1 /* Fixed-point arithmetic support.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
25 #include "diagnostic-core.h"
27 /* Compare two fixed objects for bitwise identity. */
30 fixed_identical (const FIXED_VALUE_TYPE
*a
, const FIXED_VALUE_TYPE
*b
)
32 return (a
->mode
== b
->mode
33 && a
->data
.high
== b
->data
.high
34 && a
->data
.low
== b
->data
.low
);
37 /* Calculate a hash value. */
40 fixed_hash (const FIXED_VALUE_TYPE
*f
)
42 return (unsigned int) (f
->data
.low
^ f
->data
.high
);
45 /* Define the enum code for the range of the fixed-point value. */
46 enum fixed_value_range_code
{
47 FIXED_OK
, /* The value is within the range. */
48 FIXED_UNDERFLOW
, /* The value is less than the minimum. */
49 FIXED_GT_MAX_EPS
, /* The value is greater than the maximum, but not equal
50 to the maximum plus the epsilon. */
51 FIXED_MAX_EPS
/* The value equals the maximum plus the epsilon. */
54 /* Check REAL_VALUE against the range of the fixed-point mode.
55 Return FIXED_OK, if it is within the range.
56 FIXED_UNDERFLOW, if it is less than the minimum.
57 FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to
58 the maximum plus the epsilon.
59 FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon. */
61 static enum fixed_value_range_code
62 check_real_for_fixed_mode (REAL_VALUE_TYPE
*real_value
, enum machine_mode mode
)
64 REAL_VALUE_TYPE max_value
, min_value
, epsilon_value
;
66 real_2expN (&max_value
, GET_MODE_IBIT (mode
), mode
);
67 real_2expN (&epsilon_value
, -GET_MODE_FBIT (mode
), mode
);
69 if (SIGNED_FIXED_POINT_MODE_P (mode
))
70 min_value
= real_value_negate (&max_value
);
72 real_from_string (&min_value
, "0.0");
74 if (real_compare (LT_EXPR
, real_value
, &min_value
))
75 return FIXED_UNDERFLOW
;
76 if (real_compare (EQ_EXPR
, real_value
, &max_value
))
78 real_arithmetic (&max_value
, MINUS_EXPR
, &max_value
, &epsilon_value
);
79 if (real_compare (GT_EXPR
, real_value
, &max_value
))
80 return FIXED_GT_MAX_EPS
;
85 /* Construct a CONST_FIXED from a bit payload and machine mode MODE.
86 The bits in PAYLOAD are sign-extended/zero-extended according to MODE. */
89 fixed_from_double_int (double_int payload
, enum machine_mode mode
)
91 FIXED_VALUE_TYPE value
;
93 gcc_assert (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_DOUBLE_INT
);
95 if (SIGNED_SCALAR_FIXED_POINT_MODE_P (mode
))
96 value
.data
= payload
.sext (1 + GET_MODE_IBIT (mode
) + GET_MODE_FBIT (mode
));
97 else if (UNSIGNED_SCALAR_FIXED_POINT_MODE_P (mode
))
98 value
.data
= payload
.zext (GET_MODE_IBIT (mode
) + GET_MODE_FBIT (mode
));
108 /* Initialize from a decimal or hexadecimal string. */
111 fixed_from_string (FIXED_VALUE_TYPE
*f
, const char *str
, enum machine_mode mode
)
113 REAL_VALUE_TYPE real_value
, fixed_value
, base_value
;
115 enum fixed_value_range_code temp
;
118 fbit
= GET_MODE_FBIT (mode
);
120 real_from_string (&real_value
, str
);
121 temp
= check_real_for_fixed_mode (&real_value
, f
->mode
);
122 /* We don't want to warn the case when the _Fract value is 1.0. */
123 if (temp
== FIXED_UNDERFLOW
124 || temp
== FIXED_GT_MAX_EPS
125 || (temp
== FIXED_MAX_EPS
&& ALL_ACCUM_MODE_P (f
->mode
)))
126 warning (OPT_Woverflow
,
127 "large fixed-point constant implicitly truncated to fixed-point type");
128 real_2expN (&base_value
, fbit
, mode
);
129 real_arithmetic (&fixed_value
, MULT_EXPR
, &real_value
, &base_value
);
130 real_to_integer2 ((HOST_WIDE_INT
*)&f
->data
.low
, &f
->data
.high
,
133 if (temp
== FIXED_MAX_EPS
&& ALL_FRACT_MODE_P (f
->mode
))
135 /* From the spec, we need to evaluate 1 to the maximal value. */
138 f
->data
= f
->data
.zext (GET_MODE_FBIT (f
->mode
)
139 + GET_MODE_IBIT (f
->mode
));
142 f
->data
= f
->data
.ext (SIGNED_FIXED_POINT_MODE_P (f
->mode
)
143 + GET_MODE_FBIT (f
->mode
)
144 + GET_MODE_IBIT (f
->mode
),
145 UNSIGNED_FIXED_POINT_MODE_P (f
->mode
));
148 /* Render F as a decimal floating point constant. */
151 fixed_to_decimal (char *str
, const FIXED_VALUE_TYPE
*f_orig
,
154 REAL_VALUE_TYPE real_value
, base_value
, fixed_value
;
156 real_2expN (&base_value
, GET_MODE_FBIT (f_orig
->mode
), f_orig
->mode
);
157 real_from_integer (&real_value
, VOIDmode
, f_orig
->data
.low
, f_orig
->data
.high
,
158 UNSIGNED_FIXED_POINT_MODE_P (f_orig
->mode
));
159 real_arithmetic (&fixed_value
, RDIV_EXPR
, &real_value
, &base_value
);
160 real_to_decimal (str
, &fixed_value
, buf_size
, 0, 1);
163 /* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on
164 the machine mode MODE.
165 Do not modify *F otherwise.
166 This function assumes the width of double_int is greater than the width
167 of the fixed-point value (the sum of a possible sign bit, possible ibits,
169 Return true, if !SAT_P and overflow. */
172 fixed_saturate1 (enum machine_mode mode
, double_int a
, double_int
*f
,
175 bool overflow_p
= false;
176 bool unsigned_p
= UNSIGNED_FIXED_POINT_MODE_P (mode
);
177 int i_f_bits
= GET_MODE_IBIT (mode
) + GET_MODE_FBIT (mode
);
179 if (unsigned_p
) /* Unsigned type. */
184 max
= max
.zext (i_f_bits
);
193 else /* Signed type. */
198 max
= max
.zext (i_f_bits
);
201 min
= min
.alshift (i_f_bits
, HOST_BITS_PER_DOUBLE_INT
);
202 min
= min
.sext (1 + i_f_bits
);
210 else if (a
.slt (min
))
221 /* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and
222 save to *F based on the machine mode MODE.
223 Do not modify *F otherwise.
224 This function assumes the width of two double_int is greater than the width
225 of the fixed-point value (the sum of a possible sign bit, possible ibits,
227 Return true, if !SAT_P and overflow. */
230 fixed_saturate2 (enum machine_mode mode
, double_int a_high
, double_int a_low
,
231 double_int
*f
, bool sat_p
)
233 bool overflow_p
= false;
234 bool unsigned_p
= UNSIGNED_FIXED_POINT_MODE_P (mode
);
235 int i_f_bits
= GET_MODE_IBIT (mode
) + GET_MODE_FBIT (mode
);
237 if (unsigned_p
) /* Unsigned type. */
239 double_int max_r
, max_s
;
244 max_s
= max_s
.zext (i_f_bits
);
245 if (a_high
.ugt (max_r
)
246 || (a_high
== max_r
&&
255 else /* Signed type. */
257 double_int max_r
, max_s
, min_r
, min_s
;
262 max_s
= max_s
.zext (i_f_bits
);
267 min_s
= min_s
.alshift (i_f_bits
, HOST_BITS_PER_DOUBLE_INT
);
268 min_s
= min_s
.sext (1 + i_f_bits
);
269 if (a_high
.sgt (max_r
)
270 || (a_high
== max_r
&&
278 else if (a_high
.slt (min_r
)
279 || (a_high
== min_r
&&
291 /* Return the sign bit based on I_F_BITS. */
294 get_fixed_sign_bit (double_int a
, int i_f_bits
)
296 if (i_f_bits
< HOST_BITS_PER_WIDE_INT
)
297 return (a
.low
>> i_f_bits
) & 1;
299 return (a
.high
>> (i_f_bits
- HOST_BITS_PER_WIDE_INT
)) & 1;
302 /* Calculate F = A + (SUBTRACT_P ? -B : B).
303 If SAT_P, saturate the result to the max or the min.
304 Return true, if !SAT_P and overflow. */
307 do_fixed_add (FIXED_VALUE_TYPE
*f
, const FIXED_VALUE_TYPE
*a
,
308 const FIXED_VALUE_TYPE
*b
, bool subtract_p
, bool sat_p
)
310 bool overflow_p
= false;
315 /* This was a conditional expression but it triggered a bug in
322 unsigned_p
= UNSIGNED_FIXED_POINT_MODE_P (a
->mode
);
323 i_f_bits
= GET_MODE_IBIT (a
->mode
) + GET_MODE_FBIT (a
->mode
);
325 f
->data
= a
->data
+ temp
;
326 if (unsigned_p
) /* Unsigned type. */
328 if (subtract_p
) /* Unsigned subtraction. */
330 if (a
->data
.ult (b
->data
))
341 else /* Unsigned addition. */
343 f
->data
= f
->data
.zext (i_f_bits
);
344 if (f
->data
.ult (a
->data
)
345 || f
->data
.ult (b
->data
))
357 else /* Signed type. */
360 && (get_fixed_sign_bit (a
->data
, i_f_bits
)
361 == get_fixed_sign_bit (b
->data
, i_f_bits
))
362 && (get_fixed_sign_bit (a
->data
, i_f_bits
)
363 != get_fixed_sign_bit (f
->data
, i_f_bits
)))
365 && (get_fixed_sign_bit (a
->data
, i_f_bits
)
366 != get_fixed_sign_bit (b
->data
, i_f_bits
))
367 && (get_fixed_sign_bit (a
->data
, i_f_bits
)
368 != get_fixed_sign_bit (f
->data
, i_f_bits
))))
374 f
->data
= f
->data
.alshift (i_f_bits
, HOST_BITS_PER_DOUBLE_INT
);
375 if (get_fixed_sign_bit (a
->data
, i_f_bits
) == 0)
384 f
->data
= f
->data
.ext ((!unsigned_p
) + i_f_bits
, unsigned_p
);
388 /* Calculate F = A * B.
389 If SAT_P, saturate the result to the max or the min.
390 Return true, if !SAT_P and overflow. */
393 do_fixed_multiply (FIXED_VALUE_TYPE
*f
, const FIXED_VALUE_TYPE
*a
,
394 const FIXED_VALUE_TYPE
*b
, bool sat_p
)
396 bool overflow_p
= false;
397 bool unsigned_p
= UNSIGNED_FIXED_POINT_MODE_P (a
->mode
);
398 int i_f_bits
= GET_MODE_IBIT (a
->mode
) + GET_MODE_FBIT (a
->mode
);
400 if (GET_MODE_PRECISION (f
->mode
) <= HOST_BITS_PER_WIDE_INT
)
402 f
->data
= a
->data
* b
->data
;
403 f
->data
= f
->data
.lshift (-GET_MODE_FBIT (f
->mode
),
404 HOST_BITS_PER_DOUBLE_INT
, !unsigned_p
);
405 overflow_p
= fixed_saturate1 (f
->mode
, f
->data
, &f
->data
, sat_p
);
409 /* The result of multiplication expands to two double_int. */
410 double_int a_high
, a_low
, b_high
, b_low
;
411 double_int high_high
, high_low
, low_high
, low_low
;
412 double_int r
, s
, temp1
, temp2
;
415 /* Decompose a and b to four double_int. */
416 a_high
.low
= a
->data
.high
;
418 a_low
.low
= a
->data
.low
;
420 b_high
.low
= b
->data
.high
;
422 b_low
.low
= b
->data
.low
;
425 /* Perform four multiplications. */
426 low_low
= a_low
* b_low
;
427 low_high
= a_low
* b_high
;
428 high_low
= a_high
* b_low
;
429 high_high
= a_high
* b_high
;
431 /* Accumulate four results to {r, s}. */
432 temp1
.high
= high_low
.low
;
437 carry
++; /* Carry */
440 temp2
.high
= low_high
.low
;
445 carry
++; /* Carry */
447 temp1
.low
= high_low
.high
;
449 r
= high_high
+ temp1
;
450 temp1
.low
= low_high
.high
;
457 /* We need to subtract b from r, if a < 0. */
458 if (!unsigned_p
&& a
->data
.high
< 0)
460 /* We need to subtract a from r, if b < 0. */
461 if (!unsigned_p
&& b
->data
.high
< 0)
464 /* Shift right the result by FBIT. */
465 if (GET_MODE_FBIT (f
->mode
) == HOST_BITS_PER_DOUBLE_INT
)
480 f
->data
.high
= s
.high
;
484 s
= s
.llshift ((-GET_MODE_FBIT (f
->mode
)), HOST_BITS_PER_DOUBLE_INT
);
485 f
->data
= r
.llshift ((HOST_BITS_PER_DOUBLE_INT
486 - GET_MODE_FBIT (f
->mode
)),
487 HOST_BITS_PER_DOUBLE_INT
);
488 f
->data
.low
= f
->data
.low
| s
.low
;
489 f
->data
.high
= f
->data
.high
| s
.high
;
491 s
.high
= f
->data
.high
;
492 r
= r
.lshift (-GET_MODE_FBIT (f
->mode
),
493 HOST_BITS_PER_DOUBLE_INT
, !unsigned_p
);
496 overflow_p
= fixed_saturate2 (f
->mode
, r
, s
, &f
->data
, sat_p
);
499 f
->data
= f
->data
.ext ((!unsigned_p
) + i_f_bits
, unsigned_p
);
503 /* Calculate F = A / B.
504 If SAT_P, saturate the result to the max or the min.
505 Return true, if !SAT_P and overflow. */
508 do_fixed_divide (FIXED_VALUE_TYPE
*f
, const FIXED_VALUE_TYPE
*a
,
509 const FIXED_VALUE_TYPE
*b
, bool sat_p
)
511 bool overflow_p
= false;
512 bool unsigned_p
= UNSIGNED_FIXED_POINT_MODE_P (a
->mode
);
513 int i_f_bits
= GET_MODE_IBIT (a
->mode
) + GET_MODE_FBIT (a
->mode
);
515 if (GET_MODE_PRECISION (f
->mode
) <= HOST_BITS_PER_WIDE_INT
)
517 f
->data
= a
->data
.lshift (GET_MODE_FBIT (f
->mode
),
518 HOST_BITS_PER_DOUBLE_INT
, !unsigned_p
);
519 f
->data
= f
->data
.div (b
->data
, unsigned_p
, TRUNC_DIV_EXPR
);
520 overflow_p
= fixed_saturate1 (f
->mode
, f
->data
, &f
->data
, sat_p
);
524 double_int pos_a
, pos_b
, r
, s
;
525 double_int quo_r
, quo_s
, mod
, temp
;
529 /* If a < 0, negate a. */
530 if (!unsigned_p
&& a
->data
.high
< 0)
538 /* If b < 0, negate b. */
539 if (!unsigned_p
&& b
->data
.high
< 0)
547 /* Left shift pos_a to {r, s} by FBIT. */
548 if (GET_MODE_FBIT (f
->mode
) == HOST_BITS_PER_DOUBLE_INT
)
556 s
= pos_a
.llshift (GET_MODE_FBIT (f
->mode
), HOST_BITS_PER_DOUBLE_INT
);
557 r
= pos_a
.llshift (- (HOST_BITS_PER_DOUBLE_INT
558 - GET_MODE_FBIT (f
->mode
)),
559 HOST_BITS_PER_DOUBLE_INT
);
562 /* Divide r by pos_b to quo_r. The remainder is in mod. */
563 quo_r
= r
.divmod (pos_b
, 1, TRUNC_DIV_EXPR
, &mod
);
564 quo_s
= double_int_zero
;
566 for (i
= 0; i
< HOST_BITS_PER_DOUBLE_INT
; i
++)
568 /* Record the leftmost bit of mod. */
569 int leftmost_mod
= (mod
.high
< 0);
571 /* Shift left mod by 1 bit. */
572 mod
= mod
.lshift (1);
574 /* Test the leftmost bit of s to add to mod. */
578 /* Shift left quo_s by 1 bit. */
579 quo_s
= quo_s
.lshift (1);
581 /* Try to calculate (mod - pos_b). */
584 if (leftmost_mod
== 1 || mod
.ucmp (pos_b
) != -1)
590 /* Shift left s by 1 bit. */
598 if (quo_s
.high
== 0 && quo_s
.low
== 0)
602 quo_r
.low
= ~quo_r
.low
;
603 quo_r
.high
= ~quo_r
.high
;
608 overflow_p
= fixed_saturate2 (f
->mode
, quo_r
, quo_s
, &f
->data
, sat_p
);
611 f
->data
= f
->data
.ext ((!unsigned_p
) + i_f_bits
, unsigned_p
);
615 /* Calculate F = A << B if LEFT_P. Otherwise, F = A >> B.
616 If SAT_P, saturate the result to the max or the min.
617 Return true, if !SAT_P and overflow. */
620 do_fixed_shift (FIXED_VALUE_TYPE
*f
, const FIXED_VALUE_TYPE
*a
,
621 const FIXED_VALUE_TYPE
*b
, bool left_p
, bool sat_p
)
623 bool overflow_p
= false;
624 bool unsigned_p
= UNSIGNED_FIXED_POINT_MODE_P (a
->mode
);
625 int i_f_bits
= GET_MODE_IBIT (a
->mode
) + GET_MODE_FBIT (a
->mode
);
628 if (b
->data
.low
== 0)
634 if (GET_MODE_PRECISION (f
->mode
) <= HOST_BITS_PER_WIDE_INT
|| (!left_p
))
636 f
->data
= a
->data
.lshift (left_p
? b
->data
.low
: -b
->data
.low
,
637 HOST_BITS_PER_DOUBLE_INT
, !unsigned_p
);
638 if (left_p
) /* Only left shift saturates. */
639 overflow_p
= fixed_saturate1 (f
->mode
, f
->data
, &f
->data
, sat_p
);
641 else /* We need two double_int to store the left-shift result. */
643 double_int temp_high
, temp_low
;
644 if (b
->data
.low
== HOST_BITS_PER_DOUBLE_INT
)
652 temp_low
= a
->data
.lshift (b
->data
.low
,
653 HOST_BITS_PER_DOUBLE_INT
, !unsigned_p
);
654 /* Logical shift right to temp_high. */
655 temp_high
= a
->data
.llshift (b
->data
.low
- HOST_BITS_PER_DOUBLE_INT
,
656 HOST_BITS_PER_DOUBLE_INT
);
658 if (!unsigned_p
&& a
->data
.high
< 0) /* Signed-extend temp_high. */
659 temp_high
= temp_high
.ext (b
->data
.low
, unsigned_p
);
661 overflow_p
= fixed_saturate2 (f
->mode
, temp_high
, temp_low
, &f
->data
,
664 f
->data
= f
->data
.ext ((!unsigned_p
) + i_f_bits
, unsigned_p
);
669 If SAT_P, saturate the result to the max or the min.
670 Return true, if !SAT_P and overflow. */
673 do_fixed_neg (FIXED_VALUE_TYPE
*f
, const FIXED_VALUE_TYPE
*a
, bool sat_p
)
675 bool overflow_p
= false;
676 bool unsigned_p
= UNSIGNED_FIXED_POINT_MODE_P (a
->mode
);
677 int i_f_bits
= GET_MODE_IBIT (a
->mode
) + GET_MODE_FBIT (a
->mode
);
680 f
->data
= f
->data
.ext ((!unsigned_p
) + i_f_bits
, unsigned_p
);
682 if (unsigned_p
) /* Unsigned type. */
684 if (f
->data
.low
!= 0 || f
->data
.high
!= 0)
695 else /* Signed type. */
697 if (!(f
->data
.high
== 0 && f
->data
.low
== 0)
698 && f
->data
.high
== a
->data
.high
&& f
->data
.low
== a
->data
.low
)
702 /* Saturate to the maximum by subtracting f->data by one. */
705 f
->data
= f
->data
.zext (i_f_bits
);
714 /* Perform the binary or unary operation described by CODE.
715 Note that OP0 and OP1 must have the same mode for binary operators.
716 For a unary operation, leave OP1 NULL.
717 Return true, if !SAT_P and overflow. */
720 fixed_arithmetic (FIXED_VALUE_TYPE
*f
, int icode
, const FIXED_VALUE_TYPE
*op0
,
721 const FIXED_VALUE_TYPE
*op1
, bool sat_p
)
726 return do_fixed_neg (f
, op0
, sat_p
);
730 gcc_assert (op0
->mode
== op1
->mode
);
731 return do_fixed_add (f
, op0
, op1
, false, sat_p
);
735 gcc_assert (op0
->mode
== op1
->mode
);
736 return do_fixed_add (f
, op0
, op1
, true, sat_p
);
740 gcc_assert (op0
->mode
== op1
->mode
);
741 return do_fixed_multiply (f
, op0
, op1
, sat_p
);
745 gcc_assert (op0
->mode
== op1
->mode
);
746 return do_fixed_divide (f
, op0
, op1
, sat_p
);
750 return do_fixed_shift (f
, op0
, op1
, true, sat_p
);
754 return do_fixed_shift (f
, op0
, op1
, false, sat_p
);
763 /* Compare fixed-point values by tree_code.
764 Note that OP0 and OP1 must have the same mode. */
767 fixed_compare (int icode
, const FIXED_VALUE_TYPE
*op0
,
768 const FIXED_VALUE_TYPE
*op1
)
770 enum tree_code code
= (enum tree_code
) icode
;
771 gcc_assert (op0
->mode
== op1
->mode
);
776 return op0
->data
!= op1
->data
;
779 return op0
->data
== op1
->data
;
782 return op0
->data
.cmp (op1
->data
,
783 UNSIGNED_FIXED_POINT_MODE_P (op0
->mode
)) == -1;
786 return op0
->data
.cmp (op1
->data
,
787 UNSIGNED_FIXED_POINT_MODE_P (op0
->mode
)) != 1;
790 return op0
->data
.cmp (op1
->data
,
791 UNSIGNED_FIXED_POINT_MODE_P (op0
->mode
)) == 1;
794 return op0
->data
.cmp (op1
->data
,
795 UNSIGNED_FIXED_POINT_MODE_P (op0
->mode
)) != -1;
802 /* Extend or truncate to a new mode.
803 If SAT_P, saturate the result to the max or the min.
804 Return true, if !SAT_P and overflow. */
807 fixed_convert (FIXED_VALUE_TYPE
*f
, enum machine_mode mode
,
808 const FIXED_VALUE_TYPE
*a
, bool sat_p
)
810 bool overflow_p
= false;
817 if (GET_MODE_FBIT (mode
) > GET_MODE_FBIT (a
->mode
))
819 /* Left shift a to temp_high, temp_low based on a->mode. */
820 double_int temp_high
, temp_low
;
821 int amount
= GET_MODE_FBIT (mode
) - GET_MODE_FBIT (a
->mode
);
822 temp_low
= a
->data
.lshift (amount
,
823 HOST_BITS_PER_DOUBLE_INT
,
824 SIGNED_FIXED_POINT_MODE_P (a
->mode
));
825 /* Logical shift right to temp_high. */
826 temp_high
= a
->data
.llshift (amount
- HOST_BITS_PER_DOUBLE_INT
,
827 HOST_BITS_PER_DOUBLE_INT
);
828 if (SIGNED_FIXED_POINT_MODE_P (a
->mode
)
829 && a
->data
.high
< 0) /* Signed-extend temp_high. */
830 temp_high
= temp_high
.sext (amount
);
833 if (SIGNED_FIXED_POINT_MODE_P (a
->mode
) ==
834 SIGNED_FIXED_POINT_MODE_P (f
->mode
))
835 overflow_p
= fixed_saturate2 (f
->mode
, temp_high
, temp_low
, &f
->data
,
839 /* Take care of the cases when converting between signed and
841 if (SIGNED_FIXED_POINT_MODE_P (a
->mode
))
843 /* Signed -> Unsigned. */
844 if (a
->data
.high
< 0)
848 f
->data
.low
= 0; /* Set to zero. */
849 f
->data
.high
= 0; /* Set to zero. */
855 overflow_p
= fixed_saturate2 (f
->mode
, temp_high
, temp_low
,
860 /* Unsigned -> Signed. */
861 if (temp_high
.high
< 0)
865 /* Set to maximum. */
866 f
->data
.low
= -1; /* Set to all ones. */
867 f
->data
.high
= -1; /* Set to all ones. */
868 f
->data
= f
->data
.zext (GET_MODE_FBIT (f
->mode
)
869 + GET_MODE_IBIT (f
->mode
));
870 /* Clear the sign. */
876 overflow_p
= fixed_saturate2 (f
->mode
, temp_high
, temp_low
,
883 /* Right shift a to temp based on a->mode. */
885 temp
= a
->data
.lshift (GET_MODE_FBIT (mode
) - GET_MODE_FBIT (a
->mode
),
886 HOST_BITS_PER_DOUBLE_INT
,
887 SIGNED_FIXED_POINT_MODE_P (a
->mode
));
890 if (SIGNED_FIXED_POINT_MODE_P (a
->mode
) ==
891 SIGNED_FIXED_POINT_MODE_P (f
->mode
))
892 overflow_p
= fixed_saturate1 (f
->mode
, f
->data
, &f
->data
, sat_p
);
895 /* Take care of the cases when converting between signed and
897 if (SIGNED_FIXED_POINT_MODE_P (a
->mode
))
899 /* Signed -> Unsigned. */
900 if (a
->data
.high
< 0)
904 f
->data
.low
= 0; /* Set to zero. */
905 f
->data
.high
= 0; /* Set to zero. */
911 overflow_p
= fixed_saturate1 (f
->mode
, f
->data
, &f
->data
,
916 /* Unsigned -> Signed. */
921 /* Set to maximum. */
922 f
->data
.low
= -1; /* Set to all ones. */
923 f
->data
.high
= -1; /* Set to all ones. */
924 f
->data
= f
->data
.zext (GET_MODE_FBIT (f
->mode
)
925 + GET_MODE_IBIT (f
->mode
));
926 /* Clear the sign. */
932 overflow_p
= fixed_saturate1 (f
->mode
, f
->data
, &f
->data
,
938 f
->data
= f
->data
.ext (SIGNED_FIXED_POINT_MODE_P (f
->mode
)
939 + GET_MODE_FBIT (f
->mode
)
940 + GET_MODE_IBIT (f
->mode
),
941 UNSIGNED_FIXED_POINT_MODE_P (f
->mode
));
945 /* Convert to a new fixed-point mode from an integer.
946 If UNSIGNED_P, this integer is unsigned.
947 If SAT_P, saturate the result to the max or the min.
948 Return true, if !SAT_P and overflow. */
951 fixed_convert_from_int (FIXED_VALUE_TYPE
*f
, enum machine_mode mode
,
952 double_int a
, bool unsigned_p
, bool sat_p
)
954 bool overflow_p
= false;
955 /* Left shift a to temp_high, temp_low. */
956 double_int temp_high
, temp_low
;
957 int amount
= GET_MODE_FBIT (mode
);
958 if (amount
== HOST_BITS_PER_DOUBLE_INT
)
966 temp_low
= a
.llshift (amount
, HOST_BITS_PER_DOUBLE_INT
);
968 /* Logical shift right to temp_high. */
969 temp_high
= a
.llshift (amount
- HOST_BITS_PER_DOUBLE_INT
,
970 HOST_BITS_PER_DOUBLE_INT
);
972 if (!unsigned_p
&& a
.high
< 0) /* Signed-extend temp_high. */
973 temp_high
= temp_high
.sext (amount
);
978 if (unsigned_p
== UNSIGNED_FIXED_POINT_MODE_P (f
->mode
))
979 overflow_p
= fixed_saturate2 (f
->mode
, temp_high
, temp_low
, &f
->data
,
983 /* Take care of the cases when converting between signed and unsigned. */
986 /* Signed -> Unsigned. */
991 f
->data
.low
= 0; /* Set to zero. */
992 f
->data
.high
= 0; /* Set to zero. */
998 overflow_p
= fixed_saturate2 (f
->mode
, temp_high
, temp_low
,
1003 /* Unsigned -> Signed. */
1004 if (temp_high
.high
< 0)
1008 /* Set to maximum. */
1009 f
->data
.low
= -1; /* Set to all ones. */
1010 f
->data
.high
= -1; /* Set to all ones. */
1011 f
->data
= f
->data
.zext (GET_MODE_FBIT (f
->mode
)
1012 + GET_MODE_IBIT (f
->mode
));
1013 /* Clear the sign. */
1019 overflow_p
= fixed_saturate2 (f
->mode
, temp_high
, temp_low
,
1023 f
->data
= f
->data
.ext (SIGNED_FIXED_POINT_MODE_P (f
->mode
)
1024 + GET_MODE_FBIT (f
->mode
)
1025 + GET_MODE_IBIT (f
->mode
),
1026 UNSIGNED_FIXED_POINT_MODE_P (f
->mode
));
1030 /* Convert to a new fixed-point mode from a real.
1031 If SAT_P, saturate the result to the max or the min.
1032 Return true, if !SAT_P and overflow. */
1035 fixed_convert_from_real (FIXED_VALUE_TYPE
*f
, enum machine_mode mode
,
1036 const REAL_VALUE_TYPE
*a
, bool sat_p
)
1038 bool overflow_p
= false;
1039 REAL_VALUE_TYPE real_value
, fixed_value
, base_value
;
1040 bool unsigned_p
= UNSIGNED_FIXED_POINT_MODE_P (mode
);
1041 int i_f_bits
= GET_MODE_IBIT (mode
) + GET_MODE_FBIT (mode
);
1042 unsigned int fbit
= GET_MODE_FBIT (mode
);
1043 enum fixed_value_range_code temp
;
1047 real_2expN (&base_value
, fbit
, mode
);
1048 real_arithmetic (&fixed_value
, MULT_EXPR
, &real_value
, &base_value
);
1049 real_to_integer2 ((HOST_WIDE_INT
*)&f
->data
.low
, &f
->data
.high
, &fixed_value
);
1050 temp
= check_real_for_fixed_mode (&real_value
, mode
);
1051 if (temp
== FIXED_UNDERFLOW
) /* Minimum. */
1064 f
->data
= f
->data
.alshift (i_f_bits
, HOST_BITS_PER_DOUBLE_INT
);
1065 f
->data
= f
->data
.sext (1 + i_f_bits
);
1071 else if (temp
== FIXED_GT_MAX_EPS
|| temp
== FIXED_MAX_EPS
) /* Maximum. */
1077 f
->data
= f
->data
.zext (i_f_bits
);
1082 f
->data
= f
->data
.ext ((!unsigned_p
) + i_f_bits
, unsigned_p
);
1086 /* Convert to a new real mode from a fixed-point. */
1089 real_convert_from_fixed (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
1090 const FIXED_VALUE_TYPE
*f
)
1092 REAL_VALUE_TYPE base_value
, fixed_value
, real_value
;
1094 real_2expN (&base_value
, GET_MODE_FBIT (f
->mode
), f
->mode
);
1095 real_from_integer (&fixed_value
, VOIDmode
, f
->data
.low
, f
->data
.high
,
1096 UNSIGNED_FIXED_POINT_MODE_P (f
->mode
));
1097 real_arithmetic (&real_value
, RDIV_EXPR
, &fixed_value
, &base_value
);
1098 real_convert (r
, mode
, &real_value
);
1101 /* Determine whether a fixed-point value F is negative. */
1104 fixed_isneg (const FIXED_VALUE_TYPE
*f
)
1106 if (SIGNED_FIXED_POINT_MODE_P (f
->mode
))
1108 int i_f_bits
= GET_MODE_IBIT (f
->mode
) + GET_MODE_FBIT (f
->mode
);
1109 int sign_bit
= get_fixed_sign_bit (f
->data
, i_f_bits
);