c-family/
[official-gcc.git] / gcc / ada / targparm.ads
blobe3210c93664ce6e05c516fca78bb08ebbcdbc6e0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- T A R G P A R M --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1999-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- This package obtains parameters from the target runtime version of System,
27 -- to indicate parameters relevant to the target environment.
29 -- Conceptually, these parameters could be obtained using rtsfind, but
30 -- we do not do this for four reasons:
32 -- 1. Compiling System for every compilation wastes time
34 -- 2. This compilation impedes debugging by adding extra compile steps
36 -- 3. There are recursion problems coming from compiling System itself
37 -- or any of its children.
39 -- 4. The binder also needs the parameters, and we do not want to have
40 -- to drag a lot of front end stuff into the binder.
42 -- For all these reasons, we read in the source of System, and then scan
43 -- it at the text level to extract the parameter values.
45 -- Note however, that later on, when the ali file is written, we make sure
46 -- that the System file is at least parsed, so that the checksum is properly
47 -- computed and set in the ali file. This partially negates points 1 and 2
48 -- above although just parsing is quick and does not impact debugging much.
50 -- The parameters acquired by this routine from system.ads fall into four
51 -- categories:
53 -- 1. Configuration pragmas, that must appear at the start of the file.
54 -- Any such pragmas automatically apply to any unit compiled in the
55 -- presence of this system file. Only a limited set of such pragmas
56 -- may appear as documented in the corresponding section below,
58 -- 2. Target parameters. These are boolean constants that are defined
59 -- in the private part of the package giving fixed information
60 -- about the target architecture, and the capabilities of the
61 -- code generator and run-time library.
63 -- 3. Identification information. This is an optional string constant
64 -- that gives the name of the run-time library configuration. This
65 -- line may be omitted for a version of system.ads to be used with
66 -- the full Ada 95 run time.
68 -- 4. Other characteristics of package System. At the current time the
69 -- only item in this category is whether type Address is private.
71 with Rident; use Rident;
72 with Namet; use Namet;
73 with Types; use Types;
75 package Targparm is
77 ---------------------------
78 -- Configuration Pragmas --
79 ---------------------------
81 -- The following switches get set if the corresponding configuration
82 -- pragma is scanned from the source of system.ads. No other pragmas
83 -- are permitted to appear at the start of the system.ads source file.
85 -- If a pragma Discard_Names appears, then Opt.Global_Discard_Names is
86 -- set to True to indicate that all units must be compiled in this mode.
88 -- If a pragma Locking_Policy appears, then Opt.Locking_Policy is set
89 -- to the first character of the policy name, and Opt.Locking_Policy_Sloc
90 -- is set to System_Location.
92 -- If a pragma Normalize_Scalars appears, then Opt.Normalize_Scalars
93 -- is set True, as well as Opt.Init_Or_Norm_Scalars.
95 -- If a pragma Queuing_Policy appears, then Opt.Queuing_Policy is set
96 -- to the first character of the policy name, and Opt.Queuing_Policy_Sloc
97 -- is set to System_Location.
99 -- If a pragma Task_Dispatching_Policy appears, then the flag
100 -- Opt.Task_Dispatching_Policy is set to the first character of the
101 -- policy name, and Opt.Task_Dispatching_Policy_Sloc is set to
102 -- System_Location.
104 -- If a pragma Polling (On) appears, then the flag Opt.Polling_Required
105 -- is set to True.
107 -- If a pragma Detect_Blocking appears, then the flag Opt.Detect_Blocking
108 -- is set to True.
110 -- if a pragma Suppress_Exception_Locations appears, then the flag
111 -- Opt.Exception_Locations_Suppressed is set to True.
113 -- If a pragma Profile with a valid profile argument appears, then
114 -- the appropriate restrictions and policy flags are set.
116 -- The only other pragma allowed is a pragma Restrictions that specifies
117 -- a restriction that will be imposed on all units in the partition. Note
118 -- that in this context, only one restriction can be specified in a single
119 -- pragma, and the pragma must appear on its own on a single source line.
121 -- If package System contains exactly the line "type Address is private;"
122 -- then the flag Opt.Address_Is_Private is set True, otherwise this flag
123 -- is set False.
125 Restrictions_On_Target : Restrictions_Info := No_Restrictions;
126 -- Records restrictions specified by system.ads. Only the Set and Value
127 -- members are modified. The Violated and Count fields are never modified.
128 -- Note that entries can be set either by a pragma Restrictions or by
129 -- a pragma Profile.
131 -------------------
132 -- Run Time Name --
133 -------------------
135 -- This parameter should be regarded as read only by all clients of
136 -- of package. The only way they get modified is by calling the
137 -- Get_Target_Parameters routine which reads the values from a provided
138 -- text buffer containing the source of the system package.
140 -- The corresponding string constant is placed immediately at the start
141 -- of the private part of system.ads if is present, e.g. in the form:
143 -- Run_Time_Name : constant String := "Zero Footprint Run Time";
145 -- the corresponding messages will look something like
147 -- xxx not supported (Zero Footprint Run Time)
149 Run_Time_Name_On_Target : Name_Id := No_Name;
150 -- Set to appropriate names table entry Id value if a Run_Time_Name
151 -- string constant is defined in system.ads. This name is used only
152 -- for the configurable run-time case, and is used to parameterize
153 -- messages that complain about non-supported run-time features.
154 -- The name should contain only letters A-Z, digits 1-9, spaces,
155 -- and underscores.
157 --------------------------
158 -- Executable Extension --
159 --------------------------
161 Executable_Extension_On_Target : Name_Id := No_Name;
162 -- Executable extension on the target. This name is useful for setting
163 -- the executable extension in a dynamic way, e.g. depending on the
164 -- run time used, rather than using a configure-time macro as done by
165 -- Get_Target_Executable_Suffix. If not set (No_Name), instead use
166 -- System.OS_Lib.Get_Target_Executable_Suffix.
168 -----------------------
169 -- Target Parameters --
170 -----------------------
172 -- The following parameters correspond to the variables defined in the
173 -- private part of System (without the terminating _On_Target). Note
174 -- that it is required that all parameters defined here be specified
175 -- in the target specific version of system.ads. Thus, to add a new
176 -- parameter, add it to all system*.ads files. (There is a defaulting
177 -- mechanism, but we don't normally take advantage of it, as explained
178 -- below.)
180 -- The default values here are used if no value is found in system.ads.
181 -- This should normally happen if the special version of system.ads used
182 -- by the compiler itself is in use or if the value is only relevant to
183 -- a particular target (e.g. OpenVMS, AAMP). The default values are
184 -- suitable for use in normal environments. This approach allows the
185 -- possibility of new versions of the compiler (possibly with new system
186 -- parameters added) being used to compile older versions of the compiler
187 -- sources, as well as avoiding duplicating values in all system-*.ads
188 -- files for flags that are used on a few platforms only.
190 -- All these parameters should be regarded as read only by all clients
191 -- of the package. The only way they get modified is by calling the
192 -- Get_Target_Parameters routine which reads the values from a provided
193 -- text buffer containing the source of the system package.
195 ----------------------------
196 -- Special Target Control --
197 ----------------------------
199 -- The great majority of GNAT ports are based on GCC. The switches in
200 -- This section indicate the use of some non-standard target back end
201 -- or other special targetting requirements.
203 AAMP_On_Target : Boolean := False;
204 -- Set to True if target is AAMP
206 OpenVMS_On_Target : Boolean := False;
207 -- Set to True if target is OpenVMS
209 RTX_RTSS_Kernel_Module_On_Target : Boolean := False;
210 -- Set to True if target is RTSS module for RTX
212 type Virtual_Machine_Kind is (No_VM, JVM_Target, CLI_Target);
213 VM_Target : Virtual_Machine_Kind := No_VM;
214 -- Kind of virtual machine targetted
215 -- No_VM: no virtual machine, default case of a standard processor
216 -- JVM_Target: Java Virtual Machine
217 -- CLI_Target: CLI/.NET Virtual Machine
219 -------------------------------
220 -- Backend Arithmetic Checks --
221 -------------------------------
223 -- Divide and overflow checks are either done in the front end or
224 -- back end. The front end will generate checks when required unless
225 -- the corresponding parameter here is set to indicate that the back
226 -- end will generate the required checks (or that the checks are
227 -- automatically performed by the hardware in an appropriate form).
229 Backend_Divide_Checks_On_Target : Boolean := False;
230 -- Set True if the back end generates divide checks, or if the hardware
231 -- checks automatically. Set False if the front end must generate the
232 -- required tests using explicit expanded code.
234 Backend_Overflow_Checks_On_Target : Boolean := False;
235 -- Set True if the back end generates arithmetic overflow checks, or if
236 -- the hardware checks automatically. Set False if the front end must
237 -- generate the required tests using explicit expanded code.
239 -----------------------------------
240 -- Control of Exception Handling --
241 -----------------------------------
243 -- GNAT implements three methods of implementing exceptions:
245 -- Front-End Longjmp/Setjmp Exceptions
247 -- This approach uses longjmp/setjmp to handle exceptions. It
248 -- uses less storage, and can often propagate exceptions faster,
249 -- at the expense of (sometimes considerable) overhead in setting
250 -- up an exception handler. This approach is available on all
251 -- targets, and is the default where it is the only approach.
253 -- The generation of the setjmp and longjmp calls is handled by
254 -- the front end of the compiler (this includes gigi in the case
255 -- of the standard GCC back end). It does not use any back end
256 -- support (such as the GCC3 exception handling mechanism). When
257 -- this approach is used, the compiler generates special exception
258 -- handlers for handling cleanups when an exception is raised.
260 -- Front-End Zero Cost Exceptions
262 -- This approach uses separate exception tables. These use extra
263 -- storage, and exception propagation can be quite slow, but there
264 -- is no overhead in setting up an exception handler (it is to this
265 -- latter operation that the phrase zero-cost refers). This approach
266 -- is only available on some targets, and is the default where it is
267 -- available.
269 -- The generation of the exception tables is handled by the front
270 -- end of the compiler. It does not use any back end support (such
271 -- as the GCC3 exception handling mechanism). When this approach
272 -- is used, the compiler generates special exception handlers for
273 -- handling cleanups when an exception is raised.
275 -- Back-End Zero Cost Exceptions
277 -- With this approach, the back end handles the generation and
278 -- handling of exceptions. For example, the GCC3 exception handling
279 -- mechanisms are used in this mode. The front end simply generates
280 -- code for explicit exception handlers, and AT END cleanup handlers
281 -- are simply passed unchanged to the backend for generating cleanups
282 -- both in the exceptional and non-exceptional cases.
284 -- As the name implies, this approach generally uses a zero-cost
285 -- mechanism with tables, but the tables are generated by the back
286 -- end. However, since the back-end is entirely responsible for the
287 -- handling of exceptions, another mechanism might be used. In the
288 -- case of GCC3 for instance, it might be the case that the compiler
289 -- is configured for setjmp/longjmp handling, then everything will
290 -- work correctly. However, it is definitely preferred that the
291 -- back end provide zero cost exception handling.
293 -- Controlling the selection of methods
295 -- On most implementations, back-end zero-cost exceptions are used.
296 -- Otherwise, Front-End Longjmp/Setjmp approach is used.
297 -- Note that there is a requirement that all Ada units in a partition
298 -- be compiled with the same exception model.
300 -- Control of Available Methods and Defaults
302 -- The following switches specify whether ZCX is available, and
303 -- whether it is enabled by default.
305 ZCX_By_Default_On_Target : Boolean := False;
306 -- Indicates if zero cost exceptions are active by default. If this
307 -- variable is False, then the only possible exception method is the
308 -- front-end setjmp/longjmp approach, and this is the default. If
309 -- this variable is True, then GCC ZCX is used.
311 ------------------------------------
312 -- Run-Time Library Configuration --
313 ------------------------------------
315 -- In configurable run-time mode, the system run-time may not support
316 -- the full Ada language. The effect of setting this switch is to let
317 -- the compiler know that it is not surprising (i.e. the system is not
318 -- misconfigured) if run-time library units or entities within units are
319 -- not present in the run-time.
321 Configurable_Run_Time_On_Target : Boolean := False;
322 -- Indicates that the system.ads file is for a configurable run-time
324 -- This has some specific effects as follows
326 -- The binder generates the gnat_argc/argv/envp variables in the
327 -- binder file instead of being imported from the run-time library.
328 -- If Command_Line_Args_On_Target is set to False, then the
329 -- generation of these variables is suppressed completely.
331 -- The binder generates the gnat_exit_status variable in the binder
332 -- file instead of being imported from the run-time library. If
333 -- Exit_Status_Supported_On_Target is set to False, then the
334 -- generation of this variable is suppressed entirely.
336 -- The routine __gnat_break_start is defined within the binder file
337 -- instead of being imported from the run-time library.
339 -- The variable __gnat_exit_status is generated within the binder file
340 -- instead of being imported from the run-time library.
342 Suppress_Standard_Library_On_Target : Boolean := False;
343 -- If this flag is True, then the standard library is not included by
344 -- default in the executable (see unit System.Standard_Library in file
345 -- s-stalib.ads for details of what this includes). This is for example
346 -- set True for the zero foot print case, where these files should not
347 -- be included by default.
349 -- This flag has some other related effects:
351 -- The generation of global variables in the bind file is suppressed,
352 -- with the exception of the priority of the environment task, which
353 -- is needed by the Ravenscar run-time.
355 -- The calls to __gnat_initialize and __gnat_finalize are omitted
357 -- All finalization and initialization (controlled types) is omitted
359 -- The routine __gnat_handler_installed is not imported
361 Preallocated_Stacks_On_Target : Boolean := False;
362 -- If this flag is True, then the expander preallocates all task stacks
363 -- at compile time. If the flag is False, then task stacks are not pre-
364 -- allocated, and task stack allocation is the responsibility of the
365 -- run-time (which typically delegates the task to the underlying
366 -- operating system environment).
368 ---------------------
369 -- Duration Format --
370 ---------------------
372 -- By default, type Duration is a 64-bit fixed-point type with a delta
373 -- and small of 10**(-9) (i.e. it is a count in nanoseconds. This flag
374 -- allows that standard format to be modified.
376 Duration_32_Bits_On_Target : Boolean := False;
377 -- If True, then Duration is represented in 32 bits and the delta and
378 -- small values are set to 20.0*(10**(-3)) (i.e. it is a count in units
379 -- of 20 milliseconds.
381 ------------------------------------
382 -- Back-End Code Generation Flags --
383 ------------------------------------
385 -- These flags indicate possible limitations in what the code generator
386 -- can handle. They will all be True for a full run-time, but one or more
387 -- of these may be false for a configurable run-time, and if a feature is
388 -- used at the source level, and the corresponding flag is false, then an
389 -- error message will be issued saying the feature is not supported.
391 Atomic_Sync_Default : Boolean := True;
392 -- Access to atomic variables requires memory barrier synchronization in
393 -- the general case to ensure proper behavior when such accesses are used
394 -- on a multi-processor to synchronize tasks (e.g. by using spin locks).
395 -- The setting of this flag determines the default behavior. Normally this
396 -- is True, which will mean that appropriate synchronization instructions
397 -- are generated by default. If it is False, then the default will be that
398 -- these synchronization instructions are not generated. This may be a more
399 -- appropriate default in some cases, e.g. on embedded targets which do not
400 -- allow the possibility of multi-processors. The default can be overridden
401 -- using pragmas Enable/Disable_Atomic_Synchronization and also by use of
402 -- the debug flags gnat.d and gnatd.e.
404 Support_Aggregates_On_Target : Boolean := True;
405 -- In the general case, the use of aggregates may generate calls
406 -- to run-time routines in the C library, including memset, memcpy,
407 -- memmove, and bcopy. This flag is set to True if these routines
408 -- are available. If any of these routines is not available, then
409 -- this flag is False, and the use of aggregates is not permitted.
411 Support_Atomic_Primitives_On_Target : Boolean := False;
412 -- If this flag is True, then the back-end support GCC built-in atomic
413 -- operations for memory model such as atomic load or atomic compare
414 -- exchange (see the GCC manual for more information). If the flag is
415 -- False, then the back-end doesn't provide this support. Note this flag is
416 -- set to True only if the target supports all atomic primitives up to 64
417 -- bits. ??? To be modified.
419 Support_Composite_Assign_On_Target : Boolean := True;
420 -- The assignment of composite objects other than small records and
421 -- arrays whose size is 64-bits or less and is set by an explicit
422 -- size clause may generate calls to memcpy, memmove, and bcopy.
423 -- If versions of all these routines are available, then this flag
424 -- is set to True. If any of these routines is not available, then
425 -- the flag is set False, and composite assignments are not allowed.
427 Support_Composite_Compare_On_Target : Boolean := True;
428 -- If this flag is True, then the back end supports bit-wise comparison
429 -- of composite objects for equality, either generating inline code or
430 -- calling appropriate (and available) run-time routines. If this flag
431 -- is False, then the back end does not provide this support, and the
432 -- front end uses component by component comparison for composites.
434 Support_Long_Shifts_On_Target : Boolean := True;
435 -- If True, the back end supports 64-bit shift operations. If False, then
436 -- the source program may not contain explicit 64-bit shifts. In addition,
437 -- the code generated for packed arrays will avoid the use of long shifts.
439 --------------------
440 -- Indirect Calls --
441 --------------------
443 Always_Compatible_Rep_On_Target : Boolean := True;
444 -- If True, the Can_Use_Internal_Rep flag (see Einfo) is set to False in
445 -- all cases. This corresponds to the traditional code generation
446 -- strategy. False allows the front end to choose a policy that partly or
447 -- entirely eliminates dynamically generated trampolines.
449 -------------------------------
450 -- Control of Stack Checking --
451 -------------------------------
453 -- GNAT provides three methods of implementing exceptions:
455 -- GCC Probing Mechanism
457 -- This approach uses the standard GCC mechanism for
458 -- stack checking. The method assumes that accessing
459 -- storage immediately beyond the end of the stack
460 -- will result in a trap that is converted to a storage
461 -- error by the runtime system. This mechanism has
462 -- minimal overhead, but requires complex hardware,
463 -- operating system and run-time support. Probing is
464 -- the default method where it is available. The stack
465 -- size for the environment task depends on the operating
466 -- system and cannot be set in a system-independent way.
468 -- GCC Stack-limit Mechanism
470 -- This approach uses the GCC stack limits mechanism.
471 -- It relies on comparing the stack pointer with the
472 -- values of a global symbol. If the check fails, a
473 -- trap is explicitly generated. The advantage is
474 -- that the mechanism requires no memory protection,
475 -- but operating system and run-time support are
476 -- needed to manage the per-task values of the symbol.
477 -- This is the default method after probing where it
478 -- is available.
480 -- GNAT Stack-limit Checking
482 -- This method relies on comparing the stack pointer
483 -- with per-task stack limits. If the check fails, an
484 -- exception is explicitly raised. The advantage is
485 -- that the method requires no extra system dependent
486 -- runtime support and can be used on systems without
487 -- memory protection as well, but at the cost of more
488 -- overhead for doing the check. This is the fallback
489 -- method if the above two are not supported.
491 Stack_Check_Probes_On_Target : Boolean := False;
492 -- Indicates if the GCC probing mechanism is used
494 Stack_Check_Limits_On_Target : Boolean := False;
495 -- Indicates if the GCC stack-limit mechanism is used
497 -- Both flags cannot be simultaneously set to True. If neither
498 -- is, the target independent fallback method is used.
500 Stack_Check_Default_On_Target : Boolean := False;
501 -- Indicates if stack checking is on by default
503 ----------------------------
504 -- Command Line Arguments --
505 ----------------------------
507 -- For most ports of GNAT, command line arguments are supported. The
508 -- following flag is set to False for targets that do not support
509 -- command line arguments (VxWorks and AAMP). Note that support of
510 -- command line arguments is not required on such targets (RM A.15(13)).
512 Command_Line_Args_On_Target : Boolean := True;
513 -- Set False if no command line arguments on target. Note that if this
514 -- is False in with Configurable_Run_Time_On_Target set to True, then
515 -- this causes suppression of generation of the argv/argc variables
516 -- used to record command line arguments.
518 -- Similarly, most ports support the use of an exit status, but AAMP
519 -- is an exception (as allowed by RM A.15(18-20))
521 Exit_Status_Supported_On_Target : Boolean := True;
522 -- Set False if returning of an exit status is not supported on target.
523 -- Note that if this False in with Configurable_Run_Time_On_Target
524 -- set to True, then this causes suppression of the gnat_exit_status
525 -- variable used to record the exit status.
527 -----------------------
528 -- Main Program Name --
529 -----------------------
531 -- When the binder generates the main program to be used to create the
532 -- executable, the main program name is main by default (to match the
533 -- usual Unix practice). If this parameter is set to True, then the
534 -- name is instead by default taken from the actual Ada main program
535 -- name (just the name of the child if the main program is a child unit).
536 -- In either case, this value can be overridden using -M name.
538 Use_Ada_Main_Program_Name_On_Target : Boolean := False;
539 -- Set True to use the Ada main program name as the main name
541 ----------------------------------------------
542 -- Boolean-Valued Floating-Point Attributes --
543 ----------------------------------------------
545 -- The constants below give the values for representation oriented
546 -- floating-point attributes that are the same for all float types
547 -- on the target. These are all boolean values.
549 -- A value is only True if the target reliably supports the corresponding
550 -- feature. Reliably here means that support is guaranteed for all
551 -- possible settings of the relevant compiler switches (like -mieee),
552 -- since we cannot control the user setting of those switches.
554 -- The attributes cannot dependent on the current setting of compiler
555 -- switches, since the values must be static and consistent throughout
556 -- the partition. We probably should add such consistency checks in future,
557 -- but for now we don't do this.
559 -- Note: the compiler itself does not use floating-point, so the
560 -- settings of the defaults here are not really relevant.
562 -- Note: in some cases, proper support of some of these floating point
563 -- features may require a specific switch (e.g. -mieee on the Alpha)
564 -- to be used to obtain full RM compliant support.
566 Denorm_On_Target : Boolean := False;
567 -- Set to False on targets that do not reliably support denormals
569 Machine_Rounds_On_Target : Boolean := True;
570 -- Set to False for targets where S'Machine_Rounds is False
572 Machine_Overflows_On_Target : Boolean := False;
573 -- Set to True for targets where S'Machine_Overflows is True
575 Signed_Zeros_On_Target : Boolean := True;
576 -- Set to False on targets that do not reliably support signed zeros
578 -------------------------------------------
579 -- Boolean-Valued Fixed-Point Attributes --
580 -------------------------------------------
582 Fractional_Fixed_Ops_On_Target : Boolean := False;
583 -- Set to True for targets that support fixed-by-fixed multiplication
584 -- and division for fixed-point types with a small value equal to
585 -- 2 ** (-(T'Object_Size - 1)) and whose values have an absolute
586 -- value less than 1.0.
588 -----------------
589 -- Data Layout --
590 -----------------
592 -- Normally when using the GCC backend, Gigi and GCC perform much of the
593 -- data layout using the standard layout capabilities of GCC. If the
594 -- parameter Backend_Layout is set to False, then the front end must
595 -- perform all data layout. For further details see the package Layout.
597 Frontend_Layout_On_Target : Boolean := False;
598 -- Set True if front end does layout
600 -----------------
601 -- Subprograms --
602 -----------------
604 -- These subprograms are used to initialize the target parameter values
605 -- from the system.ads file. Note that this is only done once, so if more
606 -- than one call is made to either routine, the second and subsequent
607 -- calls are ignored.
609 procedure Get_Target_Parameters
610 (System_Text : Source_Buffer_Ptr;
611 Source_First : Source_Ptr;
612 Source_Last : Source_Ptr);
613 -- Called at the start of execution to obtain target parameters from
614 -- the source of package System. The parameters provide the source
615 -- text to be scanned (in System_Text (Source_First .. Source_Last)).
617 procedure Get_Target_Parameters;
618 -- This version reads in system.ads using Osint. The idea is that the
619 -- caller uses the first version if they have to read system.ads anyway
620 -- (e.g. the compiler) and uses this simpler interface if system.ads is
621 -- not otherwise needed.
623 end Targparm;