr_id = lra_get_insn_recog_data (curr_insn);
6741 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6743 regno = reg->regno;
6744 restore_rtx = lra_reg_info[regno].restore_rtx;
6745 if (restore_rtx != NULL_RTX)
6747 if (change_p && bitmap_bit_p (remove_pseudos, regno))
6749 lra_substitute_pseudo_within_insn
6750 (curr_insn, regno, restore_rtx, false);
6751 restored_regs_p = true;
6753 else
6754 kept_regs_p = true;
6757 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
6759 /* The instruction has changed since the previous
6760 constraints pass. */
6761 lra_push_insn_and_update_insn_regno_info (curr_insn);
6762 lra_set_used_insn_alternative_by_uid
6763 (INSN_UID (curr_insn), -1);
6765 else if (restored_regs_p)
6766 /* The instruction has been restored to the form that
6767 it had during the previous constraints pass. */
6768 lra_update_insn_regno_info (curr_insn);
6769 if (restored_regs_p && lra_dump_file != NULL)
6771 fprintf (lra_dump_file, " Insn after restoring regs:\n");
6772 dump_insn_slim (lra_dump_file, curr_insn);
6777 return change_p;
6780 /* If optional reload pseudos failed to get a hard register or was not
6781 inherited, it is better to remove optional reloads. We do this
6782 transformation after undoing inheritance to figure out necessity to
6783 remove optional reloads easier. Return true if we do any
6784 change. */
6785 static bool
6786 undo_optional_reloads (void)
6788 bool change_p, keep_p;
6789 unsigned int regno, uid;
6790 bitmap_iterator bi, bi2;
6791 rtx_insn *insn;
6792 rtx set, src, dest;
6793 auto_bitmap removed_optional_reload_pseudos (&reg_obstack);
6795 bitmap_copy (removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
6796 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6798 keep_p = false;
6799 /* Keep optional reloads from previous subpasses. */
6800 if (lra_reg_info[regno].restore_rtx == NULL_RTX
6801 /* If the original pseudo changed its allocation, just
6802 removing the optional pseudo is dangerous as the original
6803 pseudo will have longer live range. */
6804 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
6805 keep_p = true;
6806 else if (reg_renumber[regno] >= 0)
6807 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
6809 insn = lra_insn_recog_data[uid]->insn;
6810 if ((set = single_set (insn)) == NULL_RTX)
6811 continue;
6812 src = SET_SRC (set);
6813 dest = SET_DEST (set);
6814 if (! REG_P (src) || ! REG_P (dest))
6815 continue;
6816 if (REGNO (dest) == regno
6817 /* Ignore insn for optional reloads itself. */
6818 && REGNO (lra_reg_info[regno].restore_rtx) != REGNO (src)
6819 /* Check only inheritance on last inheritance pass. */
6820 && (int) REGNO (src) >= new_regno_start
6821 /* Check that the optional reload was inherited. */
6822 && bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
6824 keep_p = true;
6825 break;
6828 if (keep_p)
6830 bitmap_clear_bit (removed_optional_reload_pseudos, regno);
6831 if (lra_dump_file != NULL)
6832 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
6835 change_p = ! bitmap_empty_p (removed_optional_reload_pseudos);
6836 auto_bitmap insn_bitmap (&reg_obstack);
6837 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos, 0, regno, bi)
6839 if (lra_dump_file != NULL)
6840 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
6841 bitmap_copy (insn_bitmap, &lra_reg_info[regno].insn_bitmap);
6842 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap, 0, uid, bi2)
6844 insn = lra_insn_recog_data[uid]->insn;
6845 if ((set = single_set (insn)) != NULL_RTX)
6847 src = SET_SRC (set);
6848 dest = SET_DEST (set);
6849 if (REG_P (src) && REG_P (dest)
6850 && ((REGNO (src) == regno
6851 && (REGNO (lra_reg_info[regno].restore_rtx)
6852 == REGNO (dest)))
6853 || (REGNO (dest) == regno
6854 && (REGNO (lra_reg_info[regno].restore_rtx)
6855 == REGNO (src)))))
6857 if (lra_dump_file != NULL)
6859 fprintf (lra_dump_file, " Deleting move %u\n",
6860 INSN_UID (insn));
6861 dump_insn_slim (lra_dump_file, insn);
6863 delete_move_and_clobber (insn, REGNO (dest));
6864 continue;
6866 /* We should not worry about generation memory-memory
6867 moves here as if the corresponding inheritance did
6868 not work (inheritance pseudo did not get a hard reg),
6869 we remove the inheritance pseudo and the optional
6870 reload. */
6872 lra_substitute_pseudo_within_insn
6873 (insn, regno, lra_reg_info[regno].restore_rtx, false);
6874 lra_update_insn_regno_info (insn);
6875 if (lra_dump_file != NULL)
6877 fprintf (lra_dump_file,
6878 " Restoring original insn:\n");
6879 dump_insn_slim (lra_dump_file, insn);
6883 /* Clear restore_regnos. */
6884 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6885 lra_reg_info[regno].restore_rtx = NULL_RTX;
6886 return change_p;
6889 /* Entry function for undoing inheritance/split transformation. Return true
6890 if we did any RTL change in this pass. */
6891 bool
6892 lra_undo_inheritance (void)
6894 unsigned int regno;
6895 int hard_regno;
6896 int n_all_inherit, n_inherit, n_all_split, n_split;
6897 rtx restore_rtx;
6898 bitmap_iterator bi;
6899 bool change_p;
6901 lra_undo_inheritance_iter++;
6902 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6903 return false;
6904 if (lra_dump_file != NULL)
6905 fprintf (lra_dump_file,
6906 "\n********** Undoing inheritance #%d: **********\n\n",
6907 lra_undo_inheritance_iter);
6908 auto_bitmap remove_pseudos (&reg_obstack);
6909 n_inherit = n_all_inherit = 0;
6910 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6911 if (lra_reg_info[regno].restore_rtx != NULL_RTX)
6913 n_all_inherit++;
6914 if (reg_renumber[regno] < 0
6915 /* If the original pseudo changed its allocation, just
6916 removing inheritance is dangerous as for changing
6917 allocation we used shorter live-ranges. */
6918 && (! REG_P (lra_reg_info[regno].restore_rtx)
6919 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
6920 bitmap_set_bit (remove_pseudos, regno);
6921 else
6922 n_inherit++;
6924 if (lra_dump_file != NULL && n_all_inherit != 0)
6925 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
6926 n_inherit, n_all_inherit,
6927 (double) n_inherit / n_all_inherit * 100);
6928 n_split = n_all_split = 0;
6929 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6930 if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
6932 int restore_regno = REGNO (restore_rtx);
6934 n_all_split++;
6935 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
6936 ? reg_renumber[restore_regno] : restore_regno);
6937 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
6938 bitmap_set_bit (remove_pseudos, regno);
6939 else
6941 n_split++;
6942 if (lra_dump_file != NULL)
6943 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
6944 regno, restore_regno);
6947 if (lra_dump_file != NULL && n_all_split != 0)
6948 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
6949 n_split, n_all_split,
6950 (double) n_split / n_all_split * 100);
6951 change_p = remove_inheritance_pseudos (remove_pseudos);
6952 /* Clear restore_regnos. */
6953 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6954 lra_reg_info[regno].restore_rtx = NULL_RTX;
6955 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6956 lra_reg_info[regno].restore_rtx = NULL_RTX;
6957 change_p = undo_optional_reloads () || change_p;
6958 return change_p;