re PR tree-optimization/58143 (wrong code at -O3)
[official-gcc.git] / gcc / ada / sem_ch8.adb
blobe617a16bc77555bc7bc015c5b9781fc0def56614
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M . C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Tss; use Exp_Tss;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Freeze; use Freeze;
35 with Impunit; use Impunit;
36 with Lib; use Lib;
37 with Lib.Load; use Lib.Load;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Namet.Sp; use Namet.Sp;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Output; use Output;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch3; use Sem_Ch3;
52 with Sem_Ch4; use Sem_Ch4;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch12; use Sem_Ch12;
55 with Sem_Ch13; use Sem_Ch13;
56 with Sem_Dim; use Sem_Dim;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Dist; use Sem_Dist;
59 with Sem_Eval; use Sem_Eval;
60 with Sem_Res; use Sem_Res;
61 with Sem_Util; use Sem_Util;
62 with Sem_Type; use Sem_Type;
63 with Stand; use Stand;
64 with Sinfo; use Sinfo;
65 with Sinfo.CN; use Sinfo.CN;
66 with Snames; use Snames;
67 with Style; use Style;
68 with Table;
69 with Targparm; use Targparm;
70 with Tbuild; use Tbuild;
71 with Uintp; use Uintp;
73 package body Sem_Ch8 is
75 ------------------------------------
76 -- Visibility and Name Resolution --
77 ------------------------------------
79 -- This package handles name resolution and the collection of possible
80 -- interpretations for overloaded names, prior to overload resolution.
82 -- Name resolution is the process that establishes a mapping between source
83 -- identifiers and the entities they denote at each point in the program.
84 -- Each entity is represented by a defining occurrence. Each identifier
85 -- that denotes an entity points to the corresponding defining occurrence.
86 -- This is the entity of the applied occurrence. Each occurrence holds
87 -- an index into the names table, where source identifiers are stored.
89 -- Each entry in the names table for an identifier or designator uses the
90 -- Info pointer to hold a link to the currently visible entity that has
91 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
92 -- in package Sem_Util). The visibility is initialized at the beginning of
93 -- semantic processing to make entities in package Standard immediately
94 -- visible. The visibility table is used in a more subtle way when
95 -- compiling subunits (see below).
97 -- Entities that have the same name (i.e. homonyms) are chained. In the
98 -- case of overloaded entities, this chain holds all the possible meanings
99 -- of a given identifier. The process of overload resolution uses type
100 -- information to select from this chain the unique meaning of a given
101 -- identifier.
103 -- Entities are also chained in their scope, through the Next_Entity link.
104 -- As a consequence, the name space is organized as a sparse matrix, where
105 -- each row corresponds to a scope, and each column to a source identifier.
106 -- Open scopes, that is to say scopes currently being compiled, have their
107 -- corresponding rows of entities in order, innermost scope first.
109 -- The scopes of packages that are mentioned in context clauses appear in
110 -- no particular order, interspersed among open scopes. This is because
111 -- in the course of analyzing the context of a compilation, a package
112 -- declaration is first an open scope, and subsequently an element of the
113 -- context. If subunits or child units are present, a parent unit may
114 -- appear under various guises at various times in the compilation.
116 -- When the compilation of the innermost scope is complete, the entities
117 -- defined therein are no longer visible. If the scope is not a package
118 -- declaration, these entities are never visible subsequently, and can be
119 -- removed from visibility chains. If the scope is a package declaration,
120 -- its visible declarations may still be accessible. Therefore the entities
121 -- defined in such a scope are left on the visibility chains, and only
122 -- their visibility (immediately visibility or potential use-visibility)
123 -- is affected.
125 -- The ordering of homonyms on their chain does not necessarily follow
126 -- the order of their corresponding scopes on the scope stack. For
127 -- example, if package P and the enclosing scope both contain entities
128 -- named E, then when compiling the package body the chain for E will
129 -- hold the global entity first, and the local one (corresponding to
130 -- the current inner scope) next. As a result, name resolution routines
131 -- do not assume any relative ordering of the homonym chains, either
132 -- for scope nesting or to order of appearance of context clauses.
134 -- When compiling a child unit, entities in the parent scope are always
135 -- immediately visible. When compiling the body of a child unit, private
136 -- entities in the parent must also be made immediately visible. There
137 -- are separate routines to make the visible and private declarations
138 -- visible at various times (see package Sem_Ch7).
140 -- +--------+ +-----+
141 -- | In use |-------->| EU1 |-------------------------->
142 -- +--------+ +-----+
143 -- | |
144 -- +--------+ +-----+ +-----+
145 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
146 -- +--------+ +-----+ +-----+
147 -- | |
148 -- +---------+ | +-----+
149 -- | with'ed |------------------------------>| EW2 |--->
150 -- +---------+ | +-----+
151 -- | |
152 -- +--------+ +-----+ +-----+
153 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
154 -- +--------+ +-----+ +-----+
155 -- | |
156 -- +--------+ +-----+ +-----+
157 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
158 -- +--------+ +-----+ +-----+
159 -- ^ | |
160 -- | | |
161 -- | +---------+ | |
162 -- | | with'ed |----------------------------------------->
163 -- | +---------+ | |
164 -- | | |
165 -- Scope stack | |
166 -- (innermost first) | |
167 -- +----------------------------+
168 -- Names table => | Id1 | | | | Id2 |
169 -- +----------------------------+
171 -- Name resolution must deal with several syntactic forms: simple names,
172 -- qualified names, indexed names, and various forms of calls.
174 -- Each identifier points to an entry in the names table. The resolution
175 -- of a simple name consists in traversing the homonym chain, starting
176 -- from the names table. If an entry is immediately visible, it is the one
177 -- designated by the identifier. If only potentially use-visible entities
178 -- are on the chain, we must verify that they do not hide each other. If
179 -- the entity we find is overloadable, we collect all other overloadable
180 -- entities on the chain as long as they are not hidden.
182 -- To resolve expanded names, we must find the entity at the intersection
183 -- of the entity chain for the scope (the prefix) and the homonym chain
184 -- for the selector. In general, homonym chains will be much shorter than
185 -- entity chains, so it is preferable to start from the names table as
186 -- well. If the entity found is overloadable, we must collect all other
187 -- interpretations that are defined in the scope denoted by the prefix.
189 -- For records, protected types, and tasks, their local entities are
190 -- removed from visibility chains on exit from the corresponding scope.
191 -- From the outside, these entities are always accessed by selected
192 -- notation, and the entity chain for the record type, protected type,
193 -- etc. is traversed sequentially in order to find the designated entity.
195 -- The discriminants of a type and the operations of a protected type or
196 -- task are unchained on exit from the first view of the type, (such as
197 -- a private or incomplete type declaration, or a protected type speci-
198 -- fication) and re-chained when compiling the second view.
200 -- In the case of operators, we do not make operators on derived types
201 -- explicit. As a result, the notation P."+" may denote either a user-
202 -- defined function with name "+", or else an implicit declaration of the
203 -- operator "+" in package P. The resolution of expanded names always
204 -- tries to resolve an operator name as such an implicitly defined entity,
205 -- in addition to looking for explicit declarations.
207 -- All forms of names that denote entities (simple names, expanded names,
208 -- character literals in some cases) have a Entity attribute, which
209 -- identifies the entity denoted by the name.
211 ---------------------
212 -- The Scope Stack --
213 ---------------------
215 -- The Scope stack keeps track of the scopes currently been compiled.
216 -- Every entity that contains declarations (including records) is placed
217 -- on the scope stack while it is being processed, and removed at the end.
218 -- Whenever a non-package scope is exited, the entities defined therein
219 -- are removed from the visibility table, so that entities in outer scopes
220 -- become visible (see previous description). On entry to Sem, the scope
221 -- stack only contains the package Standard. As usual, subunits complicate
222 -- this picture ever so slightly.
224 -- The Rtsfind mechanism can force a call to Semantics while another
225 -- compilation is in progress. The unit retrieved by Rtsfind must be
226 -- compiled in its own context, and has no access to the visibility of
227 -- the unit currently being compiled. The procedures Save_Scope_Stack and
228 -- Restore_Scope_Stack make entities in current open scopes invisible
229 -- before compiling the retrieved unit, and restore the compilation
230 -- environment afterwards.
232 ------------------------
233 -- Compiling subunits --
234 ------------------------
236 -- Subunits must be compiled in the environment of the corresponding stub,
237 -- that is to say with the same visibility into the parent (and its
238 -- context) that is available at the point of the stub declaration, but
239 -- with the additional visibility provided by the context clause of the
240 -- subunit itself. As a result, compilation of a subunit forces compilation
241 -- of the parent (see description in lib-). At the point of the stub
242 -- declaration, Analyze is called recursively to compile the proper body of
243 -- the subunit, but without reinitializing the names table, nor the scope
244 -- stack (i.e. standard is not pushed on the stack). In this fashion the
245 -- context of the subunit is added to the context of the parent, and the
246 -- subunit is compiled in the correct environment. Note that in the course
247 -- of processing the context of a subunit, Standard will appear twice on
248 -- the scope stack: once for the parent of the subunit, and once for the
249 -- unit in the context clause being compiled. However, the two sets of
250 -- entities are not linked by homonym chains, so that the compilation of
251 -- any context unit happens in a fresh visibility environment.
253 -------------------------------
254 -- Processing of USE Clauses --
255 -------------------------------
257 -- Every defining occurrence has a flag indicating if it is potentially use
258 -- visible. Resolution of simple names examines this flag. The processing
259 -- of use clauses consists in setting this flag on all visible entities
260 -- defined in the corresponding package. On exit from the scope of the use
261 -- clause, the corresponding flag must be reset. However, a package may
262 -- appear in several nested use clauses (pathological but legal, alas!)
263 -- which forces us to use a slightly more involved scheme:
265 -- a) The defining occurrence for a package holds a flag -In_Use- to
266 -- indicate that it is currently in the scope of a use clause. If a
267 -- redundant use clause is encountered, then the corresponding occurrence
268 -- of the package name is flagged -Redundant_Use-.
270 -- b) On exit from a scope, the use clauses in its declarative part are
271 -- scanned. The visibility flag is reset in all entities declared in
272 -- package named in a use clause, as long as the package is not flagged
273 -- as being in a redundant use clause (in which case the outer use
274 -- clause is still in effect, and the direct visibility of its entities
275 -- must be retained).
277 -- Note that entities are not removed from their homonym chains on exit
278 -- from the package specification. A subsequent use clause does not need
279 -- to rechain the visible entities, but only to establish their direct
280 -- visibility.
282 -----------------------------------
283 -- Handling private declarations --
284 -----------------------------------
286 -- The principle that each entity has a single defining occurrence clashes
287 -- with the presence of two separate definitions for private types: the
288 -- first is the private type declaration, and second is the full type
289 -- declaration. It is important that all references to the type point to
290 -- the same defining occurrence, namely the first one. To enforce the two
291 -- separate views of the entity, the corresponding information is swapped
292 -- between the two declarations. Outside of the package, the defining
293 -- occurrence only contains the private declaration information, while in
294 -- the private part and the body of the package the defining occurrence
295 -- contains the full declaration. To simplify the swap, the defining
296 -- occurrence that currently holds the private declaration points to the
297 -- full declaration. During semantic processing the defining occurrence
298 -- also points to a list of private dependents, that is to say access types
299 -- or composite types whose designated types or component types are
300 -- subtypes or derived types of the private type in question. After the
301 -- full declaration has been seen, the private dependents are updated to
302 -- indicate that they have full definitions.
304 ------------------------------------
305 -- Handling of Undefined Messages --
306 ------------------------------------
308 -- In normal mode, only the first use of an undefined identifier generates
309 -- a message. The table Urefs is used to record error messages that have
310 -- been issued so that second and subsequent ones do not generate further
311 -- messages. However, the second reference causes text to be added to the
312 -- original undefined message noting "(more references follow)". The
313 -- full error list option (-gnatf) forces messages to be generated for
314 -- every reference and disconnects the use of this table.
316 type Uref_Entry is record
317 Node : Node_Id;
318 -- Node for identifier for which original message was posted. The
319 -- Chars field of this identifier is used to detect later references
320 -- to the same identifier.
322 Err : Error_Msg_Id;
323 -- Records error message Id of original undefined message. Reset to
324 -- No_Error_Msg after the second occurrence, where it is used to add
325 -- text to the original message as described above.
327 Nvis : Boolean;
328 -- Set if the message is not visible rather than undefined
330 Loc : Source_Ptr;
331 -- Records location of error message. Used to make sure that we do
332 -- not consider a, b : undefined as two separate instances, which
333 -- would otherwise happen, since the parser converts this sequence
334 -- to a : undefined; b : undefined.
336 end record;
338 package Urefs is new Table.Table (
339 Table_Component_Type => Uref_Entry,
340 Table_Index_Type => Nat,
341 Table_Low_Bound => 1,
342 Table_Initial => 10,
343 Table_Increment => 100,
344 Table_Name => "Urefs");
346 Candidate_Renaming : Entity_Id;
347 -- Holds a candidate interpretation that appears in a subprogram renaming
348 -- declaration and does not match the given specification, but matches at
349 -- least on the first formal. Allows better error message when given
350 -- specification omits defaulted parameters, a common error.
352 -----------------------
353 -- Local Subprograms --
354 -----------------------
356 procedure Analyze_Generic_Renaming
357 (N : Node_Id;
358 K : Entity_Kind);
359 -- Common processing for all three kinds of generic renaming declarations.
360 -- Enter new name and indicate that it renames the generic unit.
362 procedure Analyze_Renamed_Character
363 (N : Node_Id;
364 New_S : Entity_Id;
365 Is_Body : Boolean);
366 -- Renamed entity is given by a character literal, which must belong
367 -- to the return type of the new entity. Is_Body indicates whether the
368 -- declaration is a renaming_as_body. If the original declaration has
369 -- already been frozen (because of an intervening body, e.g.) the body of
370 -- the function must be built now. The same applies to the following
371 -- various renaming procedures.
373 procedure Analyze_Renamed_Dereference
374 (N : Node_Id;
375 New_S : Entity_Id;
376 Is_Body : Boolean);
377 -- Renamed entity is given by an explicit dereference. Prefix must be a
378 -- conformant access_to_subprogram type.
380 procedure Analyze_Renamed_Entry
381 (N : Node_Id;
382 New_S : Entity_Id;
383 Is_Body : Boolean);
384 -- If the renamed entity in a subprogram renaming is an entry or protected
385 -- subprogram, build a body for the new entity whose only statement is a
386 -- call to the renamed entity.
388 procedure Analyze_Renamed_Family_Member
389 (N : Node_Id;
390 New_S : Entity_Id;
391 Is_Body : Boolean);
392 -- Used when the renamed entity is an indexed component. The prefix must
393 -- denote an entry family.
395 procedure Analyze_Renamed_Primitive_Operation
396 (N : Node_Id;
397 New_S : Entity_Id;
398 Is_Body : Boolean);
399 -- If the renamed entity in a subprogram renaming is a primitive operation
400 -- or a class-wide operation in prefix form, save the target object,
401 -- which must be added to the list of actuals in any subsequent call.
402 -- The renaming operation is intrinsic because the compiler must in
403 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
405 function Applicable_Use (Pack_Name : Node_Id) return Boolean;
406 -- Common code to Use_One_Package and Set_Use, to determine whether use
407 -- clause must be processed. Pack_Name is an entity name that references
408 -- the package in question.
410 procedure Attribute_Renaming (N : Node_Id);
411 -- Analyze renaming of attribute as subprogram. The renaming declaration N
412 -- is rewritten as a subprogram body that returns the attribute reference
413 -- applied to the formals of the function.
415 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
416 -- Set Entity, with style check if need be. For a discriminant reference,
417 -- replace by the corresponding discriminal, i.e. the parameter of the
418 -- initialization procedure that corresponds to the discriminant.
420 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
421 -- A renaming_as_body may occur after the entity of the original decla-
422 -- ration has been frozen. In that case, the body of the new entity must
423 -- be built now, because the usual mechanism of building the renamed
424 -- body at the point of freezing will not work. Subp is the subprogram
425 -- for which N provides the Renaming_As_Body.
427 procedure Check_In_Previous_With_Clause
428 (N : Node_Id;
429 Nam : Node_Id);
430 -- N is a use_package clause and Nam the package name, or N is a use_type
431 -- clause and Nam is the prefix of the type name. In either case, verify
432 -- that the package is visible at that point in the context: either it
433 -- appears in a previous with_clause, or because it is a fully qualified
434 -- name and the root ancestor appears in a previous with_clause.
436 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
437 -- Verify that the entity in a renaming declaration that is a library unit
438 -- is itself a library unit and not a nested unit or subunit. Also check
439 -- that if the renaming is a child unit of a generic parent, then the
440 -- renamed unit must also be a child unit of that parent. Finally, verify
441 -- that a renamed generic unit is not an implicit child declared within
442 -- an instance of the parent.
444 procedure Chain_Use_Clause (N : Node_Id);
445 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
446 -- the proper scope table entry. This is usually the current scope, but it
447 -- will be an inner scope when installing the use clauses of the private
448 -- declarations of a parent unit prior to compiling the private part of a
449 -- child unit. This chain is traversed when installing/removing use clauses
450 -- when compiling a subunit or instantiating a generic body on the fly,
451 -- when it is necessary to save and restore full environments.
453 function Enclosing_Instance return Entity_Id;
454 -- In an instance nested within another one, several semantic checks are
455 -- unnecessary because the legality of the nested instance has been checked
456 -- in the enclosing generic unit. This applies in particular to legality
457 -- checks on actuals for formal subprograms of the inner instance, which
458 -- are checked as subprogram renamings, and may be complicated by confusion
459 -- in private/full views. This function returns the instance enclosing the
460 -- current one if there is such, else it returns Empty.
462 -- If the renaming determines the entity for the default of a formal
463 -- subprogram nested within another instance, choose the innermost
464 -- candidate. This is because if the formal has a box, and we are within
465 -- an enclosing instance where some candidate interpretations are local
466 -- to this enclosing instance, we know that the default was properly
467 -- resolved when analyzing the generic, so we prefer the local
468 -- candidates to those that are external. This is not always the case
469 -- but is a reasonable heuristic on the use of nested generics. The
470 -- proper solution requires a full renaming model.
472 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
473 -- Find a type derived from Character or Wide_Character in the prefix of N.
474 -- Used to resolved qualified names whose selector is a character literal.
476 function Has_Private_With (E : Entity_Id) return Boolean;
477 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
478 -- private with on E.
480 procedure Find_Expanded_Name (N : Node_Id);
481 -- The input is a selected component known to be an expanded name. Verify
482 -- legality of selector given the scope denoted by prefix, and change node
483 -- N into a expanded name with a properly set Entity field.
485 function Find_Renamed_Entity
486 (N : Node_Id;
487 Nam : Node_Id;
488 New_S : Entity_Id;
489 Is_Actual : Boolean := False) return Entity_Id;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
496 function Has_Implicit_Operator (N : Node_Id) return Boolean;
497 -- N is an expanded name whose selector is an operator name (e.g. P."+").
498 -- declarative part contains an implicit declaration of an operator if it
499 -- has a declaration of a type to which one of the predefined operators
500 -- apply. The existence of this routine is an implementation artifact. A
501 -- more straightforward but more space-consuming choice would be to make
502 -- all inherited operators explicit in the symbol table.
504 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
505 -- A subprogram defined by a renaming declaration inherits the parameter
506 -- profile of the renamed entity. The subtypes given in the subprogram
507 -- specification are discarded and replaced with those of the renamed
508 -- subprogram, which are then used to recheck the default values.
510 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
511 -- Prefix is appropriate for record if it is of a record type, or an access
512 -- to such.
514 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
515 -- True if it is of a task type, a protected type, or else an access to one
516 -- of these types.
518 procedure Note_Redundant_Use (Clause : Node_Id);
519 -- Mark the name in a use clause as redundant if the corresponding entity
520 -- is already use-visible. Emit a warning if the use clause comes from
521 -- source and the proper warnings are enabled.
523 procedure Premature_Usage (N : Node_Id);
524 -- Diagnose usage of an entity before it is visible
526 procedure Use_One_Package (P : Entity_Id; N : Node_Id);
527 -- Make visible entities declared in package P potentially use-visible
528 -- in the current context. Also used in the analysis of subunits, when
529 -- re-installing use clauses of parent units. N is the use_clause that
530 -- names P (and possibly other packages).
532 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False);
533 -- Id is the subtype mark from a use type clause. This procedure makes
534 -- the primitive operators of the type potentially use-visible. The
535 -- boolean flag Installed indicates that the clause is being reinstalled
536 -- after previous analysis, and primitive operations are already chained
537 -- on the Used_Operations list of the clause.
539 procedure Write_Info;
540 -- Write debugging information on entities declared in current scope
542 --------------------------------
543 -- Analyze_Exception_Renaming --
544 --------------------------------
546 -- The language only allows a single identifier, but the tree holds an
547 -- identifier list. The parser has already issued an error message if
548 -- there is more than one element in the list.
550 procedure Analyze_Exception_Renaming (N : Node_Id) is
551 Id : constant Node_Id := Defining_Identifier (N);
552 Nam : constant Node_Id := Name (N);
554 begin
555 Check_SPARK_Restriction ("exception renaming is not allowed", N);
557 Enter_Name (Id);
558 Analyze (Nam);
560 Set_Ekind (Id, E_Exception);
561 Set_Exception_Code (Id, Uint_0);
562 Set_Etype (Id, Standard_Exception_Type);
563 Set_Is_Pure (Id, Is_Pure (Current_Scope));
565 if not Is_Entity_Name (Nam) or else
566 Ekind (Entity (Nam)) /= E_Exception
567 then
568 Error_Msg_N ("invalid exception name in renaming", Nam);
569 else
570 if Present (Renamed_Object (Entity (Nam))) then
571 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
572 else
573 Set_Renamed_Object (Id, Entity (Nam));
574 end if;
575 end if;
577 -- Implementation-defined aspect specifications can appear in a renaming
578 -- declaration, but not language-defined ones. The call to procedure
579 -- Analyze_Aspect_Specifications will take care of this error check.
581 if Has_Aspects (N) then
582 Analyze_Aspect_Specifications (N, Id);
583 end if;
584 end Analyze_Exception_Renaming;
586 ---------------------------
587 -- Analyze_Expanded_Name --
588 ---------------------------
590 procedure Analyze_Expanded_Name (N : Node_Id) is
591 begin
592 -- If the entity pointer is already set, this is an internal node, or a
593 -- node that is analyzed more than once, after a tree modification. In
594 -- such a case there is no resolution to perform, just set the type. For
595 -- completeness, analyze prefix as well.
597 if Present (Entity (N)) then
598 if Is_Type (Entity (N)) then
599 Set_Etype (N, Entity (N));
600 else
601 Set_Etype (N, Etype (Entity (N)));
602 end if;
604 Analyze (Prefix (N));
605 return;
606 else
607 Find_Expanded_Name (N);
608 end if;
610 Analyze_Dimension (N);
611 end Analyze_Expanded_Name;
613 ---------------------------------------
614 -- Analyze_Generic_Function_Renaming --
615 ---------------------------------------
617 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
618 begin
619 Analyze_Generic_Renaming (N, E_Generic_Function);
620 end Analyze_Generic_Function_Renaming;
622 --------------------------------------
623 -- Analyze_Generic_Package_Renaming --
624 --------------------------------------
626 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
627 begin
628 -- Apply the Text_IO Kludge here, since we may be renaming one of the
629 -- subpackages of Text_IO, then join common routine.
631 Text_IO_Kludge (Name (N));
633 Analyze_Generic_Renaming (N, E_Generic_Package);
634 end Analyze_Generic_Package_Renaming;
636 ----------------------------------------
637 -- Analyze_Generic_Procedure_Renaming --
638 ----------------------------------------
640 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
641 begin
642 Analyze_Generic_Renaming (N, E_Generic_Procedure);
643 end Analyze_Generic_Procedure_Renaming;
645 ------------------------------
646 -- Analyze_Generic_Renaming --
647 ------------------------------
649 procedure Analyze_Generic_Renaming
650 (N : Node_Id;
651 K : Entity_Kind)
653 New_P : constant Entity_Id := Defining_Entity (N);
654 Old_P : Entity_Id;
655 Inst : Boolean := False; -- prevent junk warning
657 begin
658 if Name (N) = Error then
659 return;
660 end if;
662 Check_SPARK_Restriction ("generic renaming is not allowed", N);
664 Generate_Definition (New_P);
666 if Current_Scope /= Standard_Standard then
667 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
668 end if;
670 if Nkind (Name (N)) = N_Selected_Component then
671 Check_Generic_Child_Unit (Name (N), Inst);
672 else
673 Analyze (Name (N));
674 end if;
676 if not Is_Entity_Name (Name (N)) then
677 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
678 Old_P := Any_Id;
679 else
680 Old_P := Entity (Name (N));
681 end if;
683 Enter_Name (New_P);
684 Set_Ekind (New_P, K);
686 if Etype (Old_P) = Any_Type then
687 null;
689 elsif Ekind (Old_P) /= K then
690 Error_Msg_N ("invalid generic unit name", Name (N));
692 else
693 if Present (Renamed_Object (Old_P)) then
694 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
695 else
696 Set_Renamed_Object (New_P, Old_P);
697 end if;
699 Set_Is_Pure (New_P, Is_Pure (Old_P));
700 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
702 Set_Etype (New_P, Etype (Old_P));
703 Set_Has_Completion (New_P);
705 if In_Open_Scopes (Old_P) then
706 Error_Msg_N ("within its scope, generic denotes its instance", N);
707 end if;
709 Check_Library_Unit_Renaming (N, Old_P);
710 end if;
712 -- Implementation-defined aspect specifications can appear in a renaming
713 -- declaration, but not language-defined ones. The call to procedure
714 -- Analyze_Aspect_Specifications will take care of this error check.
716 if Has_Aspects (N) then
717 Analyze_Aspect_Specifications (N, New_P);
718 end if;
719 end Analyze_Generic_Renaming;
721 -----------------------------
722 -- Analyze_Object_Renaming --
723 -----------------------------
725 procedure Analyze_Object_Renaming (N : Node_Id) is
726 Loc : constant Source_Ptr := Sloc (N);
727 Id : constant Entity_Id := Defining_Identifier (N);
728 Dec : Node_Id;
729 Nam : constant Node_Id := Name (N);
730 T : Entity_Id;
731 T2 : Entity_Id;
733 procedure Check_Constrained_Object;
734 -- If the nominal type is unconstrained but the renamed object is
735 -- constrained, as can happen with renaming an explicit dereference or
736 -- a function return, build a constrained subtype from the object. If
737 -- the renaming is for a formal in an accept statement, the analysis
738 -- has already established its actual subtype. This is only relevant
739 -- if the renamed object is an explicit dereference.
741 function In_Generic_Scope (E : Entity_Id) return Boolean;
742 -- Determine whether entity E is inside a generic cope
744 ------------------------------
745 -- Check_Constrained_Object --
746 ------------------------------
748 procedure Check_Constrained_Object is
749 Typ : constant Entity_Id := Etype (Nam);
750 Subt : Entity_Id;
752 begin
753 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
754 and then Is_Composite_Type (Etype (Nam))
755 and then not Is_Constrained (Etype (Nam))
756 and then not Has_Unknown_Discriminants (Etype (Nam))
757 and then Expander_Active
758 then
759 -- If Actual_Subtype is already set, nothing to do
761 if Ekind_In (Id, E_Variable, E_Constant)
762 and then Present (Actual_Subtype (Id))
763 then
764 null;
766 -- A renaming of an unchecked union has no actual subtype
768 elsif Is_Unchecked_Union (Typ) then
769 null;
771 -- If a record is limited its size is invariant. This is the case
772 -- in particular with record types with an access discirminant
773 -- that are used in iterators. This is an optimization, but it
774 -- also prevents typing anomalies when the prefix is further
775 -- expanded. Limited types with discriminants are included.
777 elsif Is_Limited_Record (Typ)
778 or else
779 (Ekind (Typ) = E_Limited_Private_Type
780 and then Has_Discriminants (Typ)
781 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
782 then
783 null;
785 else
786 Subt := Make_Temporary (Loc, 'T');
787 Remove_Side_Effects (Nam);
788 Insert_Action (N,
789 Make_Subtype_Declaration (Loc,
790 Defining_Identifier => Subt,
791 Subtype_Indication =>
792 Make_Subtype_From_Expr (Nam, Typ)));
793 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
794 Set_Etype (Nam, Subt);
796 -- Freeze subtype at once, to prevent order of elaboration
797 -- issues in the backend. The renamed object exists, so its
798 -- type is already frozen in any case.
800 Freeze_Before (N, Subt);
801 end if;
802 end if;
803 end Check_Constrained_Object;
805 ----------------------
806 -- In_Generic_Scope --
807 ----------------------
809 function In_Generic_Scope (E : Entity_Id) return Boolean is
810 S : Entity_Id;
812 begin
813 S := Scope (E);
814 while Present (S) and then S /= Standard_Standard loop
815 if Is_Generic_Unit (S) then
816 return True;
817 end if;
819 S := Scope (S);
820 end loop;
822 return False;
823 end In_Generic_Scope;
825 -- Start of processing for Analyze_Object_Renaming
827 begin
828 if Nam = Error then
829 return;
830 end if;
832 Check_SPARK_Restriction ("object renaming is not allowed", N);
834 Set_Is_Pure (Id, Is_Pure (Current_Scope));
835 Enter_Name (Id);
837 -- The renaming of a component that depends on a discriminant requires
838 -- an actual subtype, because in subsequent use of the object Gigi will
839 -- be unable to locate the actual bounds. This explicit step is required
840 -- when the renaming is generated in removing side effects of an
841 -- already-analyzed expression.
843 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
844 T := Etype (Nam);
845 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
847 if Present (Dec) then
848 Insert_Action (N, Dec);
849 T := Defining_Identifier (Dec);
850 Set_Etype (Nam, T);
851 end if;
853 -- Complete analysis of the subtype mark in any case, for ASIS use
855 if Present (Subtype_Mark (N)) then
856 Find_Type (Subtype_Mark (N));
857 end if;
859 elsif Present (Subtype_Mark (N)) then
860 Find_Type (Subtype_Mark (N));
861 T := Entity (Subtype_Mark (N));
862 Analyze (Nam);
864 -- Reject renamings of conversions unless the type is tagged, or
865 -- the conversion is implicit (which can occur for cases of anonymous
866 -- access types in Ada 2012).
868 if Nkind (Nam) = N_Type_Conversion
869 and then Comes_From_Source (Nam)
870 and then not Is_Tagged_Type (T)
871 then
872 Error_Msg_N
873 ("renaming of conversion only allowed for tagged types", Nam);
874 end if;
876 Resolve (Nam, T);
878 -- If the renamed object is a function call of a limited type,
879 -- the expansion of the renaming is complicated by the presence
880 -- of various temporaries and subtypes that capture constraints
881 -- of the renamed object. Rewrite node as an object declaration,
882 -- whose expansion is simpler. Given that the object is limited
883 -- there is no copy involved and no performance hit.
885 if Nkind (Nam) = N_Function_Call
886 and then Is_Immutably_Limited_Type (Etype (Nam))
887 and then not Is_Constrained (Etype (Nam))
888 and then Comes_From_Source (N)
889 then
890 Set_Etype (Id, T);
891 Set_Ekind (Id, E_Constant);
892 Rewrite (N,
893 Make_Object_Declaration (Loc,
894 Defining_Identifier => Id,
895 Constant_Present => True,
896 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
897 Expression => Relocate_Node (Nam)));
898 return;
899 end if;
901 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
902 -- when renaming declaration has a named access type. The Ada 2012
903 -- coverage rules allow an anonymous access type in the context of
904 -- an expected named general access type, but the renaming rules
905 -- require the types to be the same. (An exception is when the type
906 -- of the renaming is also an anonymous access type, which can only
907 -- happen due to a renaming created by the expander.)
909 if Nkind (Nam) = N_Type_Conversion
910 and then not Comes_From_Source (Nam)
911 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
912 and then Ekind (T) /= E_Anonymous_Access_Type
913 then
914 Wrong_Type (Expression (Nam), T); -- Should we give better error???
915 end if;
917 -- Check that a class-wide object is not being renamed as an object
918 -- of a specific type. The test for access types is needed to exclude
919 -- cases where the renamed object is a dynamically tagged access
920 -- result, such as occurs in certain expansions.
922 if Is_Tagged_Type (T) then
923 Check_Dynamically_Tagged_Expression
924 (Expr => Nam,
925 Typ => T,
926 Related_Nod => N);
927 end if;
929 -- Ada 2005 (AI-230/AI-254): Access renaming
931 else pragma Assert (Present (Access_Definition (N)));
932 T := Access_Definition
933 (Related_Nod => N,
934 N => Access_Definition (N));
936 Analyze (Nam);
938 -- Ada 2005 AI05-105: if the declaration has an anonymous access
939 -- type, the renamed object must also have an anonymous type, and
940 -- this is a name resolution rule. This was implicit in the last part
941 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
942 -- recent AI.
944 if not Is_Overloaded (Nam) then
945 if Ekind (Etype (Nam)) /= Ekind (T) then
946 Error_Msg_N
947 ("expect anonymous access type in object renaming", N);
948 end if;
950 else
951 declare
952 I : Interp_Index;
953 It : Interp;
954 Typ : Entity_Id := Empty;
955 Seen : Boolean := False;
957 begin
958 Get_First_Interp (Nam, I, It);
959 while Present (It.Typ) loop
961 -- Renaming is ambiguous if more than one candidate
962 -- interpretation is type-conformant with the context.
964 if Ekind (It.Typ) = Ekind (T) then
965 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
966 and then
967 Type_Conformant
968 (Designated_Type (T), Designated_Type (It.Typ))
969 then
970 if not Seen then
971 Seen := True;
972 else
973 Error_Msg_N
974 ("ambiguous expression in renaming", Nam);
975 end if;
977 elsif Ekind (T) = E_Anonymous_Access_Type
978 and then
979 Covers (Designated_Type (T), Designated_Type (It.Typ))
980 then
981 if not Seen then
982 Seen := True;
983 else
984 Error_Msg_N
985 ("ambiguous expression in renaming", Nam);
986 end if;
987 end if;
989 if Covers (T, It.Typ) then
990 Typ := It.Typ;
991 Set_Etype (Nam, Typ);
992 Set_Is_Overloaded (Nam, False);
993 end if;
994 end if;
996 Get_Next_Interp (I, It);
997 end loop;
998 end;
999 end if;
1001 Resolve (Nam, T);
1003 -- Ada 2005 (AI-231): "In the case where the type is defined by an
1004 -- access_definition, the renamed entity shall be of an access-to-
1005 -- constant type if and only if the access_definition defines an
1006 -- access-to-constant type" ARM 8.5.1(4)
1008 if Constant_Present (Access_Definition (N))
1009 and then not Is_Access_Constant (Etype (Nam))
1010 then
1011 Error_Msg_N ("(Ada 2005): the renamed object is not "
1012 & "access-to-constant (RM 8.5.1(6))", N);
1014 elsif not Constant_Present (Access_Definition (N))
1015 and then Is_Access_Constant (Etype (Nam))
1016 then
1017 Error_Msg_N ("(Ada 2005): the renamed object is not "
1018 & "access-to-variable (RM 8.5.1(6))", N);
1019 end if;
1021 if Is_Access_Subprogram_Type (Etype (Nam)) then
1022 Check_Subtype_Conformant
1023 (Designated_Type (T), Designated_Type (Etype (Nam)));
1025 elsif not Subtypes_Statically_Match
1026 (Designated_Type (T),
1027 Available_View (Designated_Type (Etype (Nam))))
1028 then
1029 Error_Msg_N
1030 ("subtype of renamed object does not statically match", N);
1031 end if;
1032 end if;
1034 -- Special processing for renaming function return object. Some errors
1035 -- and warnings are produced only for calls that come from source.
1037 if Nkind (Nam) = N_Function_Call then
1038 case Ada_Version is
1040 -- Usage is illegal in Ada 83
1042 when Ada_83 =>
1043 if Comes_From_Source (Nam) then
1044 Error_Msg_N
1045 ("(Ada 83) cannot rename function return object", Nam);
1046 end if;
1048 -- In Ada 95, warn for odd case of renaming parameterless function
1049 -- call if this is not a limited type (where this is useful).
1051 when others =>
1052 if Warn_On_Object_Renames_Function
1053 and then No (Parameter_Associations (Nam))
1054 and then not Is_Limited_Type (Etype (Nam))
1055 and then Comes_From_Source (Nam)
1056 then
1057 Error_Msg_N
1058 ("renaming function result object is suspicious?R?", Nam);
1059 Error_Msg_NE
1060 ("\function & will be called only once?R?", Nam,
1061 Entity (Name (Nam)));
1062 Error_Msg_N -- CODEFIX
1063 ("\suggest using an initialized constant "
1064 & "object instead?R?", Nam);
1065 end if;
1067 end case;
1068 end if;
1070 Check_Constrained_Object;
1072 -- An object renaming requires an exact match of the type. Class-wide
1073 -- matching is not allowed.
1075 if Is_Class_Wide_Type (T)
1076 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1077 then
1078 Wrong_Type (Nam, T);
1079 end if;
1081 T2 := Etype (Nam);
1083 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1085 if Nkind (Nam) = N_Explicit_Dereference
1086 and then Ekind (Etype (T2)) = E_Incomplete_Type
1087 then
1088 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1089 return;
1091 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1092 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1093 return;
1094 end if;
1096 -- Ada 2005 (AI-327)
1098 if Ada_Version >= Ada_2005
1099 and then Nkind (Nam) = N_Attribute_Reference
1100 and then Attribute_Name (Nam) = Name_Priority
1101 then
1102 null;
1104 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1105 declare
1106 Nam_Decl : Node_Id;
1107 Nam_Ent : Entity_Id;
1109 begin
1110 if Nkind (Nam) = N_Attribute_Reference then
1111 Nam_Ent := Entity (Prefix (Nam));
1112 else
1113 Nam_Ent := Entity (Nam);
1114 end if;
1116 Nam_Decl := Parent (Nam_Ent);
1118 if Has_Null_Exclusion (N)
1119 and then not Has_Null_Exclusion (Nam_Decl)
1120 then
1121 -- Ada 2005 (AI-423): If the object name denotes a generic
1122 -- formal object of a generic unit G, and the object renaming
1123 -- declaration occurs within the body of G or within the body
1124 -- of a generic unit declared within the declarative region
1125 -- of G, then the declaration of the formal object of G must
1126 -- have a null exclusion or a null-excluding subtype.
1128 if Is_Formal_Object (Nam_Ent)
1129 and then In_Generic_Scope (Id)
1130 then
1131 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1132 Error_Msg_N
1133 ("renamed formal does not exclude `NULL` "
1134 & "(RM 8.5.1(4.6/2))", N);
1136 elsif In_Package_Body (Scope (Id)) then
1137 Error_Msg_N
1138 ("formal object does not have a null exclusion"
1139 & "(RM 8.5.1(4.6/2))", N);
1140 end if;
1142 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1143 -- shall exclude null.
1145 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1146 Error_Msg_N
1147 ("renamed object does not exclude `NULL` "
1148 & "(RM 8.5.1(4.6/2))", N);
1150 -- An instance is illegal if it contains a renaming that
1151 -- excludes null, and the actual does not. The renaming
1152 -- declaration has already indicated that the declaration
1153 -- of the renamed actual in the instance will raise
1154 -- constraint_error.
1156 elsif Nkind (Nam_Decl) = N_Object_Declaration
1157 and then In_Instance
1158 and then
1159 Present (Corresponding_Generic_Association (Nam_Decl))
1160 and then Nkind (Expression (Nam_Decl)) =
1161 N_Raise_Constraint_Error
1162 then
1163 Error_Msg_N
1164 ("renamed actual does not exclude `NULL` "
1165 & "(RM 8.5.1(4.6/2))", N);
1167 -- Finally, if there is a null exclusion, the subtype mark
1168 -- must not be null-excluding.
1170 elsif No (Access_Definition (N))
1171 and then Can_Never_Be_Null (T)
1172 then
1173 Error_Msg_NE
1174 ("`NOT NULL` not allowed (& already excludes null)",
1175 N, T);
1177 end if;
1179 elsif Can_Never_Be_Null (T)
1180 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1181 then
1182 Error_Msg_N
1183 ("renamed object does not exclude `NULL` "
1184 & "(RM 8.5.1(4.6/2))", N);
1186 elsif Has_Null_Exclusion (N)
1187 and then No (Access_Definition (N))
1188 and then Can_Never_Be_Null (T)
1189 then
1190 Error_Msg_NE
1191 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1192 end if;
1193 end;
1194 end if;
1196 Set_Ekind (Id, E_Variable);
1198 -- Initialize the object size and alignment. Note that we used to call
1199 -- Init_Size_Align here, but that's wrong for objects which have only
1200 -- an Esize, not an RM_Size field!
1202 Init_Object_Size_Align (Id);
1204 if T = Any_Type or else Etype (Nam) = Any_Type then
1205 return;
1207 -- Verify that the renamed entity is an object or a function call. It
1208 -- may have been rewritten in several ways.
1210 elsif Is_Object_Reference (Nam) then
1211 if Comes_From_Source (N) then
1212 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1213 Error_Msg_N
1214 ("illegal renaming of discriminant-dependent component", Nam);
1215 end if;
1217 -- If the renaming comes from source and the renamed object is a
1218 -- dereference, then mark the prefix as needing debug information,
1219 -- since it might have been rewritten hence internally generated
1220 -- and Debug_Renaming_Declaration will link the renaming to it.
1222 if Nkind (Nam) = N_Explicit_Dereference
1223 and then Is_Entity_Name (Prefix (Nam))
1224 then
1225 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1226 end if;
1227 end if;
1229 -- A static function call may have been folded into a literal
1231 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1233 -- When expansion is disabled, attribute reference is not
1234 -- rewritten as function call. Otherwise it may be rewritten
1235 -- as a conversion, so check original node.
1237 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1238 and then Is_Function_Attribute_Name
1239 (Attribute_Name (Original_Node (Nam))))
1241 -- Weird but legal, equivalent to renaming a function call.
1242 -- Illegal if the literal is the result of constant-folding an
1243 -- attribute reference that is not a function.
1245 or else (Is_Entity_Name (Nam)
1246 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1247 and then
1248 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1250 or else (Nkind (Nam) = N_Type_Conversion
1251 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1252 then
1253 null;
1255 elsif Nkind (Nam) = N_Type_Conversion then
1256 Error_Msg_N
1257 ("renaming of conversion only allowed for tagged types", Nam);
1259 -- Ada 2005 (AI-327)
1261 elsif Ada_Version >= Ada_2005
1262 and then Nkind (Nam) = N_Attribute_Reference
1263 and then Attribute_Name (Nam) = Name_Priority
1264 then
1265 null;
1267 -- Allow internally generated x'Reference expression
1269 elsif Nkind (Nam) = N_Reference then
1270 null;
1272 else
1273 Error_Msg_N ("expect object name in renaming", Nam);
1274 end if;
1276 Set_Etype (Id, T2);
1278 if not Is_Variable (Nam) then
1279 Set_Ekind (Id, E_Constant);
1280 Set_Never_Set_In_Source (Id, True);
1281 Set_Is_True_Constant (Id, True);
1282 end if;
1284 Set_Renamed_Object (Id, Nam);
1286 -- Implementation-defined aspect specifications can appear in a renaming
1287 -- declaration, but not language-defined ones. The call to procedure
1288 -- Analyze_Aspect_Specifications will take care of this error check.
1290 if Has_Aspects (N) then
1291 Analyze_Aspect_Specifications (N, Id);
1292 end if;
1294 -- Deal with dimensions
1296 Analyze_Dimension (N);
1297 end Analyze_Object_Renaming;
1299 ------------------------------
1300 -- Analyze_Package_Renaming --
1301 ------------------------------
1303 procedure Analyze_Package_Renaming (N : Node_Id) is
1304 New_P : constant Entity_Id := Defining_Entity (N);
1305 Old_P : Entity_Id;
1306 Spec : Node_Id;
1308 begin
1309 if Name (N) = Error then
1310 return;
1311 end if;
1313 -- Apply Text_IO kludge here since we may be renaming a child of Text_IO
1315 Text_IO_Kludge (Name (N));
1317 if Current_Scope /= Standard_Standard then
1318 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1319 end if;
1321 Enter_Name (New_P);
1322 Analyze (Name (N));
1324 if Is_Entity_Name (Name (N)) then
1325 Old_P := Entity (Name (N));
1326 else
1327 Old_P := Any_Id;
1328 end if;
1330 if Etype (Old_P) = Any_Type then
1331 Error_Msg_N ("expect package name in renaming", Name (N));
1333 elsif Ekind (Old_P) /= E_Package
1334 and then not (Ekind (Old_P) = E_Generic_Package
1335 and then In_Open_Scopes (Old_P))
1336 then
1337 if Ekind (Old_P) = E_Generic_Package then
1338 Error_Msg_N
1339 ("generic package cannot be renamed as a package", Name (N));
1340 else
1341 Error_Msg_Sloc := Sloc (Old_P);
1342 Error_Msg_NE
1343 ("expect package name in renaming, found& declared#",
1344 Name (N), Old_P);
1345 end if;
1347 -- Set basic attributes to minimize cascaded errors
1349 Set_Ekind (New_P, E_Package);
1350 Set_Etype (New_P, Standard_Void_Type);
1352 -- Here for OK package renaming
1354 else
1355 -- Entities in the old package are accessible through the renaming
1356 -- entity. The simplest implementation is to have both packages share
1357 -- the entity list.
1359 Set_Ekind (New_P, E_Package);
1360 Set_Etype (New_P, Standard_Void_Type);
1362 if Present (Renamed_Object (Old_P)) then
1363 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1364 else
1365 Set_Renamed_Object (New_P, Old_P);
1366 end if;
1368 Set_Has_Completion (New_P);
1370 Set_First_Entity (New_P, First_Entity (Old_P));
1371 Set_Last_Entity (New_P, Last_Entity (Old_P));
1372 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1373 Check_Library_Unit_Renaming (N, Old_P);
1374 Generate_Reference (Old_P, Name (N));
1376 -- If the renaming is in the visible part of a package, then we set
1377 -- Renamed_In_Spec for the renamed package, to prevent giving
1378 -- warnings about no entities referenced. Such a warning would be
1379 -- overenthusiastic, since clients can see entities in the renamed
1380 -- package via the visible package renaming.
1382 declare
1383 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1384 begin
1385 if Ekind (Ent) = E_Package
1386 and then not In_Private_Part (Ent)
1387 and then In_Extended_Main_Source_Unit (N)
1388 and then Ekind (Old_P) = E_Package
1389 then
1390 Set_Renamed_In_Spec (Old_P);
1391 end if;
1392 end;
1394 -- If this is the renaming declaration of a package instantiation
1395 -- within itself, it is the declaration that ends the list of actuals
1396 -- for the instantiation. At this point, the subtypes that rename
1397 -- the actuals are flagged as generic, to avoid spurious ambiguities
1398 -- if the actuals for two distinct formals happen to coincide. If
1399 -- the actual is a private type, the subtype has a private completion
1400 -- that is flagged in the same fashion.
1402 -- Resolution is identical to what is was in the original generic.
1403 -- On exit from the generic instance, these are turned into regular
1404 -- subtypes again, so they are compatible with types in their class.
1406 if not Is_Generic_Instance (Old_P) then
1407 return;
1408 else
1409 Spec := Specification (Unit_Declaration_Node (Old_P));
1410 end if;
1412 if Nkind (Spec) = N_Package_Specification
1413 and then Present (Generic_Parent (Spec))
1414 and then Old_P = Current_Scope
1415 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1416 then
1417 declare
1418 E : Entity_Id;
1420 begin
1421 E := First_Entity (Old_P);
1422 while Present (E) and then E /= New_P loop
1423 if Is_Type (E)
1424 and then Nkind (Parent (E)) = N_Subtype_Declaration
1425 then
1426 Set_Is_Generic_Actual_Type (E);
1428 if Is_Private_Type (E)
1429 and then Present (Full_View (E))
1430 then
1431 Set_Is_Generic_Actual_Type (Full_View (E));
1432 end if;
1433 end if;
1435 Next_Entity (E);
1436 end loop;
1437 end;
1438 end if;
1439 end if;
1441 -- Implementation-defined aspect specifications can appear in a renaming
1442 -- declaration, but not language-defined ones. The call to procedure
1443 -- Analyze_Aspect_Specifications will take care of this error check.
1445 if Has_Aspects (N) then
1446 Analyze_Aspect_Specifications (N, New_P);
1447 end if;
1448 end Analyze_Package_Renaming;
1450 -------------------------------
1451 -- Analyze_Renamed_Character --
1452 -------------------------------
1454 procedure Analyze_Renamed_Character
1455 (N : Node_Id;
1456 New_S : Entity_Id;
1457 Is_Body : Boolean)
1459 C : constant Node_Id := Name (N);
1461 begin
1462 if Ekind (New_S) = E_Function then
1463 Resolve (C, Etype (New_S));
1465 if Is_Body then
1466 Check_Frozen_Renaming (N, New_S);
1467 end if;
1469 else
1470 Error_Msg_N ("character literal can only be renamed as function", N);
1471 end if;
1472 end Analyze_Renamed_Character;
1474 ---------------------------------
1475 -- Analyze_Renamed_Dereference --
1476 ---------------------------------
1478 procedure Analyze_Renamed_Dereference
1479 (N : Node_Id;
1480 New_S : Entity_Id;
1481 Is_Body : Boolean)
1483 Nam : constant Node_Id := Name (N);
1484 P : constant Node_Id := Prefix (Nam);
1485 Typ : Entity_Id;
1486 Ind : Interp_Index;
1487 It : Interp;
1489 begin
1490 if not Is_Overloaded (P) then
1491 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1492 or else not Type_Conformant (Etype (Nam), New_S)
1493 then
1494 Error_Msg_N ("designated type does not match specification", P);
1495 else
1496 Resolve (P);
1497 end if;
1499 return;
1501 else
1502 Typ := Any_Type;
1503 Get_First_Interp (Nam, Ind, It);
1505 while Present (It.Nam) loop
1507 if Ekind (It.Nam) = E_Subprogram_Type
1508 and then Type_Conformant (It.Nam, New_S)
1509 then
1510 if Typ /= Any_Id then
1511 Error_Msg_N ("ambiguous renaming", P);
1512 return;
1513 else
1514 Typ := It.Nam;
1515 end if;
1516 end if;
1518 Get_Next_Interp (Ind, It);
1519 end loop;
1521 if Typ = Any_Type then
1522 Error_Msg_N ("designated type does not match specification", P);
1523 else
1524 Resolve (N, Typ);
1526 if Is_Body then
1527 Check_Frozen_Renaming (N, New_S);
1528 end if;
1529 end if;
1530 end if;
1531 end Analyze_Renamed_Dereference;
1533 ---------------------------
1534 -- Analyze_Renamed_Entry --
1535 ---------------------------
1537 procedure Analyze_Renamed_Entry
1538 (N : Node_Id;
1539 New_S : Entity_Id;
1540 Is_Body : Boolean)
1542 Nam : constant Node_Id := Name (N);
1543 Sel : constant Node_Id := Selector_Name (Nam);
1544 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1545 Old_S : Entity_Id;
1547 begin
1548 if Entity (Sel) = Any_Id then
1550 -- Selector is undefined on prefix. Error emitted already
1552 Set_Has_Completion (New_S);
1553 return;
1554 end if;
1556 -- Otherwise find renamed entity and build body of New_S as a call to it
1558 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1560 if Old_S = Any_Id then
1561 Error_Msg_N (" no subprogram or entry matches specification", N);
1562 else
1563 if Is_Body then
1564 Check_Subtype_Conformant (New_S, Old_S, N);
1565 Generate_Reference (New_S, Defining_Entity (N), 'b');
1566 Style.Check_Identifier (Defining_Entity (N), New_S);
1568 else
1569 -- Only mode conformance required for a renaming_as_declaration
1571 Check_Mode_Conformant (New_S, Old_S, N);
1572 end if;
1574 Inherit_Renamed_Profile (New_S, Old_S);
1576 -- The prefix can be an arbitrary expression that yields a task or
1577 -- protected object, so it must be resolved.
1579 Resolve (Prefix (Nam), Scope (Old_S));
1580 end if;
1582 Set_Convention (New_S, Convention (Old_S));
1583 Set_Has_Completion (New_S, Inside_A_Generic);
1585 -- AI05-0225: If the renamed entity is a procedure or entry of a
1586 -- protected object, the target object must be a variable.
1588 if Ekind (Scope (Old_S)) in Protected_Kind
1589 and then Ekind (New_S) = E_Procedure
1590 and then not Is_Variable (Prefix (Nam))
1591 then
1592 if Is_Actual then
1593 Error_Msg_N
1594 ("target object of protected operation used as actual for "
1595 & "formal procedure must be a variable", Nam);
1596 else
1597 Error_Msg_N
1598 ("target object of protected operation renamed as procedure, "
1599 & "must be a variable", Nam);
1600 end if;
1601 end if;
1603 if Is_Body then
1604 Check_Frozen_Renaming (N, New_S);
1605 end if;
1606 end Analyze_Renamed_Entry;
1608 -----------------------------------
1609 -- Analyze_Renamed_Family_Member --
1610 -----------------------------------
1612 procedure Analyze_Renamed_Family_Member
1613 (N : Node_Id;
1614 New_S : Entity_Id;
1615 Is_Body : Boolean)
1617 Nam : constant Node_Id := Name (N);
1618 P : constant Node_Id := Prefix (Nam);
1619 Old_S : Entity_Id;
1621 begin
1622 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1623 or else (Nkind (P) = N_Selected_Component
1624 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1625 then
1626 if Is_Entity_Name (P) then
1627 Old_S := Entity (P);
1628 else
1629 Old_S := Entity (Selector_Name (P));
1630 end if;
1632 if not Entity_Matches_Spec (Old_S, New_S) then
1633 Error_Msg_N ("entry family does not match specification", N);
1635 elsif Is_Body then
1636 Check_Subtype_Conformant (New_S, Old_S, N);
1637 Generate_Reference (New_S, Defining_Entity (N), 'b');
1638 Style.Check_Identifier (Defining_Entity (N), New_S);
1639 end if;
1641 else
1642 Error_Msg_N ("no entry family matches specification", N);
1643 end if;
1645 Set_Has_Completion (New_S, Inside_A_Generic);
1647 if Is_Body then
1648 Check_Frozen_Renaming (N, New_S);
1649 end if;
1650 end Analyze_Renamed_Family_Member;
1652 -----------------------------------------
1653 -- Analyze_Renamed_Primitive_Operation --
1654 -----------------------------------------
1656 procedure Analyze_Renamed_Primitive_Operation
1657 (N : Node_Id;
1658 New_S : Entity_Id;
1659 Is_Body : Boolean)
1661 Old_S : Entity_Id;
1663 function Conforms
1664 (Subp : Entity_Id;
1665 Ctyp : Conformance_Type) return Boolean;
1666 -- Verify that the signatures of the renamed entity and the new entity
1667 -- match. The first formal of the renamed entity is skipped because it
1668 -- is the target object in any subsequent call.
1670 --------------
1671 -- Conforms --
1672 --------------
1674 function Conforms
1675 (Subp : Entity_Id;
1676 Ctyp : Conformance_Type) return Boolean
1678 Old_F : Entity_Id;
1679 New_F : Entity_Id;
1681 begin
1682 if Ekind (Subp) /= Ekind (New_S) then
1683 return False;
1684 end if;
1686 Old_F := Next_Formal (First_Formal (Subp));
1687 New_F := First_Formal (New_S);
1688 while Present (Old_F) and then Present (New_F) loop
1689 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1690 return False;
1691 end if;
1693 if Ctyp >= Mode_Conformant
1694 and then Ekind (Old_F) /= Ekind (New_F)
1695 then
1696 return False;
1697 end if;
1699 Next_Formal (New_F);
1700 Next_Formal (Old_F);
1701 end loop;
1703 return True;
1704 end Conforms;
1706 -- Start of processing for Analyze_Renamed_Primitive_Operation
1708 begin
1709 if not Is_Overloaded (Selector_Name (Name (N))) then
1710 Old_S := Entity (Selector_Name (Name (N)));
1712 if not Conforms (Old_S, Type_Conformant) then
1713 Old_S := Any_Id;
1714 end if;
1716 else
1717 -- Find the operation that matches the given signature
1719 declare
1720 It : Interp;
1721 Ind : Interp_Index;
1723 begin
1724 Old_S := Any_Id;
1725 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1727 while Present (It.Nam) loop
1728 if Conforms (It.Nam, Type_Conformant) then
1729 Old_S := It.Nam;
1730 end if;
1732 Get_Next_Interp (Ind, It);
1733 end loop;
1734 end;
1735 end if;
1737 if Old_S = Any_Id then
1738 Error_Msg_N (" no subprogram or entry matches specification", N);
1740 else
1741 if Is_Body then
1742 if not Conforms (Old_S, Subtype_Conformant) then
1743 Error_Msg_N ("subtype conformance error in renaming", N);
1744 end if;
1746 Generate_Reference (New_S, Defining_Entity (N), 'b');
1747 Style.Check_Identifier (Defining_Entity (N), New_S);
1749 else
1750 -- Only mode conformance required for a renaming_as_declaration
1752 if not Conforms (Old_S, Mode_Conformant) then
1753 Error_Msg_N ("mode conformance error in renaming", N);
1754 end if;
1756 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1757 -- view of a subprogram is intrinsic, because the compiler has
1758 -- to generate a wrapper for any call to it. If the name in a
1759 -- subprogram renaming is a prefixed view, the entity is thus
1760 -- intrinsic, and 'Access cannot be applied to it.
1762 Set_Convention (New_S, Convention_Intrinsic);
1763 end if;
1765 -- Inherit_Renamed_Profile (New_S, Old_S);
1767 -- The prefix can be an arbitrary expression that yields an
1768 -- object, so it must be resolved.
1770 Resolve (Prefix (Name (N)));
1771 end if;
1772 end Analyze_Renamed_Primitive_Operation;
1774 ---------------------------------
1775 -- Analyze_Subprogram_Renaming --
1776 ---------------------------------
1778 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1779 Formal_Spec : constant Node_Id := Corresponding_Formal_Spec (N);
1780 Is_Actual : constant Boolean := Present (Formal_Spec);
1781 Inst_Node : Node_Id := Empty;
1782 Nam : constant Node_Id := Name (N);
1783 New_S : Entity_Id;
1784 Old_S : Entity_Id := Empty;
1785 Rename_Spec : Entity_Id;
1786 Save_AV : constant Ada_Version_Type := Ada_Version;
1787 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1788 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1789 Spec : constant Node_Id := Specification (N);
1791 procedure Check_Null_Exclusion
1792 (Ren : Entity_Id;
1793 Sub : Entity_Id);
1794 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1795 -- following AI rules:
1797 -- If Ren is a renaming of a formal subprogram and one of its
1798 -- parameters has a null exclusion, then the corresponding formal
1799 -- in Sub must also have one. Otherwise the subtype of the Sub's
1800 -- formal parameter must exclude null.
1802 -- If Ren is a renaming of a formal function and its return
1803 -- profile has a null exclusion, then Sub's return profile must
1804 -- have one. Otherwise the subtype of Sub's return profile must
1805 -- exclude null.
1807 procedure Freeze_Actual_Profile;
1808 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1809 -- types: a callable entity freezes its profile, unless it has an
1810 -- incomplete untagged formal (RM 13.14(10.2/3)).
1812 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1813 -- Find renamed entity when the declaration is a renaming_as_body and
1814 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1815 -- rule that a renaming_as_body is illegal if the declaration occurs
1816 -- before the subprogram it completes is frozen, and renaming indirectly
1817 -- renames the subprogram itself.(Defect Report 8652/0027).
1819 function Check_Class_Wide_Actual return Entity_Id;
1820 -- AI05-0071: In an instance, if the actual for a formal type FT with
1821 -- unknown discriminants is a class-wide type CT, and the generic has
1822 -- a formal subprogram with a box for a primitive operation of FT,
1823 -- then the corresponding actual subprogram denoted by the default is a
1824 -- class-wide operation whose body is a dispatching call. We replace the
1825 -- generated renaming declaration:
1827 -- procedure P (X : CT) renames P;
1829 -- by a different renaming and a class-wide operation:
1831 -- procedure Pr (X : T) renames P; -- renames primitive operation
1832 -- procedure P (X : CT); -- class-wide operation
1833 -- ...
1834 -- procedure P (X : CT) is begin Pr (X); end; -- dispatching call
1836 -- This rule only applies if there is no explicit visible class-wide
1837 -- operation at the point of the instantiation.
1839 function Has_Class_Wide_Actual return Boolean;
1840 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1841 -- defaulted formal subprogram when the actual for the controlling
1842 -- formal type is class-wide.
1844 -----------------------------
1845 -- Check_Class_Wide_Actual --
1846 -----------------------------
1848 function Check_Class_Wide_Actual return Entity_Id is
1849 Loc : constant Source_Ptr := Sloc (N);
1851 F : Entity_Id;
1852 Formal_Type : Entity_Id;
1853 Actual_Type : Entity_Id;
1854 New_Body : Node_Id;
1855 New_Decl : Node_Id;
1856 Result : Entity_Id;
1858 function Make_Call (Prim_Op : Entity_Id) return Node_Id;
1859 -- Build dispatching call for body of class-wide operation
1861 function Make_Spec return Node_Id;
1862 -- Create subprogram specification for declaration and body of
1863 -- class-wide operation, using signature of renaming declaration.
1865 ---------------
1866 -- Make_Call --
1867 ---------------
1869 function Make_Call (Prim_Op : Entity_Id) return Node_Id is
1870 Actuals : List_Id;
1871 F : Node_Id;
1873 begin
1874 Actuals := New_List;
1875 F := First (Parameter_Specifications (Specification (New_Decl)));
1876 while Present (F) loop
1877 Append_To (Actuals,
1878 Make_Identifier (Loc, Chars (Defining_Identifier (F))));
1879 Next (F);
1880 end loop;
1882 if Ekind_In (Prim_Op, E_Function, E_Operator) then
1883 return Make_Simple_Return_Statement (Loc,
1884 Expression =>
1885 Make_Function_Call (Loc,
1886 Name => New_Occurrence_Of (Prim_Op, Loc),
1887 Parameter_Associations => Actuals));
1888 else
1889 return
1890 Make_Procedure_Call_Statement (Loc,
1891 Name => New_Occurrence_Of (Prim_Op, Loc),
1892 Parameter_Associations => Actuals);
1893 end if;
1894 end Make_Call;
1896 ---------------
1897 -- Make_Spec --
1898 ---------------
1900 function Make_Spec return Node_Id is
1901 Param_Specs : constant List_Id := Copy_Parameter_List (New_S);
1903 begin
1904 if Ekind (New_S) = E_Procedure then
1905 return
1906 Make_Procedure_Specification (Loc,
1907 Defining_Unit_Name =>
1908 Make_Defining_Identifier (Loc,
1909 Chars (Defining_Unit_Name (Spec))),
1910 Parameter_Specifications => Param_Specs);
1911 else
1912 return
1913 Make_Function_Specification (Loc,
1914 Defining_Unit_Name =>
1915 Make_Defining_Identifier (Loc,
1916 Chars (Defining_Unit_Name (Spec))),
1917 Parameter_Specifications => Param_Specs,
1918 Result_Definition =>
1919 New_Copy_Tree (Result_Definition (Spec)));
1920 end if;
1921 end Make_Spec;
1923 -- Start of processing for Check_Class_Wide_Actual
1925 begin
1926 Result := Any_Id;
1927 Formal_Type := Empty;
1928 Actual_Type := Empty;
1930 F := First_Formal (Formal_Spec);
1931 while Present (F) loop
1932 if Has_Unknown_Discriminants (Etype (F))
1933 and then not Is_Class_Wide_Type (Etype (F))
1934 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (F)))
1935 then
1936 Formal_Type := Etype (F);
1937 Actual_Type := Etype (Get_Instance_Of (Formal_Type));
1938 exit;
1939 end if;
1941 Next_Formal (F);
1942 end loop;
1944 if Present (Formal_Type) then
1946 -- Create declaration and body for class-wide operation
1948 New_Decl :=
1949 Make_Subprogram_Declaration (Loc, Specification => Make_Spec);
1951 New_Body :=
1952 Make_Subprogram_Body (Loc,
1953 Specification => Make_Spec,
1954 Declarations => No_List,
1955 Handled_Statement_Sequence =>
1956 Make_Handled_Sequence_Of_Statements (Loc, New_List));
1958 -- Modify Spec and create internal name for renaming of primitive
1959 -- operation.
1961 Set_Defining_Unit_Name (Spec, Make_Temporary (Loc, 'R'));
1962 F := First (Parameter_Specifications (Spec));
1963 while Present (F) loop
1964 if Nkind (Parameter_Type (F)) = N_Identifier
1965 and then Is_Class_Wide_Type (Entity (Parameter_Type (F)))
1966 then
1967 Set_Parameter_Type (F, New_Occurrence_Of (Actual_Type, Loc));
1968 end if;
1969 Next (F);
1970 end loop;
1972 New_S := Analyze_Subprogram_Specification (Spec);
1973 Result := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
1974 end if;
1976 if Result /= Any_Id then
1977 Insert_Before (N, New_Decl);
1978 Analyze (New_Decl);
1980 -- Add dispatching call to body of class-wide operation
1982 Append (Make_Call (Result),
1983 Statements (Handled_Statement_Sequence (New_Body)));
1985 -- The generated body does not freeze. It is analyzed when the
1986 -- generated operation is frozen. This body is only needed if
1987 -- expansion is enabled.
1989 if Expander_Active then
1990 Append_Freeze_Action (Defining_Entity (New_Decl), New_Body);
1991 end if;
1993 Result := Defining_Entity (New_Decl);
1994 end if;
1996 -- Return the class-wide operation if one was created
1998 return Result;
1999 end Check_Class_Wide_Actual;
2001 --------------------------
2002 -- Check_Null_Exclusion --
2003 --------------------------
2005 procedure Check_Null_Exclusion
2006 (Ren : Entity_Id;
2007 Sub : Entity_Id)
2009 Ren_Formal : Entity_Id;
2010 Sub_Formal : Entity_Id;
2012 begin
2013 -- Parameter check
2015 Ren_Formal := First_Formal (Ren);
2016 Sub_Formal := First_Formal (Sub);
2017 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2018 if Has_Null_Exclusion (Parent (Ren_Formal))
2019 and then
2020 not (Has_Null_Exclusion (Parent (Sub_Formal))
2021 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2022 then
2023 Error_Msg_NE
2024 ("`NOT NULL` required for parameter &",
2025 Parent (Sub_Formal), Sub_Formal);
2026 end if;
2028 Next_Formal (Ren_Formal);
2029 Next_Formal (Sub_Formal);
2030 end loop;
2032 -- Return profile check
2034 if Nkind (Parent (Ren)) = N_Function_Specification
2035 and then Nkind (Parent (Sub)) = N_Function_Specification
2036 and then Has_Null_Exclusion (Parent (Ren))
2037 and then not (Has_Null_Exclusion (Parent (Sub))
2038 or else Can_Never_Be_Null (Etype (Sub)))
2039 then
2040 Error_Msg_N
2041 ("return must specify `NOT NULL`",
2042 Result_Definition (Parent (Sub)));
2043 end if;
2044 end Check_Null_Exclusion;
2046 ---------------------------
2047 -- Freeze_Actual_Profile --
2048 ---------------------------
2050 procedure Freeze_Actual_Profile is
2051 F : Entity_Id;
2052 Has_Untagged_Inc : Boolean;
2053 Instantiation_Node : constant Node_Id := Parent (N);
2055 begin
2056 if Ada_Version >= Ada_2012 then
2057 F := First_Formal (Formal_Spec);
2058 Has_Untagged_Inc := False;
2059 while Present (F) loop
2060 if Ekind (Etype (F)) = E_Incomplete_Type
2061 and then not Is_Tagged_Type (Etype (F))
2062 then
2063 Has_Untagged_Inc := True;
2064 exit;
2065 end if;
2067 F := Next_Formal (F);
2068 end loop;
2070 if Ekind (Formal_Spec) = E_Function
2071 and then Ekind (Etype (Formal_Spec)) = E_Incomplete_Type
2072 and then not Is_Tagged_Type (Etype (F))
2073 then
2074 Has_Untagged_Inc := True;
2075 end if;
2077 if not Has_Untagged_Inc then
2078 F := First_Formal (Old_S);
2079 while Present (F) loop
2080 Freeze_Before (Instantiation_Node, Etype (F));
2082 if Is_Incomplete_Or_Private_Type (Etype (F))
2083 and then No (Underlying_Type (Etype (F)))
2084 then
2086 -- Exclude generic types, or types derived from them.
2087 -- They will be frozen in the enclosing instance.
2089 if Is_Generic_Type (Etype (F))
2090 or else Is_Generic_Type (Root_Type (Etype (F)))
2091 then
2092 null;
2093 else
2094 Error_Msg_NE
2095 ("type& must be frozen before this point",
2096 Instantiation_Node, Etype (F));
2097 end if;
2098 end if;
2100 F := Next_Formal (F);
2101 end loop;
2102 end if;
2103 end if;
2104 end Freeze_Actual_Profile;
2106 ---------------------------
2107 -- Has_Class_Wide_Actual --
2108 ---------------------------
2110 function Has_Class_Wide_Actual return Boolean is
2111 F_Nam : Entity_Id;
2112 F_Spec : Entity_Id;
2114 begin
2115 if Is_Actual
2116 and then Nkind (Nam) in N_Has_Entity
2117 and then Present (Entity (Nam))
2118 and then Is_Dispatching_Operation (Entity (Nam))
2119 then
2120 F_Nam := First_Entity (Entity (Nam));
2121 F_Spec := First_Formal (Formal_Spec);
2122 while Present (F_Nam) and then Present (F_Spec) loop
2123 if Is_Controlling_Formal (F_Nam)
2124 and then Has_Unknown_Discriminants (Etype (F_Spec))
2125 and then not Is_Class_Wide_Type (Etype (F_Spec))
2126 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (F_Spec)))
2127 then
2128 return True;
2129 end if;
2131 Next_Entity (F_Nam);
2132 Next_Formal (F_Spec);
2133 end loop;
2134 end if;
2136 return False;
2137 end Has_Class_Wide_Actual;
2139 -------------------------
2140 -- Original_Subprogram --
2141 -------------------------
2143 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2144 Orig_Decl : Node_Id;
2145 Orig_Subp : Entity_Id;
2147 begin
2148 -- First case: renamed entity is itself a renaming
2150 if Present (Alias (Subp)) then
2151 return Alias (Subp);
2153 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2154 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2155 then
2156 -- Check if renamed entity is a renaming_as_body
2158 Orig_Decl :=
2159 Unit_Declaration_Node
2160 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2162 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2163 Orig_Subp := Entity (Name (Orig_Decl));
2165 if Orig_Subp = Rename_Spec then
2167 -- Circularity detected
2169 return Orig_Subp;
2171 else
2172 return (Original_Subprogram (Orig_Subp));
2173 end if;
2174 else
2175 return Subp;
2176 end if;
2177 else
2178 return Subp;
2179 end if;
2180 end Original_Subprogram;
2182 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2183 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2184 -- defaulted formal subprogram when the actual for a related formal
2185 -- type is class-wide.
2187 -- Start of processing for Analyze_Subprogram_Renaming
2189 begin
2190 -- We must test for the attribute renaming case before the Analyze
2191 -- call because otherwise Sem_Attr will complain that the attribute
2192 -- is missing an argument when it is analyzed.
2194 if Nkind (Nam) = N_Attribute_Reference then
2196 -- In the case of an abstract formal subprogram association, rewrite
2197 -- an actual given by a stream attribute as the name of the
2198 -- corresponding stream primitive of the type.
2200 -- In a generic context the stream operations are not generated, and
2201 -- this must be treated as a normal attribute reference, to be
2202 -- expanded in subsequent instantiations.
2204 if Is_Actual
2205 and then Is_Abstract_Subprogram (Formal_Spec)
2206 and then Full_Expander_Active
2207 then
2208 declare
2209 Stream_Prim : Entity_Id;
2210 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2212 begin
2213 -- The class-wide forms of the stream attributes are not
2214 -- primitive dispatching operations (even though they
2215 -- internally dispatch to a stream attribute).
2217 if Is_Class_Wide_Type (Prefix_Type) then
2218 Error_Msg_N
2219 ("attribute must be a primitive dispatching operation",
2220 Nam);
2221 return;
2222 end if;
2224 -- Retrieve the primitive subprogram associated with the
2225 -- attribute. This can only be a stream attribute, since those
2226 -- are the only ones that are dispatching (and the actual for
2227 -- an abstract formal subprogram must be dispatching
2228 -- operation).
2230 begin
2231 case Attribute_Name (Nam) is
2232 when Name_Input =>
2233 Stream_Prim :=
2234 Find_Prim_Op (Prefix_Type, TSS_Stream_Input);
2235 when Name_Output =>
2236 Stream_Prim :=
2237 Find_Prim_Op (Prefix_Type, TSS_Stream_Output);
2238 when Name_Read =>
2239 Stream_Prim :=
2240 Find_Prim_Op (Prefix_Type, TSS_Stream_Read);
2241 when Name_Write =>
2242 Stream_Prim :=
2243 Find_Prim_Op (Prefix_Type, TSS_Stream_Write);
2244 when others =>
2245 Error_Msg_N
2246 ("attribute must be a primitive"
2247 & " dispatching operation", Nam);
2248 return;
2249 end case;
2251 exception
2253 -- If no operation was found, and the type is limited,
2254 -- the user should have defined one.
2256 when Program_Error =>
2257 if Is_Limited_Type (Prefix_Type) then
2258 Error_Msg_NE
2259 ("stream operation not defined for type&",
2260 N, Prefix_Type);
2261 return;
2263 -- Otherwise, compiler should have generated default
2265 else
2266 raise;
2267 end if;
2268 end;
2270 -- Rewrite the attribute into the name of its corresponding
2271 -- primitive dispatching subprogram. We can then proceed with
2272 -- the usual processing for subprogram renamings.
2274 declare
2275 Prim_Name : constant Node_Id :=
2276 Make_Identifier (Sloc (Nam),
2277 Chars => Chars (Stream_Prim));
2278 begin
2279 Set_Entity (Prim_Name, Stream_Prim);
2280 Rewrite (Nam, Prim_Name);
2281 Analyze (Nam);
2282 end;
2283 end;
2285 -- Normal processing for a renaming of an attribute
2287 else
2288 Attribute_Renaming (N);
2289 return;
2290 end if;
2291 end if;
2293 -- Check whether this declaration corresponds to the instantiation
2294 -- of a formal subprogram.
2296 -- If this is an instantiation, the corresponding actual is frozen and
2297 -- error messages can be made more precise. If this is a default
2298 -- subprogram, the entity is already established in the generic, and is
2299 -- not retrieved by visibility. If it is a default with a box, the
2300 -- candidate interpretations, if any, have been collected when building
2301 -- the renaming declaration. If overloaded, the proper interpretation is
2302 -- determined in Find_Renamed_Entity. If the entity is an operator,
2303 -- Find_Renamed_Entity applies additional visibility checks.
2305 if Is_Actual then
2306 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2308 -- Check whether the renaming is for a defaulted actual subprogram
2309 -- with a class-wide actual.
2311 if CW_Actual then
2312 New_S := Analyze_Subprogram_Specification (Spec);
2313 Old_S := Check_Class_Wide_Actual;
2315 elsif Is_Entity_Name (Nam)
2316 and then Present (Entity (Nam))
2317 and then not Comes_From_Source (Nam)
2318 and then not Is_Overloaded (Nam)
2319 then
2320 Old_S := Entity (Nam);
2321 New_S := Analyze_Subprogram_Specification (Spec);
2323 -- Operator case
2325 if Ekind (Entity (Nam)) = E_Operator then
2327 -- Box present
2329 if Box_Present (Inst_Node) then
2330 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2332 -- If there is an immediately visible homonym of the operator
2333 -- and the declaration has a default, this is worth a warning
2334 -- because the user probably did not intend to get the pre-
2335 -- defined operator, visible in the generic declaration. To
2336 -- find if there is an intended candidate, analyze the renaming
2337 -- again in the current context.
2339 elsif Scope (Old_S) = Standard_Standard
2340 and then Present (Default_Name (Inst_Node))
2341 then
2342 declare
2343 Decl : constant Node_Id := New_Copy_Tree (N);
2344 Hidden : Entity_Id;
2346 begin
2347 Set_Entity (Name (Decl), Empty);
2348 Analyze (Name (Decl));
2349 Hidden :=
2350 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2352 if Present (Hidden)
2353 and then In_Open_Scopes (Scope (Hidden))
2354 and then Is_Immediately_Visible (Hidden)
2355 and then Comes_From_Source (Hidden)
2356 and then Hidden /= Old_S
2357 then
2358 Error_Msg_Sloc := Sloc (Hidden);
2359 Error_Msg_N ("default subprogram is resolved " &
2360 "in the generic declaration " &
2361 "(RM 12.6(17))??", N);
2362 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2363 end if;
2364 end;
2365 end if;
2366 end if;
2368 else
2369 Analyze (Nam);
2370 New_S := Analyze_Subprogram_Specification (Spec);
2371 end if;
2373 else
2374 -- Renamed entity must be analyzed first, to avoid being hidden by
2375 -- new name (which might be the same in a generic instance).
2377 Analyze (Nam);
2379 -- The renaming defines a new overloaded entity, which is analyzed
2380 -- like a subprogram declaration.
2382 New_S := Analyze_Subprogram_Specification (Spec);
2383 end if;
2385 if Current_Scope /= Standard_Standard then
2386 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2387 end if;
2389 Rename_Spec := Find_Corresponding_Spec (N);
2391 -- Case of Renaming_As_Body
2393 if Present (Rename_Spec) then
2395 -- Renaming declaration is the completion of the declaration of
2396 -- Rename_Spec. We build an actual body for it at the freezing point.
2398 Set_Corresponding_Spec (N, Rename_Spec);
2400 -- Deal with special case of stream functions of abstract types
2401 -- and interfaces.
2403 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2404 N_Abstract_Subprogram_Declaration
2405 then
2406 -- Input stream functions are abstract if the object type is
2407 -- abstract. Similarly, all default stream functions for an
2408 -- interface type are abstract. However, these subprograms may
2409 -- receive explicit declarations in representation clauses, making
2410 -- the attribute subprograms usable as defaults in subsequent
2411 -- type extensions.
2412 -- In this case we rewrite the declaration to make the subprogram
2413 -- non-abstract. We remove the previous declaration, and insert
2414 -- the new one at the point of the renaming, to prevent premature
2415 -- access to unfrozen types. The new declaration reuses the
2416 -- specification of the previous one, and must not be analyzed.
2418 pragma Assert
2419 (Is_Primitive (Entity (Nam))
2420 and then
2421 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2422 declare
2423 Old_Decl : constant Node_Id :=
2424 Unit_Declaration_Node (Rename_Spec);
2425 New_Decl : constant Node_Id :=
2426 Make_Subprogram_Declaration (Sloc (N),
2427 Specification =>
2428 Relocate_Node (Specification (Old_Decl)));
2429 begin
2430 Remove (Old_Decl);
2431 Insert_After (N, New_Decl);
2432 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2433 Set_Analyzed (New_Decl);
2434 end;
2435 end if;
2437 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
2439 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2440 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
2441 end if;
2443 Set_Convention (New_S, Convention (Rename_Spec));
2444 Check_Fully_Conformant (New_S, Rename_Spec);
2445 Set_Public_Status (New_S);
2447 -- The specification does not introduce new formals, but only
2448 -- repeats the formals of the original subprogram declaration.
2449 -- For cross-reference purposes, and for refactoring tools, we
2450 -- treat the formals of the renaming declaration as body formals.
2452 Reference_Body_Formals (Rename_Spec, New_S);
2454 -- Indicate that the entity in the declaration functions like the
2455 -- corresponding body, and is not a new entity. The body will be
2456 -- constructed later at the freeze point, so indicate that the
2457 -- completion has not been seen yet.
2459 Set_Contract (New_S, Empty);
2460 Set_Ekind (New_S, E_Subprogram_Body);
2461 New_S := Rename_Spec;
2462 Set_Has_Completion (Rename_Spec, False);
2464 -- Ada 2005: check overriding indicator
2466 if Present (Overridden_Operation (Rename_Spec)) then
2467 if Must_Not_Override (Specification (N)) then
2468 Error_Msg_NE
2469 ("subprogram& overrides inherited operation",
2470 N, Rename_Spec);
2471 elsif
2472 Style_Check and then not Must_Override (Specification (N))
2473 then
2474 Style.Missing_Overriding (N, Rename_Spec);
2475 end if;
2477 elsif Must_Override (Specification (N)) then
2478 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
2479 end if;
2481 -- Normal subprogram renaming (not renaming as body)
2483 else
2484 Generate_Definition (New_S);
2485 New_Overloaded_Entity (New_S);
2487 if Is_Entity_Name (Nam)
2488 and then Is_Intrinsic_Subprogram (Entity (Nam))
2489 then
2490 null;
2491 else
2492 Check_Delayed_Subprogram (New_S);
2493 end if;
2494 end if;
2496 -- There is no need for elaboration checks on the new entity, which may
2497 -- be called before the next freezing point where the body will appear.
2498 -- Elaboration checks refer to the real entity, not the one created by
2499 -- the renaming declaration.
2501 Set_Kill_Elaboration_Checks (New_S, True);
2503 if Etype (Nam) = Any_Type then
2504 Set_Has_Completion (New_S);
2505 return;
2507 elsif Nkind (Nam) = N_Selected_Component then
2509 -- A prefix of the form A.B can designate an entry of task A, a
2510 -- protected operation of protected object A, or finally a primitive
2511 -- operation of object A. In the later case, A is an object of some
2512 -- tagged type, or an access type that denotes one such. To further
2513 -- distinguish these cases, note that the scope of a task entry or
2514 -- protected operation is type of the prefix.
2516 -- The prefix could be an overloaded function call that returns both
2517 -- kinds of operations. This overloading pathology is left to the
2518 -- dedicated reader ???
2520 declare
2521 T : constant Entity_Id := Etype (Prefix (Nam));
2523 begin
2524 if Present (T)
2525 and then
2526 (Is_Tagged_Type (T)
2527 or else
2528 (Is_Access_Type (T)
2529 and then Is_Tagged_Type (Designated_Type (T))))
2530 and then Scope (Entity (Selector_Name (Nam))) /= T
2531 then
2532 Analyze_Renamed_Primitive_Operation
2533 (N, New_S, Present (Rename_Spec));
2534 return;
2536 else
2537 -- Renamed entity is an entry or protected operation. For those
2538 -- cases an explicit body is built (at the point of freezing of
2539 -- this entity) that contains a call to the renamed entity.
2541 -- This is not allowed for renaming as body if the renamed
2542 -- spec is already frozen (see RM 8.5.4(5) for details).
2544 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
2545 Error_Msg_N
2546 ("renaming-as-body cannot rename entry as subprogram", N);
2547 Error_Msg_NE
2548 ("\since & is already frozen (RM 8.5.4(5))",
2549 N, Rename_Spec);
2550 else
2551 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
2552 end if;
2554 return;
2555 end if;
2556 end;
2558 elsif Nkind (Nam) = N_Explicit_Dereference then
2560 -- Renamed entity is designated by access_to_subprogram expression.
2561 -- Must build body to encapsulate call, as in the entry case.
2563 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
2564 return;
2566 elsif Nkind (Nam) = N_Indexed_Component then
2567 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
2568 return;
2570 elsif Nkind (Nam) = N_Character_Literal then
2571 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
2572 return;
2574 elsif not Is_Entity_Name (Nam)
2575 or else not Is_Overloadable (Entity (Nam))
2576 then
2577 -- Do not mention the renaming if it comes from an instance
2579 if not Is_Actual then
2580 Error_Msg_N ("expect valid subprogram name in renaming", N);
2581 else
2582 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
2583 end if;
2585 return;
2586 end if;
2588 -- Find the renamed entity that matches the given specification. Disable
2589 -- Ada_83 because there is no requirement of full conformance between
2590 -- renamed entity and new entity, even though the same circuit is used.
2592 -- This is a bit of a kludge, which introduces a really irregular use of
2593 -- Ada_Version[_Explicit]. Would be nice to find cleaner way to do this
2594 -- ???
2596 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
2597 Ada_Version_Pragma := Empty;
2598 Ada_Version_Explicit := Ada_Version;
2600 if No (Old_S) then
2601 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2603 -- The visible operation may be an inherited abstract operation that
2604 -- was overridden in the private part, in which case a call will
2605 -- dispatch to the overriding operation. Use the overriding one in
2606 -- the renaming declaration, to prevent spurious errors below.
2608 if Is_Overloadable (Old_S)
2609 and then Is_Abstract_Subprogram (Old_S)
2610 and then No (DTC_Entity (Old_S))
2611 and then Present (Alias (Old_S))
2612 and then not Is_Abstract_Subprogram (Alias (Old_S))
2613 and then Present (Overridden_Operation (Alias (Old_S)))
2614 then
2615 Old_S := Alias (Old_S);
2616 end if;
2618 -- When the renamed subprogram is overloaded and used as an actual
2619 -- of a generic, its entity is set to the first available homonym.
2620 -- We must first disambiguate the name, then set the proper entity.
2622 if Is_Actual and then Is_Overloaded (Nam) then
2623 Set_Entity (Nam, Old_S);
2624 end if;
2625 end if;
2627 -- Most common case: subprogram renames subprogram. No body is generated
2628 -- in this case, so we must indicate the declaration is complete as is.
2629 -- and inherit various attributes of the renamed subprogram.
2631 if No (Rename_Spec) then
2632 Set_Has_Completion (New_S);
2633 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
2634 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
2635 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
2637 -- Ada 2005 (AI-423): Check the consistency of null exclusions
2638 -- between a subprogram and its correct renaming.
2640 -- Note: the Any_Id check is a guard that prevents compiler crashes
2641 -- when performing a null exclusion check between a renaming and a
2642 -- renamed subprogram that has been found to be illegal.
2644 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
2645 Check_Null_Exclusion
2646 (Ren => New_S,
2647 Sub => Entity (Nam));
2648 end if;
2650 -- Enforce the Ada 2005 rule that the renamed entity cannot require
2651 -- overriding. The flag Requires_Overriding is set very selectively
2652 -- and misses some other illegal cases. The additional conditions
2653 -- checked below are sufficient but not necessary ???
2655 -- The rule does not apply to the renaming generated for an actual
2656 -- subprogram in an instance.
2658 if Is_Actual then
2659 null;
2661 -- Guard against previous errors, and omit renamings of predefined
2662 -- operators.
2664 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
2665 null;
2667 elsif Requires_Overriding (Old_S)
2668 or else
2669 (Is_Abstract_Subprogram (Old_S)
2670 and then Present (Find_Dispatching_Type (Old_S))
2671 and then
2672 not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
2673 then
2674 Error_Msg_N
2675 ("renamed entity cannot be "
2676 & "subprogram that requires overriding (RM 8.5.4 (5.1))", N);
2677 end if;
2678 end if;
2680 if Old_S /= Any_Id then
2681 if Is_Actual and then From_Default (N) then
2683 -- This is an implicit reference to the default actual
2685 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
2687 else
2688 Generate_Reference (Old_S, Nam);
2689 end if;
2691 Check_Internal_Protected_Use (N, Old_S);
2693 -- For a renaming-as-body, require subtype conformance, but if the
2694 -- declaration being completed has not been frozen, then inherit the
2695 -- convention of the renamed subprogram prior to checking conformance
2696 -- (unless the renaming has an explicit convention established; the
2697 -- rule stated in the RM doesn't seem to address this ???).
2699 if Present (Rename_Spec) then
2700 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
2701 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
2703 if not Is_Frozen (Rename_Spec) then
2704 if not Has_Convention_Pragma (Rename_Spec) then
2705 Set_Convention (New_S, Convention (Old_S));
2706 end if;
2708 if Ekind (Old_S) /= E_Operator then
2709 Check_Mode_Conformant (New_S, Old_S, Spec);
2710 end if;
2712 if Original_Subprogram (Old_S) = Rename_Spec then
2713 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
2714 end if;
2715 else
2716 Check_Subtype_Conformant (New_S, Old_S, Spec);
2717 end if;
2719 Check_Frozen_Renaming (N, Rename_Spec);
2721 -- Check explicitly that renamed entity is not intrinsic, because
2722 -- in a generic the renamed body is not built. In this case,
2723 -- the renaming_as_body is a completion.
2725 if Inside_A_Generic then
2726 if Is_Frozen (Rename_Spec)
2727 and then Is_Intrinsic_Subprogram (Old_S)
2728 then
2729 Error_Msg_N
2730 ("subprogram in renaming_as_body cannot be intrinsic",
2731 Name (N));
2732 end if;
2734 Set_Has_Completion (Rename_Spec);
2735 end if;
2737 elsif Ekind (Old_S) /= E_Operator then
2739 -- If this a defaulted subprogram for a class-wide actual there is
2740 -- no check for mode conformance, given that the signatures don't
2741 -- match (the source mentions T but the actual mentions T'Class).
2743 if CW_Actual then
2744 null;
2745 elsif not Is_Actual or else No (Enclosing_Instance) then
2746 Check_Mode_Conformant (New_S, Old_S);
2747 end if;
2749 if Is_Actual and then Error_Posted (New_S) then
2750 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
2751 end if;
2752 end if;
2754 if No (Rename_Spec) then
2756 -- The parameter profile of the new entity is that of the renamed
2757 -- entity: the subtypes given in the specification are irrelevant.
2759 Inherit_Renamed_Profile (New_S, Old_S);
2761 -- A call to the subprogram is transformed into a call to the
2762 -- renamed entity. This is transitive if the renamed entity is
2763 -- itself a renaming.
2765 if Present (Alias (Old_S)) then
2766 Set_Alias (New_S, Alias (Old_S));
2767 else
2768 Set_Alias (New_S, Old_S);
2769 end if;
2771 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
2772 -- renaming as body, since the entity in this case is not an
2773 -- intrinsic (it calls an intrinsic, but we have a real body for
2774 -- this call, and it is in this body that the required intrinsic
2775 -- processing will take place).
2777 -- Also, if this is a renaming of inequality, the renamed operator
2778 -- is intrinsic, but what matters is the corresponding equality
2779 -- operator, which may be user-defined.
2781 Set_Is_Intrinsic_Subprogram
2782 (New_S,
2783 Is_Intrinsic_Subprogram (Old_S)
2784 and then
2785 (Chars (Old_S) /= Name_Op_Ne
2786 or else Ekind (Old_S) = E_Operator
2787 or else Is_Intrinsic_Subprogram
2788 (Corresponding_Equality (Old_S))));
2790 if Ekind (Alias (New_S)) = E_Operator then
2791 Set_Has_Delayed_Freeze (New_S, False);
2792 end if;
2794 -- If the renaming corresponds to an association for an abstract
2795 -- formal subprogram, then various attributes must be set to
2796 -- indicate that the renaming is an abstract dispatching operation
2797 -- with a controlling type.
2799 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
2801 -- Mark the renaming as abstract here, so Find_Dispatching_Type
2802 -- see it as corresponding to a generic association for a
2803 -- formal abstract subprogram
2805 Set_Is_Abstract_Subprogram (New_S);
2807 declare
2808 New_S_Ctrl_Type : constant Entity_Id :=
2809 Find_Dispatching_Type (New_S);
2810 Old_S_Ctrl_Type : constant Entity_Id :=
2811 Find_Dispatching_Type (Old_S);
2813 begin
2814 if Old_S_Ctrl_Type /= New_S_Ctrl_Type then
2815 Error_Msg_NE
2816 ("actual must be dispatching subprogram for type&",
2817 Nam, New_S_Ctrl_Type);
2819 else
2820 Set_Is_Dispatching_Operation (New_S);
2821 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
2823 -- If the actual in the formal subprogram is itself a
2824 -- formal abstract subprogram association, there's no
2825 -- dispatch table component or position to inherit.
2827 if Present (DTC_Entity (Old_S)) then
2828 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
2829 Set_DT_Position (New_S, DT_Position (Old_S));
2830 end if;
2831 end if;
2832 end;
2833 end if;
2834 end if;
2836 if Is_Actual then
2837 null;
2839 -- The following is illegal, because F hides whatever other F may
2840 -- be around:
2841 -- function F (...) renames F;
2843 elsif Old_S = New_S
2844 or else (Nkind (Nam) /= N_Expanded_Name
2845 and then Chars (Old_S) = Chars (New_S))
2846 then
2847 Error_Msg_N ("subprogram cannot rename itself", N);
2849 -- This is illegal even if we use a selector:
2850 -- function F (...) renames Pkg.F;
2851 -- because F is still hidden.
2853 elsif Nkind (Nam) = N_Expanded_Name
2854 and then Entity (Prefix (Nam)) = Current_Scope
2855 and then Chars (Selector_Name (Nam)) = Chars (New_S)
2856 then
2857 -- This is an error, but we overlook the error and accept the
2858 -- renaming if the special Overriding_Renamings mode is in effect.
2860 if not Overriding_Renamings then
2861 Error_Msg_NE
2862 ("implicit operation& is not visible (RM 8.3 (15))",
2863 Nam, Old_S);
2864 end if;
2865 end if;
2867 Set_Convention (New_S, Convention (Old_S));
2869 if Is_Abstract_Subprogram (Old_S) then
2870 if Present (Rename_Spec) then
2871 Error_Msg_N
2872 ("a renaming-as-body cannot rename an abstract subprogram",
2874 Set_Has_Completion (Rename_Spec);
2875 else
2876 Set_Is_Abstract_Subprogram (New_S);
2877 end if;
2878 end if;
2880 Check_Library_Unit_Renaming (N, Old_S);
2882 -- Pathological case: procedure renames entry in the scope of its
2883 -- task. Entry is given by simple name, but body must be built for
2884 -- procedure. Of course if called it will deadlock.
2886 if Ekind (Old_S) = E_Entry then
2887 Set_Has_Completion (New_S, False);
2888 Set_Alias (New_S, Empty);
2889 end if;
2891 if Is_Actual then
2892 Freeze_Before (N, Old_S);
2893 Freeze_Actual_Profile;
2894 Set_Has_Delayed_Freeze (New_S, False);
2895 Freeze_Before (N, New_S);
2897 -- An abstract subprogram is only allowed as an actual in the case
2898 -- where the formal subprogram is also abstract.
2900 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
2901 and then Is_Abstract_Subprogram (Old_S)
2902 and then not Is_Abstract_Subprogram (Formal_Spec)
2903 then
2904 Error_Msg_N
2905 ("abstract subprogram not allowed as generic actual", Nam);
2906 end if;
2907 end if;
2909 else
2910 -- A common error is to assume that implicit operators for types are
2911 -- defined in Standard, or in the scope of a subtype. In those cases
2912 -- where the renamed entity is given with an expanded name, it is
2913 -- worth mentioning that operators for the type are not declared in
2914 -- the scope given by the prefix.
2916 if Nkind (Nam) = N_Expanded_Name
2917 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
2918 and then Scope (Entity (Nam)) = Standard_Standard
2919 then
2920 declare
2921 T : constant Entity_Id :=
2922 Base_Type (Etype (First_Formal (New_S)));
2923 begin
2924 Error_Msg_Node_2 := Prefix (Nam);
2925 Error_Msg_NE
2926 ("operator for type& is not declared in&", Prefix (Nam), T);
2927 end;
2929 else
2930 Error_Msg_NE
2931 ("no visible subprogram matches the specification for&",
2932 Spec, New_S);
2933 end if;
2935 if Present (Candidate_Renaming) then
2936 declare
2937 F1 : Entity_Id;
2938 F2 : Entity_Id;
2939 T1 : Entity_Id;
2941 begin
2942 F1 := First_Formal (Candidate_Renaming);
2943 F2 := First_Formal (New_S);
2944 T1 := First_Subtype (Etype (F1));
2945 while Present (F1) and then Present (F2) loop
2946 Next_Formal (F1);
2947 Next_Formal (F2);
2948 end loop;
2950 if Present (F1) and then Present (Default_Value (F1)) then
2951 if Present (Next_Formal (F1)) then
2952 Error_Msg_NE
2953 ("\missing specification for &" &
2954 " and other formals with defaults", Spec, F1);
2955 else
2956 Error_Msg_NE
2957 ("\missing specification for &", Spec, F1);
2958 end if;
2959 end if;
2961 if Nkind (Nam) = N_Operator_Symbol
2962 and then From_Default (N)
2963 then
2964 Error_Msg_Node_2 := T1;
2965 Error_Msg_NE
2966 ("default & on & is not directly visible",
2967 Nam, Nam);
2968 end if;
2969 end;
2970 end if;
2971 end if;
2973 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
2974 -- controlling access parameters are known non-null for the renamed
2975 -- subprogram. Test also applies to a subprogram instantiation that
2976 -- is dispatching. Test is skipped if some previous error was detected
2977 -- that set Old_S to Any_Id.
2979 if Ada_Version >= Ada_2005
2980 and then Old_S /= Any_Id
2981 and then not Is_Dispatching_Operation (Old_S)
2982 and then Is_Dispatching_Operation (New_S)
2983 then
2984 declare
2985 Old_F : Entity_Id;
2986 New_F : Entity_Id;
2988 begin
2989 Old_F := First_Formal (Old_S);
2990 New_F := First_Formal (New_S);
2991 while Present (Old_F) loop
2992 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
2993 and then Is_Controlling_Formal (New_F)
2994 and then not Can_Never_Be_Null (Old_F)
2995 then
2996 Error_Msg_N ("access parameter is controlling,", New_F);
2997 Error_Msg_NE
2998 ("\corresponding parameter of& "
2999 & "must be explicitly null excluding", New_F, Old_S);
3000 end if;
3002 Next_Formal (Old_F);
3003 Next_Formal (New_F);
3004 end loop;
3005 end;
3006 end if;
3008 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3009 -- is to warn if an operator is being renamed as a different operator.
3010 -- If the operator is predefined, examine the kind of the entity, not
3011 -- the abbreviated declaration in Standard.
3013 if Comes_From_Source (N)
3014 and then Present (Old_S)
3015 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3016 or else Ekind (Old_S) = E_Operator)
3017 and then Nkind (New_S) = N_Defining_Operator_Symbol
3018 and then Chars (Old_S) /= Chars (New_S)
3019 then
3020 Error_Msg_NE
3021 ("& is being renamed as a different operator??", N, Old_S);
3022 end if;
3024 -- Check for renaming of obsolescent subprogram
3026 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3028 -- Another warning or some utility: if the new subprogram as the same
3029 -- name as the old one, the old one is not hidden by an outer homograph,
3030 -- the new one is not a public symbol, and the old one is otherwise
3031 -- directly visible, the renaming is superfluous.
3033 if Chars (Old_S) = Chars (New_S)
3034 and then Comes_From_Source (N)
3035 and then Scope (Old_S) /= Standard_Standard
3036 and then Warn_On_Redundant_Constructs
3037 and then (Is_Immediately_Visible (Old_S)
3038 or else Is_Potentially_Use_Visible (Old_S))
3039 and then Is_Overloadable (Current_Scope)
3040 and then Chars (Current_Scope) /= Chars (Old_S)
3041 then
3042 Error_Msg_N
3043 ("redundant renaming, entity is directly visible?r?", Name (N));
3044 end if;
3046 -- Implementation-defined aspect specifications can appear in a renaming
3047 -- declaration, but not language-defined ones. The call to procedure
3048 -- Analyze_Aspect_Specifications will take care of this error check.
3050 if Has_Aspects (N) then
3051 Analyze_Aspect_Specifications (N, New_S);
3052 end if;
3054 Ada_Version := Save_AV;
3055 Ada_Version_Pragma := Save_AVP;
3056 Ada_Version_Explicit := Save_AV_Exp;
3057 end Analyze_Subprogram_Renaming;
3059 -------------------------
3060 -- Analyze_Use_Package --
3061 -------------------------
3063 -- Resolve the package names in the use clause, and make all the visible
3064 -- entities defined in the package potentially use-visible. If the package
3065 -- is already in use from a previous use clause, its visible entities are
3066 -- already use-visible. In that case, mark the occurrence as a redundant
3067 -- use. If the package is an open scope, i.e. if the use clause occurs
3068 -- within the package itself, ignore it.
3070 procedure Analyze_Use_Package (N : Node_Id) is
3071 Pack_Name : Node_Id;
3072 Pack : Entity_Id;
3074 -- Start of processing for Analyze_Use_Package
3076 begin
3077 Check_SPARK_Restriction ("use clause is not allowed", N);
3079 Set_Hidden_By_Use_Clause (N, No_Elist);
3081 -- Use clause not allowed in a spec of a predefined package declaration
3082 -- except that packages whose file name starts a-n are OK (these are
3083 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3085 if Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
3086 and then Name_Buffer (1 .. 3) /= "a-n"
3087 and then
3088 Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
3089 then
3090 Error_Msg_N ("use clause not allowed in predefined spec", N);
3091 end if;
3093 -- Chain clause to list of use clauses in current scope
3095 if Nkind (Parent (N)) /= N_Compilation_Unit then
3096 Chain_Use_Clause (N);
3097 end if;
3099 -- Loop through package names to identify referenced packages
3101 Pack_Name := First (Names (N));
3102 while Present (Pack_Name) loop
3103 Analyze (Pack_Name);
3105 if Nkind (Parent (N)) = N_Compilation_Unit
3106 and then Nkind (Pack_Name) = N_Expanded_Name
3107 then
3108 declare
3109 Pref : Node_Id;
3111 begin
3112 Pref := Prefix (Pack_Name);
3113 while Nkind (Pref) = N_Expanded_Name loop
3114 Pref := Prefix (Pref);
3115 end loop;
3117 if Entity (Pref) = Standard_Standard then
3118 Error_Msg_N
3119 ("predefined package Standard cannot appear"
3120 & " in a context clause", Pref);
3121 end if;
3122 end;
3123 end if;
3125 Next (Pack_Name);
3126 end loop;
3128 -- Loop through package names to mark all entities as potentially
3129 -- use visible.
3131 Pack_Name := First (Names (N));
3132 while Present (Pack_Name) loop
3133 if Is_Entity_Name (Pack_Name) then
3134 Pack := Entity (Pack_Name);
3136 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3137 if Ekind (Pack) = E_Generic_Package then
3138 Error_Msg_N -- CODEFIX
3139 ("a generic package is not allowed in a use clause",
3140 Pack_Name);
3141 else
3142 Error_Msg_N ("& is not a usable package", Pack_Name);
3143 end if;
3145 else
3146 if Nkind (Parent (N)) = N_Compilation_Unit then
3147 Check_In_Previous_With_Clause (N, Pack_Name);
3148 end if;
3150 if Applicable_Use (Pack_Name) then
3151 Use_One_Package (Pack, N);
3152 end if;
3153 end if;
3155 -- Report error because name denotes something other than a package
3157 else
3158 Error_Msg_N ("& is not a package", Pack_Name);
3159 end if;
3161 Next (Pack_Name);
3162 end loop;
3163 end Analyze_Use_Package;
3165 ----------------------
3166 -- Analyze_Use_Type --
3167 ----------------------
3169 procedure Analyze_Use_Type (N : Node_Id) is
3170 E : Entity_Id;
3171 Id : Node_Id;
3173 begin
3174 Set_Hidden_By_Use_Clause (N, No_Elist);
3176 -- Chain clause to list of use clauses in current scope
3178 if Nkind (Parent (N)) /= N_Compilation_Unit then
3179 Chain_Use_Clause (N);
3180 end if;
3182 -- If the Used_Operations list is already initialized, the clause has
3183 -- been analyzed previously, and it is begin reinstalled, for example
3184 -- when the clause appears in a package spec and we are compiling the
3185 -- corresponding package body. In that case, make the entities on the
3186 -- existing list use_visible, and mark the corresponding types In_Use.
3188 if Present (Used_Operations (N)) then
3189 declare
3190 Mark : Node_Id;
3191 Elmt : Elmt_Id;
3193 begin
3194 Mark := First (Subtype_Marks (N));
3195 while Present (Mark) loop
3196 Use_One_Type (Mark, Installed => True);
3197 Next (Mark);
3198 end loop;
3200 Elmt := First_Elmt (Used_Operations (N));
3201 while Present (Elmt) loop
3202 Set_Is_Potentially_Use_Visible (Node (Elmt));
3203 Next_Elmt (Elmt);
3204 end loop;
3205 end;
3207 return;
3208 end if;
3210 -- Otherwise, create new list and attach to it the operations that
3211 -- are made use-visible by the clause.
3213 Set_Used_Operations (N, New_Elmt_List);
3214 Id := First (Subtype_Marks (N));
3215 while Present (Id) loop
3216 Find_Type (Id);
3217 E := Entity (Id);
3219 if E /= Any_Type then
3220 Use_One_Type (Id);
3222 if Nkind (Parent (N)) = N_Compilation_Unit then
3223 if Nkind (Id) = N_Identifier then
3224 Error_Msg_N ("type is not directly visible", Id);
3226 elsif Is_Child_Unit (Scope (E))
3227 and then Scope (E) /= System_Aux_Id
3228 then
3229 Check_In_Previous_With_Clause (N, Prefix (Id));
3230 end if;
3231 end if;
3233 else
3234 -- If the use_type_clause appears in a compilation unit context,
3235 -- check whether it comes from a unit that may appear in a
3236 -- limited_with_clause, for a better error message.
3238 if Nkind (Parent (N)) = N_Compilation_Unit
3239 and then Nkind (Id) /= N_Identifier
3240 then
3241 declare
3242 Item : Node_Id;
3243 Pref : Node_Id;
3245 function Mentioned (Nam : Node_Id) return Boolean;
3246 -- Check whether the prefix of expanded name for the type
3247 -- appears in the prefix of some limited_with_clause.
3249 ---------------
3250 -- Mentioned --
3251 ---------------
3253 function Mentioned (Nam : Node_Id) return Boolean is
3254 begin
3255 return Nkind (Name (Item)) = N_Selected_Component
3256 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3257 end Mentioned;
3259 begin
3260 Pref := Prefix (Id);
3261 Item := First (Context_Items (Parent (N)));
3262 while Present (Item) and then Item /= N loop
3263 if Nkind (Item) = N_With_Clause
3264 and then Limited_Present (Item)
3265 and then Mentioned (Pref)
3266 then
3267 Change_Error_Text
3268 (Get_Msg_Id, "premature usage of incomplete type");
3269 end if;
3271 Next (Item);
3272 end loop;
3273 end;
3274 end if;
3275 end if;
3277 Next (Id);
3278 end loop;
3279 end Analyze_Use_Type;
3281 --------------------
3282 -- Applicable_Use --
3283 --------------------
3285 function Applicable_Use (Pack_Name : Node_Id) return Boolean is
3286 Pack : constant Entity_Id := Entity (Pack_Name);
3288 begin
3289 if In_Open_Scopes (Pack) then
3290 if Warn_On_Redundant_Constructs and then Pack = Current_Scope then
3291 Error_Msg_NE -- CODEFIX
3292 ("& is already use-visible within itself?r?", Pack_Name, Pack);
3293 end if;
3295 return False;
3297 elsif In_Use (Pack) then
3298 Note_Redundant_Use (Pack_Name);
3299 return False;
3301 elsif Present (Renamed_Object (Pack))
3302 and then In_Use (Renamed_Object (Pack))
3303 then
3304 Note_Redundant_Use (Pack_Name);
3305 return False;
3307 else
3308 return True;
3309 end if;
3310 end Applicable_Use;
3312 ------------------------
3313 -- Attribute_Renaming --
3314 ------------------------
3316 procedure Attribute_Renaming (N : Node_Id) is
3317 Loc : constant Source_Ptr := Sloc (N);
3318 Nam : constant Node_Id := Name (N);
3319 Spec : constant Node_Id := Specification (N);
3320 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
3321 Aname : constant Name_Id := Attribute_Name (Nam);
3323 Form_Num : Nat := 0;
3324 Expr_List : List_Id := No_List;
3326 Attr_Node : Node_Id;
3327 Body_Node : Node_Id;
3328 Param_Spec : Node_Id;
3330 begin
3331 Generate_Definition (New_S);
3333 -- This procedure is called in the context of subprogram renaming, and
3334 -- thus the attribute must be one that is a subprogram. All of those
3335 -- have at least one formal parameter, with the exceptions of AST_Entry
3336 -- (which is a real oddity, it is odd that this can be renamed at all!)
3337 -- and the GNAT attribute 'Img, which GNAT treats as renameable.
3339 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
3340 if Aname /= Name_AST_Entry and then Aname /= Name_Img then
3341 Error_Msg_N
3342 ("subprogram renaming an attribute must have formals", N);
3343 return;
3344 end if;
3346 else
3347 Param_Spec := First (Parameter_Specifications (Spec));
3348 while Present (Param_Spec) loop
3349 Form_Num := Form_Num + 1;
3351 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
3352 Find_Type (Parameter_Type (Param_Spec));
3354 -- The profile of the new entity denotes the base type (s) of
3355 -- the types given in the specification. For access parameters
3356 -- there are no subtypes involved.
3358 Rewrite (Parameter_Type (Param_Spec),
3359 New_Reference_To
3360 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
3361 end if;
3363 if No (Expr_List) then
3364 Expr_List := New_List;
3365 end if;
3367 Append_To (Expr_List,
3368 Make_Identifier (Loc,
3369 Chars => Chars (Defining_Identifier (Param_Spec))));
3371 -- The expressions in the attribute reference are not freeze
3372 -- points. Neither is the attribute as a whole, see below.
3374 Set_Must_Not_Freeze (Last (Expr_List));
3375 Next (Param_Spec);
3376 end loop;
3377 end if;
3379 -- Immediate error if too many formals. Other mismatches in number or
3380 -- types of parameters are detected when we analyze the body of the
3381 -- subprogram that we construct.
3383 if Form_Num > 2 then
3384 Error_Msg_N ("too many formals for attribute", N);
3386 -- Error if the attribute reference has expressions that look like
3387 -- formal parameters.
3389 elsif Present (Expressions (Nam)) then
3390 Error_Msg_N ("illegal expressions in attribute reference", Nam);
3392 elsif
3393 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
3394 Name_Pos, Name_Round, Name_Scaling,
3395 Name_Val)
3396 then
3397 if Nkind (N) = N_Subprogram_Renaming_Declaration
3398 and then Present (Corresponding_Formal_Spec (N))
3399 then
3400 Error_Msg_N
3401 ("generic actual cannot be attribute involving universal type",
3402 Nam);
3403 else
3404 Error_Msg_N
3405 ("attribute involving a universal type cannot be renamed",
3406 Nam);
3407 end if;
3408 end if;
3410 -- AST_Entry is an odd case. It doesn't really make much sense to allow
3411 -- it to be renamed, but that's the DEC rule, so we have to do it right.
3412 -- The point is that the AST_Entry call should be made now, and what the
3413 -- function will return is the returned value.
3415 -- Note that there is no Expr_List in this case anyway
3417 if Aname = Name_AST_Entry then
3418 declare
3419 Ent : constant Entity_Id := Make_Temporary (Loc, 'R', Nam);
3420 Decl : Node_Id;
3422 begin
3423 Decl :=
3424 Make_Object_Declaration (Loc,
3425 Defining_Identifier => Ent,
3426 Object_Definition =>
3427 New_Occurrence_Of (RTE (RE_AST_Handler), Loc),
3428 Expression => Nam,
3429 Constant_Present => True);
3431 Set_Assignment_OK (Decl, True);
3432 Insert_Action (N, Decl);
3433 Attr_Node := Make_Identifier (Loc, Chars (Ent));
3434 end;
3436 -- For all other attributes, we rewrite the attribute node to have
3437 -- a list of expressions corresponding to the subprogram formals.
3438 -- A renaming declaration is not a freeze point, and the analysis of
3439 -- the attribute reference should not freeze the type of the prefix.
3441 else
3442 Attr_Node :=
3443 Make_Attribute_Reference (Loc,
3444 Prefix => Prefix (Nam),
3445 Attribute_Name => Aname,
3446 Expressions => Expr_List);
3448 Set_Must_Not_Freeze (Attr_Node);
3449 Set_Must_Not_Freeze (Prefix (Nam));
3450 end if;
3452 -- Case of renaming a function
3454 if Nkind (Spec) = N_Function_Specification then
3455 if Is_Procedure_Attribute_Name (Aname) then
3456 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
3457 return;
3458 end if;
3460 Find_Type (Result_Definition (Spec));
3461 Rewrite (Result_Definition (Spec),
3462 New_Reference_To (
3463 Base_Type (Entity (Result_Definition (Spec))), Loc));
3465 Body_Node :=
3466 Make_Subprogram_Body (Loc,
3467 Specification => Spec,
3468 Declarations => New_List,
3469 Handled_Statement_Sequence =>
3470 Make_Handled_Sequence_Of_Statements (Loc,
3471 Statements => New_List (
3472 Make_Simple_Return_Statement (Loc,
3473 Expression => Attr_Node))));
3475 -- Case of renaming a procedure
3477 else
3478 if not Is_Procedure_Attribute_Name (Aname) then
3479 Error_Msg_N ("attribute can only be renamed as function", Nam);
3480 return;
3481 end if;
3483 Body_Node :=
3484 Make_Subprogram_Body (Loc,
3485 Specification => Spec,
3486 Declarations => New_List,
3487 Handled_Statement_Sequence =>
3488 Make_Handled_Sequence_Of_Statements (Loc,
3489 Statements => New_List (Attr_Node)));
3490 end if;
3492 -- In case of tagged types we add the body of the generated function to
3493 -- the freezing actions of the type (because in the general case such
3494 -- type is still not frozen). We exclude from this processing generic
3495 -- formal subprograms found in instantiations and AST_Entry renamings.
3497 -- We must exclude VM targets and restricted run-time libraries because
3498 -- entity AST_Handler is defined in package System.Aux_Dec which is not
3499 -- available in those platforms. Note that we cannot use the function
3500 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
3501 -- the ZFP run-time library is not defined as a profile, and we do not
3502 -- want to deal with AST_Handler in ZFP mode.
3504 if VM_Target = No_VM
3505 and then not Configurable_Run_Time_Mode
3506 and then not Present (Corresponding_Formal_Spec (N))
3507 and then Etype (Nam) /= RTE (RE_AST_Handler)
3508 then
3509 declare
3510 P : constant Node_Id := Prefix (Nam);
3512 begin
3513 -- The prefix of 'Img is an object that is evaluated for each call
3514 -- of the function that renames it.
3516 if Aname = Name_Img then
3517 Preanalyze_And_Resolve (P);
3519 -- For all other attribute renamings, the prefix is a subtype
3521 else
3522 Find_Type (P);
3523 end if;
3525 if Is_Tagged_Type (Etype (P)) then
3526 Ensure_Freeze_Node (Etype (P));
3527 Append_Freeze_Action (Etype (P), Body_Node);
3528 else
3529 Rewrite (N, Body_Node);
3530 Analyze (N);
3531 Set_Etype (New_S, Base_Type (Etype (New_S)));
3532 end if;
3533 end;
3535 -- Generic formal subprograms or AST_Handler renaming
3537 else
3538 Rewrite (N, Body_Node);
3539 Analyze (N);
3540 Set_Etype (New_S, Base_Type (Etype (New_S)));
3541 end if;
3543 if Is_Compilation_Unit (New_S) then
3544 Error_Msg_N
3545 ("a library unit can only rename another library unit", N);
3546 end if;
3548 -- We suppress elaboration warnings for the resulting entity, since
3549 -- clearly they are not needed, and more particularly, in the case
3550 -- of a generic formal subprogram, the resulting entity can appear
3551 -- after the instantiation itself, and thus look like a bogus case
3552 -- of access before elaboration.
3554 Set_Suppress_Elaboration_Warnings (New_S);
3556 end Attribute_Renaming;
3558 ----------------------
3559 -- Chain_Use_Clause --
3560 ----------------------
3562 procedure Chain_Use_Clause (N : Node_Id) is
3563 Pack : Entity_Id;
3564 Level : Int := Scope_Stack.Last;
3566 begin
3567 if not Is_Compilation_Unit (Current_Scope)
3568 or else not Is_Child_Unit (Current_Scope)
3569 then
3570 null; -- Common case
3572 elsif Defining_Entity (Parent (N)) = Current_Scope then
3573 null; -- Common case for compilation unit
3575 else
3576 -- If declaration appears in some other scope, it must be in some
3577 -- parent unit when compiling a child.
3579 Pack := Defining_Entity (Parent (N));
3580 if not In_Open_Scopes (Pack) then
3581 null; -- default as well
3583 else
3584 -- Find entry for parent unit in scope stack
3586 while Scope_Stack.Table (Level).Entity /= Pack loop
3587 Level := Level - 1;
3588 end loop;
3589 end if;
3590 end if;
3592 Set_Next_Use_Clause (N,
3593 Scope_Stack.Table (Level).First_Use_Clause);
3594 Scope_Stack.Table (Level).First_Use_Clause := N;
3595 end Chain_Use_Clause;
3597 ---------------------------
3598 -- Check_Frozen_Renaming --
3599 ---------------------------
3601 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
3602 B_Node : Node_Id;
3603 Old_S : Entity_Id;
3605 begin
3606 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
3607 B_Node :=
3608 Build_Renamed_Body
3609 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
3611 if Is_Entity_Name (Name (N)) then
3612 Old_S := Entity (Name (N));
3614 if not Is_Frozen (Old_S)
3615 and then Operating_Mode /= Check_Semantics
3616 then
3617 Append_Freeze_Action (Old_S, B_Node);
3618 else
3619 Insert_After (N, B_Node);
3620 Analyze (B_Node);
3621 end if;
3623 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
3624 Error_Msg_N
3625 ("subprogram used in renaming_as_body cannot be intrinsic",
3626 Name (N));
3627 end if;
3629 else
3630 Insert_After (N, B_Node);
3631 Analyze (B_Node);
3632 end if;
3633 end if;
3634 end Check_Frozen_Renaming;
3636 -------------------------------
3637 -- Set_Entity_Or_Discriminal --
3638 -------------------------------
3640 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
3641 P : Node_Id;
3643 begin
3644 -- If the entity is not a discriminant, or else expansion is disabled,
3645 -- simply set the entity.
3647 if not In_Spec_Expression
3648 or else Ekind (E) /= E_Discriminant
3649 or else Inside_A_Generic
3650 then
3651 Set_Entity_With_Style_Check (N, E);
3653 -- The replacement of a discriminant by the corresponding discriminal
3654 -- is not done for a task discriminant that appears in a default
3655 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
3656 -- for details on their handling.
3658 elsif Is_Concurrent_Type (Scope (E)) then
3659 P := Parent (N);
3660 while Present (P)
3661 and then not Nkind_In (P, N_Parameter_Specification,
3662 N_Component_Declaration)
3663 loop
3664 P := Parent (P);
3665 end loop;
3667 if Present (P)
3668 and then Nkind (P) = N_Parameter_Specification
3669 then
3670 null;
3672 else
3673 Set_Entity (N, Discriminal (E));
3674 end if;
3676 -- Otherwise, this is a discriminant in a context in which
3677 -- it is a reference to the corresponding parameter of the
3678 -- init proc for the enclosing type.
3680 else
3681 Set_Entity (N, Discriminal (E));
3682 end if;
3683 end Set_Entity_Or_Discriminal;
3685 -----------------------------------
3686 -- Check_In_Previous_With_Clause --
3687 -----------------------------------
3689 procedure Check_In_Previous_With_Clause
3690 (N : Node_Id;
3691 Nam : Entity_Id)
3693 Pack : constant Entity_Id := Entity (Original_Node (Nam));
3694 Item : Node_Id;
3695 Par : Node_Id;
3697 begin
3698 Item := First (Context_Items (Parent (N)));
3699 while Present (Item) and then Item /= N loop
3700 if Nkind (Item) = N_With_Clause
3702 -- Protect the frontend against previous critical errors
3704 and then Nkind (Name (Item)) /= N_Selected_Component
3705 and then Entity (Name (Item)) = Pack
3706 then
3707 Par := Nam;
3709 -- Find root library unit in with_clause
3711 while Nkind (Par) = N_Expanded_Name loop
3712 Par := Prefix (Par);
3713 end loop;
3715 if Is_Child_Unit (Entity (Original_Node (Par))) then
3716 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
3717 else
3718 return;
3719 end if;
3720 end if;
3722 Next (Item);
3723 end loop;
3725 -- On exit, package is not mentioned in a previous with_clause.
3726 -- Check if its prefix is.
3728 if Nkind (Nam) = N_Expanded_Name then
3729 Check_In_Previous_With_Clause (N, Prefix (Nam));
3731 elsif Pack /= Any_Id then
3732 Error_Msg_NE ("& is not visible", Nam, Pack);
3733 end if;
3734 end Check_In_Previous_With_Clause;
3736 ---------------------------------
3737 -- Check_Library_Unit_Renaming --
3738 ---------------------------------
3740 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
3741 New_E : Entity_Id;
3743 begin
3744 if Nkind (Parent (N)) /= N_Compilation_Unit then
3745 return;
3747 -- Check for library unit. Note that we used to check for the scope
3748 -- being Standard here, but that was wrong for Standard itself.
3750 elsif not Is_Compilation_Unit (Old_E)
3751 and then not Is_Child_Unit (Old_E)
3752 then
3753 Error_Msg_N ("renamed unit must be a library unit", Name (N));
3755 -- Entities defined in Standard (operators and boolean literals) cannot
3756 -- be renamed as library units.
3758 elsif Scope (Old_E) = Standard_Standard
3759 and then Sloc (Old_E) = Standard_Location
3760 then
3761 Error_Msg_N ("renamed unit must be a library unit", Name (N));
3763 elsif Present (Parent_Spec (N))
3764 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
3765 and then not Is_Child_Unit (Old_E)
3766 then
3767 Error_Msg_N
3768 ("renamed unit must be a child unit of generic parent", Name (N));
3770 elsif Nkind (N) in N_Generic_Renaming_Declaration
3771 and then Nkind (Name (N)) = N_Expanded_Name
3772 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
3773 and then Is_Generic_Unit (Old_E)
3774 then
3775 Error_Msg_N
3776 ("renamed generic unit must be a library unit", Name (N));
3778 elsif Is_Package_Or_Generic_Package (Old_E) then
3780 -- Inherit categorization flags
3782 New_E := Defining_Entity (N);
3783 Set_Is_Pure (New_E, Is_Pure (Old_E));
3784 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
3785 Set_Is_Remote_Call_Interface (New_E,
3786 Is_Remote_Call_Interface (Old_E));
3787 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
3788 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
3789 end if;
3790 end Check_Library_Unit_Renaming;
3792 ------------------------
3793 -- Enclosing_Instance --
3794 ------------------------
3796 function Enclosing_Instance return Entity_Id is
3797 S : Entity_Id;
3799 begin
3800 if not Is_Generic_Instance (Current_Scope) then
3801 return Empty;
3802 end if;
3804 S := Scope (Current_Scope);
3805 while S /= Standard_Standard loop
3806 if Is_Generic_Instance (S) then
3807 return S;
3808 end if;
3810 S := Scope (S);
3811 end loop;
3813 return Empty;
3814 end Enclosing_Instance;
3816 ---------------
3817 -- End_Scope --
3818 ---------------
3820 procedure End_Scope is
3821 Id : Entity_Id;
3822 Prev : Entity_Id;
3823 Outer : Entity_Id;
3825 begin
3826 Id := First_Entity (Current_Scope);
3827 while Present (Id) loop
3828 -- An entity in the current scope is not necessarily the first one
3829 -- on its homonym chain. Find its predecessor if any,
3830 -- If it is an internal entity, it will not be in the visibility
3831 -- chain altogether, and there is nothing to unchain.
3833 if Id /= Current_Entity (Id) then
3834 Prev := Current_Entity (Id);
3835 while Present (Prev)
3836 and then Present (Homonym (Prev))
3837 and then Homonym (Prev) /= Id
3838 loop
3839 Prev := Homonym (Prev);
3840 end loop;
3842 -- Skip to end of loop if Id is not in the visibility chain
3844 if No (Prev) or else Homonym (Prev) /= Id then
3845 goto Next_Ent;
3846 end if;
3848 else
3849 Prev := Empty;
3850 end if;
3852 Set_Is_Immediately_Visible (Id, False);
3854 Outer := Homonym (Id);
3855 while Present (Outer) and then Scope (Outer) = Current_Scope loop
3856 Outer := Homonym (Outer);
3857 end loop;
3859 -- Reset homonym link of other entities, but do not modify link
3860 -- between entities in current scope, so that the back-end can have
3861 -- a proper count of local overloadings.
3863 if No (Prev) then
3864 Set_Name_Entity_Id (Chars (Id), Outer);
3866 elsif Scope (Prev) /= Scope (Id) then
3867 Set_Homonym (Prev, Outer);
3868 end if;
3870 <<Next_Ent>>
3871 Next_Entity (Id);
3872 end loop;
3874 -- If the scope generated freeze actions, place them before the
3875 -- current declaration and analyze them. Type declarations and
3876 -- the bodies of initialization procedures can generate such nodes.
3877 -- We follow the parent chain until we reach a list node, which is
3878 -- the enclosing list of declarations. If the list appears within
3879 -- a protected definition, move freeze nodes outside the protected
3880 -- type altogether.
3882 if Present
3883 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
3884 then
3885 declare
3886 Decl : Node_Id;
3887 L : constant List_Id := Scope_Stack.Table
3888 (Scope_Stack.Last).Pending_Freeze_Actions;
3890 begin
3891 if Is_Itype (Current_Scope) then
3892 Decl := Associated_Node_For_Itype (Current_Scope);
3893 else
3894 Decl := Parent (Current_Scope);
3895 end if;
3897 Pop_Scope;
3899 while not (Is_List_Member (Decl))
3900 or else Nkind_In (Parent (Decl), N_Protected_Definition,
3901 N_Task_Definition)
3902 loop
3903 Decl := Parent (Decl);
3904 end loop;
3906 Insert_List_Before_And_Analyze (Decl, L);
3907 end;
3909 else
3910 Pop_Scope;
3911 end if;
3913 end End_Scope;
3915 ---------------------
3916 -- End_Use_Clauses --
3917 ---------------------
3919 procedure End_Use_Clauses (Clause : Node_Id) is
3920 U : Node_Id;
3922 begin
3923 -- Remove Use_Type clauses first, because they affect the
3924 -- visibility of operators in subsequent used packages.
3926 U := Clause;
3927 while Present (U) loop
3928 if Nkind (U) = N_Use_Type_Clause then
3929 End_Use_Type (U);
3930 end if;
3932 Next_Use_Clause (U);
3933 end loop;
3935 U := Clause;
3936 while Present (U) loop
3937 if Nkind (U) = N_Use_Package_Clause then
3938 End_Use_Package (U);
3939 end if;
3941 Next_Use_Clause (U);
3942 end loop;
3943 end End_Use_Clauses;
3945 ---------------------
3946 -- End_Use_Package --
3947 ---------------------
3949 procedure End_Use_Package (N : Node_Id) is
3950 Pack_Name : Node_Id;
3951 Pack : Entity_Id;
3952 Id : Entity_Id;
3953 Elmt : Elmt_Id;
3955 function Is_Primitive_Operator_In_Use
3956 (Op : Entity_Id;
3957 F : Entity_Id) return Boolean;
3958 -- Check whether Op is a primitive operator of a use-visible type
3960 ----------------------------------
3961 -- Is_Primitive_Operator_In_Use --
3962 ----------------------------------
3964 function Is_Primitive_Operator_In_Use
3965 (Op : Entity_Id;
3966 F : Entity_Id) return Boolean
3968 T : constant Entity_Id := Base_Type (Etype (F));
3969 begin
3970 return In_Use (T) and then Scope (T) = Scope (Op);
3971 end Is_Primitive_Operator_In_Use;
3973 -- Start of processing for End_Use_Package
3975 begin
3976 Pack_Name := First (Names (N));
3977 while Present (Pack_Name) loop
3979 -- Test that Pack_Name actually denotes a package before processing
3981 if Is_Entity_Name (Pack_Name)
3982 and then Ekind (Entity (Pack_Name)) = E_Package
3983 then
3984 Pack := Entity (Pack_Name);
3986 if In_Open_Scopes (Pack) then
3987 null;
3989 elsif not Redundant_Use (Pack_Name) then
3990 Set_In_Use (Pack, False);
3991 Set_Current_Use_Clause (Pack, Empty);
3993 Id := First_Entity (Pack);
3994 while Present (Id) loop
3996 -- Preserve use-visibility of operators that are primitive
3997 -- operators of a type that is use-visible through an active
3998 -- use_type clause.
4000 if Nkind (Id) = N_Defining_Operator_Symbol
4001 and then
4002 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4003 or else
4004 (Present (Next_Formal (First_Formal (Id)))
4005 and then
4006 Is_Primitive_Operator_In_Use
4007 (Id, Next_Formal (First_Formal (Id)))))
4008 then
4009 null;
4010 else
4011 Set_Is_Potentially_Use_Visible (Id, False);
4012 end if;
4014 if Is_Private_Type (Id)
4015 and then Present (Full_View (Id))
4016 then
4017 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4018 end if;
4020 Next_Entity (Id);
4021 end loop;
4023 if Present (Renamed_Object (Pack)) then
4024 Set_In_Use (Renamed_Object (Pack), False);
4025 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4026 end if;
4028 if Chars (Pack) = Name_System
4029 and then Scope (Pack) = Standard_Standard
4030 and then Present_System_Aux
4031 then
4032 Id := First_Entity (System_Aux_Id);
4033 while Present (Id) loop
4034 Set_Is_Potentially_Use_Visible (Id, False);
4036 if Is_Private_Type (Id)
4037 and then Present (Full_View (Id))
4038 then
4039 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4040 end if;
4042 Next_Entity (Id);
4043 end loop;
4045 Set_In_Use (System_Aux_Id, False);
4046 end if;
4048 else
4049 Set_Redundant_Use (Pack_Name, False);
4050 end if;
4051 end if;
4053 Next (Pack_Name);
4054 end loop;
4056 if Present (Hidden_By_Use_Clause (N)) then
4057 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4058 while Present (Elmt) loop
4059 declare
4060 E : constant Entity_Id := Node (Elmt);
4062 begin
4063 -- Reset either Use_Visibility or Direct_Visibility, depending
4064 -- on how the entity was hidden by the use clause.
4066 if In_Use (Scope (E))
4067 and then Used_As_Generic_Actual (Scope (E))
4068 then
4069 Set_Is_Potentially_Use_Visible (Node (Elmt));
4070 else
4071 Set_Is_Immediately_Visible (Node (Elmt));
4072 end if;
4074 Next_Elmt (Elmt);
4075 end;
4076 end loop;
4078 Set_Hidden_By_Use_Clause (N, No_Elist);
4079 end if;
4080 end End_Use_Package;
4082 ------------------
4083 -- End_Use_Type --
4084 ------------------
4086 procedure End_Use_Type (N : Node_Id) is
4087 Elmt : Elmt_Id;
4088 Id : Entity_Id;
4089 T : Entity_Id;
4091 -- Start of processing for End_Use_Type
4093 begin
4094 Id := First (Subtype_Marks (N));
4095 while Present (Id) loop
4097 -- A call to Rtsfind may occur while analyzing a use_type clause,
4098 -- in which case the type marks are not resolved yet, and there is
4099 -- nothing to remove.
4101 if not Is_Entity_Name (Id) or else No (Entity (Id)) then
4102 goto Continue;
4103 end if;
4105 T := Entity (Id);
4107 if T = Any_Type or else From_With_Type (T) then
4108 null;
4110 -- Note that the use_type clause may mention a subtype of the type
4111 -- whose primitive operations have been made visible. Here as
4112 -- elsewhere, it is the base type that matters for visibility.
4114 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4115 null;
4117 elsif not Redundant_Use (Id) then
4118 Set_In_Use (T, False);
4119 Set_In_Use (Base_Type (T), False);
4120 Set_Current_Use_Clause (T, Empty);
4121 Set_Current_Use_Clause (Base_Type (T), Empty);
4122 end if;
4124 <<Continue>>
4125 Next (Id);
4126 end loop;
4128 if Is_Empty_Elmt_List (Used_Operations (N)) then
4129 return;
4131 else
4132 Elmt := First_Elmt (Used_Operations (N));
4133 while Present (Elmt) loop
4134 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4135 Next_Elmt (Elmt);
4136 end loop;
4137 end if;
4138 end End_Use_Type;
4140 ----------------------
4141 -- Find_Direct_Name --
4142 ----------------------
4144 procedure Find_Direct_Name (N : Node_Id) is
4145 E : Entity_Id;
4146 E2 : Entity_Id;
4147 Msg : Boolean;
4149 Inst : Entity_Id := Empty;
4150 -- Enclosing instance, if any
4152 Homonyms : Entity_Id;
4153 -- Saves start of homonym chain
4155 Nvis_Entity : Boolean;
4156 -- Set True to indicate that there is at least one entity on the homonym
4157 -- chain which, while not visible, is visible enough from the user point
4158 -- of view to warrant an error message of "not visible" rather than
4159 -- undefined.
4161 Nvis_Is_Private_Subprg : Boolean := False;
4162 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4163 -- effect concerning library subprograms has been detected. Used to
4164 -- generate the precise error message.
4166 function From_Actual_Package (E : Entity_Id) return Boolean;
4167 -- Returns true if the entity is declared in a package that is
4168 -- an actual for a formal package of the current instance. Such an
4169 -- entity requires special handling because it may be use-visible
4170 -- but hides directly visible entities defined outside the instance.
4172 function Is_Actual_Parameter return Boolean;
4173 -- This function checks if the node N is an identifier that is an actual
4174 -- parameter of a procedure call. If so it returns True, otherwise it
4175 -- return False. The reason for this check is that at this stage we do
4176 -- not know what procedure is being called if the procedure might be
4177 -- overloaded, so it is premature to go setting referenced flags or
4178 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4179 -- for that processing
4181 function Known_But_Invisible (E : Entity_Id) return Boolean;
4182 -- This function determines whether the entity E (which is not
4183 -- visible) can reasonably be considered to be known to the writer
4184 -- of the reference. This is a heuristic test, used only for the
4185 -- purposes of figuring out whether we prefer to complain that an
4186 -- entity is undefined or invisible (and identify the declaration
4187 -- of the invisible entity in the latter case). The point here is
4188 -- that we don't want to complain that something is invisible and
4189 -- then point to something entirely mysterious to the writer.
4191 procedure Nvis_Messages;
4192 -- Called if there are no visible entries for N, but there is at least
4193 -- one non-directly visible, or hidden declaration. This procedure
4194 -- outputs an appropriate set of error messages.
4196 procedure Undefined (Nvis : Boolean);
4197 -- This function is called if the current node has no corresponding
4198 -- visible entity or entities. The value set in Msg indicates whether
4199 -- an error message was generated (multiple error messages for the
4200 -- same variable are generally suppressed, see body for details).
4201 -- Msg is True if an error message was generated, False if not. This
4202 -- value is used by the caller to determine whether or not to output
4203 -- additional messages where appropriate. The parameter is set False
4204 -- to get the message "X is undefined", and True to get the message
4205 -- "X is not visible".
4207 -------------------------
4208 -- From_Actual_Package --
4209 -------------------------
4211 function From_Actual_Package (E : Entity_Id) return Boolean is
4212 Scop : constant Entity_Id := Scope (E);
4213 Act : Entity_Id;
4215 begin
4216 if not In_Instance then
4217 return False;
4218 else
4219 Inst := Current_Scope;
4220 while Present (Inst)
4221 and then Ekind (Inst) /= E_Package
4222 and then not Is_Generic_Instance (Inst)
4223 loop
4224 Inst := Scope (Inst);
4225 end loop;
4227 if No (Inst) then
4228 return False;
4229 end if;
4231 Act := First_Entity (Inst);
4232 while Present (Act) loop
4233 if Ekind (Act) = E_Package then
4235 -- Check for end of actuals list
4237 if Renamed_Object (Act) = Inst then
4238 return False;
4240 elsif Present (Associated_Formal_Package (Act))
4241 and then Renamed_Object (Act) = Scop
4242 then
4243 -- Entity comes from (instance of) formal package
4245 return True;
4247 else
4248 Next_Entity (Act);
4249 end if;
4251 else
4252 Next_Entity (Act);
4253 end if;
4254 end loop;
4256 return False;
4257 end if;
4258 end From_Actual_Package;
4260 -------------------------
4261 -- Is_Actual_Parameter --
4262 -------------------------
4264 function Is_Actual_Parameter return Boolean is
4265 begin
4266 return
4267 Nkind (N) = N_Identifier
4268 and then
4269 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4270 or else
4271 (Nkind (Parent (N)) = N_Parameter_Association
4272 and then N = Explicit_Actual_Parameter (Parent (N))
4273 and then Nkind (Parent (Parent (N))) =
4274 N_Procedure_Call_Statement));
4275 end Is_Actual_Parameter;
4277 -------------------------
4278 -- Known_But_Invisible --
4279 -------------------------
4281 function Known_But_Invisible (E : Entity_Id) return Boolean is
4282 Fname : File_Name_Type;
4284 begin
4285 -- Entities in Standard are always considered to be known
4287 if Sloc (E) <= Standard_Location then
4288 return True;
4290 -- An entity that does not come from source is always considered
4291 -- to be unknown, since it is an artifact of code expansion.
4293 elsif not Comes_From_Source (E) then
4294 return False;
4296 -- In gnat internal mode, we consider all entities known
4298 elsif GNAT_Mode then
4299 return True;
4300 end if;
4302 -- Here we have an entity that is not from package Standard, and
4303 -- which comes from Source. See if it comes from an internal file.
4305 Fname := Unit_File_Name (Get_Source_Unit (E));
4307 -- Case of from internal file
4309 if Is_Internal_File_Name (Fname) then
4311 -- Private part entities in internal files are never considered
4312 -- to be known to the writer of normal application code.
4314 if Is_Hidden (E) then
4315 return False;
4316 end if;
4318 -- Entities from System packages other than System and
4319 -- System.Storage_Elements are not considered to be known.
4320 -- System.Auxxxx files are also considered known to the user.
4322 -- Should refine this at some point to generally distinguish
4323 -- between known and unknown internal files ???
4325 Get_Name_String (Fname);
4327 return
4328 Name_Len < 2
4329 or else
4330 Name_Buffer (1 .. 2) /= "s-"
4331 or else
4332 Name_Buffer (3 .. 8) = "stoele"
4333 or else
4334 Name_Buffer (3 .. 5) = "aux";
4336 -- If not an internal file, then entity is definitely known,
4337 -- even if it is in a private part (the message generated will
4338 -- note that it is in a private part)
4340 else
4341 return True;
4342 end if;
4343 end Known_But_Invisible;
4345 -------------------
4346 -- Nvis_Messages --
4347 -------------------
4349 procedure Nvis_Messages is
4350 Comp_Unit : Node_Id;
4351 Ent : Entity_Id;
4352 Found : Boolean := False;
4353 Hidden : Boolean := False;
4354 Item : Node_Id;
4356 begin
4357 -- Ada 2005 (AI-262): Generate a precise error concerning the
4358 -- Beaujolais effect that was previously detected
4360 if Nvis_Is_Private_Subprg then
4362 pragma Assert (Nkind (E2) = N_Defining_Identifier
4363 and then Ekind (E2) = E_Function
4364 and then Scope (E2) = Standard_Standard
4365 and then Has_Private_With (E2));
4367 -- Find the sloc corresponding to the private with'ed unit
4369 Comp_Unit := Cunit (Current_Sem_Unit);
4370 Error_Msg_Sloc := No_Location;
4372 Item := First (Context_Items (Comp_Unit));
4373 while Present (Item) loop
4374 if Nkind (Item) = N_With_Clause
4375 and then Private_Present (Item)
4376 and then Entity (Name (Item)) = E2
4377 then
4378 Error_Msg_Sloc := Sloc (Item);
4379 exit;
4380 end if;
4382 Next (Item);
4383 end loop;
4385 pragma Assert (Error_Msg_Sloc /= No_Location);
4387 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
4388 return;
4389 end if;
4391 Undefined (Nvis => True);
4393 if Msg then
4395 -- First loop does hidden declarations
4397 Ent := Homonyms;
4398 while Present (Ent) loop
4399 if Is_Potentially_Use_Visible (Ent) then
4400 if not Hidden then
4401 Error_Msg_N -- CODEFIX
4402 ("multiple use clauses cause hiding!", N);
4403 Hidden := True;
4404 end if;
4406 Error_Msg_Sloc := Sloc (Ent);
4407 Error_Msg_N -- CODEFIX
4408 ("hidden declaration#!", N);
4409 end if;
4411 Ent := Homonym (Ent);
4412 end loop;
4414 -- If we found hidden declarations, then that's enough, don't
4415 -- bother looking for non-visible declarations as well.
4417 if Hidden then
4418 return;
4419 end if;
4421 -- Second loop does non-directly visible declarations
4423 Ent := Homonyms;
4424 while Present (Ent) loop
4425 if not Is_Potentially_Use_Visible (Ent) then
4427 -- Do not bother the user with unknown entities
4429 if not Known_But_Invisible (Ent) then
4430 goto Continue;
4431 end if;
4433 Error_Msg_Sloc := Sloc (Ent);
4435 -- Output message noting that there is a non-visible
4436 -- declaration, distinguishing the private part case.
4438 if Is_Hidden (Ent) then
4439 Error_Msg_N ("non-visible (private) declaration#!", N);
4441 -- If the entity is declared in a generic package, it
4442 -- cannot be visible, so there is no point in adding it
4443 -- to the list of candidates if another homograph from a
4444 -- non-generic package has been seen.
4446 elsif Ekind (Scope (Ent)) = E_Generic_Package
4447 and then Found
4448 then
4449 null;
4451 else
4452 Error_Msg_N -- CODEFIX
4453 ("non-visible declaration#!", N);
4455 if Ekind (Scope (Ent)) /= E_Generic_Package then
4456 Found := True;
4457 end if;
4459 if Is_Compilation_Unit (Ent)
4460 and then
4461 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
4462 then
4463 Error_Msg_Qual_Level := 99;
4464 Error_Msg_NE -- CODEFIX
4465 ("\\missing `WITH &;`", N, Ent);
4466 Error_Msg_Qual_Level := 0;
4467 end if;
4469 if Ekind (Ent) = E_Discriminant
4470 and then Present (Corresponding_Discriminant (Ent))
4471 and then Scope (Corresponding_Discriminant (Ent)) =
4472 Etype (Scope (Ent))
4473 then
4474 Error_Msg_N
4475 ("inherited discriminant not allowed here" &
4476 " (RM 3.8 (12), 3.8.1 (6))!", N);
4477 end if;
4478 end if;
4480 -- Set entity and its containing package as referenced. We
4481 -- can't be sure of this, but this seems a better choice
4482 -- to avoid unused entity messages.
4484 if Comes_From_Source (Ent) then
4485 Set_Referenced (Ent);
4486 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
4487 end if;
4488 end if;
4490 <<Continue>>
4491 Ent := Homonym (Ent);
4492 end loop;
4493 end if;
4494 end Nvis_Messages;
4496 ---------------
4497 -- Undefined --
4498 ---------------
4500 procedure Undefined (Nvis : Boolean) is
4501 Emsg : Error_Msg_Id;
4503 begin
4504 -- We should never find an undefined internal name. If we do, then
4505 -- see if we have previous errors. If so, ignore on the grounds that
4506 -- it is probably a cascaded message (e.g. a block label from a badly
4507 -- formed block). If no previous errors, then we have a real internal
4508 -- error of some kind so raise an exception.
4510 if Is_Internal_Name (Chars (N)) then
4511 if Total_Errors_Detected /= 0 then
4512 return;
4513 else
4514 raise Program_Error;
4515 end if;
4516 end if;
4518 -- A very specialized error check, if the undefined variable is
4519 -- a case tag, and the case type is an enumeration type, check
4520 -- for a possible misspelling, and if so, modify the identifier
4522 -- Named aggregate should also be handled similarly ???
4524 if Nkind (N) = N_Identifier
4525 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
4526 then
4527 declare
4528 Case_Stm : constant Node_Id := Parent (Parent (N));
4529 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
4531 Lit : Node_Id;
4533 begin
4534 if Is_Enumeration_Type (Case_Typ)
4535 and then not Is_Standard_Character_Type (Case_Typ)
4536 then
4537 Lit := First_Literal (Case_Typ);
4538 Get_Name_String (Chars (Lit));
4540 if Chars (Lit) /= Chars (N)
4541 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit)) then
4542 Error_Msg_Node_2 := Lit;
4543 Error_Msg_N -- CODEFIX
4544 ("& is undefined, assume misspelling of &", N);
4545 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
4546 return;
4547 end if;
4549 Lit := Next_Literal (Lit);
4550 end if;
4551 end;
4552 end if;
4554 -- Normal processing
4556 Set_Entity (N, Any_Id);
4557 Set_Etype (N, Any_Type);
4559 -- We use the table Urefs to keep track of entities for which we
4560 -- have issued errors for undefined references. Multiple errors
4561 -- for a single name are normally suppressed, however we modify
4562 -- the error message to alert the programmer to this effect.
4564 for J in Urefs.First .. Urefs.Last loop
4565 if Chars (N) = Chars (Urefs.Table (J).Node) then
4566 if Urefs.Table (J).Err /= No_Error_Msg
4567 and then Sloc (N) /= Urefs.Table (J).Loc
4568 then
4569 Error_Msg_Node_1 := Urefs.Table (J).Node;
4571 if Urefs.Table (J).Nvis then
4572 Change_Error_Text (Urefs.Table (J).Err,
4573 "& is not visible (more references follow)");
4574 else
4575 Change_Error_Text (Urefs.Table (J).Err,
4576 "& is undefined (more references follow)");
4577 end if;
4579 Urefs.Table (J).Err := No_Error_Msg;
4580 end if;
4582 -- Although we will set Msg False, and thus suppress the
4583 -- message, we also set Error_Posted True, to avoid any
4584 -- cascaded messages resulting from the undefined reference.
4586 Msg := False;
4587 Set_Error_Posted (N, True);
4588 return;
4589 end if;
4590 end loop;
4592 -- If entry not found, this is first undefined occurrence
4594 if Nvis then
4595 Error_Msg_N ("& is not visible!", N);
4596 Emsg := Get_Msg_Id;
4598 else
4599 Error_Msg_N ("& is undefined!", N);
4600 Emsg := Get_Msg_Id;
4602 -- A very bizarre special check, if the undefined identifier
4603 -- is put or put_line, then add a special error message (since
4604 -- this is a very common error for beginners to make).
4606 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
4607 Error_Msg_N -- CODEFIX
4608 ("\\possible missing `WITH Ada.Text_'I'O; " &
4609 "USE Ada.Text_'I'O`!", N);
4611 -- Another special check if N is the prefix of a selected
4612 -- component which is a known unit, add message complaining
4613 -- about missing with for this unit.
4615 elsif Nkind (Parent (N)) = N_Selected_Component
4616 and then N = Prefix (Parent (N))
4617 and then Is_Known_Unit (Parent (N))
4618 then
4619 Error_Msg_Node_2 := Selector_Name (Parent (N));
4620 Error_Msg_N -- CODEFIX
4621 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
4622 end if;
4624 -- Now check for possible misspellings
4626 declare
4627 E : Entity_Id;
4628 Ematch : Entity_Id := Empty;
4630 Last_Name_Id : constant Name_Id :=
4631 Name_Id (Nat (First_Name_Id) +
4632 Name_Entries_Count - 1);
4634 begin
4635 for Nam in First_Name_Id .. Last_Name_Id loop
4636 E := Get_Name_Entity_Id (Nam);
4638 if Present (E)
4639 and then (Is_Immediately_Visible (E)
4640 or else
4641 Is_Potentially_Use_Visible (E))
4642 then
4643 if Is_Bad_Spelling_Of (Chars (N), Nam) then
4644 Ematch := E;
4645 exit;
4646 end if;
4647 end if;
4648 end loop;
4650 if Present (Ematch) then
4651 Error_Msg_NE -- CODEFIX
4652 ("\possible misspelling of&", N, Ematch);
4653 end if;
4654 end;
4655 end if;
4657 -- Make entry in undefined references table unless the full errors
4658 -- switch is set, in which case by refraining from generating the
4659 -- table entry, we guarantee that we get an error message for every
4660 -- undefined reference.
4662 if not All_Errors_Mode then
4663 Urefs.Append (
4664 (Node => N,
4665 Err => Emsg,
4666 Nvis => Nvis,
4667 Loc => Sloc (N)));
4668 end if;
4670 Msg := True;
4671 end Undefined;
4673 -- Start of processing for Find_Direct_Name
4675 begin
4676 -- If the entity pointer is already set, this is an internal node, or
4677 -- a node that is analyzed more than once, after a tree modification.
4678 -- In such a case there is no resolution to perform, just set the type.
4680 if Present (Entity (N)) then
4681 if Is_Type (Entity (N)) then
4682 Set_Etype (N, Entity (N));
4684 else
4685 declare
4686 Entyp : constant Entity_Id := Etype (Entity (N));
4688 begin
4689 -- One special case here. If the Etype field is already set,
4690 -- and references the packed array type corresponding to the
4691 -- etype of the referenced entity, then leave it alone. This
4692 -- happens for trees generated from Exp_Pakd, where expressions
4693 -- can be deliberately "mis-typed" to the packed array type.
4695 if Is_Array_Type (Entyp)
4696 and then Is_Packed (Entyp)
4697 and then Present (Etype (N))
4698 and then Etype (N) = Packed_Array_Type (Entyp)
4699 then
4700 null;
4702 -- If not that special case, then just reset the Etype
4704 else
4705 Set_Etype (N, Etype (Entity (N)));
4706 end if;
4707 end;
4708 end if;
4710 return;
4711 end if;
4713 -- Here if Entity pointer was not set, we need full visibility analysis
4714 -- First we generate debugging output if the debug E flag is set.
4716 if Debug_Flag_E then
4717 Write_Str ("Looking for ");
4718 Write_Name (Chars (N));
4719 Write_Eol;
4720 end if;
4722 Homonyms := Current_Entity (N);
4723 Nvis_Entity := False;
4725 E := Homonyms;
4726 while Present (E) loop
4728 -- If entity is immediately visible or potentially use visible, then
4729 -- process the entity and we are done.
4731 if Is_Immediately_Visible (E) then
4732 goto Immediately_Visible_Entity;
4734 elsif Is_Potentially_Use_Visible (E) then
4735 goto Potentially_Use_Visible_Entity;
4737 -- Note if a known but invisible entity encountered
4739 elsif Known_But_Invisible (E) then
4740 Nvis_Entity := True;
4741 end if;
4743 -- Move to next entity in chain and continue search
4745 E := Homonym (E);
4746 end loop;
4748 -- If no entries on homonym chain that were potentially visible,
4749 -- and no entities reasonably considered as non-visible, then
4750 -- we have a plain undefined reference, with no additional
4751 -- explanation required!
4753 if not Nvis_Entity then
4754 Undefined (Nvis => False);
4756 -- Otherwise there is at least one entry on the homonym chain that
4757 -- is reasonably considered as being known and non-visible.
4759 else
4760 Nvis_Messages;
4761 end if;
4763 return;
4765 -- Processing for a potentially use visible entry found. We must search
4766 -- the rest of the homonym chain for two reasons. First, if there is a
4767 -- directly visible entry, then none of the potentially use-visible
4768 -- entities are directly visible (RM 8.4(10)). Second, we need to check
4769 -- for the case of multiple potentially use-visible entries hiding one
4770 -- another and as a result being non-directly visible (RM 8.4(11)).
4772 <<Potentially_Use_Visible_Entity>> declare
4773 Only_One_Visible : Boolean := True;
4774 All_Overloadable : Boolean := Is_Overloadable (E);
4776 begin
4777 E2 := Homonym (E);
4778 while Present (E2) loop
4779 if Is_Immediately_Visible (E2) then
4781 -- If the use-visible entity comes from the actual for a
4782 -- formal package, it hides a directly visible entity from
4783 -- outside the instance.
4785 if From_Actual_Package (E)
4786 and then Scope_Depth (E2) < Scope_Depth (Inst)
4787 then
4788 goto Found;
4789 else
4790 E := E2;
4791 goto Immediately_Visible_Entity;
4792 end if;
4794 elsif Is_Potentially_Use_Visible (E2) then
4795 Only_One_Visible := False;
4796 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
4798 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
4799 -- that can occur in private_with clauses. Example:
4801 -- with A;
4802 -- private with B; package A is
4803 -- package C is function B return Integer;
4804 -- use A; end A;
4805 -- V1 : Integer := B;
4806 -- private function B return Integer;
4807 -- V2 : Integer := B;
4808 -- end C;
4810 -- V1 resolves to A.B, but V2 resolves to library unit B
4812 elsif Ekind (E2) = E_Function
4813 and then Scope (E2) = Standard_Standard
4814 and then Has_Private_With (E2)
4815 then
4816 Only_One_Visible := False;
4817 All_Overloadable := False;
4818 Nvis_Is_Private_Subprg := True;
4819 exit;
4820 end if;
4822 E2 := Homonym (E2);
4823 end loop;
4825 -- On falling through this loop, we have checked that there are no
4826 -- immediately visible entities. Only_One_Visible is set if exactly
4827 -- one potentially use visible entity exists. All_Overloadable is
4828 -- set if all the potentially use visible entities are overloadable.
4829 -- The condition for legality is that either there is one potentially
4830 -- use visible entity, or if there is more than one, then all of them
4831 -- are overloadable.
4833 if Only_One_Visible or All_Overloadable then
4834 goto Found;
4836 -- If there is more than one potentially use-visible entity and at
4837 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
4838 -- Note that E points to the first such entity on the homonym list.
4839 -- Special case: if one of the entities is declared in an actual
4840 -- package, it was visible in the generic, and takes precedence over
4841 -- other entities that are potentially use-visible. Same if it is
4842 -- declared in a local instantiation of the current instance.
4844 else
4845 if In_Instance then
4847 -- Find current instance
4849 Inst := Current_Scope;
4850 while Present (Inst) and then Inst /= Standard_Standard loop
4851 if Is_Generic_Instance (Inst) then
4852 exit;
4853 end if;
4855 Inst := Scope (Inst);
4856 end loop;
4858 E2 := E;
4859 while Present (E2) loop
4860 if From_Actual_Package (E2)
4861 or else
4862 (Is_Generic_Instance (Scope (E2))
4863 and then Scope_Depth (Scope (E2)) > Scope_Depth (Inst))
4864 then
4865 E := E2;
4866 goto Found;
4867 end if;
4869 E2 := Homonym (E2);
4870 end loop;
4872 Nvis_Messages;
4873 return;
4875 elsif
4876 Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
4877 then
4878 -- A use-clause in the body of a system file creates conflict
4879 -- with some entity in a user scope, while rtsfind is active.
4880 -- Keep only the entity coming from another predefined unit.
4882 E2 := E;
4883 while Present (E2) loop
4884 if Is_Predefined_File_Name
4885 (Unit_File_Name (Get_Source_Unit (Sloc (E2))))
4886 then
4887 E := E2;
4888 goto Found;
4889 end if;
4891 E2 := Homonym (E2);
4892 end loop;
4894 -- Entity must exist because predefined unit is correct
4896 raise Program_Error;
4898 else
4899 Nvis_Messages;
4900 return;
4901 end if;
4902 end if;
4903 end;
4905 -- Come here with E set to the first immediately visible entity on
4906 -- the homonym chain. This is the one we want unless there is another
4907 -- immediately visible entity further on in the chain for an inner
4908 -- scope (RM 8.3(8)).
4910 <<Immediately_Visible_Entity>> declare
4911 Level : Int;
4912 Scop : Entity_Id;
4914 begin
4915 -- Find scope level of initial entity. When compiling through
4916 -- Rtsfind, the previous context is not completely invisible, and
4917 -- an outer entity may appear on the chain, whose scope is below
4918 -- the entry for Standard that delimits the current scope stack.
4919 -- Indicate that the level for this spurious entry is outside of
4920 -- the current scope stack.
4922 Level := Scope_Stack.Last;
4923 loop
4924 Scop := Scope_Stack.Table (Level).Entity;
4925 exit when Scop = Scope (E);
4926 Level := Level - 1;
4927 exit when Scop = Standard_Standard;
4928 end loop;
4930 -- Now search remainder of homonym chain for more inner entry
4931 -- If the entity is Standard itself, it has no scope, and we
4932 -- compare it with the stack entry directly.
4934 E2 := Homonym (E);
4935 while Present (E2) loop
4936 if Is_Immediately_Visible (E2) then
4938 -- If a generic package contains a local declaration that
4939 -- has the same name as the generic, there may be a visibility
4940 -- conflict in an instance, where the local declaration must
4941 -- also hide the name of the corresponding package renaming.
4942 -- We check explicitly for a package declared by a renaming,
4943 -- whose renamed entity is an instance that is on the scope
4944 -- stack, and that contains a homonym in the same scope. Once
4945 -- we have found it, we know that the package renaming is not
4946 -- immediately visible, and that the identifier denotes the
4947 -- other entity (and its homonyms if overloaded).
4949 if Scope (E) = Scope (E2)
4950 and then Ekind (E) = E_Package
4951 and then Present (Renamed_Object (E))
4952 and then Is_Generic_Instance (Renamed_Object (E))
4953 and then In_Open_Scopes (Renamed_Object (E))
4954 and then Comes_From_Source (N)
4955 then
4956 Set_Is_Immediately_Visible (E, False);
4957 E := E2;
4959 else
4960 for J in Level + 1 .. Scope_Stack.Last loop
4961 if Scope_Stack.Table (J).Entity = Scope (E2)
4962 or else Scope_Stack.Table (J).Entity = E2
4963 then
4964 Level := J;
4965 E := E2;
4966 exit;
4967 end if;
4968 end loop;
4969 end if;
4970 end if;
4972 E2 := Homonym (E2);
4973 end loop;
4975 -- At the end of that loop, E is the innermost immediately
4976 -- visible entity, so we are all set.
4977 end;
4979 -- Come here with entity found, and stored in E
4981 <<Found>> begin
4983 -- Check violation of No_Wide_Characters restriction
4985 Check_Wide_Character_Restriction (E, N);
4987 -- When distribution features are available (Get_PCS_Name /=
4988 -- Name_No_DSA), a remote access-to-subprogram type is converted
4989 -- into a record type holding whatever information is needed to
4990 -- perform a remote call on an RCI subprogram. In that case we
4991 -- rewrite any occurrence of the RAS type into the equivalent record
4992 -- type here. 'Access attribute references and RAS dereferences are
4993 -- then implemented using specific TSSs. However when distribution is
4994 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
4995 -- generation of these TSSs, and we must keep the RAS type in its
4996 -- original access-to-subprogram form (since all calls through a
4997 -- value of such type will be local anyway in the absence of a PCS).
4999 if Comes_From_Source (N)
5000 and then Is_Remote_Access_To_Subprogram_Type (E)
5001 and then Ekind (E) = E_Access_Subprogram_Type
5002 and then Expander_Active
5003 and then Get_PCS_Name /= Name_No_DSA
5004 then
5005 Rewrite (N,
5006 New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5007 return;
5008 end if;
5010 -- Set the entity. Note that the reason we call Set_Entity for the
5011 -- overloadable case, as opposed to Set_Entity_With_Style_Check is
5012 -- that in the overloaded case, the initial call can set the wrong
5013 -- homonym. The call that sets the right homonym is in Sem_Res and
5014 -- that call does use Set_Entity_With_Style_Check, so we don't miss
5015 -- a style check.
5017 if Is_Overloadable (E) then
5018 Set_Entity (N, E);
5019 else
5020 Set_Entity_With_Style_Check (N, E);
5021 end if;
5023 if Is_Type (E) then
5024 Set_Etype (N, E);
5025 else
5026 Set_Etype (N, Get_Full_View (Etype (E)));
5027 end if;
5029 if Debug_Flag_E then
5030 Write_Str (" found ");
5031 Write_Entity_Info (E, " ");
5032 end if;
5034 -- If the Ekind of the entity is Void, it means that all homonyms
5035 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5036 -- test is skipped if the current scope is a record and the name is
5037 -- a pragma argument expression (case of Atomic and Volatile pragmas
5038 -- and possibly other similar pragmas added later, which are allowed
5039 -- to reference components in the current record).
5041 if Ekind (E) = E_Void
5042 and then
5043 (not Is_Record_Type (Current_Scope)
5044 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5045 then
5046 Premature_Usage (N);
5048 -- If the entity is overloadable, collect all interpretations of the
5049 -- name for subsequent overload resolution. We optimize a bit here to
5050 -- do this only if we have an overloadable entity that is not on its
5051 -- own on the homonym chain.
5053 elsif Is_Overloadable (E)
5054 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5055 then
5056 Collect_Interps (N);
5058 -- If no homonyms were visible, the entity is unambiguous
5060 if not Is_Overloaded (N) then
5061 if not Is_Actual_Parameter then
5062 Generate_Reference (E, N);
5063 end if;
5064 end if;
5066 -- Case of non-overloadable entity, set the entity providing that
5067 -- we do not have the case of a discriminant reference within a
5068 -- default expression. Such references are replaced with the
5069 -- corresponding discriminal, which is the formal corresponding to
5070 -- to the discriminant in the initialization procedure.
5072 else
5073 -- Entity is unambiguous, indicate that it is referenced here
5075 -- For a renaming of an object, always generate simple reference,
5076 -- we don't try to keep track of assignments in this case.
5078 if Is_Object (E) and then Present (Renamed_Object (E)) then
5079 Generate_Reference (E, N);
5081 -- If the renamed entity is a private protected component,
5082 -- reference the original component as well. This needs to be
5083 -- done because the private renamings are installed before any
5084 -- analysis has occurred. Reference to a private component will
5085 -- resolve to the renaming and the original component will be
5086 -- left unreferenced, hence the following.
5088 if Is_Prival (E) then
5089 Generate_Reference (Prival_Link (E), N);
5090 end if;
5092 -- One odd case is that we do not want to set the Referenced flag
5093 -- if the entity is a label, and the identifier is the label in
5094 -- the source, since this is not a reference from the point of
5095 -- view of the user.
5097 elsif Nkind (Parent (N)) = N_Label then
5098 declare
5099 R : constant Boolean := Referenced (E);
5101 begin
5102 -- Generate reference unless this is an actual parameter
5103 -- (see comment below)
5105 if Is_Actual_Parameter then
5106 Generate_Reference (E, N);
5107 Set_Referenced (E, R);
5108 end if;
5109 end;
5111 -- Normal case, not a label: generate reference
5113 -- ??? It is too early to generate a reference here even if the
5114 -- entity is unambiguous, because the tree is not sufficiently
5115 -- typed at this point for Generate_Reference to determine
5116 -- whether this reference modifies the denoted object (because
5117 -- implicit dereferences cannot be identified prior to full type
5118 -- resolution).
5120 -- The Is_Actual_Parameter routine takes care of one of these
5121 -- cases but there are others probably ???
5123 -- If the entity is the LHS of an assignment, and is a variable
5124 -- (rather than a package prefix), we can mark it as a
5125 -- modification right away, to avoid duplicate references.
5127 else
5128 if not Is_Actual_Parameter then
5129 if Is_LHS (N)
5130 and then Ekind (E) /= E_Package
5131 and then Ekind (E) /= E_Generic_Package
5132 then
5133 Generate_Reference (E, N, 'm');
5134 else
5135 Generate_Reference (E, N);
5136 end if;
5137 end if;
5139 Check_Nested_Access (E);
5140 end if;
5142 Set_Entity_Or_Discriminal (N, E);
5144 -- The name may designate a generalized reference, in which case
5145 -- the dereference interpretation will be included.
5147 if Ada_Version >= Ada_2012
5148 and then
5149 (Nkind (Parent (N)) in N_Subexpr
5150 or else Nkind_In (Parent (N), N_Object_Declaration,
5151 N_Assignment_Statement))
5152 then
5153 Check_Implicit_Dereference (N, Etype (E));
5154 end if;
5155 end if;
5156 end;
5157 end Find_Direct_Name;
5159 ------------------------
5160 -- Find_Expanded_Name --
5161 ------------------------
5163 -- This routine searches the homonym chain of the entity until it finds
5164 -- an entity declared in the scope denoted by the prefix. If the entity
5165 -- is private, it may nevertheless be immediately visible, if we are in
5166 -- the scope of its declaration.
5168 procedure Find_Expanded_Name (N : Node_Id) is
5169 Selector : constant Node_Id := Selector_Name (N);
5170 Candidate : Entity_Id := Empty;
5171 P_Name : Entity_Id;
5172 Id : Entity_Id;
5174 begin
5175 P_Name := Entity (Prefix (N));
5177 -- If the prefix is a renamed package, look for the entity in the
5178 -- original package.
5180 if Ekind (P_Name) = E_Package
5181 and then Present (Renamed_Object (P_Name))
5182 then
5183 P_Name := Renamed_Object (P_Name);
5185 -- Rewrite node with entity field pointing to renamed object
5187 Rewrite (Prefix (N), New_Copy (Prefix (N)));
5188 Set_Entity (Prefix (N), P_Name);
5190 -- If the prefix is an object of a concurrent type, look for
5191 -- the entity in the associated task or protected type.
5193 elsif Is_Concurrent_Type (Etype (P_Name)) then
5194 P_Name := Etype (P_Name);
5195 end if;
5197 Id := Current_Entity (Selector);
5199 declare
5200 Is_New_Candidate : Boolean;
5202 begin
5203 while Present (Id) loop
5204 if Scope (Id) = P_Name then
5205 Candidate := Id;
5206 Is_New_Candidate := True;
5208 -- Ada 2005 (AI-217): Handle shadow entities associated with types
5209 -- declared in limited-withed nested packages. We don't need to
5210 -- handle E_Incomplete_Subtype entities because the entities in
5211 -- the limited view are always E_Incomplete_Type entities (see
5212 -- Build_Limited_Views). Regarding the expression used to evaluate
5213 -- the scope, it is important to note that the limited view also
5214 -- has shadow entities associated nested packages. For this reason
5215 -- the correct scope of the entity is the scope of the real entity
5216 -- The non-limited view may itself be incomplete, in which case
5217 -- get the full view if available.
5219 elsif From_With_Type (Id)
5220 and then Is_Type (Id)
5221 and then Ekind (Id) = E_Incomplete_Type
5222 and then Present (Non_Limited_View (Id))
5223 and then Scope (Non_Limited_View (Id)) = P_Name
5224 then
5225 Candidate := Get_Full_View (Non_Limited_View (Id));
5226 Is_New_Candidate := True;
5228 else
5229 Is_New_Candidate := False;
5230 end if;
5232 if Is_New_Candidate then
5233 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
5234 exit when Is_Visible_Lib_Unit (Id);
5235 else
5236 exit when not Is_Hidden (Id);
5237 end if;
5239 exit when Is_Immediately_Visible (Id);
5240 end if;
5242 Id := Homonym (Id);
5243 end loop;
5244 end;
5246 if No (Id)
5247 and then Ekind_In (P_Name, E_Procedure, E_Function)
5248 and then Is_Generic_Instance (P_Name)
5249 then
5250 -- Expanded name denotes entity in (instance of) generic subprogram.
5251 -- The entity may be in the subprogram instance, or may denote one of
5252 -- the formals, which is declared in the enclosing wrapper package.
5254 P_Name := Scope (P_Name);
5256 Id := Current_Entity (Selector);
5257 while Present (Id) loop
5258 exit when Scope (Id) = P_Name;
5259 Id := Homonym (Id);
5260 end loop;
5261 end if;
5263 if No (Id) or else Chars (Id) /= Chars (Selector) then
5264 Set_Etype (N, Any_Type);
5266 -- If we are looking for an entity defined in System, try to find it
5267 -- in the child package that may have been provided as an extension
5268 -- to System. The Extend_System pragma will have supplied the name of
5269 -- the extension, which may have to be loaded.
5271 if Chars (P_Name) = Name_System
5272 and then Scope (P_Name) = Standard_Standard
5273 and then Present (System_Extend_Unit)
5274 and then Present_System_Aux (N)
5275 then
5276 Set_Entity (Prefix (N), System_Aux_Id);
5277 Find_Expanded_Name (N);
5278 return;
5280 elsif Nkind (Selector) = N_Operator_Symbol
5281 and then Has_Implicit_Operator (N)
5282 then
5283 -- There is an implicit instance of the predefined operator in
5284 -- the given scope. The operator entity is defined in Standard.
5285 -- Has_Implicit_Operator makes the node into an Expanded_Name.
5287 return;
5289 elsif Nkind (Selector) = N_Character_Literal
5290 and then Has_Implicit_Character_Literal (N)
5291 then
5292 -- If there is no literal defined in the scope denoted by the
5293 -- prefix, the literal may belong to (a type derived from)
5294 -- Standard_Character, for which we have no explicit literals.
5296 return;
5298 else
5299 -- If the prefix is a single concurrent object, use its name in
5300 -- the error message, rather than that of the anonymous type.
5302 if Is_Concurrent_Type (P_Name)
5303 and then Is_Internal_Name (Chars (P_Name))
5304 then
5305 Error_Msg_Node_2 := Entity (Prefix (N));
5306 else
5307 Error_Msg_Node_2 := P_Name;
5308 end if;
5310 if P_Name = System_Aux_Id then
5311 P_Name := Scope (P_Name);
5312 Set_Entity (Prefix (N), P_Name);
5313 end if;
5315 if Present (Candidate) then
5317 -- If we know that the unit is a child unit we can give a more
5318 -- accurate error message.
5320 if Is_Child_Unit (Candidate) then
5322 -- If the candidate is a private child unit and we are in
5323 -- the visible part of a public unit, specialize the error
5324 -- message. There might be a private with_clause for it,
5325 -- but it is not currently active.
5327 if Is_Private_Descendant (Candidate)
5328 and then Ekind (Current_Scope) = E_Package
5329 and then not In_Private_Part (Current_Scope)
5330 and then not Is_Private_Descendant (Current_Scope)
5331 then
5332 Error_Msg_N ("private child unit& is not visible here",
5333 Selector);
5335 -- Normal case where we have a missing with for a child unit
5337 else
5338 Error_Msg_Qual_Level := 99;
5339 Error_Msg_NE -- CODEFIX
5340 ("missing `WITH &;`", Selector, Candidate);
5341 Error_Msg_Qual_Level := 0;
5342 end if;
5344 -- Here we don't know that this is a child unit
5346 else
5347 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
5348 end if;
5350 else
5351 -- Within the instantiation of a child unit, the prefix may
5352 -- denote the parent instance, but the selector has the name
5353 -- of the original child. That is to say, when A.B appears
5354 -- within an instantiation of generic child unit B, the scope
5355 -- stack includes an instance of A (P_Name) and an instance
5356 -- of B under some other name. We scan the scope to find this
5357 -- child instance, which is the desired entity.
5358 -- Note that the parent may itself be a child instance, if
5359 -- the reference is of the form A.B.C, in which case A.B has
5360 -- already been rewritten with the proper entity.
5362 if In_Open_Scopes (P_Name)
5363 and then Is_Generic_Instance (P_Name)
5364 then
5365 declare
5366 Gen_Par : constant Entity_Id :=
5367 Generic_Parent (Specification
5368 (Unit_Declaration_Node (P_Name)));
5369 S : Entity_Id := Current_Scope;
5370 P : Entity_Id;
5372 begin
5373 for J in reverse 0 .. Scope_Stack.Last loop
5374 S := Scope_Stack.Table (J).Entity;
5376 exit when S = Standard_Standard;
5378 if Ekind_In (S, E_Function,
5379 E_Package,
5380 E_Procedure)
5381 then
5382 P := Generic_Parent (Specification
5383 (Unit_Declaration_Node (S)));
5385 -- Check that P is a generic child of the generic
5386 -- parent of the prefix.
5388 if Present (P)
5389 and then Chars (P) = Chars (Selector)
5390 and then Scope (P) = Gen_Par
5391 then
5392 Id := S;
5393 goto Found;
5394 end if;
5395 end if;
5397 end loop;
5398 end;
5399 end if;
5401 -- If this is a selection from Ada, System or Interfaces, then
5402 -- we assume a missing with for the corresponding package.
5404 if Is_Known_Unit (N) then
5405 if not Error_Posted (N) then
5406 Error_Msg_Node_2 := Selector;
5407 Error_Msg_N -- CODEFIX
5408 ("missing `WITH &.&;`", Prefix (N));
5409 end if;
5411 -- If this is a selection from a dummy package, then suppress
5412 -- the error message, of course the entity is missing if the
5413 -- package is missing!
5415 elsif Sloc (Error_Msg_Node_2) = No_Location then
5416 null;
5418 -- Here we have the case of an undefined component
5420 else
5422 -- The prefix may hide a homonym in the context that
5423 -- declares the desired entity. This error can use a
5424 -- specialized message.
5426 if In_Open_Scopes (P_Name) then
5427 declare
5428 H : constant Entity_Id := Homonym (P_Name);
5430 begin
5431 if Present (H)
5432 and then Is_Compilation_Unit (H)
5433 and then
5434 (Is_Immediately_Visible (H)
5435 or else Is_Visible_Lib_Unit (H))
5436 then
5437 Id := First_Entity (H);
5438 while Present (Id) loop
5439 if Chars (Id) = Chars (Selector) then
5440 Error_Msg_Qual_Level := 99;
5441 Error_Msg_Name_1 := Chars (Selector);
5442 Error_Msg_NE
5443 ("% not declared in&", N, P_Name);
5444 Error_Msg_NE
5445 ("\use fully qualified name starting with "
5446 & "Standard to make& visible", N, H);
5447 Error_Msg_Qual_Level := 0;
5448 goto Done;
5449 end if;
5451 Next_Entity (Id);
5452 end loop;
5453 end if;
5455 -- If not found, standard error message
5457 Error_Msg_NE ("& not declared in&", N, Selector);
5459 <<Done>> null;
5460 end;
5462 else
5463 Error_Msg_NE ("& not declared in&", N, Selector);
5464 end if;
5466 -- Check for misspelling of some entity in prefix
5468 Id := First_Entity (P_Name);
5469 while Present (Id) loop
5470 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
5471 and then not Is_Internal_Name (Chars (Id))
5472 then
5473 Error_Msg_NE -- CODEFIX
5474 ("possible misspelling of&", Selector, Id);
5475 exit;
5476 end if;
5478 Next_Entity (Id);
5479 end loop;
5481 -- Specialize the message if this may be an instantiation
5482 -- of a child unit that was not mentioned in the context.
5484 if Nkind (Parent (N)) = N_Package_Instantiation
5485 and then Is_Generic_Instance (Entity (Prefix (N)))
5486 and then Is_Compilation_Unit
5487 (Generic_Parent (Parent (Entity (Prefix (N)))))
5488 then
5489 Error_Msg_Node_2 := Selector;
5490 Error_Msg_N -- CODEFIX
5491 ("\missing `WITH &.&;`", Prefix (N));
5492 end if;
5493 end if;
5494 end if;
5496 Id := Any_Id;
5497 end if;
5498 end if;
5500 <<Found>>
5501 if Comes_From_Source (N)
5502 and then Is_Remote_Access_To_Subprogram_Type (Id)
5503 and then Ekind (Id) = E_Access_Subprogram_Type
5504 and then Present (Equivalent_Type (Id))
5505 then
5506 -- If we are not actually generating distribution code (i.e. the
5507 -- current PCS is the dummy non-distributed version), then the
5508 -- Equivalent_Type will be missing, and Id should be treated as
5509 -- a regular access-to-subprogram type.
5511 Id := Equivalent_Type (Id);
5512 Set_Chars (Selector, Chars (Id));
5513 end if;
5515 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
5517 if Ekind (P_Name) = E_Package and then From_With_Type (P_Name) then
5518 if From_With_Type (Id)
5519 or else Is_Type (Id)
5520 or else Ekind (Id) = E_Package
5521 then
5522 null;
5523 else
5524 Error_Msg_N
5525 ("limited withed package can only be used to access "
5526 & "incomplete types",
5528 end if;
5529 end if;
5531 if Is_Task_Type (P_Name)
5532 and then ((Ekind (Id) = E_Entry
5533 and then Nkind (Parent (N)) /= N_Attribute_Reference)
5534 or else
5535 (Ekind (Id) = E_Entry_Family
5536 and then
5537 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
5538 then
5539 -- If both the task type and the entry are in scope, this may still
5540 -- be the expanded name of an entry formal.
5542 if In_Open_Scopes (Id)
5543 and then Nkind (Parent (N)) = N_Selected_Component
5544 then
5545 null;
5547 else
5548 -- It is an entry call after all, either to the current task
5549 -- (which will deadlock) or to an enclosing task.
5551 Analyze_Selected_Component (N);
5552 return;
5553 end if;
5554 end if;
5556 Change_Selected_Component_To_Expanded_Name (N);
5558 -- Do style check and generate reference, but skip both steps if this
5559 -- entity has homonyms, since we may not have the right homonym set yet.
5560 -- The proper homonym will be set during the resolve phase.
5562 if Has_Homonym (Id) then
5563 Set_Entity (N, Id);
5564 else
5565 Set_Entity_Or_Discriminal (N, Id);
5567 if Is_LHS (N) then
5568 Generate_Reference (Id, N, 'm');
5569 else
5570 Generate_Reference (Id, N);
5571 end if;
5572 end if;
5574 if Is_Type (Id) then
5575 Set_Etype (N, Id);
5576 else
5577 Set_Etype (N, Get_Full_View (Etype (Id)));
5578 end if;
5580 -- Check for violation of No_Wide_Characters
5582 Check_Wide_Character_Restriction (Id, N);
5584 -- If the Ekind of the entity is Void, it means that all homonyms are
5585 -- hidden from all visibility (RM 8.3(5,14-20)).
5587 if Ekind (Id) = E_Void then
5588 Premature_Usage (N);
5590 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
5591 declare
5592 H : Entity_Id := Homonym (Id);
5594 begin
5595 while Present (H) loop
5596 if Scope (H) = Scope (Id)
5597 and then (not Is_Hidden (H)
5598 or else Is_Immediately_Visible (H))
5599 then
5600 Collect_Interps (N);
5601 exit;
5602 end if;
5604 H := Homonym (H);
5605 end loop;
5607 -- If an extension of System is present, collect possible explicit
5608 -- overloadings declared in the extension.
5610 if Chars (P_Name) = Name_System
5611 and then Scope (P_Name) = Standard_Standard
5612 and then Present (System_Extend_Unit)
5613 and then Present_System_Aux (N)
5614 then
5615 H := Current_Entity (Id);
5617 while Present (H) loop
5618 if Scope (H) = System_Aux_Id then
5619 Add_One_Interp (N, H, Etype (H));
5620 end if;
5622 H := Homonym (H);
5623 end loop;
5624 end if;
5625 end;
5626 end if;
5628 if Nkind (Selector_Name (N)) = N_Operator_Symbol
5629 and then Scope (Id) /= Standard_Standard
5630 then
5631 -- In addition to user-defined operators in the given scope, there
5632 -- may be an implicit instance of the predefined operator. The
5633 -- operator (defined in Standard) is found in Has_Implicit_Operator,
5634 -- and added to the interpretations. Procedure Add_One_Interp will
5635 -- determine which hides which.
5637 if Has_Implicit_Operator (N) then
5638 null;
5639 end if;
5640 end if;
5642 -- If there is a single interpretation for N we can generate a
5643 -- reference to the unique entity found.
5645 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
5646 Generate_Reference (Id, N);
5647 end if;
5648 end Find_Expanded_Name;
5650 -------------------------
5651 -- Find_Renamed_Entity --
5652 -------------------------
5654 function Find_Renamed_Entity
5655 (N : Node_Id;
5656 Nam : Node_Id;
5657 New_S : Entity_Id;
5658 Is_Actual : Boolean := False) return Entity_Id
5660 Ind : Interp_Index;
5661 I1 : Interp_Index := 0; -- Suppress junk warnings
5662 It : Interp;
5663 It1 : Interp;
5664 Old_S : Entity_Id;
5665 Inst : Entity_Id;
5667 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
5668 -- If the renamed entity is an implicit operator, check whether it is
5669 -- visible because its operand type is properly visible. This check
5670 -- applies to explicit renamed entities that appear in the source in a
5671 -- renaming declaration or a formal subprogram instance, but not to
5672 -- default generic actuals with a name.
5674 function Report_Overload return Entity_Id;
5675 -- List possible interpretations, and specialize message in the
5676 -- case of a generic actual.
5678 function Within (Inner, Outer : Entity_Id) return Boolean;
5679 -- Determine whether a candidate subprogram is defined within the
5680 -- enclosing instance. If yes, it has precedence over outer candidates.
5682 --------------------------
5683 -- Is_Visible_Operation --
5684 --------------------------
5686 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
5687 Scop : Entity_Id;
5688 Typ : Entity_Id;
5689 Btyp : Entity_Id;
5691 begin
5692 if Ekind (Op) /= E_Operator
5693 or else Scope (Op) /= Standard_Standard
5694 or else (In_Instance
5695 and then (not Is_Actual
5696 or else Present (Enclosing_Instance)))
5697 then
5698 return True;
5700 else
5701 -- For a fixed point type operator, check the resulting type,
5702 -- because it may be a mixed mode integer * fixed operation.
5704 if Present (Next_Formal (First_Formal (New_S)))
5705 and then Is_Fixed_Point_Type (Etype (New_S))
5706 then
5707 Typ := Etype (New_S);
5708 else
5709 Typ := Etype (First_Formal (New_S));
5710 end if;
5712 Btyp := Base_Type (Typ);
5714 if Nkind (Nam) /= N_Expanded_Name then
5715 return (In_Open_Scopes (Scope (Btyp))
5716 or else Is_Potentially_Use_Visible (Btyp)
5717 or else In_Use (Btyp)
5718 or else In_Use (Scope (Btyp)));
5720 else
5721 Scop := Entity (Prefix (Nam));
5723 if Ekind (Scop) = E_Package
5724 and then Present (Renamed_Object (Scop))
5725 then
5726 Scop := Renamed_Object (Scop);
5727 end if;
5729 -- Operator is visible if prefix of expanded name denotes
5730 -- scope of type, or else type is defined in System_Aux
5731 -- and the prefix denotes System.
5733 return Scope (Btyp) = Scop
5734 or else (Scope (Btyp) = System_Aux_Id
5735 and then Scope (Scope (Btyp)) = Scop);
5736 end if;
5737 end if;
5738 end Is_Visible_Operation;
5740 ------------
5741 -- Within --
5742 ------------
5744 function Within (Inner, Outer : Entity_Id) return Boolean is
5745 Sc : Entity_Id;
5747 begin
5748 Sc := Scope (Inner);
5749 while Sc /= Standard_Standard loop
5750 if Sc = Outer then
5751 return True;
5752 else
5753 Sc := Scope (Sc);
5754 end if;
5755 end loop;
5757 return False;
5758 end Within;
5760 ---------------------
5761 -- Report_Overload --
5762 ---------------------
5764 function Report_Overload return Entity_Id is
5765 begin
5766 if Is_Actual then
5767 Error_Msg_NE -- CODEFIX
5768 ("ambiguous actual subprogram&, " &
5769 "possible interpretations:", N, Nam);
5770 else
5771 Error_Msg_N -- CODEFIX
5772 ("ambiguous subprogram, " &
5773 "possible interpretations:", N);
5774 end if;
5776 List_Interps (Nam, N);
5777 return Old_S;
5778 end Report_Overload;
5780 -- Start of processing for Find_Renamed_Entity
5782 begin
5783 Old_S := Any_Id;
5784 Candidate_Renaming := Empty;
5786 if not Is_Overloaded (Nam) then
5787 if Is_Actual and then Present (Enclosing_Instance) then
5788 Old_S := Entity (Nam);
5790 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
5791 Candidate_Renaming := New_S;
5793 if Is_Visible_Operation (Entity (Nam)) then
5794 Old_S := Entity (Nam);
5795 end if;
5797 elsif
5798 Present (First_Formal (Entity (Nam)))
5799 and then Present (First_Formal (New_S))
5800 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
5801 Base_Type (Etype (First_Formal (New_S))))
5802 then
5803 Candidate_Renaming := Entity (Nam);
5804 end if;
5806 else
5807 Get_First_Interp (Nam, Ind, It);
5808 while Present (It.Nam) loop
5809 if Entity_Matches_Spec (It.Nam, New_S)
5810 and then Is_Visible_Operation (It.Nam)
5811 then
5812 if Old_S /= Any_Id then
5814 -- Note: The call to Disambiguate only happens if a
5815 -- previous interpretation was found, in which case I1
5816 -- has received a value.
5818 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
5820 if It1 = No_Interp then
5821 Inst := Enclosing_Instance;
5823 if Present (Inst) then
5824 if Within (It.Nam, Inst) then
5825 if Within (Old_S, Inst) then
5827 -- Choose the innermost subprogram, which would
5828 -- have hidden the outer one in the generic.
5830 if Scope_Depth (It.Nam) <
5831 Scope_Depth (Old_S)
5832 then
5833 return Old_S;
5834 else
5835 return It.Nam;
5836 end if;
5837 end if;
5839 elsif Within (Old_S, Inst) then
5840 return (Old_S);
5842 else
5843 return Report_Overload;
5844 end if;
5846 -- If not within an instance, ambiguity is real
5848 else
5849 return Report_Overload;
5850 end if;
5852 else
5853 Old_S := It1.Nam;
5854 exit;
5855 end if;
5857 else
5858 I1 := Ind;
5859 Old_S := It.Nam;
5860 end if;
5862 elsif
5863 Present (First_Formal (It.Nam))
5864 and then Present (First_Formal (New_S))
5865 and then (Base_Type (Etype (First_Formal (It.Nam))) =
5866 Base_Type (Etype (First_Formal (New_S))))
5867 then
5868 Candidate_Renaming := It.Nam;
5869 end if;
5871 Get_Next_Interp (Ind, It);
5872 end loop;
5874 Set_Entity (Nam, Old_S);
5876 if Old_S /= Any_Id then
5877 Set_Is_Overloaded (Nam, False);
5878 end if;
5879 end if;
5881 return Old_S;
5882 end Find_Renamed_Entity;
5884 -----------------------------
5885 -- Find_Selected_Component --
5886 -----------------------------
5888 procedure Find_Selected_Component (N : Node_Id) is
5889 P : constant Node_Id := Prefix (N);
5891 P_Name : Entity_Id;
5892 -- Entity denoted by prefix
5894 P_Type : Entity_Id;
5895 -- and its type
5897 Nam : Node_Id;
5899 begin
5900 Analyze (P);
5902 if Nkind (P) = N_Error then
5903 return;
5904 end if;
5906 -- Selector name cannot be a character literal or an operator symbol in
5907 -- SPARK, except for the operator symbol in a renaming.
5909 if Restriction_Check_Required (SPARK_05) then
5910 if Nkind (Selector_Name (N)) = N_Character_Literal then
5911 Check_SPARK_Restriction
5912 ("character literal cannot be prefixed", N);
5913 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
5914 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
5915 then
5916 Check_SPARK_Restriction ("operator symbol cannot be prefixed", N);
5917 end if;
5918 end if;
5920 -- If the selector already has an entity, the node has been constructed
5921 -- in the course of expansion, and is known to be valid. Do not verify
5922 -- that it is defined for the type (it may be a private component used
5923 -- in the expansion of record equality).
5925 if Present (Entity (Selector_Name (N))) then
5926 if No (Etype (N))
5927 or else Etype (N) = Any_Type
5928 then
5929 declare
5930 Sel_Name : constant Node_Id := Selector_Name (N);
5931 Selector : constant Entity_Id := Entity (Sel_Name);
5932 C_Etype : Node_Id;
5934 begin
5935 Set_Etype (Sel_Name, Etype (Selector));
5937 if not Is_Entity_Name (P) then
5938 Resolve (P);
5939 end if;
5941 -- Build an actual subtype except for the first parameter
5942 -- of an init proc, where this actual subtype is by
5943 -- definition incorrect, since the object is uninitialized
5944 -- (and does not even have defined discriminants etc.)
5946 if Is_Entity_Name (P)
5947 and then Ekind (Entity (P)) = E_Function
5948 then
5949 Nam := New_Copy (P);
5951 if Is_Overloaded (P) then
5952 Save_Interps (P, Nam);
5953 end if;
5955 Rewrite (P,
5956 Make_Function_Call (Sloc (P), Name => Nam));
5957 Analyze_Call (P);
5958 Analyze_Selected_Component (N);
5959 return;
5961 elsif Ekind (Selector) = E_Component
5962 and then (not Is_Entity_Name (P)
5963 or else Chars (Entity (P)) /= Name_uInit)
5964 then
5965 -- Do not build the subtype when referencing components of
5966 -- dispatch table wrappers. Required to avoid generating
5967 -- elaboration code with HI runtimes. JVM and .NET use a
5968 -- modified version of Ada.Tags which does not contain RE_
5969 -- Dispatch_Table_Wrapper and RE_No_Dispatch_Table_Wrapper.
5970 -- Avoid raising RE_Not_Available exception in those cases.
5972 if VM_Target = No_VM
5973 and then RTU_Loaded (Ada_Tags)
5974 and then
5975 ((RTE_Available (RE_Dispatch_Table_Wrapper)
5976 and then Scope (Selector) =
5977 RTE (RE_Dispatch_Table_Wrapper))
5978 or else
5979 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
5980 and then Scope (Selector) =
5981 RTE (RE_No_Dispatch_Table_Wrapper)))
5982 then
5983 C_Etype := Empty;
5985 else
5986 C_Etype :=
5987 Build_Actual_Subtype_Of_Component
5988 (Etype (Selector), N);
5989 end if;
5991 else
5992 C_Etype := Empty;
5993 end if;
5995 if No (C_Etype) then
5996 C_Etype := Etype (Selector);
5997 else
5998 Insert_Action (N, C_Etype);
5999 C_Etype := Defining_Identifier (C_Etype);
6000 end if;
6002 Set_Etype (N, C_Etype);
6003 end;
6005 -- If this is the name of an entry or protected operation, and
6006 -- the prefix is an access type, insert an explicit dereference,
6007 -- so that entry calls are treated uniformly.
6009 if Is_Access_Type (Etype (P))
6010 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
6011 then
6012 declare
6013 New_P : constant Node_Id :=
6014 Make_Explicit_Dereference (Sloc (P),
6015 Prefix => Relocate_Node (P));
6016 begin
6017 Rewrite (P, New_P);
6018 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
6019 end;
6020 end if;
6022 -- If the selected component appears within a default expression
6023 -- and it has an actual subtype, the pre-analysis has not yet
6024 -- completed its analysis, because Insert_Actions is disabled in
6025 -- that context. Within the init proc of the enclosing type we
6026 -- must complete this analysis, if an actual subtype was created.
6028 elsif Inside_Init_Proc then
6029 declare
6030 Typ : constant Entity_Id := Etype (N);
6031 Decl : constant Node_Id := Declaration_Node (Typ);
6032 begin
6033 if Nkind (Decl) = N_Subtype_Declaration
6034 and then not Analyzed (Decl)
6035 and then Is_List_Member (Decl)
6036 and then No (Parent (Decl))
6037 then
6038 Remove (Decl);
6039 Insert_Action (N, Decl);
6040 end if;
6041 end;
6042 end if;
6044 return;
6046 elsif Is_Entity_Name (P) then
6047 P_Name := Entity (P);
6049 -- The prefix may denote an enclosing type which is the completion
6050 -- of an incomplete type declaration.
6052 if Is_Type (P_Name) then
6053 Set_Entity (P, Get_Full_View (P_Name));
6054 Set_Etype (P, Entity (P));
6055 P_Name := Entity (P);
6056 end if;
6058 P_Type := Base_Type (Etype (P));
6060 if Debug_Flag_E then
6061 Write_Str ("Found prefix type to be ");
6062 Write_Entity_Info (P_Type, " "); Write_Eol;
6063 end if;
6065 -- First check for components of a record object (not the
6066 -- result of a call, which is handled below).
6068 if Is_Appropriate_For_Record (P_Type)
6069 and then not Is_Overloadable (P_Name)
6070 and then not Is_Type (P_Name)
6071 then
6072 -- Selected component of record. Type checking will validate
6073 -- name of selector.
6075 -- ??? Could we rewrite an implicit dereference into an explicit
6076 -- one here?
6078 Analyze_Selected_Component (N);
6080 -- Reference to type name in predicate/invariant expression
6082 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
6083 and then not In_Open_Scopes (P_Name)
6084 and then (not Is_Concurrent_Type (Etype (P_Name))
6085 or else not In_Open_Scopes (Etype (P_Name)))
6086 then
6087 -- Call to protected operation or entry. Type checking is
6088 -- needed on the prefix.
6090 Analyze_Selected_Component (N);
6092 elsif (In_Open_Scopes (P_Name)
6093 and then Ekind (P_Name) /= E_Void
6094 and then not Is_Overloadable (P_Name))
6095 or else (Is_Concurrent_Type (Etype (P_Name))
6096 and then In_Open_Scopes (Etype (P_Name)))
6097 then
6098 -- Prefix denotes an enclosing loop, block, or task, i.e. an
6099 -- enclosing construct that is not a subprogram or accept.
6101 Find_Expanded_Name (N);
6103 elsif Ekind (P_Name) = E_Package then
6104 Find_Expanded_Name (N);
6106 elsif Is_Overloadable (P_Name) then
6108 -- The subprogram may be a renaming (of an enclosing scope) as
6109 -- in the case of the name of the generic within an instantiation.
6111 if Ekind_In (P_Name, E_Procedure, E_Function)
6112 and then Present (Alias (P_Name))
6113 and then Is_Generic_Instance (Alias (P_Name))
6114 then
6115 P_Name := Alias (P_Name);
6116 end if;
6118 if Is_Overloaded (P) then
6120 -- The prefix must resolve to a unique enclosing construct
6122 declare
6123 Found : Boolean := False;
6124 Ind : Interp_Index;
6125 It : Interp;
6127 begin
6128 Get_First_Interp (P, Ind, It);
6129 while Present (It.Nam) loop
6130 if In_Open_Scopes (It.Nam) then
6131 if Found then
6132 Error_Msg_N (
6133 "prefix must be unique enclosing scope", N);
6134 Set_Entity (N, Any_Id);
6135 Set_Etype (N, Any_Type);
6136 return;
6138 else
6139 Found := True;
6140 P_Name := It.Nam;
6141 end if;
6142 end if;
6144 Get_Next_Interp (Ind, It);
6145 end loop;
6146 end;
6147 end if;
6149 if In_Open_Scopes (P_Name) then
6150 Set_Entity (P, P_Name);
6151 Set_Is_Overloaded (P, False);
6152 Find_Expanded_Name (N);
6154 else
6155 -- If no interpretation as an expanded name is possible, it
6156 -- must be a selected component of a record returned by a
6157 -- function call. Reformat prefix as a function call, the rest
6158 -- is done by type resolution. If the prefix is procedure or
6159 -- entry, as is P.X; this is an error.
6161 if Ekind (P_Name) /= E_Function
6162 and then
6163 (not Is_Overloaded (P)
6164 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
6165 then
6166 -- Prefix may mention a package that is hidden by a local
6167 -- declaration: let the user know. Scan the full homonym
6168 -- chain, the candidate package may be anywhere on it.
6170 if Present (Homonym (Current_Entity (P_Name))) then
6172 P_Name := Current_Entity (P_Name);
6174 while Present (P_Name) loop
6175 exit when Ekind (P_Name) = E_Package;
6176 P_Name := Homonym (P_Name);
6177 end loop;
6179 if Present (P_Name) then
6180 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
6182 Error_Msg_NE
6183 ("package& is hidden by declaration#",
6184 N, P_Name);
6186 Set_Entity (Prefix (N), P_Name);
6187 Find_Expanded_Name (N);
6188 return;
6189 else
6190 P_Name := Entity (Prefix (N));
6191 end if;
6192 end if;
6194 Error_Msg_NE
6195 ("invalid prefix in selected component&", N, P_Name);
6196 Change_Selected_Component_To_Expanded_Name (N);
6197 Set_Entity (N, Any_Id);
6198 Set_Etype (N, Any_Type);
6200 else
6201 Nam := New_Copy (P);
6202 Save_Interps (P, Nam);
6203 Rewrite (P,
6204 Make_Function_Call (Sloc (P), Name => Nam));
6205 Analyze_Call (P);
6206 Analyze_Selected_Component (N);
6207 end if;
6208 end if;
6210 -- Remaining cases generate various error messages
6212 else
6213 -- Format node as expanded name, to avoid cascaded errors
6215 Change_Selected_Component_To_Expanded_Name (N);
6216 Set_Entity (N, Any_Id);
6217 Set_Etype (N, Any_Type);
6219 -- Issue error message, but avoid this if error issued already.
6220 -- Use identifier of prefix if one is available.
6222 if P_Name = Any_Id then
6223 null;
6225 elsif Ekind (P_Name) = E_Void then
6226 Premature_Usage (P);
6228 elsif Nkind (P) /= N_Attribute_Reference then
6229 Error_Msg_N (
6230 "invalid prefix in selected component&", P);
6232 if Is_Access_Type (P_Type)
6233 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
6234 then
6235 Error_Msg_N
6236 ("\dereference must not be of an incomplete type " &
6237 "(RM 3.10.1)", P);
6238 end if;
6240 else
6241 Error_Msg_N (
6242 "invalid prefix in selected component", P);
6243 end if;
6244 end if;
6246 -- Selector name is restricted in SPARK
6248 if Nkind (N) = N_Expanded_Name
6249 and then Restriction_Check_Required (SPARK_05)
6250 then
6251 if Is_Subprogram (P_Name) then
6252 Check_SPARK_Restriction
6253 ("prefix of expanded name cannot be a subprogram", P);
6254 elsif Ekind (P_Name) = E_Loop then
6255 Check_SPARK_Restriction
6256 ("prefix of expanded name cannot be a loop statement", P);
6257 end if;
6258 end if;
6260 else
6261 -- If prefix is not the name of an entity, it must be an expression,
6262 -- whose type is appropriate for a record. This is determined by
6263 -- type resolution.
6265 Analyze_Selected_Component (N);
6266 end if;
6268 Analyze_Dimension (N);
6269 end Find_Selected_Component;
6271 ---------------
6272 -- Find_Type --
6273 ---------------
6275 procedure Find_Type (N : Node_Id) is
6276 C : Entity_Id;
6277 Typ : Entity_Id;
6278 T : Entity_Id;
6279 T_Name : Entity_Id;
6281 begin
6282 if N = Error then
6283 return;
6285 elsif Nkind (N) = N_Attribute_Reference then
6287 -- Class attribute. This is not valid in Ada 83 mode, but we do not
6288 -- need to enforce that at this point, since the declaration of the
6289 -- tagged type in the prefix would have been flagged already.
6291 if Attribute_Name (N) = Name_Class then
6292 Check_Restriction (No_Dispatch, N);
6293 Find_Type (Prefix (N));
6295 -- Propagate error from bad prefix
6297 if Etype (Prefix (N)) = Any_Type then
6298 Set_Entity (N, Any_Type);
6299 Set_Etype (N, Any_Type);
6300 return;
6301 end if;
6303 T := Base_Type (Entity (Prefix (N)));
6305 -- Case where type is not known to be tagged. Its appearance in
6306 -- the prefix of the 'Class attribute indicates that the full view
6307 -- will be tagged.
6309 if not Is_Tagged_Type (T) then
6310 if Ekind (T) = E_Incomplete_Type then
6312 -- It is legal to denote the class type of an incomplete
6313 -- type. The full type will have to be tagged, of course.
6314 -- In Ada 2005 this usage is declared obsolescent, so we
6315 -- warn accordingly. This usage is only legal if the type
6316 -- is completed in the current scope, and not for a limited
6317 -- view of a type.
6319 if Ada_Version >= Ada_2005 then
6321 -- Test whether the Available_View of a limited type view
6322 -- is tagged, since the limited view may not be marked as
6323 -- tagged if the type itself has an untagged incomplete
6324 -- type view in its package.
6326 if From_With_Type (T)
6327 and then not Is_Tagged_Type (Available_View (T))
6328 then
6329 Error_Msg_N
6330 ("prefix of Class attribute must be tagged", N);
6331 Set_Etype (N, Any_Type);
6332 Set_Entity (N, Any_Type);
6333 return;
6335 -- ??? This test is temporarily disabled (always
6336 -- False) because it causes an unwanted warning on
6337 -- GNAT sources (built with -gnatg, which includes
6338 -- Warn_On_Obsolescent_ Feature). Once this issue
6339 -- is cleared in the sources, it can be enabled.
6341 elsif Warn_On_Obsolescent_Feature and then False then
6342 Error_Msg_N
6343 ("applying 'Class to an untagged incomplete type"
6344 & " is an obsolescent feature (RM J.11)?r?", N);
6345 end if;
6346 end if;
6348 Set_Is_Tagged_Type (T);
6349 Set_Direct_Primitive_Operations (T, New_Elmt_List);
6350 Make_Class_Wide_Type (T);
6351 Set_Entity (N, Class_Wide_Type (T));
6352 Set_Etype (N, Class_Wide_Type (T));
6354 elsif Ekind (T) = E_Private_Type
6355 and then not Is_Generic_Type (T)
6356 and then In_Private_Part (Scope (T))
6357 then
6358 -- The Class attribute can be applied to an untagged private
6359 -- type fulfilled by a tagged type prior to the full type
6360 -- declaration (but only within the parent package's private
6361 -- part). Create the class-wide type now and check that the
6362 -- full type is tagged later during its analysis. Note that
6363 -- we do not mark the private type as tagged, unlike the
6364 -- case of incomplete types, because the type must still
6365 -- appear untagged to outside units.
6367 if No (Class_Wide_Type (T)) then
6368 Make_Class_Wide_Type (T);
6369 end if;
6371 Set_Entity (N, Class_Wide_Type (T));
6372 Set_Etype (N, Class_Wide_Type (T));
6374 else
6375 -- Should we introduce a type Any_Tagged and use Wrong_Type
6376 -- here, it would be a bit more consistent???
6378 Error_Msg_NE
6379 ("tagged type required, found}",
6380 Prefix (N), First_Subtype (T));
6381 Set_Entity (N, Any_Type);
6382 return;
6383 end if;
6385 -- Case of tagged type
6387 else
6388 if Is_Concurrent_Type (T) then
6389 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
6391 -- Previous error. Use current type, which at least
6392 -- provides some operations.
6394 C := Entity (Prefix (N));
6396 else
6397 C := Class_Wide_Type
6398 (Corresponding_Record_Type (Entity (Prefix (N))));
6399 end if;
6401 else
6402 C := Class_Wide_Type (Entity (Prefix (N)));
6403 end if;
6405 Set_Entity_With_Style_Check (N, C);
6406 Generate_Reference (C, N);
6407 Set_Etype (N, C);
6408 end if;
6410 -- Base attribute, not allowed in Ada 83
6412 elsif Attribute_Name (N) = Name_Base then
6413 Error_Msg_Name_1 := Name_Base;
6414 Check_SPARK_Restriction
6415 ("attribute% is only allowed as prefix of another attribute", N);
6417 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
6418 Error_Msg_N
6419 ("(Ada 83) Base attribute not allowed in subtype mark", N);
6421 else
6422 Find_Type (Prefix (N));
6423 Typ := Entity (Prefix (N));
6425 if Ada_Version >= Ada_95
6426 and then not Is_Scalar_Type (Typ)
6427 and then not Is_Generic_Type (Typ)
6428 then
6429 Error_Msg_N
6430 ("prefix of Base attribute must be scalar type",
6431 Prefix (N));
6433 elsif Warn_On_Redundant_Constructs
6434 and then Base_Type (Typ) = Typ
6435 then
6436 Error_Msg_NE -- CODEFIX
6437 ("redundant attribute, & is its own base type?r?", N, Typ);
6438 end if;
6440 T := Base_Type (Typ);
6442 -- Rewrite attribute reference with type itself (see similar
6443 -- processing in Analyze_Attribute, case Base). Preserve prefix
6444 -- if present, for other legality checks.
6446 if Nkind (Prefix (N)) = N_Expanded_Name then
6447 Rewrite (N,
6448 Make_Expanded_Name (Sloc (N),
6449 Chars => Chars (T),
6450 Prefix => New_Copy (Prefix (Prefix (N))),
6451 Selector_Name => New_Reference_To (T, Sloc (N))));
6453 else
6454 Rewrite (N, New_Reference_To (T, Sloc (N)));
6455 end if;
6457 Set_Entity (N, T);
6458 Set_Etype (N, T);
6459 end if;
6461 elsif Attribute_Name (N) = Name_Stub_Type then
6463 -- This is handled in Analyze_Attribute
6465 Analyze (N);
6467 -- All other attributes are invalid in a subtype mark
6469 else
6470 Error_Msg_N ("invalid attribute in subtype mark", N);
6471 end if;
6473 else
6474 Analyze (N);
6476 if Is_Entity_Name (N) then
6477 T_Name := Entity (N);
6478 else
6479 Error_Msg_N ("subtype mark required in this context", N);
6480 Set_Etype (N, Any_Type);
6481 return;
6482 end if;
6484 if T_Name = Any_Id or else Etype (N) = Any_Type then
6486 -- Undefined id. Make it into a valid type
6488 Set_Entity (N, Any_Type);
6490 elsif not Is_Type (T_Name)
6491 and then T_Name /= Standard_Void_Type
6492 then
6493 Error_Msg_Sloc := Sloc (T_Name);
6494 Error_Msg_N ("subtype mark required in this context", N);
6495 Error_Msg_NE ("\\found & declared#", N, T_Name);
6496 Set_Entity (N, Any_Type);
6498 else
6499 -- If the type is an incomplete type created to handle
6500 -- anonymous access components of a record type, then the
6501 -- incomplete type is the visible entity and subsequent
6502 -- references will point to it. Mark the original full
6503 -- type as referenced, to prevent spurious warnings.
6505 if Is_Incomplete_Type (T_Name)
6506 and then Present (Full_View (T_Name))
6507 and then not Comes_From_Source (T_Name)
6508 then
6509 Set_Referenced (Full_View (T_Name));
6510 end if;
6512 T_Name := Get_Full_View (T_Name);
6514 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
6515 -- limited-with clauses
6517 if From_With_Type (T_Name)
6518 and then Ekind (T_Name) in Incomplete_Kind
6519 and then Present (Non_Limited_View (T_Name))
6520 and then Is_Interface (Non_Limited_View (T_Name))
6521 then
6522 T_Name := Non_Limited_View (T_Name);
6523 end if;
6525 if In_Open_Scopes (T_Name) then
6526 if Ekind (Base_Type (T_Name)) = E_Task_Type then
6528 -- In Ada 2005, a task name can be used in an access
6529 -- definition within its own body. It cannot be used
6530 -- in the discriminant part of the task declaration,
6531 -- nor anywhere else in the declaration because entries
6532 -- cannot have access parameters.
6534 if Ada_Version >= Ada_2005
6535 and then Nkind (Parent (N)) = N_Access_Definition
6536 then
6537 Set_Entity (N, T_Name);
6538 Set_Etype (N, T_Name);
6540 if Has_Completion (T_Name) then
6541 return;
6543 else
6544 Error_Msg_N
6545 ("task type cannot be used as type mark " &
6546 "within its own declaration", N);
6547 end if;
6549 else
6550 Error_Msg_N
6551 ("task type cannot be used as type mark " &
6552 "within its own spec or body", N);
6553 end if;
6555 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
6557 -- In Ada 2005, a protected name can be used in an access
6558 -- definition within its own body.
6560 if Ada_Version >= Ada_2005
6561 and then Nkind (Parent (N)) = N_Access_Definition
6562 then
6563 Set_Entity (N, T_Name);
6564 Set_Etype (N, T_Name);
6565 return;
6567 else
6568 Error_Msg_N
6569 ("protected type cannot be used as type mark " &
6570 "within its own spec or body", N);
6571 end if;
6573 else
6574 Error_Msg_N ("type declaration cannot refer to itself", N);
6575 end if;
6577 Set_Etype (N, Any_Type);
6578 Set_Entity (N, Any_Type);
6579 Set_Error_Posted (T_Name);
6580 return;
6581 end if;
6583 Set_Entity (N, T_Name);
6584 Set_Etype (N, T_Name);
6585 end if;
6586 end if;
6588 if Present (Etype (N)) and then Comes_From_Source (N) then
6589 if Is_Fixed_Point_Type (Etype (N)) then
6590 Check_Restriction (No_Fixed_Point, N);
6591 elsif Is_Floating_Point_Type (Etype (N)) then
6592 Check_Restriction (No_Floating_Point, N);
6593 end if;
6594 end if;
6595 end Find_Type;
6597 ------------------------------------
6598 -- Has_Implicit_Character_Literal --
6599 ------------------------------------
6601 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
6602 Id : Entity_Id;
6603 Found : Boolean := False;
6604 P : constant Entity_Id := Entity (Prefix (N));
6605 Priv_Id : Entity_Id := Empty;
6607 begin
6608 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
6609 Priv_Id := First_Private_Entity (P);
6610 end if;
6612 if P = Standard_Standard then
6613 Change_Selected_Component_To_Expanded_Name (N);
6614 Rewrite (N, Selector_Name (N));
6615 Analyze (N);
6616 Set_Etype (Original_Node (N), Standard_Character);
6617 return True;
6618 end if;
6620 Id := First_Entity (P);
6621 while Present (Id) and then Id /= Priv_Id loop
6622 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
6624 -- We replace the node with the literal itself, resolve as a
6625 -- character, and set the type correctly.
6627 if not Found then
6628 Change_Selected_Component_To_Expanded_Name (N);
6629 Rewrite (N, Selector_Name (N));
6630 Analyze (N);
6631 Set_Etype (N, Id);
6632 Set_Etype (Original_Node (N), Id);
6633 Found := True;
6635 else
6636 -- More than one type derived from Character in given scope.
6637 -- Collect all possible interpretations.
6639 Add_One_Interp (N, Id, Id);
6640 end if;
6641 end if;
6643 Next_Entity (Id);
6644 end loop;
6646 return Found;
6647 end Has_Implicit_Character_Literal;
6649 ----------------------
6650 -- Has_Private_With --
6651 ----------------------
6653 function Has_Private_With (E : Entity_Id) return Boolean is
6654 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
6655 Item : Node_Id;
6657 begin
6658 Item := First (Context_Items (Comp_Unit));
6659 while Present (Item) loop
6660 if Nkind (Item) = N_With_Clause
6661 and then Private_Present (Item)
6662 and then Entity (Name (Item)) = E
6663 then
6664 return True;
6665 end if;
6667 Next (Item);
6668 end loop;
6670 return False;
6671 end Has_Private_With;
6673 ---------------------------
6674 -- Has_Implicit_Operator --
6675 ---------------------------
6677 function Has_Implicit_Operator (N : Node_Id) return Boolean is
6678 Op_Id : constant Name_Id := Chars (Selector_Name (N));
6679 P : constant Entity_Id := Entity (Prefix (N));
6680 Id : Entity_Id;
6681 Priv_Id : Entity_Id := Empty;
6683 procedure Add_Implicit_Operator
6684 (T : Entity_Id;
6685 Op_Type : Entity_Id := Empty);
6686 -- Add implicit interpretation to node N, using the type for which a
6687 -- predefined operator exists. If the operator yields a boolean type,
6688 -- the Operand_Type is implicitly referenced by the operator, and a
6689 -- reference to it must be generated.
6691 ---------------------------
6692 -- Add_Implicit_Operator --
6693 ---------------------------
6695 procedure Add_Implicit_Operator
6696 (T : Entity_Id;
6697 Op_Type : Entity_Id := Empty)
6699 Predef_Op : Entity_Id;
6701 begin
6702 Predef_Op := Current_Entity (Selector_Name (N));
6703 while Present (Predef_Op)
6704 and then Scope (Predef_Op) /= Standard_Standard
6705 loop
6706 Predef_Op := Homonym (Predef_Op);
6707 end loop;
6709 if Nkind (N) = N_Selected_Component then
6710 Change_Selected_Component_To_Expanded_Name (N);
6711 end if;
6713 -- If the context is an unanalyzed function call, determine whether
6714 -- a binary or unary interpretation is required.
6716 if Nkind (Parent (N)) = N_Indexed_Component then
6717 declare
6718 Is_Binary_Call : constant Boolean :=
6719 Present
6720 (Next (First (Expressions (Parent (N)))));
6721 Is_Binary_Op : constant Boolean :=
6722 First_Entity
6723 (Predef_Op) /= Last_Entity (Predef_Op);
6724 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
6726 begin
6727 if Is_Binary_Call then
6728 if Is_Binary_Op then
6729 Add_One_Interp (N, Predef_Op, T);
6730 else
6731 Add_One_Interp (N, Predef_Op2, T);
6732 end if;
6734 else
6735 if not Is_Binary_Op then
6736 Add_One_Interp (N, Predef_Op, T);
6737 else
6738 Add_One_Interp (N, Predef_Op2, T);
6739 end if;
6740 end if;
6741 end;
6743 else
6744 Add_One_Interp (N, Predef_Op, T);
6746 -- For operators with unary and binary interpretations, if
6747 -- context is not a call, add both
6749 if Present (Homonym (Predef_Op)) then
6750 Add_One_Interp (N, Homonym (Predef_Op), T);
6751 end if;
6752 end if;
6754 -- The node is a reference to a predefined operator, and
6755 -- an implicit reference to the type of its operands.
6757 if Present (Op_Type) then
6758 Generate_Operator_Reference (N, Op_Type);
6759 else
6760 Generate_Operator_Reference (N, T);
6761 end if;
6762 end Add_Implicit_Operator;
6764 -- Start of processing for Has_Implicit_Operator
6766 begin
6767 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
6768 Priv_Id := First_Private_Entity (P);
6769 end if;
6771 Id := First_Entity (P);
6773 case Op_Id is
6775 -- Boolean operators: an implicit declaration exists if the scope
6776 -- contains a declaration for a derived Boolean type, or for an
6777 -- array of Boolean type.
6779 when Name_Op_And | Name_Op_Not | Name_Op_Or | Name_Op_Xor =>
6780 while Id /= Priv_Id loop
6781 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
6782 Add_Implicit_Operator (Id);
6783 return True;
6784 end if;
6786 Next_Entity (Id);
6787 end loop;
6789 -- Equality: look for any non-limited type (result is Boolean)
6791 when Name_Op_Eq | Name_Op_Ne =>
6792 while Id /= Priv_Id loop
6793 if Is_Type (Id)
6794 and then not Is_Limited_Type (Id)
6795 and then Is_Base_Type (Id)
6796 then
6797 Add_Implicit_Operator (Standard_Boolean, Id);
6798 return True;
6799 end if;
6801 Next_Entity (Id);
6802 end loop;
6804 -- Comparison operators: scalar type, or array of scalar
6806 when Name_Op_Lt | Name_Op_Le | Name_Op_Gt | Name_Op_Ge =>
6807 while Id /= Priv_Id loop
6808 if (Is_Scalar_Type (Id)
6809 or else (Is_Array_Type (Id)
6810 and then Is_Scalar_Type (Component_Type (Id))))
6811 and then Is_Base_Type (Id)
6812 then
6813 Add_Implicit_Operator (Standard_Boolean, Id);
6814 return True;
6815 end if;
6817 Next_Entity (Id);
6818 end loop;
6820 -- Arithmetic operators: any numeric type
6822 when Name_Op_Abs |
6823 Name_Op_Add |
6824 Name_Op_Mod |
6825 Name_Op_Rem |
6826 Name_Op_Subtract |
6827 Name_Op_Multiply |
6828 Name_Op_Divide |
6829 Name_Op_Expon =>
6830 while Id /= Priv_Id loop
6831 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
6832 Add_Implicit_Operator (Id);
6833 return True;
6834 end if;
6836 Next_Entity (Id);
6837 end loop;
6839 -- Concatenation: any one-dimensional array type
6841 when Name_Op_Concat =>
6842 while Id /= Priv_Id loop
6843 if Is_Array_Type (Id)
6844 and then Number_Dimensions (Id) = 1
6845 and then Is_Base_Type (Id)
6846 then
6847 Add_Implicit_Operator (Id);
6848 return True;
6849 end if;
6851 Next_Entity (Id);
6852 end loop;
6854 -- What is the others condition here? Should we be using a
6855 -- subtype of Name_Id that would restrict to operators ???
6857 when others => null;
6858 end case;
6860 -- If we fall through, then we do not have an implicit operator
6862 return False;
6864 end Has_Implicit_Operator;
6866 -----------------------------------
6867 -- Has_Loop_In_Inner_Open_Scopes --
6868 -----------------------------------
6870 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
6871 begin
6872 -- Several scope stacks are maintained by Scope_Stack. The base of the
6873 -- currently active scope stack is denoted by the Is_Active_Stack_Base
6874 -- flag in the scope stack entry. Note that the scope stacks used to
6875 -- simply be delimited implicitly by the presence of Standard_Standard
6876 -- at their base, but there now are cases where this is not sufficient
6877 -- because Standard_Standard actually may appear in the middle of the
6878 -- active set of scopes.
6880 for J in reverse 0 .. Scope_Stack.Last loop
6882 -- S was reached without seing a loop scope first
6884 if Scope_Stack.Table (J).Entity = S then
6885 return False;
6887 -- S was not yet reached, so it contains at least one inner loop
6889 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
6890 return True;
6891 end if;
6893 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
6894 -- cases where Standard_Standard appears in the middle of the active
6895 -- set of scopes. This affects the declaration and overriding of
6896 -- private inherited operations in instantiations of generic child
6897 -- units.
6899 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
6900 end loop;
6902 raise Program_Error; -- unreachable
6903 end Has_Loop_In_Inner_Open_Scopes;
6905 --------------------
6906 -- In_Open_Scopes --
6907 --------------------
6909 function In_Open_Scopes (S : Entity_Id) return Boolean is
6910 begin
6911 -- Several scope stacks are maintained by Scope_Stack. The base of the
6912 -- currently active scope stack is denoted by the Is_Active_Stack_Base
6913 -- flag in the scope stack entry. Note that the scope stacks used to
6914 -- simply be delimited implicitly by the presence of Standard_Standard
6915 -- at their base, but there now are cases where this is not sufficient
6916 -- because Standard_Standard actually may appear in the middle of the
6917 -- active set of scopes.
6919 for J in reverse 0 .. Scope_Stack.Last loop
6920 if Scope_Stack.Table (J).Entity = S then
6921 return True;
6922 end if;
6924 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
6925 -- cases where Standard_Standard appears in the middle of the active
6926 -- set of scopes. This affects the declaration and overriding of
6927 -- private inherited operations in instantiations of generic child
6928 -- units.
6930 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
6931 end loop;
6933 return False;
6934 end In_Open_Scopes;
6936 -----------------------------
6937 -- Inherit_Renamed_Profile --
6938 -----------------------------
6940 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
6941 New_F : Entity_Id;
6942 Old_F : Entity_Id;
6943 Old_T : Entity_Id;
6944 New_T : Entity_Id;
6946 begin
6947 if Ekind (Old_S) = E_Operator then
6948 New_F := First_Formal (New_S);
6950 while Present (New_F) loop
6951 Set_Etype (New_F, Base_Type (Etype (New_F)));
6952 Next_Formal (New_F);
6953 end loop;
6955 Set_Etype (New_S, Base_Type (Etype (New_S)));
6957 else
6958 New_F := First_Formal (New_S);
6959 Old_F := First_Formal (Old_S);
6961 while Present (New_F) loop
6962 New_T := Etype (New_F);
6963 Old_T := Etype (Old_F);
6965 -- If the new type is a renaming of the old one, as is the
6966 -- case for actuals in instances, retain its name, to simplify
6967 -- later disambiguation.
6969 if Nkind (Parent (New_T)) = N_Subtype_Declaration
6970 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
6971 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
6972 then
6973 null;
6974 else
6975 Set_Etype (New_F, Old_T);
6976 end if;
6978 Next_Formal (New_F);
6979 Next_Formal (Old_F);
6980 end loop;
6982 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
6983 Set_Etype (New_S, Etype (Old_S));
6984 end if;
6985 end if;
6986 end Inherit_Renamed_Profile;
6988 ----------------
6989 -- Initialize --
6990 ----------------
6992 procedure Initialize is
6993 begin
6994 Urefs.Init;
6995 end Initialize;
6997 -------------------------
6998 -- Install_Use_Clauses --
6999 -------------------------
7001 procedure Install_Use_Clauses
7002 (Clause : Node_Id;
7003 Force_Installation : Boolean := False)
7005 U : Node_Id;
7006 P : Node_Id;
7007 Id : Entity_Id;
7009 begin
7010 U := Clause;
7011 while Present (U) loop
7013 -- Case of USE package
7015 if Nkind (U) = N_Use_Package_Clause then
7016 P := First (Names (U));
7017 while Present (P) loop
7018 Id := Entity (P);
7020 if Ekind (Id) = E_Package then
7021 if In_Use (Id) then
7022 Note_Redundant_Use (P);
7024 elsif Present (Renamed_Object (Id))
7025 and then In_Use (Renamed_Object (Id))
7026 then
7027 Note_Redundant_Use (P);
7029 elsif Force_Installation or else Applicable_Use (P) then
7030 Use_One_Package (Id, U);
7032 end if;
7033 end if;
7035 Next (P);
7036 end loop;
7038 -- Case of USE TYPE
7040 else
7041 P := First (Subtype_Marks (U));
7042 while Present (P) loop
7043 if not Is_Entity_Name (P)
7044 or else No (Entity (P))
7045 then
7046 null;
7048 elsif Entity (P) /= Any_Type then
7049 Use_One_Type (P);
7050 end if;
7052 Next (P);
7053 end loop;
7054 end if;
7056 Next_Use_Clause (U);
7057 end loop;
7058 end Install_Use_Clauses;
7060 -------------------------------------
7061 -- Is_Appropriate_For_Entry_Prefix --
7062 -------------------------------------
7064 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
7065 P_Type : Entity_Id := T;
7067 begin
7068 if Is_Access_Type (P_Type) then
7069 P_Type := Designated_Type (P_Type);
7070 end if;
7072 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
7073 end Is_Appropriate_For_Entry_Prefix;
7075 -------------------------------
7076 -- Is_Appropriate_For_Record --
7077 -------------------------------
7079 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
7081 function Has_Components (T1 : Entity_Id) return Boolean;
7082 -- Determine if given type has components (i.e. is either a record
7083 -- type or a type that has discriminants).
7085 --------------------
7086 -- Has_Components --
7087 --------------------
7089 function Has_Components (T1 : Entity_Id) return Boolean is
7090 begin
7091 return Is_Record_Type (T1)
7092 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
7093 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
7094 or else (Is_Incomplete_Type (T1)
7095 and then From_With_Type (T1)
7096 and then Present (Non_Limited_View (T1))
7097 and then Is_Record_Type
7098 (Get_Full_View (Non_Limited_View (T1))));
7099 end Has_Components;
7101 -- Start of processing for Is_Appropriate_For_Record
7103 begin
7104 return
7105 Present (T)
7106 and then (Has_Components (T)
7107 or else (Is_Access_Type (T)
7108 and then Has_Components (Designated_Type (T))));
7109 end Is_Appropriate_For_Record;
7111 ------------------------
7112 -- Note_Redundant_Use --
7113 ------------------------
7115 procedure Note_Redundant_Use (Clause : Node_Id) is
7116 Pack_Name : constant Entity_Id := Entity (Clause);
7117 Cur_Use : constant Node_Id := Current_Use_Clause (Pack_Name);
7118 Decl : constant Node_Id := Parent (Clause);
7120 Prev_Use : Node_Id := Empty;
7121 Redundant : Node_Id := Empty;
7122 -- The Use_Clause which is actually redundant. In the simplest case it
7123 -- is Pack itself, but when we compile a body we install its context
7124 -- before that of its spec, in which case it is the use_clause in the
7125 -- spec that will appear to be redundant, and we want the warning to be
7126 -- placed on the body. Similar complications appear when the redundancy
7127 -- is between a child unit and one of its ancestors.
7129 begin
7130 Set_Redundant_Use (Clause, True);
7132 if not Comes_From_Source (Clause)
7133 or else In_Instance
7134 or else not Warn_On_Redundant_Constructs
7135 then
7136 return;
7137 end if;
7139 if not Is_Compilation_Unit (Current_Scope) then
7141 -- If the use_clause is in an inner scope, it is made redundant by
7142 -- some clause in the current context, with one exception: If we're
7143 -- compiling a nested package body, and the use_clause comes from the
7144 -- corresponding spec, the clause is not necessarily fully redundant,
7145 -- so we should not warn. If a warning was warranted, it would have
7146 -- been given when the spec was processed.
7148 if Nkind (Parent (Decl)) = N_Package_Specification then
7149 declare
7150 Package_Spec_Entity : constant Entity_Id :=
7151 Defining_Unit_Name (Parent (Decl));
7152 begin
7153 if In_Package_Body (Package_Spec_Entity) then
7154 return;
7155 end if;
7156 end;
7157 end if;
7159 Redundant := Clause;
7160 Prev_Use := Cur_Use;
7162 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
7163 declare
7164 Cur_Unit : constant Unit_Number_Type := Get_Source_Unit (Cur_Use);
7165 New_Unit : constant Unit_Number_Type := Get_Source_Unit (Clause);
7166 Scop : Entity_Id;
7168 begin
7169 if Cur_Unit = New_Unit then
7171 -- Redundant clause in same body
7173 Redundant := Clause;
7174 Prev_Use := Cur_Use;
7176 elsif Cur_Unit = Current_Sem_Unit then
7178 -- If the new clause is not in the current unit it has been
7179 -- analyzed first, and it makes the other one redundant.
7180 -- However, if the new clause appears in a subunit, Cur_Unit
7181 -- is still the parent, and in that case the redundant one
7182 -- is the one appearing in the subunit.
7184 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
7185 Redundant := Clause;
7186 Prev_Use := Cur_Use;
7188 -- Most common case: redundant clause in body,
7189 -- original clause in spec. Current scope is spec entity.
7191 elsif
7192 Current_Scope =
7193 Defining_Entity (
7194 Unit (Library_Unit (Cunit (Current_Sem_Unit))))
7195 then
7196 Redundant := Cur_Use;
7197 Prev_Use := Clause;
7199 else
7200 -- The new clause may appear in an unrelated unit, when
7201 -- the parents of a generic are being installed prior to
7202 -- instantiation. In this case there must be no warning.
7203 -- We detect this case by checking whether the current top
7204 -- of the stack is related to the current compilation.
7206 Scop := Current_Scope;
7207 while Present (Scop) and then Scop /= Standard_Standard loop
7208 if Is_Compilation_Unit (Scop)
7209 and then not Is_Child_Unit (Scop)
7210 then
7211 return;
7213 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
7214 exit;
7215 end if;
7217 Scop := Scope (Scop);
7218 end loop;
7220 Redundant := Cur_Use;
7221 Prev_Use := Clause;
7222 end if;
7224 elsif New_Unit = Current_Sem_Unit then
7225 Redundant := Clause;
7226 Prev_Use := Cur_Use;
7228 else
7229 -- Neither is the current unit, so they appear in parent or
7230 -- sibling units. Warning will be emitted elsewhere.
7232 return;
7233 end if;
7234 end;
7236 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
7237 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
7238 then
7239 -- Use_clause is in child unit of current unit, and the child unit
7240 -- appears in the context of the body of the parent, so it has been
7241 -- installed first, even though it is the redundant one. Depending on
7242 -- their placement in the context, the visible or the private parts
7243 -- of the two units, either might appear as redundant, but the
7244 -- message has to be on the current unit.
7246 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
7247 Redundant := Cur_Use;
7248 Prev_Use := Clause;
7249 else
7250 Redundant := Clause;
7251 Prev_Use := Cur_Use;
7252 end if;
7254 -- If the new use clause appears in the private part of a parent unit
7255 -- it may appear to be redundant w.r.t. a use clause in a child unit,
7256 -- but the previous use clause was needed in the visible part of the
7257 -- child, and no warning should be emitted.
7259 if Nkind (Parent (Decl)) = N_Package_Specification
7260 and then
7261 List_Containing (Decl) = Private_Declarations (Parent (Decl))
7262 then
7263 declare
7264 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
7265 Spec : constant Node_Id :=
7266 Specification (Unit (Cunit (Current_Sem_Unit)));
7268 begin
7269 if Is_Compilation_Unit (Par)
7270 and then Par /= Cunit_Entity (Current_Sem_Unit)
7271 and then Parent (Cur_Use) = Spec
7272 and then
7273 List_Containing (Cur_Use) = Visible_Declarations (Spec)
7274 then
7275 return;
7276 end if;
7277 end;
7278 end if;
7280 -- Finally, if the current use clause is in the context then
7281 -- the clause is redundant when it is nested within the unit.
7283 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
7284 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
7285 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
7286 then
7287 Redundant := Clause;
7288 Prev_Use := Cur_Use;
7290 else
7291 null;
7292 end if;
7294 if Present (Redundant) then
7295 Error_Msg_Sloc := Sloc (Prev_Use);
7296 Error_Msg_NE -- CODEFIX
7297 ("& is already use-visible through previous use clause #??",
7298 Redundant, Pack_Name);
7299 end if;
7300 end Note_Redundant_Use;
7302 ---------------
7303 -- Pop_Scope --
7304 ---------------
7306 procedure Pop_Scope is
7307 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
7308 S : constant Entity_Id := SST.Entity;
7310 begin
7311 if Debug_Flag_E then
7312 Write_Info;
7313 end if;
7315 -- Set Default_Storage_Pool field of the library unit if necessary
7317 if Ekind_In (S, E_Package, E_Generic_Package)
7318 and then
7319 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
7320 then
7321 declare
7322 Aux : constant Node_Id :=
7323 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
7324 begin
7325 if No (Default_Storage_Pool (Aux)) then
7326 Set_Default_Storage_Pool (Aux, Default_Pool);
7327 end if;
7328 end;
7329 end if;
7331 Scope_Suppress := SST.Save_Scope_Suppress;
7332 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
7333 Check_Policy_List := SST.Save_Check_Policy_List;
7334 Default_Pool := SST.Save_Default_Storage_Pool;
7336 if Debug_Flag_W then
7337 Write_Str ("<-- exiting scope: ");
7338 Write_Name (Chars (Current_Scope));
7339 Write_Str (", Depth=");
7340 Write_Int (Int (Scope_Stack.Last));
7341 Write_Eol;
7342 end if;
7344 End_Use_Clauses (SST.First_Use_Clause);
7346 -- If the actions to be wrapped are still there they will get lost
7347 -- causing incomplete code to be generated. It is better to abort in
7348 -- this case (and we do the abort even with assertions off since the
7349 -- penalty is incorrect code generation).
7351 if SST.Actions_To_Be_Wrapped_Before /= No_List
7352 or else
7353 SST.Actions_To_Be_Wrapped_After /= No_List
7354 then
7355 raise Program_Error;
7356 end if;
7358 -- Free last subprogram name if allocated, and pop scope
7360 Free (SST.Last_Subprogram_Name);
7361 Scope_Stack.Decrement_Last;
7362 end Pop_Scope;
7364 ---------------
7365 -- Push_Scope --
7366 ---------------
7368 procedure Push_Scope (S : Entity_Id) is
7369 E : constant Entity_Id := Scope (S);
7371 begin
7372 if Ekind (S) = E_Void then
7373 null;
7375 -- Set scope depth if not a non-concurrent type, and we have not yet set
7376 -- the scope depth. This means that we have the first occurrence of the
7377 -- scope, and this is where the depth is set.
7379 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
7380 and then not Scope_Depth_Set (S)
7381 then
7382 if S = Standard_Standard then
7383 Set_Scope_Depth_Value (S, Uint_0);
7385 elsif Is_Child_Unit (S) then
7386 Set_Scope_Depth_Value (S, Uint_1);
7388 elsif not Is_Record_Type (Current_Scope) then
7389 if Ekind (S) = E_Loop then
7390 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
7391 else
7392 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
7393 end if;
7394 end if;
7395 end if;
7397 Scope_Stack.Increment_Last;
7399 declare
7400 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
7402 begin
7403 SST.Entity := S;
7404 SST.Save_Scope_Suppress := Scope_Suppress;
7405 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
7406 SST.Save_Check_Policy_List := Check_Policy_List;
7407 SST.Save_Default_Storage_Pool := Default_Pool;
7409 if Scope_Stack.Last > Scope_Stack.First then
7410 SST.Component_Alignment_Default := Scope_Stack.Table
7411 (Scope_Stack.Last - 1).
7412 Component_Alignment_Default;
7413 end if;
7415 SST.Last_Subprogram_Name := null;
7416 SST.Is_Transient := False;
7417 SST.Node_To_Be_Wrapped := Empty;
7418 SST.Pending_Freeze_Actions := No_List;
7419 SST.Actions_To_Be_Wrapped_Before := No_List;
7420 SST.Actions_To_Be_Wrapped_After := No_List;
7421 SST.First_Use_Clause := Empty;
7422 SST.Is_Active_Stack_Base := False;
7423 SST.Previous_Visibility := False;
7424 end;
7426 if Debug_Flag_W then
7427 Write_Str ("--> new scope: ");
7428 Write_Name (Chars (Current_Scope));
7429 Write_Str (", Id=");
7430 Write_Int (Int (Current_Scope));
7431 Write_Str (", Depth=");
7432 Write_Int (Int (Scope_Stack.Last));
7433 Write_Eol;
7434 end if;
7436 -- Deal with copying flags from the previous scope to this one. This is
7437 -- not necessary if either scope is standard, or if the new scope is a
7438 -- child unit.
7440 if S /= Standard_Standard
7441 and then Scope (S) /= Standard_Standard
7442 and then not Is_Child_Unit (S)
7443 then
7444 if Nkind (E) not in N_Entity then
7445 return;
7446 end if;
7448 -- Copy categorization flags from Scope (S) to S, this is not done
7449 -- when Scope (S) is Standard_Standard since propagation is from
7450 -- library unit entity inwards. Copy other relevant attributes as
7451 -- well (Discard_Names in particular).
7453 -- We only propagate inwards for library level entities,
7454 -- inner level subprograms do not inherit the categorization.
7456 if Is_Library_Level_Entity (S) then
7457 Set_Is_Preelaborated (S, Is_Preelaborated (E));
7458 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
7459 Set_Discard_Names (S, Discard_Names (E));
7460 Set_Suppress_Value_Tracking_On_Call
7461 (S, Suppress_Value_Tracking_On_Call (E));
7462 Set_Categorization_From_Scope (E => S, Scop => E);
7463 end if;
7464 end if;
7466 if Is_Child_Unit (S)
7467 and then Present (E)
7468 and then Ekind_In (E, E_Package, E_Generic_Package)
7469 and then
7470 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
7471 then
7472 declare
7473 Aux : constant Node_Id :=
7474 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
7475 begin
7476 if Present (Default_Storage_Pool (Aux)) then
7477 Default_Pool := Default_Storage_Pool (Aux);
7478 end if;
7479 end;
7480 end if;
7481 end Push_Scope;
7483 ---------------------
7484 -- Premature_Usage --
7485 ---------------------
7487 procedure Premature_Usage (N : Node_Id) is
7488 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
7489 E : Entity_Id := Entity (N);
7491 begin
7492 -- Within an instance, the analysis of the actual for a formal object
7493 -- does not see the name of the object itself. This is significant only
7494 -- if the object is an aggregate, where its analysis does not do any
7495 -- name resolution on component associations. (see 4717-008). In such a
7496 -- case, look for the visible homonym on the chain.
7498 if In_Instance and then Present (Homonym (E)) then
7499 E := Homonym (E);
7500 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
7501 E := Homonym (E);
7502 end loop;
7504 if Present (E) then
7505 Set_Entity (N, E);
7506 Set_Etype (N, Etype (E));
7507 return;
7508 end if;
7509 end if;
7511 if Kind = N_Component_Declaration then
7512 Error_Msg_N
7513 ("component&! cannot be used before end of record declaration", N);
7515 elsif Kind = N_Parameter_Specification then
7516 Error_Msg_N
7517 ("formal parameter&! cannot be used before end of specification",
7520 elsif Kind = N_Discriminant_Specification then
7521 Error_Msg_N
7522 ("discriminant&! cannot be used before end of discriminant part",
7525 elsif Kind = N_Procedure_Specification
7526 or else Kind = N_Function_Specification
7527 then
7528 Error_Msg_N
7529 ("subprogram&! cannot be used before end of its declaration",
7532 elsif Kind = N_Full_Type_Declaration then
7533 Error_Msg_N
7534 ("type& cannot be used before end of its declaration!", N);
7536 else
7537 Error_Msg_N
7538 ("object& cannot be used before end of its declaration!", N);
7539 end if;
7540 end Premature_Usage;
7542 ------------------------
7543 -- Present_System_Aux --
7544 ------------------------
7546 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
7547 Loc : Source_Ptr;
7548 Aux_Name : Unit_Name_Type;
7549 Unum : Unit_Number_Type;
7550 Withn : Node_Id;
7551 With_Sys : Node_Id;
7552 The_Unit : Node_Id;
7554 function Find_System (C_Unit : Node_Id) return Entity_Id;
7555 -- Scan context clause of compilation unit to find with_clause
7556 -- for System.
7558 -----------------
7559 -- Find_System --
7560 -----------------
7562 function Find_System (C_Unit : Node_Id) return Entity_Id is
7563 With_Clause : Node_Id;
7565 begin
7566 With_Clause := First (Context_Items (C_Unit));
7567 while Present (With_Clause) loop
7568 if (Nkind (With_Clause) = N_With_Clause
7569 and then Chars (Name (With_Clause)) = Name_System)
7570 and then Comes_From_Source (With_Clause)
7571 then
7572 return With_Clause;
7573 end if;
7575 Next (With_Clause);
7576 end loop;
7578 return Empty;
7579 end Find_System;
7581 -- Start of processing for Present_System_Aux
7583 begin
7584 -- The child unit may have been loaded and analyzed already
7586 if Present (System_Aux_Id) then
7587 return True;
7589 -- If no previous pragma for System.Aux, nothing to load
7591 elsif No (System_Extend_Unit) then
7592 return False;
7594 -- Use the unit name given in the pragma to retrieve the unit.
7595 -- Verify that System itself appears in the context clause of the
7596 -- current compilation. If System is not present, an error will
7597 -- have been reported already.
7599 else
7600 With_Sys := Find_System (Cunit (Current_Sem_Unit));
7602 The_Unit := Unit (Cunit (Current_Sem_Unit));
7604 if No (With_Sys)
7605 and then
7606 (Nkind (The_Unit) = N_Package_Body
7607 or else (Nkind (The_Unit) = N_Subprogram_Body
7608 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
7609 then
7610 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
7611 end if;
7613 if No (With_Sys) and then Present (N) then
7615 -- If we are compiling a subunit, we need to examine its
7616 -- context as well (Current_Sem_Unit is the parent unit);
7618 The_Unit := Parent (N);
7619 while Nkind (The_Unit) /= N_Compilation_Unit loop
7620 The_Unit := Parent (The_Unit);
7621 end loop;
7623 if Nkind (Unit (The_Unit)) = N_Subunit then
7624 With_Sys := Find_System (The_Unit);
7625 end if;
7626 end if;
7628 if No (With_Sys) then
7629 return False;
7630 end if;
7632 Loc := Sloc (With_Sys);
7633 Get_Name_String (Chars (Expression (System_Extend_Unit)));
7634 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
7635 Name_Buffer (1 .. 7) := "system.";
7636 Name_Buffer (Name_Len + 8) := '%';
7637 Name_Buffer (Name_Len + 9) := 's';
7638 Name_Len := Name_Len + 9;
7639 Aux_Name := Name_Find;
7641 Unum :=
7642 Load_Unit
7643 (Load_Name => Aux_Name,
7644 Required => False,
7645 Subunit => False,
7646 Error_Node => With_Sys);
7648 if Unum /= No_Unit then
7649 Semantics (Cunit (Unum));
7650 System_Aux_Id :=
7651 Defining_Entity (Specification (Unit (Cunit (Unum))));
7653 Withn :=
7654 Make_With_Clause (Loc,
7655 Name =>
7656 Make_Expanded_Name (Loc,
7657 Chars => Chars (System_Aux_Id),
7658 Prefix => New_Reference_To (Scope (System_Aux_Id), Loc),
7659 Selector_Name => New_Reference_To (System_Aux_Id, Loc)));
7661 Set_Entity (Name (Withn), System_Aux_Id);
7663 Set_Library_Unit (Withn, Cunit (Unum));
7664 Set_Corresponding_Spec (Withn, System_Aux_Id);
7665 Set_First_Name (Withn, True);
7666 Set_Implicit_With (Withn, True);
7668 Insert_After (With_Sys, Withn);
7669 Mark_Rewrite_Insertion (Withn);
7670 Set_Context_Installed (Withn);
7672 return True;
7674 -- Here if unit load failed
7676 else
7677 Error_Msg_Name_1 := Name_System;
7678 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
7679 Error_Msg_N
7680 ("extension package `%.%` does not exist",
7681 Opt.System_Extend_Unit);
7682 return False;
7683 end if;
7684 end if;
7685 end Present_System_Aux;
7687 -------------------------
7688 -- Restore_Scope_Stack --
7689 -------------------------
7691 procedure Restore_Scope_Stack
7692 (List : Elist_Id;
7693 Handle_Use : Boolean := True)
7695 SS_Last : constant Int := Scope_Stack.Last;
7696 Elmt : Elmt_Id;
7698 begin
7699 -- Restore visibility of previous scope stack, if any, using the list
7700 -- we saved (we use Remove, since this list will not be used again).
7702 loop
7703 Elmt := Last_Elmt (List);
7704 exit when Elmt = No_Elmt;
7705 Set_Is_Immediately_Visible (Node (Elmt));
7706 Remove_Last_Elmt (List);
7707 end loop;
7709 -- Restore use clauses
7711 if SS_Last >= Scope_Stack.First
7712 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
7713 and then Handle_Use
7714 then
7715 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
7716 end if;
7717 end Restore_Scope_Stack;
7719 ----------------------
7720 -- Save_Scope_Stack --
7721 ----------------------
7723 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
7724 -- consuming any memory. That is, Save_Scope_Stack took care of removing
7725 -- from immediate visibility entities and Restore_Scope_Stack took care
7726 -- of restoring their visibility analyzing the context of each entity. The
7727 -- problem of such approach is that it was fragile and caused unexpected
7728 -- visibility problems, and indeed one test was found where there was a
7729 -- real problem.
7731 -- Furthermore, the following experiment was carried out:
7733 -- - Save_Scope_Stack was modified to store in an Elist1 all those
7734 -- entities whose attribute Is_Immediately_Visible is modified
7735 -- from True to False.
7737 -- - Restore_Scope_Stack was modified to store in another Elist2
7738 -- all the entities whose attribute Is_Immediately_Visible is
7739 -- modified from False to True.
7741 -- - Extra code was added to verify that all the elements of Elist1
7742 -- are found in Elist2
7744 -- This test shows that there may be more occurrences of this problem which
7745 -- have not yet been detected. As a result, we replaced that approach by
7746 -- the current one in which Save_Scope_Stack returns the list of entities
7747 -- whose visibility is changed, and that list is passed to Restore_Scope_
7748 -- Stack to undo that change. This approach is simpler and safer, although
7749 -- it consumes more memory.
7751 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
7752 Result : constant Elist_Id := New_Elmt_List;
7753 E : Entity_Id;
7754 S : Entity_Id;
7755 SS_Last : constant Int := Scope_Stack.Last;
7757 procedure Remove_From_Visibility (E : Entity_Id);
7758 -- If E is immediately visible then append it to the result and remove
7759 -- it temporarily from visibility.
7761 ----------------------------
7762 -- Remove_From_Visibility --
7763 ----------------------------
7765 procedure Remove_From_Visibility (E : Entity_Id) is
7766 begin
7767 if Is_Immediately_Visible (E) then
7768 Append_Elmt (E, Result);
7769 Set_Is_Immediately_Visible (E, False);
7770 end if;
7771 end Remove_From_Visibility;
7773 -- Start of processing for Save_Scope_Stack
7775 begin
7776 if SS_Last >= Scope_Stack.First
7777 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
7778 then
7779 if Handle_Use then
7780 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
7781 end if;
7783 -- If the call is from within a compilation unit, as when called from
7784 -- Rtsfind, make current entries in scope stack invisible while we
7785 -- analyze the new unit.
7787 for J in reverse 0 .. SS_Last loop
7788 exit when Scope_Stack.Table (J).Entity = Standard_Standard
7789 or else No (Scope_Stack.Table (J).Entity);
7791 S := Scope_Stack.Table (J).Entity;
7793 Remove_From_Visibility (S);
7795 E := First_Entity (S);
7796 while Present (E) loop
7797 Remove_From_Visibility (E);
7798 Next_Entity (E);
7799 end loop;
7800 end loop;
7802 end if;
7804 return Result;
7805 end Save_Scope_Stack;
7807 -------------
7808 -- Set_Use --
7809 -------------
7811 procedure Set_Use (L : List_Id) is
7812 Decl : Node_Id;
7813 Pack_Name : Node_Id;
7814 Pack : Entity_Id;
7815 Id : Entity_Id;
7817 begin
7818 if Present (L) then
7819 Decl := First (L);
7820 while Present (Decl) loop
7821 if Nkind (Decl) = N_Use_Package_Clause then
7822 Chain_Use_Clause (Decl);
7824 Pack_Name := First (Names (Decl));
7825 while Present (Pack_Name) loop
7826 Pack := Entity (Pack_Name);
7828 if Ekind (Pack) = E_Package
7829 and then Applicable_Use (Pack_Name)
7830 then
7831 Use_One_Package (Pack, Decl);
7832 end if;
7834 Next (Pack_Name);
7835 end loop;
7837 elsif Nkind (Decl) = N_Use_Type_Clause then
7838 Chain_Use_Clause (Decl);
7840 Id := First (Subtype_Marks (Decl));
7841 while Present (Id) loop
7842 if Entity (Id) /= Any_Type then
7843 Use_One_Type (Id);
7844 end if;
7846 Next (Id);
7847 end loop;
7848 end if;
7850 Next (Decl);
7851 end loop;
7852 end if;
7853 end Set_Use;
7855 ---------------------
7856 -- Use_One_Package --
7857 ---------------------
7859 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
7860 Id : Entity_Id;
7861 Prev : Entity_Id;
7862 Current_Instance : Entity_Id := Empty;
7863 Real_P : Entity_Id;
7864 Private_With_OK : Boolean := False;
7866 begin
7867 if Ekind (P) /= E_Package then
7868 return;
7869 end if;
7871 Set_In_Use (P);
7872 Set_Current_Use_Clause (P, N);
7874 -- Ada 2005 (AI-50217): Check restriction
7876 if From_With_Type (P) then
7877 Error_Msg_N ("limited withed package cannot appear in use clause", N);
7878 end if;
7880 -- Find enclosing instance, if any
7882 if In_Instance then
7883 Current_Instance := Current_Scope;
7884 while not Is_Generic_Instance (Current_Instance) loop
7885 Current_Instance := Scope (Current_Instance);
7886 end loop;
7888 if No (Hidden_By_Use_Clause (N)) then
7889 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
7890 end if;
7891 end if;
7893 -- If unit is a package renaming, indicate that the renamed
7894 -- package is also in use (the flags on both entities must
7895 -- remain consistent, and a subsequent use of either of them
7896 -- should be recognized as redundant).
7898 if Present (Renamed_Object (P)) then
7899 Set_In_Use (Renamed_Object (P));
7900 Set_Current_Use_Clause (Renamed_Object (P), N);
7901 Real_P := Renamed_Object (P);
7902 else
7903 Real_P := P;
7904 end if;
7906 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
7907 -- found in the private part of a package specification
7909 if In_Private_Part (Current_Scope)
7910 and then Has_Private_With (P)
7911 and then Is_Child_Unit (Current_Scope)
7912 and then Is_Child_Unit (P)
7913 and then Is_Ancestor_Package (Scope (Current_Scope), P)
7914 then
7915 Private_With_OK := True;
7916 end if;
7918 -- Loop through entities in one package making them potentially
7919 -- use-visible.
7921 Id := First_Entity (P);
7922 while Present (Id)
7923 and then (Id /= First_Private_Entity (P)
7924 or else Private_With_OK) -- Ada 2005 (AI-262)
7925 loop
7926 Prev := Current_Entity (Id);
7927 while Present (Prev) loop
7928 if Is_Immediately_Visible (Prev)
7929 and then (not Is_Overloadable (Prev)
7930 or else not Is_Overloadable (Id)
7931 or else (Type_Conformant (Id, Prev)))
7932 then
7933 if No (Current_Instance) then
7935 -- Potentially use-visible entity remains hidden
7937 goto Next_Usable_Entity;
7939 -- A use clause within an instance hides outer global entities,
7940 -- which are not used to resolve local entities in the
7941 -- instance. Note that the predefined entities in Standard
7942 -- could not have been hidden in the generic by a use clause,
7943 -- and therefore remain visible. Other compilation units whose
7944 -- entities appear in Standard must be hidden in an instance.
7946 -- To determine whether an entity is external to the instance
7947 -- we compare the scope depth of its scope with that of the
7948 -- current instance. However, a generic actual of a subprogram
7949 -- instance is declared in the wrapper package but will not be
7950 -- hidden by a use-visible entity. similarly, an entity that is
7951 -- declared in an enclosing instance will not be hidden by an
7952 -- an entity declared in a generic actual, which can only have
7953 -- been use-visible in the generic and will not have hidden the
7954 -- entity in the generic parent.
7956 -- If Id is called Standard, the predefined package with the
7957 -- same name is in the homonym chain. It has to be ignored
7958 -- because it has no defined scope (being the only entity in
7959 -- the system with this mandated behavior).
7961 elsif not Is_Hidden (Id)
7962 and then Present (Scope (Prev))
7963 and then not Is_Wrapper_Package (Scope (Prev))
7964 and then Scope_Depth (Scope (Prev)) <
7965 Scope_Depth (Current_Instance)
7966 and then (Scope (Prev) /= Standard_Standard
7967 or else Sloc (Prev) > Standard_Location)
7968 then
7969 if In_Open_Scopes (Scope (Prev))
7970 and then Is_Generic_Instance (Scope (Prev))
7971 and then Present (Associated_Formal_Package (P))
7972 then
7973 null;
7975 else
7976 Set_Is_Potentially_Use_Visible (Id);
7977 Set_Is_Immediately_Visible (Prev, False);
7978 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
7979 end if;
7980 end if;
7982 -- A user-defined operator is not use-visible if the predefined
7983 -- operator for the type is immediately visible, which is the case
7984 -- if the type of the operand is in an open scope. This does not
7985 -- apply to user-defined operators that have operands of different
7986 -- types, because the predefined mixed mode operations (multiply
7987 -- and divide) apply to universal types and do not hide anything.
7989 elsif Ekind (Prev) = E_Operator
7990 and then Operator_Matches_Spec (Prev, Id)
7991 and then In_Open_Scopes
7992 (Scope (Base_Type (Etype (First_Formal (Id)))))
7993 and then (No (Next_Formal (First_Formal (Id)))
7994 or else Etype (First_Formal (Id)) =
7995 Etype (Next_Formal (First_Formal (Id)))
7996 or else Chars (Prev) = Name_Op_Expon)
7997 then
7998 goto Next_Usable_Entity;
8000 -- In an instance, two homonyms may become use_visible through the
8001 -- actuals of distinct formal packages. In the generic, only the
8002 -- current one would have been visible, so make the other one
8003 -- not use_visible.
8005 elsif Present (Current_Instance)
8006 and then Is_Potentially_Use_Visible (Prev)
8007 and then not Is_Overloadable (Prev)
8008 and then Scope (Id) /= Scope (Prev)
8009 and then Used_As_Generic_Actual (Scope (Prev))
8010 and then Used_As_Generic_Actual (Scope (Id))
8011 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
8012 Current_Use_Clause (Scope (Id)))
8013 then
8014 Set_Is_Potentially_Use_Visible (Prev, False);
8015 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8016 end if;
8018 Prev := Homonym (Prev);
8019 end loop;
8021 -- On exit, we know entity is not hidden, unless it is private
8023 if not Is_Hidden (Id)
8024 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
8025 then
8026 Set_Is_Potentially_Use_Visible (Id);
8028 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
8029 Set_Is_Potentially_Use_Visible (Full_View (Id));
8030 end if;
8031 end if;
8033 <<Next_Usable_Entity>>
8034 Next_Entity (Id);
8035 end loop;
8037 -- Child units are also made use-visible by a use clause, but they may
8038 -- appear after all visible declarations in the parent entity list.
8040 while Present (Id) loop
8041 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
8042 Set_Is_Potentially_Use_Visible (Id);
8043 end if;
8045 Next_Entity (Id);
8046 end loop;
8048 if Chars (Real_P) = Name_System
8049 and then Scope (Real_P) = Standard_Standard
8050 and then Present_System_Aux (N)
8051 then
8052 Use_One_Package (System_Aux_Id, N);
8053 end if;
8055 end Use_One_Package;
8057 ------------------
8058 -- Use_One_Type --
8059 ------------------
8061 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
8062 Elmt : Elmt_Id;
8063 Is_Known_Used : Boolean;
8064 Op_List : Elist_Id;
8065 T : Entity_Id;
8067 function Spec_Reloaded_For_Body return Boolean;
8068 -- Determine whether the compilation unit is a package body and the use
8069 -- type clause is in the spec of the same package. Even though the spec
8070 -- was analyzed first, its context is reloaded when analysing the body.
8072 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
8073 -- AI05-150: if the use_type_clause carries the "all" qualifier,
8074 -- class-wide operations of ancestor types are use-visible if the
8075 -- ancestor type is visible.
8077 ----------------------------
8078 -- Spec_Reloaded_For_Body --
8079 ----------------------------
8081 function Spec_Reloaded_For_Body return Boolean is
8082 begin
8083 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
8084 declare
8085 Spec : constant Node_Id :=
8086 Parent (List_Containing (Parent (Id)));
8088 begin
8089 -- Check whether type is declared in a package specification,
8090 -- and current unit is the corresponding package body. The
8091 -- use clauses themselves may be within a nested package.
8093 return
8094 Nkind (Spec) = N_Package_Specification
8095 and then
8096 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
8097 Cunit_Entity (Current_Sem_Unit));
8098 end;
8099 end if;
8101 return False;
8102 end Spec_Reloaded_For_Body;
8104 -------------------------------
8105 -- Use_Class_Wide_Operations --
8106 -------------------------------
8108 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
8109 Scop : Entity_Id;
8110 Ent : Entity_Id;
8112 function Is_Class_Wide_Operation_Of
8113 (Op : Entity_Id;
8114 T : Entity_Id) return Boolean;
8115 -- Determine whether a subprogram has a class-wide parameter or
8116 -- result that is T'Class.
8118 ---------------------------------
8119 -- Is_Class_Wide_Operation_Of --
8120 ---------------------------------
8122 function Is_Class_Wide_Operation_Of
8123 (Op : Entity_Id;
8124 T : Entity_Id) return Boolean
8126 Formal : Entity_Id;
8128 begin
8129 Formal := First_Formal (Op);
8130 while Present (Formal) loop
8131 if Etype (Formal) = Class_Wide_Type (T) then
8132 return True;
8133 end if;
8134 Next_Formal (Formal);
8135 end loop;
8137 if Etype (Op) = Class_Wide_Type (T) then
8138 return True;
8139 end if;
8141 return False;
8142 end Is_Class_Wide_Operation_Of;
8144 -- Start of processing for Use_Class_Wide_Operations
8146 begin
8147 Scop := Scope (Typ);
8148 if not Is_Hidden (Scop) then
8149 Ent := First_Entity (Scop);
8150 while Present (Ent) loop
8151 if Is_Overloadable (Ent)
8152 and then Is_Class_Wide_Operation_Of (Ent, Typ)
8153 and then not Is_Potentially_Use_Visible (Ent)
8154 then
8155 Set_Is_Potentially_Use_Visible (Ent);
8156 Append_Elmt (Ent, Used_Operations (Parent (Id)));
8157 end if;
8159 Next_Entity (Ent);
8160 end loop;
8161 end if;
8163 if Is_Derived_Type (Typ) then
8164 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
8165 end if;
8166 end Use_Class_Wide_Operations;
8168 -- Start of processing for Use_One_Type
8170 begin
8171 -- It is the type determined by the subtype mark (8.4(8)) whose
8172 -- operations become potentially use-visible.
8174 T := Base_Type (Entity (Id));
8176 -- Either the type itself is used, the package where it is declared
8177 -- is in use or the entity is declared in the current package, thus
8178 -- use-visible.
8180 Is_Known_Used :=
8181 In_Use (T)
8182 or else In_Use (Scope (T))
8183 or else Scope (T) = Current_Scope;
8185 Set_Redundant_Use (Id,
8186 Is_Known_Used or else Is_Potentially_Use_Visible (T));
8188 if Ekind (T) = E_Incomplete_Type then
8189 Error_Msg_N ("premature usage of incomplete type", Id);
8191 elsif In_Open_Scopes (Scope (T)) then
8192 null;
8194 -- A limited view cannot appear in a use_type clause. However, an access
8195 -- type whose designated type is limited has the flag but is not itself
8196 -- a limited view unless we only have a limited view of its enclosing
8197 -- package.
8199 elsif From_With_Type (T) and then From_With_Type (Scope (T)) then
8200 Error_Msg_N
8201 ("incomplete type from limited view "
8202 & "cannot appear in use clause", Id);
8204 -- If the subtype mark designates a subtype in a different package,
8205 -- we have to check that the parent type is visible, otherwise the
8206 -- use type clause is a noop. Not clear how to do that???
8208 elsif not Redundant_Use (Id) then
8209 Set_In_Use (T);
8211 -- If T is tagged, primitive operators on class-wide operands
8212 -- are also available.
8214 if Is_Tagged_Type (T) then
8215 Set_In_Use (Class_Wide_Type (T));
8216 end if;
8218 Set_Current_Use_Clause (T, Parent (Id));
8220 -- Iterate over primitive operations of the type. If an operation is
8221 -- already use_visible, it is the result of a previous use_clause,
8222 -- and already appears on the corresponding entity chain. If the
8223 -- clause is being reinstalled, operations are already use-visible.
8225 if Installed then
8226 null;
8228 else
8229 Op_List := Collect_Primitive_Operations (T);
8230 Elmt := First_Elmt (Op_List);
8231 while Present (Elmt) loop
8232 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
8233 or else Chars (Node (Elmt)) in Any_Operator_Name)
8234 and then not Is_Hidden (Node (Elmt))
8235 and then not Is_Potentially_Use_Visible (Node (Elmt))
8236 then
8237 Set_Is_Potentially_Use_Visible (Node (Elmt));
8238 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8240 elsif Ada_Version >= Ada_2012
8241 and then All_Present (Parent (Id))
8242 and then not Is_Hidden (Node (Elmt))
8243 and then not Is_Potentially_Use_Visible (Node (Elmt))
8244 then
8245 Set_Is_Potentially_Use_Visible (Node (Elmt));
8246 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8247 end if;
8249 Next_Elmt (Elmt);
8250 end loop;
8251 end if;
8253 if Ada_Version >= Ada_2012
8254 and then All_Present (Parent (Id))
8255 and then Is_Tagged_Type (T)
8256 then
8257 Use_Class_Wide_Operations (T);
8258 end if;
8259 end if;
8261 -- If warning on redundant constructs, check for unnecessary WITH
8263 if Warn_On_Redundant_Constructs
8264 and then Is_Known_Used
8266 -- with P; with P; use P;
8267 -- package P is package X is package body X is
8268 -- type T ... use P.T;
8270 -- The compilation unit is the body of X. GNAT first compiles the
8271 -- spec of X, then proceeds to the body. At that point P is marked
8272 -- as use visible. The analysis then reinstalls the spec along with
8273 -- its context. The use clause P.T is now recognized as redundant,
8274 -- but in the wrong context. Do not emit a warning in such cases.
8275 -- Do not emit a warning either if we are in an instance, there is
8276 -- no redundancy between an outer use_clause and one that appears
8277 -- within the generic.
8279 and then not Spec_Reloaded_For_Body
8280 and then not In_Instance
8281 then
8282 -- The type already has a use clause
8284 if In_Use (T) then
8286 -- Case where we know the current use clause for the type
8288 if Present (Current_Use_Clause (T)) then
8289 Use_Clause_Known : declare
8290 Clause1 : constant Node_Id := Parent (Id);
8291 Clause2 : constant Node_Id := Current_Use_Clause (T);
8292 Ent1 : Entity_Id;
8293 Ent2 : Entity_Id;
8294 Err_No : Node_Id;
8295 Unit1 : Node_Id;
8296 Unit2 : Node_Id;
8298 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
8299 -- Return the appropriate entity for determining which unit
8300 -- has a deeper scope: the defining entity for U, unless U
8301 -- is a package instance, in which case we retrieve the
8302 -- entity of the instance spec.
8304 --------------------
8305 -- Entity_Of_Unit --
8306 --------------------
8308 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
8309 begin
8310 if Nkind (U) = N_Package_Instantiation
8311 and then Analyzed (U)
8312 then
8313 return Defining_Entity (Instance_Spec (U));
8314 else
8315 return Defining_Entity (U);
8316 end if;
8317 end Entity_Of_Unit;
8319 -- Start of processing for Use_Clause_Known
8321 begin
8322 -- If both current use type clause and the use type clause
8323 -- for the type are at the compilation unit level, one of
8324 -- the units must be an ancestor of the other, and the
8325 -- warning belongs on the descendant.
8327 if Nkind (Parent (Clause1)) = N_Compilation_Unit
8328 and then
8329 Nkind (Parent (Clause2)) = N_Compilation_Unit
8330 then
8331 -- If the unit is a subprogram body that acts as spec,
8332 -- the context clause is shared with the constructed
8333 -- subprogram spec. Clearly there is no redundancy.
8335 if Clause1 = Clause2 then
8336 return;
8337 end if;
8339 Unit1 := Unit (Parent (Clause1));
8340 Unit2 := Unit (Parent (Clause2));
8342 -- If both clauses are on same unit, or one is the body
8343 -- of the other, or one of them is in a subunit, report
8344 -- redundancy on the later one.
8346 if Unit1 = Unit2 then
8347 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8348 Error_Msg_NE -- CODEFIX
8349 ("& is already use-visible through previous "
8350 & "use_type_clause #??", Clause1, T);
8351 return;
8353 elsif Nkind (Unit1) = N_Subunit then
8354 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8355 Error_Msg_NE -- CODEFIX
8356 ("& is already use-visible through previous "
8357 & "use_type_clause #??", Clause1, T);
8358 return;
8360 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
8361 and then Nkind (Unit1) /= Nkind (Unit2)
8362 and then Nkind (Unit1) /= N_Subunit
8363 then
8364 Error_Msg_Sloc := Sloc (Clause1);
8365 Error_Msg_NE -- CODEFIX
8366 ("& is already use-visible through previous "
8367 & "use_type_clause #??", Current_Use_Clause (T), T);
8368 return;
8369 end if;
8371 -- There is a redundant use type clause in a child unit.
8372 -- Determine which of the units is more deeply nested.
8373 -- If a unit is a package instance, retrieve the entity
8374 -- and its scope from the instance spec.
8376 Ent1 := Entity_Of_Unit (Unit1);
8377 Ent2 := Entity_Of_Unit (Unit2);
8379 if Scope (Ent2) = Standard_Standard then
8380 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8381 Err_No := Clause1;
8383 elsif Scope (Ent1) = Standard_Standard then
8384 Error_Msg_Sloc := Sloc (Id);
8385 Err_No := Clause2;
8387 -- If both units are child units, we determine which one
8388 -- is the descendant by the scope distance to the
8389 -- ultimate parent unit.
8391 else
8392 declare
8393 S1, S2 : Entity_Id;
8395 begin
8396 S1 := Scope (Ent1);
8397 S2 := Scope (Ent2);
8398 while Present (S1)
8399 and then Present (S2)
8400 and then S1 /= Standard_Standard
8401 and then S2 /= Standard_Standard
8402 loop
8403 S1 := Scope (S1);
8404 S2 := Scope (S2);
8405 end loop;
8407 if S1 = Standard_Standard then
8408 Error_Msg_Sloc := Sloc (Id);
8409 Err_No := Clause2;
8410 else
8411 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8412 Err_No := Clause1;
8413 end if;
8414 end;
8415 end if;
8417 Error_Msg_NE -- CODEFIX
8418 ("& is already use-visible through previous "
8419 & "use_type_clause #??", Err_No, Id);
8421 -- Case where current use type clause and the use type
8422 -- clause for the type are not both at the compilation unit
8423 -- level. In this case we don't have location information.
8425 else
8426 Error_Msg_NE -- CODEFIX
8427 ("& is already use-visible through previous "
8428 & "use type clause??", Id, T);
8429 end if;
8430 end Use_Clause_Known;
8432 -- Here if Current_Use_Clause is not set for T, another case
8433 -- where we do not have the location information available.
8435 else
8436 Error_Msg_NE -- CODEFIX
8437 ("& is already use-visible through previous "
8438 & "use type clause??", Id, T);
8439 end if;
8441 -- The package where T is declared is already used
8443 elsif In_Use (Scope (T)) then
8444 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
8445 Error_Msg_NE -- CODEFIX
8446 ("& is already use-visible through package use clause #??",
8447 Id, T);
8449 -- The current scope is the package where T is declared
8451 else
8452 Error_Msg_Node_2 := Scope (T);
8453 Error_Msg_NE -- CODEFIX
8454 ("& is already use-visible inside package &??", Id, T);
8455 end if;
8456 end if;
8457 end Use_One_Type;
8459 ----------------
8460 -- Write_Info --
8461 ----------------
8463 procedure Write_Info is
8464 Id : Entity_Id := First_Entity (Current_Scope);
8466 begin
8467 -- No point in dumping standard entities
8469 if Current_Scope = Standard_Standard then
8470 return;
8471 end if;
8473 Write_Str ("========================================================");
8474 Write_Eol;
8475 Write_Str (" Defined Entities in ");
8476 Write_Name (Chars (Current_Scope));
8477 Write_Eol;
8478 Write_Str ("========================================================");
8479 Write_Eol;
8481 if No (Id) then
8482 Write_Str ("-- none --");
8483 Write_Eol;
8485 else
8486 while Present (Id) loop
8487 Write_Entity_Info (Id, " ");
8488 Next_Entity (Id);
8489 end loop;
8490 end if;
8492 if Scope (Current_Scope) = Standard_Standard then
8494 -- Print information on the current unit itself
8496 Write_Entity_Info (Current_Scope, " ");
8497 end if;
8499 Write_Eol;
8500 end Write_Info;
8502 --------
8503 -- ws --
8504 --------
8506 procedure ws is
8507 S : Entity_Id;
8508 begin
8509 for J in reverse 1 .. Scope_Stack.Last loop
8510 S := Scope_Stack.Table (J).Entity;
8511 Write_Int (Int (S));
8512 Write_Str (" === ");
8513 Write_Name (Chars (S));
8514 Write_Eol;
8515 end loop;
8516 end ws;
8518 --------
8519 -- we --
8520 --------
8522 procedure we (S : Entity_Id) is
8523 E : Entity_Id;
8524 begin
8525 E := First_Entity (S);
8526 while Present (E) loop
8527 Write_Int (Int (E));
8528 Write_Str (" === ");
8529 Write_Name (Chars (E));
8530 Write_Eol;
8531 Next_Entity (E);
8532 end loop;
8533 end we;
8534 end Sem_Ch8;