* include/bits/stl_list.h (_M_resize_pos(size_type&)): Declare.
[official-gcc.git] / gcc / gcse.c
blob92c60140607971d1083a78f2e71b5f87ec65bc59
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141 #include "hard-reg-set.h"
142 #include "rtl.h"
143 #include "hash-set.h"
144 #include "machmode.h"
145 #include "vec.h"
146 #include "double-int.h"
147 #include "input.h"
148 #include "alias.h"
149 #include "symtab.h"
150 #include "wide-int.h"
151 #include "inchash.h"
152 #include "tree.h"
153 #include "tm_p.h"
154 #include "regs.h"
155 #include "ira.h"
156 #include "flags.h"
157 #include "insn-config.h"
158 #include "recog.h"
159 #include "predict.h"
160 #include "function.h"
161 #include "dominance.h"
162 #include "cfg.h"
163 #include "cfgrtl.h"
164 #include "cfganal.h"
165 #include "lcm.h"
166 #include "cfgcleanup.h"
167 #include "basic-block.h"
168 #include "hashtab.h"
169 #include "statistics.h"
170 #include "real.h"
171 #include "fixed-value.h"
172 #include "expmed.h"
173 #include "dojump.h"
174 #include "explow.h"
175 #include "calls.h"
176 #include "emit-rtl.h"
177 #include "varasm.h"
178 #include "stmt.h"
179 #include "expr.h"
180 #include "except.h"
181 #include "ggc.h"
182 #include "params.h"
183 #include "cselib.h"
184 #include "intl.h"
185 #include "obstack.h"
186 #include "tree-pass.h"
187 #include "hash-table.h"
188 #include "df.h"
189 #include "dbgcnt.h"
190 #include "target.h"
191 #include "gcse.h"
192 #include "gcse-common.h"
194 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
195 are a superset of those done by classic GCSE.
197 Two passes of copy/constant propagation are done around PRE or hoisting
198 because the first one enables more GCSE and the second one helps to clean
199 up the copies that PRE and HOIST create. This is needed more for PRE than
200 for HOIST because code hoisting will try to use an existing register
201 containing the common subexpression rather than create a new one. This is
202 harder to do for PRE because of the code motion (which HOIST doesn't do).
204 Expressions we are interested in GCSE-ing are of the form
205 (set (pseudo-reg) (expression)).
206 Function want_to_gcse_p says what these are.
208 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
209 This allows PRE to hoist expressions that are expressed in multiple insns,
210 such as complex address calculations (e.g. for PIC code, or loads with a
211 high part and a low part).
213 PRE handles moving invariant expressions out of loops (by treating them as
214 partially redundant).
216 **********************
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
222 the expense.
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
229 It was found doing copy propagation between each pass enables further
230 substitutions.
232 This study was done before expressions in REG_EQUAL notes were added as
233 candidate expressions for optimization, and before the GIMPLE optimizers
234 were added. Probably, multiple passes is even less efficient now than
235 at the time when the study was conducted.
237 PRE is quite expensive in complicated functions because the DFA can take
238 a while to converge. Hence we only perform one pass.
240 **********************
242 The steps for PRE are:
244 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
246 2) Perform the data flow analysis for PRE.
248 3) Delete the redundant instructions
250 4) Insert the required copies [if any] that make the partially
251 redundant instructions fully redundant.
253 5) For other reaching expressions, insert an instruction to copy the value
254 to a newly created pseudo that will reach the redundant instruction.
256 The deletion is done first so that when we do insertions we
257 know which pseudo reg to use.
259 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
260 argue it is not. The number of iterations for the algorithm to converge
261 is typically 2-4 so I don't view it as that expensive (relatively speaking).
263 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
264 we create. To make an expression reach the place where it's redundant,
265 the result of the expression is copied to a new register, and the redundant
266 expression is deleted by replacing it with this new register. Classic GCSE
267 doesn't have this problem as much as it computes the reaching defs of
268 each register in each block and thus can try to use an existing
269 register. */
271 /* GCSE global vars. */
273 struct target_gcse default_target_gcse;
274 #if SWITCHABLE_TARGET
275 struct target_gcse *this_target_gcse = &default_target_gcse;
276 #endif
278 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
279 int flag_rerun_cse_after_global_opts;
281 /* An obstack for our working variables. */
282 static struct obstack gcse_obstack;
284 /* Hash table of expressions. */
286 struct gcse_expr
288 /* The expression. */
289 rtx expr;
290 /* Index in the available expression bitmaps. */
291 int bitmap_index;
292 /* Next entry with the same hash. */
293 struct gcse_expr *next_same_hash;
294 /* List of anticipatable occurrences in basic blocks in the function.
295 An "anticipatable occurrence" is one that is the first occurrence in the
296 basic block, the operands are not modified in the basic block prior
297 to the occurrence and the output is not used between the start of
298 the block and the occurrence. */
299 struct gcse_occr *antic_occr;
300 /* List of available occurrence in basic blocks in the function.
301 An "available occurrence" is one that is the last occurrence in the
302 basic block and the operands are not modified by following statements in
303 the basic block [including this insn]. */
304 struct gcse_occr *avail_occr;
305 /* Non-null if the computation is PRE redundant.
306 The value is the newly created pseudo-reg to record a copy of the
307 expression in all the places that reach the redundant copy. */
308 rtx reaching_reg;
309 /* Maximum distance in instructions this expression can travel.
310 We avoid moving simple expressions for more than a few instructions
311 to keep register pressure under control.
312 A value of "0" removes restrictions on how far the expression can
313 travel. */
314 int max_distance;
317 /* Occurrence of an expression.
318 There is one per basic block. If a pattern appears more than once the
319 last appearance is used [or first for anticipatable expressions]. */
321 struct gcse_occr
323 /* Next occurrence of this expression. */
324 struct gcse_occr *next;
325 /* The insn that computes the expression. */
326 rtx_insn *insn;
327 /* Nonzero if this [anticipatable] occurrence has been deleted. */
328 char deleted_p;
329 /* Nonzero if this [available] occurrence has been copied to
330 reaching_reg. */
331 /* ??? This is mutually exclusive with deleted_p, so they could share
332 the same byte. */
333 char copied_p;
336 typedef struct gcse_occr *occr_t;
338 /* Expression hash tables.
339 Each hash table is an array of buckets.
340 ??? It is known that if it were an array of entries, structure elements
341 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
342 not clear whether in the final analysis a sufficient amount of memory would
343 be saved as the size of the available expression bitmaps would be larger
344 [one could build a mapping table without holes afterwards though].
345 Someday I'll perform the computation and figure it out. */
347 struct gcse_hash_table_d
349 /* The table itself.
350 This is an array of `expr_hash_table_size' elements. */
351 struct gcse_expr **table;
353 /* Size of the hash table, in elements. */
354 unsigned int size;
356 /* Number of hash table elements. */
357 unsigned int n_elems;
360 /* Expression hash table. */
361 static struct gcse_hash_table_d expr_hash_table;
363 /* This is a list of expressions which are MEMs and will be used by load
364 or store motion.
365 Load motion tracks MEMs which aren't killed by anything except itself,
366 i.e. loads and stores to a single location.
367 We can then allow movement of these MEM refs with a little special
368 allowance. (all stores copy the same value to the reaching reg used
369 for the loads). This means all values used to store into memory must have
370 no side effects so we can re-issue the setter value. */
372 struct ls_expr
374 struct gcse_expr * expr; /* Gcse expression reference for LM. */
375 rtx pattern; /* Pattern of this mem. */
376 rtx pattern_regs; /* List of registers mentioned by the mem. */
377 rtx_insn_list *loads; /* INSN list of loads seen. */
378 rtx_insn_list *stores; /* INSN list of stores seen. */
379 struct ls_expr * next; /* Next in the list. */
380 int invalid; /* Invalid for some reason. */
381 int index; /* If it maps to a bitmap index. */
382 unsigned int hash_index; /* Index when in a hash table. */
383 rtx reaching_reg; /* Register to use when re-writing. */
386 /* Head of the list of load/store memory refs. */
387 static struct ls_expr * pre_ldst_mems = NULL;
389 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
391 typedef ls_expr *value_type;
392 typedef value_type compare_type;
393 static inline hashval_t hash (const ls_expr *);
394 static inline bool equal (const ls_expr *, const ls_expr *);
397 /* Hashtable helpers. */
398 inline hashval_t
399 pre_ldst_expr_hasher::hash (const ls_expr *x)
401 int do_not_record_p = 0;
402 return
403 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
406 static int expr_equiv_p (const_rtx, const_rtx);
408 inline bool
409 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
410 const ls_expr *ptr2)
412 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
415 /* Hashtable for the load/store memory refs. */
416 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
418 /* Bitmap containing one bit for each register in the program.
419 Used when performing GCSE to track which registers have been set since
420 the start of the basic block. */
421 static regset reg_set_bitmap;
423 /* Array, indexed by basic block number for a list of insns which modify
424 memory within that block. */
425 static vec<rtx_insn *> *modify_mem_list;
426 static bitmap modify_mem_list_set;
428 /* This array parallels modify_mem_list, except that it stores MEMs
429 being set and their canonicalized memory addresses. */
430 static vec<modify_pair> *canon_modify_mem_list;
432 /* Bitmap indexed by block numbers to record which blocks contain
433 function calls. */
434 static bitmap blocks_with_calls;
436 /* Various variables for statistics gathering. */
438 /* Memory used in a pass.
439 This isn't intended to be absolutely precise. Its intent is only
440 to keep an eye on memory usage. */
441 static int bytes_used;
443 /* GCSE substitutions made. */
444 static int gcse_subst_count;
445 /* Number of copy instructions created. */
446 static int gcse_create_count;
448 /* Doing code hoisting. */
449 static bool doing_code_hoisting_p = false;
451 /* For available exprs */
452 static sbitmap *ae_kill;
454 /* Data stored for each basic block. */
455 struct bb_data
457 /* Maximal register pressure inside basic block for given register class
458 (defined only for the pressure classes). */
459 int max_reg_pressure[N_REG_CLASSES];
460 /* Recorded register pressure of basic block before trying to hoist
461 an expression. Will be used to restore the register pressure
462 if the expression should not be hoisted. */
463 int old_pressure;
464 /* Recorded register live_in info of basic block during code hoisting
465 process. BACKUP is used to record live_in info before trying to
466 hoist an expression, and will be used to restore LIVE_IN if the
467 expression should not be hoisted. */
468 bitmap live_in, backup;
471 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
473 static basic_block curr_bb;
475 /* Current register pressure for each pressure class. */
476 static int curr_reg_pressure[N_REG_CLASSES];
479 static void compute_can_copy (void);
480 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
481 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
482 static void *gcse_alloc (unsigned long);
483 static void alloc_gcse_mem (void);
484 static void free_gcse_mem (void);
485 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
486 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
487 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
488 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
489 static int want_to_gcse_p (rtx, int *);
490 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
491 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
492 static int oprs_available_p (const_rtx, const rtx_insn *);
493 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
494 int, struct gcse_hash_table_d *);
495 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
496 static void record_last_reg_set_info (rtx_insn *, int);
497 static void record_last_mem_set_info (rtx_insn *);
498 static void record_last_set_info (rtx, const_rtx, void *);
499 static void compute_hash_table (struct gcse_hash_table_d *);
500 static void alloc_hash_table (struct gcse_hash_table_d *);
501 static void free_hash_table (struct gcse_hash_table_d *);
502 static void compute_hash_table_work (struct gcse_hash_table_d *);
503 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
504 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
505 struct gcse_hash_table_d *);
506 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
507 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
508 static void alloc_pre_mem (int, int);
509 static void free_pre_mem (void);
510 static struct edge_list *compute_pre_data (void);
511 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
512 basic_block);
513 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
514 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
515 static void pre_insert_copies (void);
516 static int pre_delete (void);
517 static int pre_gcse (struct edge_list *);
518 static int one_pre_gcse_pass (void);
519 static void add_label_notes (rtx, rtx_insn *);
520 static void alloc_code_hoist_mem (int, int);
521 static void free_code_hoist_mem (void);
522 static void compute_code_hoist_vbeinout (void);
523 static void compute_code_hoist_data (void);
524 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
525 sbitmap, int, int *, enum reg_class,
526 int *, bitmap, rtx_insn *);
527 static int hoist_code (void);
528 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
529 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
530 static int one_code_hoisting_pass (void);
531 static rtx_insn *process_insert_insn (struct gcse_expr *);
532 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
533 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
534 basic_block, char *);
535 static struct ls_expr * ldst_entry (rtx);
536 static void free_ldst_entry (struct ls_expr *);
537 static void free_ld_motion_mems (void);
538 static void print_ldst_list (FILE *);
539 static struct ls_expr * find_rtx_in_ldst (rtx);
540 static int simple_mem (const_rtx);
541 static void invalidate_any_buried_refs (rtx);
542 static void compute_ld_motion_mems (void);
543 static void trim_ld_motion_mems (void);
544 static void update_ld_motion_stores (struct gcse_expr *);
545 static void clear_modify_mem_tables (void);
546 static void free_modify_mem_tables (void);
547 static rtx gcse_emit_move_after (rtx, rtx, rtx_insn *);
548 static bool is_too_expensive (const char *);
550 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
551 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
553 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
554 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
556 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
557 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
559 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
560 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
562 /* Misc. utilities. */
564 #define can_copy \
565 (this_target_gcse->x_can_copy)
566 #define can_copy_init_p \
567 (this_target_gcse->x_can_copy_init_p)
569 /* Compute which modes support reg/reg copy operations. */
571 static void
572 compute_can_copy (void)
574 int i;
575 #ifndef AVOID_CCMODE_COPIES
576 rtx reg;
577 rtx_insn *insn;
578 #endif
579 memset (can_copy, 0, NUM_MACHINE_MODES);
581 start_sequence ();
582 for (i = 0; i < NUM_MACHINE_MODES; i++)
583 if (GET_MODE_CLASS (i) == MODE_CC)
585 #ifdef AVOID_CCMODE_COPIES
586 can_copy[i] = 0;
587 #else
588 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
589 insn = emit_insn (gen_rtx_SET (reg, reg));
590 if (recog (PATTERN (insn), insn, NULL) >= 0)
591 can_copy[i] = 1;
592 #endif
594 else
595 can_copy[i] = 1;
597 end_sequence ();
600 /* Returns whether the mode supports reg/reg copy operations. */
602 bool
603 can_copy_p (machine_mode mode)
605 if (! can_copy_init_p)
607 compute_can_copy ();
608 can_copy_init_p = true;
611 return can_copy[mode] != 0;
614 /* Cover function to xmalloc to record bytes allocated. */
616 static void *
617 gmalloc (size_t size)
619 bytes_used += size;
620 return xmalloc (size);
623 /* Cover function to xcalloc to record bytes allocated. */
625 static void *
626 gcalloc (size_t nelem, size_t elsize)
628 bytes_used += nelem * elsize;
629 return xcalloc (nelem, elsize);
632 /* Cover function to obstack_alloc. */
634 static void *
635 gcse_alloc (unsigned long size)
637 bytes_used += size;
638 return obstack_alloc (&gcse_obstack, size);
641 /* Allocate memory for the reg/memory set tracking tables.
642 This is called at the start of each pass. */
644 static void
645 alloc_gcse_mem (void)
647 /* Allocate vars to track sets of regs. */
648 reg_set_bitmap = ALLOC_REG_SET (NULL);
650 /* Allocate array to keep a list of insns which modify memory in each
651 basic block. The two typedefs are needed to work around the
652 pre-processor limitation with template types in macro arguments. */
653 typedef vec<rtx_insn *> vec_rtx_heap;
654 typedef vec<modify_pair> vec_modify_pair_heap;
655 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
656 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
657 last_basic_block_for_fn (cfun));
658 modify_mem_list_set = BITMAP_ALLOC (NULL);
659 blocks_with_calls = BITMAP_ALLOC (NULL);
662 /* Free memory allocated by alloc_gcse_mem. */
664 static void
665 free_gcse_mem (void)
667 FREE_REG_SET (reg_set_bitmap);
669 free_modify_mem_tables ();
670 BITMAP_FREE (modify_mem_list_set);
671 BITMAP_FREE (blocks_with_calls);
674 /* Compute the local properties of each recorded expression.
676 Local properties are those that are defined by the block, irrespective of
677 other blocks.
679 An expression is transparent in a block if its operands are not modified
680 in the block.
682 An expression is computed (locally available) in a block if it is computed
683 at least once and expression would contain the same value if the
684 computation was moved to the end of the block.
686 An expression is locally anticipatable in a block if it is computed at
687 least once and expression would contain the same value if the computation
688 was moved to the beginning of the block.
690 We call this routine for pre and code hoisting. They all compute
691 basically the same information and thus can easily share this code.
693 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
694 properties. If NULL, then it is not necessary to compute or record that
695 particular property.
697 TABLE controls which hash table to look at. */
699 static void
700 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
701 struct gcse_hash_table_d *table)
703 unsigned int i;
705 /* Initialize any bitmaps that were passed in. */
706 if (transp)
708 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
711 if (comp)
712 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
713 if (antloc)
714 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
716 for (i = 0; i < table->size; i++)
718 struct gcse_expr *expr;
720 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
722 int indx = expr->bitmap_index;
723 struct gcse_occr *occr;
725 /* The expression is transparent in this block if it is not killed.
726 We start by assuming all are transparent [none are killed], and
727 then reset the bits for those that are. */
728 if (transp)
729 compute_transp (expr->expr, indx, transp,
730 blocks_with_calls,
731 modify_mem_list_set,
732 canon_modify_mem_list);
734 /* The occurrences recorded in antic_occr are exactly those that
735 we want to set to nonzero in ANTLOC. */
736 if (antloc)
737 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
739 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
741 /* While we're scanning the table, this is a good place to
742 initialize this. */
743 occr->deleted_p = 0;
746 /* The occurrences recorded in avail_occr are exactly those that
747 we want to set to nonzero in COMP. */
748 if (comp)
749 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
751 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
753 /* While we're scanning the table, this is a good place to
754 initialize this. */
755 occr->copied_p = 0;
758 /* While we're scanning the table, this is a good place to
759 initialize this. */
760 expr->reaching_reg = 0;
765 /* Hash table support. */
767 struct reg_avail_info
769 basic_block last_bb;
770 int first_set;
771 int last_set;
774 static struct reg_avail_info *reg_avail_info;
775 static basic_block current_bb;
777 /* See whether X, the source of a set, is something we want to consider for
778 GCSE. */
780 static int
781 want_to_gcse_p (rtx x, int *max_distance_ptr)
783 #ifdef STACK_REGS
784 /* On register stack architectures, don't GCSE constants from the
785 constant pool, as the benefits are often swamped by the overhead
786 of shuffling the register stack between basic blocks. */
787 if (IS_STACK_MODE (GET_MODE (x)))
788 x = avoid_constant_pool_reference (x);
789 #endif
791 /* GCSE'ing constants:
793 We do not specifically distinguish between constant and non-constant
794 expressions in PRE and Hoist. We use set_src_cost below to limit
795 the maximum distance simple expressions can travel.
797 Nevertheless, constants are much easier to GCSE, and, hence,
798 it is easy to overdo the optimizations. Usually, excessive PRE and
799 Hoisting of constant leads to increased register pressure.
801 RA can deal with this by rematerialing some of the constants.
802 Therefore, it is important that the back-end generates sets of constants
803 in a way that allows reload rematerialize them under high register
804 pressure, i.e., a pseudo register with REG_EQUAL to constant
805 is set only once. Failing to do so will result in IRA/reload
806 spilling such constants under high register pressure instead of
807 rematerializing them. */
809 switch (GET_CODE (x))
811 case REG:
812 case SUBREG:
813 case CALL:
814 return 0;
816 CASE_CONST_ANY:
817 if (!doing_code_hoisting_p)
818 /* Do not PRE constants. */
819 return 0;
821 /* FALLTHRU */
823 default:
824 if (doing_code_hoisting_p)
825 /* PRE doesn't implement max_distance restriction. */
827 int cost;
828 int max_distance;
830 gcc_assert (!optimize_function_for_speed_p (cfun)
831 && optimize_function_for_size_p (cfun));
832 cost = set_src_cost (x, 0);
834 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
836 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
837 if (max_distance == 0)
838 return 0;
840 gcc_assert (max_distance > 0);
842 else
843 max_distance = 0;
845 if (max_distance_ptr)
846 *max_distance_ptr = max_distance;
849 return can_assign_to_reg_without_clobbers_p (x);
853 /* Used internally by can_assign_to_reg_without_clobbers_p. */
855 static GTY(()) rtx_insn *test_insn;
857 /* Return true if we can assign X to a pseudo register such that the
858 resulting insn does not result in clobbering a hard register as a
859 side-effect.
861 Additionally, if the target requires it, check that the resulting insn
862 can be copied. If it cannot, this means that X is special and probably
863 has hidden side-effects we don't want to mess with.
865 This function is typically used by code motion passes, to verify
866 that it is safe to insert an insn without worrying about clobbering
867 maybe live hard regs. */
869 bool
870 can_assign_to_reg_without_clobbers_p (rtx x)
872 int num_clobbers = 0;
873 int icode;
874 bool can_assign = false;
876 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
877 if (general_operand (x, GET_MODE (x)))
878 return 1;
879 else if (GET_MODE (x) == VOIDmode)
880 return 0;
882 /* Otherwise, check if we can make a valid insn from it. First initialize
883 our test insn if we haven't already. */
884 if (test_insn == 0)
886 test_insn
887 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
888 FIRST_PSEUDO_REGISTER * 2),
889 const0_rtx));
890 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
891 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
894 /* Now make an insn like the one we would make when GCSE'ing and see if
895 valid. */
896 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
897 SET_SRC (PATTERN (test_insn)) = x;
899 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
901 /* If the test insn is valid and doesn't need clobbers, and the target also
902 has no objections, we're good. */
903 if (icode >= 0
904 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
905 && ! (targetm.cannot_copy_insn_p
906 && targetm.cannot_copy_insn_p (test_insn)))
907 can_assign = true;
909 /* Make sure test_insn doesn't have any pointers into GC space. */
910 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
912 return can_assign;
915 /* Return nonzero if the operands of expression X are unchanged from the
916 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
917 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
919 static int
920 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
922 int i, j;
923 enum rtx_code code;
924 const char *fmt;
926 if (x == 0)
927 return 1;
929 code = GET_CODE (x);
930 switch (code)
932 case REG:
934 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
936 if (info->last_bb != current_bb)
937 return 1;
938 if (avail_p)
939 return info->last_set < DF_INSN_LUID (insn);
940 else
941 return info->first_set >= DF_INSN_LUID (insn);
944 case MEM:
945 if (! flag_gcse_lm
946 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
947 x, avail_p))
948 return 0;
949 else
950 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
952 case PRE_DEC:
953 case PRE_INC:
954 case POST_DEC:
955 case POST_INC:
956 case PRE_MODIFY:
957 case POST_MODIFY:
958 return 0;
960 case PC:
961 case CC0: /*FIXME*/
962 case CONST:
963 CASE_CONST_ANY:
964 case SYMBOL_REF:
965 case LABEL_REF:
966 case ADDR_VEC:
967 case ADDR_DIFF_VEC:
968 return 1;
970 default:
971 break;
974 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
976 if (fmt[i] == 'e')
978 /* If we are about to do the last recursive call needed at this
979 level, change it into iteration. This function is called enough
980 to be worth it. */
981 if (i == 0)
982 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
984 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
985 return 0;
987 else if (fmt[i] == 'E')
988 for (j = 0; j < XVECLEN (x, i); j++)
989 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
990 return 0;
993 return 1;
996 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
998 struct mem_conflict_info
1000 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
1001 see if a memory store conflicts with this memory load. */
1002 const_rtx mem;
1004 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
1005 references. */
1006 bool conflict;
1009 /* DEST is the output of an instruction. If it is a memory reference and
1010 possibly conflicts with the load found in DATA, then communicate this
1011 information back through DATA. */
1013 static void
1014 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1015 void *data)
1017 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
1019 while (GET_CODE (dest) == SUBREG
1020 || GET_CODE (dest) == ZERO_EXTRACT
1021 || GET_CODE (dest) == STRICT_LOW_PART)
1022 dest = XEXP (dest, 0);
1024 /* If DEST is not a MEM, then it will not conflict with the load. Note
1025 that function calls are assumed to clobber memory, but are handled
1026 elsewhere. */
1027 if (! MEM_P (dest))
1028 return;
1030 /* If we are setting a MEM in our list of specially recognized MEMs,
1031 don't mark as killed this time. */
1032 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1034 if (!find_rtx_in_ldst (dest))
1035 mci->conflict = true;
1036 return;
1039 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1040 mci->conflict = true;
1043 /* Return nonzero if the expression in X (a memory reference) is killed
1044 in block BB before or after the insn with the LUID in UID_LIMIT.
1045 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1046 before UID_LIMIT.
1048 To check the entire block, set UID_LIMIT to max_uid + 1 and
1049 AVAIL_P to 0. */
1051 static int
1052 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1053 int avail_p)
1055 vec<rtx_insn *> list = modify_mem_list[bb->index];
1056 rtx_insn *setter;
1057 unsigned ix;
1059 /* If this is a readonly then we aren't going to be changing it. */
1060 if (MEM_READONLY_P (x))
1061 return 0;
1063 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1065 struct mem_conflict_info mci;
1067 /* Ignore entries in the list that do not apply. */
1068 if ((avail_p
1069 && DF_INSN_LUID (setter) < uid_limit)
1070 || (! avail_p
1071 && DF_INSN_LUID (setter) > uid_limit))
1072 continue;
1074 /* If SETTER is a call everything is clobbered. Note that calls
1075 to pure functions are never put on the list, so we need not
1076 worry about them. */
1077 if (CALL_P (setter))
1078 return 1;
1080 /* SETTER must be an INSN of some kind that sets memory. Call
1081 note_stores to examine each hunk of memory that is modified. */
1082 mci.mem = x;
1083 mci.conflict = false;
1084 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1085 if (mci.conflict)
1086 return 1;
1088 return 0;
1091 /* Return nonzero if the operands of expression X are unchanged from
1092 the start of INSN's basic block up to but not including INSN. */
1094 static int
1095 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1097 return oprs_unchanged_p (x, insn, 0);
1100 /* Return nonzero if the operands of expression X are unchanged from
1101 INSN to the end of INSN's basic block. */
1103 static int
1104 oprs_available_p (const_rtx x, const rtx_insn *insn)
1106 return oprs_unchanged_p (x, insn, 1);
1109 /* Hash expression X.
1111 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1112 indicating if a volatile operand is found or if the expression contains
1113 something we don't want to insert in the table. HASH_TABLE_SIZE is
1114 the current size of the hash table to be probed. */
1116 static unsigned int
1117 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1118 int hash_table_size)
1120 unsigned int hash;
1122 *do_not_record_p = 0;
1124 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1125 return hash % hash_table_size;
1128 /* Return nonzero if exp1 is equivalent to exp2. */
1130 static int
1131 expr_equiv_p (const_rtx x, const_rtx y)
1133 return exp_equiv_p (x, y, 0, true);
1136 /* Insert expression X in INSN in the hash TABLE.
1137 If it is already present, record it as the last occurrence in INSN's
1138 basic block.
1140 MODE is the mode of the value X is being stored into.
1141 It is only used if X is a CONST_INT.
1143 ANTIC_P is nonzero if X is an anticipatable expression.
1144 AVAIL_P is nonzero if X is an available expression.
1146 MAX_DISTANCE is the maximum distance in instructions this expression can
1147 be moved. */
1149 static void
1150 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1151 int antic_p,
1152 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1154 int found, do_not_record_p;
1155 unsigned int hash;
1156 struct gcse_expr *cur_expr, *last_expr = NULL;
1157 struct gcse_occr *antic_occr, *avail_occr;
1159 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1161 /* Do not insert expression in table if it contains volatile operands,
1162 or if hash_expr determines the expression is something we don't want
1163 to or can't handle. */
1164 if (do_not_record_p)
1165 return;
1167 cur_expr = table->table[hash];
1168 found = 0;
1170 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1172 /* If the expression isn't found, save a pointer to the end of
1173 the list. */
1174 last_expr = cur_expr;
1175 cur_expr = cur_expr->next_same_hash;
1178 if (! found)
1180 cur_expr = GOBNEW (struct gcse_expr);
1181 bytes_used += sizeof (struct gcse_expr);
1182 if (table->table[hash] == NULL)
1183 /* This is the first pattern that hashed to this index. */
1184 table->table[hash] = cur_expr;
1185 else
1186 /* Add EXPR to end of this hash chain. */
1187 last_expr->next_same_hash = cur_expr;
1189 /* Set the fields of the expr element. */
1190 cur_expr->expr = x;
1191 cur_expr->bitmap_index = table->n_elems++;
1192 cur_expr->next_same_hash = NULL;
1193 cur_expr->antic_occr = NULL;
1194 cur_expr->avail_occr = NULL;
1195 gcc_assert (max_distance >= 0);
1196 cur_expr->max_distance = max_distance;
1198 else
1199 gcc_assert (cur_expr->max_distance == max_distance);
1201 /* Now record the occurrence(s). */
1202 if (antic_p)
1204 antic_occr = cur_expr->antic_occr;
1206 if (antic_occr
1207 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1208 antic_occr = NULL;
1210 if (antic_occr)
1211 /* Found another instance of the expression in the same basic block.
1212 Prefer the currently recorded one. We want the first one in the
1213 block and the block is scanned from start to end. */
1214 ; /* nothing to do */
1215 else
1217 /* First occurrence of this expression in this basic block. */
1218 antic_occr = GOBNEW (struct gcse_occr);
1219 bytes_used += sizeof (struct gcse_occr);
1220 antic_occr->insn = insn;
1221 antic_occr->next = cur_expr->antic_occr;
1222 antic_occr->deleted_p = 0;
1223 cur_expr->antic_occr = antic_occr;
1227 if (avail_p)
1229 avail_occr = cur_expr->avail_occr;
1231 if (avail_occr
1232 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1234 /* Found another instance of the expression in the same basic block.
1235 Prefer this occurrence to the currently recorded one. We want
1236 the last one in the block and the block is scanned from start
1237 to end. */
1238 avail_occr->insn = insn;
1240 else
1242 /* First occurrence of this expression in this basic block. */
1243 avail_occr = GOBNEW (struct gcse_occr);
1244 bytes_used += sizeof (struct gcse_occr);
1245 avail_occr->insn = insn;
1246 avail_occr->next = cur_expr->avail_occr;
1247 avail_occr->deleted_p = 0;
1248 cur_expr->avail_occr = avail_occr;
1253 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1255 static void
1256 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1258 rtx src = SET_SRC (set);
1259 rtx dest = SET_DEST (set);
1260 rtx note;
1262 if (GET_CODE (src) == CALL)
1263 hash_scan_call (src, insn, table);
1265 else if (REG_P (dest))
1267 unsigned int regno = REGNO (dest);
1268 int max_distance = 0;
1270 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1272 This allows us to do a single GCSE pass and still eliminate
1273 redundant constants, addresses or other expressions that are
1274 constructed with multiple instructions.
1276 However, keep the original SRC if INSN is a simple reg-reg move.
1277 In this case, there will almost always be a REG_EQUAL note on the
1278 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1279 for INSN, we miss copy propagation opportunities and we perform the
1280 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1281 do more than one PRE GCSE pass.
1283 Note that this does not impede profitable constant propagations. We
1284 "look through" reg-reg sets in lookup_avail_set. */
1285 note = find_reg_equal_equiv_note (insn);
1286 if (note != 0
1287 && REG_NOTE_KIND (note) == REG_EQUAL
1288 && !REG_P (src)
1289 && want_to_gcse_p (XEXP (note, 0), NULL))
1290 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1292 /* Only record sets of pseudo-regs in the hash table. */
1293 if (regno >= FIRST_PSEUDO_REGISTER
1294 /* Don't GCSE something if we can't do a reg/reg copy. */
1295 && can_copy_p (GET_MODE (dest))
1296 /* GCSE commonly inserts instruction after the insn. We can't
1297 do that easily for EH edges so disable GCSE on these for now. */
1298 /* ??? We can now easily create new EH landing pads at the
1299 gimple level, for splitting edges; there's no reason we
1300 can't do the same thing at the rtl level. */
1301 && !can_throw_internal (insn)
1302 /* Is SET_SRC something we want to gcse? */
1303 && want_to_gcse_p (src, &max_distance)
1304 /* Don't CSE a nop. */
1305 && ! set_noop_p (set)
1306 /* Don't GCSE if it has attached REG_EQUIV note.
1307 At this point this only function parameters should have
1308 REG_EQUIV notes and if the argument slot is used somewhere
1309 explicitly, it means address of parameter has been taken,
1310 so we should not extend the lifetime of the pseudo. */
1311 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1313 /* An expression is not anticipatable if its operands are
1314 modified before this insn or if this is not the only SET in
1315 this insn. The latter condition does not have to mean that
1316 SRC itself is not anticipatable, but we just will not be
1317 able to handle code motion of insns with multiple sets. */
1318 int antic_p = oprs_anticipatable_p (src, insn)
1319 && !multiple_sets (insn);
1320 /* An expression is not available if its operands are
1321 subsequently modified, including this insn. It's also not
1322 available if this is a branch, because we can't insert
1323 a set after the branch. */
1324 int avail_p = (oprs_available_p (src, insn)
1325 && ! JUMP_P (insn));
1327 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1328 max_distance, table);
1331 /* In case of store we want to consider the memory value as available in
1332 the REG stored in that memory. This makes it possible to remove
1333 redundant loads from due to stores to the same location. */
1334 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1336 unsigned int regno = REGNO (src);
1337 int max_distance = 0;
1339 /* Only record sets of pseudo-regs in the hash table. */
1340 if (regno >= FIRST_PSEUDO_REGISTER
1341 /* Don't GCSE something if we can't do a reg/reg copy. */
1342 && can_copy_p (GET_MODE (src))
1343 /* GCSE commonly inserts instruction after the insn. We can't
1344 do that easily for EH edges so disable GCSE on these for now. */
1345 && !can_throw_internal (insn)
1346 /* Is SET_DEST something we want to gcse? */
1347 && want_to_gcse_p (dest, &max_distance)
1348 /* Don't CSE a nop. */
1349 && ! set_noop_p (set)
1350 /* Don't GCSE if it has attached REG_EQUIV note.
1351 At this point this only function parameters should have
1352 REG_EQUIV notes and if the argument slot is used somewhere
1353 explicitly, it means address of parameter has been taken,
1354 so we should not extend the lifetime of the pseudo. */
1355 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1356 || ! MEM_P (XEXP (note, 0))))
1358 /* Stores are never anticipatable. */
1359 int antic_p = 0;
1360 /* An expression is not available if its operands are
1361 subsequently modified, including this insn. It's also not
1362 available if this is a branch, because we can't insert
1363 a set after the branch. */
1364 int avail_p = oprs_available_p (dest, insn)
1365 && ! JUMP_P (insn);
1367 /* Record the memory expression (DEST) in the hash table. */
1368 insert_expr_in_table (dest, GET_MODE (dest), insn,
1369 antic_p, avail_p, max_distance, table);
1374 static void
1375 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1376 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1378 /* Currently nothing to do. */
1381 static void
1382 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1383 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1385 /* Currently nothing to do. */
1388 /* Process INSN and add hash table entries as appropriate. */
1390 static void
1391 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1393 rtx pat = PATTERN (insn);
1394 int i;
1396 /* Pick out the sets of INSN and for other forms of instructions record
1397 what's been modified. */
1399 if (GET_CODE (pat) == SET)
1400 hash_scan_set (pat, insn, table);
1402 else if (GET_CODE (pat) == CLOBBER)
1403 hash_scan_clobber (pat, insn, table);
1405 else if (GET_CODE (pat) == CALL)
1406 hash_scan_call (pat, insn, table);
1408 else if (GET_CODE (pat) == PARALLEL)
1409 for (i = 0; i < XVECLEN (pat, 0); i++)
1411 rtx x = XVECEXP (pat, 0, i);
1413 if (GET_CODE (x) == SET)
1414 hash_scan_set (x, insn, table);
1415 else if (GET_CODE (x) == CLOBBER)
1416 hash_scan_clobber (x, insn, table);
1417 else if (GET_CODE (x) == CALL)
1418 hash_scan_call (x, insn, table);
1422 /* Dump the hash table TABLE to file FILE under the name NAME. */
1424 static void
1425 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1427 int i;
1428 /* Flattened out table, so it's printed in proper order. */
1429 struct gcse_expr **flat_table;
1430 unsigned int *hash_val;
1431 struct gcse_expr *expr;
1433 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1434 hash_val = XNEWVEC (unsigned int, table->n_elems);
1436 for (i = 0; i < (int) table->size; i++)
1437 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1439 flat_table[expr->bitmap_index] = expr;
1440 hash_val[expr->bitmap_index] = i;
1443 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1444 name, table->size, table->n_elems);
1446 for (i = 0; i < (int) table->n_elems; i++)
1447 if (flat_table[i] != 0)
1449 expr = flat_table[i];
1450 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1451 expr->bitmap_index, hash_val[i], expr->max_distance);
1452 print_rtl (file, expr->expr);
1453 fprintf (file, "\n");
1456 fprintf (file, "\n");
1458 free (flat_table);
1459 free (hash_val);
1462 /* Record register first/last/block set information for REGNO in INSN.
1464 first_set records the first place in the block where the register
1465 is set and is used to compute "anticipatability".
1467 last_set records the last place in the block where the register
1468 is set and is used to compute "availability".
1470 last_bb records the block for which first_set and last_set are
1471 valid, as a quick test to invalidate them. */
1473 static void
1474 record_last_reg_set_info (rtx_insn *insn, int regno)
1476 struct reg_avail_info *info = &reg_avail_info[regno];
1477 int luid = DF_INSN_LUID (insn);
1479 info->last_set = luid;
1480 if (info->last_bb != current_bb)
1482 info->last_bb = current_bb;
1483 info->first_set = luid;
1487 /* Record memory modification information for INSN. We do not actually care
1488 about the memory location(s) that are set, or even how they are set (consider
1489 a CALL_INSN). We merely need to record which insns modify memory. */
1491 static void
1492 record_last_mem_set_info (rtx_insn *insn)
1494 if (! flag_gcse_lm)
1495 return;
1497 record_last_mem_set_info_common (insn, modify_mem_list,
1498 canon_modify_mem_list,
1499 modify_mem_list_set,
1500 blocks_with_calls);
1503 /* Called from compute_hash_table via note_stores to handle one
1504 SET or CLOBBER in an insn. DATA is really the instruction in which
1505 the SET is taking place. */
1507 static void
1508 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1510 rtx_insn *last_set_insn = (rtx_insn *) data;
1512 if (GET_CODE (dest) == SUBREG)
1513 dest = SUBREG_REG (dest);
1515 if (REG_P (dest))
1516 record_last_reg_set_info (last_set_insn, REGNO (dest));
1517 else if (MEM_P (dest)
1518 /* Ignore pushes, they clobber nothing. */
1519 && ! push_operand (dest, GET_MODE (dest)))
1520 record_last_mem_set_info (last_set_insn);
1523 /* Top level function to create an expression hash table.
1525 Expression entries are placed in the hash table if
1526 - they are of the form (set (pseudo-reg) src),
1527 - src is something we want to perform GCSE on,
1528 - none of the operands are subsequently modified in the block
1530 Currently src must be a pseudo-reg or a const_int.
1532 TABLE is the table computed. */
1534 static void
1535 compute_hash_table_work (struct gcse_hash_table_d *table)
1537 int i;
1539 /* re-Cache any INSN_LIST nodes we have allocated. */
1540 clear_modify_mem_tables ();
1541 /* Some working arrays used to track first and last set in each block. */
1542 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1544 for (i = 0; i < max_reg_num (); ++i)
1545 reg_avail_info[i].last_bb = NULL;
1547 FOR_EACH_BB_FN (current_bb, cfun)
1549 rtx_insn *insn;
1550 unsigned int regno;
1552 /* First pass over the instructions records information used to
1553 determine when registers and memory are first and last set. */
1554 FOR_BB_INSNS (current_bb, insn)
1556 if (!NONDEBUG_INSN_P (insn))
1557 continue;
1559 if (CALL_P (insn))
1561 hard_reg_set_iterator hrsi;
1562 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1563 0, regno, hrsi)
1564 record_last_reg_set_info (insn, regno);
1566 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1567 record_last_mem_set_info (insn);
1570 note_stores (PATTERN (insn), record_last_set_info, insn);
1573 /* The next pass builds the hash table. */
1574 FOR_BB_INSNS (current_bb, insn)
1575 if (NONDEBUG_INSN_P (insn))
1576 hash_scan_insn (insn, table);
1579 free (reg_avail_info);
1580 reg_avail_info = NULL;
1583 /* Allocate space for the set/expr hash TABLE.
1584 It is used to determine the number of buckets to use. */
1586 static void
1587 alloc_hash_table (struct gcse_hash_table_d *table)
1589 int n;
1591 n = get_max_insn_count ();
1593 table->size = n / 4;
1594 if (table->size < 11)
1595 table->size = 11;
1597 /* Attempt to maintain efficient use of hash table.
1598 Making it an odd number is simplest for now.
1599 ??? Later take some measurements. */
1600 table->size |= 1;
1601 n = table->size * sizeof (struct gcse_expr *);
1602 table->table = GNEWVAR (struct gcse_expr *, n);
1605 /* Free things allocated by alloc_hash_table. */
1607 static void
1608 free_hash_table (struct gcse_hash_table_d *table)
1610 free (table->table);
1613 /* Compute the expression hash table TABLE. */
1615 static void
1616 compute_hash_table (struct gcse_hash_table_d *table)
1618 /* Initialize count of number of entries in hash table. */
1619 table->n_elems = 0;
1620 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1622 compute_hash_table_work (table);
1625 /* Expression tracking support. */
1627 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1628 static void
1629 clear_modify_mem_tables (void)
1631 unsigned i;
1632 bitmap_iterator bi;
1634 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1636 modify_mem_list[i].release ();
1637 canon_modify_mem_list[i].release ();
1639 bitmap_clear (modify_mem_list_set);
1640 bitmap_clear (blocks_with_calls);
1643 /* Release memory used by modify_mem_list_set. */
1645 static void
1646 free_modify_mem_tables (void)
1648 clear_modify_mem_tables ();
1649 free (modify_mem_list);
1650 free (canon_modify_mem_list);
1651 modify_mem_list = 0;
1652 canon_modify_mem_list = 0;
1655 /* Compute PRE+LCM working variables. */
1657 /* Local properties of expressions. */
1659 /* Nonzero for expressions that are transparent in the block. */
1660 static sbitmap *transp;
1662 /* Nonzero for expressions that are computed (available) in the block. */
1663 static sbitmap *comp;
1665 /* Nonzero for expressions that are locally anticipatable in the block. */
1666 static sbitmap *antloc;
1668 /* Nonzero for expressions where this block is an optimal computation
1669 point. */
1670 static sbitmap *pre_optimal;
1672 /* Nonzero for expressions which are redundant in a particular block. */
1673 static sbitmap *pre_redundant;
1675 /* Nonzero for expressions which should be inserted on a specific edge. */
1676 static sbitmap *pre_insert_map;
1678 /* Nonzero for expressions which should be deleted in a specific block. */
1679 static sbitmap *pre_delete_map;
1681 /* Allocate vars used for PRE analysis. */
1683 static void
1684 alloc_pre_mem (int n_blocks, int n_exprs)
1686 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1687 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1688 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1690 pre_optimal = NULL;
1691 pre_redundant = NULL;
1692 pre_insert_map = NULL;
1693 pre_delete_map = NULL;
1694 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1696 /* pre_insert and pre_delete are allocated later. */
1699 /* Free vars used for PRE analysis. */
1701 static void
1702 free_pre_mem (void)
1704 sbitmap_vector_free (transp);
1705 sbitmap_vector_free (comp);
1707 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1709 if (pre_optimal)
1710 sbitmap_vector_free (pre_optimal);
1711 if (pre_redundant)
1712 sbitmap_vector_free (pre_redundant);
1713 if (pre_insert_map)
1714 sbitmap_vector_free (pre_insert_map);
1715 if (pre_delete_map)
1716 sbitmap_vector_free (pre_delete_map);
1718 transp = comp = NULL;
1719 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1722 /* Remove certain expressions from anticipatable and transparent
1723 sets of basic blocks that have incoming abnormal edge.
1724 For PRE remove potentially trapping expressions to avoid placing
1725 them on abnormal edges. For hoisting remove memory references that
1726 can be clobbered by calls. */
1728 static void
1729 prune_expressions (bool pre_p)
1731 sbitmap prune_exprs;
1732 struct gcse_expr *expr;
1733 unsigned int ui;
1734 basic_block bb;
1736 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1737 bitmap_clear (prune_exprs);
1738 for (ui = 0; ui < expr_hash_table.size; ui++)
1740 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1742 /* Note potentially trapping expressions. */
1743 if (may_trap_p (expr->expr))
1745 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1746 continue;
1749 if (!pre_p && MEM_P (expr->expr))
1750 /* Note memory references that can be clobbered by a call.
1751 We do not split abnormal edges in hoisting, so would
1752 a memory reference get hoisted along an abnormal edge,
1753 it would be placed /before/ the call. Therefore, only
1754 constant memory references can be hoisted along abnormal
1755 edges. */
1757 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1758 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1759 continue;
1761 if (MEM_READONLY_P (expr->expr)
1762 && !MEM_VOLATILE_P (expr->expr)
1763 && MEM_NOTRAP_P (expr->expr))
1764 /* Constant memory reference, e.g., a PIC address. */
1765 continue;
1767 /* ??? Optimally, we would use interprocedural alias
1768 analysis to determine if this mem is actually killed
1769 by this call. */
1771 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1776 FOR_EACH_BB_FN (bb, cfun)
1778 edge e;
1779 edge_iterator ei;
1781 /* If the current block is the destination of an abnormal edge, we
1782 kill all trapping (for PRE) and memory (for hoist) expressions
1783 because we won't be able to properly place the instruction on
1784 the edge. So make them neither anticipatable nor transparent.
1785 This is fairly conservative.
1787 ??? For hoisting it may be necessary to check for set-and-jump
1788 instructions here, not just for abnormal edges. The general problem
1789 is that when an expression cannot not be placed right at the end of
1790 a basic block we should account for any side-effects of a subsequent
1791 jump instructions that could clobber the expression. It would
1792 be best to implement this check along the lines of
1793 should_hoist_expr_to_dom where the target block is already known
1794 and, hence, there's no need to conservatively prune expressions on
1795 "intermediate" set-and-jump instructions. */
1796 FOR_EACH_EDGE (e, ei, bb->preds)
1797 if ((e->flags & EDGE_ABNORMAL)
1798 && (pre_p || CALL_P (BB_END (e->src))))
1800 bitmap_and_compl (antloc[bb->index],
1801 antloc[bb->index], prune_exprs);
1802 bitmap_and_compl (transp[bb->index],
1803 transp[bb->index], prune_exprs);
1804 break;
1808 sbitmap_free (prune_exprs);
1811 /* It may be necessary to insert a large number of insns on edges to
1812 make the existing occurrences of expressions fully redundant. This
1813 routine examines the set of insertions and deletions and if the ratio
1814 of insertions to deletions is too high for a particular expression, then
1815 the expression is removed from the insertion/deletion sets.
1817 N_ELEMS is the number of elements in the hash table. */
1819 static void
1820 prune_insertions_deletions (int n_elems)
1822 sbitmap_iterator sbi;
1823 sbitmap prune_exprs;
1825 /* We always use I to iterate over blocks/edges and J to iterate over
1826 expressions. */
1827 unsigned int i, j;
1829 /* Counts for the number of times an expression needs to be inserted and
1830 number of times an expression can be removed as a result. */
1831 int *insertions = GCNEWVEC (int, n_elems);
1832 int *deletions = GCNEWVEC (int, n_elems);
1834 /* Set of expressions which require too many insertions relative to
1835 the number of deletions achieved. We will prune these out of the
1836 insertion/deletion sets. */
1837 prune_exprs = sbitmap_alloc (n_elems);
1838 bitmap_clear (prune_exprs);
1840 /* Iterate over the edges counting the number of times each expression
1841 needs to be inserted. */
1842 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1844 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1845 insertions[j]++;
1848 /* Similarly for deletions, but those occur in blocks rather than on
1849 edges. */
1850 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1852 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1853 deletions[j]++;
1856 /* Now that we have accurate counts, iterate over the elements in the
1857 hash table and see if any need too many insertions relative to the
1858 number of evaluations that can be removed. If so, mark them in
1859 PRUNE_EXPRS. */
1860 for (j = 0; j < (unsigned) n_elems; j++)
1861 if (deletions[j]
1862 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1863 bitmap_set_bit (prune_exprs, j);
1865 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1866 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1868 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1869 bitmap_clear_bit (pre_insert_map[i], j);
1871 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1872 bitmap_clear_bit (pre_delete_map[i], j);
1875 sbitmap_free (prune_exprs);
1876 free (insertions);
1877 free (deletions);
1880 /* Top level routine to do the dataflow analysis needed by PRE. */
1882 static struct edge_list *
1883 compute_pre_data (void)
1885 struct edge_list *edge_list;
1886 basic_block bb;
1888 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1889 prune_expressions (true);
1890 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1892 /* Compute ae_kill for each basic block using:
1894 ~(TRANSP | COMP)
1897 FOR_EACH_BB_FN (bb, cfun)
1899 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1900 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1903 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1904 ae_kill, &pre_insert_map, &pre_delete_map);
1905 sbitmap_vector_free (antloc);
1906 antloc = NULL;
1907 sbitmap_vector_free (ae_kill);
1908 ae_kill = NULL;
1910 prune_insertions_deletions (expr_hash_table.n_elems);
1912 return edge_list;
1915 /* PRE utilities */
1917 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1918 block BB.
1920 VISITED is a pointer to a working buffer for tracking which BB's have
1921 been visited. It is NULL for the top-level call.
1923 We treat reaching expressions that go through blocks containing the same
1924 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1925 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1926 2 as not reaching. The intent is to improve the probability of finding
1927 only one reaching expression and to reduce register lifetimes by picking
1928 the closest such expression. */
1930 static int
1931 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1932 basic_block bb, char *visited)
1934 edge pred;
1935 edge_iterator ei;
1937 FOR_EACH_EDGE (pred, ei, bb->preds)
1939 basic_block pred_bb = pred->src;
1941 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1942 /* Has predecessor has already been visited? */
1943 || visited[pred_bb->index])
1944 ;/* Nothing to do. */
1946 /* Does this predecessor generate this expression? */
1947 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1949 /* Is this the occurrence we're looking for?
1950 Note that there's only one generating occurrence per block
1951 so we just need to check the block number. */
1952 if (occr_bb == pred_bb)
1953 return 1;
1955 visited[pred_bb->index] = 1;
1957 /* Ignore this predecessor if it kills the expression. */
1958 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1959 visited[pred_bb->index] = 1;
1961 /* Neither gen nor kill. */
1962 else
1964 visited[pred_bb->index] = 1;
1965 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1966 return 1;
1970 /* All paths have been checked. */
1971 return 0;
1974 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1975 memory allocated for that function is returned. */
1977 static int
1978 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1980 int rval;
1981 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1983 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1985 free (visited);
1986 return rval;
1989 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1991 static rtx_insn *
1992 process_insert_insn (struct gcse_expr *expr)
1994 rtx reg = expr->reaching_reg;
1995 /* Copy the expression to make sure we don't have any sharing issues. */
1996 rtx exp = copy_rtx (expr->expr);
1997 rtx_insn *pat;
1999 start_sequence ();
2001 /* If the expression is something that's an operand, like a constant,
2002 just copy it to a register. */
2003 if (general_operand (exp, GET_MODE (reg)))
2004 emit_move_insn (reg, exp);
2006 /* Otherwise, make a new insn to compute this expression and make sure the
2007 insn will be recognized (this also adds any needed CLOBBERs). */
2008 else
2010 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
2012 if (insn_invalid_p (insn, false))
2013 gcc_unreachable ();
2016 pat = get_insns ();
2017 end_sequence ();
2019 return pat;
2022 /* Add EXPR to the end of basic block BB.
2024 This is used by both the PRE and code hoisting. */
2026 static void
2027 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2029 rtx_insn *insn = BB_END (bb);
2030 rtx_insn *new_insn;
2031 rtx reg = expr->reaching_reg;
2032 int regno = REGNO (reg);
2033 rtx_insn *pat, *pat_end;
2035 pat = process_insert_insn (expr);
2036 gcc_assert (pat && INSN_P (pat));
2038 pat_end = pat;
2039 while (NEXT_INSN (pat_end) != NULL_RTX)
2040 pat_end = NEXT_INSN (pat_end);
2042 /* If the last insn is a jump, insert EXPR in front [taking care to
2043 handle cc0, etc. properly]. Similarly we need to care trapping
2044 instructions in presence of non-call exceptions. */
2046 if (JUMP_P (insn)
2047 || (NONJUMP_INSN_P (insn)
2048 && (!single_succ_p (bb)
2049 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2051 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2052 if cc0 isn't set. */
2053 if (HAVE_cc0)
2055 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2056 if (note)
2057 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2058 else
2060 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2061 if (maybe_cc0_setter
2062 && INSN_P (maybe_cc0_setter)
2063 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2064 insn = maybe_cc0_setter;
2068 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2069 new_insn = emit_insn_before_noloc (pat, insn, bb);
2072 /* Likewise if the last insn is a call, as will happen in the presence
2073 of exception handling. */
2074 else if (CALL_P (insn)
2075 && (!single_succ_p (bb)
2076 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2078 /* Keeping in mind targets with small register classes and parameters
2079 in registers, we search backward and place the instructions before
2080 the first parameter is loaded. Do this for everyone for consistency
2081 and a presumption that we'll get better code elsewhere as well. */
2083 /* Since different machines initialize their parameter registers
2084 in different orders, assume nothing. Collect the set of all
2085 parameter registers. */
2086 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2088 /* If we found all the parameter loads, then we want to insert
2089 before the first parameter load.
2091 If we did not find all the parameter loads, then we might have
2092 stopped on the head of the block, which could be a CODE_LABEL.
2093 If we inserted before the CODE_LABEL, then we would be putting
2094 the insn in the wrong basic block. In that case, put the insn
2095 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2096 while (LABEL_P (insn)
2097 || NOTE_INSN_BASIC_BLOCK_P (insn))
2098 insn = NEXT_INSN (insn);
2100 new_insn = emit_insn_before_noloc (pat, insn, bb);
2102 else
2103 new_insn = emit_insn_after_noloc (pat, insn, bb);
2105 while (1)
2107 if (INSN_P (pat))
2108 add_label_notes (PATTERN (pat), new_insn);
2109 if (pat == pat_end)
2110 break;
2111 pat = NEXT_INSN (pat);
2114 gcse_create_count++;
2116 if (dump_file)
2118 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2119 bb->index, INSN_UID (new_insn));
2120 fprintf (dump_file, "copying expression %d to reg %d\n",
2121 expr->bitmap_index, regno);
2125 /* Insert partially redundant expressions on edges in the CFG to make
2126 the expressions fully redundant. */
2128 static int
2129 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2131 int e, i, j, num_edges, set_size, did_insert = 0;
2132 sbitmap *inserted;
2134 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2135 if it reaches any of the deleted expressions. */
2137 set_size = pre_insert_map[0]->size;
2138 num_edges = NUM_EDGES (edge_list);
2139 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2140 bitmap_vector_clear (inserted, num_edges);
2142 for (e = 0; e < num_edges; e++)
2144 int indx;
2145 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2147 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2149 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2151 for (j = indx;
2152 insert && j < (int) expr_hash_table.n_elems;
2153 j++, insert >>= 1)
2154 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2156 struct gcse_expr *expr = index_map[j];
2157 struct gcse_occr *occr;
2159 /* Now look at each deleted occurrence of this expression. */
2160 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2162 if (! occr->deleted_p)
2163 continue;
2165 /* Insert this expression on this edge if it would
2166 reach the deleted occurrence in BB. */
2167 if (!bitmap_bit_p (inserted[e], j))
2169 rtx_insn *insn;
2170 edge eg = INDEX_EDGE (edge_list, e);
2172 /* We can't insert anything on an abnormal and
2173 critical edge, so we insert the insn at the end of
2174 the previous block. There are several alternatives
2175 detailed in Morgans book P277 (sec 10.5) for
2176 handling this situation. This one is easiest for
2177 now. */
2179 if (eg->flags & EDGE_ABNORMAL)
2180 insert_insn_end_basic_block (index_map[j], bb);
2181 else
2183 insn = process_insert_insn (index_map[j]);
2184 insert_insn_on_edge (insn, eg);
2187 if (dump_file)
2189 fprintf (dump_file, "PRE: edge (%d,%d), ",
2190 bb->index,
2191 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2192 fprintf (dump_file, "copy expression %d\n",
2193 expr->bitmap_index);
2196 update_ld_motion_stores (expr);
2197 bitmap_set_bit (inserted[e], j);
2198 did_insert = 1;
2199 gcse_create_count++;
2206 sbitmap_vector_free (inserted);
2207 return did_insert;
2210 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2211 Given "old_reg <- expr" (INSN), instead of adding after it
2212 reaching_reg <- old_reg
2213 it's better to do the following:
2214 reaching_reg <- expr
2215 old_reg <- reaching_reg
2216 because this way copy propagation can discover additional PRE
2217 opportunities. But if this fails, we try the old way.
2218 When "expr" is a store, i.e.
2219 given "MEM <- old_reg", instead of adding after it
2220 reaching_reg <- old_reg
2221 it's better to add it before as follows:
2222 reaching_reg <- old_reg
2223 MEM <- reaching_reg. */
2225 static void
2226 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2228 rtx reg = expr->reaching_reg;
2229 int regno = REGNO (reg);
2230 int indx = expr->bitmap_index;
2231 rtx pat = PATTERN (insn);
2232 rtx set, first_set, new_insn;
2233 rtx old_reg;
2234 int i;
2236 /* This block matches the logic in hash_scan_insn. */
2237 switch (GET_CODE (pat))
2239 case SET:
2240 set = pat;
2241 break;
2243 case PARALLEL:
2244 /* Search through the parallel looking for the set whose
2245 source was the expression that we're interested in. */
2246 first_set = NULL_RTX;
2247 set = NULL_RTX;
2248 for (i = 0; i < XVECLEN (pat, 0); i++)
2250 rtx x = XVECEXP (pat, 0, i);
2251 if (GET_CODE (x) == SET)
2253 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2254 may not find an equivalent expression, but in this
2255 case the PARALLEL will have a single set. */
2256 if (first_set == NULL_RTX)
2257 first_set = x;
2258 if (expr_equiv_p (SET_SRC (x), expr->expr))
2260 set = x;
2261 break;
2266 gcc_assert (first_set);
2267 if (set == NULL_RTX)
2268 set = first_set;
2269 break;
2271 default:
2272 gcc_unreachable ();
2275 if (REG_P (SET_DEST (set)))
2277 old_reg = SET_DEST (set);
2278 /* Check if we can modify the set destination in the original insn. */
2279 if (validate_change (insn, &SET_DEST (set), reg, 0))
2281 new_insn = gen_move_insn (old_reg, reg);
2282 new_insn = emit_insn_after (new_insn, insn);
2284 else
2286 new_insn = gen_move_insn (reg, old_reg);
2287 new_insn = emit_insn_after (new_insn, insn);
2290 else /* This is possible only in case of a store to memory. */
2292 old_reg = SET_SRC (set);
2293 new_insn = gen_move_insn (reg, old_reg);
2295 /* Check if we can modify the set source in the original insn. */
2296 if (validate_change (insn, &SET_SRC (set), reg, 0))
2297 new_insn = emit_insn_before (new_insn, insn);
2298 else
2299 new_insn = emit_insn_after (new_insn, insn);
2302 gcse_create_count++;
2304 if (dump_file)
2305 fprintf (dump_file,
2306 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2307 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2308 INSN_UID (insn), regno);
2311 /* Copy available expressions that reach the redundant expression
2312 to `reaching_reg'. */
2314 static void
2315 pre_insert_copies (void)
2317 unsigned int i, added_copy;
2318 struct gcse_expr *expr;
2319 struct gcse_occr *occr;
2320 struct gcse_occr *avail;
2322 /* For each available expression in the table, copy the result to
2323 `reaching_reg' if the expression reaches a deleted one.
2325 ??? The current algorithm is rather brute force.
2326 Need to do some profiling. */
2328 for (i = 0; i < expr_hash_table.size; i++)
2329 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2331 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2332 we don't want to insert a copy here because the expression may not
2333 really be redundant. So only insert an insn if the expression was
2334 deleted. This test also avoids further processing if the
2335 expression wasn't deleted anywhere. */
2336 if (expr->reaching_reg == NULL)
2337 continue;
2339 /* Set when we add a copy for that expression. */
2340 added_copy = 0;
2342 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2344 if (! occr->deleted_p)
2345 continue;
2347 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2349 rtx_insn *insn = avail->insn;
2351 /* No need to handle this one if handled already. */
2352 if (avail->copied_p)
2353 continue;
2355 /* Don't handle this one if it's a redundant one. */
2356 if (insn->deleted ())
2357 continue;
2359 /* Or if the expression doesn't reach the deleted one. */
2360 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2361 expr,
2362 BLOCK_FOR_INSN (occr->insn)))
2363 continue;
2365 added_copy = 1;
2367 /* Copy the result of avail to reaching_reg. */
2368 pre_insert_copy_insn (expr, insn);
2369 avail->copied_p = 1;
2373 if (added_copy)
2374 update_ld_motion_stores (expr);
2378 struct set_data
2380 rtx_insn *insn;
2381 const_rtx set;
2382 int nsets;
2385 /* Increment number of sets and record set in DATA. */
2387 static void
2388 record_set_data (rtx dest, const_rtx set, void *data)
2390 struct set_data *s = (struct set_data *)data;
2392 if (GET_CODE (set) == SET)
2394 /* We allow insns having multiple sets, where all but one are
2395 dead as single set insns. In the common case only a single
2396 set is present, so we want to avoid checking for REG_UNUSED
2397 notes unless necessary. */
2398 if (s->nsets == 1
2399 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2400 && !side_effects_p (s->set))
2401 s->nsets = 0;
2403 if (!s->nsets)
2405 /* Record this set. */
2406 s->nsets += 1;
2407 s->set = set;
2409 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2410 || side_effects_p (set))
2411 s->nsets += 1;
2415 static const_rtx
2416 single_set_gcse (rtx_insn *insn)
2418 struct set_data s;
2419 rtx pattern;
2421 gcc_assert (INSN_P (insn));
2423 /* Optimize common case. */
2424 pattern = PATTERN (insn);
2425 if (GET_CODE (pattern) == SET)
2426 return pattern;
2428 s.insn = insn;
2429 s.nsets = 0;
2430 note_stores (pattern, record_set_data, &s);
2432 /* Considered invariant insns have exactly one set. */
2433 gcc_assert (s.nsets == 1);
2434 return s.set;
2437 /* Emit move from SRC to DEST noting the equivalence with expression computed
2438 in INSN. */
2440 static rtx
2441 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2443 rtx_insn *new_rtx;
2444 const_rtx set = single_set_gcse (insn);
2445 rtx set2;
2446 rtx note;
2447 rtx eqv = NULL_RTX;
2449 /* This should never fail since we're creating a reg->reg copy
2450 we've verified to be valid. */
2452 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2454 /* Note the equivalence for local CSE pass. Take the note from the old
2455 set if there was one. Otherwise record the SET_SRC from the old set
2456 unless DEST is also an operand of the SET_SRC. */
2457 set2 = single_set (new_rtx);
2458 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2459 return new_rtx;
2460 if ((note = find_reg_equal_equiv_note (insn)))
2461 eqv = XEXP (note, 0);
2462 else if (! REG_P (dest)
2463 || ! reg_mentioned_p (dest, SET_SRC (set)))
2464 eqv = SET_SRC (set);
2466 if (eqv != NULL_RTX)
2467 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2469 return new_rtx;
2472 /* Delete redundant computations.
2473 Deletion is done by changing the insn to copy the `reaching_reg' of
2474 the expression into the result of the SET. It is left to later passes
2475 to propagate the copy or eliminate it.
2477 Return nonzero if a change is made. */
2479 static int
2480 pre_delete (void)
2482 unsigned int i;
2483 int changed;
2484 struct gcse_expr *expr;
2485 struct gcse_occr *occr;
2487 changed = 0;
2488 for (i = 0; i < expr_hash_table.size; i++)
2489 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2491 int indx = expr->bitmap_index;
2493 /* We only need to search antic_occr since we require ANTLOC != 0. */
2494 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2496 rtx_insn *insn = occr->insn;
2497 rtx set;
2498 basic_block bb = BLOCK_FOR_INSN (insn);
2500 /* We only delete insns that have a single_set. */
2501 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2502 && (set = single_set (insn)) != 0
2503 && dbg_cnt (pre_insn))
2505 /* Create a pseudo-reg to store the result of reaching
2506 expressions into. Get the mode for the new pseudo from
2507 the mode of the original destination pseudo. */
2508 if (expr->reaching_reg == NULL)
2509 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2511 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2512 delete_insn (insn);
2513 occr->deleted_p = 1;
2514 changed = 1;
2515 gcse_subst_count++;
2517 if (dump_file)
2519 fprintf (dump_file,
2520 "PRE: redundant insn %d (expression %d) in ",
2521 INSN_UID (insn), indx);
2522 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2523 bb->index, REGNO (expr->reaching_reg));
2529 return changed;
2532 /* Perform GCSE optimizations using PRE.
2533 This is called by one_pre_gcse_pass after all the dataflow analysis
2534 has been done.
2536 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2537 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2538 Compiler Design and Implementation.
2540 ??? A new pseudo reg is created to hold the reaching expression. The nice
2541 thing about the classical approach is that it would try to use an existing
2542 reg. If the register can't be adequately optimized [i.e. we introduce
2543 reload problems], one could add a pass here to propagate the new register
2544 through the block.
2546 ??? We don't handle single sets in PARALLELs because we're [currently] not
2547 able to copy the rest of the parallel when we insert copies to create full
2548 redundancies from partial redundancies. However, there's no reason why we
2549 can't handle PARALLELs in the cases where there are no partial
2550 redundancies. */
2552 static int
2553 pre_gcse (struct edge_list *edge_list)
2555 unsigned int i;
2556 int did_insert, changed;
2557 struct gcse_expr **index_map;
2558 struct gcse_expr *expr;
2560 /* Compute a mapping from expression number (`bitmap_index') to
2561 hash table entry. */
2563 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2564 for (i = 0; i < expr_hash_table.size; i++)
2565 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2566 index_map[expr->bitmap_index] = expr;
2568 /* Delete the redundant insns first so that
2569 - we know what register to use for the new insns and for the other
2570 ones with reaching expressions
2571 - we know which insns are redundant when we go to create copies */
2573 changed = pre_delete ();
2574 did_insert = pre_edge_insert (edge_list, index_map);
2576 /* In other places with reaching expressions, copy the expression to the
2577 specially allocated pseudo-reg that reaches the redundant expr. */
2578 pre_insert_copies ();
2579 if (did_insert)
2581 commit_edge_insertions ();
2582 changed = 1;
2585 free (index_map);
2586 return changed;
2589 /* Top level routine to perform one PRE GCSE pass.
2591 Return nonzero if a change was made. */
2593 static int
2594 one_pre_gcse_pass (void)
2596 int changed = 0;
2598 gcse_subst_count = 0;
2599 gcse_create_count = 0;
2601 /* Return if there's nothing to do, or it is too expensive. */
2602 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2603 || is_too_expensive (_("PRE disabled")))
2604 return 0;
2606 /* We need alias. */
2607 init_alias_analysis ();
2609 bytes_used = 0;
2610 gcc_obstack_init (&gcse_obstack);
2611 alloc_gcse_mem ();
2613 alloc_hash_table (&expr_hash_table);
2614 add_noreturn_fake_exit_edges ();
2615 if (flag_gcse_lm)
2616 compute_ld_motion_mems ();
2618 compute_hash_table (&expr_hash_table);
2619 if (flag_gcse_lm)
2620 trim_ld_motion_mems ();
2621 if (dump_file)
2622 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2624 if (expr_hash_table.n_elems > 0)
2626 struct edge_list *edge_list;
2627 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2628 edge_list = compute_pre_data ();
2629 changed |= pre_gcse (edge_list);
2630 free_edge_list (edge_list);
2631 free_pre_mem ();
2634 if (flag_gcse_lm)
2635 free_ld_motion_mems ();
2636 remove_fake_exit_edges ();
2637 free_hash_table (&expr_hash_table);
2639 free_gcse_mem ();
2640 obstack_free (&gcse_obstack, NULL);
2642 /* We are finished with alias. */
2643 end_alias_analysis ();
2645 if (dump_file)
2647 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2648 current_function_name (), n_basic_blocks_for_fn (cfun),
2649 bytes_used);
2650 fprintf (dump_file, "%d substs, %d insns created\n",
2651 gcse_subst_count, gcse_create_count);
2654 return changed;
2657 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2658 to INSN. If such notes are added to an insn which references a
2659 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2660 that note, because the following loop optimization pass requires
2661 them. */
2663 /* ??? If there was a jump optimization pass after gcse and before loop,
2664 then we would not need to do this here, because jump would add the
2665 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2667 static void
2668 add_label_notes (rtx x, rtx_insn *insn)
2670 enum rtx_code code = GET_CODE (x);
2671 int i, j;
2672 const char *fmt;
2674 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2676 /* This code used to ignore labels that referred to dispatch tables to
2677 avoid flow generating (slightly) worse code.
2679 We no longer ignore such label references (see LABEL_REF handling in
2680 mark_jump_label for additional information). */
2682 /* There's no reason for current users to emit jump-insns with
2683 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2684 notes. */
2685 gcc_assert (!JUMP_P (insn));
2686 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2688 if (LABEL_P (LABEL_REF_LABEL (x)))
2689 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2691 return;
2694 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2696 if (fmt[i] == 'e')
2697 add_label_notes (XEXP (x, i), insn);
2698 else if (fmt[i] == 'E')
2699 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2700 add_label_notes (XVECEXP (x, i, j), insn);
2704 /* Code Hoisting variables and subroutines. */
2706 /* Very busy expressions. */
2707 static sbitmap *hoist_vbein;
2708 static sbitmap *hoist_vbeout;
2710 /* ??? We could compute post dominators and run this algorithm in
2711 reverse to perform tail merging, doing so would probably be
2712 more effective than the tail merging code in jump.c.
2714 It's unclear if tail merging could be run in parallel with
2715 code hoisting. It would be nice. */
2717 /* Allocate vars used for code hoisting analysis. */
2719 static void
2720 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2722 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2723 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2724 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2726 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2727 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2730 /* Free vars used for code hoisting analysis. */
2732 static void
2733 free_code_hoist_mem (void)
2735 sbitmap_vector_free (antloc);
2736 sbitmap_vector_free (transp);
2737 sbitmap_vector_free (comp);
2739 sbitmap_vector_free (hoist_vbein);
2740 sbitmap_vector_free (hoist_vbeout);
2742 free_dominance_info (CDI_DOMINATORS);
2745 /* Compute the very busy expressions at entry/exit from each block.
2747 An expression is very busy if all paths from a given point
2748 compute the expression. */
2750 static void
2751 compute_code_hoist_vbeinout (void)
2753 int changed, passes;
2754 basic_block bb;
2756 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2757 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2759 passes = 0;
2760 changed = 1;
2762 while (changed)
2764 changed = 0;
2766 /* We scan the blocks in the reverse order to speed up
2767 the convergence. */
2768 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2770 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2772 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2773 hoist_vbein, bb);
2775 /* Include expressions in VBEout that are calculated
2776 in BB and available at its end. */
2777 bitmap_ior (hoist_vbeout[bb->index],
2778 hoist_vbeout[bb->index], comp[bb->index]);
2781 changed |= bitmap_or_and (hoist_vbein[bb->index],
2782 antloc[bb->index],
2783 hoist_vbeout[bb->index],
2784 transp[bb->index]);
2787 passes++;
2790 if (dump_file)
2792 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2794 FOR_EACH_BB_FN (bb, cfun)
2796 fprintf (dump_file, "vbein (%d): ", bb->index);
2797 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2798 fprintf (dump_file, "vbeout(%d): ", bb->index);
2799 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2804 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2806 static void
2807 compute_code_hoist_data (void)
2809 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2810 prune_expressions (false);
2811 compute_code_hoist_vbeinout ();
2812 calculate_dominance_info (CDI_DOMINATORS);
2813 if (dump_file)
2814 fprintf (dump_file, "\n");
2817 /* Update register pressure for BB when hoisting an expression from
2818 instruction FROM, if live ranges of inputs are shrunk. Also
2819 maintain live_in information if live range of register referred
2820 in FROM is shrunk.
2822 Return 0 if register pressure doesn't change, otherwise return
2823 the number by which register pressure is decreased.
2825 NOTE: Register pressure won't be increased in this function. */
2827 static int
2828 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2830 rtx dreg;
2831 rtx_insn *insn;
2832 basic_block succ_bb;
2833 df_ref use, op_ref;
2834 edge succ;
2835 edge_iterator ei;
2836 int decreased_pressure = 0;
2837 int nregs;
2838 enum reg_class pressure_class;
2840 FOR_EACH_INSN_USE (use, from)
2842 dreg = DF_REF_REAL_REG (use);
2843 /* The live range of register is shrunk only if it isn't:
2844 1. referred on any path from the end of this block to EXIT, or
2845 2. referred by insns other than FROM in this block. */
2846 FOR_EACH_EDGE (succ, ei, bb->succs)
2848 succ_bb = succ->dest;
2849 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2850 continue;
2852 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2853 break;
2855 if (succ != NULL)
2856 continue;
2858 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2859 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2861 if (!DF_REF_INSN_INFO (op_ref))
2862 continue;
2864 insn = DF_REF_INSN (op_ref);
2865 if (BLOCK_FOR_INSN (insn) == bb
2866 && NONDEBUG_INSN_P (insn) && insn != from)
2867 break;
2870 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2871 /* Decrease register pressure and update live_in information for
2872 this block. */
2873 if (!op_ref && pressure_class != NO_REGS)
2875 decreased_pressure += nregs;
2876 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2877 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2880 return decreased_pressure;
2883 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2884 flow graph, if it can reach BB unimpared. Stop the search if the
2885 expression would need to be moved more than DISTANCE instructions.
2887 DISTANCE is the number of instructions through which EXPR can be
2888 hoisted up in flow graph.
2890 BB_SIZE points to an array which contains the number of instructions
2891 for each basic block.
2893 PRESSURE_CLASS and NREGS are register class and number of hard registers
2894 for storing EXPR.
2896 HOISTED_BBS points to a bitmap indicating basic blocks through which
2897 EXPR is hoisted.
2899 FROM is the instruction from which EXPR is hoisted.
2901 It's unclear exactly what Muchnick meant by "unimpared". It seems
2902 to me that the expression must either be computed or transparent in
2903 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2904 would allow the expression to be hoisted out of loops, even if
2905 the expression wasn't a loop invariant.
2907 Contrast this to reachability for PRE where an expression is
2908 considered reachable if *any* path reaches instead of *all*
2909 paths. */
2911 static int
2912 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2913 basic_block bb, sbitmap visited, int distance,
2914 int *bb_size, enum reg_class pressure_class,
2915 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2917 unsigned int i;
2918 edge pred;
2919 edge_iterator ei;
2920 sbitmap_iterator sbi;
2921 int visited_allocated_locally = 0;
2922 int decreased_pressure = 0;
2924 if (flag_ira_hoist_pressure)
2926 /* Record old information of basic block BB when it is visited
2927 at the first time. */
2928 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2930 struct bb_data *data = BB_DATA (bb);
2931 bitmap_copy (data->backup, data->live_in);
2932 data->old_pressure = data->max_reg_pressure[pressure_class];
2934 decreased_pressure = update_bb_reg_pressure (bb, from);
2936 /* Terminate the search if distance, for which EXPR is allowed to move,
2937 is exhausted. */
2938 if (distance > 0)
2940 if (flag_ira_hoist_pressure)
2942 /* Prefer to hoist EXPR if register pressure is decreased. */
2943 if (decreased_pressure > *nregs)
2944 distance += bb_size[bb->index];
2945 /* Let EXPR be hoisted through basic block at no cost if one
2946 of following conditions is satisfied:
2948 1. The basic block has low register pressure.
2949 2. Register pressure won't be increases after hoisting EXPR.
2951 Constant expressions is handled conservatively, because
2952 hoisting constant expression aggressively results in worse
2953 code. This decision is made by the observation of CSiBE
2954 on ARM target, while it has no obvious effect on other
2955 targets like x86, x86_64, mips and powerpc. */
2956 else if (CONST_INT_P (expr->expr)
2957 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2958 >= ira_class_hard_regs_num[pressure_class]
2959 && decreased_pressure < *nregs))
2960 distance -= bb_size[bb->index];
2962 else
2963 distance -= bb_size[bb->index];
2965 if (distance <= 0)
2966 return 0;
2968 else
2969 gcc_assert (distance == 0);
2971 if (visited == NULL)
2973 visited_allocated_locally = 1;
2974 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2975 bitmap_clear (visited);
2978 FOR_EACH_EDGE (pred, ei, bb->preds)
2980 basic_block pred_bb = pred->src;
2982 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2983 break;
2984 else if (pred_bb == expr_bb)
2985 continue;
2986 else if (bitmap_bit_p (visited, pred_bb->index))
2987 continue;
2988 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2989 break;
2990 /* Not killed. */
2991 else
2993 bitmap_set_bit (visited, pred_bb->index);
2994 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2995 visited, distance, bb_size,
2996 pressure_class, nregs,
2997 hoisted_bbs, from))
2998 break;
3001 if (visited_allocated_locally)
3003 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3004 which EXPR is hoisted in hoisted_bbs. */
3005 if (flag_ira_hoist_pressure && !pred)
3007 /* Record the basic block from which EXPR is hoisted. */
3008 bitmap_set_bit (visited, bb->index);
3009 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3010 bitmap_set_bit (hoisted_bbs, i);
3012 sbitmap_free (visited);
3015 return (pred == NULL);
3018 /* Find occurrence in BB. */
3020 static struct gcse_occr *
3021 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3023 /* Find the right occurrence of this expression. */
3024 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3025 occr = occr->next;
3027 return occr;
3030 /* Actually perform code hoisting.
3032 The code hoisting pass can hoist multiple computations of the same
3033 expression along dominated path to a dominating basic block, like
3034 from b2/b3 to b1 as depicted below:
3036 b1 ------
3037 /\ |
3038 / \ |
3039 bx by distance
3040 / \ |
3041 / \ |
3042 b2 b3 ------
3044 Unfortunately code hoisting generally extends the live range of an
3045 output pseudo register, which increases register pressure and hurts
3046 register allocation. To address this issue, an attribute MAX_DISTANCE
3047 is computed and attached to each expression. The attribute is computed
3048 from rtx cost of the corresponding expression and it's used to control
3049 how long the expression can be hoisted up in flow graph. As the
3050 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3051 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3052 register pressure if live ranges of inputs are shrunk.
3054 Option "-fira-hoist-pressure" implements register pressure directed
3055 hoist based on upper method. The rationale is:
3056 1. Calculate register pressure for each basic block by reusing IRA
3057 facility.
3058 2. When expression is hoisted through one basic block, GCC checks
3059 the change of live ranges for inputs/output. The basic block's
3060 register pressure will be increased because of extended live
3061 range of output. However, register pressure will be decreased
3062 if the live ranges of inputs are shrunk.
3063 3. After knowing how hoisting affects register pressure, GCC prefers
3064 to hoist the expression if it can decrease register pressure, by
3065 increasing DISTANCE of the corresponding expression.
3066 4. If hoisting the expression increases register pressure, GCC checks
3067 register pressure of the basic block and decrease DISTANCE only if
3068 the register pressure is high. In other words, expression will be
3069 hoisted through at no cost if the basic block has low register
3070 pressure.
3071 5. Update register pressure information for basic blocks through
3072 which expression is hoisted. */
3074 static int
3075 hoist_code (void)
3077 basic_block bb, dominated;
3078 vec<basic_block> dom_tree_walk;
3079 unsigned int dom_tree_walk_index;
3080 vec<basic_block> domby;
3081 unsigned int i, j, k;
3082 struct gcse_expr **index_map;
3083 struct gcse_expr *expr;
3084 int *to_bb_head;
3085 int *bb_size;
3086 int changed = 0;
3087 struct bb_data *data;
3088 /* Basic blocks that have occurrences reachable from BB. */
3089 bitmap from_bbs;
3090 /* Basic blocks through which expr is hoisted. */
3091 bitmap hoisted_bbs = NULL;
3092 bitmap_iterator bi;
3094 /* Compute a mapping from expression number (`bitmap_index') to
3095 hash table entry. */
3097 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3098 for (i = 0; i < expr_hash_table.size; i++)
3099 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3100 index_map[expr->bitmap_index] = expr;
3102 /* Calculate sizes of basic blocks and note how far
3103 each instruction is from the start of its block. We then use this
3104 data to restrict distance an expression can travel. */
3106 to_bb_head = XCNEWVEC (int, get_max_uid ());
3107 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3109 FOR_EACH_BB_FN (bb, cfun)
3111 rtx_insn *insn;
3112 int to_head;
3114 to_head = 0;
3115 FOR_BB_INSNS (bb, insn)
3117 /* Don't count debug instructions to avoid them affecting
3118 decision choices. */
3119 if (NONDEBUG_INSN_P (insn))
3120 to_bb_head[INSN_UID (insn)] = to_head++;
3123 bb_size[bb->index] = to_head;
3126 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3127 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3128 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3130 from_bbs = BITMAP_ALLOC (NULL);
3131 if (flag_ira_hoist_pressure)
3132 hoisted_bbs = BITMAP_ALLOC (NULL);
3134 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3135 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3137 /* Walk over each basic block looking for potentially hoistable
3138 expressions, nothing gets hoisted from the entry block. */
3139 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3141 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3143 if (domby.length () == 0)
3144 continue;
3146 /* Examine each expression that is very busy at the exit of this
3147 block. These are the potentially hoistable expressions. */
3148 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3150 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3152 int nregs = 0;
3153 enum reg_class pressure_class = NO_REGS;
3154 /* Current expression. */
3155 struct gcse_expr *expr = index_map[i];
3156 /* Number of occurrences of EXPR that can be hoisted to BB. */
3157 int hoistable = 0;
3158 /* Occurrences reachable from BB. */
3159 vec<occr_t> occrs_to_hoist = vNULL;
3160 /* We want to insert the expression into BB only once, so
3161 note when we've inserted it. */
3162 int insn_inserted_p;
3163 occr_t occr;
3165 /* If an expression is computed in BB and is available at end of
3166 BB, hoist all occurrences dominated by BB to BB. */
3167 if (bitmap_bit_p (comp[bb->index], i))
3169 occr = find_occr_in_bb (expr->antic_occr, bb);
3171 if (occr)
3173 /* An occurrence might've been already deleted
3174 while processing a dominator of BB. */
3175 if (!occr->deleted_p)
3177 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3178 hoistable++;
3181 else
3182 hoistable++;
3185 /* We've found a potentially hoistable expression, now
3186 we look at every block BB dominates to see if it
3187 computes the expression. */
3188 FOR_EACH_VEC_ELT (domby, j, dominated)
3190 int max_distance;
3192 /* Ignore self dominance. */
3193 if (bb == dominated)
3194 continue;
3195 /* We've found a dominated block, now see if it computes
3196 the busy expression and whether or not moving that
3197 expression to the "beginning" of that block is safe. */
3198 if (!bitmap_bit_p (antloc[dominated->index], i))
3199 continue;
3201 occr = find_occr_in_bb (expr->antic_occr, dominated);
3202 gcc_assert (occr);
3204 /* An occurrence might've been already deleted
3205 while processing a dominator of BB. */
3206 if (occr->deleted_p)
3207 continue;
3208 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3210 max_distance = expr->max_distance;
3211 if (max_distance > 0)
3212 /* Adjust MAX_DISTANCE to account for the fact that
3213 OCCR won't have to travel all of DOMINATED, but
3214 only part of it. */
3215 max_distance += (bb_size[dominated->index]
3216 - to_bb_head[INSN_UID (occr->insn)]);
3218 pressure_class = get_pressure_class_and_nregs (occr->insn,
3219 &nregs);
3221 /* Note if the expression should be hoisted from the dominated
3222 block to BB if it can reach DOMINATED unimpared.
3224 Keep track of how many times this expression is hoistable
3225 from a dominated block into BB. */
3226 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3227 max_distance, bb_size,
3228 pressure_class, &nregs,
3229 hoisted_bbs, occr->insn))
3231 hoistable++;
3232 occrs_to_hoist.safe_push (occr);
3233 bitmap_set_bit (from_bbs, dominated->index);
3237 /* If we found more than one hoistable occurrence of this
3238 expression, then note it in the vector of expressions to
3239 hoist. It makes no sense to hoist things which are computed
3240 in only one BB, and doing so tends to pessimize register
3241 allocation. One could increase this value to try harder
3242 to avoid any possible code expansion due to register
3243 allocation issues; however experiments have shown that
3244 the vast majority of hoistable expressions are only movable
3245 from two successors, so raising this threshold is likely
3246 to nullify any benefit we get from code hoisting. */
3247 if (hoistable > 1 && dbg_cnt (hoist_insn))
3249 /* If (hoistable != vec::length), then there is
3250 an occurrence of EXPR in BB itself. Don't waste
3251 time looking for LCA in this case. */
3252 if ((unsigned) hoistable == occrs_to_hoist.length ())
3254 basic_block lca;
3256 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3257 from_bbs);
3258 if (lca != bb)
3259 /* Punt, it's better to hoist these occurrences to
3260 LCA. */
3261 occrs_to_hoist.release ();
3264 else
3265 /* Punt, no point hoisting a single occurrence. */
3266 occrs_to_hoist.release ();
3268 if (flag_ira_hoist_pressure
3269 && !occrs_to_hoist.is_empty ())
3271 /* Increase register pressure of basic blocks to which
3272 expr is hoisted because of extended live range of
3273 output. */
3274 data = BB_DATA (bb);
3275 data->max_reg_pressure[pressure_class] += nregs;
3276 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3278 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3279 data->max_reg_pressure[pressure_class] += nregs;
3282 else if (flag_ira_hoist_pressure)
3284 /* Restore register pressure and live_in info for basic
3285 blocks recorded in hoisted_bbs when expr will not be
3286 hoisted. */
3287 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3289 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3290 bitmap_copy (data->live_in, data->backup);
3291 data->max_reg_pressure[pressure_class]
3292 = data->old_pressure;
3296 if (flag_ira_hoist_pressure)
3297 bitmap_clear (hoisted_bbs);
3299 insn_inserted_p = 0;
3301 /* Walk through occurrences of I'th expressions we want
3302 to hoist to BB and make the transformations. */
3303 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3305 rtx_insn *insn;
3306 const_rtx set;
3308 gcc_assert (!occr->deleted_p);
3310 insn = occr->insn;
3311 set = single_set_gcse (insn);
3313 /* Create a pseudo-reg to store the result of reaching
3314 expressions into. Get the mode for the new pseudo
3315 from the mode of the original destination pseudo.
3317 It is important to use new pseudos whenever we
3318 emit a set. This will allow reload to use
3319 rematerialization for such registers. */
3320 if (!insn_inserted_p)
3321 expr->reaching_reg
3322 = gen_reg_rtx_and_attrs (SET_DEST (set));
3324 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3325 insn);
3326 delete_insn (insn);
3327 occr->deleted_p = 1;
3328 changed = 1;
3329 gcse_subst_count++;
3331 if (!insn_inserted_p)
3333 insert_insn_end_basic_block (expr, bb);
3334 insn_inserted_p = 1;
3338 occrs_to_hoist.release ();
3339 bitmap_clear (from_bbs);
3342 domby.release ();
3345 dom_tree_walk.release ();
3346 BITMAP_FREE (from_bbs);
3347 if (flag_ira_hoist_pressure)
3348 BITMAP_FREE (hoisted_bbs);
3350 free (bb_size);
3351 free (to_bb_head);
3352 free (index_map);
3354 return changed;
3357 /* Return pressure class and number of needed hard registers (through
3358 *NREGS) of register REGNO. */
3359 static enum reg_class
3360 get_regno_pressure_class (int regno, int *nregs)
3362 if (regno >= FIRST_PSEUDO_REGISTER)
3364 enum reg_class pressure_class;
3366 pressure_class = reg_allocno_class (regno);
3367 pressure_class = ira_pressure_class_translate[pressure_class];
3368 *nregs
3369 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3370 return pressure_class;
3372 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3373 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3375 *nregs = 1;
3376 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3378 else
3380 *nregs = 0;
3381 return NO_REGS;
3385 /* Return pressure class and number of hard registers (through *NREGS)
3386 for destination of INSN. */
3387 static enum reg_class
3388 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3390 rtx reg;
3391 enum reg_class pressure_class;
3392 const_rtx set = single_set_gcse (insn);
3394 reg = SET_DEST (set);
3395 if (GET_CODE (reg) == SUBREG)
3396 reg = SUBREG_REG (reg);
3397 if (MEM_P (reg))
3399 *nregs = 0;
3400 pressure_class = NO_REGS;
3402 else
3404 gcc_assert (REG_P (reg));
3405 pressure_class = reg_allocno_class (REGNO (reg));
3406 pressure_class = ira_pressure_class_translate[pressure_class];
3407 *nregs
3408 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3410 return pressure_class;
3413 /* Increase (if INCR_P) or decrease current register pressure for
3414 register REGNO. */
3415 static void
3416 change_pressure (int regno, bool incr_p)
3418 int nregs;
3419 enum reg_class pressure_class;
3421 pressure_class = get_regno_pressure_class (regno, &nregs);
3422 if (! incr_p)
3423 curr_reg_pressure[pressure_class] -= nregs;
3424 else
3426 curr_reg_pressure[pressure_class] += nregs;
3427 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3428 < curr_reg_pressure[pressure_class])
3429 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3430 = curr_reg_pressure[pressure_class];
3434 /* Calculate register pressure for each basic block by walking insns
3435 from last to first. */
3436 static void
3437 calculate_bb_reg_pressure (void)
3439 int i;
3440 unsigned int j;
3441 rtx_insn *insn;
3442 basic_block bb;
3443 bitmap curr_regs_live;
3444 bitmap_iterator bi;
3447 ira_setup_eliminable_regset ();
3448 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3449 FOR_EACH_BB_FN (bb, cfun)
3451 curr_bb = bb;
3452 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3453 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3454 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3455 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3456 for (i = 0; i < ira_pressure_classes_num; i++)
3457 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3458 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3459 change_pressure (j, true);
3461 FOR_BB_INSNS_REVERSE (bb, insn)
3463 rtx dreg;
3464 int regno;
3465 df_ref def, use;
3467 if (! NONDEBUG_INSN_P (insn))
3468 continue;
3470 FOR_EACH_INSN_DEF (def, insn)
3472 dreg = DF_REF_REAL_REG (def);
3473 gcc_assert (REG_P (dreg));
3474 regno = REGNO (dreg);
3475 if (!(DF_REF_FLAGS (def)
3476 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3478 if (bitmap_clear_bit (curr_regs_live, regno))
3479 change_pressure (regno, false);
3483 FOR_EACH_INSN_USE (use, insn)
3485 dreg = DF_REF_REAL_REG (use);
3486 gcc_assert (REG_P (dreg));
3487 regno = REGNO (dreg);
3488 if (bitmap_set_bit (curr_regs_live, regno))
3489 change_pressure (regno, true);
3493 BITMAP_FREE (curr_regs_live);
3495 if (dump_file == NULL)
3496 return;
3498 fprintf (dump_file, "\nRegister Pressure: \n");
3499 FOR_EACH_BB_FN (bb, cfun)
3501 fprintf (dump_file, " Basic block %d: \n", bb->index);
3502 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3504 enum reg_class pressure_class;
3506 pressure_class = ira_pressure_classes[i];
3507 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3508 continue;
3510 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3511 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3514 fprintf (dump_file, "\n");
3517 /* Top level routine to perform one code hoisting (aka unification) pass
3519 Return nonzero if a change was made. */
3521 static int
3522 one_code_hoisting_pass (void)
3524 int changed = 0;
3526 gcse_subst_count = 0;
3527 gcse_create_count = 0;
3529 /* Return if there's nothing to do, or it is too expensive. */
3530 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3531 || is_too_expensive (_("GCSE disabled")))
3532 return 0;
3534 doing_code_hoisting_p = true;
3536 /* Calculate register pressure for each basic block. */
3537 if (flag_ira_hoist_pressure)
3539 regstat_init_n_sets_and_refs ();
3540 ira_set_pseudo_classes (false, dump_file);
3541 alloc_aux_for_blocks (sizeof (struct bb_data));
3542 calculate_bb_reg_pressure ();
3543 regstat_free_n_sets_and_refs ();
3546 /* We need alias. */
3547 init_alias_analysis ();
3549 bytes_used = 0;
3550 gcc_obstack_init (&gcse_obstack);
3551 alloc_gcse_mem ();
3553 alloc_hash_table (&expr_hash_table);
3554 compute_hash_table (&expr_hash_table);
3555 if (dump_file)
3556 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3558 if (expr_hash_table.n_elems > 0)
3560 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3561 expr_hash_table.n_elems);
3562 compute_code_hoist_data ();
3563 changed = hoist_code ();
3564 free_code_hoist_mem ();
3567 if (flag_ira_hoist_pressure)
3569 free_aux_for_blocks ();
3570 free_reg_info ();
3572 free_hash_table (&expr_hash_table);
3573 free_gcse_mem ();
3574 obstack_free (&gcse_obstack, NULL);
3576 /* We are finished with alias. */
3577 end_alias_analysis ();
3579 if (dump_file)
3581 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3582 current_function_name (), n_basic_blocks_for_fn (cfun),
3583 bytes_used);
3584 fprintf (dump_file, "%d substs, %d insns created\n",
3585 gcse_subst_count, gcse_create_count);
3588 doing_code_hoisting_p = false;
3590 return changed;
3593 /* Here we provide the things required to do store motion towards the exit.
3594 In order for this to be effective, gcse also needed to be taught how to
3595 move a load when it is killed only by a store to itself.
3597 int i;
3598 float a[10];
3600 void foo(float scale)
3602 for (i=0; i<10; i++)
3603 a[i] *= scale;
3606 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3607 the load out since its live around the loop, and stored at the bottom
3608 of the loop.
3610 The 'Load Motion' referred to and implemented in this file is
3611 an enhancement to gcse which when using edge based LCM, recognizes
3612 this situation and allows gcse to move the load out of the loop.
3614 Once gcse has hoisted the load, store motion can then push this
3615 load towards the exit, and we end up with no loads or stores of 'i'
3616 in the loop. */
3618 /* This will search the ldst list for a matching expression. If it
3619 doesn't find one, we create one and initialize it. */
3621 static struct ls_expr *
3622 ldst_entry (rtx x)
3624 int do_not_record_p = 0;
3625 struct ls_expr * ptr;
3626 unsigned int hash;
3627 ls_expr **slot;
3628 struct ls_expr e;
3630 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3631 NULL, /*have_reg_qty=*/false);
3633 e.pattern = x;
3634 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3635 if (*slot)
3636 return *slot;
3638 ptr = XNEW (struct ls_expr);
3640 ptr->next = pre_ldst_mems;
3641 ptr->expr = NULL;
3642 ptr->pattern = x;
3643 ptr->pattern_regs = NULL_RTX;
3644 ptr->loads = NULL;
3645 ptr->stores = NULL;
3646 ptr->reaching_reg = NULL_RTX;
3647 ptr->invalid = 0;
3648 ptr->index = 0;
3649 ptr->hash_index = hash;
3650 pre_ldst_mems = ptr;
3651 *slot = ptr;
3653 return ptr;
3656 /* Free up an individual ldst entry. */
3658 static void
3659 free_ldst_entry (struct ls_expr * ptr)
3661 free_INSN_LIST_list (& ptr->loads);
3662 free_INSN_LIST_list (& ptr->stores);
3664 free (ptr);
3667 /* Free up all memory associated with the ldst list. */
3669 static void
3670 free_ld_motion_mems (void)
3672 delete pre_ldst_table;
3673 pre_ldst_table = NULL;
3675 while (pre_ldst_mems)
3677 struct ls_expr * tmp = pre_ldst_mems;
3679 pre_ldst_mems = pre_ldst_mems->next;
3681 free_ldst_entry (tmp);
3684 pre_ldst_mems = NULL;
3687 /* Dump debugging info about the ldst list. */
3689 static void
3690 print_ldst_list (FILE * file)
3692 struct ls_expr * ptr;
3694 fprintf (file, "LDST list: \n");
3696 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3698 fprintf (file, " Pattern (%3d): ", ptr->index);
3700 print_rtl (file, ptr->pattern);
3702 fprintf (file, "\n Loads : ");
3704 if (ptr->loads)
3705 print_rtl (file, ptr->loads);
3706 else
3707 fprintf (file, "(nil)");
3709 fprintf (file, "\n Stores : ");
3711 if (ptr->stores)
3712 print_rtl (file, ptr->stores);
3713 else
3714 fprintf (file, "(nil)");
3716 fprintf (file, "\n\n");
3719 fprintf (file, "\n");
3722 /* Returns 1 if X is in the list of ldst only expressions. */
3724 static struct ls_expr *
3725 find_rtx_in_ldst (rtx x)
3727 struct ls_expr e;
3728 ls_expr **slot;
3729 if (!pre_ldst_table)
3730 return NULL;
3731 e.pattern = x;
3732 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3733 if (!slot || (*slot)->invalid)
3734 return NULL;
3735 return *slot;
3738 /* Load Motion for loads which only kill themselves. */
3740 /* Return true if x, a MEM, is a simple access with no side effects.
3741 These are the types of loads we consider for the ld_motion list,
3742 otherwise we let the usual aliasing take care of it. */
3744 static int
3745 simple_mem (const_rtx x)
3747 if (MEM_VOLATILE_P (x))
3748 return 0;
3750 if (GET_MODE (x) == BLKmode)
3751 return 0;
3753 /* If we are handling exceptions, we must be careful with memory references
3754 that may trap. If we are not, the behavior is undefined, so we may just
3755 continue. */
3756 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3757 return 0;
3759 if (side_effects_p (x))
3760 return 0;
3762 /* Do not consider function arguments passed on stack. */
3763 if (reg_mentioned_p (stack_pointer_rtx, x))
3764 return 0;
3766 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3767 return 0;
3769 return 1;
3772 /* Make sure there isn't a buried reference in this pattern anywhere.
3773 If there is, invalidate the entry for it since we're not capable
3774 of fixing it up just yet.. We have to be sure we know about ALL
3775 loads since the aliasing code will allow all entries in the
3776 ld_motion list to not-alias itself. If we miss a load, we will get
3777 the wrong value since gcse might common it and we won't know to
3778 fix it up. */
3780 static void
3781 invalidate_any_buried_refs (rtx x)
3783 const char * fmt;
3784 int i, j;
3785 struct ls_expr * ptr;
3787 /* Invalidate it in the list. */
3788 if (MEM_P (x) && simple_mem (x))
3790 ptr = ldst_entry (x);
3791 ptr->invalid = 1;
3794 /* Recursively process the insn. */
3795 fmt = GET_RTX_FORMAT (GET_CODE (x));
3797 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3799 if (fmt[i] == 'e')
3800 invalidate_any_buried_refs (XEXP (x, i));
3801 else if (fmt[i] == 'E')
3802 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3803 invalidate_any_buried_refs (XVECEXP (x, i, j));
3807 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3808 being defined as MEM loads and stores to symbols, with no side effects
3809 and no registers in the expression. For a MEM destination, we also
3810 check that the insn is still valid if we replace the destination with a
3811 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3812 which don't match this criteria, they are invalidated and trimmed out
3813 later. */
3815 static void
3816 compute_ld_motion_mems (void)
3818 struct ls_expr * ptr;
3819 basic_block bb;
3820 rtx_insn *insn;
3822 pre_ldst_mems = NULL;
3823 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3825 FOR_EACH_BB_FN (bb, cfun)
3827 FOR_BB_INSNS (bb, insn)
3829 if (NONDEBUG_INSN_P (insn))
3831 if (GET_CODE (PATTERN (insn)) == SET)
3833 rtx src = SET_SRC (PATTERN (insn));
3834 rtx dest = SET_DEST (PATTERN (insn));
3835 rtx note = find_reg_equal_equiv_note (insn);
3836 rtx src_eq;
3838 /* Check for a simple LOAD... */
3839 if (MEM_P (src) && simple_mem (src))
3841 ptr = ldst_entry (src);
3842 if (REG_P (dest))
3843 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3844 else
3845 ptr->invalid = 1;
3847 else
3849 /* Make sure there isn't a buried load somewhere. */
3850 invalidate_any_buried_refs (src);
3853 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3854 src_eq = XEXP (note, 0);
3855 else
3856 src_eq = NULL_RTX;
3858 if (src_eq != NULL_RTX
3859 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3860 invalidate_any_buried_refs (src_eq);
3862 /* Check for stores. Don't worry about aliased ones, they
3863 will block any movement we might do later. We only care
3864 about this exact pattern since those are the only
3865 circumstance that we will ignore the aliasing info. */
3866 if (MEM_P (dest) && simple_mem (dest))
3868 ptr = ldst_entry (dest);
3870 if (! MEM_P (src)
3871 && GET_CODE (src) != ASM_OPERANDS
3872 /* Check for REG manually since want_to_gcse_p
3873 returns 0 for all REGs. */
3874 && can_assign_to_reg_without_clobbers_p (src))
3875 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3876 else
3877 ptr->invalid = 1;
3880 else
3881 invalidate_any_buried_refs (PATTERN (insn));
3887 /* Remove any references that have been either invalidated or are not in the
3888 expression list for pre gcse. */
3890 static void
3891 trim_ld_motion_mems (void)
3893 struct ls_expr * * last = & pre_ldst_mems;
3894 struct ls_expr * ptr = pre_ldst_mems;
3896 while (ptr != NULL)
3898 struct gcse_expr * expr;
3900 /* Delete if entry has been made invalid. */
3901 if (! ptr->invalid)
3903 /* Delete if we cannot find this mem in the expression list. */
3904 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3906 for (expr = expr_hash_table.table[hash];
3907 expr != NULL;
3908 expr = expr->next_same_hash)
3909 if (expr_equiv_p (expr->expr, ptr->pattern))
3910 break;
3912 else
3913 expr = (struct gcse_expr *) 0;
3915 if (expr)
3917 /* Set the expression field if we are keeping it. */
3918 ptr->expr = expr;
3919 last = & ptr->next;
3920 ptr = ptr->next;
3922 else
3924 *last = ptr->next;
3925 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3926 free_ldst_entry (ptr);
3927 ptr = * last;
3931 /* Show the world what we've found. */
3932 if (dump_file && pre_ldst_mems != NULL)
3933 print_ldst_list (dump_file);
3936 /* This routine will take an expression which we are replacing with
3937 a reaching register, and update any stores that are needed if
3938 that expression is in the ld_motion list. Stores are updated by
3939 copying their SRC to the reaching register, and then storing
3940 the reaching register into the store location. These keeps the
3941 correct value in the reaching register for the loads. */
3943 static void
3944 update_ld_motion_stores (struct gcse_expr * expr)
3946 struct ls_expr * mem_ptr;
3948 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3950 /* We can try to find just the REACHED stores, but is shouldn't
3951 matter to set the reaching reg everywhere... some might be
3952 dead and should be eliminated later. */
3954 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3955 where reg is the reaching reg used in the load. We checked in
3956 compute_ld_motion_mems that we can replace (set mem expr) with
3957 (set reg expr) in that insn. */
3958 rtx list = mem_ptr->stores;
3960 for ( ; list != NULL_RTX; list = XEXP (list, 1))
3962 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3963 rtx pat = PATTERN (insn);
3964 rtx src = SET_SRC (pat);
3965 rtx reg = expr->reaching_reg;
3966 rtx copy;
3968 /* If we've already copied it, continue. */
3969 if (expr->reaching_reg == src)
3970 continue;
3972 if (dump_file)
3974 fprintf (dump_file, "PRE: store updated with reaching reg ");
3975 print_rtl (dump_file, reg);
3976 fprintf (dump_file, ":\n ");
3977 print_inline_rtx (dump_file, insn, 8);
3978 fprintf (dump_file, "\n");
3981 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3982 emit_insn_before (copy, insn);
3983 SET_SRC (pat) = reg;
3984 df_insn_rescan (insn);
3986 /* un-recognize this pattern since it's probably different now. */
3987 INSN_CODE (insn) = -1;
3988 gcse_create_count++;
3993 /* Return true if the graph is too expensive to optimize. PASS is the
3994 optimization about to be performed. */
3996 static bool
3997 is_too_expensive (const char *pass)
3999 /* Trying to perform global optimizations on flow graphs which have
4000 a high connectivity will take a long time and is unlikely to be
4001 particularly useful.
4003 In normal circumstances a cfg should have about twice as many
4004 edges as blocks. But we do not want to punish small functions
4005 which have a couple switch statements. Rather than simply
4006 threshold the number of blocks, uses something with a more
4007 graceful degradation. */
4008 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4010 warning (OPT_Wdisabled_optimization,
4011 "%s: %d basic blocks and %d edges/basic block",
4012 pass, n_basic_blocks_for_fn (cfun),
4013 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4015 return true;
4018 /* If allocating memory for the dataflow bitmaps would take up too much
4019 storage it's better just to disable the optimization. */
4020 if ((n_basic_blocks_for_fn (cfun)
4021 * SBITMAP_SET_SIZE (max_reg_num ())
4022 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4024 warning (OPT_Wdisabled_optimization,
4025 "%s: %d basic blocks and %d registers",
4026 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4028 return true;
4031 return false;
4034 static unsigned int
4035 execute_rtl_pre (void)
4037 int changed;
4038 delete_unreachable_blocks ();
4039 df_analyze ();
4040 changed = one_pre_gcse_pass ();
4041 flag_rerun_cse_after_global_opts |= changed;
4042 if (changed)
4043 cleanup_cfg (0);
4044 return 0;
4047 static unsigned int
4048 execute_rtl_hoist (void)
4050 int changed;
4051 delete_unreachable_blocks ();
4052 df_analyze ();
4053 changed = one_code_hoisting_pass ();
4054 flag_rerun_cse_after_global_opts |= changed;
4055 if (changed)
4056 cleanup_cfg (0);
4057 return 0;
4060 namespace {
4062 const pass_data pass_data_rtl_pre =
4064 RTL_PASS, /* type */
4065 "rtl pre", /* name */
4066 OPTGROUP_NONE, /* optinfo_flags */
4067 TV_PRE, /* tv_id */
4068 PROP_cfglayout, /* properties_required */
4069 0, /* properties_provided */
4070 0, /* properties_destroyed */
4071 0, /* todo_flags_start */
4072 TODO_df_finish, /* todo_flags_finish */
4075 class pass_rtl_pre : public rtl_opt_pass
4077 public:
4078 pass_rtl_pre (gcc::context *ctxt)
4079 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4082 /* opt_pass methods: */
4083 virtual bool gate (function *);
4084 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4086 }; // class pass_rtl_pre
4088 /* We do not construct an accurate cfg in functions which call
4089 setjmp, so none of these passes runs if the function calls
4090 setjmp.
4091 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4093 bool
4094 pass_rtl_pre::gate (function *fun)
4096 return optimize > 0 && flag_gcse
4097 && !fun->calls_setjmp
4098 && optimize_function_for_speed_p (fun)
4099 && dbg_cnt (pre);
4102 } // anon namespace
4104 rtl_opt_pass *
4105 make_pass_rtl_pre (gcc::context *ctxt)
4107 return new pass_rtl_pre (ctxt);
4110 namespace {
4112 const pass_data pass_data_rtl_hoist =
4114 RTL_PASS, /* type */
4115 "hoist", /* name */
4116 OPTGROUP_NONE, /* optinfo_flags */
4117 TV_HOIST, /* tv_id */
4118 PROP_cfglayout, /* properties_required */
4119 0, /* properties_provided */
4120 0, /* properties_destroyed */
4121 0, /* todo_flags_start */
4122 TODO_df_finish, /* todo_flags_finish */
4125 class pass_rtl_hoist : public rtl_opt_pass
4127 public:
4128 pass_rtl_hoist (gcc::context *ctxt)
4129 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4132 /* opt_pass methods: */
4133 virtual bool gate (function *);
4134 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4136 }; // class pass_rtl_hoist
4138 bool
4139 pass_rtl_hoist::gate (function *)
4141 return optimize > 0 && flag_gcse
4142 && !cfun->calls_setjmp
4143 /* It does not make sense to run code hoisting unless we are optimizing
4144 for code size -- it rarely makes programs faster, and can make then
4145 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4146 && optimize_function_for_size_p (cfun)
4147 && dbg_cnt (hoist);
4150 } // anon namespace
4152 rtl_opt_pass *
4153 make_pass_rtl_hoist (gcc::context *ctxt)
4155 return new pass_rtl_hoist (ctxt);
4158 /* Reset all state within gcse.c so that we can rerun the compiler
4159 within the same process. For use by toplev::finalize. */
4161 void
4162 gcse_c_finalize (void)
4164 test_insn = NULL;
4167 #include "gt-gcse.h"