1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME COMPONENTS --
5 -- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
32 -- This body is specifically for using an Ada interface to C math.h to get
33 -- the computation engine. Many special cases are handled locally to avoid
34 -- unnecessary calls or to meet Annex G strict mode requirements.
36 -- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan, sinh,
37 -- cosh, tanh from C library via math.h
39 with Ada
.Numerics
.Aux
;
41 package body Ada
.Numerics
.Generic_Elementary_Functions
is
43 use type Ada
.Numerics
.Aux
.Double
;
45 Sqrt_Two
: constant := 1.41421_35623_73095_04880_16887_24209_69807_85696
;
46 Log_Two
: constant := 0.69314_71805_59945_30941_72321_21458_17656_80755
;
48 Half_Log_Two
: constant := Log_Two
/ 2;
50 subtype T
is Float_Type
'Base;
51 subtype Double
is Aux
.Double
;
53 Two_Pi
: constant T
:= 2.0 * Pi
;
54 Half_Pi
: constant T
:= Pi
/ 2.0;
56 Half_Log_Epsilon
: constant T
:= T
(1 - T
'Model_Mantissa) * Half_Log_Two
;
57 Log_Inverse_Epsilon
: constant T
:= T
(T
'Model_Mantissa - 1) * Log_Two
;
58 Sqrt_Epsilon
: constant T
:= Sqrt_Two
** (1 - T
'Model_Mantissa);
60 -----------------------
61 -- Local Subprograms --
62 -----------------------
64 function Exp_Strict
(X
: Float_Type
'Base) return Float_Type
'Base;
65 -- Cody/Waite routine, supposedly more precise than the library version.
66 -- Currently only needed for Sinh/Cosh on X86 with the largest FP type.
70 X
: Float_Type
'Base := 1.0) return Float_Type
'Base;
71 -- Common code for arc tangent after cycle reduction
77 function "**" (Left
, Right
: Float_Type
'Base) return Float_Type
'Base is
78 A_Right
: Float_Type
'Base;
80 Result
: Float_Type
'Base;
82 Rest
: Float_Type
'Base;
93 elsif Right
= 0.0 then
98 raise Constraint_Error
;
103 elsif Left
= 1.0 then
106 elsif Right
= 1.0 then
114 elsif Right
= 0.5 then
118 A_Right
:= abs (Right
);
120 -- If exponent is larger than one, compute integer exponen-
121 -- tiation if possible, and evaluate fractional part with more
122 -- precision. The relative error is now proportional to the
123 -- fractional part of the exponent only.
126 and then A_Right
< Float_Type
'Base (Integer'Last)
128 Int_Part
:= Integer (Float_Type
'Base'Truncation (A_Right));
129 Result := Left ** Int_Part;
130 Rest := A_Right - Float_Type'Base (Int_Part);
132 -- Compute with two leading bits of the mantissa using
133 -- square roots. Bound to be better than logarithms, and
134 -- easily extended to greater precision.
138 Result := Result * R1;
142 Result := Result * Sqrt (R1);
146 elsif Rest >= 0.25 then
147 Result := Result * Sqrt (Sqrt (Left));
152 Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
157 return (1.0 / Result);
161 Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
167 raise Constraint_Error;
178 function Arccos (X : Float_Type'Base) return Float_Type'Base is
179 Temp : Float_Type'Base;
183 raise Argument_Error;
185 elsif abs X < Sqrt_Epsilon then
195 Temp := Float_Type'Base (Aux.Acos (Double (X)));
206 function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
207 Temp : Float_Type'Base;
211 raise Argument_Error;
213 elsif abs X > 1.0 then
214 raise Argument_Error;
216 elsif abs X < Sqrt_Epsilon then
226 Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
229 Temp := Cycle / 2.0 + Temp;
239 function Arccosh (X : Float_Type'Base) return Float_Type'Base is
241 -- Return positive branch of Log (X - Sqrt (X * X - 1.0)), or the proper
242 -- approximation for X close to 1 or >> 1.
245 raise Argument_Error;
247 elsif X < 1.0 + Sqrt_Epsilon then
248 return Sqrt (2.0 * (X - 1.0));
250 elsif X > 1.0 / Sqrt_Epsilon then
251 return Log (X) + Log_Two;
254 return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
265 (X : Float_Type'Base;
266 Y : Float_Type'Base := 1.0)
267 return Float_Type'Base
270 -- Just reverse arguments
272 return Arctan (Y, X);
278 (X : Float_Type'Base;
279 Y : Float_Type'Base := 1.0;
280 Cycle : Float_Type'Base)
281 return Float_Type'Base
284 -- Just reverse arguments
286 return Arctan (Y, X, Cycle);
293 function Arccoth (X : Float_Type'Base) return Float_Type'Base is
296 return Arctanh (1.0 / X);
298 elsif abs X = 1.0 then
299 raise Constraint_Error;
301 elsif abs X < 1.0 then
302 raise Argument_Error;
305 -- 1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the other
306 -- has error 0 or Epsilon.
308 return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
318 function Arcsin (X : Float_Type'Base) return Float_Type'Base is
321 raise Argument_Error;
323 elsif abs X < Sqrt_Epsilon then
333 return Float_Type'Base (Aux.Asin (Double (X)));
338 function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
341 raise Argument_Error;
343 elsif abs X > 1.0 then
344 raise Argument_Error;
353 return -(Cycle / 4.0);
356 return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
363 function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
365 if abs X < Sqrt_Epsilon then
368 elsif X > 1.0 / Sqrt_Epsilon then
369 return Log (X) + Log_Two;
371 elsif X < -(1.0 / Sqrt_Epsilon) then
372 return -(Log (-X) + Log_Two);
375 return -Log (abs X + Sqrt (X * X + 1.0));
378 return Log (X + Sqrt (X * X + 1.0));
389 (Y : Float_Type'Base;
390 X : Float_Type'Base := 1.0)
391 return Float_Type'Base
394 if X = 0.0 and then Y = 0.0 then
395 raise Argument_Error;
401 return Pi * Float_Type'Copy_Sign (1.0, Y);
405 return Float_Type'Copy_Sign (Half_Pi, Y);
408 return Local_Atan (Y, X);
415 (Y : Float_Type'Base;
416 X : Float_Type'Base := 1.0;
417 Cycle : Float_Type'Base)
418 return Float_Type'Base
422 raise Argument_Error;
424 elsif X = 0.0 and then Y = 0.0 then
425 raise Argument_Error;
431 return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
435 return Float_Type'Copy_Sign (Cycle / 4.0, Y);
438 return Local_Atan (Y, X) * Cycle / Two_Pi;
446 function Arctanh (X : Float_Type'Base) return Float_Type'Base is
447 A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
449 Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa
;
452 -- The naive formula:
454 -- Arctanh (X) := (1/2) * Log (1 + X) / (1 - X)
456 -- is not well-behaved numerically when X < 0.5 and when X is close
457 -- to one. The following is accurate but probably not optimal.
460 raise Constraint_Error
;
462 elsif abs X
>= 1.0 - 2.0 ** (-Mantissa
) then
465 raise Argument_Error
;
468 -- The one case that overflows if put through the method below:
469 -- abs X = 1.0 - Epsilon. In this case (1/2) log (2/Epsilon) is
470 -- accurate. This simplifies to:
472 return Float_Type
'Copy_Sign (
473 Half_Log_Two
* Float_Type
'Base (Mantissa
+ 1), X
);
476 -- elsif abs X <= 0.5 then
477 -- why is above line commented out ???
480 -- Use several piecewise linear approximations. A is close to X,
481 -- chosen so 1.0 + A, 1.0 - A, and X - A are exact. The two scalings
482 -- remove the low-order bits of X.
484 A
:= Float_Type
'Base'Scaling (
485 Float_Type'Base (Long_Long_Integer
486 (Float_Type'Base'Scaling
(X
, Mantissa
- 1))), 1 - Mantissa
);
488 B
:= X
- A
; -- This is exact; abs B <= 2**(-Mantissa).
489 A_Plus_1
:= 1.0 + A
; -- This is exact.
490 A_From_1
:= 1.0 - A
; -- Ditto.
491 D
:= A_Plus_1
* A_From_1
; -- 1 - A*A.
493 -- use one term of the series expansion:
495 -- f (x + e) = f(x) + e * f'(x) + ..
497 -- The derivative of Arctanh at A is 1/(1-A*A). Next term is
498 -- A*(B/D)**2 (if a quadratic approximation is ever needed).
500 return 0.5 * (Log
(A_Plus_1
) - Log
(A_From_1
)) + B
/ D
;
510 function Cos
(X
: Float_Type
'Base) return Float_Type
'Base is
515 elsif abs X
< Sqrt_Epsilon
then
520 return Float_Type
'Base (Aux
.Cos
(Double
(X
)));
525 function Cos
(X
, Cycle
: Float_Type
'Base) return Float_Type
'Base is
527 -- Just reuse the code for Sin. The potential small loss of speed is
528 -- negligible with proper (front-end) inlining.
530 return -Sin
(abs X
- Cycle
* 0.25, Cycle
);
537 function Cosh
(X
: Float_Type
'Base) return Float_Type
'Base is
538 Lnv
: constant Float_Type
'Base := 8#
0.542714#
;
539 V2minus1
: constant Float_Type
'Base := 0.13830_27787_96019_02638E
-4
;
540 Y
: constant Float_Type
'Base := abs X
;
544 if Y
< Sqrt_Epsilon
then
547 elsif Y
> Log_Inverse_Epsilon
then
548 Z
:= Exp_Strict
(Y
- Lnv
);
549 return (Z
+ V2minus1
* Z
);
553 return 0.5 * (Z
+ 1.0 / Z
);
564 function Cot
(X
: Float_Type
'Base) return Float_Type
'Base is
567 raise Constraint_Error
;
569 elsif abs X
< Sqrt_Epsilon
then
573 return 1.0 / Float_Type
'Base (Aux
.Tan
(Double
(X
)));
578 function Cot
(X
, Cycle
: Float_Type
'Base) return Float_Type
'Base is
583 raise Argument_Error
;
586 T
:= Float_Type
'Base'Remainder (X, Cycle);
588 if T = 0.0 or else abs T = 0.5 * Cycle then
589 raise Constraint_Error;
591 elsif abs T < Sqrt_Epsilon then
594 elsif abs T = 0.25 * Cycle then
598 T := T / Cycle * Two_Pi;
599 return Cos (T) / Sin (T);
607 function Coth (X : Float_Type'Base) return Float_Type'Base is
610 raise Constraint_Error;
612 elsif X < Half_Log_Epsilon then
615 elsif X > -Half_Log_Epsilon then
618 elsif abs X < Sqrt_Epsilon then
622 return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
629 function Exp (X : Float_Type'Base) return Float_Type'Base is
630 Result : Float_Type'Base;
637 Result := Float_Type'Base (Aux.Exp (Double (X)));
639 -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
640 -- is False, then we can just leave it as an infinity (and indeed we
641 -- prefer to do so). But if Machine_Overflows is True, then we have
642 -- to raise a Constraint_Error exception as required by the RM.
644 if Float_Type'Machine_Overflows and then not Result'Valid then
645 raise Constraint_Error;
655 function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
659 P0 : constant := 0.25000_00000_00000_00000;
660 P1 : constant := 0.75753_18015_94227_76666E-2;
661 P2 : constant := 0.31555_19276_56846_46356E-4;
663 Q0 : constant := 0.5;
664 Q1 : constant := 0.56817_30269_85512_21787E-1;
665 Q2 : constant := 0.63121_89437_43985_02557E-3;
666 Q3 : constant := 0.75104_02839_98700_46114E-6;
668 C1 : constant := 8#0.543#;
669 C2 : constant := -2.1219_44400_54690_58277E-4;
670 Le : constant := 1.4426_95040_88896_34074;
672 XN : Float_Type'Base;
673 P, Q, R : Float_Type'Base;
680 XN := Float_Type'Base'Rounding
(X
* Le
);
681 G
:= (X
- XN
* C1
) - XN
* C2
;
683 P
:= G
* ((P2
* Z
+ P1
) * Z
+ P0
);
684 Q
:= ((Q3
* Z
+ Q2
) * Z
+ Q1
) * Z
+ Q0
;
685 R
:= 0.5 + P
/ (Q
- P
);
687 R
:= Float_Type
'Base'Scaling (R, Integer (XN) + 1);
689 -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
690 -- is False, then we can just leave it as an infinity (and indeed we
691 -- prefer to do so). But if Machine_Overflows is True, then we have to
692 -- raise a Constraint_Error exception as required by the RM.
694 if Float_Type'Machine_Overflows and then not R'Valid then
695 raise Constraint_Error;
707 (Y : Float_Type'Base;
708 X : Float_Type'Base := 1.0) return Float_Type'Base
711 Raw_Atan : Float_Type'Base;
714 Z := (if abs Y > abs X then abs (X / Y) else abs (Y / X));
717 (if Z < Sqrt_Epsilon then Z
718 elsif Z = 1.0 then Pi / 4.0
719 else Float_Type'Base (Aux.Atan (Double (Z))));
721 if abs Y > abs X then
722 Raw_Atan := Half_Pi - Raw_Atan;
726 return Float_Type'Copy_Sign (Raw_Atan, Y);
728 return Float_Type'Copy_Sign (Pi - Raw_Atan, Y);
738 function Log (X : Float_Type'Base) return Float_Type'Base is
741 raise Argument_Error;
744 raise Constraint_Error;
750 return Float_Type'Base (Aux.Log (Double (X)));
755 function Log (X, Base : Float_Type'Base) return Float_Type'Base is
758 raise Argument_Error;
760 elsif Base <= 0.0 or else Base = 1.0 then
761 raise Argument_Error;
764 raise Constraint_Error;
770 return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
779 function Sin (X : Float_Type'Base) return Float_Type'Base is
781 if abs X < Sqrt_Epsilon then
785 return Float_Type'Base (Aux.Sin (Double (X)));
790 function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
795 raise Argument_Error;
797 -- If X is zero, return it as the result, preserving the argument sign.
798 -- Is this test really needed on any machine ???
804 T := Float_Type'Base'Remainder
(X
, Cycle
);
806 -- The following two reductions reduce the argument to the interval
807 -- [-0.25 * Cycle, 0.25 * Cycle]. This reduction is exact and is needed
808 -- to prevent inaccuracy that may result if the sine function uses a
809 -- different (more accurate) value of Pi in its reduction than is used
810 -- in the multiplication with Two_Pi.
812 if abs T
> 0.25 * Cycle
then
813 T
:= 0.5 * Float_Type
'Copy_Sign (Cycle
, T
) - T
;
816 -- Could test for 12.0 * abs T = Cycle, and return an exact value in
817 -- those cases. It is not clear this is worth the extra test though.
819 return Float_Type
'Base (Aux
.Sin
(Double
(T
/ Cycle
* Two_Pi
)));
826 function Sinh
(X
: Float_Type
'Base) return Float_Type
'Base is
827 Lnv
: constant Float_Type
'Base := 8#
0.542714#
;
828 V2minus1
: constant Float_Type
'Base := 0.13830_27787_96019_02638E
-4
;
829 Y
: constant Float_Type
'Base := abs X
;
830 F
: constant Float_Type
'Base := Y
* Y
;
833 Float_Digits_1_6
: constant Boolean := Float_Type
'Digits < 7;
836 if Y
< Sqrt_Epsilon
then
839 elsif Y
> Log_Inverse_Epsilon
then
840 Z
:= Exp_Strict
(Y
- Lnv
);
841 Z
:= Z
+ V2minus1
* Z
;
845 if Float_Digits_1_6
then
847 -- Use expansion provided by Cody and Waite, p. 226. Note that
848 -- leading term of the polynomial in Q is exactly 1.0.
851 P0
: constant := -0.71379_3159E
+1
;
852 P1
: constant := -0.19033_3399E
+0
;
853 Q0
: constant := -0.42827_7109E
+2
;
856 Z
:= Y
+ Y
* F
* (P1
* F
+ P0
) / (F
+ Q0
);
861 P0
: constant := -0.35181_28343_01771_17881E
+6
;
862 P1
: constant := -0.11563_52119_68517_68270E
+5
;
863 P2
: constant := -0.16375_79820_26307_51372E
+3
;
864 P3
: constant := -0.78966_12741_73570_99479E
+0
;
865 Q0
: constant := -0.21108_77005_81062_71242E
+7
;
866 Q1
: constant := 0.36162_72310_94218_36460E
+5
;
867 Q2
: constant := -0.27773_52311_96507_01667E
+3
;
870 Z
:= Y
+ Y
* F
* (((P3
* F
+ P2
) * F
+ P1
) * F
+ P0
)
871 / (((F
+ Q2
) * F
+ Q1
) * F
+ Q0
);
877 Z
:= 0.5 * (Z
- 1.0 / Z
);
891 function Sqrt
(X
: Float_Type
'Base) return Float_Type
'Base is
894 raise Argument_Error
;
896 -- Special case Sqrt (0.0) to preserve possible minus sign per IEEE
902 return Float_Type
'Base (Aux
.Sqrt
(Double
(X
)));
911 function Tan
(X
: Float_Type
'Base) return Float_Type
'Base is
913 if abs X
< Sqrt_Epsilon
then
917 -- Note: if X is exactly pi/2, then we should raise an exception, since
918 -- the result would overflow. But for all floating-point formats we deal
919 -- with, it is impossible for X to be exactly pi/2, and the result is
922 return Float_Type
'Base (Aux
.Tan
(Double
(X
)));
927 function Tan
(X
, Cycle
: Float_Type
'Base) return Float_Type
'Base is
932 raise Argument_Error
;
938 T
:= Float_Type
'Base'Remainder (X, Cycle);
940 if abs T = 0.25 * Cycle then
941 raise Constraint_Error;
943 elsif abs T = 0.5 * Cycle then
947 T := T / Cycle * Two_Pi;
948 return Sin (T) / Cos (T);
957 function Tanh (X : Float_Type'Base) return Float_Type'Base is
958 P0 : constant Float_Type'Base := -0.16134_11902_39962_28053E+4;
959 P1 : constant Float_Type'Base := -0.99225_92967_22360_83313E+2;
960 P2 : constant Float_Type'Base := -0.96437_49277_72254_69787E+0;
962 Q0 : constant Float_Type'Base := 0.48402_35707_19886_88686E+4;
963 Q1 : constant Float_Type'Base := 0.22337_72071_89623_12926E+4;
964 Q2 : constant Float_Type'Base := 0.11274_47438_05349_49335E+3;
965 Q3 : constant Float_Type'Base := 0.10000_00000_00000_00000E+1;
967 Half_Ln3 : constant Float_Type'Base := 0.54930_61443_34054_84570;
969 P, Q, R : Float_Type'Base;
970 Y : constant Float_Type'Base := abs X;
971 G : constant Float_Type'Base := Y * Y;
973 Float_Type_Digits_15_Or_More : constant Boolean :=
974 Float_Type'Digits > 14;
977 if X < Half_Log_Epsilon then
980 elsif X > -Half_Log_Epsilon then
983 elsif Y < Sqrt_Epsilon then
987 and then Float_Type_Digits_15_Or_More
989 P := (P2 * G + P1) * G + P0;
990 Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
995 return Float_Type'Base (Aux.Tanh (Double (X)));
999 end Ada.Numerics.Generic_Elementary_Functions;