c-family/
[official-gcc.git] / gcc / cfgloopmanip.c
blobeae68ca43c79b9089d5ccf1c738531f38b432f85
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "basic-block.h"
27 #include "cfgloop.h"
28 #include "tree-flow.h"
29 #include "dumpfile.h"
31 static void copy_loops_to (struct loop **, int,
32 struct loop *);
33 static void loop_redirect_edge (edge, basic_block);
34 static void remove_bbs (basic_block *, int);
35 static bool rpe_enum_p (const_basic_block, const void *);
36 static int find_path (edge, basic_block **);
37 static void fix_loop_placements (struct loop *, bool *);
38 static bool fix_bb_placement (basic_block);
39 static void fix_bb_placements (basic_block, bool *, bitmap);
41 /* Checks whether basic block BB is dominated by DATA. */
42 static bool
43 rpe_enum_p (const_basic_block bb, const void *data)
45 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
48 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
50 static void
51 remove_bbs (basic_block *bbs, int nbbs)
53 int i;
55 for (i = 0; i < nbbs; i++)
56 delete_basic_block (bbs[i]);
59 /* Find path -- i.e. the basic blocks dominated by edge E and put them
60 into array BBS, that will be allocated large enough to contain them.
61 E->dest must have exactly one predecessor for this to work (it is
62 easy to achieve and we do not put it here because we do not want to
63 alter anything by this function). The number of basic blocks in the
64 path is returned. */
65 static int
66 find_path (edge e, basic_block **bbs)
68 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
70 /* Find bbs in the path. */
71 *bbs = XNEWVEC (basic_block, n_basic_blocks);
72 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
73 n_basic_blocks, e->dest);
76 /* Fix placement of basic block BB inside loop hierarchy --
77 Let L be a loop to that BB belongs. Then every successor of BB must either
78 1) belong to some superloop of loop L, or
79 2) be a header of loop K such that K->outer is superloop of L
80 Returns true if we had to move BB into other loop to enforce this condition,
81 false if the placement of BB was already correct (provided that placements
82 of its successors are correct). */
83 static bool
84 fix_bb_placement (basic_block bb)
86 edge e;
87 edge_iterator ei;
88 struct loop *loop = current_loops->tree_root, *act;
90 FOR_EACH_EDGE (e, ei, bb->succs)
92 if (e->dest == EXIT_BLOCK_PTR)
93 continue;
95 act = e->dest->loop_father;
96 if (act->header == e->dest)
97 act = loop_outer (act);
99 if (flow_loop_nested_p (loop, act))
100 loop = act;
103 if (loop == bb->loop_father)
104 return false;
106 remove_bb_from_loops (bb);
107 add_bb_to_loop (bb, loop);
109 return true;
112 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
113 of LOOP to that leads at least one exit edge of LOOP, and set it
114 as the immediate superloop of LOOP. Return true if the immediate superloop
115 of LOOP changed. */
117 static bool
118 fix_loop_placement (struct loop *loop)
120 unsigned i;
121 edge e;
122 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
123 struct loop *father = current_loops->tree_root, *act;
124 bool ret = false;
126 FOR_EACH_VEC_ELT (edge, exits, i, e)
128 act = find_common_loop (loop, e->dest->loop_father);
129 if (flow_loop_nested_p (father, act))
130 father = act;
133 if (father != loop_outer (loop))
135 for (act = loop_outer (loop); act != father; act = loop_outer (act))
136 act->num_nodes -= loop->num_nodes;
137 flow_loop_tree_node_remove (loop);
138 flow_loop_tree_node_add (father, loop);
140 /* The exit edges of LOOP no longer exits its original immediate
141 superloops; remove them from the appropriate exit lists. */
142 FOR_EACH_VEC_ELT (edge, exits, i, e)
143 rescan_loop_exit (e, false, false);
145 ret = true;
148 VEC_free (edge, heap, exits);
149 return ret;
152 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
153 enforce condition condition stated in description of fix_bb_placement. We
154 start from basic block FROM that had some of its successors removed, so that
155 his placement no longer has to be correct, and iteratively fix placement of
156 its predecessors that may change if placement of FROM changed. Also fix
157 placement of subloops of FROM->loop_father, that might also be altered due
158 to this change; the condition for them is similar, except that instead of
159 successors we consider edges coming out of the loops.
161 If the changes may invalidate the information about irreducible regions,
162 IRRED_INVALIDATED is set to true.
164 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
165 changed loop_father are collected there. */
167 static void
168 fix_bb_placements (basic_block from,
169 bool *irred_invalidated,
170 bitmap loop_closed_ssa_invalidated)
172 sbitmap in_queue;
173 basic_block *queue, *qtop, *qbeg, *qend;
174 struct loop *base_loop, *target_loop;
175 edge e;
177 /* We pass through blocks back-reachable from FROM, testing whether some
178 of their successors moved to outer loop. It may be necessary to
179 iterate several times, but it is finite, as we stop unless we move
180 the basic block up the loop structure. The whole story is a bit
181 more complicated due to presence of subloops, those are moved using
182 fix_loop_placement. */
184 base_loop = from->loop_father;
185 /* If we are already in the outermost loop, the basic blocks cannot be moved
186 outside of it. If FROM is the header of the base loop, it cannot be moved
187 outside of it, either. In both cases, we can end now. */
188 if (base_loop == current_loops->tree_root
189 || from == base_loop->header)
190 return;
192 in_queue = sbitmap_alloc (last_basic_block);
193 sbitmap_zero (in_queue);
194 SET_BIT (in_queue, from->index);
195 /* Prevent us from going out of the base_loop. */
196 SET_BIT (in_queue, base_loop->header->index);
198 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
199 qtop = queue + base_loop->num_nodes + 1;
200 qbeg = queue;
201 qend = queue + 1;
202 *qbeg = from;
204 while (qbeg != qend)
206 edge_iterator ei;
207 from = *qbeg;
208 qbeg++;
209 if (qbeg == qtop)
210 qbeg = queue;
211 RESET_BIT (in_queue, from->index);
213 if (from->loop_father->header == from)
215 /* Subloop header, maybe move the loop upward. */
216 if (!fix_loop_placement (from->loop_father))
217 continue;
218 target_loop = loop_outer (from->loop_father);
220 else
222 /* Ordinary basic block. */
223 if (!fix_bb_placement (from))
224 continue;
225 if (loop_closed_ssa_invalidated)
226 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
227 target_loop = from->loop_father;
230 FOR_EACH_EDGE (e, ei, from->succs)
232 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
233 *irred_invalidated = true;
236 /* Something has changed, insert predecessors into queue. */
237 FOR_EACH_EDGE (e, ei, from->preds)
239 basic_block pred = e->src;
240 struct loop *nca;
242 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
243 *irred_invalidated = true;
245 if (TEST_BIT (in_queue, pred->index))
246 continue;
248 /* If it is subloop, then it either was not moved, or
249 the path up the loop tree from base_loop do not contain
250 it. */
251 nca = find_common_loop (pred->loop_father, base_loop);
252 if (pred->loop_father != base_loop
253 && (nca == base_loop
254 || nca != pred->loop_father))
255 pred = pred->loop_father->header;
256 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
258 /* If PRED is already higher in the loop hierarchy than the
259 TARGET_LOOP to that we moved FROM, the change of the position
260 of FROM does not affect the position of PRED, so there is no
261 point in processing it. */
262 continue;
265 if (TEST_BIT (in_queue, pred->index))
266 continue;
268 /* Schedule the basic block. */
269 *qend = pred;
270 qend++;
271 if (qend == qtop)
272 qend = queue;
273 SET_BIT (in_queue, pred->index);
276 free (in_queue);
277 free (queue);
280 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
281 and update loop structures and dominators. Return true if we were able
282 to remove the path, false otherwise (and nothing is affected then). */
283 bool
284 remove_path (edge e)
286 edge ae;
287 basic_block *rem_bbs, *bord_bbs, from, bb;
288 VEC (basic_block, heap) *dom_bbs;
289 int i, nrem, n_bord_bbs;
290 sbitmap seen;
291 bool irred_invalidated = false;
292 edge_iterator ei;
293 struct loop *l, *f;
295 if (!can_remove_branch_p (e))
296 return false;
298 /* Keep track of whether we need to update information about irreducible
299 regions. This is the case if the removed area is a part of the
300 irreducible region, or if the set of basic blocks that belong to a loop
301 that is inside an irreducible region is changed, or if such a loop is
302 removed. */
303 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
304 irred_invalidated = true;
306 /* We need to check whether basic blocks are dominated by the edge
307 e, but we only have basic block dominators. This is easy to
308 fix -- when e->dest has exactly one predecessor, this corresponds
309 to blocks dominated by e->dest, if not, split the edge. */
310 if (!single_pred_p (e->dest))
311 e = single_pred_edge (split_edge (e));
313 /* It may happen that by removing path we remove one or more loops
314 we belong to. In this case first unloop the loops, then proceed
315 normally. We may assume that e->dest is not a header of any loop,
316 as it now has exactly one predecessor. */
317 for (l = e->src->loop_father; loop_outer (l); l = f)
319 f = loop_outer (l);
320 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
321 unloop (l, &irred_invalidated, NULL);
324 /* Identify the path. */
325 nrem = find_path (e, &rem_bbs);
327 n_bord_bbs = 0;
328 bord_bbs = XNEWVEC (basic_block, n_basic_blocks);
329 seen = sbitmap_alloc (last_basic_block);
330 sbitmap_zero (seen);
332 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
333 for (i = 0; i < nrem; i++)
334 SET_BIT (seen, rem_bbs[i]->index);
335 if (!irred_invalidated)
336 FOR_EACH_EDGE (ae, ei, e->src->succs)
337 if (ae != e && ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index)
338 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
339 irred_invalidated = true;
340 for (i = 0; i < nrem; i++)
342 bb = rem_bbs[i];
343 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
344 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
346 SET_BIT (seen, ae->dest->index);
347 bord_bbs[n_bord_bbs++] = ae->dest;
349 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
350 irred_invalidated = true;
354 /* Remove the path. */
355 from = e->src;
356 remove_branch (e);
357 dom_bbs = NULL;
359 /* Cancel loops contained in the path. */
360 for (i = 0; i < nrem; i++)
361 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
362 cancel_loop_tree (rem_bbs[i]->loop_father);
364 remove_bbs (rem_bbs, nrem);
365 free (rem_bbs);
367 /* Find blocks whose dominators may be affected. */
368 sbitmap_zero (seen);
369 for (i = 0; i < n_bord_bbs; i++)
371 basic_block ldom;
373 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
374 if (TEST_BIT (seen, bb->index))
375 continue;
376 SET_BIT (seen, bb->index);
378 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
379 ldom;
380 ldom = next_dom_son (CDI_DOMINATORS, ldom))
381 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
382 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
385 free (seen);
387 /* Recount dominators. */
388 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
389 VEC_free (basic_block, heap, dom_bbs);
390 free (bord_bbs);
392 /* Fix placements of basic blocks inside loops and the placement of
393 loops in the loop tree. */
394 fix_bb_placements (from, &irred_invalidated, NULL);
395 fix_loop_placements (from->loop_father, &irred_invalidated);
397 if (irred_invalidated
398 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
399 mark_irreducible_loops ();
401 return true;
404 /* Creates place for a new LOOP in loops structure. */
406 static void
407 place_new_loop (struct loop *loop)
409 loop->num = number_of_loops ();
410 VEC_safe_push (loop_p, gc, current_loops->larray, loop);
413 /* Given LOOP structure with filled header and latch, find the body of the
414 corresponding loop and add it to loops tree. Insert the LOOP as a son of
415 outer. */
417 void
418 add_loop (struct loop *loop, struct loop *outer)
420 basic_block *bbs;
421 int i, n;
422 struct loop *subloop;
423 edge e;
424 edge_iterator ei;
426 /* Add it to loop structure. */
427 place_new_loop (loop);
428 flow_loop_tree_node_add (outer, loop);
430 /* Find its nodes. */
431 bbs = XNEWVEC (basic_block, n_basic_blocks);
432 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
434 for (i = 0; i < n; i++)
436 if (bbs[i]->loop_father == outer)
438 remove_bb_from_loops (bbs[i]);
439 add_bb_to_loop (bbs[i], loop);
440 continue;
443 loop->num_nodes++;
445 /* If we find a direct subloop of OUTER, move it to LOOP. */
446 subloop = bbs[i]->loop_father;
447 if (loop_outer (subloop) == outer
448 && subloop->header == bbs[i])
450 flow_loop_tree_node_remove (subloop);
451 flow_loop_tree_node_add (loop, subloop);
455 /* Update the information about loop exit edges. */
456 for (i = 0; i < n; i++)
458 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
460 rescan_loop_exit (e, false, false);
464 free (bbs);
467 /* Multiply all frequencies in LOOP by NUM/DEN. */
469 void
470 scale_loop_frequencies (struct loop *loop, int num, int den)
472 basic_block *bbs;
474 bbs = get_loop_body (loop);
475 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
476 free (bbs);
479 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE.
480 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
481 to iterate too many times. */
483 void
484 scale_loop_profile (struct loop *loop, int scale, int iteration_bound)
486 gcov_type iterations = expected_loop_iterations_unbounded (loop);
487 edge e;
488 edge_iterator ei;
490 if (dump_file && (dump_flags & TDF_DETAILS))
491 fprintf (dump_file, ";; Scaling loop %i with scale %f, "
492 "bounding iterations to %i from guessed %i\n",
493 loop->num, (double)scale / REG_BR_PROB_BASE,
494 iteration_bound, (int)iterations);
496 /* See if loop is predicted to iterate too many times. */
497 if (iteration_bound && iterations > 0
498 && RDIV (iterations * scale, REG_BR_PROB_BASE) > iteration_bound)
500 /* Fixing loop profile for different trip count is not trivial; the exit
501 probabilities has to be updated to match and frequencies propagated down
502 to the loop body.
504 We fully update only the simple case of loop with single exit that is
505 either from the latch or BB just before latch and leads from BB with
506 simple conditional jump. This is OK for use in vectorizer. */
507 e = single_exit (loop);
508 if (e)
510 edge other_e;
511 int freq_delta;
512 gcov_type count_delta;
514 FOR_EACH_EDGE (other_e, ei, e->src->succs)
515 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
516 && e != other_e)
517 break;
519 /* Probability of exit must be 1/iterations. */
520 freq_delta = EDGE_FREQUENCY (e);
521 e->probability = REG_BR_PROB_BASE / iteration_bound;
522 other_e->probability = inverse_probability (e->probability);
523 freq_delta -= EDGE_FREQUENCY (e);
525 /* Adjust counts accordingly. */
526 count_delta = e->count;
527 e->count = apply_probability (e->src->count, e->probability);
528 other_e->count = apply_probability (e->src->count, other_e->probability);
529 count_delta -= e->count;
531 /* If latch exists, change its frequency and count, since we changed
532 probability of exit. Theoretically we should update everything from
533 source of exit edge to latch, but for vectorizer this is enough. */
534 if (loop->latch
535 && loop->latch != e->src)
537 loop->latch->frequency += freq_delta;
538 if (loop->latch->frequency < 0)
539 loop->latch->frequency = 0;
540 loop->latch->count += count_delta;
541 if (loop->latch->count < 0)
542 loop->latch->count = 0;
546 /* Roughly speaking we want to reduce the loop body profile by the
547 the difference of loop iterations. We however can do better if
548 we look at the actual profile, if it is available. */
549 scale = RDIV (iteration_bound * scale, iterations);
550 if (loop->header->count)
552 gcov_type count_in = 0;
554 FOR_EACH_EDGE (e, ei, loop->header->preds)
555 if (e->src != loop->latch)
556 count_in += e->count;
558 if (count_in != 0)
559 scale = RDIV (count_in * iteration_bound * REG_BR_PROB_BASE, loop->header->count);
561 else if (loop->header->frequency)
563 int freq_in = 0;
565 FOR_EACH_EDGE (e, ei, loop->header->preds)
566 if (e->src != loop->latch)
567 freq_in += EDGE_FREQUENCY (e);
569 if (freq_in != 0)
570 scale = RDIV (freq_in * iteration_bound * REG_BR_PROB_BASE, loop->header->frequency);
572 if (!scale)
573 scale = 1;
576 if (scale == REG_BR_PROB_BASE)
577 return;
579 /* Scale the actual probabilities. */
580 scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
581 if (dump_file && (dump_flags & TDF_DETAILS))
582 fprintf (dump_file, ";; guessed iterations are now %i\n",
583 (int)expected_loop_iterations_unbounded (loop));
586 /* Recompute dominance information for basic blocks outside LOOP. */
588 static void
589 update_dominators_in_loop (struct loop *loop)
591 VEC (basic_block, heap) *dom_bbs = NULL;
592 sbitmap seen;
593 basic_block *body;
594 unsigned i;
596 seen = sbitmap_alloc (last_basic_block);
597 sbitmap_zero (seen);
598 body = get_loop_body (loop);
600 for (i = 0; i < loop->num_nodes; i++)
601 SET_BIT (seen, body[i]->index);
603 for (i = 0; i < loop->num_nodes; i++)
605 basic_block ldom;
607 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
608 ldom;
609 ldom = next_dom_son (CDI_DOMINATORS, ldom))
610 if (!TEST_BIT (seen, ldom->index))
612 SET_BIT (seen, ldom->index);
613 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
617 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
618 free (body);
619 free (seen);
620 VEC_free (basic_block, heap, dom_bbs);
623 /* Creates an if region as shown above. CONDITION is used to create
624 the test for the if.
627 | ------------- -------------
628 | | pred_bb | | pred_bb |
629 | ------------- -------------
630 | | |
631 | | | ENTRY_EDGE
632 | | ENTRY_EDGE V
633 | | ====> -------------
634 | | | cond_bb |
635 | | | CONDITION |
636 | | -------------
637 | V / \
638 | ------------- e_false / \ e_true
639 | | succ_bb | V V
640 | ------------- ----------- -----------
641 | | false_bb | | true_bb |
642 | ----------- -----------
643 | \ /
644 | \ /
645 | V V
646 | -------------
647 | | join_bb |
648 | -------------
649 | | exit_edge (result)
651 | -----------
652 | | succ_bb |
653 | -----------
657 edge
658 create_empty_if_region_on_edge (edge entry_edge, tree condition)
661 basic_block cond_bb, true_bb, false_bb, join_bb;
662 edge e_true, e_false, exit_edge;
663 gimple cond_stmt;
664 tree simple_cond;
665 gimple_stmt_iterator gsi;
667 cond_bb = split_edge (entry_edge);
669 /* Insert condition in cond_bb. */
670 gsi = gsi_last_bb (cond_bb);
671 simple_cond =
672 force_gimple_operand_gsi (&gsi, condition, true, NULL,
673 false, GSI_NEW_STMT);
674 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
675 gsi = gsi_last_bb (cond_bb);
676 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
678 join_bb = split_edge (single_succ_edge (cond_bb));
680 e_true = single_succ_edge (cond_bb);
681 true_bb = split_edge (e_true);
683 e_false = make_edge (cond_bb, join_bb, 0);
684 false_bb = split_edge (e_false);
686 e_true->flags &= ~EDGE_FALLTHRU;
687 e_true->flags |= EDGE_TRUE_VALUE;
688 e_false->flags &= ~EDGE_FALLTHRU;
689 e_false->flags |= EDGE_FALSE_VALUE;
691 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
692 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
693 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
694 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
696 exit_edge = single_succ_edge (join_bb);
698 if (single_pred_p (exit_edge->dest))
699 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
701 return exit_edge;
704 /* create_empty_loop_on_edge
706 | - pred_bb - ------ pred_bb ------
707 | | | | iv0 = initial_value |
708 | -----|----- ---------|-----------
709 | | ______ | entry_edge
710 | | entry_edge / | |
711 | | ====> | -V---V- loop_header -------------
712 | V | | iv_before = phi (iv0, iv_after) |
713 | - succ_bb - | ---|-----------------------------
714 | | | | |
715 | ----------- | ---V--- loop_body ---------------
716 | | | iv_after = iv_before + stride |
717 | | | if (iv_before < upper_bound) |
718 | | ---|--------------\--------------
719 | | | \ exit_e
720 | | V \
721 | | - loop_latch - V- succ_bb -
722 | | | | | |
723 | | /------------- -----------
724 | \ ___ /
726 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
727 that is used before the increment of IV. IV_BEFORE should be used for
728 adding code to the body that uses the IV. OUTER is the outer loop in
729 which the new loop should be inserted.
731 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
732 inserted on the loop entry edge. This implies that this function
733 should be used only when the UPPER_BOUND expression is a loop
734 invariant. */
736 struct loop *
737 create_empty_loop_on_edge (edge entry_edge,
738 tree initial_value,
739 tree stride, tree upper_bound,
740 tree iv,
741 tree *iv_before,
742 tree *iv_after,
743 struct loop *outer)
745 basic_block loop_header, loop_latch, succ_bb, pred_bb;
746 struct loop *loop;
747 gimple_stmt_iterator gsi;
748 gimple_seq stmts;
749 gimple cond_expr;
750 tree exit_test;
751 edge exit_e;
752 int prob;
754 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
756 /* Create header, latch and wire up the loop. */
757 pred_bb = entry_edge->src;
758 loop_header = split_edge (entry_edge);
759 loop_latch = split_edge (single_succ_edge (loop_header));
760 succ_bb = single_succ (loop_latch);
761 make_edge (loop_header, succ_bb, 0);
762 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
764 /* Set immediate dominator information. */
765 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
766 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
767 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
769 /* Initialize a loop structure and put it in a loop hierarchy. */
770 loop = alloc_loop ();
771 loop->header = loop_header;
772 loop->latch = loop_latch;
773 add_loop (loop, outer);
775 /* TODO: Fix frequencies and counts. */
776 prob = REG_BR_PROB_BASE / 2;
778 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
780 /* Update dominators. */
781 update_dominators_in_loop (loop);
783 /* Modify edge flags. */
784 exit_e = single_exit (loop);
785 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
786 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
788 /* Construct IV code in loop. */
789 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
790 if (stmts)
792 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
793 gsi_commit_edge_inserts ();
796 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
797 if (stmts)
799 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
800 gsi_commit_edge_inserts ();
803 gsi = gsi_last_bb (loop_header);
804 create_iv (initial_value, stride, iv, loop, &gsi, false,
805 iv_before, iv_after);
807 /* Insert loop exit condition. */
808 cond_expr = gimple_build_cond
809 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
811 exit_test = gimple_cond_lhs (cond_expr);
812 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
813 false, GSI_NEW_STMT);
814 gimple_cond_set_lhs (cond_expr, exit_test);
815 gsi = gsi_last_bb (exit_e->src);
816 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
818 split_block_after_labels (loop_header);
820 return loop;
823 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
824 latch to header and update loop tree and dominators
825 accordingly. Everything between them plus LATCH_EDGE destination must
826 be dominated by HEADER_EDGE destination, and back-reachable from
827 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
828 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
829 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
830 Returns the newly created loop. Frequencies and counts in the new loop
831 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
833 struct loop *
834 loopify (edge latch_edge, edge header_edge,
835 basic_block switch_bb, edge true_edge, edge false_edge,
836 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
838 basic_block succ_bb = latch_edge->dest;
839 basic_block pred_bb = header_edge->src;
840 struct loop *loop = alloc_loop ();
841 struct loop *outer = loop_outer (succ_bb->loop_father);
842 int freq;
843 gcov_type cnt;
844 edge e;
845 edge_iterator ei;
847 loop->header = header_edge->dest;
848 loop->latch = latch_edge->src;
850 freq = EDGE_FREQUENCY (header_edge);
851 cnt = header_edge->count;
853 /* Redirect edges. */
854 loop_redirect_edge (latch_edge, loop->header);
855 loop_redirect_edge (true_edge, succ_bb);
857 /* During loop versioning, one of the switch_bb edge is already properly
858 set. Do not redirect it again unless redirect_all_edges is true. */
859 if (redirect_all_edges)
861 loop_redirect_edge (header_edge, switch_bb);
862 loop_redirect_edge (false_edge, loop->header);
864 /* Update dominators. */
865 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
866 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
869 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
871 /* Compute new loop. */
872 add_loop (loop, outer);
874 /* Add switch_bb to appropriate loop. */
875 if (switch_bb->loop_father)
876 remove_bb_from_loops (switch_bb);
877 add_bb_to_loop (switch_bb, outer);
879 /* Fix frequencies. */
880 if (redirect_all_edges)
882 switch_bb->frequency = freq;
883 switch_bb->count = cnt;
884 FOR_EACH_EDGE (e, ei, switch_bb->succs)
886 e->count = RDIV (switch_bb->count * e->probability, REG_BR_PROB_BASE);
889 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
890 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
891 update_dominators_in_loop (loop);
893 return loop;
896 /* Remove the latch edge of a LOOP and update loops to indicate that
897 the LOOP was removed. After this function, original loop latch will
898 have no successor, which caller is expected to fix somehow.
900 If this may cause the information about irreducible regions to become
901 invalid, IRRED_INVALIDATED is set to true.
903 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
904 basic blocks that had non-trivial update on their loop_father.*/
906 void
907 unloop (struct loop *loop, bool *irred_invalidated,
908 bitmap loop_closed_ssa_invalidated)
910 basic_block *body;
911 struct loop *ploop;
912 unsigned i, n;
913 basic_block latch = loop->latch;
914 bool dummy = false;
916 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
917 *irred_invalidated = true;
919 /* This is relatively straightforward. The dominators are unchanged, as
920 loop header dominates loop latch, so the only thing we have to care of
921 is the placement of loops and basic blocks inside the loop tree. We
922 move them all to the loop->outer, and then let fix_bb_placements do
923 its work. */
925 body = get_loop_body (loop);
926 n = loop->num_nodes;
927 for (i = 0; i < n; i++)
928 if (body[i]->loop_father == loop)
930 remove_bb_from_loops (body[i]);
931 add_bb_to_loop (body[i], loop_outer (loop));
933 free(body);
935 while (loop->inner)
937 ploop = loop->inner;
938 flow_loop_tree_node_remove (ploop);
939 flow_loop_tree_node_add (loop_outer (loop), ploop);
942 /* Remove the loop and free its data. */
943 delete_loop (loop);
945 remove_edge (single_succ_edge (latch));
947 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
948 there is an irreducible region inside the cancelled loop, the flags will
949 be still correct. */
950 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
953 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
954 condition stated in description of fix_loop_placement holds for them.
955 It is used in case when we removed some edges coming out of LOOP, which
956 may cause the right placement of LOOP inside loop tree to change.
958 IRRED_INVALIDATED is set to true if a change in the loop structures might
959 invalidate the information about irreducible regions. */
961 static void
962 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
964 struct loop *outer;
966 while (loop_outer (loop))
968 outer = loop_outer (loop);
969 if (!fix_loop_placement (loop))
970 break;
972 /* Changing the placement of a loop in the loop tree may alter the
973 validity of condition 2) of the description of fix_bb_placement
974 for its preheader, because the successor is the header and belongs
975 to the loop. So call fix_bb_placements to fix up the placement
976 of the preheader and (possibly) of its predecessors. */
977 fix_bb_placements (loop_preheader_edge (loop)->src,
978 irred_invalidated, NULL);
979 loop = outer;
983 /* Duplicate loop bounds and other information we store about
984 the loop into its duplicate. */
986 void
987 copy_loop_info (struct loop *loop, struct loop *target)
989 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
990 target->any_upper_bound = loop->any_upper_bound;
991 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
992 target->any_estimate = loop->any_estimate;
993 target->nb_iterations_estimate = loop->nb_iterations_estimate;
994 target->estimate_state = loop->estimate_state;
997 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
998 created loop into loops structure. */
999 struct loop *
1000 duplicate_loop (struct loop *loop, struct loop *target)
1002 struct loop *cloop;
1003 cloop = alloc_loop ();
1004 place_new_loop (cloop);
1006 copy_loop_info (loop, cloop);
1008 /* Mark the new loop as copy of LOOP. */
1009 set_loop_copy (loop, cloop);
1011 /* Add it to target. */
1012 flow_loop_tree_node_add (target, cloop);
1014 return cloop;
1017 /* Copies structure of subloops of LOOP into TARGET loop, placing
1018 newly created loops into loop tree. */
1019 void
1020 duplicate_subloops (struct loop *loop, struct loop *target)
1022 struct loop *aloop, *cloop;
1024 for (aloop = loop->inner; aloop; aloop = aloop->next)
1026 cloop = duplicate_loop (aloop, target);
1027 duplicate_subloops (aloop, cloop);
1031 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1032 into TARGET loop, placing newly created loops into loop tree. */
1033 static void
1034 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1036 struct loop *aloop;
1037 int i;
1039 for (i = 0; i < n; i++)
1041 aloop = duplicate_loop (copied_loops[i], target);
1042 duplicate_subloops (copied_loops[i], aloop);
1046 /* Redirects edge E to basic block DEST. */
1047 static void
1048 loop_redirect_edge (edge e, basic_block dest)
1050 if (e->dest == dest)
1051 return;
1053 redirect_edge_and_branch_force (e, dest);
1056 /* Check whether LOOP's body can be duplicated. */
1057 bool
1058 can_duplicate_loop_p (const struct loop *loop)
1060 int ret;
1061 basic_block *bbs = get_loop_body (loop);
1063 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1064 free (bbs);
1066 return ret;
1069 /* Sets probability and count of edge E to zero. The probability and count
1070 is redistributed evenly to the remaining edges coming from E->src. */
1072 static void
1073 set_zero_probability (edge e)
1075 basic_block bb = e->src;
1076 edge_iterator ei;
1077 edge ae, last = NULL;
1078 unsigned n = EDGE_COUNT (bb->succs);
1079 gcov_type cnt = e->count, cnt1;
1080 unsigned prob = e->probability, prob1;
1082 gcc_assert (n > 1);
1083 cnt1 = cnt / (n - 1);
1084 prob1 = prob / (n - 1);
1086 FOR_EACH_EDGE (ae, ei, bb->succs)
1088 if (ae == e)
1089 continue;
1091 ae->probability += prob1;
1092 ae->count += cnt1;
1093 last = ae;
1096 /* Move the rest to one of the edges. */
1097 last->probability += prob % (n - 1);
1098 last->count += cnt % (n - 1);
1100 e->probability = 0;
1101 e->count = 0;
1104 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1105 loop structure and dominators. E's destination must be LOOP header for
1106 this to work, i.e. it must be entry or latch edge of this loop; these are
1107 unique, as the loops must have preheaders for this function to work
1108 correctly (in case E is latch, the function unrolls the loop, if E is entry
1109 edge, it peels the loop). Store edges created by copying ORIG edge from
1110 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1111 original LOOP body, the other copies are numbered in order given by control
1112 flow through them) into TO_REMOVE array. Returns false if duplication is
1113 impossible. */
1115 bool
1116 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1117 unsigned int ndupl, sbitmap wont_exit,
1118 edge orig, VEC (edge, heap) **to_remove,
1119 int flags)
1121 struct loop *target, *aloop;
1122 struct loop **orig_loops;
1123 unsigned n_orig_loops;
1124 basic_block header = loop->header, latch = loop->latch;
1125 basic_block *new_bbs, *bbs, *first_active;
1126 basic_block new_bb, bb, first_active_latch = NULL;
1127 edge ae, latch_edge;
1128 edge spec_edges[2], new_spec_edges[2];
1129 #define SE_LATCH 0
1130 #define SE_ORIG 1
1131 unsigned i, j, n;
1132 int is_latch = (latch == e->src);
1133 int scale_act = 0, *scale_step = NULL, scale_main = 0;
1134 int scale_after_exit = 0;
1135 int p, freq_in, freq_le, freq_out_orig;
1136 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1137 int add_irreducible_flag;
1138 basic_block place_after;
1139 bitmap bbs_to_scale = NULL;
1140 bitmap_iterator bi;
1142 gcc_assert (e->dest == loop->header);
1143 gcc_assert (ndupl > 0);
1145 if (orig)
1147 /* Orig must be edge out of the loop. */
1148 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1149 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1152 n = loop->num_nodes;
1153 bbs = get_loop_body_in_dom_order (loop);
1154 gcc_assert (bbs[0] == loop->header);
1155 gcc_assert (bbs[n - 1] == loop->latch);
1157 /* Check whether duplication is possible. */
1158 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1160 free (bbs);
1161 return false;
1163 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1165 /* In case we are doing loop peeling and the loop is in the middle of
1166 irreducible region, the peeled copies will be inside it too. */
1167 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1168 gcc_assert (!is_latch || !add_irreducible_flag);
1170 /* Find edge from latch. */
1171 latch_edge = loop_latch_edge (loop);
1173 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1175 /* Calculate coefficients by that we have to scale frequencies
1176 of duplicated loop bodies. */
1177 freq_in = header->frequency;
1178 freq_le = EDGE_FREQUENCY (latch_edge);
1179 if (freq_in == 0)
1180 freq_in = 1;
1181 if (freq_in < freq_le)
1182 freq_in = freq_le;
1183 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1184 if (freq_out_orig > freq_in - freq_le)
1185 freq_out_orig = freq_in - freq_le;
1186 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1187 prob_pass_wont_exit =
1188 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1190 if (orig
1191 && REG_BR_PROB_BASE - orig->probability != 0)
1193 /* The blocks that are dominated by a removed exit edge ORIG have
1194 frequencies scaled by this. */
1195 scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
1196 REG_BR_PROB_BASE - orig->probability);
1197 bbs_to_scale = BITMAP_ALLOC (NULL);
1198 for (i = 0; i < n; i++)
1200 if (bbs[i] != orig->src
1201 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1202 bitmap_set_bit (bbs_to_scale, i);
1206 scale_step = XNEWVEC (int, ndupl);
1208 for (i = 1; i <= ndupl; i++)
1209 scale_step[i - 1] = TEST_BIT (wont_exit, i)
1210 ? prob_pass_wont_exit
1211 : prob_pass_thru;
1213 /* Complete peeling is special as the probability of exit in last
1214 copy becomes 1. */
1215 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1217 int wanted_freq = EDGE_FREQUENCY (e);
1219 if (wanted_freq > freq_in)
1220 wanted_freq = freq_in;
1222 gcc_assert (!is_latch);
1223 /* First copy has frequency of incoming edge. Each subsequent
1224 frequency should be reduced by prob_pass_wont_exit. Caller
1225 should've managed the flags so all except for original loop
1226 has won't exist set. */
1227 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1228 /* Now simulate the duplication adjustments and compute header
1229 frequency of the last copy. */
1230 for (i = 0; i < ndupl; i++)
1231 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
1232 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1234 else if (is_latch)
1236 prob_pass_main = TEST_BIT (wont_exit, 0)
1237 ? prob_pass_wont_exit
1238 : prob_pass_thru;
1239 p = prob_pass_main;
1240 scale_main = REG_BR_PROB_BASE;
1241 for (i = 0; i < ndupl; i++)
1243 scale_main += p;
1244 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
1246 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
1247 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
1249 else
1251 scale_main = REG_BR_PROB_BASE;
1252 for (i = 0; i < ndupl; i++)
1253 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
1254 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1256 for (i = 0; i < ndupl; i++)
1257 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1258 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1259 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1262 /* Loop the new bbs will belong to. */
1263 target = e->src->loop_father;
1265 /* Original loops. */
1266 n_orig_loops = 0;
1267 for (aloop = loop->inner; aloop; aloop = aloop->next)
1268 n_orig_loops++;
1269 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1270 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1271 orig_loops[i] = aloop;
1273 set_loop_copy (loop, target);
1275 first_active = XNEWVEC (basic_block, n);
1276 if (is_latch)
1278 memcpy (first_active, bbs, n * sizeof (basic_block));
1279 first_active_latch = latch;
1282 spec_edges[SE_ORIG] = orig;
1283 spec_edges[SE_LATCH] = latch_edge;
1285 place_after = e->src;
1286 for (j = 0; j < ndupl; j++)
1288 /* Copy loops. */
1289 copy_loops_to (orig_loops, n_orig_loops, target);
1291 /* Copy bbs. */
1292 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1293 place_after);
1294 place_after = new_spec_edges[SE_LATCH]->src;
1296 if (flags & DLTHE_RECORD_COPY_NUMBER)
1297 for (i = 0; i < n; i++)
1299 gcc_assert (!new_bbs[i]->aux);
1300 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1303 /* Note whether the blocks and edges belong to an irreducible loop. */
1304 if (add_irreducible_flag)
1306 for (i = 0; i < n; i++)
1307 new_bbs[i]->flags |= BB_DUPLICATED;
1308 for (i = 0; i < n; i++)
1310 edge_iterator ei;
1311 new_bb = new_bbs[i];
1312 if (new_bb->loop_father == target)
1313 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1315 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1316 if ((ae->dest->flags & BB_DUPLICATED)
1317 && (ae->src->loop_father == target
1318 || ae->dest->loop_father == target))
1319 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1321 for (i = 0; i < n; i++)
1322 new_bbs[i]->flags &= ~BB_DUPLICATED;
1325 /* Redirect the special edges. */
1326 if (is_latch)
1328 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1329 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1330 loop->header);
1331 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1332 latch = loop->latch = new_bbs[n - 1];
1333 e = latch_edge = new_spec_edges[SE_LATCH];
1335 else
1337 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1338 loop->header);
1339 redirect_edge_and_branch_force (e, new_bbs[0]);
1340 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1341 e = new_spec_edges[SE_LATCH];
1344 /* Record exit edge in this copy. */
1345 if (orig && TEST_BIT (wont_exit, j + 1))
1347 if (to_remove)
1348 VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
1349 set_zero_probability (new_spec_edges[SE_ORIG]);
1351 /* Scale the frequencies of the blocks dominated by the exit. */
1352 if (bbs_to_scale)
1354 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1356 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1357 REG_BR_PROB_BASE);
1362 /* Record the first copy in the control flow order if it is not
1363 the original loop (i.e. in case of peeling). */
1364 if (!first_active_latch)
1366 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1367 first_active_latch = new_bbs[n - 1];
1370 /* Set counts and frequencies. */
1371 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1373 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1374 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1377 free (new_bbs);
1378 free (orig_loops);
1380 /* Record the exit edge in the original loop body, and update the frequencies. */
1381 if (orig && TEST_BIT (wont_exit, 0))
1383 if (to_remove)
1384 VEC_safe_push (edge, heap, *to_remove, orig);
1385 set_zero_probability (orig);
1387 /* Scale the frequencies of the blocks dominated by the exit. */
1388 if (bbs_to_scale)
1390 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1392 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1393 REG_BR_PROB_BASE);
1398 /* Update the original loop. */
1399 if (!is_latch)
1400 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1401 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1403 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1404 free (scale_step);
1407 /* Update dominators of outer blocks if affected. */
1408 for (i = 0; i < n; i++)
1410 basic_block dominated, dom_bb;
1411 VEC (basic_block, heap) *dom_bbs;
1412 unsigned j;
1414 bb = bbs[i];
1415 bb->aux = 0;
1417 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1418 FOR_EACH_VEC_ELT (basic_block, dom_bbs, j, dominated)
1420 if (flow_bb_inside_loop_p (loop, dominated))
1421 continue;
1422 dom_bb = nearest_common_dominator (
1423 CDI_DOMINATORS, first_active[i], first_active_latch);
1424 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1426 VEC_free (basic_block, heap, dom_bbs);
1428 free (first_active);
1430 free (bbs);
1431 BITMAP_FREE (bbs_to_scale);
1433 return true;
1436 /* A callback for make_forwarder block, to redirect all edges except for
1437 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1438 whether to redirect it. */
1440 edge mfb_kj_edge;
1441 bool
1442 mfb_keep_just (edge e)
1444 return e != mfb_kj_edge;
1447 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1449 static bool
1450 has_preds_from_loop (basic_block block, struct loop *loop)
1452 edge e;
1453 edge_iterator ei;
1455 FOR_EACH_EDGE (e, ei, block->preds)
1456 if (e->src->loop_father == loop)
1457 return true;
1458 return false;
1461 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1462 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1463 entry; otherwise we also force preheader block to have only one successor.
1464 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1465 to be a fallthru predecessor to the loop header and to have only
1466 predecessors from outside of the loop.
1467 The function also updates dominators. */
1469 basic_block
1470 create_preheader (struct loop *loop, int flags)
1472 edge e, fallthru;
1473 basic_block dummy;
1474 int nentry = 0;
1475 bool irred = false;
1476 bool latch_edge_was_fallthru;
1477 edge one_succ_pred = NULL, single_entry = NULL;
1478 edge_iterator ei;
1480 FOR_EACH_EDGE (e, ei, loop->header->preds)
1482 if (e->src == loop->latch)
1483 continue;
1484 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1485 nentry++;
1486 single_entry = e;
1487 if (single_succ_p (e->src))
1488 one_succ_pred = e;
1490 gcc_assert (nentry);
1491 if (nentry == 1)
1493 bool need_forwarder_block = false;
1495 /* We do not allow entry block to be the loop preheader, since we
1496 cannot emit code there. */
1497 if (single_entry->src == ENTRY_BLOCK_PTR)
1498 need_forwarder_block = true;
1499 else
1501 /* If we want simple preheaders, also force the preheader to have
1502 just a single successor. */
1503 if ((flags & CP_SIMPLE_PREHEADERS)
1504 && !single_succ_p (single_entry->src))
1505 need_forwarder_block = true;
1506 /* If we want fallthru preheaders, also create forwarder block when
1507 preheader ends with a jump or has predecessors from loop. */
1508 else if ((flags & CP_FALLTHRU_PREHEADERS)
1509 && (JUMP_P (BB_END (single_entry->src))
1510 || has_preds_from_loop (single_entry->src, loop)))
1511 need_forwarder_block = true;
1513 if (! need_forwarder_block)
1514 return NULL;
1517 mfb_kj_edge = loop_latch_edge (loop);
1518 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1519 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1520 dummy = fallthru->src;
1521 loop->header = fallthru->dest;
1523 /* Try to be clever in placing the newly created preheader. The idea is to
1524 avoid breaking any "fallthruness" relationship between blocks.
1526 The preheader was created just before the header and all incoming edges
1527 to the header were redirected to the preheader, except the latch edge.
1528 So the only problematic case is when this latch edge was a fallthru
1529 edge: it is not anymore after the preheader creation so we have broken
1530 the fallthruness. We're therefore going to look for a better place. */
1531 if (latch_edge_was_fallthru)
1533 if (one_succ_pred)
1534 e = one_succ_pred;
1535 else
1536 e = EDGE_PRED (dummy, 0);
1538 move_block_after (dummy, e->src);
1541 if (irred)
1543 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1544 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1547 if (dump_file)
1548 fprintf (dump_file, "Created preheader block for loop %i\n",
1549 loop->num);
1551 if (flags & CP_FALLTHRU_PREHEADERS)
1552 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1553 && !JUMP_P (BB_END (dummy)));
1555 return dummy;
1558 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1560 void
1561 create_preheaders (int flags)
1563 loop_iterator li;
1564 struct loop *loop;
1566 if (!current_loops)
1567 return;
1569 FOR_EACH_LOOP (li, loop, 0)
1570 create_preheader (loop, flags);
1571 loops_state_set (LOOPS_HAVE_PREHEADERS);
1574 /* Forces all loop latches to have only single successor. */
1576 void
1577 force_single_succ_latches (void)
1579 loop_iterator li;
1580 struct loop *loop;
1581 edge e;
1583 FOR_EACH_LOOP (li, loop, 0)
1585 if (loop->latch != loop->header && single_succ_p (loop->latch))
1586 continue;
1588 e = find_edge (loop->latch, loop->header);
1590 split_edge (e);
1592 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1595 /* This function is called from loop_version. It splits the entry edge
1596 of the loop we want to version, adds the versioning condition, and
1597 adjust the edges to the two versions of the loop appropriately.
1598 e is an incoming edge. Returns the basic block containing the
1599 condition.
1601 --- edge e ---- > [second_head]
1603 Split it and insert new conditional expression and adjust edges.
1605 --- edge e ---> [cond expr] ---> [first_head]
1607 +---------> [second_head]
1609 THEN_PROB is the probability of then branch of the condition. */
1611 static basic_block
1612 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1613 edge e, void *cond_expr, unsigned then_prob)
1615 basic_block new_head = NULL;
1616 edge e1;
1618 gcc_assert (e->dest == second_head);
1620 /* Split edge 'e'. This will create a new basic block, where we can
1621 insert conditional expr. */
1622 new_head = split_edge (e);
1624 lv_add_condition_to_bb (first_head, second_head, new_head,
1625 cond_expr);
1627 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1628 e = single_succ_edge (new_head);
1629 e1 = make_edge (new_head, first_head,
1630 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1631 e1->probability = then_prob;
1632 e->probability = REG_BR_PROB_BASE - then_prob;
1633 e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
1634 e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
1636 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1637 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1639 /* Adjust loop header phi nodes. */
1640 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1642 return new_head;
1645 /* Main entry point for Loop Versioning transformation.
1647 This transformation given a condition and a loop, creates
1648 -if (condition) { loop_copy1 } else { loop_copy2 },
1649 where loop_copy1 is the loop transformed in one way, and loop_copy2
1650 is the loop transformed in another way (or unchanged). 'condition'
1651 may be a run time test for things that were not resolved by static
1652 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1654 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1655 is the ratio by that the frequencies in the original loop should
1656 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1657 new loop should be scaled.
1659 If PLACE_AFTER is true, we place the new loop after LOOP in the
1660 instruction stream, otherwise it is placed before LOOP. */
1662 struct loop *
1663 loop_version (struct loop *loop,
1664 void *cond_expr, basic_block *condition_bb,
1665 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1666 bool place_after)
1668 basic_block first_head, second_head;
1669 edge entry, latch_edge, true_edge, false_edge;
1670 int irred_flag;
1671 struct loop *nloop;
1672 basic_block cond_bb;
1674 /* Record entry and latch edges for the loop */
1675 entry = loop_preheader_edge (loop);
1676 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1677 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1679 /* Note down head of loop as first_head. */
1680 first_head = entry->dest;
1682 /* Duplicate loop. */
1683 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1684 NULL, NULL, NULL, 0))
1686 entry->flags |= irred_flag;
1687 return NULL;
1690 /* After duplication entry edge now points to new loop head block.
1691 Note down new head as second_head. */
1692 second_head = entry->dest;
1694 /* Split loop entry edge and insert new block with cond expr. */
1695 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1696 entry, cond_expr, then_prob);
1697 if (condition_bb)
1698 *condition_bb = cond_bb;
1700 if (!cond_bb)
1702 entry->flags |= irred_flag;
1703 return NULL;
1706 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1708 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1709 nloop = loopify (latch_edge,
1710 single_pred_edge (get_bb_copy (loop->header)),
1711 cond_bb, true_edge, false_edge,
1712 false /* Do not redirect all edges. */,
1713 then_scale, else_scale);
1715 copy_loop_info (loop, nloop);
1717 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1718 lv_flush_pending_stmts (latch_edge);
1720 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1721 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1722 lv_flush_pending_stmts (false_edge);
1723 /* Adjust irreducible flag. */
1724 if (irred_flag)
1726 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1727 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1728 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1729 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1732 if (place_after)
1734 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1735 unsigned i;
1737 after = loop->latch;
1739 for (i = 0; i < nloop->num_nodes; i++)
1741 move_block_after (bbs[i], after);
1742 after = bbs[i];
1744 free (bbs);
1747 /* At this point condition_bb is loop preheader with two successors,
1748 first_head and second_head. Make sure that loop preheader has only
1749 one successor. */
1750 split_edge (loop_preheader_edge (loop));
1751 split_edge (loop_preheader_edge (nloop));
1753 return nloop;
1756 /* The structure of loops might have changed. Some loops might get removed
1757 (and their headers and latches were set to NULL), loop exists might get
1758 removed (thus the loop nesting may be wrong), and some blocks and edges
1759 were changed (so the information about bb --> loop mapping does not have
1760 to be correct). But still for the remaining loops the header dominates
1761 the latch, and loops did not get new subloops (new loops might possibly
1762 get created, but we are not interested in them). Fix up the mess.
1764 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1765 marked in it. */
1767 void
1768 fix_loop_structure (bitmap changed_bbs)
1770 basic_block bb;
1771 struct loop *loop, *ploop;
1772 loop_iterator li;
1773 bool record_exits = false;
1774 struct loop **superloop = XNEWVEC (struct loop *, number_of_loops ());
1776 /* We need exact and fast dominance info to be available. */
1777 gcc_assert (dom_info_state (CDI_DOMINATORS) == DOM_OK);
1779 /* Remove the old bb -> loop mapping. Remember the depth of the blocks in
1780 the loop hierarchy, so that we can recognize blocks whose loop nesting
1781 relationship has changed. */
1782 FOR_EACH_BB (bb)
1784 if (changed_bbs)
1785 bb->aux = (void *) (size_t) loop_depth (bb->loop_father);
1786 bb->loop_father = current_loops->tree_root;
1789 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1791 release_recorded_exits ();
1792 record_exits = true;
1795 /* Remove the dead loops from structures. We start from the innermost
1796 loops, so that when we remove the loops, we know that the loops inside
1797 are preserved, and do not waste time relinking loops that will be
1798 removed later. */
1799 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1801 if (loop->header)
1802 continue;
1804 while (loop->inner)
1806 ploop = loop->inner;
1807 flow_loop_tree_node_remove (ploop);
1808 flow_loop_tree_node_add (loop_outer (loop), ploop);
1811 /* Remove the loop and free its data. */
1812 delete_loop (loop);
1815 /* Rescan the bodies of loops, starting from the outermost ones. We assume
1816 that no optimization interchanges the order of the loops, i.e., it cannot
1817 happen that L1 was superloop of L2 before and it is subloop of L2 now
1818 (without explicitly updating loop information). At the same time, we also
1819 determine the new loop structure. */
1820 current_loops->tree_root->num_nodes = n_basic_blocks;
1821 FOR_EACH_LOOP (li, loop, 0)
1823 superloop[loop->num] = loop->header->loop_father;
1824 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1827 /* Now fix the loop nesting. */
1828 FOR_EACH_LOOP (li, loop, 0)
1830 ploop = superloop[loop->num];
1831 if (ploop != loop_outer (loop))
1833 flow_loop_tree_node_remove (loop);
1834 flow_loop_tree_node_add (ploop, loop);
1837 free (superloop);
1839 /* Mark the blocks whose loop has changed. */
1840 if (changed_bbs)
1842 FOR_EACH_BB (bb)
1844 if ((void *) (size_t) loop_depth (bb->loop_father) != bb->aux)
1845 bitmap_set_bit (changed_bbs, bb->index);
1847 bb->aux = NULL;
1851 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
1852 create_preheaders (CP_SIMPLE_PREHEADERS);
1854 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1855 force_single_succ_latches ();
1857 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1858 mark_irreducible_loops ();
1860 if (record_exits)
1861 record_loop_exits ();
1863 loops_state_clear (LOOPS_NEED_FIXUP);
1865 #ifdef ENABLE_CHECKING
1866 verify_loop_structure ();
1867 #endif