1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "tree-pretty-print.h"
30 #include "hash-table.h"
31 #include "basic-block.h"
32 #include "tree-ssa-alias.h"
33 #include "internal-fn.h"
34 #include "gimple-expr.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
39 #include "tree-phinodes.h"
40 #include "ssa-iterators.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
43 #include "tree-ssa-live.h"
44 #include "tree-ssa-coalesce.h"
45 #include "diagnostic-core.h"
48 /* This set of routines implements a coalesce_list. This is an object which
49 is used to track pairs of ssa_names which are desirable to coalesce
50 together to avoid copies. Costs are associated with each pair, and when
51 all desired information has been collected, the object can be used to
52 order the pairs for processing. */
54 /* This structure defines a pair entry. */
56 typedef struct coalesce_pair
62 typedef const struct coalesce_pair
*const_coalesce_pair_p
;
64 /* Coalesce pair hashtable helpers. */
66 struct coalesce_pair_hasher
: typed_noop_remove
<coalesce_pair
>
68 typedef coalesce_pair value_type
;
69 typedef coalesce_pair compare_type
;
70 static inline hashval_t
hash (const value_type
*);
71 static inline bool equal (const value_type
*, const compare_type
*);
74 /* Hash function for coalesce list. Calculate hash for PAIR. */
77 coalesce_pair_hasher::hash (const value_type
*pair
)
79 hashval_t a
= (hashval_t
)(pair
->first_element
);
80 hashval_t b
= (hashval_t
)(pair
->second_element
);
82 return b
* (b
- 1) / 2 + a
;
85 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
86 returning TRUE if the two pairs are equivalent. */
89 coalesce_pair_hasher::equal (const value_type
*p1
, const compare_type
*p2
)
91 return (p1
->first_element
== p2
->first_element
92 && p1
->second_element
== p2
->second_element
);
95 typedef hash_table
<coalesce_pair_hasher
> coalesce_table_type
;
96 typedef coalesce_table_type::iterator coalesce_iterator_type
;
99 typedef struct cost_one_pair_d
103 struct cost_one_pair_d
*next
;
106 /* This structure maintains the list of coalesce pairs. */
108 typedef struct coalesce_list_d
110 coalesce_table_type
*list
; /* Hash table. */
111 coalesce_pair_p
*sorted
; /* List when sorted. */
112 int num_sorted
; /* Number in the sorted list. */
113 cost_one_pair_p cost_one_list
;/* Single use coalesces with cost 1. */
116 #define NO_BEST_COALESCE -1
117 #define MUST_COALESCE_COST INT_MAX
120 /* Return cost of execution of copy instruction with FREQUENCY. */
123 coalesce_cost (int frequency
, bool optimize_for_size
)
125 /* Base costs on BB frequencies bounded by 1. */
126 int cost
= frequency
;
131 if (optimize_for_size
)
138 /* Return the cost of executing a copy instruction in basic block BB. */
141 coalesce_cost_bb (basic_block bb
)
143 return coalesce_cost (bb
->frequency
, optimize_bb_for_size_p (bb
));
147 /* Return the cost of executing a copy instruction on edge E. */
150 coalesce_cost_edge (edge e
)
154 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
155 if (EDGE_CRITICAL_P (e
))
157 if (e
->flags
& EDGE_ABNORMAL
)
158 return MUST_COALESCE_COST
;
159 if (e
->flags
& EDGE_EH
)
163 FOR_EACH_EDGE (e2
, ei
, e
->dest
->preds
)
166 /* Putting code on EH edge that leads to BB
167 with multiple predecestors imply splitting of
171 /* If there are multiple EH predecestors, we
172 also copy EH regions and produce separate
173 landing pad. This is expensive. */
174 if (e2
->flags
& EDGE_EH
)
182 return coalesce_cost (EDGE_FREQUENCY (e
),
183 optimize_edge_for_size_p (e
)) * mult
;
187 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
188 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
189 NO_BEST_COALESCE is returned if there aren't any. */
192 pop_cost_one_pair (coalesce_list_p cl
, int *p1
, int *p2
)
196 ptr
= cl
->cost_one_list
;
198 return NO_BEST_COALESCE
;
200 *p1
= ptr
->first_element
;
201 *p2
= ptr
->second_element
;
202 cl
->cost_one_list
= ptr
->next
;
209 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
210 2 elements via P1 and P2. Their calculated cost is returned by the function.
211 NO_BEST_COALESCE is returned if the coalesce list is empty. */
214 pop_best_coalesce (coalesce_list_p cl
, int *p1
, int *p2
)
216 coalesce_pair_p node
;
219 if (cl
->sorted
== NULL
)
220 return pop_cost_one_pair (cl
, p1
, p2
);
222 if (cl
->num_sorted
== 0)
223 return pop_cost_one_pair (cl
, p1
, p2
);
225 node
= cl
->sorted
[--(cl
->num_sorted
)];
226 *p1
= node
->first_element
;
227 *p2
= node
->second_element
;
235 /* Create a new empty coalesce list object and return it. */
237 static inline coalesce_list_p
238 create_coalesce_list (void)
240 coalesce_list_p list
;
241 unsigned size
= num_ssa_names
* 3;
246 list
= (coalesce_list_p
) xmalloc (sizeof (struct coalesce_list_d
));
247 list
->list
= new coalesce_table_type (size
);
249 list
->num_sorted
= 0;
250 list
->cost_one_list
= NULL
;
255 /* Delete coalesce list CL. */
258 delete_coalesce_list (coalesce_list_p cl
)
260 gcc_assert (cl
->cost_one_list
== NULL
);
264 gcc_assert (cl
->num_sorted
== 0);
269 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
270 one isn't found, return NULL if CREATE is false, otherwise create a new
271 coalesce pair object and return it. */
273 static coalesce_pair_p
274 find_coalesce_pair (coalesce_list_p cl
, int p1
, int p2
, bool create
)
276 struct coalesce_pair p
;
277 coalesce_pair
**slot
;
280 /* Normalize so that p1 is the smaller value. */
283 p
.first_element
= p2
;
284 p
.second_element
= p1
;
288 p
.first_element
= p1
;
289 p
.second_element
= p2
;
292 hash
= coalesce_pair_hasher::hash (&p
);
293 slot
= cl
->list
->find_slot_with_hash (&p
, hash
, create
? INSERT
: NO_INSERT
);
299 struct coalesce_pair
* pair
= XNEW (struct coalesce_pair
);
300 gcc_assert (cl
->sorted
== NULL
);
301 pair
->first_element
= p
.first_element
;
302 pair
->second_element
= p
.second_element
;
307 return (struct coalesce_pair
*) *slot
;
311 add_cost_one_coalesce (coalesce_list_p cl
, int p1
, int p2
)
313 cost_one_pair_p pair
;
315 pair
= XNEW (struct cost_one_pair_d
);
316 pair
->first_element
= p1
;
317 pair
->second_element
= p2
;
318 pair
->next
= cl
->cost_one_list
;
319 cl
->cost_one_list
= pair
;
323 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
326 add_coalesce (coalesce_list_p cl
, int p1
, int p2
, int value
)
328 coalesce_pair_p node
;
330 gcc_assert (cl
->sorted
== NULL
);
334 node
= find_coalesce_pair (cl
, p1
, p2
, true);
336 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
337 if (node
->cost
< MUST_COALESCE_COST
- 1)
339 if (value
< MUST_COALESCE_COST
- 1)
347 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
350 compare_pairs (const void *p1
, const void *p2
)
352 const_coalesce_pair_p
const *const pp1
= (const_coalesce_pair_p
const *) p1
;
353 const_coalesce_pair_p
const *const pp2
= (const_coalesce_pair_p
const *) p2
;
356 result
= (* pp1
)->cost
- (* pp2
)->cost
;
357 /* Since qsort does not guarantee stability we use the elements
358 as a secondary key. This provides us with independence from
359 the host's implementation of the sorting algorithm. */
362 result
= (* pp2
)->first_element
- (* pp1
)->first_element
;
364 result
= (* pp2
)->second_element
- (* pp1
)->second_element
;
371 /* Return the number of unique coalesce pairs in CL. */
374 num_coalesce_pairs (coalesce_list_p cl
)
376 return cl
->list
->elements ();
380 /* Iterate over CL using ITER, returning values in PAIR. */
382 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
383 FOR_EACH_HASH_TABLE_ELEMENT (*(CL)->list, (PAIR), coalesce_pair_p, (ITER))
386 /* Prepare CL for removal of preferred pairs. When finished they are sorted
387 in order from most important coalesce to least important. */
390 sort_coalesce_list (coalesce_list_p cl
)
394 coalesce_iterator_type ppi
;
396 gcc_assert (cl
->sorted
== NULL
);
398 num
= num_coalesce_pairs (cl
);
399 cl
->num_sorted
= num
;
403 /* Allocate a vector for the pair pointers. */
404 cl
->sorted
= XNEWVEC (coalesce_pair_p
, num
);
406 /* Populate the vector with pointers to the pairs. */
408 FOR_EACH_PARTITION_PAIR (p
, ppi
, cl
)
410 gcc_assert (x
== num
);
412 /* Already sorted. */
416 /* If there are only 2, just pick swap them if the order isn't correct. */
419 if (cl
->sorted
[0]->cost
> cl
->sorted
[1]->cost
)
422 cl
->sorted
[0] = cl
->sorted
[1];
428 /* Only call qsort if there are more than 2 items. */
430 qsort (cl
->sorted
, num
, sizeof (coalesce_pair_p
), compare_pairs
);
434 /* Send debug info for coalesce list CL to file F. */
437 dump_coalesce_list (FILE *f
, coalesce_list_p cl
)
439 coalesce_pair_p node
;
440 coalesce_iterator_type ppi
;
445 if (cl
->sorted
== NULL
)
447 fprintf (f
, "Coalesce List:\n");
448 FOR_EACH_PARTITION_PAIR (node
, ppi
, cl
)
450 tree var1
= ssa_name (node
->first_element
);
451 tree var2
= ssa_name (node
->second_element
);
452 print_generic_expr (f
, var1
, TDF_SLIM
);
453 fprintf (f
, " <-> ");
454 print_generic_expr (f
, var2
, TDF_SLIM
);
455 fprintf (f
, " (%1d), ", node
->cost
);
461 fprintf (f
, "Sorted Coalesce list:\n");
462 for (x
= cl
->num_sorted
- 1 ; x
>=0; x
--)
464 node
= cl
->sorted
[x
];
465 fprintf (f
, "(%d) ", node
->cost
);
466 var
= ssa_name (node
->first_element
);
467 print_generic_expr (f
, var
, TDF_SLIM
);
468 fprintf (f
, " <-> ");
469 var
= ssa_name (node
->second_element
);
470 print_generic_expr (f
, var
, TDF_SLIM
);
477 /* This represents a conflict graph. Implemented as an array of bitmaps.
478 A full matrix is used for conflicts rather than just upper triangular form.
479 this make sit much simpler and faster to perform conflict merges. */
481 typedef struct ssa_conflicts_d
483 bitmap_obstack obstack
; /* A place to allocate our bitmaps. */
484 vec
<bitmap
> conflicts
;
487 /* Return an empty new conflict graph for SIZE elements. */
489 static inline ssa_conflicts_p
490 ssa_conflicts_new (unsigned size
)
494 ptr
= XNEW (struct ssa_conflicts_d
);
495 bitmap_obstack_initialize (&ptr
->obstack
);
496 ptr
->conflicts
.create (size
);
497 ptr
->conflicts
.safe_grow_cleared (size
);
502 /* Free storage for conflict graph PTR. */
505 ssa_conflicts_delete (ssa_conflicts_p ptr
)
507 bitmap_obstack_release (&ptr
->obstack
);
508 ptr
->conflicts
.release ();
513 /* Test if elements X and Y conflict in graph PTR. */
516 ssa_conflicts_test_p (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
518 bitmap bx
= ptr
->conflicts
[x
];
519 bitmap by
= ptr
->conflicts
[y
];
521 gcc_checking_assert (x
!= y
);
524 /* Avoid the lookup if Y has no conflicts. */
525 return by
? bitmap_bit_p (bx
, y
) : false;
531 /* Add a conflict with Y to the bitmap for X in graph PTR. */
534 ssa_conflicts_add_one (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
536 bitmap bx
= ptr
->conflicts
[x
];
537 /* If there are no conflicts yet, allocate the bitmap and set bit. */
539 bx
= ptr
->conflicts
[x
] = BITMAP_ALLOC (&ptr
->obstack
);
540 bitmap_set_bit (bx
, y
);
544 /* Add conflicts between X and Y in graph PTR. */
547 ssa_conflicts_add (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
549 gcc_checking_assert (x
!= y
);
550 ssa_conflicts_add_one (ptr
, x
, y
);
551 ssa_conflicts_add_one (ptr
, y
, x
);
555 /* Merge all Y's conflict into X in graph PTR. */
558 ssa_conflicts_merge (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
562 bitmap bx
= ptr
->conflicts
[x
];
563 bitmap by
= ptr
->conflicts
[y
];
565 gcc_checking_assert (x
!= y
);
569 /* Add a conflict between X and every one Y has. If the bitmap doesn't
570 exist, then it has already been coalesced, and we don't need to add a
572 EXECUTE_IF_SET_IN_BITMAP (by
, 0, z
, bi
)
574 bitmap bz
= ptr
->conflicts
[z
];
576 bitmap_set_bit (bz
, x
);
581 /* If X has conflicts, add Y's to X. */
582 bitmap_ior_into (bx
, by
);
584 ptr
->conflicts
[y
] = NULL
;
588 /* If X has no conflicts, simply use Y's. */
589 ptr
->conflicts
[x
] = by
;
590 ptr
->conflicts
[y
] = NULL
;
595 /* Dump a conflicts graph. */
598 ssa_conflicts_dump (FILE *file
, ssa_conflicts_p ptr
)
603 fprintf (file
, "\nConflict graph:\n");
605 FOR_EACH_VEC_ELT (ptr
->conflicts
, x
, b
)
608 fprintf (file
, "%d: ", x
);
609 dump_bitmap (file
, b
);
614 /* This structure is used to efficiently record the current status of live
615 SSA_NAMES when building a conflict graph.
616 LIVE_BASE_VAR has a bit set for each base variable which has at least one
618 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
619 index, and is used to track what partitions of each base variable are
620 live. This makes it easy to add conflicts between just live partitions
621 with the same base variable.
622 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
623 marked as being live. This delays clearing of these bitmaps until
624 they are actually needed again. */
626 typedef struct live_track_d
628 bitmap_obstack obstack
; /* A place to allocate our bitmaps. */
629 bitmap live_base_var
; /* Indicates if a basevar is live. */
630 bitmap
*live_base_partitions
; /* Live partitions for each basevar. */
631 var_map map
; /* Var_map being used for partition mapping. */
635 /* This routine will create a new live track structure based on the partitions
639 new_live_track (var_map map
)
644 /* Make sure there is a partition view in place. */
645 gcc_assert (map
->partition_to_base_index
!= NULL
);
647 ptr
= (live_track_p
) xmalloc (sizeof (struct live_track_d
));
649 lim
= num_basevars (map
);
650 bitmap_obstack_initialize (&ptr
->obstack
);
651 ptr
->live_base_partitions
= (bitmap
*) xmalloc (sizeof (bitmap
*) * lim
);
652 ptr
->live_base_var
= BITMAP_ALLOC (&ptr
->obstack
);
653 for (x
= 0; x
< lim
; x
++)
654 ptr
->live_base_partitions
[x
] = BITMAP_ALLOC (&ptr
->obstack
);
659 /* This routine will free the memory associated with PTR. */
662 delete_live_track (live_track_p ptr
)
664 bitmap_obstack_release (&ptr
->obstack
);
665 free (ptr
->live_base_partitions
);
670 /* This function will remove PARTITION from the live list in PTR. */
673 live_track_remove_partition (live_track_p ptr
, int partition
)
677 root
= basevar_index (ptr
->map
, partition
);
678 bitmap_clear_bit (ptr
->live_base_partitions
[root
], partition
);
679 /* If the element list is empty, make the base variable not live either. */
680 if (bitmap_empty_p (ptr
->live_base_partitions
[root
]))
681 bitmap_clear_bit (ptr
->live_base_var
, root
);
685 /* This function will adds PARTITION to the live list in PTR. */
688 live_track_add_partition (live_track_p ptr
, int partition
)
692 root
= basevar_index (ptr
->map
, partition
);
693 /* If this base var wasn't live before, it is now. Clear the element list
694 since it was delayed until needed. */
695 if (bitmap_set_bit (ptr
->live_base_var
, root
))
696 bitmap_clear (ptr
->live_base_partitions
[root
]);
697 bitmap_set_bit (ptr
->live_base_partitions
[root
], partition
);
702 /* Clear the live bit for VAR in PTR. */
705 live_track_clear_var (live_track_p ptr
, tree var
)
709 p
= var_to_partition (ptr
->map
, var
);
710 if (p
!= NO_PARTITION
)
711 live_track_remove_partition (ptr
, p
);
715 /* Return TRUE if VAR is live in PTR. */
718 live_track_live_p (live_track_p ptr
, tree var
)
722 p
= var_to_partition (ptr
->map
, var
);
723 if (p
!= NO_PARTITION
)
725 root
= basevar_index (ptr
->map
, p
);
726 if (bitmap_bit_p (ptr
->live_base_var
, root
))
727 return bitmap_bit_p (ptr
->live_base_partitions
[root
], p
);
733 /* This routine will add USE to PTR. USE will be marked as live in both the
734 ssa live map and the live bitmap for the root of USE. */
737 live_track_process_use (live_track_p ptr
, tree use
)
741 p
= var_to_partition (ptr
->map
, use
);
742 if (p
== NO_PARTITION
)
745 /* Mark as live in the appropriate live list. */
746 live_track_add_partition (ptr
, p
);
750 /* This routine will process a DEF in PTR. DEF will be removed from the live
751 lists, and if there are any other live partitions with the same base
752 variable, conflicts will be added to GRAPH. */
755 live_track_process_def (live_track_p ptr
, tree def
, ssa_conflicts_p graph
)
762 p
= var_to_partition (ptr
->map
, def
);
763 if (p
== NO_PARTITION
)
766 /* Clear the liveness bit. */
767 live_track_remove_partition (ptr
, p
);
769 /* If the bitmap isn't empty now, conflicts need to be added. */
770 root
= basevar_index (ptr
->map
, p
);
771 if (bitmap_bit_p (ptr
->live_base_var
, root
))
773 b
= ptr
->live_base_partitions
[root
];
774 EXECUTE_IF_SET_IN_BITMAP (b
, 0, x
, bi
)
775 ssa_conflicts_add (graph
, p
, x
);
780 /* Initialize PTR with the partitions set in INIT. */
783 live_track_init (live_track_p ptr
, bitmap init
)
788 /* Mark all live on exit partitions. */
789 EXECUTE_IF_SET_IN_BITMAP (init
, 0, p
, bi
)
790 live_track_add_partition (ptr
, p
);
794 /* This routine will clear all live partitions in PTR. */
797 live_track_clear_base_vars (live_track_p ptr
)
799 /* Simply clear the live base list. Anything marked as live in the element
800 lists will be cleared later if/when the base variable ever comes alive
802 bitmap_clear (ptr
->live_base_var
);
806 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
807 partition view of the var_map liveinfo is based on get entries in the
808 conflict graph. Only conflicts between ssa_name partitions with the same
809 base variable are added. */
811 static ssa_conflicts_p
812 build_ssa_conflict_graph (tree_live_info_p liveinfo
)
814 ssa_conflicts_p graph
;
820 map
= live_var_map (liveinfo
);
821 graph
= ssa_conflicts_new (num_var_partitions (map
));
823 live
= new_live_track (map
);
825 FOR_EACH_BB_FN (bb
, cfun
)
827 gimple_stmt_iterator gsi
;
829 /* Start with live on exit temporaries. */
830 live_track_init (live
, live_on_exit (liveinfo
, bb
));
832 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
835 gimple stmt
= gsi_stmt (gsi
);
837 /* A copy between 2 partitions does not introduce an interference
838 by itself. If they did, you would never be able to coalesce
839 two things which are copied. If the two variables really do
840 conflict, they will conflict elsewhere in the program.
842 This is handled by simply removing the SRC of the copy from the
843 live list, and processing the stmt normally. */
844 if (is_gimple_assign (stmt
))
846 tree lhs
= gimple_assign_lhs (stmt
);
847 tree rhs1
= gimple_assign_rhs1 (stmt
);
848 if (gimple_assign_copy_p (stmt
)
849 && TREE_CODE (lhs
) == SSA_NAME
850 && TREE_CODE (rhs1
) == SSA_NAME
)
851 live_track_clear_var (live
, rhs1
);
853 else if (is_gimple_debug (stmt
))
856 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_DEF
)
857 live_track_process_def (live
, var
, graph
);
859 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_USE
)
860 live_track_process_use (live
, var
);
863 /* If result of a PHI is unused, looping over the statements will not
864 record any conflicts since the def was never live. Since the PHI node
865 is going to be translated out of SSA form, it will insert a copy.
866 There must be a conflict recorded between the result of the PHI and
867 any variables that are live. Otherwise the out-of-ssa translation
868 may create incorrect code. */
869 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
871 gimple phi
= gsi_stmt (gsi
);
872 tree result
= PHI_RESULT (phi
);
873 if (live_track_live_p (live
, result
))
874 live_track_process_def (live
, result
, graph
);
877 live_track_clear_base_vars (live
);
880 delete_live_track (live
);
885 /* Shortcut routine to print messages to file F of the form:
886 "STR1 EXPR1 STR2 EXPR2 STR3." */
889 print_exprs (FILE *f
, const char *str1
, tree expr1
, const char *str2
,
890 tree expr2
, const char *str3
)
892 fprintf (f
, "%s", str1
);
893 print_generic_expr (f
, expr1
, TDF_SLIM
);
894 fprintf (f
, "%s", str2
);
895 print_generic_expr (f
, expr2
, TDF_SLIM
);
896 fprintf (f
, "%s", str3
);
900 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
903 fail_abnormal_edge_coalesce (int x
, int y
)
905 fprintf (stderr
, "\nUnable to coalesce ssa_names %d and %d",x
, y
);
906 fprintf (stderr
, " which are marked as MUST COALESCE.\n");
907 print_generic_expr (stderr
, ssa_name (x
), TDF_SLIM
);
908 fprintf (stderr
, " and ");
909 print_generic_stmt (stderr
, ssa_name (y
), TDF_SLIM
);
911 internal_error ("SSA corruption");
915 /* This function creates a var_map for the current function as well as creating
916 a coalesce list for use later in the out of ssa process. */
919 create_outofssa_var_map (coalesce_list_p cl
, bitmap used_in_copy
)
921 gimple_stmt_iterator gsi
;
931 map
= init_var_map (num_ssa_names
);
933 FOR_EACH_BB_FN (bb
, cfun
)
937 for (gimple_phi_iterator gpi
= gsi_start_phis (bb
);
941 gimple_phi phi
= gpi
.phi ();
945 bool saw_copy
= false;
947 res
= gimple_phi_result (phi
);
948 ver
= SSA_NAME_VERSION (res
);
949 register_ssa_partition (map
, res
);
951 /* Register ssa_names and coalesces between the args and the result
953 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
955 edge e
= gimple_phi_arg_edge (phi
, i
);
956 arg
= PHI_ARG_DEF (phi
, i
);
957 if (TREE_CODE (arg
) != SSA_NAME
)
960 register_ssa_partition (map
, arg
);
961 if (gimple_can_coalesce_p (arg
, res
)
962 || (e
->flags
& EDGE_ABNORMAL
))
965 bitmap_set_bit (used_in_copy
, SSA_NAME_VERSION (arg
));
966 if ((e
->flags
& EDGE_ABNORMAL
) == 0)
968 int cost
= coalesce_cost_edge (e
);
969 if (cost
== 1 && has_single_use (arg
))
970 add_cost_one_coalesce (cl
, ver
, SSA_NAME_VERSION (arg
));
972 add_coalesce (cl
, ver
, SSA_NAME_VERSION (arg
), cost
);
977 bitmap_set_bit (used_in_copy
, ver
);
980 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
982 stmt
= gsi_stmt (gsi
);
984 if (is_gimple_debug (stmt
))
987 /* Register USE and DEF operands in each statement. */
988 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, (SSA_OP_DEF
|SSA_OP_USE
))
989 register_ssa_partition (map
, var
);
991 /* Check for copy coalesces. */
992 switch (gimple_code (stmt
))
996 tree lhs
= gimple_assign_lhs (stmt
);
997 tree rhs1
= gimple_assign_rhs1 (stmt
);
998 if (gimple_assign_ssa_name_copy_p (stmt
)
999 && gimple_can_coalesce_p (lhs
, rhs1
))
1001 v1
= SSA_NAME_VERSION (lhs
);
1002 v2
= SSA_NAME_VERSION (rhs1
);
1003 cost
= coalesce_cost_bb (bb
);
1004 add_coalesce (cl
, v1
, v2
, cost
);
1005 bitmap_set_bit (used_in_copy
, v1
);
1006 bitmap_set_bit (used_in_copy
, v2
);
1013 gimple_asm asm_stmt
= as_a
<gimple_asm
> (stmt
);
1014 unsigned long noutputs
, i
;
1015 unsigned long ninputs
;
1016 tree
*outputs
, link
;
1017 noutputs
= gimple_asm_noutputs (asm_stmt
);
1018 ninputs
= gimple_asm_ninputs (asm_stmt
);
1019 outputs
= (tree
*) alloca (noutputs
* sizeof (tree
));
1020 for (i
= 0; i
< noutputs
; ++i
)
1022 link
= gimple_asm_output_op (asm_stmt
, i
);
1023 outputs
[i
] = TREE_VALUE (link
);
1026 for (i
= 0; i
< ninputs
; ++i
)
1028 const char *constraint
;
1031 unsigned long match
;
1033 link
= gimple_asm_input_op (asm_stmt
, i
);
1035 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1036 input
= TREE_VALUE (link
);
1038 if (TREE_CODE (input
) != SSA_NAME
)
1041 match
= strtoul (constraint
, &end
, 10);
1042 if (match
>= noutputs
|| end
== constraint
)
1045 if (TREE_CODE (outputs
[match
]) != SSA_NAME
)
1048 v1
= SSA_NAME_VERSION (outputs
[match
]);
1049 v2
= SSA_NAME_VERSION (input
);
1051 if (gimple_can_coalesce_p (outputs
[match
], input
))
1053 cost
= coalesce_cost (REG_BR_PROB_BASE
,
1054 optimize_bb_for_size_p (bb
));
1055 add_coalesce (cl
, v1
, v2
, cost
);
1056 bitmap_set_bit (used_in_copy
, v1
);
1057 bitmap_set_bit (used_in_copy
, v2
);
1069 /* Now process result decls and live on entry variables for entry into
1070 the coalesce list. */
1072 for (i
= 1; i
< num_ssa_names
; i
++)
1075 if (var
!= NULL_TREE
&& !virtual_operand_p (var
))
1077 /* Add coalesces between all the result decls. */
1078 if (SSA_NAME_VAR (var
)
1079 && TREE_CODE (SSA_NAME_VAR (var
)) == RESULT_DECL
)
1081 if (first
== NULL_TREE
)
1085 gcc_assert (gimple_can_coalesce_p (var
, first
));
1086 v1
= SSA_NAME_VERSION (first
);
1087 v2
= SSA_NAME_VERSION (var
);
1088 bitmap_set_bit (used_in_copy
, v1
);
1089 bitmap_set_bit (used_in_copy
, v2
);
1090 cost
= coalesce_cost_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
1091 add_coalesce (cl
, v1
, v2
, cost
);
1094 /* Mark any default_def variables as being in the coalesce list
1095 since they will have to be coalesced with the base variable. If
1096 not marked as present, they won't be in the coalesce view. */
1097 if (SSA_NAME_IS_DEFAULT_DEF (var
)
1098 && !has_zero_uses (var
))
1099 bitmap_set_bit (used_in_copy
, SSA_NAME_VERSION (var
));
1107 /* Attempt to coalesce ssa versions X and Y together using the partition
1108 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1109 DEBUG, if it is nun-NULL. */
1112 attempt_coalesce (var_map map
, ssa_conflicts_p graph
, int x
, int y
,
1119 p1
= var_to_partition (map
, ssa_name (x
));
1120 p2
= var_to_partition (map
, ssa_name (y
));
1124 fprintf (debug
, "(%d)", x
);
1125 print_generic_expr (debug
, partition_to_var (map
, p1
), TDF_SLIM
);
1126 fprintf (debug
, " & (%d)", y
);
1127 print_generic_expr (debug
, partition_to_var (map
, p2
), TDF_SLIM
);
1133 fprintf (debug
, ": Already Coalesced.\n");
1138 fprintf (debug
, " [map: %d, %d] ", p1
, p2
);
1141 if (!ssa_conflicts_test_p (graph
, p1
, p2
))
1143 var1
= partition_to_var (map
, p1
);
1144 var2
= partition_to_var (map
, p2
);
1145 z
= var_union (map
, var1
, var2
);
1146 if (z
== NO_PARTITION
)
1149 fprintf (debug
, ": Unable to perform partition union.\n");
1153 /* z is the new combined partition. Remove the other partition from
1154 the list, and merge the conflicts. */
1156 ssa_conflicts_merge (graph
, p1
, p2
);
1158 ssa_conflicts_merge (graph
, p2
, p1
);
1161 fprintf (debug
, ": Success -> %d\n", z
);
1166 fprintf (debug
, ": Fail due to conflict\n");
1172 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1173 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1176 coalesce_partitions (var_map map
, ssa_conflicts_p graph
, coalesce_list_p cl
,
1186 /* First, coalesce all the copies across abnormal edges. These are not placed
1187 in the coalesce list because they do not need to be sorted, and simply
1188 consume extra memory/compilation time in large programs. */
1190 FOR_EACH_BB_FN (bb
, cfun
)
1192 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1193 if (e
->flags
& EDGE_ABNORMAL
)
1195 gimple_phi_iterator gsi
;
1196 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
1199 gimple_phi phi
= gsi
.phi ();
1200 tree res
= PHI_RESULT (phi
);
1201 tree arg
= PHI_ARG_DEF (phi
, e
->dest_idx
);
1202 int v1
= SSA_NAME_VERSION (res
);
1203 int v2
= SSA_NAME_VERSION (arg
);
1206 fprintf (debug
, "Abnormal coalesce: ");
1208 if (!attempt_coalesce (map
, graph
, v1
, v2
, debug
))
1209 fail_abnormal_edge_coalesce (v1
, v2
);
1214 /* Now process the items in the coalesce list. */
1216 while ((cost
= pop_best_coalesce (cl
, &x
, &y
)) != NO_BEST_COALESCE
)
1218 var1
= ssa_name (x
);
1219 var2
= ssa_name (y
);
1221 /* Assert the coalesces have the same base variable. */
1222 gcc_assert (gimple_can_coalesce_p (var1
, var2
));
1225 fprintf (debug
, "Coalesce list: ");
1226 attempt_coalesce (map
, graph
, x
, y
, debug
);
1231 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
1233 struct ssa_name_var_hash
: typed_noop_remove
<tree_node
>
1235 typedef union tree_node value_type
;
1236 typedef union tree_node compare_type
;
1237 static inline hashval_t
hash (const value_type
*);
1238 static inline int equal (const value_type
*, const compare_type
*);
1242 ssa_name_var_hash::hash (const_tree n
)
1244 return DECL_UID (SSA_NAME_VAR (n
));
1248 ssa_name_var_hash::equal (const value_type
*n1
, const compare_type
*n2
)
1250 return SSA_NAME_VAR (n1
) == SSA_NAME_VAR (n2
);
1254 /* Reduce the number of copies by coalescing variables in the function. Return
1255 a partition map with the resulting coalesces. */
1258 coalesce_ssa_name (void)
1260 tree_live_info_p liveinfo
;
1261 ssa_conflicts_p graph
;
1263 bitmap used_in_copies
= BITMAP_ALLOC (NULL
);
1267 cl
= create_coalesce_list ();
1268 map
= create_outofssa_var_map (cl
, used_in_copies
);
1270 /* If optimization is disabled, we need to coalesce all the names originating
1271 from the same SSA_NAME_VAR so debug info remains undisturbed. */
1274 hash_table
<ssa_name_var_hash
> ssa_name_hash (10);
1276 for (i
= 1; i
< num_ssa_names
; i
++)
1278 tree a
= ssa_name (i
);
1282 && !DECL_IGNORED_P (SSA_NAME_VAR (a
))
1283 && (!has_zero_uses (a
) || !SSA_NAME_IS_DEFAULT_DEF (a
)))
1285 tree
*slot
= ssa_name_hash
.find_slot (a
, INSERT
);
1291 /* If the variable is a PARM_DECL or a RESULT_DECL, we
1292 _require_ that all the names originating from it be
1293 coalesced, because there must be a single partition
1294 containing all the names so that it can be assigned
1295 the canonical RTL location of the DECL safely.
1296 If in_lto_p, a function could have been compiled
1297 originally with optimizations and only the link
1298 performed at -O0, so we can't actually require it. */
1300 = (TREE_CODE (SSA_NAME_VAR (a
)) == VAR_DECL
|| in_lto_p
)
1301 ? MUST_COALESCE_COST
- 1 : MUST_COALESCE_COST
;
1302 add_coalesce (cl
, SSA_NAME_VERSION (a
),
1303 SSA_NAME_VERSION (*slot
), cost
);
1304 bitmap_set_bit (used_in_copies
, SSA_NAME_VERSION (a
));
1305 bitmap_set_bit (used_in_copies
, SSA_NAME_VERSION (*slot
));
1310 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1311 dump_var_map (dump_file
, map
);
1313 /* Don't calculate live ranges for variables not in the coalesce list. */
1314 partition_view_bitmap (map
, used_in_copies
, true);
1315 BITMAP_FREE (used_in_copies
);
1317 if (num_var_partitions (map
) < 1)
1319 delete_coalesce_list (cl
);
1323 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1324 dump_var_map (dump_file
, map
);
1326 liveinfo
= calculate_live_ranges (map
);
1328 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1329 dump_live_info (dump_file
, liveinfo
, LIVEDUMP_ENTRY
);
1331 /* Build a conflict graph. */
1332 graph
= build_ssa_conflict_graph (liveinfo
);
1333 delete_tree_live_info (liveinfo
);
1334 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1335 ssa_conflicts_dump (dump_file
, graph
);
1337 sort_coalesce_list (cl
);
1339 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1341 fprintf (dump_file
, "\nAfter sorting:\n");
1342 dump_coalesce_list (dump_file
, cl
);
1345 /* First, coalesce all live on entry variables to their base variable.
1346 This will ensure the first use is coming from the correct location. */
1348 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1349 dump_var_map (dump_file
, map
);
1351 /* Now coalesce everything in the list. */
1352 coalesce_partitions (map
, graph
, cl
,
1353 ((dump_flags
& TDF_DETAILS
) ? dump_file
1356 delete_coalesce_list (cl
);
1357 ssa_conflicts_delete (graph
);