c-family/
[official-gcc.git] / gcc / jump.c
blobacc96341d651ba030facec37ca249d15106585b0
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
24 operate with jumps.
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes. For return insns, it contains either a
33 RETURN or a SIMPLE_RETURN rtx.
35 The subroutines redirect_jump and invert_jump are used
36 from other passes as well. */
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "rtl.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "insn-attr.h"
49 #include "recog.h"
50 #include "function.h"
51 #include "basic-block.h"
52 #include "expr.h"
53 #include "except.h"
54 #include "diagnostic-core.h"
55 #include "reload.h"
56 #include "predict.h"
57 #include "tree-pass.h"
58 #include "target.h"
60 /* Optimize jump y; x: ... y: jumpif... x?
61 Don't know if it is worth bothering with. */
62 /* Optimize two cases of conditional jump to conditional jump?
63 This can never delete any instruction or make anything dead,
64 or even change what is live at any point.
65 So perhaps let combiner do it. */
67 static void init_label_info (rtx);
68 static void mark_all_labels (rtx);
69 static void mark_jump_label_1 (rtx, rtx, bool, bool);
70 static void mark_jump_label_asm (rtx, rtx);
71 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
72 static int invert_exp_1 (rtx, rtx);
73 static int returnjump_p_1 (rtx *, void *);
75 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
76 static void
77 rebuild_jump_labels_1 (rtx f, bool count_forced)
79 rtx insn;
81 timevar_push (TV_REBUILD_JUMP);
82 init_label_info (f);
83 mark_all_labels (f);
85 /* Keep track of labels used from static data; we don't track them
86 closely enough to delete them here, so make sure their reference
87 count doesn't drop to zero. */
89 if (count_forced)
90 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
91 if (LABEL_P (XEXP (insn, 0)))
92 LABEL_NUSES (XEXP (insn, 0))++;
93 timevar_pop (TV_REBUILD_JUMP);
96 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
97 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
98 instructions and jumping insns that have labels as operands
99 (e.g. cbranchsi4). */
100 void
101 rebuild_jump_labels (rtx f)
103 rebuild_jump_labels_1 (f, true);
106 /* This function is like rebuild_jump_labels, but doesn't run over
107 forced_labels. It can be used on insn chains that aren't the
108 main function chain. */
109 void
110 rebuild_jump_labels_chain (rtx chain)
112 rebuild_jump_labels_1 (chain, false);
115 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
116 non-fallthru insn. This is not generally true, as multiple barriers
117 may have crept in, or the BARRIER may be separated from the last
118 real insn by one or more NOTEs.
120 This simple pass moves barriers and removes duplicates so that the
121 old code is happy.
123 unsigned int
124 cleanup_barriers (void)
126 rtx insn, next, prev;
127 for (insn = get_insns (); insn; insn = next)
129 next = NEXT_INSN (insn);
130 if (BARRIER_P (insn))
132 prev = prev_nonnote_insn (insn);
133 if (!prev)
134 continue;
135 if (BARRIER_P (prev))
136 delete_insn (insn);
137 else if (prev != PREV_INSN (insn))
138 reorder_insns (insn, insn, prev);
141 return 0;
144 struct rtl_opt_pass pass_cleanup_barriers =
147 RTL_PASS,
148 "barriers", /* name */
149 NULL, /* gate */
150 cleanup_barriers, /* execute */
151 NULL, /* sub */
152 NULL, /* next */
153 0, /* static_pass_number */
154 TV_NONE, /* tv_id */
155 0, /* properties_required */
156 0, /* properties_provided */
157 0, /* properties_destroyed */
158 0, /* todo_flags_start */
159 0 /* todo_flags_finish */
164 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
165 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
166 notes whose labels don't occur in the insn any more. */
168 static void
169 init_label_info (rtx f)
171 rtx insn;
173 for (insn = f; insn; insn = NEXT_INSN (insn))
175 if (LABEL_P (insn))
176 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
178 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
179 sticky and not reset here; that way we won't lose association
180 with a label when e.g. the source for a target register
181 disappears out of reach for targets that may use jump-target
182 registers. Jump transformations are supposed to transform
183 any REG_LABEL_TARGET notes. The target label reference in a
184 branch may disappear from the branch (and from the
185 instruction before it) for other reasons, like register
186 allocation. */
188 if (INSN_P (insn))
190 rtx note, next;
192 for (note = REG_NOTES (insn); note; note = next)
194 next = XEXP (note, 1);
195 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
196 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
197 remove_note (insn, note);
203 /* A subroutine of mark_all_labels. Trivially propagate a simple label
204 load into a jump_insn that uses it. */
206 static void
207 maybe_propagate_label_ref (rtx jump_insn, rtx prev_nonjump_insn)
209 rtx label_note, pc, pc_src;
211 pc = pc_set (jump_insn);
212 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
213 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
215 /* If the previous non-jump insn sets something to a label,
216 something that this jump insn uses, make that label the primary
217 target of this insn if we don't yet have any. That previous
218 insn must be a single_set and not refer to more than one label.
219 The jump insn must not refer to other labels as jump targets
220 and must be a plain (set (pc) ...), maybe in a parallel, and
221 may refer to the item being set only directly or as one of the
222 arms in an IF_THEN_ELSE. */
224 if (label_note != NULL && pc_src != NULL)
226 rtx label_set = single_set (prev_nonjump_insn);
227 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
229 if (label_set != NULL
230 /* The source must be the direct LABEL_REF, not a
231 PLUS, UNSPEC, IF_THEN_ELSE etc. */
232 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
233 && (rtx_equal_p (label_dest, pc_src)
234 || (GET_CODE (pc_src) == IF_THEN_ELSE
235 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
236 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
238 /* The CODE_LABEL referred to in the note must be the
239 CODE_LABEL in the LABEL_REF of the "set". We can
240 conveniently use it for the marker function, which
241 requires a LABEL_REF wrapping. */
242 gcc_assert (XEXP (label_note, 0) == XEXP (SET_SRC (label_set), 0));
244 mark_jump_label_1 (label_set, jump_insn, false, true);
246 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
251 /* Mark the label each jump jumps to.
252 Combine consecutive labels, and count uses of labels. */
254 static void
255 mark_all_labels (rtx f)
257 rtx insn;
259 if (current_ir_type () == IR_RTL_CFGLAYOUT)
261 basic_block bb;
262 FOR_EACH_BB (bb)
264 /* In cfglayout mode, we don't bother with trivial next-insn
265 propagation of LABEL_REFs into JUMP_LABEL. This will be
266 handled by other optimizers using better algorithms. */
267 FOR_BB_INSNS (bb, insn)
269 gcc_assert (! INSN_DELETED_P (insn));
270 if (NONDEBUG_INSN_P (insn))
271 mark_jump_label (PATTERN (insn), insn, 0);
274 /* In cfglayout mode, there may be non-insns between the
275 basic blocks. If those non-insns represent tablejump data,
276 they contain label references that we must record. */
277 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
278 if (INSN_P (insn))
280 gcc_assert (JUMP_TABLE_DATA_P (insn));
281 mark_jump_label (PATTERN (insn), insn, 0);
283 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
284 if (INSN_P (insn))
286 gcc_assert (JUMP_TABLE_DATA_P (insn));
287 mark_jump_label (PATTERN (insn), insn, 0);
291 else
293 rtx prev_nonjump_insn = NULL;
294 for (insn = f; insn; insn = NEXT_INSN (insn))
296 if (INSN_DELETED_P (insn))
298 else if (LABEL_P (insn))
299 prev_nonjump_insn = NULL;
300 else if (NONDEBUG_INSN_P (insn))
302 mark_jump_label (PATTERN (insn), insn, 0);
303 if (JUMP_P (insn))
305 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
306 maybe_propagate_label_ref (insn, prev_nonjump_insn);
308 else
309 prev_nonjump_insn = insn;
315 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
316 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
317 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
318 know whether it's source is floating point or integer comparison. Machine
319 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
320 to help this function avoid overhead in these cases. */
321 enum rtx_code
322 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
323 const_rtx arg1, const_rtx insn)
325 enum machine_mode mode;
327 /* If this is not actually a comparison, we can't reverse it. */
328 if (GET_RTX_CLASS (code) != RTX_COMPARE
329 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
330 return UNKNOWN;
332 mode = GET_MODE (arg0);
333 if (mode == VOIDmode)
334 mode = GET_MODE (arg1);
336 /* First see if machine description supplies us way to reverse the
337 comparison. Give it priority over everything else to allow
338 machine description to do tricks. */
339 if (GET_MODE_CLASS (mode) == MODE_CC
340 && REVERSIBLE_CC_MODE (mode))
342 #ifdef REVERSE_CONDITION
343 return REVERSE_CONDITION (code, mode);
344 #else
345 return reverse_condition (code);
346 #endif
349 /* Try a few special cases based on the comparison code. */
350 switch (code)
352 case GEU:
353 case GTU:
354 case LEU:
355 case LTU:
356 case NE:
357 case EQ:
358 /* It is always safe to reverse EQ and NE, even for the floating
359 point. Similarly the unsigned comparisons are never used for
360 floating point so we can reverse them in the default way. */
361 return reverse_condition (code);
362 case ORDERED:
363 case UNORDERED:
364 case LTGT:
365 case UNEQ:
366 /* In case we already see unordered comparison, we can be sure to
367 be dealing with floating point so we don't need any more tests. */
368 return reverse_condition_maybe_unordered (code);
369 case UNLT:
370 case UNLE:
371 case UNGT:
372 case UNGE:
373 /* We don't have safe way to reverse these yet. */
374 return UNKNOWN;
375 default:
376 break;
379 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
381 const_rtx prev;
382 /* Try to search for the comparison to determine the real mode.
383 This code is expensive, but with sane machine description it
384 will be never used, since REVERSIBLE_CC_MODE will return true
385 in all cases. */
386 if (! insn)
387 return UNKNOWN;
389 /* These CONST_CAST's are okay because prev_nonnote_insn just
390 returns its argument and we assign it to a const_rtx
391 variable. */
392 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
393 prev != 0 && !LABEL_P (prev);
394 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
396 const_rtx set = set_of (arg0, prev);
397 if (set && GET_CODE (set) == SET
398 && rtx_equal_p (SET_DEST (set), arg0))
400 rtx src = SET_SRC (set);
402 if (GET_CODE (src) == COMPARE)
404 rtx comparison = src;
405 arg0 = XEXP (src, 0);
406 mode = GET_MODE (arg0);
407 if (mode == VOIDmode)
408 mode = GET_MODE (XEXP (comparison, 1));
409 break;
411 /* We can get past reg-reg moves. This may be useful for model
412 of i387 comparisons that first move flag registers around. */
413 if (REG_P (src))
415 arg0 = src;
416 continue;
419 /* If register is clobbered in some ununderstandable way,
420 give up. */
421 if (set)
422 return UNKNOWN;
426 /* Test for an integer condition, or a floating-point comparison
427 in which NaNs can be ignored. */
428 if (CONST_INT_P (arg0)
429 || (GET_MODE (arg0) != VOIDmode
430 && GET_MODE_CLASS (mode) != MODE_CC
431 && !HONOR_NANS (mode)))
432 return reverse_condition (code);
434 return UNKNOWN;
437 /* A wrapper around the previous function to take COMPARISON as rtx
438 expression. This simplifies many callers. */
439 enum rtx_code
440 reversed_comparison_code (const_rtx comparison, const_rtx insn)
442 if (!COMPARISON_P (comparison))
443 return UNKNOWN;
444 return reversed_comparison_code_parts (GET_CODE (comparison),
445 XEXP (comparison, 0),
446 XEXP (comparison, 1), insn);
449 /* Return comparison with reversed code of EXP.
450 Return NULL_RTX in case we fail to do the reversal. */
452 reversed_comparison (const_rtx exp, enum machine_mode mode)
454 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
455 if (reversed_code == UNKNOWN)
456 return NULL_RTX;
457 else
458 return simplify_gen_relational (reversed_code, mode, VOIDmode,
459 XEXP (exp, 0), XEXP (exp, 1));
463 /* Given an rtx-code for a comparison, return the code for the negated
464 comparison. If no such code exists, return UNKNOWN.
466 WATCH OUT! reverse_condition is not safe to use on a jump that might
467 be acting on the results of an IEEE floating point comparison, because
468 of the special treatment of non-signaling nans in comparisons.
469 Use reversed_comparison_code instead. */
471 enum rtx_code
472 reverse_condition (enum rtx_code code)
474 switch (code)
476 case EQ:
477 return NE;
478 case NE:
479 return EQ;
480 case GT:
481 return LE;
482 case GE:
483 return LT;
484 case LT:
485 return GE;
486 case LE:
487 return GT;
488 case GTU:
489 return LEU;
490 case GEU:
491 return LTU;
492 case LTU:
493 return GEU;
494 case LEU:
495 return GTU;
496 case UNORDERED:
497 return ORDERED;
498 case ORDERED:
499 return UNORDERED;
501 case UNLT:
502 case UNLE:
503 case UNGT:
504 case UNGE:
505 case UNEQ:
506 case LTGT:
507 return UNKNOWN;
509 default:
510 gcc_unreachable ();
514 /* Similar, but we're allowed to generate unordered comparisons, which
515 makes it safe for IEEE floating-point. Of course, we have to recognize
516 that the target will support them too... */
518 enum rtx_code
519 reverse_condition_maybe_unordered (enum rtx_code code)
521 switch (code)
523 case EQ:
524 return NE;
525 case NE:
526 return EQ;
527 case GT:
528 return UNLE;
529 case GE:
530 return UNLT;
531 case LT:
532 return UNGE;
533 case LE:
534 return UNGT;
535 case LTGT:
536 return UNEQ;
537 case UNORDERED:
538 return ORDERED;
539 case ORDERED:
540 return UNORDERED;
541 case UNLT:
542 return GE;
543 case UNLE:
544 return GT;
545 case UNGT:
546 return LE;
547 case UNGE:
548 return LT;
549 case UNEQ:
550 return LTGT;
552 default:
553 gcc_unreachable ();
557 /* Similar, but return the code when two operands of a comparison are swapped.
558 This IS safe for IEEE floating-point. */
560 enum rtx_code
561 swap_condition (enum rtx_code code)
563 switch (code)
565 case EQ:
566 case NE:
567 case UNORDERED:
568 case ORDERED:
569 case UNEQ:
570 case LTGT:
571 return code;
573 case GT:
574 return LT;
575 case GE:
576 return LE;
577 case LT:
578 return GT;
579 case LE:
580 return GE;
581 case GTU:
582 return LTU;
583 case GEU:
584 return LEU;
585 case LTU:
586 return GTU;
587 case LEU:
588 return GEU;
589 case UNLT:
590 return UNGT;
591 case UNLE:
592 return UNGE;
593 case UNGT:
594 return UNLT;
595 case UNGE:
596 return UNLE;
598 default:
599 gcc_unreachable ();
603 /* Given a comparison CODE, return the corresponding unsigned comparison.
604 If CODE is an equality comparison or already an unsigned comparison,
605 CODE is returned. */
607 enum rtx_code
608 unsigned_condition (enum rtx_code code)
610 switch (code)
612 case EQ:
613 case NE:
614 case GTU:
615 case GEU:
616 case LTU:
617 case LEU:
618 return code;
620 case GT:
621 return GTU;
622 case GE:
623 return GEU;
624 case LT:
625 return LTU;
626 case LE:
627 return LEU;
629 default:
630 gcc_unreachable ();
634 /* Similarly, return the signed version of a comparison. */
636 enum rtx_code
637 signed_condition (enum rtx_code code)
639 switch (code)
641 case EQ:
642 case NE:
643 case GT:
644 case GE:
645 case LT:
646 case LE:
647 return code;
649 case GTU:
650 return GT;
651 case GEU:
652 return GE;
653 case LTU:
654 return LT;
655 case LEU:
656 return LE;
658 default:
659 gcc_unreachable ();
663 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
664 truth of CODE1 implies the truth of CODE2. */
667 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
669 /* UNKNOWN comparison codes can happen as a result of trying to revert
670 comparison codes.
671 They can't match anything, so we have to reject them here. */
672 if (code1 == UNKNOWN || code2 == UNKNOWN)
673 return 0;
675 if (code1 == code2)
676 return 1;
678 switch (code1)
680 case UNEQ:
681 if (code2 == UNLE || code2 == UNGE)
682 return 1;
683 break;
685 case EQ:
686 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
687 || code2 == ORDERED)
688 return 1;
689 break;
691 case UNLT:
692 if (code2 == UNLE || code2 == NE)
693 return 1;
694 break;
696 case LT:
697 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
698 return 1;
699 break;
701 case UNGT:
702 if (code2 == UNGE || code2 == NE)
703 return 1;
704 break;
706 case GT:
707 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
708 return 1;
709 break;
711 case GE:
712 case LE:
713 if (code2 == ORDERED)
714 return 1;
715 break;
717 case LTGT:
718 if (code2 == NE || code2 == ORDERED)
719 return 1;
720 break;
722 case LTU:
723 if (code2 == LEU || code2 == NE)
724 return 1;
725 break;
727 case GTU:
728 if (code2 == GEU || code2 == NE)
729 return 1;
730 break;
732 case UNORDERED:
733 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
734 || code2 == UNGE || code2 == UNGT)
735 return 1;
736 break;
738 default:
739 break;
742 return 0;
745 /* Return 1 if INSN is an unconditional jump and nothing else. */
748 simplejump_p (const_rtx insn)
750 return (JUMP_P (insn)
751 && GET_CODE (PATTERN (insn)) == SET
752 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
753 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
756 /* Return nonzero if INSN is a (possibly) conditional jump
757 and nothing more.
759 Use of this function is deprecated, since we need to support combined
760 branch and compare insns. Use any_condjump_p instead whenever possible. */
763 condjump_p (const_rtx insn)
765 const_rtx x = PATTERN (insn);
767 if (GET_CODE (x) != SET
768 || GET_CODE (SET_DEST (x)) != PC)
769 return 0;
771 x = SET_SRC (x);
772 if (GET_CODE (x) == LABEL_REF)
773 return 1;
774 else
775 return (GET_CODE (x) == IF_THEN_ELSE
776 && ((GET_CODE (XEXP (x, 2)) == PC
777 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
778 || ANY_RETURN_P (XEXP (x, 1))))
779 || (GET_CODE (XEXP (x, 1)) == PC
780 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
781 || ANY_RETURN_P (XEXP (x, 2))))));
784 /* Return nonzero if INSN is a (possibly) conditional jump inside a
785 PARALLEL.
787 Use this function is deprecated, since we need to support combined
788 branch and compare insns. Use any_condjump_p instead whenever possible. */
791 condjump_in_parallel_p (const_rtx insn)
793 const_rtx x = PATTERN (insn);
795 if (GET_CODE (x) != PARALLEL)
796 return 0;
797 else
798 x = XVECEXP (x, 0, 0);
800 if (GET_CODE (x) != SET)
801 return 0;
802 if (GET_CODE (SET_DEST (x)) != PC)
803 return 0;
804 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
805 return 1;
806 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
807 return 0;
808 if (XEXP (SET_SRC (x), 2) == pc_rtx
809 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
810 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
811 return 1;
812 if (XEXP (SET_SRC (x), 1) == pc_rtx
813 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
814 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
815 return 1;
816 return 0;
819 /* Return set of PC, otherwise NULL. */
822 pc_set (const_rtx insn)
824 rtx pat;
825 if (!JUMP_P (insn))
826 return NULL_RTX;
827 pat = PATTERN (insn);
829 /* The set is allowed to appear either as the insn pattern or
830 the first set in a PARALLEL. */
831 if (GET_CODE (pat) == PARALLEL)
832 pat = XVECEXP (pat, 0, 0);
833 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
834 return pat;
836 return NULL_RTX;
839 /* Return true when insn is an unconditional direct jump,
840 possibly bundled inside a PARALLEL. */
843 any_uncondjump_p (const_rtx insn)
845 const_rtx x = pc_set (insn);
846 if (!x)
847 return 0;
848 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
849 return 0;
850 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
851 return 0;
852 return 1;
855 /* Return true when insn is a conditional jump. This function works for
856 instructions containing PC sets in PARALLELs. The instruction may have
857 various other effects so before removing the jump you must verify
858 onlyjump_p.
860 Note that unlike condjump_p it returns false for unconditional jumps. */
863 any_condjump_p (const_rtx insn)
865 const_rtx x = pc_set (insn);
866 enum rtx_code a, b;
868 if (!x)
869 return 0;
870 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
871 return 0;
873 a = GET_CODE (XEXP (SET_SRC (x), 1));
874 b = GET_CODE (XEXP (SET_SRC (x), 2));
876 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
877 || (a == PC
878 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
881 /* Return the label of a conditional jump. */
884 condjump_label (const_rtx insn)
886 rtx x = pc_set (insn);
888 if (!x)
889 return NULL_RTX;
890 x = SET_SRC (x);
891 if (GET_CODE (x) == LABEL_REF)
892 return x;
893 if (GET_CODE (x) != IF_THEN_ELSE)
894 return NULL_RTX;
895 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
896 return XEXP (x, 1);
897 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
898 return XEXP (x, 2);
899 return NULL_RTX;
902 /* Return true if INSN is a (possibly conditional) return insn. */
904 static int
905 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
907 rtx x = *loc;
909 if (x == NULL)
910 return false;
912 switch (GET_CODE (x))
914 case RETURN:
915 case SIMPLE_RETURN:
916 case EH_RETURN:
917 return true;
919 case SET:
920 return SET_IS_RETURN_P (x);
922 default:
923 return false;
927 /* Return TRUE if INSN is a return jump. */
930 returnjump_p (rtx insn)
932 if (!JUMP_P (insn))
933 return 0;
934 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
937 /* Return true if INSN is a (possibly conditional) return insn. */
939 static int
940 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
942 return *loc && GET_CODE (*loc) == EH_RETURN;
946 eh_returnjump_p (rtx insn)
948 if (!JUMP_P (insn))
949 return 0;
950 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
953 /* Return true if INSN is a jump that only transfers control and
954 nothing more. */
957 onlyjump_p (const_rtx insn)
959 rtx set;
961 if (!JUMP_P (insn))
962 return 0;
964 set = single_set (insn);
965 if (set == NULL)
966 return 0;
967 if (GET_CODE (SET_DEST (set)) != PC)
968 return 0;
969 if (side_effects_p (SET_SRC (set)))
970 return 0;
972 return 1;
975 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
976 NULL or a return. */
977 bool
978 jump_to_label_p (rtx insn)
980 return (JUMP_P (insn)
981 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
984 #ifdef HAVE_cc0
986 /* Return nonzero if X is an RTX that only sets the condition codes
987 and has no side effects. */
990 only_sets_cc0_p (const_rtx x)
992 if (! x)
993 return 0;
995 if (INSN_P (x))
996 x = PATTERN (x);
998 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1001 /* Return 1 if X is an RTX that does nothing but set the condition codes
1002 and CLOBBER or USE registers.
1003 Return -1 if X does explicitly set the condition codes,
1004 but also does other things. */
1007 sets_cc0_p (const_rtx x)
1009 if (! x)
1010 return 0;
1012 if (INSN_P (x))
1013 x = PATTERN (x);
1015 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1016 return 1;
1017 if (GET_CODE (x) == PARALLEL)
1019 int i;
1020 int sets_cc0 = 0;
1021 int other_things = 0;
1022 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1024 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1025 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1026 sets_cc0 = 1;
1027 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1028 other_things = 1;
1030 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1032 return 0;
1034 #endif
1036 /* Find all CODE_LABELs referred to in X, and increment their use
1037 counts. If INSN is a JUMP_INSN and there is at least one
1038 CODE_LABEL referenced in INSN as a jump target, then store the last
1039 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1040 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1041 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1042 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1043 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1044 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1046 Note that two labels separated by a loop-beginning note
1047 must be kept distinct if we have not yet done loop-optimization,
1048 because the gap between them is where loop-optimize
1049 will want to move invariant code to. CROSS_JUMP tells us
1050 that loop-optimization is done with. */
1052 void
1053 mark_jump_label (rtx x, rtx insn, int in_mem)
1055 rtx asmop = extract_asm_operands (x);
1056 if (asmop)
1057 mark_jump_label_asm (asmop, insn);
1058 else
1059 mark_jump_label_1 (x, insn, in_mem != 0,
1060 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1063 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1064 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1065 jump-target; when the JUMP_LABEL field of INSN should be set or a
1066 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1067 note. */
1069 static void
1070 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1072 RTX_CODE code = GET_CODE (x);
1073 int i;
1074 const char *fmt;
1076 switch (code)
1078 case PC:
1079 case CC0:
1080 case REG:
1081 case CLOBBER:
1082 case CALL:
1083 return;
1085 case RETURN:
1086 case SIMPLE_RETURN:
1087 if (is_target)
1089 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1090 JUMP_LABEL (insn) = x;
1092 return;
1094 case MEM:
1095 in_mem = true;
1096 break;
1098 case SEQUENCE:
1099 for (i = 0; i < XVECLEN (x, 0); i++)
1100 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1101 XVECEXP (x, 0, i), 0);
1102 return;
1104 case SYMBOL_REF:
1105 if (!in_mem)
1106 return;
1108 /* If this is a constant-pool reference, see if it is a label. */
1109 if (CONSTANT_POOL_ADDRESS_P (x))
1110 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1111 break;
1113 /* Handle operands in the condition of an if-then-else as for a
1114 non-jump insn. */
1115 case IF_THEN_ELSE:
1116 if (!is_target)
1117 break;
1118 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1119 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1120 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1121 return;
1123 case LABEL_REF:
1125 rtx label = XEXP (x, 0);
1127 /* Ignore remaining references to unreachable labels that
1128 have been deleted. */
1129 if (NOTE_P (label)
1130 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1131 break;
1133 gcc_assert (LABEL_P (label));
1135 /* Ignore references to labels of containing functions. */
1136 if (LABEL_REF_NONLOCAL_P (x))
1137 break;
1139 XEXP (x, 0) = label;
1140 if (! insn || ! INSN_DELETED_P (insn))
1141 ++LABEL_NUSES (label);
1143 if (insn)
1145 if (is_target
1146 /* Do not change a previous setting of JUMP_LABEL. If the
1147 JUMP_LABEL slot is occupied by a different label,
1148 create a note for this label. */
1149 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1150 JUMP_LABEL (insn) = label;
1151 else
1153 enum reg_note kind
1154 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1156 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1157 for LABEL unless there already is one. All uses of
1158 a label, except for the primary target of a jump,
1159 must have such a note. */
1160 if (! find_reg_note (insn, kind, label))
1161 add_reg_note (insn, kind, label);
1164 return;
1167 /* Do walk the labels in a vector, but not the first operand of an
1168 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1169 case ADDR_VEC:
1170 case ADDR_DIFF_VEC:
1171 if (! INSN_DELETED_P (insn))
1173 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1175 for (i = 0; i < XVECLEN (x, eltnum); i++)
1176 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1177 is_target);
1179 return;
1181 default:
1182 break;
1185 fmt = GET_RTX_FORMAT (code);
1187 /* The primary target of a tablejump is the label of the ADDR_VEC,
1188 which is canonically mentioned *last* in the insn. To get it
1189 marked as JUMP_LABEL, we iterate over items in reverse order. */
1190 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1192 if (fmt[i] == 'e')
1193 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1194 else if (fmt[i] == 'E')
1196 int j;
1198 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1199 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1200 is_target);
1205 /* Worker function for mark_jump_label. Handle asm insns specially.
1206 In particular, output operands need not be considered so we can
1207 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1208 need to be considered targets. */
1210 static void
1211 mark_jump_label_asm (rtx asmop, rtx insn)
1213 int i;
1215 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1216 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1218 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1219 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1222 /* Delete insn INSN from the chain of insns and update label ref counts
1223 and delete insns now unreachable.
1225 Returns the first insn after INSN that was not deleted.
1227 Usage of this instruction is deprecated. Use delete_insn instead and
1228 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1231 delete_related_insns (rtx insn)
1233 int was_code_label = (LABEL_P (insn));
1234 rtx note;
1235 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1237 while (next && INSN_DELETED_P (next))
1238 next = NEXT_INSN (next);
1240 /* This insn is already deleted => return first following nondeleted. */
1241 if (INSN_DELETED_P (insn))
1242 return next;
1244 delete_insn (insn);
1246 /* If instruction is followed by a barrier,
1247 delete the barrier too. */
1249 if (next != 0 && BARRIER_P (next))
1250 delete_insn (next);
1252 /* If this is a call, then we have to remove the var tracking note
1253 for the call arguments. */
1255 if (CALL_P (insn)
1256 || (NONJUMP_INSN_P (insn)
1257 && GET_CODE (PATTERN (insn)) == SEQUENCE
1258 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1260 rtx p;
1262 for (p = next && INSN_DELETED_P (next) ? NEXT_INSN (next) : next;
1263 p && NOTE_P (p);
1264 p = NEXT_INSN (p))
1265 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1267 remove_insn (p);
1268 break;
1272 /* If deleting a jump, decrement the count of the label,
1273 and delete the label if it is now unused. */
1275 if (jump_to_label_p (insn))
1277 rtx lab = JUMP_LABEL (insn), lab_next;
1279 if (LABEL_NUSES (lab) == 0)
1280 /* This can delete NEXT or PREV,
1281 either directly if NEXT is JUMP_LABEL (INSN),
1282 or indirectly through more levels of jumps. */
1283 delete_related_insns (lab);
1284 else if (tablejump_p (insn, NULL, &lab_next))
1286 /* If we're deleting the tablejump, delete the dispatch table.
1287 We may not be able to kill the label immediately preceding
1288 just yet, as it might be referenced in code leading up to
1289 the tablejump. */
1290 delete_related_insns (lab_next);
1294 /* Likewise if we're deleting a dispatch table. */
1296 if (JUMP_TABLE_DATA_P (insn))
1298 rtx pat = PATTERN (insn);
1299 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1300 int len = XVECLEN (pat, diff_vec_p);
1302 for (i = 0; i < len; i++)
1303 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1304 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1305 while (next && INSN_DELETED_P (next))
1306 next = NEXT_INSN (next);
1307 return next;
1310 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1311 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1312 if (INSN_P (insn))
1313 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1314 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1315 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1316 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1317 && LABEL_P (XEXP (note, 0)))
1318 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1319 delete_related_insns (XEXP (note, 0));
1321 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1322 prev = PREV_INSN (prev);
1324 /* If INSN was a label and a dispatch table follows it,
1325 delete the dispatch table. The tablejump must have gone already.
1326 It isn't useful to fall through into a table. */
1328 if (was_code_label
1329 && NEXT_INSN (insn) != 0
1330 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1331 next = delete_related_insns (NEXT_INSN (insn));
1333 /* If INSN was a label, delete insns following it if now unreachable. */
1335 if (was_code_label && prev && BARRIER_P (prev))
1337 enum rtx_code code;
1338 while (next)
1340 code = GET_CODE (next);
1341 if (code == NOTE)
1342 next = NEXT_INSN (next);
1343 /* Keep going past other deleted labels to delete what follows. */
1344 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1345 next = NEXT_INSN (next);
1346 else if (code == BARRIER || INSN_P (next))
1347 /* Note: if this deletes a jump, it can cause more
1348 deletion of unreachable code, after a different label.
1349 As long as the value from this recursive call is correct,
1350 this invocation functions correctly. */
1351 next = delete_related_insns (next);
1352 else
1353 break;
1357 /* I feel a little doubtful about this loop,
1358 but I see no clean and sure alternative way
1359 to find the first insn after INSN that is not now deleted.
1360 I hope this works. */
1361 while (next && INSN_DELETED_P (next))
1362 next = NEXT_INSN (next);
1363 return next;
1366 /* Delete a range of insns from FROM to TO, inclusive.
1367 This is for the sake of peephole optimization, so assume
1368 that whatever these insns do will still be done by a new
1369 peephole insn that will replace them. */
1371 void
1372 delete_for_peephole (rtx from, rtx to)
1374 rtx insn = from;
1376 while (1)
1378 rtx next = NEXT_INSN (insn);
1379 rtx prev = PREV_INSN (insn);
1381 if (!NOTE_P (insn))
1383 INSN_DELETED_P (insn) = 1;
1385 /* Patch this insn out of the chain. */
1386 /* We don't do this all at once, because we
1387 must preserve all NOTEs. */
1388 if (prev)
1389 NEXT_INSN (prev) = next;
1391 if (next)
1392 PREV_INSN (next) = prev;
1395 if (insn == to)
1396 break;
1397 insn = next;
1400 /* Note that if TO is an unconditional jump
1401 we *do not* delete the BARRIER that follows,
1402 since the peephole that replaces this sequence
1403 is also an unconditional jump in that case. */
1406 /* A helper function for redirect_exp_1; examines its input X and returns
1407 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1408 static rtx
1409 redirect_target (rtx x)
1411 if (x == NULL_RTX)
1412 return ret_rtx;
1413 if (!ANY_RETURN_P (x))
1414 return gen_rtx_LABEL_REF (Pmode, x);
1415 return x;
1418 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1419 NLABEL as a return. Accrue modifications into the change group. */
1421 static void
1422 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1424 rtx x = *loc;
1425 RTX_CODE code = GET_CODE (x);
1426 int i;
1427 const char *fmt;
1429 if ((code == LABEL_REF && XEXP (x, 0) == olabel)
1430 || x == olabel)
1432 x = redirect_target (nlabel);
1433 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1434 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1435 validate_change (insn, loc, x, 1);
1436 return;
1439 if (code == SET && SET_DEST (x) == pc_rtx
1440 && ANY_RETURN_P (nlabel)
1441 && GET_CODE (SET_SRC (x)) == LABEL_REF
1442 && XEXP (SET_SRC (x), 0) == olabel)
1444 validate_change (insn, loc, nlabel, 1);
1445 return;
1448 if (code == IF_THEN_ELSE)
1450 /* Skip the condition of an IF_THEN_ELSE. We only want to
1451 change jump destinations, not eventual label comparisons. */
1452 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1453 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1454 return;
1457 fmt = GET_RTX_FORMAT (code);
1458 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1460 if (fmt[i] == 'e')
1461 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1462 else if (fmt[i] == 'E')
1464 int j;
1465 for (j = 0; j < XVECLEN (x, i); j++)
1466 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1471 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1472 the modifications into the change group. Return false if we did
1473 not see how to do that. */
1476 redirect_jump_1 (rtx jump, rtx nlabel)
1478 int ochanges = num_validated_changes ();
1479 rtx *loc, asmop;
1481 gcc_assert (nlabel != NULL_RTX);
1482 asmop = extract_asm_operands (PATTERN (jump));
1483 if (asmop)
1485 if (nlabel == NULL)
1486 return 0;
1487 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1488 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1490 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1491 loc = &XVECEXP (PATTERN (jump), 0, 0);
1492 else
1493 loc = &PATTERN (jump);
1495 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1496 return num_validated_changes () > ochanges;
1499 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1500 jump target label is unused as a result, it and the code following
1501 it may be deleted.
1503 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1504 in that case we are to turn the jump into a (possibly conditional)
1505 return insn.
1507 The return value will be 1 if the change was made, 0 if it wasn't
1508 (this can only occur when trying to produce return insns). */
1511 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1513 rtx olabel = JUMP_LABEL (jump);
1515 if (!nlabel)
1517 /* If there is no label, we are asked to redirect to the EXIT block.
1518 When before the epilogue is emitted, return/simple_return cannot be
1519 created so we return 0 immediately. After the epilogue is emitted,
1520 we always expect a label, either a non-null label, or a
1521 return/simple_return RTX. */
1523 if (!epilogue_completed)
1524 return 0;
1525 gcc_unreachable ();
1528 if (nlabel == olabel)
1529 return 1;
1531 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1532 return 0;
1534 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1535 return 1;
1538 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1539 NLABEL in JUMP.
1540 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1541 count has dropped to zero. */
1542 void
1543 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1544 int invert)
1546 rtx note;
1548 gcc_assert (JUMP_LABEL (jump) == olabel);
1550 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1551 moving FUNCTION_END note. Just sanity check that no user still worry
1552 about this. */
1553 gcc_assert (delete_unused >= 0);
1554 JUMP_LABEL (jump) = nlabel;
1555 if (!ANY_RETURN_P (nlabel))
1556 ++LABEL_NUSES (nlabel);
1558 /* Update labels in any REG_EQUAL note. */
1559 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1561 if (ANY_RETURN_P (nlabel)
1562 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1563 remove_note (jump, note);
1564 else
1566 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1567 confirm_change_group ();
1571 if (!ANY_RETURN_P (olabel)
1572 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1573 /* Undefined labels will remain outside the insn stream. */
1574 && INSN_UID (olabel))
1575 delete_related_insns (olabel);
1576 if (invert)
1577 invert_br_probabilities (jump);
1580 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1581 modifications into the change group. Return nonzero for success. */
1582 static int
1583 invert_exp_1 (rtx x, rtx insn)
1585 RTX_CODE code = GET_CODE (x);
1587 if (code == IF_THEN_ELSE)
1589 rtx comp = XEXP (x, 0);
1590 rtx tem;
1591 enum rtx_code reversed_code;
1593 /* We can do this in two ways: The preferable way, which can only
1594 be done if this is not an integer comparison, is to reverse
1595 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1596 of the IF_THEN_ELSE. If we can't do either, fail. */
1598 reversed_code = reversed_comparison_code (comp, insn);
1600 if (reversed_code != UNKNOWN)
1602 validate_change (insn, &XEXP (x, 0),
1603 gen_rtx_fmt_ee (reversed_code,
1604 GET_MODE (comp), XEXP (comp, 0),
1605 XEXP (comp, 1)),
1607 return 1;
1610 tem = XEXP (x, 1);
1611 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1612 validate_change (insn, &XEXP (x, 2), tem, 1);
1613 return 1;
1615 else
1616 return 0;
1619 /* Invert the condition of the jump JUMP, and make it jump to label
1620 NLABEL instead of where it jumps now. Accrue changes into the
1621 change group. Return false if we didn't see how to perform the
1622 inversion and redirection. */
1625 invert_jump_1 (rtx jump, rtx nlabel)
1627 rtx x = pc_set (jump);
1628 int ochanges;
1629 int ok;
1631 ochanges = num_validated_changes ();
1632 if (x == NULL)
1633 return 0;
1634 ok = invert_exp_1 (SET_SRC (x), jump);
1635 gcc_assert (ok);
1637 if (num_validated_changes () == ochanges)
1638 return 0;
1640 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1641 in Pmode, so checking this is not merely an optimization. */
1642 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1645 /* Invert the condition of the jump JUMP, and make it jump to label
1646 NLABEL instead of where it jumps now. Return true if successful. */
1649 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1651 rtx olabel = JUMP_LABEL (jump);
1653 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1655 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1656 return 1;
1658 cancel_changes (0);
1659 return 0;
1663 /* Like rtx_equal_p except that it considers two REGs as equal
1664 if they renumber to the same value and considers two commutative
1665 operations to be the same if the order of the operands has been
1666 reversed. */
1669 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1671 int i;
1672 const enum rtx_code code = GET_CODE (x);
1673 const char *fmt;
1675 if (x == y)
1676 return 1;
1678 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1679 && (REG_P (y) || (GET_CODE (y) == SUBREG
1680 && REG_P (SUBREG_REG (y)))))
1682 int reg_x = -1, reg_y = -1;
1683 int byte_x = 0, byte_y = 0;
1684 struct subreg_info info;
1686 if (GET_MODE (x) != GET_MODE (y))
1687 return 0;
1689 /* If we haven't done any renumbering, don't
1690 make any assumptions. */
1691 if (reg_renumber == 0)
1692 return rtx_equal_p (x, y);
1694 if (code == SUBREG)
1696 reg_x = REGNO (SUBREG_REG (x));
1697 byte_x = SUBREG_BYTE (x);
1699 if (reg_renumber[reg_x] >= 0)
1701 subreg_get_info (reg_renumber[reg_x],
1702 GET_MODE (SUBREG_REG (x)), byte_x,
1703 GET_MODE (x), &info);
1704 if (!info.representable_p)
1705 return 0;
1706 reg_x = info.offset;
1707 byte_x = 0;
1710 else
1712 reg_x = REGNO (x);
1713 if (reg_renumber[reg_x] >= 0)
1714 reg_x = reg_renumber[reg_x];
1717 if (GET_CODE (y) == SUBREG)
1719 reg_y = REGNO (SUBREG_REG (y));
1720 byte_y = SUBREG_BYTE (y);
1722 if (reg_renumber[reg_y] >= 0)
1724 subreg_get_info (reg_renumber[reg_y],
1725 GET_MODE (SUBREG_REG (y)), byte_y,
1726 GET_MODE (y), &info);
1727 if (!info.representable_p)
1728 return 0;
1729 reg_y = info.offset;
1730 byte_y = 0;
1733 else
1735 reg_y = REGNO (y);
1736 if (reg_renumber[reg_y] >= 0)
1737 reg_y = reg_renumber[reg_y];
1740 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1743 /* Now we have disposed of all the cases
1744 in which different rtx codes can match. */
1745 if (code != GET_CODE (y))
1746 return 0;
1748 switch (code)
1750 case PC:
1751 case CC0:
1752 case ADDR_VEC:
1753 case ADDR_DIFF_VEC:
1754 CASE_CONST_UNIQUE:
1755 return 0;
1757 case LABEL_REF:
1758 /* We can't assume nonlocal labels have their following insns yet. */
1759 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1760 return XEXP (x, 0) == XEXP (y, 0);
1762 /* Two label-refs are equivalent if they point at labels
1763 in the same position in the instruction stream. */
1764 return (next_real_insn (XEXP (x, 0))
1765 == next_real_insn (XEXP (y, 0)));
1767 case SYMBOL_REF:
1768 return XSTR (x, 0) == XSTR (y, 0);
1770 case CODE_LABEL:
1771 /* If we didn't match EQ equality above, they aren't the same. */
1772 return 0;
1774 default:
1775 break;
1778 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1780 if (GET_MODE (x) != GET_MODE (y))
1781 return 0;
1783 /* MEMs referring to different address space are not equivalent. */
1784 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1785 return 0;
1787 /* For commutative operations, the RTX match if the operand match in any
1788 order. Also handle the simple binary and unary cases without a loop. */
1789 if (targetm.commutative_p (x, UNKNOWN))
1790 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1791 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1792 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1793 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1794 else if (NON_COMMUTATIVE_P (x))
1795 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1796 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1797 else if (UNARY_P (x))
1798 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1800 /* Compare the elements. If any pair of corresponding elements
1801 fail to match, return 0 for the whole things. */
1803 fmt = GET_RTX_FORMAT (code);
1804 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1806 int j;
1807 switch (fmt[i])
1809 case 'w':
1810 if (XWINT (x, i) != XWINT (y, i))
1811 return 0;
1812 break;
1814 case 'i':
1815 if (XINT (x, i) != XINT (y, i))
1817 if (((code == ASM_OPERANDS && i == 6)
1818 || (code == ASM_INPUT && i == 1)))
1819 break;
1820 return 0;
1822 break;
1824 case 't':
1825 if (XTREE (x, i) != XTREE (y, i))
1826 return 0;
1827 break;
1829 case 's':
1830 if (strcmp (XSTR (x, i), XSTR (y, i)))
1831 return 0;
1832 break;
1834 case 'e':
1835 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1836 return 0;
1837 break;
1839 case 'u':
1840 if (XEXP (x, i) != XEXP (y, i))
1841 return 0;
1842 /* Fall through. */
1843 case '0':
1844 break;
1846 case 'E':
1847 if (XVECLEN (x, i) != XVECLEN (y, i))
1848 return 0;
1849 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1850 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1851 return 0;
1852 break;
1854 default:
1855 gcc_unreachable ();
1858 return 1;
1861 /* If X is a hard register or equivalent to one or a subregister of one,
1862 return the hard register number. If X is a pseudo register that was not
1863 assigned a hard register, return the pseudo register number. Otherwise,
1864 return -1. Any rtx is valid for X. */
1867 true_regnum (const_rtx x)
1869 if (REG_P (x))
1871 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1872 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1873 return reg_renumber[REGNO (x)];
1874 return REGNO (x);
1876 if (GET_CODE (x) == SUBREG)
1878 int base = true_regnum (SUBREG_REG (x));
1879 if (base >= 0
1880 && base < FIRST_PSEUDO_REGISTER)
1882 struct subreg_info info;
1884 subreg_get_info (lra_in_progress
1885 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1886 GET_MODE (SUBREG_REG (x)),
1887 SUBREG_BYTE (x), GET_MODE (x), &info);
1889 if (info.representable_p)
1890 return base + info.offset;
1893 return -1;
1896 /* Return regno of the register REG and handle subregs too. */
1897 unsigned int
1898 reg_or_subregno (const_rtx reg)
1900 if (GET_CODE (reg) == SUBREG)
1901 reg = SUBREG_REG (reg);
1902 gcc_assert (REG_P (reg));
1903 return REGNO (reg);