compiler: don't insert write barriers if we've seen errors
[official-gcc.git] / libgo / go / compress / flate / deflatefast.go
blob08298b76bbb2da5a7882d439d61d8428b28f632a
1 // Copyright 2016 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package flate
7 // This encoding algorithm, which prioritizes speed over output size, is
8 // based on Snappy's LZ77-style encoder: github.com/golang/snappy
10 const (
11 tableBits = 14 // Bits used in the table.
12 tableSize = 1 << tableBits // Size of the table.
13 tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
14 tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
17 func load32(b []byte, i int32) uint32 {
18 b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
19 return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
22 func load64(b []byte, i int32) uint64 {
23 b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
24 return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
25 uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
28 func hash(u uint32) uint32 {
29 return (u * 0x1e35a7bd) >> tableShift
32 // These constants are defined by the Snappy implementation so that its
33 // assembly implementation can fast-path some 16-bytes-at-a-time copies. They
34 // aren't necessary in the pure Go implementation, as we don't use those same
35 // optimizations, but using the same thresholds doesn't really hurt.
36 const (
37 inputMargin = 16 - 1
38 minNonLiteralBlockSize = 1 + 1 + inputMargin
41 type tableEntry struct {
42 val uint32 // Value at destination
43 offset int32
46 // deflateFast maintains the table for matches,
47 // and the previous byte block for cross block matching.
48 type deflateFast struct {
49 table [tableSize]tableEntry
50 prev []byte // Previous block, zero length if unknown.
51 cur int32 // Current match offset.
54 func newDeflateFast() *deflateFast {
55 return &deflateFast{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}
58 // encode encodes a block given in src and appends tokens
59 // to dst and returns the result.
60 func (e *deflateFast) encode(dst []token, src []byte) []token {
61 // Ensure that e.cur doesn't wrap.
62 if e.cur > 1<<30 {
63 e.resetAll()
66 // This check isn't in the Snappy implementation, but there, the caller
67 // instead of the callee handles this case.
68 if len(src) < minNonLiteralBlockSize {
69 e.cur += maxStoreBlockSize
70 e.prev = e.prev[:0]
71 return emitLiteral(dst, src)
74 // sLimit is when to stop looking for offset/length copies. The inputMargin
75 // lets us use a fast path for emitLiteral in the main loop, while we are
76 // looking for copies.
77 sLimit := int32(len(src) - inputMargin)
79 // nextEmit is where in src the next emitLiteral should start from.
80 nextEmit := int32(0)
81 s := int32(0)
82 cv := load32(src, s)
83 nextHash := hash(cv)
85 for {
86 // Copied from the C++ snappy implementation:
88 // Heuristic match skipping: If 32 bytes are scanned with no matches
89 // found, start looking only at every other byte. If 32 more bytes are
90 // scanned (or skipped), look at every third byte, etc.. When a match
91 // is found, immediately go back to looking at every byte. This is a
92 // small loss (~5% performance, ~0.1% density) for compressible data
93 // due to more bookkeeping, but for non-compressible data (such as
94 // JPEG) it's a huge win since the compressor quickly "realizes" the
95 // data is incompressible and doesn't bother looking for matches
96 // everywhere.
98 // The "skip" variable keeps track of how many bytes there are since
99 // the last match; dividing it by 32 (ie. right-shifting by five) gives
100 // the number of bytes to move ahead for each iteration.
101 skip := int32(32)
103 nextS := s
104 var candidate tableEntry
105 for {
106 s = nextS
107 bytesBetweenHashLookups := skip >> 5
108 nextS = s + bytesBetweenHashLookups
109 skip += bytesBetweenHashLookups
110 if nextS > sLimit {
111 goto emitRemainder
113 candidate = e.table[nextHash&tableMask]
114 now := load32(src, nextS)
115 e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv}
116 nextHash = hash(now)
118 offset := s - (candidate.offset - e.cur)
119 if offset > maxMatchOffset || cv != candidate.val {
120 // Out of range or not matched.
121 cv = now
122 continue
124 break
127 // A 4-byte match has been found. We'll later see if more than 4 bytes
128 // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
129 // them as literal bytes.
130 dst = emitLiteral(dst, src[nextEmit:s])
132 // Call emitCopy, and then see if another emitCopy could be our next
133 // move. Repeat until we find no match for the input immediately after
134 // what was consumed by the last emitCopy call.
136 // If we exit this loop normally then we need to call emitLiteral next,
137 // though we don't yet know how big the literal will be. We handle that
138 // by proceeding to the next iteration of the main loop. We also can
139 // exit this loop via goto if we get close to exhausting the input.
140 for {
141 // Invariant: we have a 4-byte match at s, and no need to emit any
142 // literal bytes prior to s.
144 // Extend the 4-byte match as long as possible.
146 s += 4
147 t := candidate.offset - e.cur + 4
148 l := e.matchLen(s, t, src)
150 // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
151 dst = append(dst, matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset)))
152 s += l
153 nextEmit = s
154 if s >= sLimit {
155 goto emitRemainder
158 // We could immediately start working at s now, but to improve
159 // compression we first update the hash table at s-1 and at s. If
160 // another emitCopy is not our next move, also calculate nextHash
161 // at s+1. At least on GOARCH=amd64, these three hash calculations
162 // are faster as one load64 call (with some shifts) instead of
163 // three load32 calls.
164 x := load64(src, s-1)
165 prevHash := hash(uint32(x))
166 e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)}
167 x >>= 8
168 currHash := hash(uint32(x))
169 candidate = e.table[currHash&tableMask]
170 e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)}
172 offset := s - (candidate.offset - e.cur)
173 if offset > maxMatchOffset || uint32(x) != candidate.val {
174 cv = uint32(x >> 8)
175 nextHash = hash(cv)
177 break
182 emitRemainder:
183 if int(nextEmit) < len(src) {
184 dst = emitLiteral(dst, src[nextEmit:])
186 e.cur += int32(len(src))
187 e.prev = e.prev[:len(src)]
188 copy(e.prev, src)
189 return dst
192 func emitLiteral(dst []token, lit []byte) []token {
193 for _, v := range lit {
194 dst = append(dst, literalToken(uint32(v)))
196 return dst
199 // matchLen returns the match length between src[s:] and src[t:].
200 // t can be negative to indicate the match is starting in e.prev.
201 // We assume that src[s-4:s] and src[t-4:t] already match.
202 func (e *deflateFast) matchLen(s, t int32, src []byte) int32 {
203 s1 := int(s) + maxMatchLength - 4
204 if s1 > len(src) {
205 s1 = len(src)
208 // If we are inside the current block
209 if t >= 0 {
210 b := src[t:]
211 a := src[s:s1]
212 b = b[:len(a)]
213 // Extend the match to be as long as possible.
214 for i := range a {
215 if a[i] != b[i] {
216 return int32(i)
219 return int32(len(a))
222 // We found a match in the previous block.
223 tp := int32(len(e.prev)) + t
224 if tp < 0 {
225 return 0
228 // Extend the match to be as long as possible.
229 a := src[s:s1]
230 b := e.prev[tp:]
231 if len(b) > len(a) {
232 b = b[:len(a)]
234 a = a[:len(b)]
235 for i := range b {
236 if a[i] != b[i] {
237 return int32(i)
241 // If we reached our limit, we matched everything we are
242 // allowed to in the previous block and we return.
243 n := int32(len(b))
244 if int(s+n) == s1 {
245 return n
248 // Continue looking for more matches in the current block.
249 a = src[s+n : s1]
250 b = src[:len(a)]
251 for i := range a {
252 if a[i] != b[i] {
253 return int32(i) + n
256 return int32(len(a)) + n
259 // Reset resets the encoding history.
260 // This ensures that no matches are made to the previous block.
261 func (e *deflateFast) reset() {
262 e.prev = e.prev[:0]
263 // Bump the offset, so all matches will fail distance check.
264 e.cur += maxMatchOffset
266 // Protect against e.cur wraparound.
267 if e.cur > 1<<30 {
268 e.resetAll()
272 // resetAll resets the deflateFast struct and is only called in rare
273 // situations to prevent integer overflow. It manually resets each field
274 // to avoid causing large stack growth.
276 // See https://golang.org/issue/18636.
277 func (e *deflateFast) resetAll() {
278 // This is equivalent to:
279 // *e = deflateFast{cur: maxStoreBlockSize, prev: e.prev[:0]}
280 e.cur = maxStoreBlockSize
281 e.prev = e.prev[:0]
282 for i := range e.table {
283 e.table[i] = tableEntry{}