c-family/
[official-gcc.git] / gcc / ada / a-ngelfu.adb
blob796f57415a4c861613d34140252ed14bf5efbc88
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This body is specifically for using an Ada interface to C math.h to get
33 -- the computation engine. Many special cases are handled locally to avoid
34 -- unnecessary calls or to meet Annex G strict mode requirements.
36 -- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan, sinh,
37 -- cosh, tanh from C library via math.h
39 with Ada.Numerics.Aux;
41 package body Ada.Numerics.Generic_Elementary_Functions is
43 use type Ada.Numerics.Aux.Double;
45 Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
46 Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
48 Half_Log_Two : constant := Log_Two / 2;
50 subtype T is Float_Type'Base;
51 subtype Double is Aux.Double;
53 Two_Pi : constant T := 2.0 * Pi;
54 Half_Pi : constant T := Pi / 2.0;
56 Half_Log_Epsilon : constant T := T (1 - T'Model_Mantissa) * Half_Log_Two;
57 Log_Inverse_Epsilon : constant T := T (T'Model_Mantissa - 1) * Log_Two;
58 Sqrt_Epsilon : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
60 -----------------------
61 -- Local Subprograms --
62 -----------------------
64 function Exp_Strict (X : Float_Type'Base) return Float_Type'Base;
65 -- Cody/Waite routine, supposedly more precise than the library version.
66 -- Currently only needed for Sinh/Cosh on X86 with the largest FP type.
68 function Local_Atan
69 (Y : Float_Type'Base;
70 X : Float_Type'Base := 1.0) return Float_Type'Base;
71 -- Common code for arc tangent after cycle reduction
73 ----------
74 -- "**" --
75 ----------
77 function "**" (Left, Right : Float_Type'Base) return Float_Type'Base is
78 A_Right : Float_Type'Base;
79 Int_Part : Integer;
80 Result : Float_Type'Base;
81 R1 : Float_Type'Base;
82 Rest : Float_Type'Base;
84 begin
85 if Left = 0.0
86 and then Right = 0.0
87 then
88 raise Argument_Error;
90 elsif Left < 0.0 then
91 raise Argument_Error;
93 elsif Right = 0.0 then
94 return 1.0;
96 elsif Left = 0.0 then
97 if Right < 0.0 then
98 raise Constraint_Error;
99 else
100 return 0.0;
101 end if;
103 elsif Left = 1.0 then
104 return 1.0;
106 elsif Right = 1.0 then
107 return Left;
109 else
110 begin
111 if Right = 2.0 then
112 return Left * Left;
114 elsif Right = 0.5 then
115 return Sqrt (Left);
117 else
118 A_Right := abs (Right);
120 -- If exponent is larger than one, compute integer exponen-
121 -- tiation if possible, and evaluate fractional part with more
122 -- precision. The relative error is now proportional to the
123 -- fractional part of the exponent only.
125 if A_Right > 1.0
126 and then A_Right < Float_Type'Base (Integer'Last)
127 then
128 Int_Part := Integer (Float_Type'Base'Truncation (A_Right));
129 Result := Left ** Int_Part;
130 Rest := A_Right - Float_Type'Base (Int_Part);
132 -- Compute with two leading bits of the mantissa using
133 -- square roots. Bound to be better than logarithms, and
134 -- easily extended to greater precision.
136 if Rest >= 0.5 then
137 R1 := Sqrt (Left);
138 Result := Result * R1;
139 Rest := Rest - 0.5;
141 if Rest >= 0.25 then
142 Result := Result * Sqrt (R1);
143 Rest := Rest - 0.25;
144 end if;
146 elsif Rest >= 0.25 then
147 Result := Result * Sqrt (Sqrt (Left));
148 Rest := Rest - 0.25;
149 end if;
151 Result := Result *
152 Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
154 if Right >= 0.0 then
155 return Result;
156 else
157 return (1.0 / Result);
158 end if;
159 else
160 return
161 Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
162 end if;
163 end if;
165 exception
166 when others =>
167 raise Constraint_Error;
168 end;
169 end if;
170 end "**";
172 ------------
173 -- Arccos --
174 ------------
176 -- Natural cycle
178 function Arccos (X : Float_Type'Base) return Float_Type'Base is
179 Temp : Float_Type'Base;
181 begin
182 if abs X > 1.0 then
183 raise Argument_Error;
185 elsif abs X < Sqrt_Epsilon then
186 return Pi / 2.0 - X;
188 elsif X = 1.0 then
189 return 0.0;
191 elsif X = -1.0 then
192 return Pi;
193 end if;
195 Temp := Float_Type'Base (Aux.Acos (Double (X)));
197 if Temp < 0.0 then
198 Temp := Pi + Temp;
199 end if;
201 return Temp;
202 end Arccos;
204 -- Arbitrary cycle
206 function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
207 Temp : Float_Type'Base;
209 begin
210 if Cycle <= 0.0 then
211 raise Argument_Error;
213 elsif abs X > 1.0 then
214 raise Argument_Error;
216 elsif abs X < Sqrt_Epsilon then
217 return Cycle / 4.0;
219 elsif X = 1.0 then
220 return 0.0;
222 elsif X = -1.0 then
223 return Cycle / 2.0;
224 end if;
226 Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
228 if Temp < 0.0 then
229 Temp := Cycle / 2.0 + Temp;
230 end if;
232 return Temp;
233 end Arccos;
235 -------------
236 -- Arccosh --
237 -------------
239 function Arccosh (X : Float_Type'Base) return Float_Type'Base is
240 begin
241 -- Return positive branch of Log (X - Sqrt (X * X - 1.0)), or the proper
242 -- approximation for X close to 1 or >> 1.
244 if X < 1.0 then
245 raise Argument_Error;
247 elsif X < 1.0 + Sqrt_Epsilon then
248 return Sqrt (2.0 * (X - 1.0));
250 elsif X > 1.0 / Sqrt_Epsilon then
251 return Log (X) + Log_Two;
253 else
254 return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
255 end if;
256 end Arccosh;
258 ------------
259 -- Arccot --
260 ------------
262 -- Natural cycle
264 function Arccot
265 (X : Float_Type'Base;
266 Y : Float_Type'Base := 1.0)
267 return Float_Type'Base
269 begin
270 -- Just reverse arguments
272 return Arctan (Y, X);
273 end Arccot;
275 -- Arbitrary cycle
277 function Arccot
278 (X : Float_Type'Base;
279 Y : Float_Type'Base := 1.0;
280 Cycle : Float_Type'Base)
281 return Float_Type'Base
283 begin
284 -- Just reverse arguments
286 return Arctan (Y, X, Cycle);
287 end Arccot;
289 -------------
290 -- Arccoth --
291 -------------
293 function Arccoth (X : Float_Type'Base) return Float_Type'Base is
294 begin
295 if abs X > 2.0 then
296 return Arctanh (1.0 / X);
298 elsif abs X = 1.0 then
299 raise Constraint_Error;
301 elsif abs X < 1.0 then
302 raise Argument_Error;
304 else
305 -- 1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the other
306 -- has error 0 or Epsilon.
308 return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
309 end if;
310 end Arccoth;
312 ------------
313 -- Arcsin --
314 ------------
316 -- Natural cycle
318 function Arcsin (X : Float_Type'Base) return Float_Type'Base is
319 begin
320 if abs X > 1.0 then
321 raise Argument_Error;
323 elsif abs X < Sqrt_Epsilon then
324 return X;
326 elsif X = 1.0 then
327 return Pi / 2.0;
329 elsif X = -1.0 then
330 return -(Pi / 2.0);
331 end if;
333 return Float_Type'Base (Aux.Asin (Double (X)));
334 end Arcsin;
336 -- Arbitrary cycle
338 function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
339 begin
340 if Cycle <= 0.0 then
341 raise Argument_Error;
343 elsif abs X > 1.0 then
344 raise Argument_Error;
346 elsif X = 0.0 then
347 return X;
349 elsif X = 1.0 then
350 return Cycle / 4.0;
352 elsif X = -1.0 then
353 return -(Cycle / 4.0);
354 end if;
356 return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
357 end Arcsin;
359 -------------
360 -- Arcsinh --
361 -------------
363 function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
364 begin
365 if abs X < Sqrt_Epsilon then
366 return X;
368 elsif X > 1.0 / Sqrt_Epsilon then
369 return Log (X) + Log_Two;
371 elsif X < -(1.0 / Sqrt_Epsilon) then
372 return -(Log (-X) + Log_Two);
374 elsif X < 0.0 then
375 return -Log (abs X + Sqrt (X * X + 1.0));
377 else
378 return Log (X + Sqrt (X * X + 1.0));
379 end if;
380 end Arcsinh;
382 ------------
383 -- Arctan --
384 ------------
386 -- Natural cycle
388 function Arctan
389 (Y : Float_Type'Base;
390 X : Float_Type'Base := 1.0)
391 return Float_Type'Base
393 begin
394 if X = 0.0 and then Y = 0.0 then
395 raise Argument_Error;
397 elsif Y = 0.0 then
398 if X > 0.0 then
399 return 0.0;
400 else -- X < 0.0
401 return Pi * Float_Type'Copy_Sign (1.0, Y);
402 end if;
404 elsif X = 0.0 then
405 return Float_Type'Copy_Sign (Half_Pi, Y);
407 else
408 return Local_Atan (Y, X);
409 end if;
410 end Arctan;
412 -- Arbitrary cycle
414 function Arctan
415 (Y : Float_Type'Base;
416 X : Float_Type'Base := 1.0;
417 Cycle : Float_Type'Base)
418 return Float_Type'Base
420 begin
421 if Cycle <= 0.0 then
422 raise Argument_Error;
424 elsif X = 0.0 and then Y = 0.0 then
425 raise Argument_Error;
427 elsif Y = 0.0 then
428 if X > 0.0 then
429 return 0.0;
430 else -- X < 0.0
431 return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
432 end if;
434 elsif X = 0.0 then
435 return Float_Type'Copy_Sign (Cycle / 4.0, Y);
437 else
438 return Local_Atan (Y, X) * Cycle / Two_Pi;
439 end if;
440 end Arctan;
442 -------------
443 -- Arctanh --
444 -------------
446 function Arctanh (X : Float_Type'Base) return Float_Type'Base is
447 A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
449 Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa;
451 begin
452 -- The naive formula:
454 -- Arctanh (X) := (1/2) * Log (1 + X) / (1 - X)
456 -- is not well-behaved numerically when X < 0.5 and when X is close
457 -- to one. The following is accurate but probably not optimal.
459 if abs X = 1.0 then
460 raise Constraint_Error;
462 elsif abs X >= 1.0 - 2.0 ** (-Mantissa) then
464 if abs X >= 1.0 then
465 raise Argument_Error;
466 else
468 -- The one case that overflows if put through the method below:
469 -- abs X = 1.0 - Epsilon. In this case (1/2) log (2/Epsilon) is
470 -- accurate. This simplifies to:
472 return Float_Type'Copy_Sign (
473 Half_Log_Two * Float_Type'Base (Mantissa + 1), X);
474 end if;
476 -- elsif abs X <= 0.5 then
477 -- why is above line commented out ???
479 else
480 -- Use several piecewise linear approximations. A is close to X,
481 -- chosen so 1.0 + A, 1.0 - A, and X - A are exact. The two scalings
482 -- remove the low-order bits of X.
484 A := Float_Type'Base'Scaling (
485 Float_Type'Base (Long_Long_Integer
486 (Float_Type'Base'Scaling (X, Mantissa - 1))), 1 - Mantissa);
488 B := X - A; -- This is exact; abs B <= 2**(-Mantissa).
489 A_Plus_1 := 1.0 + A; -- This is exact.
490 A_From_1 := 1.0 - A; -- Ditto.
491 D := A_Plus_1 * A_From_1; -- 1 - A*A.
493 -- use one term of the series expansion:
495 -- f (x + e) = f(x) + e * f'(x) + ..
497 -- The derivative of Arctanh at A is 1/(1-A*A). Next term is
498 -- A*(B/D)**2 (if a quadratic approximation is ever needed).
500 return 0.5 * (Log (A_Plus_1) - Log (A_From_1)) + B / D;
501 end if;
502 end Arctanh;
504 ---------
505 -- Cos --
506 ---------
508 -- Natural cycle
510 function Cos (X : Float_Type'Base) return Float_Type'Base is
511 begin
512 if X = 0.0 then
513 return 1.0;
515 elsif abs X < Sqrt_Epsilon then
516 return 1.0;
518 end if;
520 return Float_Type'Base (Aux.Cos (Double (X)));
521 end Cos;
523 -- Arbitrary cycle
525 function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base is
526 begin
527 -- Just reuse the code for Sin. The potential small loss of speed is
528 -- negligible with proper (front-end) inlining.
530 return -Sin (abs X - Cycle * 0.25, Cycle);
531 end Cos;
533 ----------
534 -- Cosh --
535 ----------
537 function Cosh (X : Float_Type'Base) return Float_Type'Base is
538 Lnv : constant Float_Type'Base := 8#0.542714#;
539 V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
540 Y : constant Float_Type'Base := abs X;
541 Z : Float_Type'Base;
543 begin
544 if Y < Sqrt_Epsilon then
545 return 1.0;
547 elsif Y > Log_Inverse_Epsilon then
548 Z := Exp_Strict (Y - Lnv);
549 return (Z + V2minus1 * Z);
551 else
552 Z := Exp_Strict (Y);
553 return 0.5 * (Z + 1.0 / Z);
554 end if;
556 end Cosh;
558 ---------
559 -- Cot --
560 ---------
562 -- Natural cycle
564 function Cot (X : Float_Type'Base) return Float_Type'Base is
565 begin
566 if X = 0.0 then
567 raise Constraint_Error;
569 elsif abs X < Sqrt_Epsilon then
570 return 1.0 / X;
571 end if;
573 return 1.0 / Float_Type'Base (Aux.Tan (Double (X)));
574 end Cot;
576 -- Arbitrary cycle
578 function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base is
579 T : Float_Type'Base;
581 begin
582 if Cycle <= 0.0 then
583 raise Argument_Error;
584 end if;
586 T := Float_Type'Base'Remainder (X, Cycle);
588 if T = 0.0 or else abs T = 0.5 * Cycle then
589 raise Constraint_Error;
591 elsif abs T < Sqrt_Epsilon then
592 return 1.0 / T;
594 elsif abs T = 0.25 * Cycle then
595 return 0.0;
597 else
598 T := T / Cycle * Two_Pi;
599 return Cos (T) / Sin (T);
600 end if;
601 end Cot;
603 ----------
604 -- Coth --
605 ----------
607 function Coth (X : Float_Type'Base) return Float_Type'Base is
608 begin
609 if X = 0.0 then
610 raise Constraint_Error;
612 elsif X < Half_Log_Epsilon then
613 return -1.0;
615 elsif X > -Half_Log_Epsilon then
616 return 1.0;
618 elsif abs X < Sqrt_Epsilon then
619 return 1.0 / X;
620 end if;
622 return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
623 end Coth;
625 ---------
626 -- Exp --
627 ---------
629 function Exp (X : Float_Type'Base) return Float_Type'Base is
630 Result : Float_Type'Base;
632 begin
633 if X = 0.0 then
634 return 1.0;
635 end if;
637 Result := Float_Type'Base (Aux.Exp (Double (X)));
639 -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
640 -- is False, then we can just leave it as an infinity (and indeed we
641 -- prefer to do so). But if Machine_Overflows is True, then we have
642 -- to raise a Constraint_Error exception as required by the RM.
644 if Float_Type'Machine_Overflows and then not Result'Valid then
645 raise Constraint_Error;
646 end if;
648 return Result;
649 end Exp;
651 ----------------
652 -- Exp_Strict --
653 ----------------
655 function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
656 G : Float_Type'Base;
657 Z : Float_Type'Base;
659 P0 : constant := 0.25000_00000_00000_00000;
660 P1 : constant := 0.75753_18015_94227_76666E-2;
661 P2 : constant := 0.31555_19276_56846_46356E-4;
663 Q0 : constant := 0.5;
664 Q1 : constant := 0.56817_30269_85512_21787E-1;
665 Q2 : constant := 0.63121_89437_43985_02557E-3;
666 Q3 : constant := 0.75104_02839_98700_46114E-6;
668 C1 : constant := 8#0.543#;
669 C2 : constant := -2.1219_44400_54690_58277E-4;
670 Le : constant := 1.4426_95040_88896_34074;
672 XN : Float_Type'Base;
673 P, Q, R : Float_Type'Base;
675 begin
676 if X = 0.0 then
677 return 1.0;
678 end if;
680 XN := Float_Type'Base'Rounding (X * Le);
681 G := (X - XN * C1) - XN * C2;
682 Z := G * G;
683 P := G * ((P2 * Z + P1) * Z + P0);
684 Q := ((Q3 * Z + Q2) * Z + Q1) * Z + Q0;
685 R := 0.5 + P / (Q - P);
687 R := Float_Type'Base'Scaling (R, Integer (XN) + 1);
689 -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
690 -- is False, then we can just leave it as an infinity (and indeed we
691 -- prefer to do so). But if Machine_Overflows is True, then we have to
692 -- raise a Constraint_Error exception as required by the RM.
694 if Float_Type'Machine_Overflows and then not R'Valid then
695 raise Constraint_Error;
696 else
697 return R;
698 end if;
700 end Exp_Strict;
702 ----------------
703 -- Local_Atan --
704 ----------------
706 function Local_Atan
707 (Y : Float_Type'Base;
708 X : Float_Type'Base := 1.0) return Float_Type'Base
710 Z : Float_Type'Base;
711 Raw_Atan : Float_Type'Base;
713 begin
714 Z := (if abs Y > abs X then abs (X / Y) else abs (Y / X));
716 Raw_Atan :=
717 (if Z < Sqrt_Epsilon then Z
718 elsif Z = 1.0 then Pi / 4.0
719 else Float_Type'Base (Aux.Atan (Double (Z))));
721 if abs Y > abs X then
722 Raw_Atan := Half_Pi - Raw_Atan;
723 end if;
725 if X > 0.0 then
726 return Float_Type'Copy_Sign (Raw_Atan, Y);
727 else
728 return Float_Type'Copy_Sign (Pi - Raw_Atan, Y);
729 end if;
730 end Local_Atan;
732 ---------
733 -- Log --
734 ---------
736 -- Natural base
738 function Log (X : Float_Type'Base) return Float_Type'Base is
739 begin
740 if X < 0.0 then
741 raise Argument_Error;
743 elsif X = 0.0 then
744 raise Constraint_Error;
746 elsif X = 1.0 then
747 return 0.0;
748 end if;
750 return Float_Type'Base (Aux.Log (Double (X)));
751 end Log;
753 -- Arbitrary base
755 function Log (X, Base : Float_Type'Base) return Float_Type'Base is
756 begin
757 if X < 0.0 then
758 raise Argument_Error;
760 elsif Base <= 0.0 or else Base = 1.0 then
761 raise Argument_Error;
763 elsif X = 0.0 then
764 raise Constraint_Error;
766 elsif X = 1.0 then
767 return 0.0;
768 end if;
770 return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
771 end Log;
773 ---------
774 -- Sin --
775 ---------
777 -- Natural cycle
779 function Sin (X : Float_Type'Base) return Float_Type'Base is
780 begin
781 if abs X < Sqrt_Epsilon then
782 return X;
783 end if;
785 return Float_Type'Base (Aux.Sin (Double (X)));
786 end Sin;
788 -- Arbitrary cycle
790 function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
791 T : Float_Type'Base;
793 begin
794 if Cycle <= 0.0 then
795 raise Argument_Error;
797 -- If X is zero, return it as the result, preserving the argument sign.
798 -- Is this test really needed on any machine ???
800 elsif X = 0.0 then
801 return X;
802 end if;
804 T := Float_Type'Base'Remainder (X, Cycle);
806 -- The following two reductions reduce the argument to the interval
807 -- [-0.25 * Cycle, 0.25 * Cycle]. This reduction is exact and is needed
808 -- to prevent inaccuracy that may result if the sine function uses a
809 -- different (more accurate) value of Pi in its reduction than is used
810 -- in the multiplication with Two_Pi.
812 if abs T > 0.25 * Cycle then
813 T := 0.5 * Float_Type'Copy_Sign (Cycle, T) - T;
814 end if;
816 -- Could test for 12.0 * abs T = Cycle, and return an exact value in
817 -- those cases. It is not clear this is worth the extra test though.
819 return Float_Type'Base (Aux.Sin (Double (T / Cycle * Two_Pi)));
820 end Sin;
822 ----------
823 -- Sinh --
824 ----------
826 function Sinh (X : Float_Type'Base) return Float_Type'Base is
827 Lnv : constant Float_Type'Base := 8#0.542714#;
828 V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
829 Y : constant Float_Type'Base := abs X;
830 F : constant Float_Type'Base := Y * Y;
831 Z : Float_Type'Base;
833 Float_Digits_1_6 : constant Boolean := Float_Type'Digits < 7;
835 begin
836 if Y < Sqrt_Epsilon then
837 return X;
839 elsif Y > Log_Inverse_Epsilon then
840 Z := Exp_Strict (Y - Lnv);
841 Z := Z + V2minus1 * Z;
843 elsif Y < 1.0 then
845 if Float_Digits_1_6 then
847 -- Use expansion provided by Cody and Waite, p. 226. Note that
848 -- leading term of the polynomial in Q is exactly 1.0.
850 declare
851 P0 : constant := -0.71379_3159E+1;
852 P1 : constant := -0.19033_3399E+0;
853 Q0 : constant := -0.42827_7109E+2;
855 begin
856 Z := Y + Y * F * (P1 * F + P0) / (F + Q0);
857 end;
859 else
860 declare
861 P0 : constant := -0.35181_28343_01771_17881E+6;
862 P1 : constant := -0.11563_52119_68517_68270E+5;
863 P2 : constant := -0.16375_79820_26307_51372E+3;
864 P3 : constant := -0.78966_12741_73570_99479E+0;
865 Q0 : constant := -0.21108_77005_81062_71242E+7;
866 Q1 : constant := 0.36162_72310_94218_36460E+5;
867 Q2 : constant := -0.27773_52311_96507_01667E+3;
869 begin
870 Z := Y + Y * F * (((P3 * F + P2) * F + P1) * F + P0)
871 / (((F + Q2) * F + Q1) * F + Q0);
872 end;
873 end if;
875 else
876 Z := Exp_Strict (Y);
877 Z := 0.5 * (Z - 1.0 / Z);
878 end if;
880 if X > 0.0 then
881 return Z;
882 else
883 return -Z;
884 end if;
885 end Sinh;
887 ----------
888 -- Sqrt --
889 ----------
891 function Sqrt (X : Float_Type'Base) return Float_Type'Base is
892 begin
893 if X < 0.0 then
894 raise Argument_Error;
896 -- Special case Sqrt (0.0) to preserve possible minus sign per IEEE
898 elsif X = 0.0 then
899 return X;
900 end if;
902 return Float_Type'Base (Aux.Sqrt (Double (X)));
903 end Sqrt;
905 ---------
906 -- Tan --
907 ---------
909 -- Natural cycle
911 function Tan (X : Float_Type'Base) return Float_Type'Base is
912 begin
913 if abs X < Sqrt_Epsilon then
914 return X;
915 end if;
917 -- Note: if X is exactly pi/2, then we should raise an exception, since
918 -- the result would overflow. But for all floating-point formats we deal
919 -- with, it is impossible for X to be exactly pi/2, and the result is
920 -- always in range.
922 return Float_Type'Base (Aux.Tan (Double (X)));
923 end Tan;
925 -- Arbitrary cycle
927 function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base is
928 T : Float_Type'Base;
930 begin
931 if Cycle <= 0.0 then
932 raise Argument_Error;
934 elsif X = 0.0 then
935 return X;
936 end if;
938 T := Float_Type'Base'Remainder (X, Cycle);
940 if abs T = 0.25 * Cycle then
941 raise Constraint_Error;
943 elsif abs T = 0.5 * Cycle then
944 return 0.0;
946 else
947 T := T / Cycle * Two_Pi;
948 return Sin (T) / Cos (T);
949 end if;
951 end Tan;
953 ----------
954 -- Tanh --
955 ----------
957 function Tanh (X : Float_Type'Base) return Float_Type'Base is
958 P0 : constant Float_Type'Base := -0.16134_11902_39962_28053E+4;
959 P1 : constant Float_Type'Base := -0.99225_92967_22360_83313E+2;
960 P2 : constant Float_Type'Base := -0.96437_49277_72254_69787E+0;
962 Q0 : constant Float_Type'Base := 0.48402_35707_19886_88686E+4;
963 Q1 : constant Float_Type'Base := 0.22337_72071_89623_12926E+4;
964 Q2 : constant Float_Type'Base := 0.11274_47438_05349_49335E+3;
965 Q3 : constant Float_Type'Base := 0.10000_00000_00000_00000E+1;
967 Half_Ln3 : constant Float_Type'Base := 0.54930_61443_34054_84570;
969 P, Q, R : Float_Type'Base;
970 Y : constant Float_Type'Base := abs X;
971 G : constant Float_Type'Base := Y * Y;
973 Float_Type_Digits_15_Or_More : constant Boolean :=
974 Float_Type'Digits > 14;
976 begin
977 if X < Half_Log_Epsilon then
978 return -1.0;
980 elsif X > -Half_Log_Epsilon then
981 return 1.0;
983 elsif Y < Sqrt_Epsilon then
984 return X;
986 elsif Y < Half_Ln3
987 and then Float_Type_Digits_15_Or_More
988 then
989 P := (P2 * G + P1) * G + P0;
990 Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
991 R := G * (P / Q);
992 return X + X * R;
994 else
995 return Float_Type'Base (Aux.Tanh (Double (X)));
996 end if;
997 end Tanh;
999 end Ada.Numerics.Generic_Elementary_Functions;