Add DW_CFA_AARCH64_negate_ra_state to dwarf2.def/h and dwarfnames.c
[official-gcc.git] / gcc / expr.c
blob989badcac59ed60a98def8b15a26126bb9b04215
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-ssa-live.h"
58 #include "tree-outof-ssa.h"
59 #include "tree-ssa-address.h"
60 #include "builtins.h"
61 #include "tree-chkp.h"
62 #include "rtl-chkp.h"
63 #include "ccmp.h"
66 /* If this is nonzero, we do not bother generating VOLATILE
67 around volatile memory references, and we are willing to
68 output indirect addresses. If cse is to follow, we reject
69 indirect addresses so a useful potential cse is generated;
70 if it is used only once, instruction combination will produce
71 the same indirect address eventually. */
72 int cse_not_expected;
74 static bool block_move_libcall_safe_for_call_parm (void);
75 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
76 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT);
78 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
79 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
80 static rtx_insn *compress_float_constant (rtx, rtx);
81 static rtx get_subtarget (rtx);
82 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
83 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
84 unsigned HOST_WIDE_INT, machine_mode,
85 tree, int, alias_set_type, bool);
86 static void store_constructor (tree, rtx, int, HOST_WIDE_INT, bool);
87 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
88 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
89 machine_mode, tree, alias_set_type, bool, bool);
91 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
93 static int is_aligning_offset (const_tree, const_tree);
94 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
95 static rtx do_store_flag (sepops, rtx, machine_mode);
96 #ifdef PUSH_ROUNDING
97 static void emit_single_push_insn (machine_mode, rtx, tree);
98 #endif
99 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
100 profile_probability);
101 static rtx const_vector_from_tree (tree);
102 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
103 static tree tree_expr_size (const_tree);
104 static HOST_WIDE_INT int_expr_size (tree);
105 static void convert_mode_scalar (rtx, rtx, int);
108 /* This is run to set up which modes can be used
109 directly in memory and to initialize the block move optab. It is run
110 at the beginning of compilation and when the target is reinitialized. */
112 void
113 init_expr_target (void)
115 rtx pat;
116 int num_clobbers;
117 rtx mem, mem1;
118 rtx reg;
120 /* Try indexing by frame ptr and try by stack ptr.
121 It is known that on the Convex the stack ptr isn't a valid index.
122 With luck, one or the other is valid on any machine. */
123 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
124 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
126 /* A scratch register we can modify in-place below to avoid
127 useless RTL allocations. */
128 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
130 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
131 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
132 PATTERN (insn) = pat;
134 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
135 mode = (machine_mode) ((int) mode + 1))
137 int regno;
139 direct_load[(int) mode] = direct_store[(int) mode] = 0;
140 PUT_MODE (mem, mode);
141 PUT_MODE (mem1, mode);
143 /* See if there is some register that can be used in this mode and
144 directly loaded or stored from memory. */
146 if (mode != VOIDmode && mode != BLKmode)
147 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
148 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
149 regno++)
151 if (!targetm.hard_regno_mode_ok (regno, mode))
152 continue;
154 set_mode_and_regno (reg, mode, regno);
156 SET_SRC (pat) = mem;
157 SET_DEST (pat) = reg;
158 if (recog (pat, insn, &num_clobbers) >= 0)
159 direct_load[(int) mode] = 1;
161 SET_SRC (pat) = mem1;
162 SET_DEST (pat) = reg;
163 if (recog (pat, insn, &num_clobbers) >= 0)
164 direct_load[(int) mode] = 1;
166 SET_SRC (pat) = reg;
167 SET_DEST (pat) = mem;
168 if (recog (pat, insn, &num_clobbers) >= 0)
169 direct_store[(int) mode] = 1;
171 SET_SRC (pat) = reg;
172 SET_DEST (pat) = mem1;
173 if (recog (pat, insn, &num_clobbers) >= 0)
174 direct_store[(int) mode] = 1;
178 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
180 opt_scalar_float_mode mode_iter;
181 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
183 scalar_float_mode mode = mode_iter.require ();
184 scalar_float_mode srcmode;
185 FOR_EACH_MODE_UNTIL (srcmode, mode)
187 enum insn_code ic;
189 ic = can_extend_p (mode, srcmode, 0);
190 if (ic == CODE_FOR_nothing)
191 continue;
193 PUT_MODE (mem, srcmode);
195 if (insn_operand_matches (ic, 1, mem))
196 float_extend_from_mem[mode][srcmode] = true;
201 /* This is run at the start of compiling a function. */
203 void
204 init_expr (void)
206 memset (&crtl->expr, 0, sizeof (crtl->expr));
209 /* Copy data from FROM to TO, where the machine modes are not the same.
210 Both modes may be integer, or both may be floating, or both may be
211 fixed-point.
212 UNSIGNEDP should be nonzero if FROM is an unsigned type.
213 This causes zero-extension instead of sign-extension. */
215 void
216 convert_move (rtx to, rtx from, int unsignedp)
218 machine_mode to_mode = GET_MODE (to);
219 machine_mode from_mode = GET_MODE (from);
221 gcc_assert (to_mode != BLKmode);
222 gcc_assert (from_mode != BLKmode);
224 /* If the source and destination are already the same, then there's
225 nothing to do. */
226 if (to == from)
227 return;
229 /* If FROM is a SUBREG that indicates that we have already done at least
230 the required extension, strip it. We don't handle such SUBREGs as
231 TO here. */
233 scalar_int_mode to_int_mode;
234 if (GET_CODE (from) == SUBREG
235 && SUBREG_PROMOTED_VAR_P (from)
236 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
237 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
238 >= GET_MODE_PRECISION (to_int_mode))
239 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
240 from = gen_lowpart (to_int_mode, from), from_mode = to_int_mode;
242 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
244 if (to_mode == from_mode
245 || (from_mode == VOIDmode && CONSTANT_P (from)))
247 emit_move_insn (to, from);
248 return;
251 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
253 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
255 if (VECTOR_MODE_P (to_mode))
256 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
257 else
258 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
260 emit_move_insn (to, from);
261 return;
264 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
266 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
267 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
268 return;
271 convert_mode_scalar (to, from, unsignedp);
274 /* Like convert_move, but deals only with scalar modes. */
276 static void
277 convert_mode_scalar (rtx to, rtx from, int unsignedp)
279 /* Both modes should be scalar types. */
280 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
281 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
282 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
283 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
284 enum insn_code code;
285 rtx libcall;
287 gcc_assert (to_real == from_real);
289 /* rtx code for making an equivalent value. */
290 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
291 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
293 if (to_real)
295 rtx value;
296 rtx_insn *insns;
297 convert_optab tab;
299 gcc_assert ((GET_MODE_PRECISION (from_mode)
300 != GET_MODE_PRECISION (to_mode))
301 || (DECIMAL_FLOAT_MODE_P (from_mode)
302 != DECIMAL_FLOAT_MODE_P (to_mode)));
304 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
305 /* Conversion between decimal float and binary float, same size. */
306 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
307 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
308 tab = sext_optab;
309 else
310 tab = trunc_optab;
312 /* Try converting directly if the insn is supported. */
314 code = convert_optab_handler (tab, to_mode, from_mode);
315 if (code != CODE_FOR_nothing)
317 emit_unop_insn (code, to, from,
318 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
319 return;
322 /* Otherwise use a libcall. */
323 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
325 /* Is this conversion implemented yet? */
326 gcc_assert (libcall);
328 start_sequence ();
329 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
330 from, from_mode);
331 insns = get_insns ();
332 end_sequence ();
333 emit_libcall_block (insns, to, value,
334 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
335 from)
336 : gen_rtx_FLOAT_EXTEND (to_mode, from));
337 return;
340 /* Handle pointer conversion. */ /* SPEE 900220. */
341 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
343 convert_optab ctab;
345 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
346 ctab = trunc_optab;
347 else if (unsignedp)
348 ctab = zext_optab;
349 else
350 ctab = sext_optab;
352 if (convert_optab_handler (ctab, to_mode, from_mode)
353 != CODE_FOR_nothing)
355 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
356 to, from, UNKNOWN);
357 return;
361 /* Targets are expected to provide conversion insns between PxImode and
362 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
363 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
365 scalar_int_mode full_mode
366 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
368 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
369 != CODE_FOR_nothing);
371 if (full_mode != from_mode)
372 from = convert_to_mode (full_mode, from, unsignedp);
373 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
374 to, from, UNKNOWN);
375 return;
377 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
379 rtx new_from;
380 scalar_int_mode full_mode
381 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
382 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
383 enum insn_code icode;
385 icode = convert_optab_handler (ctab, full_mode, from_mode);
386 gcc_assert (icode != CODE_FOR_nothing);
388 if (to_mode == full_mode)
390 emit_unop_insn (icode, to, from, UNKNOWN);
391 return;
394 new_from = gen_reg_rtx (full_mode);
395 emit_unop_insn (icode, new_from, from, UNKNOWN);
397 /* else proceed to integer conversions below. */
398 from_mode = full_mode;
399 from = new_from;
402 /* Make sure both are fixed-point modes or both are not. */
403 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
404 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
405 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
407 /* If we widen from_mode to to_mode and they are in the same class,
408 we won't saturate the result.
409 Otherwise, always saturate the result to play safe. */
410 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
411 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
412 expand_fixed_convert (to, from, 0, 0);
413 else
414 expand_fixed_convert (to, from, 0, 1);
415 return;
418 /* Now both modes are integers. */
420 /* Handle expanding beyond a word. */
421 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
422 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
424 rtx_insn *insns;
425 rtx lowpart;
426 rtx fill_value;
427 rtx lowfrom;
428 int i;
429 scalar_mode lowpart_mode;
430 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
432 /* Try converting directly if the insn is supported. */
433 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
434 != CODE_FOR_nothing)
436 /* If FROM is a SUBREG, put it into a register. Do this
437 so that we always generate the same set of insns for
438 better cse'ing; if an intermediate assignment occurred,
439 we won't be doing the operation directly on the SUBREG. */
440 if (optimize > 0 && GET_CODE (from) == SUBREG)
441 from = force_reg (from_mode, from);
442 emit_unop_insn (code, to, from, equiv_code);
443 return;
445 /* Next, try converting via full word. */
446 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
447 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
448 != CODE_FOR_nothing))
450 rtx word_to = gen_reg_rtx (word_mode);
451 if (REG_P (to))
453 if (reg_overlap_mentioned_p (to, from))
454 from = force_reg (from_mode, from);
455 emit_clobber (to);
457 convert_move (word_to, from, unsignedp);
458 emit_unop_insn (code, to, word_to, equiv_code);
459 return;
462 /* No special multiword conversion insn; do it by hand. */
463 start_sequence ();
465 /* Since we will turn this into a no conflict block, we must ensure
466 the source does not overlap the target so force it into an isolated
467 register when maybe so. Likewise for any MEM input, since the
468 conversion sequence might require several references to it and we
469 must ensure we're getting the same value every time. */
471 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
472 from = force_reg (from_mode, from);
474 /* Get a copy of FROM widened to a word, if necessary. */
475 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
476 lowpart_mode = word_mode;
477 else
478 lowpart_mode = from_mode;
480 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
482 lowpart = gen_lowpart (lowpart_mode, to);
483 emit_move_insn (lowpart, lowfrom);
485 /* Compute the value to put in each remaining word. */
486 if (unsignedp)
487 fill_value = const0_rtx;
488 else
489 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
490 LT, lowfrom, const0_rtx,
491 lowpart_mode, 0, -1);
493 /* Fill the remaining words. */
494 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
496 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
497 rtx subword = operand_subword (to, index, 1, to_mode);
499 gcc_assert (subword);
501 if (fill_value != subword)
502 emit_move_insn (subword, fill_value);
505 insns = get_insns ();
506 end_sequence ();
508 emit_insn (insns);
509 return;
512 /* Truncating multi-word to a word or less. */
513 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
514 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
516 if (!((MEM_P (from)
517 && ! MEM_VOLATILE_P (from)
518 && direct_load[(int) to_mode]
519 && ! mode_dependent_address_p (XEXP (from, 0),
520 MEM_ADDR_SPACE (from)))
521 || REG_P (from)
522 || GET_CODE (from) == SUBREG))
523 from = force_reg (from_mode, from);
524 convert_move (to, gen_lowpart (word_mode, from), 0);
525 return;
528 /* Now follow all the conversions between integers
529 no more than a word long. */
531 /* For truncation, usually we can just refer to FROM in a narrower mode. */
532 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
533 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
535 if (!((MEM_P (from)
536 && ! MEM_VOLATILE_P (from)
537 && direct_load[(int) to_mode]
538 && ! mode_dependent_address_p (XEXP (from, 0),
539 MEM_ADDR_SPACE (from)))
540 || REG_P (from)
541 || GET_CODE (from) == SUBREG))
542 from = force_reg (from_mode, from);
543 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
544 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
545 from = copy_to_reg (from);
546 emit_move_insn (to, gen_lowpart (to_mode, from));
547 return;
550 /* Handle extension. */
551 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
553 /* Convert directly if that works. */
554 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
555 != CODE_FOR_nothing)
557 emit_unop_insn (code, to, from, equiv_code);
558 return;
560 else
562 scalar_mode intermediate;
563 rtx tmp;
564 int shift_amount;
566 /* Search for a mode to convert via. */
567 opt_scalar_mode intermediate_iter;
568 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
570 scalar_mode intermediate = intermediate_iter.require ();
571 if (((can_extend_p (to_mode, intermediate, unsignedp)
572 != CODE_FOR_nothing)
573 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
574 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
575 intermediate)))
576 && (can_extend_p (intermediate, from_mode, unsignedp)
577 != CODE_FOR_nothing))
579 convert_move (to, convert_to_mode (intermediate, from,
580 unsignedp), unsignedp);
581 return;
585 /* No suitable intermediate mode.
586 Generate what we need with shifts. */
587 shift_amount = (GET_MODE_PRECISION (to_mode)
588 - GET_MODE_PRECISION (from_mode));
589 from = gen_lowpart (to_mode, force_reg (from_mode, from));
590 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
591 to, unsignedp);
592 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
593 to, unsignedp);
594 if (tmp != to)
595 emit_move_insn (to, tmp);
596 return;
600 /* Support special truncate insns for certain modes. */
601 if (convert_optab_handler (trunc_optab, to_mode,
602 from_mode) != CODE_FOR_nothing)
604 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
605 to, from, UNKNOWN);
606 return;
609 /* Handle truncation of volatile memrefs, and so on;
610 the things that couldn't be truncated directly,
611 and for which there was no special instruction.
613 ??? Code above formerly short-circuited this, for most integer
614 mode pairs, with a force_reg in from_mode followed by a recursive
615 call to this routine. Appears always to have been wrong. */
616 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
618 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
619 emit_move_insn (to, temp);
620 return;
623 /* Mode combination is not recognized. */
624 gcc_unreachable ();
627 /* Return an rtx for a value that would result
628 from converting X to mode MODE.
629 Both X and MODE may be floating, or both integer.
630 UNSIGNEDP is nonzero if X is an unsigned value.
631 This can be done by referring to a part of X in place
632 or by copying to a new temporary with conversion. */
635 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
637 return convert_modes (mode, VOIDmode, x, unsignedp);
640 /* Return an rtx for a value that would result
641 from converting X from mode OLDMODE to mode MODE.
642 Both modes may be floating, or both integer.
643 UNSIGNEDP is nonzero if X is an unsigned value.
645 This can be done by referring to a part of X in place
646 or by copying to a new temporary with conversion.
648 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
651 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
653 rtx temp;
654 scalar_int_mode int_mode;
656 /* If FROM is a SUBREG that indicates that we have already done at least
657 the required extension, strip it. */
659 if (GET_CODE (x) == SUBREG
660 && SUBREG_PROMOTED_VAR_P (x)
661 && is_a <scalar_int_mode> (mode, &int_mode)
662 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
663 >= GET_MODE_PRECISION (int_mode))
664 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
665 x = gen_lowpart (int_mode, SUBREG_REG (x));
667 if (GET_MODE (x) != VOIDmode)
668 oldmode = GET_MODE (x);
670 if (mode == oldmode)
671 return x;
673 if (CONST_SCALAR_INT_P (x)
674 && is_int_mode (mode, &int_mode))
676 /* If the caller did not tell us the old mode, then there is not
677 much to do with respect to canonicalization. We have to
678 assume that all the bits are significant. */
679 if (GET_MODE_CLASS (oldmode) != MODE_INT)
680 oldmode = MAX_MODE_INT;
681 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
682 GET_MODE_PRECISION (int_mode),
683 unsignedp ? UNSIGNED : SIGNED);
684 return immed_wide_int_const (w, int_mode);
687 /* We can do this with a gen_lowpart if both desired and current modes
688 are integer, and this is either a constant integer, a register, or a
689 non-volatile MEM. */
690 scalar_int_mode int_oldmode;
691 if (is_int_mode (mode, &int_mode)
692 && is_int_mode (oldmode, &int_oldmode)
693 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
694 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
695 || (REG_P (x)
696 && (!HARD_REGISTER_P (x)
697 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
698 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
699 return gen_lowpart (int_mode, x);
701 /* Converting from integer constant into mode is always equivalent to an
702 subreg operation. */
703 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
705 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
706 return simplify_gen_subreg (mode, x, oldmode, 0);
709 temp = gen_reg_rtx (mode);
710 convert_move (temp, x, unsignedp);
711 return temp;
714 /* Return the largest alignment we can use for doing a move (or store)
715 of MAX_PIECES. ALIGN is the largest alignment we could use. */
717 static unsigned int
718 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
720 scalar_int_mode tmode
721 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
723 if (align >= GET_MODE_ALIGNMENT (tmode))
724 align = GET_MODE_ALIGNMENT (tmode);
725 else
727 scalar_int_mode xmode = NARROWEST_INT_MODE;
728 opt_scalar_int_mode mode_iter;
729 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
731 tmode = mode_iter.require ();
732 if (GET_MODE_SIZE (tmode) > max_pieces
733 || targetm.slow_unaligned_access (tmode, align))
734 break;
735 xmode = tmode;
738 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
741 return align;
744 /* Return the widest integer mode that is narrower than SIZE bytes. */
746 static scalar_int_mode
747 widest_int_mode_for_size (unsigned int size)
749 scalar_int_mode result = NARROWEST_INT_MODE;
751 gcc_checking_assert (size > 1);
753 opt_scalar_int_mode tmode;
754 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
755 if (GET_MODE_SIZE (tmode.require ()) < size)
756 result = tmode.require ();
758 return result;
761 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
762 and should be performed piecewise. */
764 static bool
765 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
766 enum by_pieces_operation op)
768 return targetm.use_by_pieces_infrastructure_p (len, align, op,
769 optimize_insn_for_speed_p ());
772 /* Determine whether the LEN bytes can be moved by using several move
773 instructions. Return nonzero if a call to move_by_pieces should
774 succeed. */
776 bool
777 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
779 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
782 /* Return number of insns required to perform operation OP by pieces
783 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
785 unsigned HOST_WIDE_INT
786 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
787 unsigned int max_size, by_pieces_operation op)
789 unsigned HOST_WIDE_INT n_insns = 0;
791 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
793 while (max_size > 1 && l > 0)
795 scalar_int_mode mode = widest_int_mode_for_size (max_size);
796 enum insn_code icode;
798 unsigned int modesize = GET_MODE_SIZE (mode);
800 icode = optab_handler (mov_optab, mode);
801 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
803 unsigned HOST_WIDE_INT n_pieces = l / modesize;
804 l %= modesize;
805 switch (op)
807 default:
808 n_insns += n_pieces;
809 break;
811 case COMPARE_BY_PIECES:
812 int batch = targetm.compare_by_pieces_branch_ratio (mode);
813 int batch_ops = 4 * batch - 1;
814 unsigned HOST_WIDE_INT full = n_pieces / batch;
815 n_insns += full * batch_ops;
816 if (n_pieces % batch != 0)
817 n_insns++;
818 break;
822 max_size = modesize;
825 gcc_assert (!l);
826 return n_insns;
829 /* Used when performing piecewise block operations, holds information
830 about one of the memory objects involved. The member functions
831 can be used to generate code for loading from the object and
832 updating the address when iterating. */
834 class pieces_addr
836 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
837 stack pushes. */
838 rtx m_obj;
839 /* The address of the object. Can differ from that seen in the
840 MEM rtx if we copied the address to a register. */
841 rtx m_addr;
842 /* Nonzero if the address on the object has an autoincrement already,
843 signifies whether that was an increment or decrement. */
844 signed char m_addr_inc;
845 /* Nonzero if we intend to use autoinc without the address already
846 having autoinc form. We will insert add insns around each memory
847 reference, expecting later passes to form autoinc addressing modes.
848 The only supported options are predecrement and postincrement. */
849 signed char m_explicit_inc;
850 /* True if we have either of the two possible cases of using
851 autoincrement. */
852 bool m_auto;
853 /* True if this is an address to be used for load operations rather
854 than stores. */
855 bool m_is_load;
857 /* Optionally, a function to obtain constants for any given offset into
858 the objects, and data associated with it. */
859 by_pieces_constfn m_constfn;
860 void *m_cfndata;
861 public:
862 pieces_addr (rtx, bool, by_pieces_constfn, void *);
863 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
864 void increment_address (HOST_WIDE_INT);
865 void maybe_predec (HOST_WIDE_INT);
866 void maybe_postinc (HOST_WIDE_INT);
867 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
868 int get_addr_inc ()
870 return m_addr_inc;
874 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
875 true if the operation to be performed on this object is a load
876 rather than a store. For stores, OBJ can be NULL, in which case we
877 assume the operation is a stack push. For loads, the optional
878 CONSTFN and its associated CFNDATA can be used in place of the
879 memory load. */
881 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
882 void *cfndata)
883 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
885 m_addr_inc = 0;
886 m_auto = false;
887 if (obj)
889 rtx addr = XEXP (obj, 0);
890 rtx_code code = GET_CODE (addr);
891 m_addr = addr;
892 bool dec = code == PRE_DEC || code == POST_DEC;
893 bool inc = code == PRE_INC || code == POST_INC;
894 m_auto = inc || dec;
895 if (m_auto)
896 m_addr_inc = dec ? -1 : 1;
898 /* While we have always looked for these codes here, the code
899 implementing the memory operation has never handled them.
900 Support could be added later if necessary or beneficial. */
901 gcc_assert (code != PRE_INC && code != POST_DEC);
903 else
905 m_addr = NULL_RTX;
906 if (!is_load)
908 m_auto = true;
909 if (STACK_GROWS_DOWNWARD)
910 m_addr_inc = -1;
911 else
912 m_addr_inc = 1;
914 else
915 gcc_assert (constfn != NULL);
917 m_explicit_inc = 0;
918 if (constfn)
919 gcc_assert (is_load);
922 /* Decide whether to use autoinc for an address involved in a memory op.
923 MODE is the mode of the accesses, REVERSE is true if we've decided to
924 perform the operation starting from the end, and LEN is the length of
925 the operation. Don't override an earlier decision to set m_auto. */
927 void
928 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
929 HOST_WIDE_INT len)
931 if (m_auto || m_obj == NULL_RTX)
932 return;
934 bool use_predec = (m_is_load
935 ? USE_LOAD_PRE_DECREMENT (mode)
936 : USE_STORE_PRE_DECREMENT (mode));
937 bool use_postinc = (m_is_load
938 ? USE_LOAD_POST_INCREMENT (mode)
939 : USE_STORE_POST_INCREMENT (mode));
940 machine_mode addr_mode = get_address_mode (m_obj);
942 if (use_predec && reverse)
944 m_addr = copy_to_mode_reg (addr_mode,
945 plus_constant (addr_mode,
946 m_addr, len));
947 m_auto = true;
948 m_explicit_inc = -1;
950 else if (use_postinc && !reverse)
952 m_addr = copy_to_mode_reg (addr_mode, m_addr);
953 m_auto = true;
954 m_explicit_inc = 1;
956 else if (CONSTANT_P (m_addr))
957 m_addr = copy_to_mode_reg (addr_mode, m_addr);
960 /* Adjust the address to refer to the data at OFFSET in MODE. If we
961 are using autoincrement for this address, we don't add the offset,
962 but we still modify the MEM's properties. */
965 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
967 if (m_constfn)
968 return m_constfn (m_cfndata, offset, mode);
969 if (m_obj == NULL_RTX)
970 return NULL_RTX;
971 if (m_auto)
972 return adjust_automodify_address (m_obj, mode, m_addr, offset);
973 else
974 return adjust_address (m_obj, mode, offset);
977 /* Emit an add instruction to increment the address by SIZE. */
979 void
980 pieces_addr::increment_address (HOST_WIDE_INT size)
982 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
983 emit_insn (gen_add2_insn (m_addr, amount));
986 /* If we are supposed to decrement the address after each access, emit code
987 to do so now. Increment by SIZE (which has should have the correct sign
988 already). */
990 void
991 pieces_addr::maybe_predec (HOST_WIDE_INT size)
993 if (m_explicit_inc >= 0)
994 return;
995 gcc_assert (HAVE_PRE_DECREMENT);
996 increment_address (size);
999 /* If we are supposed to decrement the address after each access, emit code
1000 to do so now. Increment by SIZE. */
1002 void
1003 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1005 if (m_explicit_inc <= 0)
1006 return;
1007 gcc_assert (HAVE_POST_INCREMENT);
1008 increment_address (size);
1011 /* This structure is used by do_op_by_pieces to describe the operation
1012 to be performed. */
1014 class op_by_pieces_d
1016 protected:
1017 pieces_addr m_to, m_from;
1018 unsigned HOST_WIDE_INT m_len;
1019 HOST_WIDE_INT m_offset;
1020 unsigned int m_align;
1021 unsigned int m_max_size;
1022 bool m_reverse;
1024 /* Virtual functions, overriden by derived classes for the specific
1025 operation. */
1026 virtual void generate (rtx, rtx, machine_mode) = 0;
1027 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1028 virtual void finish_mode (machine_mode)
1032 public:
1033 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1034 unsigned HOST_WIDE_INT, unsigned int);
1035 void run ();
1038 /* The constructor for an op_by_pieces_d structure. We require two
1039 objects named TO and FROM, which are identified as loads or stores
1040 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1041 and its associated FROM_CFN_DATA can be used to replace loads with
1042 constant values. LEN describes the length of the operation. */
1044 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1045 rtx from, bool from_load,
1046 by_pieces_constfn from_cfn,
1047 void *from_cfn_data,
1048 unsigned HOST_WIDE_INT len,
1049 unsigned int align)
1050 : m_to (to, to_load, NULL, NULL),
1051 m_from (from, from_load, from_cfn, from_cfn_data),
1052 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1054 int toi = m_to.get_addr_inc ();
1055 int fromi = m_from.get_addr_inc ();
1056 if (toi >= 0 && fromi >= 0)
1057 m_reverse = false;
1058 else if (toi <= 0 && fromi <= 0)
1059 m_reverse = true;
1060 else
1061 gcc_unreachable ();
1063 m_offset = m_reverse ? len : 0;
1064 align = MIN (to ? MEM_ALIGN (to) : align,
1065 from ? MEM_ALIGN (from) : align);
1067 /* If copying requires more than two move insns,
1068 copy addresses to registers (to make displacements shorter)
1069 and use post-increment if available. */
1070 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1072 /* Find the mode of the largest comparison. */
1073 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1075 m_from.decide_autoinc (mode, m_reverse, len);
1076 m_to.decide_autoinc (mode, m_reverse, len);
1079 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1080 m_align = align;
1083 /* This function contains the main loop used for expanding a block
1084 operation. First move what we can in the largest integer mode,
1085 then go to successively smaller modes. For every access, call
1086 GENFUN with the two operands and the EXTRA_DATA. */
1088 void
1089 op_by_pieces_d::run ()
1091 while (m_max_size > 1 && m_len > 0)
1093 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1095 if (prepare_mode (mode, m_align))
1097 unsigned int size = GET_MODE_SIZE (mode);
1098 rtx to1 = NULL_RTX, from1;
1100 while (m_len >= size)
1102 if (m_reverse)
1103 m_offset -= size;
1105 to1 = m_to.adjust (mode, m_offset);
1106 from1 = m_from.adjust (mode, m_offset);
1108 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1109 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1111 generate (to1, from1, mode);
1113 m_to.maybe_postinc (size);
1114 m_from.maybe_postinc (size);
1116 if (!m_reverse)
1117 m_offset += size;
1119 m_len -= size;
1122 finish_mode (mode);
1125 m_max_size = GET_MODE_SIZE (mode);
1128 /* The code above should have handled everything. */
1129 gcc_assert (!m_len);
1132 /* Derived class from op_by_pieces_d, providing support for block move
1133 operations. */
1135 class move_by_pieces_d : public op_by_pieces_d
1137 insn_gen_fn m_gen_fun;
1138 void generate (rtx, rtx, machine_mode);
1139 bool prepare_mode (machine_mode, unsigned int);
1141 public:
1142 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1143 unsigned int align)
1144 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1147 rtx finish_endp (int);
1150 /* Return true if MODE can be used for a set of copies, given an
1151 alignment ALIGN. Prepare whatever data is necessary for later
1152 calls to generate. */
1154 bool
1155 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1157 insn_code icode = optab_handler (mov_optab, mode);
1158 m_gen_fun = GEN_FCN (icode);
1159 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1162 /* A callback used when iterating for a compare_by_pieces_operation.
1163 OP0 and OP1 are the values that have been loaded and should be
1164 compared in MODE. If OP0 is NULL, this means we should generate a
1165 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1166 gen function that should be used to generate the mode. */
1168 void
1169 move_by_pieces_d::generate (rtx op0, rtx op1,
1170 machine_mode mode ATTRIBUTE_UNUSED)
1172 #ifdef PUSH_ROUNDING
1173 if (op0 == NULL_RTX)
1175 emit_single_push_insn (mode, op1, NULL);
1176 return;
1178 #endif
1179 emit_insn (m_gen_fun (op0, op1));
1182 /* Perform the final adjustment at the end of a string to obtain the
1183 correct return value for the block operation. If ENDP is 1 return
1184 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1185 end minus one byte ala stpcpy. */
1188 move_by_pieces_d::finish_endp (int endp)
1190 gcc_assert (!m_reverse);
1191 if (endp == 2)
1193 m_to.maybe_postinc (-1);
1194 --m_offset;
1196 return m_to.adjust (QImode, m_offset);
1199 /* Generate several move instructions to copy LEN bytes from block FROM to
1200 block TO. (These are MEM rtx's with BLKmode).
1202 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1203 used to push FROM to the stack.
1205 ALIGN is maximum stack alignment we can assume.
1207 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1208 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1209 stpcpy. */
1212 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1213 unsigned int align, int endp)
1215 #ifndef PUSH_ROUNDING
1216 if (to == NULL)
1217 gcc_unreachable ();
1218 #endif
1220 move_by_pieces_d data (to, from, len, align);
1222 data.run ();
1224 if (endp)
1225 return data.finish_endp (endp);
1226 else
1227 return to;
1230 /* Derived class from op_by_pieces_d, providing support for block move
1231 operations. */
1233 class store_by_pieces_d : public op_by_pieces_d
1235 insn_gen_fn m_gen_fun;
1236 void generate (rtx, rtx, machine_mode);
1237 bool prepare_mode (machine_mode, unsigned int);
1239 public:
1240 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1241 unsigned HOST_WIDE_INT len, unsigned int align)
1242 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1245 rtx finish_endp (int);
1248 /* Return true if MODE can be used for a set of stores, given an
1249 alignment ALIGN. Prepare whatever data is necessary for later
1250 calls to generate. */
1252 bool
1253 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1255 insn_code icode = optab_handler (mov_optab, mode);
1256 m_gen_fun = GEN_FCN (icode);
1257 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1260 /* A callback used when iterating for a store_by_pieces_operation.
1261 OP0 and OP1 are the values that have been loaded and should be
1262 compared in MODE. If OP0 is NULL, this means we should generate a
1263 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1264 gen function that should be used to generate the mode. */
1266 void
1267 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1269 emit_insn (m_gen_fun (op0, op1));
1272 /* Perform the final adjustment at the end of a string to obtain the
1273 correct return value for the block operation. If ENDP is 1 return
1274 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1275 end minus one byte ala stpcpy. */
1278 store_by_pieces_d::finish_endp (int endp)
1280 gcc_assert (!m_reverse);
1281 if (endp == 2)
1283 m_to.maybe_postinc (-1);
1284 --m_offset;
1286 return m_to.adjust (QImode, m_offset);
1289 /* Determine whether the LEN bytes generated by CONSTFUN can be
1290 stored to memory using several move instructions. CONSTFUNDATA is
1291 a pointer which will be passed as argument in every CONSTFUN call.
1292 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1293 a memset operation and false if it's a copy of a constant string.
1294 Return nonzero if a call to store_by_pieces should succeed. */
1297 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1298 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1299 void *constfundata, unsigned int align, bool memsetp)
1301 unsigned HOST_WIDE_INT l;
1302 unsigned int max_size;
1303 HOST_WIDE_INT offset = 0;
1304 enum insn_code icode;
1305 int reverse;
1306 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1307 rtx cst ATTRIBUTE_UNUSED;
1309 if (len == 0)
1310 return 1;
1312 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1313 memsetp
1314 ? SET_BY_PIECES
1315 : STORE_BY_PIECES,
1316 optimize_insn_for_speed_p ()))
1317 return 0;
1319 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1321 /* We would first store what we can in the largest integer mode, then go to
1322 successively smaller modes. */
1324 for (reverse = 0;
1325 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1326 reverse++)
1328 l = len;
1329 max_size = STORE_MAX_PIECES + 1;
1330 while (max_size > 1 && l > 0)
1332 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1334 icode = optab_handler (mov_optab, mode);
1335 if (icode != CODE_FOR_nothing
1336 && align >= GET_MODE_ALIGNMENT (mode))
1338 unsigned int size = GET_MODE_SIZE (mode);
1340 while (l >= size)
1342 if (reverse)
1343 offset -= size;
1345 cst = (*constfun) (constfundata, offset, mode);
1346 if (!targetm.legitimate_constant_p (mode, cst))
1347 return 0;
1349 if (!reverse)
1350 offset += size;
1352 l -= size;
1356 max_size = GET_MODE_SIZE (mode);
1359 /* The code above should have handled everything. */
1360 gcc_assert (!l);
1363 return 1;
1366 /* Generate several move instructions to store LEN bytes generated by
1367 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1368 pointer which will be passed as argument in every CONSTFUN call.
1369 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1370 a memset operation and false if it's a copy of a constant string.
1371 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1372 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1373 stpcpy. */
1376 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1377 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1378 void *constfundata, unsigned int align, bool memsetp, int endp)
1380 if (len == 0)
1382 gcc_assert (endp != 2);
1383 return to;
1386 gcc_assert (targetm.use_by_pieces_infrastructure_p
1387 (len, align,
1388 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1389 optimize_insn_for_speed_p ()));
1391 store_by_pieces_d data (to, constfun, constfundata, len, align);
1392 data.run ();
1394 if (endp)
1395 return data.finish_endp (endp);
1396 else
1397 return to;
1400 /* Callback routine for clear_by_pieces.
1401 Return const0_rtx unconditionally. */
1403 static rtx
1404 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1406 return const0_rtx;
1409 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1410 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1412 static void
1413 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1415 if (len == 0)
1416 return;
1418 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1419 data.run ();
1422 /* Context used by compare_by_pieces_genfn. It stores the fail label
1423 to jump to in case of miscomparison, and for branch ratios greater than 1,
1424 it stores an accumulator and the current and maximum counts before
1425 emitting another branch. */
1427 class compare_by_pieces_d : public op_by_pieces_d
1429 rtx_code_label *m_fail_label;
1430 rtx m_accumulator;
1431 int m_count, m_batch;
1433 void generate (rtx, rtx, machine_mode);
1434 bool prepare_mode (machine_mode, unsigned int);
1435 void finish_mode (machine_mode);
1436 public:
1437 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1438 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1439 rtx_code_label *fail_label)
1440 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1442 m_fail_label = fail_label;
1446 /* A callback used when iterating for a compare_by_pieces_operation.
1447 OP0 and OP1 are the values that have been loaded and should be
1448 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1449 context structure. */
1451 void
1452 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1454 if (m_batch > 1)
1456 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1457 true, OPTAB_LIB_WIDEN);
1458 if (m_count != 0)
1459 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1460 true, OPTAB_LIB_WIDEN);
1461 m_accumulator = temp;
1463 if (++m_count < m_batch)
1464 return;
1466 m_count = 0;
1467 op0 = m_accumulator;
1468 op1 = const0_rtx;
1469 m_accumulator = NULL_RTX;
1471 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1472 m_fail_label, profile_probability::uninitialized ());
1475 /* Return true if MODE can be used for a set of moves and comparisons,
1476 given an alignment ALIGN. Prepare whatever data is necessary for
1477 later calls to generate. */
1479 bool
1480 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1482 insn_code icode = optab_handler (mov_optab, mode);
1483 if (icode == CODE_FOR_nothing
1484 || align < GET_MODE_ALIGNMENT (mode)
1485 || !can_compare_p (EQ, mode, ccp_jump))
1486 return false;
1487 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1488 if (m_batch < 0)
1489 return false;
1490 m_accumulator = NULL_RTX;
1491 m_count = 0;
1492 return true;
1495 /* Called after expanding a series of comparisons in MODE. If we have
1496 accumulated results for which we haven't emitted a branch yet, do
1497 so now. */
1499 void
1500 compare_by_pieces_d::finish_mode (machine_mode mode)
1502 if (m_accumulator != NULL_RTX)
1503 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1504 NULL_RTX, NULL, m_fail_label,
1505 profile_probability::uninitialized ());
1508 /* Generate several move instructions to compare LEN bytes from blocks
1509 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1511 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1512 used to push FROM to the stack.
1514 ALIGN is maximum stack alignment we can assume.
1516 Optionally, the caller can pass a constfn and associated data in A1_CFN
1517 and A1_CFN_DATA. describing that the second operand being compared is a
1518 known constant and how to obtain its data. */
1520 static rtx
1521 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1522 rtx target, unsigned int align,
1523 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1525 rtx_code_label *fail_label = gen_label_rtx ();
1526 rtx_code_label *end_label = gen_label_rtx ();
1528 if (target == NULL_RTX
1529 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1530 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1532 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1533 fail_label);
1535 data.run ();
1537 emit_move_insn (target, const0_rtx);
1538 emit_jump (end_label);
1539 emit_barrier ();
1540 emit_label (fail_label);
1541 emit_move_insn (target, const1_rtx);
1542 emit_label (end_label);
1544 return target;
1547 /* Emit code to move a block Y to a block X. This may be done with
1548 string-move instructions, with multiple scalar move instructions,
1549 or with a library call.
1551 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1552 SIZE is an rtx that says how long they are.
1553 ALIGN is the maximum alignment we can assume they have.
1554 METHOD describes what kind of copy this is, and what mechanisms may be used.
1555 MIN_SIZE is the minimal size of block to move
1556 MAX_SIZE is the maximal size of block to move, if it can not be represented
1557 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1559 Return the address of the new block, if memcpy is called and returns it,
1560 0 otherwise. */
1563 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1564 unsigned int expected_align, HOST_WIDE_INT expected_size,
1565 unsigned HOST_WIDE_INT min_size,
1566 unsigned HOST_WIDE_INT max_size,
1567 unsigned HOST_WIDE_INT probable_max_size)
1569 bool may_use_call;
1570 rtx retval = 0;
1571 unsigned int align;
1573 gcc_assert (size);
1574 if (CONST_INT_P (size) && INTVAL (size) == 0)
1575 return 0;
1577 switch (method)
1579 case BLOCK_OP_NORMAL:
1580 case BLOCK_OP_TAILCALL:
1581 may_use_call = true;
1582 break;
1584 case BLOCK_OP_CALL_PARM:
1585 may_use_call = block_move_libcall_safe_for_call_parm ();
1587 /* Make inhibit_defer_pop nonzero around the library call
1588 to force it to pop the arguments right away. */
1589 NO_DEFER_POP;
1590 break;
1592 case BLOCK_OP_NO_LIBCALL:
1593 may_use_call = false;
1594 break;
1596 default:
1597 gcc_unreachable ();
1600 gcc_assert (MEM_P (x) && MEM_P (y));
1601 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1602 gcc_assert (align >= BITS_PER_UNIT);
1604 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1605 block copy is more efficient for other large modes, e.g. DCmode. */
1606 x = adjust_address (x, BLKmode, 0);
1607 y = adjust_address (y, BLKmode, 0);
1609 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1610 can be incorrect is coming from __builtin_memcpy. */
1611 if (CONST_INT_P (size))
1613 x = shallow_copy_rtx (x);
1614 y = shallow_copy_rtx (y);
1615 set_mem_size (x, INTVAL (size));
1616 set_mem_size (y, INTVAL (size));
1619 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1620 move_by_pieces (x, y, INTVAL (size), align, 0);
1621 else if (emit_block_move_via_movmem (x, y, size, align,
1622 expected_align, expected_size,
1623 min_size, max_size, probable_max_size))
1625 else if (may_use_call
1626 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1627 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1629 /* Since x and y are passed to a libcall, mark the corresponding
1630 tree EXPR as addressable. */
1631 tree y_expr = MEM_EXPR (y);
1632 tree x_expr = MEM_EXPR (x);
1633 if (y_expr)
1634 mark_addressable (y_expr);
1635 if (x_expr)
1636 mark_addressable (x_expr);
1637 retval = emit_block_copy_via_libcall (x, y, size,
1638 method == BLOCK_OP_TAILCALL);
1641 else
1642 emit_block_move_via_loop (x, y, size, align);
1644 if (method == BLOCK_OP_CALL_PARM)
1645 OK_DEFER_POP;
1647 return retval;
1651 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1653 unsigned HOST_WIDE_INT max, min = 0;
1654 if (GET_CODE (size) == CONST_INT)
1655 min = max = UINTVAL (size);
1656 else
1657 max = GET_MODE_MASK (GET_MODE (size));
1658 return emit_block_move_hints (x, y, size, method, 0, -1,
1659 min, max, max);
1662 /* A subroutine of emit_block_move. Returns true if calling the
1663 block move libcall will not clobber any parameters which may have
1664 already been placed on the stack. */
1666 static bool
1667 block_move_libcall_safe_for_call_parm (void)
1669 #if defined (REG_PARM_STACK_SPACE)
1670 tree fn;
1671 #endif
1673 /* If arguments are pushed on the stack, then they're safe. */
1674 if (PUSH_ARGS)
1675 return true;
1677 /* If registers go on the stack anyway, any argument is sure to clobber
1678 an outgoing argument. */
1679 #if defined (REG_PARM_STACK_SPACE)
1680 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1681 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1682 depend on its argument. */
1683 (void) fn;
1684 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1685 && REG_PARM_STACK_SPACE (fn) != 0)
1686 return false;
1687 #endif
1689 /* If any argument goes in memory, then it might clobber an outgoing
1690 argument. */
1692 CUMULATIVE_ARGS args_so_far_v;
1693 cumulative_args_t args_so_far;
1694 tree fn, arg;
1696 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1697 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1698 args_so_far = pack_cumulative_args (&args_so_far_v);
1700 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1701 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1703 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1704 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1705 NULL_TREE, true);
1706 if (!tmp || !REG_P (tmp))
1707 return false;
1708 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1709 return false;
1710 targetm.calls.function_arg_advance (args_so_far, mode,
1711 NULL_TREE, true);
1714 return true;
1717 /* A subroutine of emit_block_move. Expand a movmem pattern;
1718 return true if successful. */
1720 static bool
1721 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1722 unsigned int expected_align, HOST_WIDE_INT expected_size,
1723 unsigned HOST_WIDE_INT min_size,
1724 unsigned HOST_WIDE_INT max_size,
1725 unsigned HOST_WIDE_INT probable_max_size)
1727 int save_volatile_ok = volatile_ok;
1729 if (expected_align < align)
1730 expected_align = align;
1731 if (expected_size != -1)
1733 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1734 expected_size = probable_max_size;
1735 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1736 expected_size = min_size;
1739 /* Since this is a move insn, we don't care about volatility. */
1740 volatile_ok = 1;
1742 /* Try the most limited insn first, because there's no point
1743 including more than one in the machine description unless
1744 the more limited one has some advantage. */
1746 opt_scalar_int_mode mode_iter;
1747 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1749 scalar_int_mode mode = mode_iter.require ();
1750 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1752 if (code != CODE_FOR_nothing
1753 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1754 here because if SIZE is less than the mode mask, as it is
1755 returned by the macro, it will definitely be less than the
1756 actual mode mask. Since SIZE is within the Pmode address
1757 space, we limit MODE to Pmode. */
1758 && ((CONST_INT_P (size)
1759 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1760 <= (GET_MODE_MASK (mode) >> 1)))
1761 || max_size <= (GET_MODE_MASK (mode) >> 1)
1762 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1764 struct expand_operand ops[9];
1765 unsigned int nops;
1767 /* ??? When called via emit_block_move_for_call, it'd be
1768 nice if there were some way to inform the backend, so
1769 that it doesn't fail the expansion because it thinks
1770 emitting the libcall would be more efficient. */
1771 nops = insn_data[(int) code].n_generator_args;
1772 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1774 create_fixed_operand (&ops[0], x);
1775 create_fixed_operand (&ops[1], y);
1776 /* The check above guarantees that this size conversion is valid. */
1777 create_convert_operand_to (&ops[2], size, mode, true);
1778 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1779 if (nops >= 6)
1781 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1782 create_integer_operand (&ops[5], expected_size);
1784 if (nops >= 8)
1786 create_integer_operand (&ops[6], min_size);
1787 /* If we can not represent the maximal size,
1788 make parameter NULL. */
1789 if ((HOST_WIDE_INT) max_size != -1)
1790 create_integer_operand (&ops[7], max_size);
1791 else
1792 create_fixed_operand (&ops[7], NULL);
1794 if (nops == 9)
1796 /* If we can not represent the maximal size,
1797 make parameter NULL. */
1798 if ((HOST_WIDE_INT) probable_max_size != -1)
1799 create_integer_operand (&ops[8], probable_max_size);
1800 else
1801 create_fixed_operand (&ops[8], NULL);
1803 if (maybe_expand_insn (code, nops, ops))
1805 volatile_ok = save_volatile_ok;
1806 return true;
1811 volatile_ok = save_volatile_ok;
1812 return false;
1815 /* A subroutine of emit_block_move. Copy the data via an explicit
1816 loop. This is used only when libcalls are forbidden. */
1817 /* ??? It'd be nice to copy in hunks larger than QImode. */
1819 static void
1820 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1821 unsigned int align ATTRIBUTE_UNUSED)
1823 rtx_code_label *cmp_label, *top_label;
1824 rtx iter, x_addr, y_addr, tmp;
1825 machine_mode x_addr_mode = get_address_mode (x);
1826 machine_mode y_addr_mode = get_address_mode (y);
1827 machine_mode iter_mode;
1829 iter_mode = GET_MODE (size);
1830 if (iter_mode == VOIDmode)
1831 iter_mode = word_mode;
1833 top_label = gen_label_rtx ();
1834 cmp_label = gen_label_rtx ();
1835 iter = gen_reg_rtx (iter_mode);
1837 emit_move_insn (iter, const0_rtx);
1839 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1840 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1841 do_pending_stack_adjust ();
1843 emit_jump (cmp_label);
1844 emit_label (top_label);
1846 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1847 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1849 if (x_addr_mode != y_addr_mode)
1850 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1851 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1853 x = change_address (x, QImode, x_addr);
1854 y = change_address (y, QImode, y_addr);
1856 emit_move_insn (x, y);
1858 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1859 true, OPTAB_LIB_WIDEN);
1860 if (tmp != iter)
1861 emit_move_insn (iter, tmp);
1863 emit_label (cmp_label);
1865 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1866 true, top_label,
1867 profile_probability::guessed_always ()
1868 .apply_scale (9, 10));
1871 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1872 TAILCALL is true if this is a tail call. */
1875 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1876 rtx size, bool tailcall)
1878 rtx dst_addr, src_addr;
1879 tree call_expr, dst_tree, src_tree, size_tree;
1880 machine_mode size_mode;
1882 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1883 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1884 dst_tree = make_tree (ptr_type_node, dst_addr);
1886 src_addr = copy_addr_to_reg (XEXP (src, 0));
1887 src_addr = convert_memory_address (ptr_mode, src_addr);
1888 src_tree = make_tree (ptr_type_node, src_addr);
1890 size_mode = TYPE_MODE (sizetype);
1891 size = convert_to_mode (size_mode, size, 1);
1892 size = copy_to_mode_reg (size_mode, size);
1893 size_tree = make_tree (sizetype, size);
1895 /* It is incorrect to use the libcall calling conventions for calls to
1896 memcpy/memmove/memcmp because they can be provided by the user. */
1897 tree fn = builtin_decl_implicit (fncode);
1898 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1899 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1901 return expand_call (call_expr, NULL_RTX, false);
1904 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1905 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1906 otherwise return null. */
1909 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1910 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1911 HOST_WIDE_INT align)
1913 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1915 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1916 target = NULL_RTX;
1918 struct expand_operand ops[5];
1919 create_output_operand (&ops[0], target, insn_mode);
1920 create_fixed_operand (&ops[1], arg1_rtx);
1921 create_fixed_operand (&ops[2], arg2_rtx);
1922 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1923 TYPE_UNSIGNED (arg3_type));
1924 create_integer_operand (&ops[4], align);
1925 if (maybe_expand_insn (icode, 5, ops))
1926 return ops[0].value;
1927 return NULL_RTX;
1930 /* Expand a block compare between X and Y with length LEN using the
1931 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1932 of the expression that was used to calculate the length. ALIGN
1933 gives the known minimum common alignment. */
1935 static rtx
1936 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
1937 unsigned align)
1939 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1940 implementing memcmp because it will stop if it encounters two
1941 zero bytes. */
1942 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
1944 if (icode == CODE_FOR_nothing)
1945 return NULL_RTX;
1947 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
1950 /* Emit code to compare a block Y to a block X. This may be done with
1951 string-compare instructions, with multiple scalar instructions,
1952 or with a library call.
1954 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1955 they are. LEN_TYPE is the type of the expression that was used to
1956 calculate it.
1958 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
1959 value of a normal memcmp call, instead we can just compare for equality.
1960 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
1961 returning NULL_RTX.
1963 Optionally, the caller can pass a constfn and associated data in Y_CFN
1964 and Y_CFN_DATA. describing that the second operand being compared is a
1965 known constant and how to obtain its data.
1966 Return the result of the comparison, or NULL_RTX if we failed to
1967 perform the operation. */
1970 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
1971 bool equality_only, by_pieces_constfn y_cfn,
1972 void *y_cfndata)
1974 rtx result = 0;
1976 if (CONST_INT_P (len) && INTVAL (len) == 0)
1977 return const0_rtx;
1979 gcc_assert (MEM_P (x) && MEM_P (y));
1980 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1981 gcc_assert (align >= BITS_PER_UNIT);
1983 x = adjust_address (x, BLKmode, 0);
1984 y = adjust_address (y, BLKmode, 0);
1986 if (equality_only
1987 && CONST_INT_P (len)
1988 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
1989 result = compare_by_pieces (x, y, INTVAL (len), target, align,
1990 y_cfn, y_cfndata);
1991 else
1992 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
1994 return result;
1997 /* Copy all or part of a value X into registers starting at REGNO.
1998 The number of registers to be filled is NREGS. */
2000 void
2001 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2003 if (nregs == 0)
2004 return;
2006 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2007 x = validize_mem (force_const_mem (mode, x));
2009 /* See if the machine can do this with a load multiple insn. */
2010 if (targetm.have_load_multiple ())
2012 rtx_insn *last = get_last_insn ();
2013 rtx first = gen_rtx_REG (word_mode, regno);
2014 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2015 GEN_INT (nregs)))
2017 emit_insn (pat);
2018 return;
2020 else
2021 delete_insns_since (last);
2024 for (int i = 0; i < nregs; i++)
2025 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2026 operand_subword_force (x, i, mode));
2029 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2030 The number of registers to be filled is NREGS. */
2032 void
2033 move_block_from_reg (int regno, rtx x, int nregs)
2035 if (nregs == 0)
2036 return;
2038 /* See if the machine can do this with a store multiple insn. */
2039 if (targetm.have_store_multiple ())
2041 rtx_insn *last = get_last_insn ();
2042 rtx first = gen_rtx_REG (word_mode, regno);
2043 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2044 GEN_INT (nregs)))
2046 emit_insn (pat);
2047 return;
2049 else
2050 delete_insns_since (last);
2053 for (int i = 0; i < nregs; i++)
2055 rtx tem = operand_subword (x, i, 1, BLKmode);
2057 gcc_assert (tem);
2059 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2063 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2064 ORIG, where ORIG is a non-consecutive group of registers represented by
2065 a PARALLEL. The clone is identical to the original except in that the
2066 original set of registers is replaced by a new set of pseudo registers.
2067 The new set has the same modes as the original set. */
2070 gen_group_rtx (rtx orig)
2072 int i, length;
2073 rtx *tmps;
2075 gcc_assert (GET_CODE (orig) == PARALLEL);
2077 length = XVECLEN (orig, 0);
2078 tmps = XALLOCAVEC (rtx, length);
2080 /* Skip a NULL entry in first slot. */
2081 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2083 if (i)
2084 tmps[0] = 0;
2086 for (; i < length; i++)
2088 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2089 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2091 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2094 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2097 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2098 except that values are placed in TMPS[i], and must later be moved
2099 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2101 static void
2102 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
2104 rtx src;
2105 int start, i;
2106 machine_mode m = GET_MODE (orig_src);
2108 gcc_assert (GET_CODE (dst) == PARALLEL);
2110 if (m != VOIDmode
2111 && !SCALAR_INT_MODE_P (m)
2112 && !MEM_P (orig_src)
2113 && GET_CODE (orig_src) != CONCAT)
2115 scalar_int_mode imode;
2116 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2118 src = gen_reg_rtx (imode);
2119 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2121 else
2123 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2124 emit_move_insn (src, orig_src);
2126 emit_group_load_1 (tmps, dst, src, type, ssize);
2127 return;
2130 /* Check for a NULL entry, used to indicate that the parameter goes
2131 both on the stack and in registers. */
2132 if (XEXP (XVECEXP (dst, 0, 0), 0))
2133 start = 0;
2134 else
2135 start = 1;
2137 /* Process the pieces. */
2138 for (i = start; i < XVECLEN (dst, 0); i++)
2140 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2141 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
2142 unsigned int bytelen = GET_MODE_SIZE (mode);
2143 int shift = 0;
2145 /* Handle trailing fragments that run over the size of the struct. */
2146 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2148 /* Arrange to shift the fragment to where it belongs.
2149 extract_bit_field loads to the lsb of the reg. */
2150 if (
2151 #ifdef BLOCK_REG_PADDING
2152 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2153 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2154 #else
2155 BYTES_BIG_ENDIAN
2156 #endif
2158 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2159 bytelen = ssize - bytepos;
2160 gcc_assert (bytelen > 0);
2163 /* If we won't be loading directly from memory, protect the real source
2164 from strange tricks we might play; but make sure that the source can
2165 be loaded directly into the destination. */
2166 src = orig_src;
2167 if (!MEM_P (orig_src)
2168 && (!CONSTANT_P (orig_src)
2169 || (GET_MODE (orig_src) != mode
2170 && GET_MODE (orig_src) != VOIDmode)))
2172 if (GET_MODE (orig_src) == VOIDmode)
2173 src = gen_reg_rtx (mode);
2174 else
2175 src = gen_reg_rtx (GET_MODE (orig_src));
2177 emit_move_insn (src, orig_src);
2180 /* Optimize the access just a bit. */
2181 if (MEM_P (src)
2182 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2183 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2184 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2185 && bytelen == GET_MODE_SIZE (mode))
2187 tmps[i] = gen_reg_rtx (mode);
2188 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2190 else if (COMPLEX_MODE_P (mode)
2191 && GET_MODE (src) == mode
2192 && bytelen == GET_MODE_SIZE (mode))
2193 /* Let emit_move_complex do the bulk of the work. */
2194 tmps[i] = src;
2195 else if (GET_CODE (src) == CONCAT)
2197 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
2198 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2199 unsigned int elt = bytepos / slen0;
2200 unsigned int subpos = bytepos % slen0;
2202 if (subpos + bytelen <= slen0)
2204 /* The following assumes that the concatenated objects all
2205 have the same size. In this case, a simple calculation
2206 can be used to determine the object and the bit field
2207 to be extracted. */
2208 tmps[i] = XEXP (src, elt);
2209 if (subpos != 0
2210 || subpos + bytelen != slen0
2211 || (!CONSTANT_P (tmps[i])
2212 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2213 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2214 subpos * BITS_PER_UNIT,
2215 1, NULL_RTX, mode, mode, false,
2216 NULL);
2218 else
2220 rtx mem;
2222 gcc_assert (!bytepos);
2223 mem = assign_stack_temp (GET_MODE (src), slen);
2224 emit_move_insn (mem, src);
2225 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2226 0, 1, NULL_RTX, mode, mode, false,
2227 NULL);
2230 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2231 SIMD register, which is currently broken. While we get GCC
2232 to emit proper RTL for these cases, let's dump to memory. */
2233 else if (VECTOR_MODE_P (GET_MODE (dst))
2234 && REG_P (src))
2236 int slen = GET_MODE_SIZE (GET_MODE (src));
2237 rtx mem;
2239 mem = assign_stack_temp (GET_MODE (src), slen);
2240 emit_move_insn (mem, src);
2241 tmps[i] = adjust_address (mem, mode, (int) bytepos);
2243 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2244 && XVECLEN (dst, 0) > 1)
2245 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2246 else if (CONSTANT_P (src))
2248 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
2250 if (len == ssize)
2251 tmps[i] = src;
2252 else
2254 rtx first, second;
2256 /* TODO: const_wide_int can have sizes other than this... */
2257 gcc_assert (2 * len == ssize);
2258 split_double (src, &first, &second);
2259 if (i)
2260 tmps[i] = second;
2261 else
2262 tmps[i] = first;
2265 else if (REG_P (src) && GET_MODE (src) == mode)
2266 tmps[i] = src;
2267 else
2268 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2269 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2270 mode, mode, false, NULL);
2272 if (shift)
2273 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2274 shift, tmps[i], 0);
2278 /* Emit code to move a block SRC of type TYPE to a block DST,
2279 where DST is non-consecutive registers represented by a PARALLEL.
2280 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2281 if not known. */
2283 void
2284 emit_group_load (rtx dst, rtx src, tree type, int ssize)
2286 rtx *tmps;
2287 int i;
2289 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2290 emit_group_load_1 (tmps, dst, src, type, ssize);
2292 /* Copy the extracted pieces into the proper (probable) hard regs. */
2293 for (i = 0; i < XVECLEN (dst, 0); i++)
2295 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2296 if (d == NULL)
2297 continue;
2298 emit_move_insn (d, tmps[i]);
2302 /* Similar, but load SRC into new pseudos in a format that looks like
2303 PARALLEL. This can later be fed to emit_group_move to get things
2304 in the right place. */
2307 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
2309 rtvec vec;
2310 int i;
2312 vec = rtvec_alloc (XVECLEN (parallel, 0));
2313 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2315 /* Convert the vector to look just like the original PARALLEL, except
2316 with the computed values. */
2317 for (i = 0; i < XVECLEN (parallel, 0); i++)
2319 rtx e = XVECEXP (parallel, 0, i);
2320 rtx d = XEXP (e, 0);
2322 if (d)
2324 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2325 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2327 RTVEC_ELT (vec, i) = e;
2330 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2333 /* Emit code to move a block SRC to block DST, where SRC and DST are
2334 non-consecutive groups of registers, each represented by a PARALLEL. */
2336 void
2337 emit_group_move (rtx dst, rtx src)
2339 int i;
2341 gcc_assert (GET_CODE (src) == PARALLEL
2342 && GET_CODE (dst) == PARALLEL
2343 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2345 /* Skip first entry if NULL. */
2346 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2347 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2348 XEXP (XVECEXP (src, 0, i), 0));
2351 /* Move a group of registers represented by a PARALLEL into pseudos. */
2354 emit_group_move_into_temps (rtx src)
2356 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2357 int i;
2359 for (i = 0; i < XVECLEN (src, 0); i++)
2361 rtx e = XVECEXP (src, 0, i);
2362 rtx d = XEXP (e, 0);
2364 if (d)
2365 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2366 RTVEC_ELT (vec, i) = e;
2369 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2372 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2373 where SRC is non-consecutive registers represented by a PARALLEL.
2374 SSIZE represents the total size of block ORIG_DST, or -1 if not
2375 known. */
2377 void
2378 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
2380 rtx *tmps, dst;
2381 int start, finish, i;
2382 machine_mode m = GET_MODE (orig_dst);
2384 gcc_assert (GET_CODE (src) == PARALLEL);
2386 if (!SCALAR_INT_MODE_P (m)
2387 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2389 scalar_int_mode imode;
2390 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2392 dst = gen_reg_rtx (imode);
2393 emit_group_store (dst, src, type, ssize);
2394 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2396 else
2398 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2399 emit_group_store (dst, src, type, ssize);
2401 emit_move_insn (orig_dst, dst);
2402 return;
2405 /* Check for a NULL entry, used to indicate that the parameter goes
2406 both on the stack and in registers. */
2407 if (XEXP (XVECEXP (src, 0, 0), 0))
2408 start = 0;
2409 else
2410 start = 1;
2411 finish = XVECLEN (src, 0);
2413 tmps = XALLOCAVEC (rtx, finish);
2415 /* Copy the (probable) hard regs into pseudos. */
2416 for (i = start; i < finish; i++)
2418 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2419 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2421 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2422 emit_move_insn (tmps[i], reg);
2424 else
2425 tmps[i] = reg;
2428 /* If we won't be storing directly into memory, protect the real destination
2429 from strange tricks we might play. */
2430 dst = orig_dst;
2431 if (GET_CODE (dst) == PARALLEL)
2433 rtx temp;
2435 /* We can get a PARALLEL dst if there is a conditional expression in
2436 a return statement. In that case, the dst and src are the same,
2437 so no action is necessary. */
2438 if (rtx_equal_p (dst, src))
2439 return;
2441 /* It is unclear if we can ever reach here, but we may as well handle
2442 it. Allocate a temporary, and split this into a store/load to/from
2443 the temporary. */
2444 temp = assign_stack_temp (GET_MODE (dst), ssize);
2445 emit_group_store (temp, src, type, ssize);
2446 emit_group_load (dst, temp, type, ssize);
2447 return;
2449 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2451 machine_mode outer = GET_MODE (dst);
2452 machine_mode inner;
2453 HOST_WIDE_INT bytepos;
2454 bool done = false;
2455 rtx temp;
2457 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2458 dst = gen_reg_rtx (outer);
2460 /* Make life a bit easier for combine. */
2461 /* If the first element of the vector is the low part
2462 of the destination mode, use a paradoxical subreg to
2463 initialize the destination. */
2464 if (start < finish)
2466 inner = GET_MODE (tmps[start]);
2467 bytepos = subreg_lowpart_offset (inner, outer);
2468 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2470 temp = simplify_gen_subreg (outer, tmps[start],
2471 inner, 0);
2472 if (temp)
2474 emit_move_insn (dst, temp);
2475 done = true;
2476 start++;
2481 /* If the first element wasn't the low part, try the last. */
2482 if (!done
2483 && start < finish - 1)
2485 inner = GET_MODE (tmps[finish - 1]);
2486 bytepos = subreg_lowpart_offset (inner, outer);
2487 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2489 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2490 inner, 0);
2491 if (temp)
2493 emit_move_insn (dst, temp);
2494 done = true;
2495 finish--;
2500 /* Otherwise, simply initialize the result to zero. */
2501 if (!done)
2502 emit_move_insn (dst, CONST0_RTX (outer));
2505 /* Process the pieces. */
2506 for (i = start; i < finish; i++)
2508 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2509 machine_mode mode = GET_MODE (tmps[i]);
2510 unsigned int bytelen = GET_MODE_SIZE (mode);
2511 unsigned int adj_bytelen;
2512 rtx dest = dst;
2514 /* Handle trailing fragments that run over the size of the struct. */
2515 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2516 adj_bytelen = ssize - bytepos;
2517 else
2518 adj_bytelen = bytelen;
2520 if (GET_CODE (dst) == CONCAT)
2522 if (bytepos + adj_bytelen
2523 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2524 dest = XEXP (dst, 0);
2525 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2527 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2528 dest = XEXP (dst, 1);
2530 else
2532 machine_mode dest_mode = GET_MODE (dest);
2533 machine_mode tmp_mode = GET_MODE (tmps[i]);
2535 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2537 if (GET_MODE_ALIGNMENT (dest_mode)
2538 >= GET_MODE_ALIGNMENT (tmp_mode))
2540 dest = assign_stack_temp (dest_mode,
2541 GET_MODE_SIZE (dest_mode));
2542 emit_move_insn (adjust_address (dest,
2543 tmp_mode,
2544 bytepos),
2545 tmps[i]);
2546 dst = dest;
2548 else
2550 dest = assign_stack_temp (tmp_mode,
2551 GET_MODE_SIZE (tmp_mode));
2552 emit_move_insn (dest, tmps[i]);
2553 dst = adjust_address (dest, dest_mode, bytepos);
2555 break;
2559 /* Handle trailing fragments that run over the size of the struct. */
2560 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2562 /* store_bit_field always takes its value from the lsb.
2563 Move the fragment to the lsb if it's not already there. */
2564 if (
2565 #ifdef BLOCK_REG_PADDING
2566 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2567 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2568 #else
2569 BYTES_BIG_ENDIAN
2570 #endif
2573 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2574 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2575 shift, tmps[i], 0);
2578 /* Make sure not to write past the end of the struct. */
2579 store_bit_field (dest,
2580 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2581 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2582 VOIDmode, tmps[i], false);
2585 /* Optimize the access just a bit. */
2586 else if (MEM_P (dest)
2587 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2588 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2589 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2590 && bytelen == GET_MODE_SIZE (mode))
2591 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2593 else
2594 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2595 0, 0, mode, tmps[i], false);
2598 /* Copy from the pseudo into the (probable) hard reg. */
2599 if (orig_dst != dst)
2600 emit_move_insn (orig_dst, dst);
2603 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2604 of the value stored in X. */
2607 maybe_emit_group_store (rtx x, tree type)
2609 machine_mode mode = TYPE_MODE (type);
2610 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2611 if (GET_CODE (x) == PARALLEL)
2613 rtx result = gen_reg_rtx (mode);
2614 emit_group_store (result, x, type, int_size_in_bytes (type));
2615 return result;
2617 return x;
2620 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2622 This is used on targets that return BLKmode values in registers. */
2624 static void
2625 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2627 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2628 rtx src = NULL, dst = NULL;
2629 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2630 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2631 machine_mode mode = GET_MODE (srcreg);
2632 machine_mode tmode = GET_MODE (target);
2633 machine_mode copy_mode;
2635 /* BLKmode registers created in the back-end shouldn't have survived. */
2636 gcc_assert (mode != BLKmode);
2638 /* If the structure doesn't take up a whole number of words, see whether
2639 SRCREG is padded on the left or on the right. If it's on the left,
2640 set PADDING_CORRECTION to the number of bits to skip.
2642 In most ABIs, the structure will be returned at the least end of
2643 the register, which translates to right padding on little-endian
2644 targets and left padding on big-endian targets. The opposite
2645 holds if the structure is returned at the most significant
2646 end of the register. */
2647 if (bytes % UNITS_PER_WORD != 0
2648 && (targetm.calls.return_in_msb (type)
2649 ? !BYTES_BIG_ENDIAN
2650 : BYTES_BIG_ENDIAN))
2651 padding_correction
2652 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2654 /* We can use a single move if we have an exact mode for the size. */
2655 else if (MEM_P (target)
2656 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2657 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2658 && bytes == GET_MODE_SIZE (mode))
2660 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2661 return;
2664 /* And if we additionally have the same mode for a register. */
2665 else if (REG_P (target)
2666 && GET_MODE (target) == mode
2667 && bytes == GET_MODE_SIZE (mode))
2669 emit_move_insn (target, srcreg);
2670 return;
2673 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2674 into a new pseudo which is a full word. */
2675 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2677 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2678 mode = word_mode;
2681 /* Copy the structure BITSIZE bits at a time. If the target lives in
2682 memory, take care of not reading/writing past its end by selecting
2683 a copy mode suited to BITSIZE. This should always be possible given
2684 how it is computed.
2686 If the target lives in register, make sure not to select a copy mode
2687 larger than the mode of the register.
2689 We could probably emit more efficient code for machines which do not use
2690 strict alignment, but it doesn't seem worth the effort at the current
2691 time. */
2693 copy_mode = word_mode;
2694 if (MEM_P (target))
2696 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2697 if (mem_mode.exists ())
2698 copy_mode = mem_mode.require ();
2700 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2701 copy_mode = tmode;
2703 for (bitpos = 0, xbitpos = padding_correction;
2704 bitpos < bytes * BITS_PER_UNIT;
2705 bitpos += bitsize, xbitpos += bitsize)
2707 /* We need a new source operand each time xbitpos is on a
2708 word boundary and when xbitpos == padding_correction
2709 (the first time through). */
2710 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2711 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2713 /* We need a new destination operand each time bitpos is on
2714 a word boundary. */
2715 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2716 dst = target;
2717 else if (bitpos % BITS_PER_WORD == 0)
2718 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2720 /* Use xbitpos for the source extraction (right justified) and
2721 bitpos for the destination store (left justified). */
2722 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2723 extract_bit_field (src, bitsize,
2724 xbitpos % BITS_PER_WORD, 1,
2725 NULL_RTX, copy_mode, copy_mode,
2726 false, NULL),
2727 false);
2731 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2732 register if it contains any data, otherwise return null.
2734 This is used on targets that return BLKmode values in registers. */
2737 copy_blkmode_to_reg (machine_mode mode, tree src)
2739 int i, n_regs;
2740 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2741 unsigned int bitsize;
2742 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2743 machine_mode dst_mode;
2745 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2747 x = expand_normal (src);
2749 bytes = int_size_in_bytes (TREE_TYPE (src));
2750 if (bytes == 0)
2751 return NULL_RTX;
2753 /* If the structure doesn't take up a whole number of words, see
2754 whether the register value should be padded on the left or on
2755 the right. Set PADDING_CORRECTION to the number of padding
2756 bits needed on the left side.
2758 In most ABIs, the structure will be returned at the least end of
2759 the register, which translates to right padding on little-endian
2760 targets and left padding on big-endian targets. The opposite
2761 holds if the structure is returned at the most significant
2762 end of the register. */
2763 if (bytes % UNITS_PER_WORD != 0
2764 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2765 ? !BYTES_BIG_ENDIAN
2766 : BYTES_BIG_ENDIAN))
2767 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2768 * BITS_PER_UNIT));
2770 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2771 dst_words = XALLOCAVEC (rtx, n_regs);
2772 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2774 /* Copy the structure BITSIZE bits at a time. */
2775 for (bitpos = 0, xbitpos = padding_correction;
2776 bitpos < bytes * BITS_PER_UNIT;
2777 bitpos += bitsize, xbitpos += bitsize)
2779 /* We need a new destination pseudo each time xbitpos is
2780 on a word boundary and when xbitpos == padding_correction
2781 (the first time through). */
2782 if (xbitpos % BITS_PER_WORD == 0
2783 || xbitpos == padding_correction)
2785 /* Generate an appropriate register. */
2786 dst_word = gen_reg_rtx (word_mode);
2787 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2789 /* Clear the destination before we move anything into it. */
2790 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2793 /* We need a new source operand each time bitpos is on a word
2794 boundary. */
2795 if (bitpos % BITS_PER_WORD == 0)
2796 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2798 /* Use bitpos for the source extraction (left justified) and
2799 xbitpos for the destination store (right justified). */
2800 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2801 0, 0, word_mode,
2802 extract_bit_field (src_word, bitsize,
2803 bitpos % BITS_PER_WORD, 1,
2804 NULL_RTX, word_mode, word_mode,
2805 false, NULL),
2806 false);
2809 if (mode == BLKmode)
2811 /* Find the smallest integer mode large enough to hold the
2812 entire structure. */
2813 opt_scalar_int_mode mode_iter;
2814 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2815 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2816 break;
2818 /* A suitable mode should have been found. */
2819 mode = mode_iter.require ();
2822 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2823 dst_mode = word_mode;
2824 else
2825 dst_mode = mode;
2826 dst = gen_reg_rtx (dst_mode);
2828 for (i = 0; i < n_regs; i++)
2829 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2831 if (mode != dst_mode)
2832 dst = gen_lowpart (mode, dst);
2834 return dst;
2837 /* Add a USE expression for REG to the (possibly empty) list pointed
2838 to by CALL_FUSAGE. REG must denote a hard register. */
2840 void
2841 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2843 gcc_assert (REG_P (reg));
2845 if (!HARD_REGISTER_P (reg))
2846 return;
2848 *call_fusage
2849 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2852 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2853 to by CALL_FUSAGE. REG must denote a hard register. */
2855 void
2856 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2858 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2860 *call_fusage
2861 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2864 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2865 starting at REGNO. All of these registers must be hard registers. */
2867 void
2868 use_regs (rtx *call_fusage, int regno, int nregs)
2870 int i;
2872 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2874 for (i = 0; i < nregs; i++)
2875 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2878 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2879 PARALLEL REGS. This is for calls that pass values in multiple
2880 non-contiguous locations. The Irix 6 ABI has examples of this. */
2882 void
2883 use_group_regs (rtx *call_fusage, rtx regs)
2885 int i;
2887 for (i = 0; i < XVECLEN (regs, 0); i++)
2889 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2891 /* A NULL entry means the parameter goes both on the stack and in
2892 registers. This can also be a MEM for targets that pass values
2893 partially on the stack and partially in registers. */
2894 if (reg != 0 && REG_P (reg))
2895 use_reg (call_fusage, reg);
2899 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2900 assigment and the code of the expresion on the RHS is CODE. Return
2901 NULL otherwise. */
2903 static gimple *
2904 get_def_for_expr (tree name, enum tree_code code)
2906 gimple *def_stmt;
2908 if (TREE_CODE (name) != SSA_NAME)
2909 return NULL;
2911 def_stmt = get_gimple_for_ssa_name (name);
2912 if (!def_stmt
2913 || gimple_assign_rhs_code (def_stmt) != code)
2914 return NULL;
2916 return def_stmt;
2919 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2920 assigment and the class of the expresion on the RHS is CLASS. Return
2921 NULL otherwise. */
2923 static gimple *
2924 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2926 gimple *def_stmt;
2928 if (TREE_CODE (name) != SSA_NAME)
2929 return NULL;
2931 def_stmt = get_gimple_for_ssa_name (name);
2932 if (!def_stmt
2933 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2934 return NULL;
2936 return def_stmt;
2939 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2940 its length in bytes. */
2943 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2944 unsigned int expected_align, HOST_WIDE_INT expected_size,
2945 unsigned HOST_WIDE_INT min_size,
2946 unsigned HOST_WIDE_INT max_size,
2947 unsigned HOST_WIDE_INT probable_max_size)
2949 machine_mode mode = GET_MODE (object);
2950 unsigned int align;
2952 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2954 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2955 just move a zero. Otherwise, do this a piece at a time. */
2956 if (mode != BLKmode
2957 && CONST_INT_P (size)
2958 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2960 rtx zero = CONST0_RTX (mode);
2961 if (zero != NULL)
2963 emit_move_insn (object, zero);
2964 return NULL;
2967 if (COMPLEX_MODE_P (mode))
2969 zero = CONST0_RTX (GET_MODE_INNER (mode));
2970 if (zero != NULL)
2972 write_complex_part (object, zero, 0);
2973 write_complex_part (object, zero, 1);
2974 return NULL;
2979 if (size == const0_rtx)
2980 return NULL;
2982 align = MEM_ALIGN (object);
2984 if (CONST_INT_P (size)
2985 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
2986 CLEAR_BY_PIECES,
2987 optimize_insn_for_speed_p ()))
2988 clear_by_pieces (object, INTVAL (size), align);
2989 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2990 expected_align, expected_size,
2991 min_size, max_size, probable_max_size))
2993 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2994 return set_storage_via_libcall (object, size, const0_rtx,
2995 method == BLOCK_OP_TAILCALL);
2996 else
2997 gcc_unreachable ();
2999 return NULL;
3003 clear_storage (rtx object, rtx size, enum block_op_methods method)
3005 unsigned HOST_WIDE_INT max, min = 0;
3006 if (GET_CODE (size) == CONST_INT)
3007 min = max = UINTVAL (size);
3008 else
3009 max = GET_MODE_MASK (GET_MODE (size));
3010 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3014 /* A subroutine of clear_storage. Expand a call to memset.
3015 Return the return value of memset, 0 otherwise. */
3018 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3020 tree call_expr, fn, object_tree, size_tree, val_tree;
3021 machine_mode size_mode;
3023 object = copy_addr_to_reg (XEXP (object, 0));
3024 object_tree = make_tree (ptr_type_node, object);
3026 if (!CONST_INT_P (val))
3027 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3028 val_tree = make_tree (integer_type_node, val);
3030 size_mode = TYPE_MODE (sizetype);
3031 size = convert_to_mode (size_mode, size, 1);
3032 size = copy_to_mode_reg (size_mode, size);
3033 size_tree = make_tree (sizetype, size);
3035 /* It is incorrect to use the libcall calling conventions for calls to
3036 memset because it can be provided by the user. */
3037 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3038 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3039 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3041 return expand_call (call_expr, NULL_RTX, false);
3044 /* Expand a setmem pattern; return true if successful. */
3046 bool
3047 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3048 unsigned int expected_align, HOST_WIDE_INT expected_size,
3049 unsigned HOST_WIDE_INT min_size,
3050 unsigned HOST_WIDE_INT max_size,
3051 unsigned HOST_WIDE_INT probable_max_size)
3053 /* Try the most limited insn first, because there's no point
3054 including more than one in the machine description unless
3055 the more limited one has some advantage. */
3057 if (expected_align < align)
3058 expected_align = align;
3059 if (expected_size != -1)
3061 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3062 expected_size = max_size;
3063 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3064 expected_size = min_size;
3067 opt_scalar_int_mode mode_iter;
3068 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3070 scalar_int_mode mode = mode_iter.require ();
3071 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3073 if (code != CODE_FOR_nothing
3074 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3075 here because if SIZE is less than the mode mask, as it is
3076 returned by the macro, it will definitely be less than the
3077 actual mode mask. Since SIZE is within the Pmode address
3078 space, we limit MODE to Pmode. */
3079 && ((CONST_INT_P (size)
3080 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3081 <= (GET_MODE_MASK (mode) >> 1)))
3082 || max_size <= (GET_MODE_MASK (mode) >> 1)
3083 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3085 struct expand_operand ops[9];
3086 unsigned int nops;
3088 nops = insn_data[(int) code].n_generator_args;
3089 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3091 create_fixed_operand (&ops[0], object);
3092 /* The check above guarantees that this size conversion is valid. */
3093 create_convert_operand_to (&ops[1], size, mode, true);
3094 create_convert_operand_from (&ops[2], val, byte_mode, true);
3095 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3096 if (nops >= 6)
3098 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3099 create_integer_operand (&ops[5], expected_size);
3101 if (nops >= 8)
3103 create_integer_operand (&ops[6], min_size);
3104 /* If we can not represent the maximal size,
3105 make parameter NULL. */
3106 if ((HOST_WIDE_INT) max_size != -1)
3107 create_integer_operand (&ops[7], max_size);
3108 else
3109 create_fixed_operand (&ops[7], NULL);
3111 if (nops == 9)
3113 /* If we can not represent the maximal size,
3114 make parameter NULL. */
3115 if ((HOST_WIDE_INT) probable_max_size != -1)
3116 create_integer_operand (&ops[8], probable_max_size);
3117 else
3118 create_fixed_operand (&ops[8], NULL);
3120 if (maybe_expand_insn (code, nops, ops))
3121 return true;
3125 return false;
3129 /* Write to one of the components of the complex value CPLX. Write VAL to
3130 the real part if IMAG_P is false, and the imaginary part if its true. */
3132 void
3133 write_complex_part (rtx cplx, rtx val, bool imag_p)
3135 machine_mode cmode;
3136 scalar_mode imode;
3137 unsigned ibitsize;
3139 if (GET_CODE (cplx) == CONCAT)
3141 emit_move_insn (XEXP (cplx, imag_p), val);
3142 return;
3145 cmode = GET_MODE (cplx);
3146 imode = GET_MODE_INNER (cmode);
3147 ibitsize = GET_MODE_BITSIZE (imode);
3149 /* For MEMs simplify_gen_subreg may generate an invalid new address
3150 because, e.g., the original address is considered mode-dependent
3151 by the target, which restricts simplify_subreg from invoking
3152 adjust_address_nv. Instead of preparing fallback support for an
3153 invalid address, we call adjust_address_nv directly. */
3154 if (MEM_P (cplx))
3156 emit_move_insn (adjust_address_nv (cplx, imode,
3157 imag_p ? GET_MODE_SIZE (imode) : 0),
3158 val);
3159 return;
3162 /* If the sub-object is at least word sized, then we know that subregging
3163 will work. This special case is important, since store_bit_field
3164 wants to operate on integer modes, and there's rarely an OImode to
3165 correspond to TCmode. */
3166 if (ibitsize >= BITS_PER_WORD
3167 /* For hard regs we have exact predicates. Assume we can split
3168 the original object if it spans an even number of hard regs.
3169 This special case is important for SCmode on 64-bit platforms
3170 where the natural size of floating-point regs is 32-bit. */
3171 || (REG_P (cplx)
3172 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3173 && REG_NREGS (cplx) % 2 == 0))
3175 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3176 imag_p ? GET_MODE_SIZE (imode) : 0);
3177 if (part)
3179 emit_move_insn (part, val);
3180 return;
3182 else
3183 /* simplify_gen_subreg may fail for sub-word MEMs. */
3184 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3187 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3188 false);
3191 /* Extract one of the components of the complex value CPLX. Extract the
3192 real part if IMAG_P is false, and the imaginary part if it's true. */
3195 read_complex_part (rtx cplx, bool imag_p)
3197 machine_mode cmode;
3198 scalar_mode imode;
3199 unsigned ibitsize;
3201 if (GET_CODE (cplx) == CONCAT)
3202 return XEXP (cplx, imag_p);
3204 cmode = GET_MODE (cplx);
3205 imode = GET_MODE_INNER (cmode);
3206 ibitsize = GET_MODE_BITSIZE (imode);
3208 /* Special case reads from complex constants that got spilled to memory. */
3209 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3211 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3212 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3214 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3215 if (CONSTANT_CLASS_P (part))
3216 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3220 /* For MEMs simplify_gen_subreg may generate an invalid new address
3221 because, e.g., the original address is considered mode-dependent
3222 by the target, which restricts simplify_subreg from invoking
3223 adjust_address_nv. Instead of preparing fallback support for an
3224 invalid address, we call adjust_address_nv directly. */
3225 if (MEM_P (cplx))
3226 return adjust_address_nv (cplx, imode,
3227 imag_p ? GET_MODE_SIZE (imode) : 0);
3229 /* If the sub-object is at least word sized, then we know that subregging
3230 will work. This special case is important, since extract_bit_field
3231 wants to operate on integer modes, and there's rarely an OImode to
3232 correspond to TCmode. */
3233 if (ibitsize >= BITS_PER_WORD
3234 /* For hard regs we have exact predicates. Assume we can split
3235 the original object if it spans an even number of hard regs.
3236 This special case is important for SCmode on 64-bit platforms
3237 where the natural size of floating-point regs is 32-bit. */
3238 || (REG_P (cplx)
3239 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3240 && REG_NREGS (cplx) % 2 == 0))
3242 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3243 imag_p ? GET_MODE_SIZE (imode) : 0);
3244 if (ret)
3245 return ret;
3246 else
3247 /* simplify_gen_subreg may fail for sub-word MEMs. */
3248 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3251 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3252 true, NULL_RTX, imode, imode, false, NULL);
3255 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3256 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3257 represented in NEW_MODE. If FORCE is true, this will never happen, as
3258 we'll force-create a SUBREG if needed. */
3260 static rtx
3261 emit_move_change_mode (machine_mode new_mode,
3262 machine_mode old_mode, rtx x, bool force)
3264 rtx ret;
3266 if (push_operand (x, GET_MODE (x)))
3268 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3269 MEM_COPY_ATTRIBUTES (ret, x);
3271 else if (MEM_P (x))
3273 /* We don't have to worry about changing the address since the
3274 size in bytes is supposed to be the same. */
3275 if (reload_in_progress)
3277 /* Copy the MEM to change the mode and move any
3278 substitutions from the old MEM to the new one. */
3279 ret = adjust_address_nv (x, new_mode, 0);
3280 copy_replacements (x, ret);
3282 else
3283 ret = adjust_address (x, new_mode, 0);
3285 else
3287 /* Note that we do want simplify_subreg's behavior of validating
3288 that the new mode is ok for a hard register. If we were to use
3289 simplify_gen_subreg, we would create the subreg, but would
3290 probably run into the target not being able to implement it. */
3291 /* Except, of course, when FORCE is true, when this is exactly what
3292 we want. Which is needed for CCmodes on some targets. */
3293 if (force)
3294 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3295 else
3296 ret = simplify_subreg (new_mode, x, old_mode, 0);
3299 return ret;
3302 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3303 an integer mode of the same size as MODE. Returns the instruction
3304 emitted, or NULL if such a move could not be generated. */
3306 static rtx_insn *
3307 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3309 scalar_int_mode imode;
3310 enum insn_code code;
3312 /* There must exist a mode of the exact size we require. */
3313 if (!int_mode_for_mode (mode).exists (&imode))
3314 return NULL;
3316 /* The target must support moves in this mode. */
3317 code = optab_handler (mov_optab, imode);
3318 if (code == CODE_FOR_nothing)
3319 return NULL;
3321 x = emit_move_change_mode (imode, mode, x, force);
3322 if (x == NULL_RTX)
3323 return NULL;
3324 y = emit_move_change_mode (imode, mode, y, force);
3325 if (y == NULL_RTX)
3326 return NULL;
3327 return emit_insn (GEN_FCN (code) (x, y));
3330 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3331 Return an equivalent MEM that does not use an auto-increment. */
3334 emit_move_resolve_push (machine_mode mode, rtx x)
3336 enum rtx_code code = GET_CODE (XEXP (x, 0));
3337 HOST_WIDE_INT adjust;
3338 rtx temp;
3340 adjust = GET_MODE_SIZE (mode);
3341 #ifdef PUSH_ROUNDING
3342 adjust = PUSH_ROUNDING (adjust);
3343 #endif
3344 if (code == PRE_DEC || code == POST_DEC)
3345 adjust = -adjust;
3346 else if (code == PRE_MODIFY || code == POST_MODIFY)
3348 rtx expr = XEXP (XEXP (x, 0), 1);
3349 HOST_WIDE_INT val;
3351 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3352 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3353 val = INTVAL (XEXP (expr, 1));
3354 if (GET_CODE (expr) == MINUS)
3355 val = -val;
3356 gcc_assert (adjust == val || adjust == -val);
3357 adjust = val;
3360 /* Do not use anti_adjust_stack, since we don't want to update
3361 stack_pointer_delta. */
3362 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3363 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3364 0, OPTAB_LIB_WIDEN);
3365 if (temp != stack_pointer_rtx)
3366 emit_move_insn (stack_pointer_rtx, temp);
3368 switch (code)
3370 case PRE_INC:
3371 case PRE_DEC:
3372 case PRE_MODIFY:
3373 temp = stack_pointer_rtx;
3374 break;
3375 case POST_INC:
3376 case POST_DEC:
3377 case POST_MODIFY:
3378 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3379 break;
3380 default:
3381 gcc_unreachable ();
3384 return replace_equiv_address (x, temp);
3387 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3388 X is known to satisfy push_operand, and MODE is known to be complex.
3389 Returns the last instruction emitted. */
3391 rtx_insn *
3392 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3394 scalar_mode submode = GET_MODE_INNER (mode);
3395 bool imag_first;
3397 #ifdef PUSH_ROUNDING
3398 unsigned int submodesize = GET_MODE_SIZE (submode);
3400 /* In case we output to the stack, but the size is smaller than the
3401 machine can push exactly, we need to use move instructions. */
3402 if (PUSH_ROUNDING (submodesize) != submodesize)
3404 x = emit_move_resolve_push (mode, x);
3405 return emit_move_insn (x, y);
3407 #endif
3409 /* Note that the real part always precedes the imag part in memory
3410 regardless of machine's endianness. */
3411 switch (GET_CODE (XEXP (x, 0)))
3413 case PRE_DEC:
3414 case POST_DEC:
3415 imag_first = true;
3416 break;
3417 case PRE_INC:
3418 case POST_INC:
3419 imag_first = false;
3420 break;
3421 default:
3422 gcc_unreachable ();
3425 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3426 read_complex_part (y, imag_first));
3427 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3428 read_complex_part (y, !imag_first));
3431 /* A subroutine of emit_move_complex. Perform the move from Y to X
3432 via two moves of the parts. Returns the last instruction emitted. */
3434 rtx_insn *
3435 emit_move_complex_parts (rtx x, rtx y)
3437 /* Show the output dies here. This is necessary for SUBREGs
3438 of pseudos since we cannot track their lifetimes correctly;
3439 hard regs shouldn't appear here except as return values. */
3440 if (!reload_completed && !reload_in_progress
3441 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3442 emit_clobber (x);
3444 write_complex_part (x, read_complex_part (y, false), false);
3445 write_complex_part (x, read_complex_part (y, true), true);
3447 return get_last_insn ();
3450 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3451 MODE is known to be complex. Returns the last instruction emitted. */
3453 static rtx_insn *
3454 emit_move_complex (machine_mode mode, rtx x, rtx y)
3456 bool try_int;
3458 /* Need to take special care for pushes, to maintain proper ordering
3459 of the data, and possibly extra padding. */
3460 if (push_operand (x, mode))
3461 return emit_move_complex_push (mode, x, y);
3463 /* See if we can coerce the target into moving both values at once, except
3464 for floating point where we favor moving as parts if this is easy. */
3465 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3466 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3467 && !(REG_P (x)
3468 && HARD_REGISTER_P (x)
3469 && REG_NREGS (x) == 1)
3470 && !(REG_P (y)
3471 && HARD_REGISTER_P (y)
3472 && REG_NREGS (y) == 1))
3473 try_int = false;
3474 /* Not possible if the values are inherently not adjacent. */
3475 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3476 try_int = false;
3477 /* Is possible if both are registers (or subregs of registers). */
3478 else if (register_operand (x, mode) && register_operand (y, mode))
3479 try_int = true;
3480 /* If one of the operands is a memory, and alignment constraints
3481 are friendly enough, we may be able to do combined memory operations.
3482 We do not attempt this if Y is a constant because that combination is
3483 usually better with the by-parts thing below. */
3484 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3485 && (!STRICT_ALIGNMENT
3486 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3487 try_int = true;
3488 else
3489 try_int = false;
3491 if (try_int)
3493 rtx_insn *ret;
3495 /* For memory to memory moves, optimal behavior can be had with the
3496 existing block move logic. */
3497 if (MEM_P (x) && MEM_P (y))
3499 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3500 BLOCK_OP_NO_LIBCALL);
3501 return get_last_insn ();
3504 ret = emit_move_via_integer (mode, x, y, true);
3505 if (ret)
3506 return ret;
3509 return emit_move_complex_parts (x, y);
3512 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3513 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3515 static rtx_insn *
3516 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3518 rtx_insn *ret;
3520 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3521 if (mode != CCmode)
3523 enum insn_code code = optab_handler (mov_optab, CCmode);
3524 if (code != CODE_FOR_nothing)
3526 x = emit_move_change_mode (CCmode, mode, x, true);
3527 y = emit_move_change_mode (CCmode, mode, y, true);
3528 return emit_insn (GEN_FCN (code) (x, y));
3532 /* Otherwise, find the MODE_INT mode of the same width. */
3533 ret = emit_move_via_integer (mode, x, y, false);
3534 gcc_assert (ret != NULL);
3535 return ret;
3538 /* Return true if word I of OP lies entirely in the
3539 undefined bits of a paradoxical subreg. */
3541 static bool
3542 undefined_operand_subword_p (const_rtx op, int i)
3544 if (GET_CODE (op) != SUBREG)
3545 return false;
3546 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3547 HOST_WIDE_INT offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3548 return (offset >= GET_MODE_SIZE (innermostmode)
3549 || offset <= -UNITS_PER_WORD);
3552 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3553 MODE is any multi-word or full-word mode that lacks a move_insn
3554 pattern. Note that you will get better code if you define such
3555 patterns, even if they must turn into multiple assembler instructions. */
3557 static rtx_insn *
3558 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3560 rtx_insn *last_insn = 0;
3561 rtx_insn *seq;
3562 rtx inner;
3563 bool need_clobber;
3564 int i;
3566 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3568 /* If X is a push on the stack, do the push now and replace
3569 X with a reference to the stack pointer. */
3570 if (push_operand (x, mode))
3571 x = emit_move_resolve_push (mode, x);
3573 /* If we are in reload, see if either operand is a MEM whose address
3574 is scheduled for replacement. */
3575 if (reload_in_progress && MEM_P (x)
3576 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3577 x = replace_equiv_address_nv (x, inner);
3578 if (reload_in_progress && MEM_P (y)
3579 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3580 y = replace_equiv_address_nv (y, inner);
3582 start_sequence ();
3584 need_clobber = false;
3585 for (i = 0;
3586 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3587 i++)
3589 rtx xpart = operand_subword (x, i, 1, mode);
3590 rtx ypart;
3592 /* Do not generate code for a move if it would come entirely
3593 from the undefined bits of a paradoxical subreg. */
3594 if (undefined_operand_subword_p (y, i))
3595 continue;
3597 ypart = operand_subword (y, i, 1, mode);
3599 /* If we can't get a part of Y, put Y into memory if it is a
3600 constant. Otherwise, force it into a register. Then we must
3601 be able to get a part of Y. */
3602 if (ypart == 0 && CONSTANT_P (y))
3604 y = use_anchored_address (force_const_mem (mode, y));
3605 ypart = operand_subword (y, i, 1, mode);
3607 else if (ypart == 0)
3608 ypart = operand_subword_force (y, i, mode);
3610 gcc_assert (xpart && ypart);
3612 need_clobber |= (GET_CODE (xpart) == SUBREG);
3614 last_insn = emit_move_insn (xpart, ypart);
3617 seq = get_insns ();
3618 end_sequence ();
3620 /* Show the output dies here. This is necessary for SUBREGs
3621 of pseudos since we cannot track their lifetimes correctly;
3622 hard regs shouldn't appear here except as return values.
3623 We never want to emit such a clobber after reload. */
3624 if (x != y
3625 && ! (reload_in_progress || reload_completed)
3626 && need_clobber != 0)
3627 emit_clobber (x);
3629 emit_insn (seq);
3631 return last_insn;
3634 /* Low level part of emit_move_insn.
3635 Called just like emit_move_insn, but assumes X and Y
3636 are basically valid. */
3638 rtx_insn *
3639 emit_move_insn_1 (rtx x, rtx y)
3641 machine_mode mode = GET_MODE (x);
3642 enum insn_code code;
3644 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3646 code = optab_handler (mov_optab, mode);
3647 if (code != CODE_FOR_nothing)
3648 return emit_insn (GEN_FCN (code) (x, y));
3650 /* Expand complex moves by moving real part and imag part. */
3651 if (COMPLEX_MODE_P (mode))
3652 return emit_move_complex (mode, x, y);
3654 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3655 || ALL_FIXED_POINT_MODE_P (mode))
3657 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3659 /* If we can't find an integer mode, use multi words. */
3660 if (result)
3661 return result;
3662 else
3663 return emit_move_multi_word (mode, x, y);
3666 if (GET_MODE_CLASS (mode) == MODE_CC)
3667 return emit_move_ccmode (mode, x, y);
3669 /* Try using a move pattern for the corresponding integer mode. This is
3670 only safe when simplify_subreg can convert MODE constants into integer
3671 constants. At present, it can only do this reliably if the value
3672 fits within a HOST_WIDE_INT. */
3673 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3675 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3677 if (ret)
3679 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3680 return ret;
3684 return emit_move_multi_word (mode, x, y);
3687 /* Generate code to copy Y into X.
3688 Both Y and X must have the same mode, except that
3689 Y can be a constant with VOIDmode.
3690 This mode cannot be BLKmode; use emit_block_move for that.
3692 Return the last instruction emitted. */
3694 rtx_insn *
3695 emit_move_insn (rtx x, rtx y)
3697 machine_mode mode = GET_MODE (x);
3698 rtx y_cst = NULL_RTX;
3699 rtx_insn *last_insn;
3700 rtx set;
3702 gcc_assert (mode != BLKmode
3703 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3705 if (CONSTANT_P (y))
3707 if (optimize
3708 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3709 && (last_insn = compress_float_constant (x, y)))
3710 return last_insn;
3712 y_cst = y;
3714 if (!targetm.legitimate_constant_p (mode, y))
3716 y = force_const_mem (mode, y);
3718 /* If the target's cannot_force_const_mem prevented the spill,
3719 assume that the target's move expanders will also take care
3720 of the non-legitimate constant. */
3721 if (!y)
3722 y = y_cst;
3723 else
3724 y = use_anchored_address (y);
3728 /* If X or Y are memory references, verify that their addresses are valid
3729 for the machine. */
3730 if (MEM_P (x)
3731 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3732 MEM_ADDR_SPACE (x))
3733 && ! push_operand (x, GET_MODE (x))))
3734 x = validize_mem (x);
3736 if (MEM_P (y)
3737 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3738 MEM_ADDR_SPACE (y)))
3739 y = validize_mem (y);
3741 gcc_assert (mode != BLKmode);
3743 last_insn = emit_move_insn_1 (x, y);
3745 if (y_cst && REG_P (x)
3746 && (set = single_set (last_insn)) != NULL_RTX
3747 && SET_DEST (set) == x
3748 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3749 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3751 return last_insn;
3754 /* Generate the body of an instruction to copy Y into X.
3755 It may be a list of insns, if one insn isn't enough. */
3757 rtx_insn *
3758 gen_move_insn (rtx x, rtx y)
3760 rtx_insn *seq;
3762 start_sequence ();
3763 emit_move_insn_1 (x, y);
3764 seq = get_insns ();
3765 end_sequence ();
3766 return seq;
3769 /* If Y is representable exactly in a narrower mode, and the target can
3770 perform the extension directly from constant or memory, then emit the
3771 move as an extension. */
3773 static rtx_insn *
3774 compress_float_constant (rtx x, rtx y)
3776 machine_mode dstmode = GET_MODE (x);
3777 machine_mode orig_srcmode = GET_MODE (y);
3778 machine_mode srcmode;
3779 const REAL_VALUE_TYPE *r;
3780 int oldcost, newcost;
3781 bool speed = optimize_insn_for_speed_p ();
3783 r = CONST_DOUBLE_REAL_VALUE (y);
3785 if (targetm.legitimate_constant_p (dstmode, y))
3786 oldcost = set_src_cost (y, orig_srcmode, speed);
3787 else
3788 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3790 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3792 enum insn_code ic;
3793 rtx trunc_y;
3794 rtx_insn *last_insn;
3796 /* Skip if the target can't extend this way. */
3797 ic = can_extend_p (dstmode, srcmode, 0);
3798 if (ic == CODE_FOR_nothing)
3799 continue;
3801 /* Skip if the narrowed value isn't exact. */
3802 if (! exact_real_truncate (srcmode, r))
3803 continue;
3805 trunc_y = const_double_from_real_value (*r, srcmode);
3807 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3809 /* Skip if the target needs extra instructions to perform
3810 the extension. */
3811 if (!insn_operand_matches (ic, 1, trunc_y))
3812 continue;
3813 /* This is valid, but may not be cheaper than the original. */
3814 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3815 dstmode, speed);
3816 if (oldcost < newcost)
3817 continue;
3819 else if (float_extend_from_mem[dstmode][srcmode])
3821 trunc_y = force_const_mem (srcmode, trunc_y);
3822 /* This is valid, but may not be cheaper than the original. */
3823 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3824 dstmode, speed);
3825 if (oldcost < newcost)
3826 continue;
3827 trunc_y = validize_mem (trunc_y);
3829 else
3830 continue;
3832 /* For CSE's benefit, force the compressed constant pool entry
3833 into a new pseudo. This constant may be used in different modes,
3834 and if not, combine will put things back together for us. */
3835 trunc_y = force_reg (srcmode, trunc_y);
3837 /* If x is a hard register, perform the extension into a pseudo,
3838 so that e.g. stack realignment code is aware of it. */
3839 rtx target = x;
3840 if (REG_P (x) && HARD_REGISTER_P (x))
3841 target = gen_reg_rtx (dstmode);
3843 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3844 last_insn = get_last_insn ();
3846 if (REG_P (target))
3847 set_unique_reg_note (last_insn, REG_EQUAL, y);
3849 if (target != x)
3850 return emit_move_insn (x, target);
3851 return last_insn;
3854 return NULL;
3857 /* Pushing data onto the stack. */
3859 /* Push a block of length SIZE (perhaps variable)
3860 and return an rtx to address the beginning of the block.
3861 The value may be virtual_outgoing_args_rtx.
3863 EXTRA is the number of bytes of padding to push in addition to SIZE.
3864 BELOW nonzero means this padding comes at low addresses;
3865 otherwise, the padding comes at high addresses. */
3868 push_block (rtx size, int extra, int below)
3870 rtx temp;
3872 size = convert_modes (Pmode, ptr_mode, size, 1);
3873 if (CONSTANT_P (size))
3874 anti_adjust_stack (plus_constant (Pmode, size, extra));
3875 else if (REG_P (size) && extra == 0)
3876 anti_adjust_stack (size);
3877 else
3879 temp = copy_to_mode_reg (Pmode, size);
3880 if (extra != 0)
3881 temp = expand_binop (Pmode, add_optab, temp,
3882 gen_int_mode (extra, Pmode),
3883 temp, 0, OPTAB_LIB_WIDEN);
3884 anti_adjust_stack (temp);
3887 if (STACK_GROWS_DOWNWARD)
3889 temp = virtual_outgoing_args_rtx;
3890 if (extra != 0 && below)
3891 temp = plus_constant (Pmode, temp, extra);
3893 else
3895 if (CONST_INT_P (size))
3896 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3897 -INTVAL (size) - (below ? 0 : extra));
3898 else if (extra != 0 && !below)
3899 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3900 negate_rtx (Pmode, plus_constant (Pmode, size,
3901 extra)));
3902 else
3903 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3904 negate_rtx (Pmode, size));
3907 return memory_address (NARROWEST_INT_MODE, temp);
3910 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3912 static rtx
3913 mem_autoinc_base (rtx mem)
3915 if (MEM_P (mem))
3917 rtx addr = XEXP (mem, 0);
3918 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3919 return XEXP (addr, 0);
3921 return NULL;
3924 /* A utility routine used here, in reload, and in try_split. The insns
3925 after PREV up to and including LAST are known to adjust the stack,
3926 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3927 placing notes as appropriate. PREV may be NULL, indicating the
3928 entire insn sequence prior to LAST should be scanned.
3930 The set of allowed stack pointer modifications is small:
3931 (1) One or more auto-inc style memory references (aka pushes),
3932 (2) One or more addition/subtraction with the SP as destination,
3933 (3) A single move insn with the SP as destination,
3934 (4) A call_pop insn,
3935 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3937 Insns in the sequence that do not modify the SP are ignored,
3938 except for noreturn calls.
3940 The return value is the amount of adjustment that can be trivially
3941 verified, via immediate operand or auto-inc. If the adjustment
3942 cannot be trivially extracted, the return value is INT_MIN. */
3944 HOST_WIDE_INT
3945 find_args_size_adjust (rtx_insn *insn)
3947 rtx dest, set, pat;
3948 int i;
3950 pat = PATTERN (insn);
3951 set = NULL;
3953 /* Look for a call_pop pattern. */
3954 if (CALL_P (insn))
3956 /* We have to allow non-call_pop patterns for the case
3957 of emit_single_push_insn of a TLS address. */
3958 if (GET_CODE (pat) != PARALLEL)
3959 return 0;
3961 /* All call_pop have a stack pointer adjust in the parallel.
3962 The call itself is always first, and the stack adjust is
3963 usually last, so search from the end. */
3964 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3966 set = XVECEXP (pat, 0, i);
3967 if (GET_CODE (set) != SET)
3968 continue;
3969 dest = SET_DEST (set);
3970 if (dest == stack_pointer_rtx)
3971 break;
3973 /* We'd better have found the stack pointer adjust. */
3974 if (i == 0)
3975 return 0;
3976 /* Fall through to process the extracted SET and DEST
3977 as if it was a standalone insn. */
3979 else if (GET_CODE (pat) == SET)
3980 set = pat;
3981 else if ((set = single_set (insn)) != NULL)
3983 else if (GET_CODE (pat) == PARALLEL)
3985 /* ??? Some older ports use a parallel with a stack adjust
3986 and a store for a PUSH_ROUNDING pattern, rather than a
3987 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3988 /* ??? See h8300 and m68k, pushqi1. */
3989 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3991 set = XVECEXP (pat, 0, i);
3992 if (GET_CODE (set) != SET)
3993 continue;
3994 dest = SET_DEST (set);
3995 if (dest == stack_pointer_rtx)
3996 break;
3998 /* We do not expect an auto-inc of the sp in the parallel. */
3999 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4000 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4001 != stack_pointer_rtx);
4003 if (i < 0)
4004 return 0;
4006 else
4007 return 0;
4009 dest = SET_DEST (set);
4011 /* Look for direct modifications of the stack pointer. */
4012 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4014 /* Look for a trivial adjustment, otherwise assume nothing. */
4015 /* Note that the SPU restore_stack_block pattern refers to
4016 the stack pointer in V4SImode. Consider that non-trivial. */
4017 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4018 && GET_CODE (SET_SRC (set)) == PLUS
4019 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
4020 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
4021 return INTVAL (XEXP (SET_SRC (set), 1));
4022 /* ??? Reload can generate no-op moves, which will be cleaned
4023 up later. Recognize it and continue searching. */
4024 else if (rtx_equal_p (dest, SET_SRC (set)))
4025 return 0;
4026 else
4027 return HOST_WIDE_INT_MIN;
4029 else
4031 rtx mem, addr;
4033 /* Otherwise only think about autoinc patterns. */
4034 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4036 mem = dest;
4037 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4038 != stack_pointer_rtx);
4040 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4041 mem = SET_SRC (set);
4042 else
4043 return 0;
4045 addr = XEXP (mem, 0);
4046 switch (GET_CODE (addr))
4048 case PRE_INC:
4049 case POST_INC:
4050 return GET_MODE_SIZE (GET_MODE (mem));
4051 case PRE_DEC:
4052 case POST_DEC:
4053 return -GET_MODE_SIZE (GET_MODE (mem));
4054 case PRE_MODIFY:
4055 case POST_MODIFY:
4056 addr = XEXP (addr, 1);
4057 gcc_assert (GET_CODE (addr) == PLUS);
4058 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4059 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
4060 return INTVAL (XEXP (addr, 1));
4061 default:
4062 gcc_unreachable ();
4068 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size)
4070 int args_size = end_args_size;
4071 bool saw_unknown = false;
4072 rtx_insn *insn;
4074 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4076 HOST_WIDE_INT this_delta;
4078 if (!NONDEBUG_INSN_P (insn))
4079 continue;
4081 this_delta = find_args_size_adjust (insn);
4082 if (this_delta == 0)
4084 if (!CALL_P (insn)
4085 || ACCUMULATE_OUTGOING_ARGS
4086 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4087 continue;
4090 gcc_assert (!saw_unknown);
4091 if (this_delta == HOST_WIDE_INT_MIN)
4092 saw_unknown = true;
4094 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
4095 if (STACK_GROWS_DOWNWARD)
4096 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
4098 args_size -= this_delta;
4101 return saw_unknown ? INT_MIN : args_size;
4104 #ifdef PUSH_ROUNDING
4105 /* Emit single push insn. */
4107 static void
4108 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4110 rtx dest_addr;
4111 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4112 rtx dest;
4113 enum insn_code icode;
4115 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4116 /* If there is push pattern, use it. Otherwise try old way of throwing
4117 MEM representing push operation to move expander. */
4118 icode = optab_handler (push_optab, mode);
4119 if (icode != CODE_FOR_nothing)
4121 struct expand_operand ops[1];
4123 create_input_operand (&ops[0], x, mode);
4124 if (maybe_expand_insn (icode, 1, ops))
4125 return;
4127 if (GET_MODE_SIZE (mode) == rounded_size)
4128 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4129 /* If we are to pad downward, adjust the stack pointer first and
4130 then store X into the stack location using an offset. This is
4131 because emit_move_insn does not know how to pad; it does not have
4132 access to type. */
4133 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4135 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
4136 HOST_WIDE_INT offset;
4138 emit_move_insn (stack_pointer_rtx,
4139 expand_binop (Pmode,
4140 STACK_GROWS_DOWNWARD ? sub_optab
4141 : add_optab,
4142 stack_pointer_rtx,
4143 gen_int_mode (rounded_size, Pmode),
4144 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4146 offset = (HOST_WIDE_INT) padding_size;
4147 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4148 /* We have already decremented the stack pointer, so get the
4149 previous value. */
4150 offset += (HOST_WIDE_INT) rounded_size;
4152 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4153 /* We have already incremented the stack pointer, so get the
4154 previous value. */
4155 offset -= (HOST_WIDE_INT) rounded_size;
4157 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4158 gen_int_mode (offset, Pmode));
4160 else
4162 if (STACK_GROWS_DOWNWARD)
4163 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4164 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4165 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4166 Pmode));
4167 else
4168 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4169 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4170 gen_int_mode (rounded_size, Pmode));
4172 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4175 dest = gen_rtx_MEM (mode, dest_addr);
4177 if (type != 0)
4179 set_mem_attributes (dest, type, 1);
4181 if (cfun->tail_call_marked)
4182 /* Function incoming arguments may overlap with sibling call
4183 outgoing arguments and we cannot allow reordering of reads
4184 from function arguments with stores to outgoing arguments
4185 of sibling calls. */
4186 set_mem_alias_set (dest, 0);
4188 emit_move_insn (dest, x);
4191 /* Emit and annotate a single push insn. */
4193 static void
4194 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4196 int delta, old_delta = stack_pointer_delta;
4197 rtx_insn *prev = get_last_insn ();
4198 rtx_insn *last;
4200 emit_single_push_insn_1 (mode, x, type);
4202 last = get_last_insn ();
4204 /* Notice the common case where we emitted exactly one insn. */
4205 if (PREV_INSN (last) == prev)
4207 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4208 return;
4211 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4212 gcc_assert (delta == INT_MIN || delta == old_delta);
4214 #endif
4216 /* If reading SIZE bytes from X will end up reading from
4217 Y return the number of bytes that overlap. Return -1
4218 if there is no overlap or -2 if we can't determine
4219 (for example when X and Y have different base registers). */
4221 static int
4222 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4224 rtx tmp = plus_constant (Pmode, x, size);
4225 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4227 if (!CONST_INT_P (sub))
4228 return -2;
4230 HOST_WIDE_INT val = INTVAL (sub);
4232 return IN_RANGE (val, 1, size) ? val : -1;
4235 /* Generate code to push X onto the stack, assuming it has mode MODE and
4236 type TYPE.
4237 MODE is redundant except when X is a CONST_INT (since they don't
4238 carry mode info).
4239 SIZE is an rtx for the size of data to be copied (in bytes),
4240 needed only if X is BLKmode.
4241 Return true if successful. May return false if asked to push a
4242 partial argument during a sibcall optimization (as specified by
4243 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4244 to not overlap.
4246 ALIGN (in bits) is maximum alignment we can assume.
4248 If PARTIAL and REG are both nonzero, then copy that many of the first
4249 bytes of X into registers starting with REG, and push the rest of X.
4250 The amount of space pushed is decreased by PARTIAL bytes.
4251 REG must be a hard register in this case.
4252 If REG is zero but PARTIAL is not, take any all others actions for an
4253 argument partially in registers, but do not actually load any
4254 registers.
4256 EXTRA is the amount in bytes of extra space to leave next to this arg.
4257 This is ignored if an argument block has already been allocated.
4259 On a machine that lacks real push insns, ARGS_ADDR is the address of
4260 the bottom of the argument block for this call. We use indexing off there
4261 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4262 argument block has not been preallocated.
4264 ARGS_SO_FAR is the size of args previously pushed for this call.
4266 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4267 for arguments passed in registers. If nonzero, it will be the number
4268 of bytes required. */
4270 bool
4271 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4272 unsigned int align, int partial, rtx reg, int extra,
4273 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4274 rtx alignment_pad, bool sibcall_p)
4276 rtx xinner;
4277 pad_direction stack_direction
4278 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4280 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4281 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4282 Default is below for small data on big-endian machines; else above. */
4283 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4285 /* Invert direction if stack is post-decrement.
4286 FIXME: why? */
4287 if (STACK_PUSH_CODE == POST_DEC)
4288 if (where_pad != PAD_NONE)
4289 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4291 xinner = x;
4293 int nregs = partial / UNITS_PER_WORD;
4294 rtx *tmp_regs = NULL;
4295 int overlapping = 0;
4297 if (mode == BLKmode
4298 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4300 /* Copy a block into the stack, entirely or partially. */
4302 rtx temp;
4303 int used;
4304 int offset;
4305 int skip;
4307 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4308 used = partial - offset;
4310 if (mode != BLKmode)
4312 /* A value is to be stored in an insufficiently aligned
4313 stack slot; copy via a suitably aligned slot if
4314 necessary. */
4315 size = GEN_INT (GET_MODE_SIZE (mode));
4316 if (!MEM_P (xinner))
4318 temp = assign_temp (type, 1, 1);
4319 emit_move_insn (temp, xinner);
4320 xinner = temp;
4324 gcc_assert (size);
4326 /* USED is now the # of bytes we need not copy to the stack
4327 because registers will take care of them. */
4329 if (partial != 0)
4330 xinner = adjust_address (xinner, BLKmode, used);
4332 /* If the partial register-part of the arg counts in its stack size,
4333 skip the part of stack space corresponding to the registers.
4334 Otherwise, start copying to the beginning of the stack space,
4335 by setting SKIP to 0. */
4336 skip = (reg_parm_stack_space == 0) ? 0 : used;
4338 #ifdef PUSH_ROUNDING
4339 /* Do it with several push insns if that doesn't take lots of insns
4340 and if there is no difficulty with push insns that skip bytes
4341 on the stack for alignment purposes. */
4342 if (args_addr == 0
4343 && PUSH_ARGS
4344 && CONST_INT_P (size)
4345 && skip == 0
4346 && MEM_ALIGN (xinner) >= align
4347 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4348 /* Here we avoid the case of a structure whose weak alignment
4349 forces many pushes of a small amount of data,
4350 and such small pushes do rounding that causes trouble. */
4351 && ((!targetm.slow_unaligned_access (word_mode, align))
4352 || align >= BIGGEST_ALIGNMENT
4353 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4354 == (align / BITS_PER_UNIT)))
4355 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4357 /* Push padding now if padding above and stack grows down,
4358 or if padding below and stack grows up.
4359 But if space already allocated, this has already been done. */
4360 if (extra && args_addr == 0
4361 && where_pad != PAD_NONE && where_pad != stack_direction)
4362 anti_adjust_stack (GEN_INT (extra));
4364 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4366 else
4367 #endif /* PUSH_ROUNDING */
4369 rtx target;
4371 /* Otherwise make space on the stack and copy the data
4372 to the address of that space. */
4374 /* Deduct words put into registers from the size we must copy. */
4375 if (partial != 0)
4377 if (CONST_INT_P (size))
4378 size = GEN_INT (INTVAL (size) - used);
4379 else
4380 size = expand_binop (GET_MODE (size), sub_optab, size,
4381 gen_int_mode (used, GET_MODE (size)),
4382 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4385 /* Get the address of the stack space.
4386 In this case, we do not deal with EXTRA separately.
4387 A single stack adjust will do. */
4388 if (! args_addr)
4390 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4391 extra = 0;
4393 else if (CONST_INT_P (args_so_far))
4394 temp = memory_address (BLKmode,
4395 plus_constant (Pmode, args_addr,
4396 skip + INTVAL (args_so_far)));
4397 else
4398 temp = memory_address (BLKmode,
4399 plus_constant (Pmode,
4400 gen_rtx_PLUS (Pmode,
4401 args_addr,
4402 args_so_far),
4403 skip));
4405 if (!ACCUMULATE_OUTGOING_ARGS)
4407 /* If the source is referenced relative to the stack pointer,
4408 copy it to another register to stabilize it. We do not need
4409 to do this if we know that we won't be changing sp. */
4411 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4412 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4413 temp = copy_to_reg (temp);
4416 target = gen_rtx_MEM (BLKmode, temp);
4418 /* We do *not* set_mem_attributes here, because incoming arguments
4419 may overlap with sibling call outgoing arguments and we cannot
4420 allow reordering of reads from function arguments with stores
4421 to outgoing arguments of sibling calls. We do, however, want
4422 to record the alignment of the stack slot. */
4423 /* ALIGN may well be better aligned than TYPE, e.g. due to
4424 PARM_BOUNDARY. Assume the caller isn't lying. */
4425 set_mem_align (target, align);
4427 /* If part should go in registers and pushing to that part would
4428 overwrite some of the values that need to go into regs, load the
4429 overlapping values into temporary pseudos to be moved into the hard
4430 regs at the end after the stack pushing has completed.
4431 We cannot load them directly into the hard regs here because
4432 they can be clobbered by the block move expansions.
4433 See PR 65358. */
4435 if (partial > 0 && reg != 0 && mode == BLKmode
4436 && GET_CODE (reg) != PARALLEL)
4438 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4439 if (overlapping > 0)
4441 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4442 overlapping /= UNITS_PER_WORD;
4444 tmp_regs = XALLOCAVEC (rtx, overlapping);
4446 for (int i = 0; i < overlapping; i++)
4447 tmp_regs[i] = gen_reg_rtx (word_mode);
4449 for (int i = 0; i < overlapping; i++)
4450 emit_move_insn (tmp_regs[i],
4451 operand_subword_force (target, i, mode));
4453 else if (overlapping == -1)
4454 overlapping = 0;
4455 /* Could not determine whether there is overlap.
4456 Fail the sibcall. */
4457 else
4459 overlapping = 0;
4460 if (sibcall_p)
4461 return false;
4464 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4467 else if (partial > 0)
4469 /* Scalar partly in registers. */
4471 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4472 int i;
4473 int not_stack;
4474 /* # bytes of start of argument
4475 that we must make space for but need not store. */
4476 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4477 int args_offset = INTVAL (args_so_far);
4478 int skip;
4480 /* Push padding now if padding above and stack grows down,
4481 or if padding below and stack grows up.
4482 But if space already allocated, this has already been done. */
4483 if (extra && args_addr == 0
4484 && where_pad != PAD_NONE && where_pad != stack_direction)
4485 anti_adjust_stack (GEN_INT (extra));
4487 /* If we make space by pushing it, we might as well push
4488 the real data. Otherwise, we can leave OFFSET nonzero
4489 and leave the space uninitialized. */
4490 if (args_addr == 0)
4491 offset = 0;
4493 /* Now NOT_STACK gets the number of words that we don't need to
4494 allocate on the stack. Convert OFFSET to words too. */
4495 not_stack = (partial - offset) / UNITS_PER_WORD;
4496 offset /= UNITS_PER_WORD;
4498 /* If the partial register-part of the arg counts in its stack size,
4499 skip the part of stack space corresponding to the registers.
4500 Otherwise, start copying to the beginning of the stack space,
4501 by setting SKIP to 0. */
4502 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4504 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4505 x = validize_mem (force_const_mem (mode, x));
4507 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4508 SUBREGs of such registers are not allowed. */
4509 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4510 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4511 x = copy_to_reg (x);
4513 /* Loop over all the words allocated on the stack for this arg. */
4514 /* We can do it by words, because any scalar bigger than a word
4515 has a size a multiple of a word. */
4516 for (i = size - 1; i >= not_stack; i--)
4517 if (i >= not_stack + offset)
4518 if (!emit_push_insn (operand_subword_force (x, i, mode),
4519 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4520 0, args_addr,
4521 GEN_INT (args_offset + ((i - not_stack + skip)
4522 * UNITS_PER_WORD)),
4523 reg_parm_stack_space, alignment_pad, sibcall_p))
4524 return false;
4526 else
4528 rtx addr;
4529 rtx dest;
4531 /* Push padding now if padding above and stack grows down,
4532 or if padding below and stack grows up.
4533 But if space already allocated, this has already been done. */
4534 if (extra && args_addr == 0
4535 && where_pad != PAD_NONE && where_pad != stack_direction)
4536 anti_adjust_stack (GEN_INT (extra));
4538 #ifdef PUSH_ROUNDING
4539 if (args_addr == 0 && PUSH_ARGS)
4540 emit_single_push_insn (mode, x, type);
4541 else
4542 #endif
4544 if (CONST_INT_P (args_so_far))
4545 addr
4546 = memory_address (mode,
4547 plus_constant (Pmode, args_addr,
4548 INTVAL (args_so_far)));
4549 else
4550 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4551 args_so_far));
4552 dest = gen_rtx_MEM (mode, addr);
4554 /* We do *not* set_mem_attributes here, because incoming arguments
4555 may overlap with sibling call outgoing arguments and we cannot
4556 allow reordering of reads from function arguments with stores
4557 to outgoing arguments of sibling calls. We do, however, want
4558 to record the alignment of the stack slot. */
4559 /* ALIGN may well be better aligned than TYPE, e.g. due to
4560 PARM_BOUNDARY. Assume the caller isn't lying. */
4561 set_mem_align (dest, align);
4563 emit_move_insn (dest, x);
4567 /* Move the partial arguments into the registers and any overlapping
4568 values that we moved into the pseudos in tmp_regs. */
4569 if (partial > 0 && reg != 0)
4571 /* Handle calls that pass values in multiple non-contiguous locations.
4572 The Irix 6 ABI has examples of this. */
4573 if (GET_CODE (reg) == PARALLEL)
4574 emit_group_load (reg, x, type, -1);
4575 else
4577 gcc_assert (partial % UNITS_PER_WORD == 0);
4578 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4580 for (int i = 0; i < overlapping; i++)
4581 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4582 + nregs - overlapping + i),
4583 tmp_regs[i]);
4588 if (extra && args_addr == 0 && where_pad == stack_direction)
4589 anti_adjust_stack (GEN_INT (extra));
4591 if (alignment_pad && args_addr == 0)
4592 anti_adjust_stack (alignment_pad);
4594 return true;
4597 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4598 operations. */
4600 static rtx
4601 get_subtarget (rtx x)
4603 return (optimize
4604 || x == 0
4605 /* Only registers can be subtargets. */
4606 || !REG_P (x)
4607 /* Don't use hard regs to avoid extending their life. */
4608 || REGNO (x) < FIRST_PSEUDO_REGISTER
4609 ? 0 : x);
4612 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4613 FIELD is a bitfield. Returns true if the optimization was successful,
4614 and there's nothing else to do. */
4616 static bool
4617 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4618 unsigned HOST_WIDE_INT bitpos,
4619 unsigned HOST_WIDE_INT bitregion_start,
4620 unsigned HOST_WIDE_INT bitregion_end,
4621 machine_mode mode1, rtx str_rtx,
4622 tree to, tree src, bool reverse)
4624 machine_mode str_mode = GET_MODE (str_rtx);
4625 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4626 tree op0, op1;
4627 rtx value, result;
4628 optab binop;
4629 gimple *srcstmt;
4630 enum tree_code code;
4632 if (mode1 != VOIDmode
4633 || bitsize >= BITS_PER_WORD
4634 || str_bitsize > BITS_PER_WORD
4635 || TREE_SIDE_EFFECTS (to)
4636 || TREE_THIS_VOLATILE (to))
4637 return false;
4639 STRIP_NOPS (src);
4640 if (TREE_CODE (src) != SSA_NAME)
4641 return false;
4642 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4643 return false;
4645 srcstmt = get_gimple_for_ssa_name (src);
4646 if (!srcstmt
4647 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4648 return false;
4650 code = gimple_assign_rhs_code (srcstmt);
4652 op0 = gimple_assign_rhs1 (srcstmt);
4654 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4655 to find its initialization. Hopefully the initialization will
4656 be from a bitfield load. */
4657 if (TREE_CODE (op0) == SSA_NAME)
4659 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4661 /* We want to eventually have OP0 be the same as TO, which
4662 should be a bitfield. */
4663 if (!op0stmt
4664 || !is_gimple_assign (op0stmt)
4665 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4666 return false;
4667 op0 = gimple_assign_rhs1 (op0stmt);
4670 op1 = gimple_assign_rhs2 (srcstmt);
4672 if (!operand_equal_p (to, op0, 0))
4673 return false;
4675 if (MEM_P (str_rtx))
4677 unsigned HOST_WIDE_INT offset1;
4679 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4680 str_bitsize = BITS_PER_WORD;
4682 scalar_int_mode best_mode;
4683 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4684 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4685 return false;
4686 str_mode = best_mode;
4687 str_bitsize = GET_MODE_BITSIZE (best_mode);
4689 offset1 = bitpos;
4690 bitpos %= str_bitsize;
4691 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4692 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4694 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4695 return false;
4696 else
4697 gcc_assert (!reverse);
4699 /* If the bit field covers the whole REG/MEM, store_field
4700 will likely generate better code. */
4701 if (bitsize >= str_bitsize)
4702 return false;
4704 /* We can't handle fields split across multiple entities. */
4705 if (bitpos + bitsize > str_bitsize)
4706 return false;
4708 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4709 bitpos = str_bitsize - bitpos - bitsize;
4711 switch (code)
4713 case PLUS_EXPR:
4714 case MINUS_EXPR:
4715 /* For now, just optimize the case of the topmost bitfield
4716 where we don't need to do any masking and also
4717 1 bit bitfields where xor can be used.
4718 We might win by one instruction for the other bitfields
4719 too if insv/extv instructions aren't used, so that
4720 can be added later. */
4721 if ((reverse || bitpos + bitsize != str_bitsize)
4722 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4723 break;
4725 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4726 value = convert_modes (str_mode,
4727 TYPE_MODE (TREE_TYPE (op1)), value,
4728 TYPE_UNSIGNED (TREE_TYPE (op1)));
4730 /* We may be accessing data outside the field, which means
4731 we can alias adjacent data. */
4732 if (MEM_P (str_rtx))
4734 str_rtx = shallow_copy_rtx (str_rtx);
4735 set_mem_alias_set (str_rtx, 0);
4736 set_mem_expr (str_rtx, 0);
4739 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4741 value = expand_and (str_mode, value, const1_rtx, NULL);
4742 binop = xor_optab;
4744 else
4745 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4747 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4748 if (reverse)
4749 value = flip_storage_order (str_mode, value);
4750 result = expand_binop (str_mode, binop, str_rtx,
4751 value, str_rtx, 1, OPTAB_WIDEN);
4752 if (result != str_rtx)
4753 emit_move_insn (str_rtx, result);
4754 return true;
4756 case BIT_IOR_EXPR:
4757 case BIT_XOR_EXPR:
4758 if (TREE_CODE (op1) != INTEGER_CST)
4759 break;
4760 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4761 value = convert_modes (str_mode,
4762 TYPE_MODE (TREE_TYPE (op1)), value,
4763 TYPE_UNSIGNED (TREE_TYPE (op1)));
4765 /* We may be accessing data outside the field, which means
4766 we can alias adjacent data. */
4767 if (MEM_P (str_rtx))
4769 str_rtx = shallow_copy_rtx (str_rtx);
4770 set_mem_alias_set (str_rtx, 0);
4771 set_mem_expr (str_rtx, 0);
4774 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4775 if (bitpos + bitsize != str_bitsize)
4777 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4778 str_mode);
4779 value = expand_and (str_mode, value, mask, NULL_RTX);
4781 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4782 if (reverse)
4783 value = flip_storage_order (str_mode, value);
4784 result = expand_binop (str_mode, binop, str_rtx,
4785 value, str_rtx, 1, OPTAB_WIDEN);
4786 if (result != str_rtx)
4787 emit_move_insn (str_rtx, result);
4788 return true;
4790 default:
4791 break;
4794 return false;
4797 /* In the C++ memory model, consecutive bit fields in a structure are
4798 considered one memory location.
4800 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4801 returns the bit range of consecutive bits in which this COMPONENT_REF
4802 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4803 and *OFFSET may be adjusted in the process.
4805 If the access does not need to be restricted, 0 is returned in both
4806 *BITSTART and *BITEND. */
4808 void
4809 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4810 unsigned HOST_WIDE_INT *bitend,
4811 tree exp,
4812 HOST_WIDE_INT *bitpos,
4813 tree *offset)
4815 HOST_WIDE_INT bitoffset;
4816 tree field, repr;
4818 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4820 field = TREE_OPERAND (exp, 1);
4821 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4822 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4823 need to limit the range we can access. */
4824 if (!repr)
4826 *bitstart = *bitend = 0;
4827 return;
4830 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4831 part of a larger bit field, then the representative does not serve any
4832 useful purpose. This can occur in Ada. */
4833 if (handled_component_p (TREE_OPERAND (exp, 0)))
4835 machine_mode rmode;
4836 HOST_WIDE_INT rbitsize, rbitpos;
4837 tree roffset;
4838 int unsignedp, reversep, volatilep = 0;
4839 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4840 &roffset, &rmode, &unsignedp, &reversep,
4841 &volatilep);
4842 if ((rbitpos % BITS_PER_UNIT) != 0)
4844 *bitstart = *bitend = 0;
4845 return;
4849 /* Compute the adjustment to bitpos from the offset of the field
4850 relative to the representative. DECL_FIELD_OFFSET of field and
4851 repr are the same by construction if they are not constants,
4852 see finish_bitfield_layout. */
4853 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4854 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4855 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4856 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4857 else
4858 bitoffset = 0;
4859 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4860 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4862 /* If the adjustment is larger than bitpos, we would have a negative bit
4863 position for the lower bound and this may wreak havoc later. Adjust
4864 offset and bitpos to make the lower bound non-negative in that case. */
4865 if (bitoffset > *bitpos)
4867 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4868 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4870 *bitpos += adjust;
4871 if (*offset == NULL_TREE)
4872 *offset = size_int (-adjust / BITS_PER_UNIT);
4873 else
4874 *offset
4875 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4876 *bitstart = 0;
4878 else
4879 *bitstart = *bitpos - bitoffset;
4881 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4884 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4885 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4886 DECL_RTL was not set yet, return NORTL. */
4888 static inline bool
4889 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4891 if (TREE_CODE (addr) != ADDR_EXPR)
4892 return false;
4894 tree base = TREE_OPERAND (addr, 0);
4896 if (!DECL_P (base)
4897 || TREE_ADDRESSABLE (base)
4898 || DECL_MODE (base) == BLKmode)
4899 return false;
4901 if (!DECL_RTL_SET_P (base))
4902 return nortl;
4904 return (!MEM_P (DECL_RTL (base)));
4907 /* Returns true if the MEM_REF REF refers to an object that does not
4908 reside in memory and has non-BLKmode. */
4910 static inline bool
4911 mem_ref_refers_to_non_mem_p (tree ref)
4913 tree base = TREE_OPERAND (ref, 0);
4914 return addr_expr_of_non_mem_decl_p_1 (base, false);
4917 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4918 is true, try generating a nontemporal store. */
4920 void
4921 expand_assignment (tree to, tree from, bool nontemporal)
4923 rtx to_rtx = 0;
4924 rtx result;
4925 machine_mode mode;
4926 unsigned int align;
4927 enum insn_code icode;
4929 /* Don't crash if the lhs of the assignment was erroneous. */
4930 if (TREE_CODE (to) == ERROR_MARK)
4932 expand_normal (from);
4933 return;
4936 /* Optimize away no-op moves without side-effects. */
4937 if (operand_equal_p (to, from, 0))
4938 return;
4940 /* Handle misaligned stores. */
4941 mode = TYPE_MODE (TREE_TYPE (to));
4942 if ((TREE_CODE (to) == MEM_REF
4943 || TREE_CODE (to) == TARGET_MEM_REF)
4944 && mode != BLKmode
4945 && !mem_ref_refers_to_non_mem_p (to)
4946 && ((align = get_object_alignment (to))
4947 < GET_MODE_ALIGNMENT (mode))
4948 && (((icode = optab_handler (movmisalign_optab, mode))
4949 != CODE_FOR_nothing)
4950 || targetm.slow_unaligned_access (mode, align)))
4952 rtx reg, mem;
4954 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4955 reg = force_not_mem (reg);
4956 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4957 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
4958 reg = flip_storage_order (mode, reg);
4960 if (icode != CODE_FOR_nothing)
4962 struct expand_operand ops[2];
4964 create_fixed_operand (&ops[0], mem);
4965 create_input_operand (&ops[1], reg, mode);
4966 /* The movmisalign<mode> pattern cannot fail, else the assignment
4967 would silently be omitted. */
4968 expand_insn (icode, 2, ops);
4970 else
4971 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
4972 false);
4973 return;
4976 /* Assignment of a structure component needs special treatment
4977 if the structure component's rtx is not simply a MEM.
4978 Assignment of an array element at a constant index, and assignment of
4979 an array element in an unaligned packed structure field, has the same
4980 problem. Same for (partially) storing into a non-memory object. */
4981 if (handled_component_p (to)
4982 || (TREE_CODE (to) == MEM_REF
4983 && (REF_REVERSE_STORAGE_ORDER (to)
4984 || mem_ref_refers_to_non_mem_p (to)))
4985 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4987 machine_mode mode1;
4988 HOST_WIDE_INT bitsize, bitpos;
4989 unsigned HOST_WIDE_INT bitregion_start = 0;
4990 unsigned HOST_WIDE_INT bitregion_end = 0;
4991 tree offset;
4992 int unsignedp, reversep, volatilep = 0;
4993 tree tem;
4995 push_temp_slots ();
4996 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4997 &unsignedp, &reversep, &volatilep);
4999 /* Make sure bitpos is not negative, it can wreak havoc later. */
5000 if (bitpos < 0)
5002 gcc_assert (offset == NULL_TREE);
5003 offset = size_int (bitpos >> LOG2_BITS_PER_UNIT);
5004 bitpos &= BITS_PER_UNIT - 1;
5007 if (TREE_CODE (to) == COMPONENT_REF
5008 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5009 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5010 /* The C++ memory model naturally applies to byte-aligned fields.
5011 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5012 BITSIZE are not byte-aligned, there is no need to limit the range
5013 we can access. This can occur with packed structures in Ada. */
5014 else if (bitsize > 0
5015 && bitsize % BITS_PER_UNIT == 0
5016 && bitpos % BITS_PER_UNIT == 0)
5018 bitregion_start = bitpos;
5019 bitregion_end = bitpos + bitsize - 1;
5022 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5024 /* If the field has a mode, we want to access it in the
5025 field's mode, not the computed mode.
5026 If a MEM has VOIDmode (external with incomplete type),
5027 use BLKmode for it instead. */
5028 if (MEM_P (to_rtx))
5030 if (mode1 != VOIDmode)
5031 to_rtx = adjust_address (to_rtx, mode1, 0);
5032 else if (GET_MODE (to_rtx) == VOIDmode)
5033 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5036 if (offset != 0)
5038 machine_mode address_mode;
5039 rtx offset_rtx;
5041 if (!MEM_P (to_rtx))
5043 /* We can get constant negative offsets into arrays with broken
5044 user code. Translate this to a trap instead of ICEing. */
5045 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5046 expand_builtin_trap ();
5047 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5050 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5051 address_mode = get_address_mode (to_rtx);
5052 if (GET_MODE (offset_rtx) != address_mode)
5054 /* We cannot be sure that the RTL in offset_rtx is valid outside
5055 of a memory address context, so force it into a register
5056 before attempting to convert it to the desired mode. */
5057 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5058 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5061 /* If we have an expression in OFFSET_RTX and a non-zero
5062 byte offset in BITPOS, adding the byte offset before the
5063 OFFSET_RTX results in better intermediate code, which makes
5064 later rtl optimization passes perform better.
5066 We prefer intermediate code like this:
5068 r124:DI=r123:DI+0x18
5069 [r124:DI]=r121:DI
5071 ... instead of ...
5073 r124:DI=r123:DI+0x10
5074 [r124:DI+0x8]=r121:DI
5076 This is only done for aligned data values, as these can
5077 be expected to result in single move instructions. */
5078 if (mode1 != VOIDmode
5079 && bitpos != 0
5080 && bitsize > 0
5081 && (bitpos % bitsize) == 0
5082 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
5083 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5085 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
5086 bitregion_start = 0;
5087 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
5088 bitregion_end -= bitpos;
5089 bitpos = 0;
5092 to_rtx = offset_address (to_rtx, offset_rtx,
5093 highest_pow2_factor_for_target (to,
5094 offset));
5097 /* No action is needed if the target is not a memory and the field
5098 lies completely outside that target. This can occur if the source
5099 code contains an out-of-bounds access to a small array. */
5100 if (!MEM_P (to_rtx)
5101 && GET_MODE (to_rtx) != BLKmode
5102 && (unsigned HOST_WIDE_INT) bitpos
5103 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
5105 expand_normal (from);
5106 result = NULL;
5108 /* Handle expand_expr of a complex value returning a CONCAT. */
5109 else if (GET_CODE (to_rtx) == CONCAT)
5111 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
5112 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
5113 && bitpos == 0
5114 && bitsize == mode_bitsize)
5115 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5116 else if (bitsize == mode_bitsize / 2
5117 && (bitpos == 0 || bitpos == mode_bitsize / 2))
5118 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
5119 nontemporal, reversep);
5120 else if (bitpos + bitsize <= mode_bitsize / 2)
5121 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5122 bitregion_start, bitregion_end,
5123 mode1, from, get_alias_set (to),
5124 nontemporal, reversep);
5125 else if (bitpos >= mode_bitsize / 2)
5126 result = store_field (XEXP (to_rtx, 1), bitsize,
5127 bitpos - mode_bitsize / 2,
5128 bitregion_start, bitregion_end,
5129 mode1, from, get_alias_set (to),
5130 nontemporal, reversep);
5131 else if (bitpos == 0 && bitsize == mode_bitsize)
5133 rtx from_rtx;
5134 result = expand_normal (from);
5135 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
5136 TYPE_MODE (TREE_TYPE (from)), 0);
5137 emit_move_insn (XEXP (to_rtx, 0),
5138 read_complex_part (from_rtx, false));
5139 emit_move_insn (XEXP (to_rtx, 1),
5140 read_complex_part (from_rtx, true));
5142 else
5144 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5145 GET_MODE_SIZE (GET_MODE (to_rtx)));
5146 write_complex_part (temp, XEXP (to_rtx, 0), false);
5147 write_complex_part (temp, XEXP (to_rtx, 1), true);
5148 result = store_field (temp, bitsize, bitpos,
5149 bitregion_start, bitregion_end,
5150 mode1, from, get_alias_set (to),
5151 nontemporal, reversep);
5152 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5153 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5156 else
5158 if (MEM_P (to_rtx))
5160 /* If the field is at offset zero, we could have been given the
5161 DECL_RTX of the parent struct. Don't munge it. */
5162 to_rtx = shallow_copy_rtx (to_rtx);
5163 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5164 if (volatilep)
5165 MEM_VOLATILE_P (to_rtx) = 1;
5168 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5169 bitregion_start, bitregion_end,
5170 mode1, to_rtx, to, from,
5171 reversep))
5172 result = NULL;
5173 else
5174 result = store_field (to_rtx, bitsize, bitpos,
5175 bitregion_start, bitregion_end,
5176 mode1, from, get_alias_set (to),
5177 nontemporal, reversep);
5180 if (result)
5181 preserve_temp_slots (result);
5182 pop_temp_slots ();
5183 return;
5186 /* If the rhs is a function call and its value is not an aggregate,
5187 call the function before we start to compute the lhs.
5188 This is needed for correct code for cases such as
5189 val = setjmp (buf) on machines where reference to val
5190 requires loading up part of an address in a separate insn.
5192 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5193 since it might be a promoted variable where the zero- or sign- extension
5194 needs to be done. Handling this in the normal way is safe because no
5195 computation is done before the call. The same is true for SSA names. */
5196 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5197 && COMPLETE_TYPE_P (TREE_TYPE (from))
5198 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5199 && ! (((VAR_P (to)
5200 || TREE_CODE (to) == PARM_DECL
5201 || TREE_CODE (to) == RESULT_DECL)
5202 && REG_P (DECL_RTL (to)))
5203 || TREE_CODE (to) == SSA_NAME))
5205 rtx value;
5206 rtx bounds;
5208 push_temp_slots ();
5209 value = expand_normal (from);
5211 /* Split value and bounds to store them separately. */
5212 chkp_split_slot (value, &value, &bounds);
5214 if (to_rtx == 0)
5215 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5217 /* Handle calls that return values in multiple non-contiguous locations.
5218 The Irix 6 ABI has examples of this. */
5219 if (GET_CODE (to_rtx) == PARALLEL)
5221 if (GET_CODE (value) == PARALLEL)
5222 emit_group_move (to_rtx, value);
5223 else
5224 emit_group_load (to_rtx, value, TREE_TYPE (from),
5225 int_size_in_bytes (TREE_TYPE (from)));
5227 else if (GET_CODE (value) == PARALLEL)
5228 emit_group_store (to_rtx, value, TREE_TYPE (from),
5229 int_size_in_bytes (TREE_TYPE (from)));
5230 else if (GET_MODE (to_rtx) == BLKmode)
5232 /* Handle calls that return BLKmode values in registers. */
5233 if (REG_P (value))
5234 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5235 else
5236 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5238 else
5240 if (POINTER_TYPE_P (TREE_TYPE (to)))
5241 value = convert_memory_address_addr_space
5242 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5243 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5245 emit_move_insn (to_rtx, value);
5248 /* Store bounds if required. */
5249 if (bounds
5250 && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to))))
5252 gcc_assert (MEM_P (to_rtx));
5253 chkp_emit_bounds_store (bounds, value, to_rtx);
5256 preserve_temp_slots (to_rtx);
5257 pop_temp_slots ();
5258 return;
5261 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5262 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5264 /* Don't move directly into a return register. */
5265 if (TREE_CODE (to) == RESULT_DECL
5266 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5268 rtx temp;
5270 push_temp_slots ();
5272 /* If the source is itself a return value, it still is in a pseudo at
5273 this point so we can move it back to the return register directly. */
5274 if (REG_P (to_rtx)
5275 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5276 && TREE_CODE (from) != CALL_EXPR)
5277 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5278 else
5279 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5281 /* Handle calls that return values in multiple non-contiguous locations.
5282 The Irix 6 ABI has examples of this. */
5283 if (GET_CODE (to_rtx) == PARALLEL)
5285 if (GET_CODE (temp) == PARALLEL)
5286 emit_group_move (to_rtx, temp);
5287 else
5288 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5289 int_size_in_bytes (TREE_TYPE (from)));
5291 else if (temp)
5292 emit_move_insn (to_rtx, temp);
5294 preserve_temp_slots (to_rtx);
5295 pop_temp_slots ();
5296 return;
5299 /* In case we are returning the contents of an object which overlaps
5300 the place the value is being stored, use a safe function when copying
5301 a value through a pointer into a structure value return block. */
5302 if (TREE_CODE (to) == RESULT_DECL
5303 && TREE_CODE (from) == INDIRECT_REF
5304 && ADDR_SPACE_GENERIC_P
5305 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5306 && refs_may_alias_p (to, from)
5307 && cfun->returns_struct
5308 && !cfun->returns_pcc_struct)
5310 rtx from_rtx, size;
5312 push_temp_slots ();
5313 size = expr_size (from);
5314 from_rtx = expand_normal (from);
5316 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5318 preserve_temp_slots (to_rtx);
5319 pop_temp_slots ();
5320 return;
5323 /* Compute FROM and store the value in the rtx we got. */
5325 push_temp_slots ();
5326 result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, false, to);
5327 preserve_temp_slots (result);
5328 pop_temp_slots ();
5329 return;
5332 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5333 succeeded, false otherwise. */
5335 bool
5336 emit_storent_insn (rtx to, rtx from)
5338 struct expand_operand ops[2];
5339 machine_mode mode = GET_MODE (to);
5340 enum insn_code code = optab_handler (storent_optab, mode);
5342 if (code == CODE_FOR_nothing)
5343 return false;
5345 create_fixed_operand (&ops[0], to);
5346 create_input_operand (&ops[1], from, mode);
5347 return maybe_expand_insn (code, 2, ops);
5350 /* Generate code for computing expression EXP,
5351 and storing the value into TARGET.
5353 If the mode is BLKmode then we may return TARGET itself.
5354 It turns out that in BLKmode it doesn't cause a problem.
5355 because C has no operators that could combine two different
5356 assignments into the same BLKmode object with different values
5357 with no sequence point. Will other languages need this to
5358 be more thorough?
5360 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5361 stack, and block moves may need to be treated specially.
5363 If NONTEMPORAL is true, try using a nontemporal store instruction.
5365 If REVERSE is true, the store is to be done in reverse order.
5367 If BTARGET is not NULL then computed bounds of EXP are
5368 associated with BTARGET. */
5371 store_expr_with_bounds (tree exp, rtx target, int call_param_p,
5372 bool nontemporal, bool reverse, tree btarget)
5374 rtx temp;
5375 rtx alt_rtl = NULL_RTX;
5376 location_t loc = curr_insn_location ();
5378 if (VOID_TYPE_P (TREE_TYPE (exp)))
5380 /* C++ can generate ?: expressions with a throw expression in one
5381 branch and an rvalue in the other. Here, we resolve attempts to
5382 store the throw expression's nonexistent result. */
5383 gcc_assert (!call_param_p);
5384 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5385 return NULL_RTX;
5387 if (TREE_CODE (exp) == COMPOUND_EXPR)
5389 /* Perform first part of compound expression, then assign from second
5390 part. */
5391 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5392 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5393 return store_expr_with_bounds (TREE_OPERAND (exp, 1), target,
5394 call_param_p, nontemporal, reverse,
5395 btarget);
5397 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5399 /* For conditional expression, get safe form of the target. Then
5400 test the condition, doing the appropriate assignment on either
5401 side. This avoids the creation of unnecessary temporaries.
5402 For non-BLKmode, it is more efficient not to do this. */
5404 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5406 do_pending_stack_adjust ();
5407 NO_DEFER_POP;
5408 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5409 profile_probability::uninitialized ());
5410 store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p,
5411 nontemporal, reverse, btarget);
5412 emit_jump_insn (targetm.gen_jump (lab2));
5413 emit_barrier ();
5414 emit_label (lab1);
5415 store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p,
5416 nontemporal, reverse, btarget);
5417 emit_label (lab2);
5418 OK_DEFER_POP;
5420 return NULL_RTX;
5422 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5423 /* If this is a scalar in a register that is stored in a wider mode
5424 than the declared mode, compute the result into its declared mode
5425 and then convert to the wider mode. Our value is the computed
5426 expression. */
5428 rtx inner_target = 0;
5429 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5430 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5432 /* We can do the conversion inside EXP, which will often result
5433 in some optimizations. Do the conversion in two steps: first
5434 change the signedness, if needed, then the extend. But don't
5435 do this if the type of EXP is a subtype of something else
5436 since then the conversion might involve more than just
5437 converting modes. */
5438 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5439 && TREE_TYPE (TREE_TYPE (exp)) == 0
5440 && GET_MODE_PRECISION (outer_mode)
5441 == TYPE_PRECISION (TREE_TYPE (exp)))
5443 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5444 TYPE_UNSIGNED (TREE_TYPE (exp))))
5446 /* Some types, e.g. Fortran's logical*4, won't have a signed
5447 version, so use the mode instead. */
5448 tree ntype
5449 = (signed_or_unsigned_type_for
5450 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5451 if (ntype == NULL)
5452 ntype = lang_hooks.types.type_for_mode
5453 (TYPE_MODE (TREE_TYPE (exp)),
5454 SUBREG_PROMOTED_SIGN (target));
5456 exp = fold_convert_loc (loc, ntype, exp);
5459 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5460 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5461 exp);
5463 inner_target = SUBREG_REG (target);
5466 temp = expand_expr (exp, inner_target, VOIDmode,
5467 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5469 /* Handle bounds returned by call. */
5470 if (TREE_CODE (exp) == CALL_EXPR)
5472 rtx bounds;
5473 chkp_split_slot (temp, &temp, &bounds);
5474 if (bounds && btarget)
5476 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5477 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5478 chkp_set_rtl_bounds (btarget, tmp);
5482 /* If TEMP is a VOIDmode constant, use convert_modes to make
5483 sure that we properly convert it. */
5484 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5486 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5487 temp, SUBREG_PROMOTED_SIGN (target));
5488 temp = convert_modes (inner_mode, outer_mode, temp,
5489 SUBREG_PROMOTED_SIGN (target));
5492 convert_move (SUBREG_REG (target), temp,
5493 SUBREG_PROMOTED_SIGN (target));
5495 return NULL_RTX;
5497 else if ((TREE_CODE (exp) == STRING_CST
5498 || (TREE_CODE (exp) == MEM_REF
5499 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5500 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5501 == STRING_CST
5502 && integer_zerop (TREE_OPERAND (exp, 1))))
5503 && !nontemporal && !call_param_p
5504 && MEM_P (target))
5506 /* Optimize initialization of an array with a STRING_CST. */
5507 HOST_WIDE_INT exp_len, str_copy_len;
5508 rtx dest_mem;
5509 tree str = TREE_CODE (exp) == STRING_CST
5510 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5512 exp_len = int_expr_size (exp);
5513 if (exp_len <= 0)
5514 goto normal_expr;
5516 if (TREE_STRING_LENGTH (str) <= 0)
5517 goto normal_expr;
5519 str_copy_len = strlen (TREE_STRING_POINTER (str));
5520 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5521 goto normal_expr;
5523 str_copy_len = TREE_STRING_LENGTH (str);
5524 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5525 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5527 str_copy_len += STORE_MAX_PIECES - 1;
5528 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5530 str_copy_len = MIN (str_copy_len, exp_len);
5531 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5532 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5533 MEM_ALIGN (target), false))
5534 goto normal_expr;
5536 dest_mem = target;
5538 dest_mem = store_by_pieces (dest_mem,
5539 str_copy_len, builtin_strncpy_read_str,
5540 CONST_CAST (char *,
5541 TREE_STRING_POINTER (str)),
5542 MEM_ALIGN (target), false,
5543 exp_len > str_copy_len ? 1 : 0);
5544 if (exp_len > str_copy_len)
5545 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5546 GEN_INT (exp_len - str_copy_len),
5547 BLOCK_OP_NORMAL);
5548 return NULL_RTX;
5550 else
5552 rtx tmp_target;
5554 normal_expr:
5555 /* If we want to use a nontemporal or a reverse order store, force the
5556 value into a register first. */
5557 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5558 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5559 (call_param_p
5560 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5561 &alt_rtl, false);
5563 /* Handle bounds returned by call. */
5564 if (TREE_CODE (exp) == CALL_EXPR)
5566 rtx bounds;
5567 chkp_split_slot (temp, &temp, &bounds);
5568 if (bounds && btarget)
5570 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5571 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5572 chkp_set_rtl_bounds (btarget, tmp);
5577 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5578 the same as that of TARGET, adjust the constant. This is needed, for
5579 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5580 only a word-sized value. */
5581 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5582 && TREE_CODE (exp) != ERROR_MARK
5583 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5584 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5585 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5587 /* If value was not generated in the target, store it there.
5588 Convert the value to TARGET's type first if necessary and emit the
5589 pending incrementations that have been queued when expanding EXP.
5590 Note that we cannot emit the whole queue blindly because this will
5591 effectively disable the POST_INC optimization later.
5593 If TEMP and TARGET compare equal according to rtx_equal_p, but
5594 one or both of them are volatile memory refs, we have to distinguish
5595 two cases:
5596 - expand_expr has used TARGET. In this case, we must not generate
5597 another copy. This can be detected by TARGET being equal according
5598 to == .
5599 - expand_expr has not used TARGET - that means that the source just
5600 happens to have the same RTX form. Since temp will have been created
5601 by expand_expr, it will compare unequal according to == .
5602 We must generate a copy in this case, to reach the correct number
5603 of volatile memory references. */
5605 if ((! rtx_equal_p (temp, target)
5606 || (temp != target && (side_effects_p (temp)
5607 || side_effects_p (target))))
5608 && TREE_CODE (exp) != ERROR_MARK
5609 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5610 but TARGET is not valid memory reference, TEMP will differ
5611 from TARGET although it is really the same location. */
5612 && !(alt_rtl
5613 && rtx_equal_p (alt_rtl, target)
5614 && !side_effects_p (alt_rtl)
5615 && !side_effects_p (target))
5616 /* If there's nothing to copy, don't bother. Don't call
5617 expr_size unless necessary, because some front-ends (C++)
5618 expr_size-hook must not be given objects that are not
5619 supposed to be bit-copied or bit-initialized. */
5620 && expr_size (exp) != const0_rtx)
5622 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5624 if (GET_MODE (target) == BLKmode)
5626 /* Handle calls that return BLKmode values in registers. */
5627 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5628 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5629 else
5630 store_bit_field (target,
5631 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5632 0, 0, 0, GET_MODE (temp), temp, reverse);
5634 else
5635 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5638 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5640 /* Handle copying a string constant into an array. The string
5641 constant may be shorter than the array. So copy just the string's
5642 actual length, and clear the rest. First get the size of the data
5643 type of the string, which is actually the size of the target. */
5644 rtx size = expr_size (exp);
5646 if (CONST_INT_P (size)
5647 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5648 emit_block_move (target, temp, size,
5649 (call_param_p
5650 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5651 else
5653 machine_mode pointer_mode
5654 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5655 machine_mode address_mode = get_address_mode (target);
5657 /* Compute the size of the data to copy from the string. */
5658 tree copy_size
5659 = size_binop_loc (loc, MIN_EXPR,
5660 make_tree (sizetype, size),
5661 size_int (TREE_STRING_LENGTH (exp)));
5662 rtx copy_size_rtx
5663 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5664 (call_param_p
5665 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5666 rtx_code_label *label = 0;
5668 /* Copy that much. */
5669 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5670 TYPE_UNSIGNED (sizetype));
5671 emit_block_move (target, temp, copy_size_rtx,
5672 (call_param_p
5673 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5675 /* Figure out how much is left in TARGET that we have to clear.
5676 Do all calculations in pointer_mode. */
5677 if (CONST_INT_P (copy_size_rtx))
5679 size = plus_constant (address_mode, size,
5680 -INTVAL (copy_size_rtx));
5681 target = adjust_address (target, BLKmode,
5682 INTVAL (copy_size_rtx));
5684 else
5686 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5687 copy_size_rtx, NULL_RTX, 0,
5688 OPTAB_LIB_WIDEN);
5690 if (GET_MODE (copy_size_rtx) != address_mode)
5691 copy_size_rtx = convert_to_mode (address_mode,
5692 copy_size_rtx,
5693 TYPE_UNSIGNED (sizetype));
5695 target = offset_address (target, copy_size_rtx,
5696 highest_pow2_factor (copy_size));
5697 label = gen_label_rtx ();
5698 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5699 GET_MODE (size), 0, label);
5702 if (size != const0_rtx)
5703 clear_storage (target, size, BLOCK_OP_NORMAL);
5705 if (label)
5706 emit_label (label);
5709 /* Handle calls that return values in multiple non-contiguous locations.
5710 The Irix 6 ABI has examples of this. */
5711 else if (GET_CODE (target) == PARALLEL)
5713 if (GET_CODE (temp) == PARALLEL)
5714 emit_group_move (target, temp);
5715 else
5716 emit_group_load (target, temp, TREE_TYPE (exp),
5717 int_size_in_bytes (TREE_TYPE (exp)));
5719 else if (GET_CODE (temp) == PARALLEL)
5720 emit_group_store (target, temp, TREE_TYPE (exp),
5721 int_size_in_bytes (TREE_TYPE (exp)));
5722 else if (GET_MODE (temp) == BLKmode)
5723 emit_block_move (target, temp, expr_size (exp),
5724 (call_param_p
5725 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5726 /* If we emit a nontemporal store, there is nothing else to do. */
5727 else if (nontemporal && emit_storent_insn (target, temp))
5729 else
5731 if (reverse)
5732 temp = flip_storage_order (GET_MODE (target), temp);
5733 temp = force_operand (temp, target);
5734 if (temp != target)
5735 emit_move_insn (target, temp);
5739 return NULL_RTX;
5742 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5744 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal,
5745 bool reverse)
5747 return store_expr_with_bounds (exp, target, call_param_p, nontemporal,
5748 reverse, NULL);
5751 /* Return true if field F of structure TYPE is a flexible array. */
5753 static bool
5754 flexible_array_member_p (const_tree f, const_tree type)
5756 const_tree tf;
5758 tf = TREE_TYPE (f);
5759 return (DECL_CHAIN (f) == NULL
5760 && TREE_CODE (tf) == ARRAY_TYPE
5761 && TYPE_DOMAIN (tf)
5762 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5763 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5764 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5765 && int_size_in_bytes (type) >= 0);
5768 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5769 must have in order for it to completely initialize a value of type TYPE.
5770 Return -1 if the number isn't known.
5772 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5774 static HOST_WIDE_INT
5775 count_type_elements (const_tree type, bool for_ctor_p)
5777 switch (TREE_CODE (type))
5779 case ARRAY_TYPE:
5781 tree nelts;
5783 nelts = array_type_nelts (type);
5784 if (nelts && tree_fits_uhwi_p (nelts))
5786 unsigned HOST_WIDE_INT n;
5788 n = tree_to_uhwi (nelts) + 1;
5789 if (n == 0 || for_ctor_p)
5790 return n;
5791 else
5792 return n * count_type_elements (TREE_TYPE (type), false);
5794 return for_ctor_p ? -1 : 1;
5797 case RECORD_TYPE:
5799 unsigned HOST_WIDE_INT n;
5800 tree f;
5802 n = 0;
5803 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5804 if (TREE_CODE (f) == FIELD_DECL)
5806 if (!for_ctor_p)
5807 n += count_type_elements (TREE_TYPE (f), false);
5808 else if (!flexible_array_member_p (f, type))
5809 /* Don't count flexible arrays, which are not supposed
5810 to be initialized. */
5811 n += 1;
5814 return n;
5817 case UNION_TYPE:
5818 case QUAL_UNION_TYPE:
5820 tree f;
5821 HOST_WIDE_INT n, m;
5823 gcc_assert (!for_ctor_p);
5824 /* Estimate the number of scalars in each field and pick the
5825 maximum. Other estimates would do instead; the idea is simply
5826 to make sure that the estimate is not sensitive to the ordering
5827 of the fields. */
5828 n = 1;
5829 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5830 if (TREE_CODE (f) == FIELD_DECL)
5832 m = count_type_elements (TREE_TYPE (f), false);
5833 /* If the field doesn't span the whole union, add an extra
5834 scalar for the rest. */
5835 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5836 TYPE_SIZE (type)) != 1)
5837 m++;
5838 if (n < m)
5839 n = m;
5841 return n;
5844 case COMPLEX_TYPE:
5845 return 2;
5847 case VECTOR_TYPE:
5848 return TYPE_VECTOR_SUBPARTS (type);
5850 case INTEGER_TYPE:
5851 case REAL_TYPE:
5852 case FIXED_POINT_TYPE:
5853 case ENUMERAL_TYPE:
5854 case BOOLEAN_TYPE:
5855 case POINTER_TYPE:
5856 case OFFSET_TYPE:
5857 case REFERENCE_TYPE:
5858 case NULLPTR_TYPE:
5859 return 1;
5861 case ERROR_MARK:
5862 return 0;
5864 case VOID_TYPE:
5865 case METHOD_TYPE:
5866 case FUNCTION_TYPE:
5867 case LANG_TYPE:
5868 default:
5869 gcc_unreachable ();
5873 /* Helper for categorize_ctor_elements. Identical interface. */
5875 static bool
5876 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5877 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5879 unsigned HOST_WIDE_INT idx;
5880 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5881 tree value, purpose, elt_type;
5883 /* Whether CTOR is a valid constant initializer, in accordance with what
5884 initializer_constant_valid_p does. If inferred from the constructor
5885 elements, true until proven otherwise. */
5886 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5887 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5889 nz_elts = 0;
5890 init_elts = 0;
5891 num_fields = 0;
5892 elt_type = NULL_TREE;
5894 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5896 HOST_WIDE_INT mult = 1;
5898 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5900 tree lo_index = TREE_OPERAND (purpose, 0);
5901 tree hi_index = TREE_OPERAND (purpose, 1);
5903 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5904 mult = (tree_to_uhwi (hi_index)
5905 - tree_to_uhwi (lo_index) + 1);
5907 num_fields += mult;
5908 elt_type = TREE_TYPE (value);
5910 switch (TREE_CODE (value))
5912 case CONSTRUCTOR:
5914 HOST_WIDE_INT nz = 0, ic = 0;
5916 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5917 p_complete);
5919 nz_elts += mult * nz;
5920 init_elts += mult * ic;
5922 if (const_from_elts_p && const_p)
5923 const_p = const_elt_p;
5925 break;
5927 case INTEGER_CST:
5928 case REAL_CST:
5929 case FIXED_CST:
5930 if (!initializer_zerop (value))
5931 nz_elts += mult;
5932 init_elts += mult;
5933 break;
5935 case STRING_CST:
5936 nz_elts += mult * TREE_STRING_LENGTH (value);
5937 init_elts += mult * TREE_STRING_LENGTH (value);
5938 break;
5940 case COMPLEX_CST:
5941 if (!initializer_zerop (TREE_REALPART (value)))
5942 nz_elts += mult;
5943 if (!initializer_zerop (TREE_IMAGPART (value)))
5944 nz_elts += mult;
5945 init_elts += mult;
5946 break;
5948 case VECTOR_CST:
5950 unsigned i;
5951 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5953 tree v = VECTOR_CST_ELT (value, i);
5954 if (!initializer_zerop (v))
5955 nz_elts += mult;
5956 init_elts += mult;
5959 break;
5961 default:
5963 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5964 nz_elts += mult * tc;
5965 init_elts += mult * tc;
5967 if (const_from_elts_p && const_p)
5968 const_p
5969 = initializer_constant_valid_p (value,
5970 elt_type,
5971 TYPE_REVERSE_STORAGE_ORDER
5972 (TREE_TYPE (ctor)))
5973 != NULL_TREE;
5975 break;
5979 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5980 num_fields, elt_type))
5981 *p_complete = false;
5983 *p_nz_elts += nz_elts;
5984 *p_init_elts += init_elts;
5986 return const_p;
5989 /* Examine CTOR to discover:
5990 * how many scalar fields are set to nonzero values,
5991 and place it in *P_NZ_ELTS;
5992 * how many scalar fields in total are in CTOR,
5993 and place it in *P_ELT_COUNT.
5994 * whether the constructor is complete -- in the sense that every
5995 meaningful byte is explicitly given a value --
5996 and place it in *P_COMPLETE.
5998 Return whether or not CTOR is a valid static constant initializer, the same
5999 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6001 bool
6002 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6003 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6005 *p_nz_elts = 0;
6006 *p_init_elts = 0;
6007 *p_complete = true;
6009 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
6012 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6013 of which had type LAST_TYPE. Each element was itself a complete
6014 initializer, in the sense that every meaningful byte was explicitly
6015 given a value. Return true if the same is true for the constructor
6016 as a whole. */
6018 bool
6019 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6020 const_tree last_type)
6022 if (TREE_CODE (type) == UNION_TYPE
6023 || TREE_CODE (type) == QUAL_UNION_TYPE)
6025 if (num_elts == 0)
6026 return false;
6028 gcc_assert (num_elts == 1 && last_type);
6030 /* ??? We could look at each element of the union, and find the
6031 largest element. Which would avoid comparing the size of the
6032 initialized element against any tail padding in the union.
6033 Doesn't seem worth the effort... */
6034 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6037 return count_type_elements (type, true) == num_elts;
6040 /* Return 1 if EXP contains mostly (3/4) zeros. */
6042 static int
6043 mostly_zeros_p (const_tree exp)
6045 if (TREE_CODE (exp) == CONSTRUCTOR)
6047 HOST_WIDE_INT nz_elts, init_elts;
6048 bool complete_p;
6050 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6051 return !complete_p || nz_elts < init_elts / 4;
6054 return initializer_zerop (exp);
6057 /* Return 1 if EXP contains all zeros. */
6059 static int
6060 all_zeros_p (const_tree exp)
6062 if (TREE_CODE (exp) == CONSTRUCTOR)
6064 HOST_WIDE_INT nz_elts, init_elts;
6065 bool complete_p;
6067 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6068 return nz_elts == 0;
6071 return initializer_zerop (exp);
6074 /* Helper function for store_constructor.
6075 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6076 CLEARED is as for store_constructor.
6077 ALIAS_SET is the alias set to use for any stores.
6078 If REVERSE is true, the store is to be done in reverse order.
6080 This provides a recursive shortcut back to store_constructor when it isn't
6081 necessary to go through store_field. This is so that we can pass through
6082 the cleared field to let store_constructor know that we may not have to
6083 clear a substructure if the outer structure has already been cleared. */
6085 static void
6086 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
6087 HOST_WIDE_INT bitpos,
6088 unsigned HOST_WIDE_INT bitregion_start,
6089 unsigned HOST_WIDE_INT bitregion_end,
6090 machine_mode mode,
6091 tree exp, int cleared,
6092 alias_set_type alias_set, bool reverse)
6094 if (TREE_CODE (exp) == CONSTRUCTOR
6095 /* We can only call store_constructor recursively if the size and
6096 bit position are on a byte boundary. */
6097 && bitpos % BITS_PER_UNIT == 0
6098 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
6099 /* If we have a nonzero bitpos for a register target, then we just
6100 let store_field do the bitfield handling. This is unlikely to
6101 generate unnecessary clear instructions anyways. */
6102 && (bitpos == 0 || MEM_P (target)))
6104 if (MEM_P (target))
6105 target
6106 = adjust_address (target,
6107 GET_MODE (target) == BLKmode
6108 || 0 != (bitpos
6109 % GET_MODE_ALIGNMENT (GET_MODE (target)))
6110 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
6113 /* Update the alias set, if required. */
6114 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6115 && MEM_ALIAS_SET (target) != 0)
6117 target = copy_rtx (target);
6118 set_mem_alias_set (target, alias_set);
6121 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT,
6122 reverse);
6124 else
6125 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6126 exp, alias_set, false, reverse);
6130 /* Returns the number of FIELD_DECLs in TYPE. */
6132 static int
6133 fields_length (const_tree type)
6135 tree t = TYPE_FIELDS (type);
6136 int count = 0;
6138 for (; t; t = DECL_CHAIN (t))
6139 if (TREE_CODE (t) == FIELD_DECL)
6140 ++count;
6142 return count;
6146 /* Store the value of constructor EXP into the rtx TARGET.
6147 TARGET is either a REG or a MEM; we know it cannot conflict, since
6148 safe_from_p has been called.
6149 CLEARED is true if TARGET is known to have been zero'd.
6150 SIZE is the number of bytes of TARGET we are allowed to modify: this
6151 may not be the same as the size of EXP if we are assigning to a field
6152 which has been packed to exclude padding bits.
6153 If REVERSE is true, the store is to be done in reverse order. */
6155 static void
6156 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size,
6157 bool reverse)
6159 tree type = TREE_TYPE (exp);
6160 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6161 HOST_WIDE_INT bitregion_end = size > 0 ? size * BITS_PER_UNIT - 1 : 0;
6163 switch (TREE_CODE (type))
6165 case RECORD_TYPE:
6166 case UNION_TYPE:
6167 case QUAL_UNION_TYPE:
6169 unsigned HOST_WIDE_INT idx;
6170 tree field, value;
6172 /* The storage order is specified for every aggregate type. */
6173 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6175 /* If size is zero or the target is already cleared, do nothing. */
6176 if (size == 0 || cleared)
6177 cleared = 1;
6178 /* We either clear the aggregate or indicate the value is dead. */
6179 else if ((TREE_CODE (type) == UNION_TYPE
6180 || TREE_CODE (type) == QUAL_UNION_TYPE)
6181 && ! CONSTRUCTOR_ELTS (exp))
6182 /* If the constructor is empty, clear the union. */
6184 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6185 cleared = 1;
6188 /* If we are building a static constructor into a register,
6189 set the initial value as zero so we can fold the value into
6190 a constant. But if more than one register is involved,
6191 this probably loses. */
6192 else if (REG_P (target) && TREE_STATIC (exp)
6193 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
6195 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6196 cleared = 1;
6199 /* If the constructor has fewer fields than the structure or
6200 if we are initializing the structure to mostly zeros, clear
6201 the whole structure first. Don't do this if TARGET is a
6202 register whose mode size isn't equal to SIZE since
6203 clear_storage can't handle this case. */
6204 else if (size > 0
6205 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6206 || mostly_zeros_p (exp))
6207 && (!REG_P (target)
6208 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
6209 == size)))
6211 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6212 cleared = 1;
6215 if (REG_P (target) && !cleared)
6216 emit_clobber (target);
6218 /* Store each element of the constructor into the
6219 corresponding field of TARGET. */
6220 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6222 machine_mode mode;
6223 HOST_WIDE_INT bitsize;
6224 HOST_WIDE_INT bitpos = 0;
6225 tree offset;
6226 rtx to_rtx = target;
6228 /* Just ignore missing fields. We cleared the whole
6229 structure, above, if any fields are missing. */
6230 if (field == 0)
6231 continue;
6233 if (cleared && initializer_zerop (value))
6234 continue;
6236 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6237 bitsize = tree_to_uhwi (DECL_SIZE (field));
6238 else
6239 gcc_unreachable ();
6241 mode = DECL_MODE (field);
6242 if (DECL_BIT_FIELD (field))
6243 mode = VOIDmode;
6245 offset = DECL_FIELD_OFFSET (field);
6246 if (tree_fits_shwi_p (offset)
6247 && tree_fits_shwi_p (bit_position (field)))
6249 bitpos = int_bit_position (field);
6250 offset = NULL_TREE;
6252 else
6253 gcc_unreachable ();
6255 /* If this initializes a field that is smaller than a
6256 word, at the start of a word, try to widen it to a full
6257 word. This special case allows us to output C++ member
6258 function initializations in a form that the optimizers
6259 can understand. */
6260 if (WORD_REGISTER_OPERATIONS
6261 && REG_P (target)
6262 && bitsize < BITS_PER_WORD
6263 && bitpos % BITS_PER_WORD == 0
6264 && GET_MODE_CLASS (mode) == MODE_INT
6265 && TREE_CODE (value) == INTEGER_CST
6266 && exp_size >= 0
6267 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6269 tree type = TREE_TYPE (value);
6271 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6273 type = lang_hooks.types.type_for_mode
6274 (word_mode, TYPE_UNSIGNED (type));
6275 value = fold_convert (type, value);
6276 /* Make sure the bits beyond the original bitsize are zero
6277 so that we can correctly avoid extra zeroing stores in
6278 later constructor elements. */
6279 tree bitsize_mask
6280 = wide_int_to_tree (type, wi::mask (bitsize, false,
6281 BITS_PER_WORD));
6282 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6285 if (BYTES_BIG_ENDIAN)
6286 value
6287 = fold_build2 (LSHIFT_EXPR, type, value,
6288 build_int_cst (type,
6289 BITS_PER_WORD - bitsize));
6290 bitsize = BITS_PER_WORD;
6291 mode = word_mode;
6294 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6295 && DECL_NONADDRESSABLE_P (field))
6297 to_rtx = copy_rtx (to_rtx);
6298 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6301 store_constructor_field (to_rtx, bitsize, bitpos,
6302 0, bitregion_end, mode,
6303 value, cleared,
6304 get_alias_set (TREE_TYPE (field)),
6305 reverse);
6307 break;
6309 case ARRAY_TYPE:
6311 tree value, index;
6312 unsigned HOST_WIDE_INT i;
6313 int need_to_clear;
6314 tree domain;
6315 tree elttype = TREE_TYPE (type);
6316 int const_bounds_p;
6317 HOST_WIDE_INT minelt = 0;
6318 HOST_WIDE_INT maxelt = 0;
6320 /* The storage order is specified for every aggregate type. */
6321 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6323 domain = TYPE_DOMAIN (type);
6324 const_bounds_p = (TYPE_MIN_VALUE (domain)
6325 && TYPE_MAX_VALUE (domain)
6326 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6327 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6329 /* If we have constant bounds for the range of the type, get them. */
6330 if (const_bounds_p)
6332 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6333 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6336 /* If the constructor has fewer elements than the array, clear
6337 the whole array first. Similarly if this is static
6338 constructor of a non-BLKmode object. */
6339 if (cleared)
6340 need_to_clear = 0;
6341 else if (REG_P (target) && TREE_STATIC (exp))
6342 need_to_clear = 1;
6343 else
6345 unsigned HOST_WIDE_INT idx;
6346 tree index, value;
6347 HOST_WIDE_INT count = 0, zero_count = 0;
6348 need_to_clear = ! const_bounds_p;
6350 /* This loop is a more accurate version of the loop in
6351 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6352 is also needed to check for missing elements. */
6353 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6355 HOST_WIDE_INT this_node_count;
6357 if (need_to_clear)
6358 break;
6360 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6362 tree lo_index = TREE_OPERAND (index, 0);
6363 tree hi_index = TREE_OPERAND (index, 1);
6365 if (! tree_fits_uhwi_p (lo_index)
6366 || ! tree_fits_uhwi_p (hi_index))
6368 need_to_clear = 1;
6369 break;
6372 this_node_count = (tree_to_uhwi (hi_index)
6373 - tree_to_uhwi (lo_index) + 1);
6375 else
6376 this_node_count = 1;
6378 count += this_node_count;
6379 if (mostly_zeros_p (value))
6380 zero_count += this_node_count;
6383 /* Clear the entire array first if there are any missing
6384 elements, or if the incidence of zero elements is >=
6385 75%. */
6386 if (! need_to_clear
6387 && (count < maxelt - minelt + 1
6388 || 4 * zero_count >= 3 * count))
6389 need_to_clear = 1;
6392 if (need_to_clear && size > 0)
6394 if (REG_P (target))
6395 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6396 else
6397 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6398 cleared = 1;
6401 if (!cleared && REG_P (target))
6402 /* Inform later passes that the old value is dead. */
6403 emit_clobber (target);
6405 /* Store each element of the constructor into the
6406 corresponding element of TARGET, determined by counting the
6407 elements. */
6408 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6410 machine_mode mode;
6411 HOST_WIDE_INT bitsize;
6412 HOST_WIDE_INT bitpos;
6413 rtx xtarget = target;
6415 if (cleared && initializer_zerop (value))
6416 continue;
6418 mode = TYPE_MODE (elttype);
6419 if (mode == BLKmode)
6420 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6421 ? tree_to_uhwi (TYPE_SIZE (elttype))
6422 : -1);
6423 else
6424 bitsize = GET_MODE_BITSIZE (mode);
6426 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6428 tree lo_index = TREE_OPERAND (index, 0);
6429 tree hi_index = TREE_OPERAND (index, 1);
6430 rtx index_r, pos_rtx;
6431 HOST_WIDE_INT lo, hi, count;
6432 tree position;
6434 /* If the range is constant and "small", unroll the loop. */
6435 if (const_bounds_p
6436 && tree_fits_shwi_p (lo_index)
6437 && tree_fits_shwi_p (hi_index)
6438 && (lo = tree_to_shwi (lo_index),
6439 hi = tree_to_shwi (hi_index),
6440 count = hi - lo + 1,
6441 (!MEM_P (target)
6442 || count <= 2
6443 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6444 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6445 <= 40 * 8)))))
6447 lo -= minelt; hi -= minelt;
6448 for (; lo <= hi; lo++)
6450 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6452 if (MEM_P (target)
6453 && !MEM_KEEP_ALIAS_SET_P (target)
6454 && TREE_CODE (type) == ARRAY_TYPE
6455 && TYPE_NONALIASED_COMPONENT (type))
6457 target = copy_rtx (target);
6458 MEM_KEEP_ALIAS_SET_P (target) = 1;
6461 store_constructor_field
6462 (target, bitsize, bitpos, 0, bitregion_end,
6463 mode, value, cleared,
6464 get_alias_set (elttype), reverse);
6467 else
6469 rtx_code_label *loop_start = gen_label_rtx ();
6470 rtx_code_label *loop_end = gen_label_rtx ();
6471 tree exit_cond;
6473 expand_normal (hi_index);
6475 index = build_decl (EXPR_LOCATION (exp),
6476 VAR_DECL, NULL_TREE, domain);
6477 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6478 SET_DECL_RTL (index, index_r);
6479 store_expr (lo_index, index_r, 0, false, reverse);
6481 /* Build the head of the loop. */
6482 do_pending_stack_adjust ();
6483 emit_label (loop_start);
6485 /* Assign value to element index. */
6486 position =
6487 fold_convert (ssizetype,
6488 fold_build2 (MINUS_EXPR,
6489 TREE_TYPE (index),
6490 index,
6491 TYPE_MIN_VALUE (domain)));
6493 position =
6494 size_binop (MULT_EXPR, position,
6495 fold_convert (ssizetype,
6496 TYPE_SIZE_UNIT (elttype)));
6498 pos_rtx = expand_normal (position);
6499 xtarget = offset_address (target, pos_rtx,
6500 highest_pow2_factor (position));
6501 xtarget = adjust_address (xtarget, mode, 0);
6502 if (TREE_CODE (value) == CONSTRUCTOR)
6503 store_constructor (value, xtarget, cleared,
6504 bitsize / BITS_PER_UNIT, reverse);
6505 else
6506 store_expr (value, xtarget, 0, false, reverse);
6508 /* Generate a conditional jump to exit the loop. */
6509 exit_cond = build2 (LT_EXPR, integer_type_node,
6510 index, hi_index);
6511 jumpif (exit_cond, loop_end,
6512 profile_probability::uninitialized ());
6514 /* Update the loop counter, and jump to the head of
6515 the loop. */
6516 expand_assignment (index,
6517 build2 (PLUS_EXPR, TREE_TYPE (index),
6518 index, integer_one_node),
6519 false);
6521 emit_jump (loop_start);
6523 /* Build the end of the loop. */
6524 emit_label (loop_end);
6527 else if ((index != 0 && ! tree_fits_shwi_p (index))
6528 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6530 tree position;
6532 if (index == 0)
6533 index = ssize_int (1);
6535 if (minelt)
6536 index = fold_convert (ssizetype,
6537 fold_build2 (MINUS_EXPR,
6538 TREE_TYPE (index),
6539 index,
6540 TYPE_MIN_VALUE (domain)));
6542 position =
6543 size_binop (MULT_EXPR, index,
6544 fold_convert (ssizetype,
6545 TYPE_SIZE_UNIT (elttype)));
6546 xtarget = offset_address (target,
6547 expand_normal (position),
6548 highest_pow2_factor (position));
6549 xtarget = adjust_address (xtarget, mode, 0);
6550 store_expr (value, xtarget, 0, false, reverse);
6552 else
6554 if (index != 0)
6555 bitpos = ((tree_to_shwi (index) - minelt)
6556 * tree_to_uhwi (TYPE_SIZE (elttype)));
6557 else
6558 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6560 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6561 && TREE_CODE (type) == ARRAY_TYPE
6562 && TYPE_NONALIASED_COMPONENT (type))
6564 target = copy_rtx (target);
6565 MEM_KEEP_ALIAS_SET_P (target) = 1;
6567 store_constructor_field (target, bitsize, bitpos, 0,
6568 bitregion_end, mode, value,
6569 cleared, get_alias_set (elttype),
6570 reverse);
6573 break;
6576 case VECTOR_TYPE:
6578 unsigned HOST_WIDE_INT idx;
6579 constructor_elt *ce;
6580 int i;
6581 int need_to_clear;
6582 int icode = CODE_FOR_nothing;
6583 tree elttype = TREE_TYPE (type);
6584 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6585 machine_mode eltmode = TYPE_MODE (elttype);
6586 HOST_WIDE_INT bitsize;
6587 HOST_WIDE_INT bitpos;
6588 rtvec vector = NULL;
6589 unsigned n_elts;
6590 alias_set_type alias;
6591 bool vec_vec_init_p = false;
6593 gcc_assert (eltmode != BLKmode);
6595 n_elts = TYPE_VECTOR_SUBPARTS (type);
6596 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6598 machine_mode mode = GET_MODE (target);
6599 machine_mode emode = eltmode;
6601 if (CONSTRUCTOR_NELTS (exp)
6602 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6603 == VECTOR_TYPE))
6605 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6606 gcc_assert (CONSTRUCTOR_NELTS (exp) * TYPE_VECTOR_SUBPARTS (etype)
6607 == n_elts);
6608 emode = TYPE_MODE (etype);
6610 icode = (int) convert_optab_handler (vec_init_optab, mode, emode);
6611 if (icode != CODE_FOR_nothing)
6613 unsigned int i, n = n_elts;
6615 if (emode != eltmode)
6617 n = CONSTRUCTOR_NELTS (exp);
6618 vec_vec_init_p = true;
6620 vector = rtvec_alloc (n);
6621 for (i = 0; i < n; i++)
6622 RTVEC_ELT (vector, i) = CONST0_RTX (emode);
6626 /* If the constructor has fewer elements than the vector,
6627 clear the whole array first. Similarly if this is static
6628 constructor of a non-BLKmode object. */
6629 if (cleared)
6630 need_to_clear = 0;
6631 else if (REG_P (target) && TREE_STATIC (exp))
6632 need_to_clear = 1;
6633 else
6635 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6636 tree value;
6638 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6640 tree sz = TYPE_SIZE (TREE_TYPE (value));
6641 int n_elts_here
6642 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
6643 TYPE_SIZE (elttype)));
6645 count += n_elts_here;
6646 if (mostly_zeros_p (value))
6647 zero_count += n_elts_here;
6650 /* Clear the entire vector first if there are any missing elements,
6651 or if the incidence of zero elements is >= 75%. */
6652 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6655 if (need_to_clear && size > 0 && !vector)
6657 if (REG_P (target))
6658 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6659 else
6660 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6661 cleared = 1;
6664 /* Inform later passes that the old value is dead. */
6665 if (!cleared && !vector && REG_P (target))
6666 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6668 if (MEM_P (target))
6669 alias = MEM_ALIAS_SET (target);
6670 else
6671 alias = get_alias_set (elttype);
6673 /* Store each element of the constructor into the corresponding
6674 element of TARGET, determined by counting the elements. */
6675 for (idx = 0, i = 0;
6676 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6677 idx++, i += bitsize / elt_size)
6679 HOST_WIDE_INT eltpos;
6680 tree value = ce->value;
6682 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6683 if (cleared && initializer_zerop (value))
6684 continue;
6686 if (ce->index)
6687 eltpos = tree_to_uhwi (ce->index);
6688 else
6689 eltpos = i;
6691 if (vector)
6693 if (vec_vec_init_p)
6695 gcc_assert (ce->index == NULL_TREE);
6696 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
6697 eltpos = idx;
6699 else
6700 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6701 RTVEC_ELT (vector, eltpos) = expand_normal (value);
6703 else
6705 machine_mode value_mode
6706 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6707 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
6708 bitpos = eltpos * elt_size;
6709 store_constructor_field (target, bitsize, bitpos, 0,
6710 bitregion_end, value_mode,
6711 value, cleared, alias, reverse);
6715 if (vector)
6716 emit_insn (GEN_FCN (icode) (target,
6717 gen_rtx_PARALLEL (GET_MODE (target),
6718 vector)));
6719 break;
6722 default:
6723 gcc_unreachable ();
6727 /* Store the value of EXP (an expression tree)
6728 into a subfield of TARGET which has mode MODE and occupies
6729 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6730 If MODE is VOIDmode, it means that we are storing into a bit-field.
6732 BITREGION_START is bitpos of the first bitfield in this region.
6733 BITREGION_END is the bitpos of the ending bitfield in this region.
6734 These two fields are 0, if the C++ memory model does not apply,
6735 or we are not interested in keeping track of bitfield regions.
6737 Always return const0_rtx unless we have something particular to
6738 return.
6740 ALIAS_SET is the alias set for the destination. This value will
6741 (in general) be different from that for TARGET, since TARGET is a
6742 reference to the containing structure.
6744 If NONTEMPORAL is true, try generating a nontemporal store.
6746 If REVERSE is true, the store is to be done in reverse order. */
6748 static rtx
6749 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6750 unsigned HOST_WIDE_INT bitregion_start,
6751 unsigned HOST_WIDE_INT bitregion_end,
6752 machine_mode mode, tree exp,
6753 alias_set_type alias_set, bool nontemporal, bool reverse)
6755 if (TREE_CODE (exp) == ERROR_MARK)
6756 return const0_rtx;
6758 /* If we have nothing to store, do nothing unless the expression has
6759 side-effects. */
6760 if (bitsize == 0)
6761 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6763 if (GET_CODE (target) == CONCAT)
6765 /* We're storing into a struct containing a single __complex. */
6767 gcc_assert (!bitpos);
6768 return store_expr (exp, target, 0, nontemporal, reverse);
6771 /* If the structure is in a register or if the component
6772 is a bit field, we cannot use addressing to access it.
6773 Use bit-field techniques or SUBREG to store in it. */
6775 if (mode == VOIDmode
6776 || (mode != BLKmode && ! direct_store[(int) mode]
6777 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6778 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6779 || REG_P (target)
6780 || GET_CODE (target) == SUBREG
6781 /* If the field isn't aligned enough to store as an ordinary memref,
6782 store it as a bit field. */
6783 || (mode != BLKmode
6784 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6785 || bitpos % GET_MODE_ALIGNMENT (mode))
6786 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
6787 || (bitpos % BITS_PER_UNIT != 0)))
6788 || (bitsize >= 0 && mode != BLKmode
6789 && GET_MODE_BITSIZE (mode) > bitsize)
6790 /* If the RHS and field are a constant size and the size of the
6791 RHS isn't the same size as the bitfield, we must use bitfield
6792 operations. */
6793 || (bitsize >= 0
6794 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6795 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0
6796 /* Except for initialization of full bytes from a CONSTRUCTOR, which
6797 we will handle specially below. */
6798 && !(TREE_CODE (exp) == CONSTRUCTOR
6799 && bitsize % BITS_PER_UNIT == 0)
6800 /* And except for bitwise copying of TREE_ADDRESSABLE types,
6801 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
6802 includes some extra padding. store_expr / expand_expr will in
6803 that case call get_inner_reference that will have the bitsize
6804 we check here and thus the block move will not clobber the
6805 padding that shouldn't be clobbered. In the future we could
6806 replace the TREE_ADDRESSABLE check with a check that
6807 get_base_address needs to live in memory. */
6808 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6809 || TREE_CODE (exp) != COMPONENT_REF
6810 || TREE_CODE (DECL_SIZE (TREE_OPERAND (exp, 1))) != INTEGER_CST
6811 || (bitsize % BITS_PER_UNIT != 0)
6812 || (bitpos % BITS_PER_UNIT != 0)
6813 || (compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)), bitsize)
6814 != 0)))
6815 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6816 decl we must use bitfield operations. */
6817 || (bitsize >= 0
6818 && TREE_CODE (exp) == MEM_REF
6819 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6820 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6821 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6822 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6824 rtx temp;
6825 gimple *nop_def;
6827 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6828 implies a mask operation. If the precision is the same size as
6829 the field we're storing into, that mask is redundant. This is
6830 particularly common with bit field assignments generated by the
6831 C front end. */
6832 nop_def = get_def_for_expr (exp, NOP_EXPR);
6833 if (nop_def)
6835 tree type = TREE_TYPE (exp);
6836 if (INTEGRAL_TYPE_P (type)
6837 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6838 && bitsize == TYPE_PRECISION (type))
6840 tree op = gimple_assign_rhs1 (nop_def);
6841 type = TREE_TYPE (op);
6842 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6843 exp = op;
6847 temp = expand_normal (exp);
6849 /* Handle calls that return values in multiple non-contiguous locations.
6850 The Irix 6 ABI has examples of this. */
6851 if (GET_CODE (temp) == PARALLEL)
6853 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6854 scalar_int_mode temp_mode
6855 = smallest_int_mode_for_size (size * BITS_PER_UNIT);
6856 rtx temp_target = gen_reg_rtx (temp_mode);
6857 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6858 temp = temp_target;
6861 /* Handle calls that return BLKmode values in registers. */
6862 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6864 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6865 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6866 temp = temp_target;
6869 /* If the value has aggregate type and an integral mode then, if BITSIZE
6870 is narrower than this mode and this is for big-endian data, we first
6871 need to put the value into the low-order bits for store_bit_field,
6872 except when MODE is BLKmode and BITSIZE larger than the word size
6873 (see the handling of fields larger than a word in store_bit_field).
6874 Moreover, the field may be not aligned on a byte boundary; in this
6875 case, if it has reverse storage order, it needs to be accessed as a
6876 scalar field with reverse storage order and we must first put the
6877 value into target order. */
6878 scalar_int_mode temp_mode;
6879 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
6880 && is_int_mode (GET_MODE (temp), &temp_mode))
6882 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
6884 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
6886 if (reverse)
6887 temp = flip_storage_order (temp_mode, temp);
6889 if (bitsize < size
6890 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
6891 && !(mode == BLKmode && bitsize > BITS_PER_WORD))
6892 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
6893 size - bitsize, NULL_RTX, 1);
6896 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6897 if (mode != VOIDmode && mode != BLKmode
6898 && mode != TYPE_MODE (TREE_TYPE (exp)))
6899 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6901 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
6902 and BITPOS must be aligned on a byte boundary. If so, we simply do
6903 a block copy. Likewise for a BLKmode-like TARGET. */
6904 if (GET_MODE (temp) == BLKmode
6905 && (GET_MODE (target) == BLKmode
6906 || (MEM_P (target)
6907 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6908 && (bitpos % BITS_PER_UNIT) == 0
6909 && (bitsize % BITS_PER_UNIT) == 0)))
6911 gcc_assert (MEM_P (target) && MEM_P (temp)
6912 && (bitpos % BITS_PER_UNIT) == 0);
6914 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6915 emit_block_move (target, temp,
6916 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6917 / BITS_PER_UNIT),
6918 BLOCK_OP_NORMAL);
6920 return const0_rtx;
6923 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
6924 word size, we need to load the value (see again store_bit_field). */
6925 if (GET_MODE (temp) == BLKmode && bitsize <= BITS_PER_WORD)
6927 scalar_int_mode temp_mode = smallest_int_mode_for_size (bitsize);
6928 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
6929 temp_mode, false, NULL);
6932 /* Store the value in the bitfield. */
6933 store_bit_field (target, bitsize, bitpos,
6934 bitregion_start, bitregion_end,
6935 mode, temp, reverse);
6937 return const0_rtx;
6939 else
6941 /* Now build a reference to just the desired component. */
6942 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6944 if (to_rtx == target)
6945 to_rtx = copy_rtx (to_rtx);
6947 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6948 set_mem_alias_set (to_rtx, alias_set);
6950 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
6951 into a target smaller than its type; handle that case now. */
6952 if (TREE_CODE (exp) == CONSTRUCTOR && bitsize >= 0)
6954 gcc_assert (bitsize % BITS_PER_UNIT == 0);
6955 store_constructor (exp, to_rtx, 0, bitsize / BITS_PER_UNIT, reverse);
6956 return to_rtx;
6959 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
6963 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6964 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6965 codes and find the ultimate containing object, which we return.
6967 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6968 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
6969 storage order of the field.
6970 If the position of the field is variable, we store a tree
6971 giving the variable offset (in units) in *POFFSET.
6972 This offset is in addition to the bit position.
6973 If the position is not variable, we store 0 in *POFFSET.
6975 If any of the extraction expressions is volatile,
6976 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6978 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6979 Otherwise, it is a mode that can be used to access the field.
6981 If the field describes a variable-sized object, *PMODE is set to
6982 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6983 this case, but the address of the object can be found. */
6985 tree
6986 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6987 HOST_WIDE_INT *pbitpos, tree *poffset,
6988 machine_mode *pmode, int *punsignedp,
6989 int *preversep, int *pvolatilep)
6991 tree size_tree = 0;
6992 machine_mode mode = VOIDmode;
6993 bool blkmode_bitfield = false;
6994 tree offset = size_zero_node;
6995 offset_int bit_offset = 0;
6997 /* First get the mode, signedness, storage order and size. We do this from
6998 just the outermost expression. */
6999 *pbitsize = -1;
7000 if (TREE_CODE (exp) == COMPONENT_REF)
7002 tree field = TREE_OPERAND (exp, 1);
7003 size_tree = DECL_SIZE (field);
7004 if (flag_strict_volatile_bitfields > 0
7005 && TREE_THIS_VOLATILE (exp)
7006 && DECL_BIT_FIELD_TYPE (field)
7007 && DECL_MODE (field) != BLKmode)
7008 /* Volatile bitfields should be accessed in the mode of the
7009 field's type, not the mode computed based on the bit
7010 size. */
7011 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7012 else if (!DECL_BIT_FIELD (field))
7013 mode = DECL_MODE (field);
7014 else if (DECL_MODE (field) == BLKmode)
7015 blkmode_bitfield = true;
7017 *punsignedp = DECL_UNSIGNED (field);
7019 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7021 size_tree = TREE_OPERAND (exp, 1);
7022 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7023 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7025 /* For vector types, with the correct size of access, use the mode of
7026 inner type. */
7027 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7028 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7029 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7030 mode = TYPE_MODE (TREE_TYPE (exp));
7032 else
7034 mode = TYPE_MODE (TREE_TYPE (exp));
7035 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7037 if (mode == BLKmode)
7038 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7039 else
7040 *pbitsize = GET_MODE_BITSIZE (mode);
7043 if (size_tree != 0)
7045 if (! tree_fits_uhwi_p (size_tree))
7046 mode = BLKmode, *pbitsize = -1;
7047 else
7048 *pbitsize = tree_to_uhwi (size_tree);
7051 *preversep = reverse_storage_order_for_component_p (exp);
7053 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7054 and find the ultimate containing object. */
7055 while (1)
7057 switch (TREE_CODE (exp))
7059 case BIT_FIELD_REF:
7060 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
7061 break;
7063 case COMPONENT_REF:
7065 tree field = TREE_OPERAND (exp, 1);
7066 tree this_offset = component_ref_field_offset (exp);
7068 /* If this field hasn't been filled in yet, don't go past it.
7069 This should only happen when folding expressions made during
7070 type construction. */
7071 if (this_offset == 0)
7072 break;
7074 offset = size_binop (PLUS_EXPR, offset, this_offset);
7075 bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
7077 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7079 break;
7081 case ARRAY_REF:
7082 case ARRAY_RANGE_REF:
7084 tree index = TREE_OPERAND (exp, 1);
7085 tree low_bound = array_ref_low_bound (exp);
7086 tree unit_size = array_ref_element_size (exp);
7088 /* We assume all arrays have sizes that are a multiple of a byte.
7089 First subtract the lower bound, if any, in the type of the
7090 index, then convert to sizetype and multiply by the size of
7091 the array element. */
7092 if (! integer_zerop (low_bound))
7093 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7094 index, low_bound);
7096 offset = size_binop (PLUS_EXPR, offset,
7097 size_binop (MULT_EXPR,
7098 fold_convert (sizetype, index),
7099 unit_size));
7101 break;
7103 case REALPART_EXPR:
7104 break;
7106 case IMAGPART_EXPR:
7107 bit_offset += *pbitsize;
7108 break;
7110 case VIEW_CONVERT_EXPR:
7111 break;
7113 case MEM_REF:
7114 /* Hand back the decl for MEM[&decl, off]. */
7115 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7117 tree off = TREE_OPERAND (exp, 1);
7118 if (!integer_zerop (off))
7120 offset_int boff, coff = mem_ref_offset (exp);
7121 boff = coff << LOG2_BITS_PER_UNIT;
7122 bit_offset += boff;
7124 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7126 goto done;
7128 default:
7129 goto done;
7132 /* If any reference in the chain is volatile, the effect is volatile. */
7133 if (TREE_THIS_VOLATILE (exp))
7134 *pvolatilep = 1;
7136 exp = TREE_OPERAND (exp, 0);
7138 done:
7140 /* If OFFSET is constant, see if we can return the whole thing as a
7141 constant bit position. Make sure to handle overflow during
7142 this conversion. */
7143 if (TREE_CODE (offset) == INTEGER_CST)
7145 offset_int tem = wi::sext (wi::to_offset (offset),
7146 TYPE_PRECISION (sizetype));
7147 tem <<= LOG2_BITS_PER_UNIT;
7148 tem += bit_offset;
7149 if (wi::fits_shwi_p (tem))
7151 *pbitpos = tem.to_shwi ();
7152 *poffset = offset = NULL_TREE;
7156 /* Otherwise, split it up. */
7157 if (offset)
7159 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7160 if (wi::neg_p (bit_offset) || !wi::fits_shwi_p (bit_offset))
7162 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
7163 offset_int tem = bit_offset.and_not (mask);
7164 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
7165 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
7166 bit_offset -= tem;
7167 tem >>= LOG2_BITS_PER_UNIT;
7168 offset = size_binop (PLUS_EXPR, offset,
7169 wide_int_to_tree (sizetype, tem));
7172 *pbitpos = bit_offset.to_shwi ();
7173 *poffset = offset;
7176 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7177 if (mode == VOIDmode
7178 && blkmode_bitfield
7179 && (*pbitpos % BITS_PER_UNIT) == 0
7180 && (*pbitsize % BITS_PER_UNIT) == 0)
7181 *pmode = BLKmode;
7182 else
7183 *pmode = mode;
7185 return exp;
7188 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7190 static unsigned HOST_WIDE_INT
7191 target_align (const_tree target)
7193 /* We might have a chain of nested references with intermediate misaligning
7194 bitfields components, so need to recurse to find out. */
7196 unsigned HOST_WIDE_INT this_align, outer_align;
7198 switch (TREE_CODE (target))
7200 case BIT_FIELD_REF:
7201 return 1;
7203 case COMPONENT_REF:
7204 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7205 outer_align = target_align (TREE_OPERAND (target, 0));
7206 return MIN (this_align, outer_align);
7208 case ARRAY_REF:
7209 case ARRAY_RANGE_REF:
7210 this_align = TYPE_ALIGN (TREE_TYPE (target));
7211 outer_align = target_align (TREE_OPERAND (target, 0));
7212 return MIN (this_align, outer_align);
7214 CASE_CONVERT:
7215 case NON_LVALUE_EXPR:
7216 case VIEW_CONVERT_EXPR:
7217 this_align = TYPE_ALIGN (TREE_TYPE (target));
7218 outer_align = target_align (TREE_OPERAND (target, 0));
7219 return MAX (this_align, outer_align);
7221 default:
7222 return TYPE_ALIGN (TREE_TYPE (target));
7227 /* Given an rtx VALUE that may contain additions and multiplications, return
7228 an equivalent value that just refers to a register, memory, or constant.
7229 This is done by generating instructions to perform the arithmetic and
7230 returning a pseudo-register containing the value.
7232 The returned value may be a REG, SUBREG, MEM or constant. */
7235 force_operand (rtx value, rtx target)
7237 rtx op1, op2;
7238 /* Use subtarget as the target for operand 0 of a binary operation. */
7239 rtx subtarget = get_subtarget (target);
7240 enum rtx_code code = GET_CODE (value);
7242 /* Check for subreg applied to an expression produced by loop optimizer. */
7243 if (code == SUBREG
7244 && !REG_P (SUBREG_REG (value))
7245 && !MEM_P (SUBREG_REG (value)))
7247 value
7248 = simplify_gen_subreg (GET_MODE (value),
7249 force_reg (GET_MODE (SUBREG_REG (value)),
7250 force_operand (SUBREG_REG (value),
7251 NULL_RTX)),
7252 GET_MODE (SUBREG_REG (value)),
7253 SUBREG_BYTE (value));
7254 code = GET_CODE (value);
7257 /* Check for a PIC address load. */
7258 if ((code == PLUS || code == MINUS)
7259 && XEXP (value, 0) == pic_offset_table_rtx
7260 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7261 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7262 || GET_CODE (XEXP (value, 1)) == CONST))
7264 if (!subtarget)
7265 subtarget = gen_reg_rtx (GET_MODE (value));
7266 emit_move_insn (subtarget, value);
7267 return subtarget;
7270 if (ARITHMETIC_P (value))
7272 op2 = XEXP (value, 1);
7273 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7274 subtarget = 0;
7275 if (code == MINUS && CONST_INT_P (op2))
7277 code = PLUS;
7278 op2 = negate_rtx (GET_MODE (value), op2);
7281 /* Check for an addition with OP2 a constant integer and our first
7282 operand a PLUS of a virtual register and something else. In that
7283 case, we want to emit the sum of the virtual register and the
7284 constant first and then add the other value. This allows virtual
7285 register instantiation to simply modify the constant rather than
7286 creating another one around this addition. */
7287 if (code == PLUS && CONST_INT_P (op2)
7288 && GET_CODE (XEXP (value, 0)) == PLUS
7289 && REG_P (XEXP (XEXP (value, 0), 0))
7290 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7291 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7293 rtx temp = expand_simple_binop (GET_MODE (value), code,
7294 XEXP (XEXP (value, 0), 0), op2,
7295 subtarget, 0, OPTAB_LIB_WIDEN);
7296 return expand_simple_binop (GET_MODE (value), code, temp,
7297 force_operand (XEXP (XEXP (value,
7298 0), 1), 0),
7299 target, 0, OPTAB_LIB_WIDEN);
7302 op1 = force_operand (XEXP (value, 0), subtarget);
7303 op2 = force_operand (op2, NULL_RTX);
7304 switch (code)
7306 case MULT:
7307 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7308 case DIV:
7309 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7310 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7311 target, 1, OPTAB_LIB_WIDEN);
7312 else
7313 return expand_divmod (0,
7314 FLOAT_MODE_P (GET_MODE (value))
7315 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7316 GET_MODE (value), op1, op2, target, 0);
7317 case MOD:
7318 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7319 target, 0);
7320 case UDIV:
7321 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7322 target, 1);
7323 case UMOD:
7324 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7325 target, 1);
7326 case ASHIFTRT:
7327 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7328 target, 0, OPTAB_LIB_WIDEN);
7329 default:
7330 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7331 target, 1, OPTAB_LIB_WIDEN);
7334 if (UNARY_P (value))
7336 if (!target)
7337 target = gen_reg_rtx (GET_MODE (value));
7338 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7339 switch (code)
7341 case ZERO_EXTEND:
7342 case SIGN_EXTEND:
7343 case TRUNCATE:
7344 case FLOAT_EXTEND:
7345 case FLOAT_TRUNCATE:
7346 convert_move (target, op1, code == ZERO_EXTEND);
7347 return target;
7349 case FIX:
7350 case UNSIGNED_FIX:
7351 expand_fix (target, op1, code == UNSIGNED_FIX);
7352 return target;
7354 case FLOAT:
7355 case UNSIGNED_FLOAT:
7356 expand_float (target, op1, code == UNSIGNED_FLOAT);
7357 return target;
7359 default:
7360 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7364 #ifdef INSN_SCHEDULING
7365 /* On machines that have insn scheduling, we want all memory reference to be
7366 explicit, so we need to deal with such paradoxical SUBREGs. */
7367 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7368 value
7369 = simplify_gen_subreg (GET_MODE (value),
7370 force_reg (GET_MODE (SUBREG_REG (value)),
7371 force_operand (SUBREG_REG (value),
7372 NULL_RTX)),
7373 GET_MODE (SUBREG_REG (value)),
7374 SUBREG_BYTE (value));
7375 #endif
7377 return value;
7380 /* Subroutine of expand_expr: return nonzero iff there is no way that
7381 EXP can reference X, which is being modified. TOP_P is nonzero if this
7382 call is going to be used to determine whether we need a temporary
7383 for EXP, as opposed to a recursive call to this function.
7385 It is always safe for this routine to return zero since it merely
7386 searches for optimization opportunities. */
7389 safe_from_p (const_rtx x, tree exp, int top_p)
7391 rtx exp_rtl = 0;
7392 int i, nops;
7394 if (x == 0
7395 /* If EXP has varying size, we MUST use a target since we currently
7396 have no way of allocating temporaries of variable size
7397 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7398 So we assume here that something at a higher level has prevented a
7399 clash. This is somewhat bogus, but the best we can do. Only
7400 do this when X is BLKmode and when we are at the top level. */
7401 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7402 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7403 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7404 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7405 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7406 != INTEGER_CST)
7407 && GET_MODE (x) == BLKmode)
7408 /* If X is in the outgoing argument area, it is always safe. */
7409 || (MEM_P (x)
7410 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7411 || (GET_CODE (XEXP (x, 0)) == PLUS
7412 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7413 return 1;
7415 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7416 find the underlying pseudo. */
7417 if (GET_CODE (x) == SUBREG)
7419 x = SUBREG_REG (x);
7420 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7421 return 0;
7424 /* Now look at our tree code and possibly recurse. */
7425 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7427 case tcc_declaration:
7428 exp_rtl = DECL_RTL_IF_SET (exp);
7429 break;
7431 case tcc_constant:
7432 return 1;
7434 case tcc_exceptional:
7435 if (TREE_CODE (exp) == TREE_LIST)
7437 while (1)
7439 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7440 return 0;
7441 exp = TREE_CHAIN (exp);
7442 if (!exp)
7443 return 1;
7444 if (TREE_CODE (exp) != TREE_LIST)
7445 return safe_from_p (x, exp, 0);
7448 else if (TREE_CODE (exp) == CONSTRUCTOR)
7450 constructor_elt *ce;
7451 unsigned HOST_WIDE_INT idx;
7453 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7454 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7455 || !safe_from_p (x, ce->value, 0))
7456 return 0;
7457 return 1;
7459 else if (TREE_CODE (exp) == ERROR_MARK)
7460 return 1; /* An already-visited SAVE_EXPR? */
7461 else
7462 return 0;
7464 case tcc_statement:
7465 /* The only case we look at here is the DECL_INITIAL inside a
7466 DECL_EXPR. */
7467 return (TREE_CODE (exp) != DECL_EXPR
7468 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7469 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7470 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7472 case tcc_binary:
7473 case tcc_comparison:
7474 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7475 return 0;
7476 /* Fall through. */
7478 case tcc_unary:
7479 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7481 case tcc_expression:
7482 case tcc_reference:
7483 case tcc_vl_exp:
7484 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7485 the expression. If it is set, we conflict iff we are that rtx or
7486 both are in memory. Otherwise, we check all operands of the
7487 expression recursively. */
7489 switch (TREE_CODE (exp))
7491 case ADDR_EXPR:
7492 /* If the operand is static or we are static, we can't conflict.
7493 Likewise if we don't conflict with the operand at all. */
7494 if (staticp (TREE_OPERAND (exp, 0))
7495 || TREE_STATIC (exp)
7496 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7497 return 1;
7499 /* Otherwise, the only way this can conflict is if we are taking
7500 the address of a DECL a that address if part of X, which is
7501 very rare. */
7502 exp = TREE_OPERAND (exp, 0);
7503 if (DECL_P (exp))
7505 if (!DECL_RTL_SET_P (exp)
7506 || !MEM_P (DECL_RTL (exp)))
7507 return 0;
7508 else
7509 exp_rtl = XEXP (DECL_RTL (exp), 0);
7511 break;
7513 case MEM_REF:
7514 if (MEM_P (x)
7515 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7516 get_alias_set (exp)))
7517 return 0;
7518 break;
7520 case CALL_EXPR:
7521 /* Assume that the call will clobber all hard registers and
7522 all of memory. */
7523 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7524 || MEM_P (x))
7525 return 0;
7526 break;
7528 case WITH_CLEANUP_EXPR:
7529 case CLEANUP_POINT_EXPR:
7530 /* Lowered by gimplify.c. */
7531 gcc_unreachable ();
7533 case SAVE_EXPR:
7534 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7536 default:
7537 break;
7540 /* If we have an rtx, we do not need to scan our operands. */
7541 if (exp_rtl)
7542 break;
7544 nops = TREE_OPERAND_LENGTH (exp);
7545 for (i = 0; i < nops; i++)
7546 if (TREE_OPERAND (exp, i) != 0
7547 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7548 return 0;
7550 break;
7552 case tcc_type:
7553 /* Should never get a type here. */
7554 gcc_unreachable ();
7557 /* If we have an rtl, find any enclosed object. Then see if we conflict
7558 with it. */
7559 if (exp_rtl)
7561 if (GET_CODE (exp_rtl) == SUBREG)
7563 exp_rtl = SUBREG_REG (exp_rtl);
7564 if (REG_P (exp_rtl)
7565 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7566 return 0;
7569 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7570 are memory and they conflict. */
7571 return ! (rtx_equal_p (x, exp_rtl)
7572 || (MEM_P (x) && MEM_P (exp_rtl)
7573 && true_dependence (exp_rtl, VOIDmode, x)));
7576 /* If we reach here, it is safe. */
7577 return 1;
7581 /* Return the highest power of two that EXP is known to be a multiple of.
7582 This is used in updating alignment of MEMs in array references. */
7584 unsigned HOST_WIDE_INT
7585 highest_pow2_factor (const_tree exp)
7587 unsigned HOST_WIDE_INT ret;
7588 int trailing_zeros = tree_ctz (exp);
7589 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7590 return BIGGEST_ALIGNMENT;
7591 ret = HOST_WIDE_INT_1U << trailing_zeros;
7592 if (ret > BIGGEST_ALIGNMENT)
7593 return BIGGEST_ALIGNMENT;
7594 return ret;
7597 /* Similar, except that the alignment requirements of TARGET are
7598 taken into account. Assume it is at least as aligned as its
7599 type, unless it is a COMPONENT_REF in which case the layout of
7600 the structure gives the alignment. */
7602 static unsigned HOST_WIDE_INT
7603 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7605 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7606 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7608 return MAX (factor, talign);
7611 /* Convert the tree comparison code TCODE to the rtl one where the
7612 signedness is UNSIGNEDP. */
7614 static enum rtx_code
7615 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7617 enum rtx_code code;
7618 switch (tcode)
7620 case EQ_EXPR:
7621 code = EQ;
7622 break;
7623 case NE_EXPR:
7624 code = NE;
7625 break;
7626 case LT_EXPR:
7627 code = unsignedp ? LTU : LT;
7628 break;
7629 case LE_EXPR:
7630 code = unsignedp ? LEU : LE;
7631 break;
7632 case GT_EXPR:
7633 code = unsignedp ? GTU : GT;
7634 break;
7635 case GE_EXPR:
7636 code = unsignedp ? GEU : GE;
7637 break;
7638 case UNORDERED_EXPR:
7639 code = UNORDERED;
7640 break;
7641 case ORDERED_EXPR:
7642 code = ORDERED;
7643 break;
7644 case UNLT_EXPR:
7645 code = UNLT;
7646 break;
7647 case UNLE_EXPR:
7648 code = UNLE;
7649 break;
7650 case UNGT_EXPR:
7651 code = UNGT;
7652 break;
7653 case UNGE_EXPR:
7654 code = UNGE;
7655 break;
7656 case UNEQ_EXPR:
7657 code = UNEQ;
7658 break;
7659 case LTGT_EXPR:
7660 code = LTGT;
7661 break;
7663 default:
7664 gcc_unreachable ();
7666 return code;
7669 /* Subroutine of expand_expr. Expand the two operands of a binary
7670 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7671 The value may be stored in TARGET if TARGET is nonzero. The
7672 MODIFIER argument is as documented by expand_expr. */
7674 void
7675 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7676 enum expand_modifier modifier)
7678 if (! safe_from_p (target, exp1, 1))
7679 target = 0;
7680 if (operand_equal_p (exp0, exp1, 0))
7682 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7683 *op1 = copy_rtx (*op0);
7685 else
7687 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7688 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7693 /* Return a MEM that contains constant EXP. DEFER is as for
7694 output_constant_def and MODIFIER is as for expand_expr. */
7696 static rtx
7697 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7699 rtx mem;
7701 mem = output_constant_def (exp, defer);
7702 if (modifier != EXPAND_INITIALIZER)
7703 mem = use_anchored_address (mem);
7704 return mem;
7707 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7708 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7710 static rtx
7711 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
7712 enum expand_modifier modifier, addr_space_t as)
7714 rtx result, subtarget;
7715 tree inner, offset;
7716 HOST_WIDE_INT bitsize, bitpos;
7717 int unsignedp, reversep, volatilep = 0;
7718 machine_mode mode1;
7720 /* If we are taking the address of a constant and are at the top level,
7721 we have to use output_constant_def since we can't call force_const_mem
7722 at top level. */
7723 /* ??? This should be considered a front-end bug. We should not be
7724 generating ADDR_EXPR of something that isn't an LVALUE. The only
7725 exception here is STRING_CST. */
7726 if (CONSTANT_CLASS_P (exp))
7728 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7729 if (modifier < EXPAND_SUM)
7730 result = force_operand (result, target);
7731 return result;
7734 /* Everything must be something allowed by is_gimple_addressable. */
7735 switch (TREE_CODE (exp))
7737 case INDIRECT_REF:
7738 /* This case will happen via recursion for &a->b. */
7739 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7741 case MEM_REF:
7743 tree tem = TREE_OPERAND (exp, 0);
7744 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7745 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7746 return expand_expr (tem, target, tmode, modifier);
7749 case CONST_DECL:
7750 /* Expand the initializer like constants above. */
7751 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7752 0, modifier), 0);
7753 if (modifier < EXPAND_SUM)
7754 result = force_operand (result, target);
7755 return result;
7757 case REALPART_EXPR:
7758 /* The real part of the complex number is always first, therefore
7759 the address is the same as the address of the parent object. */
7760 offset = 0;
7761 bitpos = 0;
7762 inner = TREE_OPERAND (exp, 0);
7763 break;
7765 case IMAGPART_EXPR:
7766 /* The imaginary part of the complex number is always second.
7767 The expression is therefore always offset by the size of the
7768 scalar type. */
7769 offset = 0;
7770 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
7771 inner = TREE_OPERAND (exp, 0);
7772 break;
7774 case COMPOUND_LITERAL_EXPR:
7775 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7776 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7777 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7778 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7779 the initializers aren't gimplified. */
7780 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7781 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7782 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7783 target, tmode, modifier, as);
7784 /* FALLTHRU */
7785 default:
7786 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7787 expand_expr, as that can have various side effects; LABEL_DECLs for
7788 example, may not have their DECL_RTL set yet. Expand the rtl of
7789 CONSTRUCTORs too, which should yield a memory reference for the
7790 constructor's contents. Assume language specific tree nodes can
7791 be expanded in some interesting way. */
7792 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7793 if (DECL_P (exp)
7794 || TREE_CODE (exp) == CONSTRUCTOR
7795 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7797 result = expand_expr (exp, target, tmode,
7798 modifier == EXPAND_INITIALIZER
7799 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7801 /* If the DECL isn't in memory, then the DECL wasn't properly
7802 marked TREE_ADDRESSABLE, which will be either a front-end
7803 or a tree optimizer bug. */
7805 gcc_assert (MEM_P (result));
7806 result = XEXP (result, 0);
7808 /* ??? Is this needed anymore? */
7809 if (DECL_P (exp))
7810 TREE_USED (exp) = 1;
7812 if (modifier != EXPAND_INITIALIZER
7813 && modifier != EXPAND_CONST_ADDRESS
7814 && modifier != EXPAND_SUM)
7815 result = force_operand (result, target);
7816 return result;
7819 /* Pass FALSE as the last argument to get_inner_reference although
7820 we are expanding to RTL. The rationale is that we know how to
7821 handle "aligning nodes" here: we can just bypass them because
7822 they won't change the final object whose address will be returned
7823 (they actually exist only for that purpose). */
7824 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
7825 &unsignedp, &reversep, &volatilep);
7826 break;
7829 /* We must have made progress. */
7830 gcc_assert (inner != exp);
7832 subtarget = offset || bitpos ? NULL_RTX : target;
7833 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7834 inner alignment, force the inner to be sufficiently aligned. */
7835 if (CONSTANT_CLASS_P (inner)
7836 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7838 inner = copy_node (inner);
7839 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7840 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
7841 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7843 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7845 if (offset)
7847 rtx tmp;
7849 if (modifier != EXPAND_NORMAL)
7850 result = force_operand (result, NULL);
7851 tmp = expand_expr (offset, NULL_RTX, tmode,
7852 modifier == EXPAND_INITIALIZER
7853 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7855 /* expand_expr is allowed to return an object in a mode other
7856 than TMODE. If it did, we need to convert. */
7857 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
7858 tmp = convert_modes (tmode, GET_MODE (tmp),
7859 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
7860 result = convert_memory_address_addr_space (tmode, result, as);
7861 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7863 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7864 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7865 else
7867 subtarget = bitpos ? NULL_RTX : target;
7868 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7869 1, OPTAB_LIB_WIDEN);
7873 if (bitpos)
7875 /* Someone beforehand should have rejected taking the address
7876 of such an object. */
7877 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7879 result = convert_memory_address_addr_space (tmode, result, as);
7880 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7881 if (modifier < EXPAND_SUM)
7882 result = force_operand (result, target);
7885 return result;
7888 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7889 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7891 static rtx
7892 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
7893 enum expand_modifier modifier)
7895 addr_space_t as = ADDR_SPACE_GENERIC;
7896 scalar_int_mode address_mode = Pmode;
7897 scalar_int_mode pointer_mode = ptr_mode;
7898 machine_mode rmode;
7899 rtx result;
7901 /* Target mode of VOIDmode says "whatever's natural". */
7902 if (tmode == VOIDmode)
7903 tmode = TYPE_MODE (TREE_TYPE (exp));
7905 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7907 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7908 address_mode = targetm.addr_space.address_mode (as);
7909 pointer_mode = targetm.addr_space.pointer_mode (as);
7912 /* We can get called with some Weird Things if the user does silliness
7913 like "(short) &a". In that case, convert_memory_address won't do
7914 the right thing, so ignore the given target mode. */
7915 scalar_int_mode new_tmode = (tmode == pointer_mode
7916 ? pointer_mode
7917 : address_mode);
7919 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7920 new_tmode, modifier, as);
7922 /* Despite expand_expr claims concerning ignoring TMODE when not
7923 strictly convenient, stuff breaks if we don't honor it. Note
7924 that combined with the above, we only do this for pointer modes. */
7925 rmode = GET_MODE (result);
7926 if (rmode == VOIDmode)
7927 rmode = new_tmode;
7928 if (rmode != new_tmode)
7929 result = convert_memory_address_addr_space (new_tmode, result, as);
7931 return result;
7934 /* Generate code for computing CONSTRUCTOR EXP.
7935 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7936 is TRUE, instead of creating a temporary variable in memory
7937 NULL is returned and the caller needs to handle it differently. */
7939 static rtx
7940 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7941 bool avoid_temp_mem)
7943 tree type = TREE_TYPE (exp);
7944 machine_mode mode = TYPE_MODE (type);
7946 /* Try to avoid creating a temporary at all. This is possible
7947 if all of the initializer is zero.
7948 FIXME: try to handle all [0..255] initializers we can handle
7949 with memset. */
7950 if (TREE_STATIC (exp)
7951 && !TREE_ADDRESSABLE (exp)
7952 && target != 0 && mode == BLKmode
7953 && all_zeros_p (exp))
7955 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7956 return target;
7959 /* All elts simple constants => refer to a constant in memory. But
7960 if this is a non-BLKmode mode, let it store a field at a time
7961 since that should make a CONST_INT, CONST_WIDE_INT or
7962 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7963 use, it is best to store directly into the target unless the type
7964 is large enough that memcpy will be used. If we are making an
7965 initializer and all operands are constant, put it in memory as
7966 well.
7968 FIXME: Avoid trying to fill vector constructors piece-meal.
7969 Output them with output_constant_def below unless we're sure
7970 they're zeros. This should go away when vector initializers
7971 are treated like VECTOR_CST instead of arrays. */
7972 if ((TREE_STATIC (exp)
7973 && ((mode == BLKmode
7974 && ! (target != 0 && safe_from_p (target, exp, 1)))
7975 || TREE_ADDRESSABLE (exp)
7976 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7977 && (! can_move_by_pieces
7978 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7979 TYPE_ALIGN (type)))
7980 && ! mostly_zeros_p (exp))))
7981 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7982 && TREE_CONSTANT (exp)))
7984 rtx constructor;
7986 if (avoid_temp_mem)
7987 return NULL_RTX;
7989 constructor = expand_expr_constant (exp, 1, modifier);
7991 if (modifier != EXPAND_CONST_ADDRESS
7992 && modifier != EXPAND_INITIALIZER
7993 && modifier != EXPAND_SUM)
7994 constructor = validize_mem (constructor);
7996 return constructor;
7999 /* Handle calls that pass values in multiple non-contiguous
8000 locations. The Irix 6 ABI has examples of this. */
8001 if (target == 0 || ! safe_from_p (target, exp, 1)
8002 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
8004 if (avoid_temp_mem)
8005 return NULL_RTX;
8007 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8010 store_constructor (exp, target, 0, int_expr_size (exp), false);
8011 return target;
8015 /* expand_expr: generate code for computing expression EXP.
8016 An rtx for the computed value is returned. The value is never null.
8017 In the case of a void EXP, const0_rtx is returned.
8019 The value may be stored in TARGET if TARGET is nonzero.
8020 TARGET is just a suggestion; callers must assume that
8021 the rtx returned may not be the same as TARGET.
8023 If TARGET is CONST0_RTX, it means that the value will be ignored.
8025 If TMODE is not VOIDmode, it suggests generating the
8026 result in mode TMODE. But this is done only when convenient.
8027 Otherwise, TMODE is ignored and the value generated in its natural mode.
8028 TMODE is just a suggestion; callers must assume that
8029 the rtx returned may not have mode TMODE.
8031 Note that TARGET may have neither TMODE nor MODE. In that case, it
8032 probably will not be used.
8034 If MODIFIER is EXPAND_SUM then when EXP is an addition
8035 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8036 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8037 products as above, or REG or MEM, or constant.
8038 Ordinarily in such cases we would output mul or add instructions
8039 and then return a pseudo reg containing the sum.
8041 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8042 it also marks a label as absolutely required (it can't be dead).
8043 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8044 This is used for outputting expressions used in initializers.
8046 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8047 with a constant address even if that address is not normally legitimate.
8048 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8050 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8051 a call parameter. Such targets require special care as we haven't yet
8052 marked TARGET so that it's safe from being trashed by libcalls. We
8053 don't want to use TARGET for anything but the final result;
8054 Intermediate values must go elsewhere. Additionally, calls to
8055 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8057 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8058 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8059 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8060 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8061 recursively.
8063 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8064 In this case, we don't adjust a returned MEM rtx that wouldn't be
8065 sufficiently aligned for its mode; instead, it's up to the caller
8066 to deal with it afterwards. This is used to make sure that unaligned
8067 base objects for which out-of-bounds accesses are supported, for
8068 example record types with trailing arrays, aren't realigned behind
8069 the back of the caller.
8070 The normal operating mode is to pass FALSE for this parameter. */
8073 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8074 enum expand_modifier modifier, rtx *alt_rtl,
8075 bool inner_reference_p)
8077 rtx ret;
8079 /* Handle ERROR_MARK before anybody tries to access its type. */
8080 if (TREE_CODE (exp) == ERROR_MARK
8081 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8083 ret = CONST0_RTX (tmode);
8084 return ret ? ret : const0_rtx;
8087 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8088 inner_reference_p);
8089 return ret;
8092 /* Try to expand the conditional expression which is represented by
8093 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8094 return the rtl reg which represents the result. Otherwise return
8095 NULL_RTX. */
8097 static rtx
8098 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8099 tree treeop1 ATTRIBUTE_UNUSED,
8100 tree treeop2 ATTRIBUTE_UNUSED)
8102 rtx insn;
8103 rtx op00, op01, op1, op2;
8104 enum rtx_code comparison_code;
8105 machine_mode comparison_mode;
8106 gimple *srcstmt;
8107 rtx temp;
8108 tree type = TREE_TYPE (treeop1);
8109 int unsignedp = TYPE_UNSIGNED (type);
8110 machine_mode mode = TYPE_MODE (type);
8111 machine_mode orig_mode = mode;
8112 static bool expanding_cond_expr_using_cmove = false;
8114 /* Conditional move expansion can end up TERing two operands which,
8115 when recursively hitting conditional expressions can result in
8116 exponential behavior if the cmove expansion ultimatively fails.
8117 It's hardly profitable to TER a cmove into a cmove so avoid doing
8118 that by failing early if we end up recursing. */
8119 if (expanding_cond_expr_using_cmove)
8120 return NULL_RTX;
8122 /* If we cannot do a conditional move on the mode, try doing it
8123 with the promoted mode. */
8124 if (!can_conditionally_move_p (mode))
8126 mode = promote_mode (type, mode, &unsignedp);
8127 if (!can_conditionally_move_p (mode))
8128 return NULL_RTX;
8129 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8131 else
8132 temp = assign_temp (type, 0, 1);
8134 expanding_cond_expr_using_cmove = true;
8135 start_sequence ();
8136 expand_operands (treeop1, treeop2,
8137 temp, &op1, &op2, EXPAND_NORMAL);
8139 if (TREE_CODE (treeop0) == SSA_NAME
8140 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8142 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8143 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8144 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8145 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8146 comparison_mode = TYPE_MODE (type);
8147 unsignedp = TYPE_UNSIGNED (type);
8148 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8150 else if (COMPARISON_CLASS_P (treeop0))
8152 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8153 enum tree_code cmpcode = TREE_CODE (treeop0);
8154 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8155 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8156 unsignedp = TYPE_UNSIGNED (type);
8157 comparison_mode = TYPE_MODE (type);
8158 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8160 else
8162 op00 = expand_normal (treeop0);
8163 op01 = const0_rtx;
8164 comparison_code = NE;
8165 comparison_mode = GET_MODE (op00);
8166 if (comparison_mode == VOIDmode)
8167 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8169 expanding_cond_expr_using_cmove = false;
8171 if (GET_MODE (op1) != mode)
8172 op1 = gen_lowpart (mode, op1);
8174 if (GET_MODE (op2) != mode)
8175 op2 = gen_lowpart (mode, op2);
8177 /* Try to emit the conditional move. */
8178 insn = emit_conditional_move (temp, comparison_code,
8179 op00, op01, comparison_mode,
8180 op1, op2, mode,
8181 unsignedp);
8183 /* If we could do the conditional move, emit the sequence,
8184 and return. */
8185 if (insn)
8187 rtx_insn *seq = get_insns ();
8188 end_sequence ();
8189 emit_insn (seq);
8190 return convert_modes (orig_mode, mode, temp, 0);
8193 /* Otherwise discard the sequence and fall back to code with
8194 branches. */
8195 end_sequence ();
8196 return NULL_RTX;
8200 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8201 enum expand_modifier modifier)
8203 rtx op0, op1, op2, temp;
8204 rtx_code_label *lab;
8205 tree type;
8206 int unsignedp;
8207 machine_mode mode;
8208 scalar_int_mode int_mode;
8209 enum tree_code code = ops->code;
8210 optab this_optab;
8211 rtx subtarget, original_target;
8212 int ignore;
8213 bool reduce_bit_field;
8214 location_t loc = ops->location;
8215 tree treeop0, treeop1, treeop2;
8216 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8217 ? reduce_to_bit_field_precision ((expr), \
8218 target, \
8219 type) \
8220 : (expr))
8222 type = ops->type;
8223 mode = TYPE_MODE (type);
8224 unsignedp = TYPE_UNSIGNED (type);
8226 treeop0 = ops->op0;
8227 treeop1 = ops->op1;
8228 treeop2 = ops->op2;
8230 /* We should be called only on simple (binary or unary) expressions,
8231 exactly those that are valid in gimple expressions that aren't
8232 GIMPLE_SINGLE_RHS (or invalid). */
8233 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8234 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8235 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8237 ignore = (target == const0_rtx
8238 || ((CONVERT_EXPR_CODE_P (code)
8239 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8240 && TREE_CODE (type) == VOID_TYPE));
8242 /* We should be called only if we need the result. */
8243 gcc_assert (!ignore);
8245 /* An operation in what may be a bit-field type needs the
8246 result to be reduced to the precision of the bit-field type,
8247 which is narrower than that of the type's mode. */
8248 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8249 && !type_has_mode_precision_p (type));
8251 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8252 target = 0;
8254 /* Use subtarget as the target for operand 0 of a binary operation. */
8255 subtarget = get_subtarget (target);
8256 original_target = target;
8258 switch (code)
8260 case NON_LVALUE_EXPR:
8261 case PAREN_EXPR:
8262 CASE_CONVERT:
8263 if (treeop0 == error_mark_node)
8264 return const0_rtx;
8266 if (TREE_CODE (type) == UNION_TYPE)
8268 tree valtype = TREE_TYPE (treeop0);
8270 /* If both input and output are BLKmode, this conversion isn't doing
8271 anything except possibly changing memory attribute. */
8272 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8274 rtx result = expand_expr (treeop0, target, tmode,
8275 modifier);
8277 result = copy_rtx (result);
8278 set_mem_attributes (result, type, 0);
8279 return result;
8282 if (target == 0)
8284 if (TYPE_MODE (type) != BLKmode)
8285 target = gen_reg_rtx (TYPE_MODE (type));
8286 else
8287 target = assign_temp (type, 1, 1);
8290 if (MEM_P (target))
8291 /* Store data into beginning of memory target. */
8292 store_expr (treeop0,
8293 adjust_address (target, TYPE_MODE (valtype), 0),
8294 modifier == EXPAND_STACK_PARM,
8295 false, TYPE_REVERSE_STORAGE_ORDER (type));
8297 else
8299 gcc_assert (REG_P (target)
8300 && !TYPE_REVERSE_STORAGE_ORDER (type));
8302 /* Store this field into a union of the proper type. */
8303 store_field (target,
8304 MIN ((int_size_in_bytes (TREE_TYPE
8305 (treeop0))
8306 * BITS_PER_UNIT),
8307 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8308 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8309 false, false);
8312 /* Return the entire union. */
8313 return target;
8316 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8318 op0 = expand_expr (treeop0, target, VOIDmode,
8319 modifier);
8321 /* If the signedness of the conversion differs and OP0 is
8322 a promoted SUBREG, clear that indication since we now
8323 have to do the proper extension. */
8324 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8325 && GET_CODE (op0) == SUBREG)
8326 SUBREG_PROMOTED_VAR_P (op0) = 0;
8328 return REDUCE_BIT_FIELD (op0);
8331 op0 = expand_expr (treeop0, NULL_RTX, mode,
8332 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8333 if (GET_MODE (op0) == mode)
8336 /* If OP0 is a constant, just convert it into the proper mode. */
8337 else if (CONSTANT_P (op0))
8339 tree inner_type = TREE_TYPE (treeop0);
8340 machine_mode inner_mode = GET_MODE (op0);
8342 if (inner_mode == VOIDmode)
8343 inner_mode = TYPE_MODE (inner_type);
8345 if (modifier == EXPAND_INITIALIZER)
8346 op0 = lowpart_subreg (mode, op0, inner_mode);
8347 else
8348 op0= convert_modes (mode, inner_mode, op0,
8349 TYPE_UNSIGNED (inner_type));
8352 else if (modifier == EXPAND_INITIALIZER)
8353 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8354 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8356 else if (target == 0)
8357 op0 = convert_to_mode (mode, op0,
8358 TYPE_UNSIGNED (TREE_TYPE
8359 (treeop0)));
8360 else
8362 convert_move (target, op0,
8363 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8364 op0 = target;
8367 return REDUCE_BIT_FIELD (op0);
8369 case ADDR_SPACE_CONVERT_EXPR:
8371 tree treeop0_type = TREE_TYPE (treeop0);
8373 gcc_assert (POINTER_TYPE_P (type));
8374 gcc_assert (POINTER_TYPE_P (treeop0_type));
8376 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8377 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8379 /* Conversions between pointers to the same address space should
8380 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8381 gcc_assert (as_to != as_from);
8383 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8385 /* Ask target code to handle conversion between pointers
8386 to overlapping address spaces. */
8387 if (targetm.addr_space.subset_p (as_to, as_from)
8388 || targetm.addr_space.subset_p (as_from, as_to))
8390 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8392 else
8394 /* For disjoint address spaces, converting anything but a null
8395 pointer invokes undefined behavior. We truncate or extend the
8396 value as if we'd converted via integers, which handles 0 as
8397 required, and all others as the programmer likely expects. */
8398 #ifndef POINTERS_EXTEND_UNSIGNED
8399 const int POINTERS_EXTEND_UNSIGNED = 1;
8400 #endif
8401 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8402 op0, POINTERS_EXTEND_UNSIGNED);
8404 gcc_assert (op0);
8405 return op0;
8408 case POINTER_PLUS_EXPR:
8409 /* Even though the sizetype mode and the pointer's mode can be different
8410 expand is able to handle this correctly and get the correct result out
8411 of the PLUS_EXPR code. */
8412 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8413 if sizetype precision is smaller than pointer precision. */
8414 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8415 treeop1 = fold_convert_loc (loc, type,
8416 fold_convert_loc (loc, ssizetype,
8417 treeop1));
8418 /* If sizetype precision is larger than pointer precision, truncate the
8419 offset to have matching modes. */
8420 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8421 treeop1 = fold_convert_loc (loc, type, treeop1);
8422 /* FALLTHRU */
8424 case PLUS_EXPR:
8425 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8426 something else, make sure we add the register to the constant and
8427 then to the other thing. This case can occur during strength
8428 reduction and doing it this way will produce better code if the
8429 frame pointer or argument pointer is eliminated.
8431 fold-const.c will ensure that the constant is always in the inner
8432 PLUS_EXPR, so the only case we need to do anything about is if
8433 sp, ap, or fp is our second argument, in which case we must swap
8434 the innermost first argument and our second argument. */
8436 if (TREE_CODE (treeop0) == PLUS_EXPR
8437 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8438 && VAR_P (treeop1)
8439 && (DECL_RTL (treeop1) == frame_pointer_rtx
8440 || DECL_RTL (treeop1) == stack_pointer_rtx
8441 || DECL_RTL (treeop1) == arg_pointer_rtx))
8443 gcc_unreachable ();
8446 /* If the result is to be ptr_mode and we are adding an integer to
8447 something, we might be forming a constant. So try to use
8448 plus_constant. If it produces a sum and we can't accept it,
8449 use force_operand. This allows P = &ARR[const] to generate
8450 efficient code on machines where a SYMBOL_REF is not a valid
8451 address.
8453 If this is an EXPAND_SUM call, always return the sum. */
8454 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8455 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8457 if (modifier == EXPAND_STACK_PARM)
8458 target = 0;
8459 if (TREE_CODE (treeop0) == INTEGER_CST
8460 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8461 && TREE_CONSTANT (treeop1))
8463 rtx constant_part;
8464 HOST_WIDE_INT wc;
8465 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8467 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8468 EXPAND_SUM);
8469 /* Use wi::shwi to ensure that the constant is
8470 truncated according to the mode of OP1, then sign extended
8471 to a HOST_WIDE_INT. Using the constant directly can result
8472 in non-canonical RTL in a 64x32 cross compile. */
8473 wc = TREE_INT_CST_LOW (treeop0);
8474 constant_part =
8475 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8476 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8477 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8478 op1 = force_operand (op1, target);
8479 return REDUCE_BIT_FIELD (op1);
8482 else if (TREE_CODE (treeop1) == INTEGER_CST
8483 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8484 && TREE_CONSTANT (treeop0))
8486 rtx constant_part;
8487 HOST_WIDE_INT wc;
8488 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8490 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8491 (modifier == EXPAND_INITIALIZER
8492 ? EXPAND_INITIALIZER : EXPAND_SUM));
8493 if (! CONSTANT_P (op0))
8495 op1 = expand_expr (treeop1, NULL_RTX,
8496 VOIDmode, modifier);
8497 /* Return a PLUS if modifier says it's OK. */
8498 if (modifier == EXPAND_SUM
8499 || modifier == EXPAND_INITIALIZER)
8500 return simplify_gen_binary (PLUS, mode, op0, op1);
8501 goto binop2;
8503 /* Use wi::shwi to ensure that the constant is
8504 truncated according to the mode of OP1, then sign extended
8505 to a HOST_WIDE_INT. Using the constant directly can result
8506 in non-canonical RTL in a 64x32 cross compile. */
8507 wc = TREE_INT_CST_LOW (treeop1);
8508 constant_part
8509 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8510 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8511 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8512 op0 = force_operand (op0, target);
8513 return REDUCE_BIT_FIELD (op0);
8517 /* Use TER to expand pointer addition of a negated value
8518 as pointer subtraction. */
8519 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8520 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8521 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8522 && TREE_CODE (treeop1) == SSA_NAME
8523 && TYPE_MODE (TREE_TYPE (treeop0))
8524 == TYPE_MODE (TREE_TYPE (treeop1)))
8526 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8527 if (def)
8529 treeop1 = gimple_assign_rhs1 (def);
8530 code = MINUS_EXPR;
8531 goto do_minus;
8535 /* No sense saving up arithmetic to be done
8536 if it's all in the wrong mode to form part of an address.
8537 And force_operand won't know whether to sign-extend or
8538 zero-extend. */
8539 if (modifier != EXPAND_INITIALIZER
8540 && (modifier != EXPAND_SUM || mode != ptr_mode))
8542 expand_operands (treeop0, treeop1,
8543 subtarget, &op0, &op1, modifier);
8544 if (op0 == const0_rtx)
8545 return op1;
8546 if (op1 == const0_rtx)
8547 return op0;
8548 goto binop2;
8551 expand_operands (treeop0, treeop1,
8552 subtarget, &op0, &op1, modifier);
8553 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8555 case MINUS_EXPR:
8556 do_minus:
8557 /* For initializers, we are allowed to return a MINUS of two
8558 symbolic constants. Here we handle all cases when both operands
8559 are constant. */
8560 /* Handle difference of two symbolic constants,
8561 for the sake of an initializer. */
8562 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8563 && really_constant_p (treeop0)
8564 && really_constant_p (treeop1))
8566 expand_operands (treeop0, treeop1,
8567 NULL_RTX, &op0, &op1, modifier);
8569 /* If the last operand is a CONST_INT, use plus_constant of
8570 the negated constant. Else make the MINUS. */
8571 if (CONST_INT_P (op1))
8572 return REDUCE_BIT_FIELD (plus_constant (mode, op0,
8573 -INTVAL (op1)));
8574 else
8575 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8578 /* No sense saving up arithmetic to be done
8579 if it's all in the wrong mode to form part of an address.
8580 And force_operand won't know whether to sign-extend or
8581 zero-extend. */
8582 if (modifier != EXPAND_INITIALIZER
8583 && (modifier != EXPAND_SUM || mode != ptr_mode))
8584 goto binop;
8586 expand_operands (treeop0, treeop1,
8587 subtarget, &op0, &op1, modifier);
8589 /* Convert A - const to A + (-const). */
8590 if (CONST_INT_P (op1))
8592 op1 = negate_rtx (mode, op1);
8593 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8596 goto binop2;
8598 case WIDEN_MULT_PLUS_EXPR:
8599 case WIDEN_MULT_MINUS_EXPR:
8600 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8601 op2 = expand_normal (treeop2);
8602 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8603 target, unsignedp);
8604 return target;
8606 case WIDEN_MULT_EXPR:
8607 /* If first operand is constant, swap them.
8608 Thus the following special case checks need only
8609 check the second operand. */
8610 if (TREE_CODE (treeop0) == INTEGER_CST)
8611 std::swap (treeop0, treeop1);
8613 /* First, check if we have a multiplication of one signed and one
8614 unsigned operand. */
8615 if (TREE_CODE (treeop1) != INTEGER_CST
8616 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8617 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8619 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8620 this_optab = usmul_widen_optab;
8621 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8622 != CODE_FOR_nothing)
8624 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8625 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8626 EXPAND_NORMAL);
8627 else
8628 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8629 EXPAND_NORMAL);
8630 /* op0 and op1 might still be constant, despite the above
8631 != INTEGER_CST check. Handle it. */
8632 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8634 op0 = convert_modes (innermode, mode, op0, true);
8635 op1 = convert_modes (innermode, mode, op1, false);
8636 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8637 target, unsignedp));
8639 goto binop3;
8642 /* Check for a multiplication with matching signedness. */
8643 else if ((TREE_CODE (treeop1) == INTEGER_CST
8644 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8645 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8646 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8648 tree op0type = TREE_TYPE (treeop0);
8649 machine_mode innermode = TYPE_MODE (op0type);
8650 bool zextend_p = TYPE_UNSIGNED (op0type);
8651 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8652 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8654 if (TREE_CODE (treeop0) != INTEGER_CST)
8656 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8657 != CODE_FOR_nothing)
8659 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8660 EXPAND_NORMAL);
8661 /* op0 and op1 might still be constant, despite the above
8662 != INTEGER_CST check. Handle it. */
8663 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8665 widen_mult_const:
8666 op0 = convert_modes (innermode, mode, op0, zextend_p);
8668 = convert_modes (innermode, mode, op1,
8669 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8670 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8671 target,
8672 unsignedp));
8674 temp = expand_widening_mult (mode, op0, op1, target,
8675 unsignedp, this_optab);
8676 return REDUCE_BIT_FIELD (temp);
8678 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8679 != CODE_FOR_nothing
8680 && innermode == word_mode)
8682 rtx htem, hipart;
8683 op0 = expand_normal (treeop0);
8684 if (TREE_CODE (treeop1) == INTEGER_CST)
8685 op1 = convert_modes (word_mode, mode,
8686 expand_normal (treeop1),
8687 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8688 else
8689 op1 = expand_normal (treeop1);
8690 /* op0 and op1 might still be constant, despite the above
8691 != INTEGER_CST check. Handle it. */
8692 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8693 goto widen_mult_const;
8694 temp = expand_binop (mode, other_optab, op0, op1, target,
8695 unsignedp, OPTAB_LIB_WIDEN);
8696 hipart = gen_highpart (word_mode, temp);
8697 htem = expand_mult_highpart_adjust (word_mode, hipart,
8698 op0, op1, hipart,
8699 zextend_p);
8700 if (htem != hipart)
8701 emit_move_insn (hipart, htem);
8702 return REDUCE_BIT_FIELD (temp);
8706 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8707 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8708 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8709 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8711 case FMA_EXPR:
8713 optab opt = fma_optab;
8714 gimple *def0, *def2;
8716 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8717 call. */
8718 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8720 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8721 tree call_expr;
8723 gcc_assert (fn != NULL_TREE);
8724 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8725 return expand_builtin (call_expr, target, subtarget, mode, false);
8728 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8729 /* The multiplication is commutative - look at its 2nd operand
8730 if the first isn't fed by a negate. */
8731 if (!def0)
8733 def0 = get_def_for_expr (treeop1, NEGATE_EXPR);
8734 /* Swap operands if the 2nd operand is fed by a negate. */
8735 if (def0)
8736 std::swap (treeop0, treeop1);
8738 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8740 op0 = op2 = NULL;
8742 if (def0 && def2
8743 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8745 opt = fnms_optab;
8746 op0 = expand_normal (gimple_assign_rhs1 (def0));
8747 op2 = expand_normal (gimple_assign_rhs1 (def2));
8749 else if (def0
8750 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8752 opt = fnma_optab;
8753 op0 = expand_normal (gimple_assign_rhs1 (def0));
8755 else if (def2
8756 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8758 opt = fms_optab;
8759 op2 = expand_normal (gimple_assign_rhs1 (def2));
8762 if (op0 == NULL)
8763 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8764 if (op2 == NULL)
8765 op2 = expand_normal (treeop2);
8766 op1 = expand_normal (treeop1);
8768 return expand_ternary_op (TYPE_MODE (type), opt,
8769 op0, op1, op2, target, 0);
8772 case MULT_EXPR:
8773 /* If this is a fixed-point operation, then we cannot use the code
8774 below because "expand_mult" doesn't support sat/no-sat fixed-point
8775 multiplications. */
8776 if (ALL_FIXED_POINT_MODE_P (mode))
8777 goto binop;
8779 /* If first operand is constant, swap them.
8780 Thus the following special case checks need only
8781 check the second operand. */
8782 if (TREE_CODE (treeop0) == INTEGER_CST)
8783 std::swap (treeop0, treeop1);
8785 /* Attempt to return something suitable for generating an
8786 indexed address, for machines that support that. */
8788 if (modifier == EXPAND_SUM && mode == ptr_mode
8789 && tree_fits_shwi_p (treeop1))
8791 tree exp1 = treeop1;
8793 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8794 EXPAND_SUM);
8796 if (!REG_P (op0))
8797 op0 = force_operand (op0, NULL_RTX);
8798 if (!REG_P (op0))
8799 op0 = copy_to_mode_reg (mode, op0);
8801 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8802 gen_int_mode (tree_to_shwi (exp1),
8803 TYPE_MODE (TREE_TYPE (exp1)))));
8806 if (modifier == EXPAND_STACK_PARM)
8807 target = 0;
8809 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8810 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8812 case TRUNC_MOD_EXPR:
8813 case FLOOR_MOD_EXPR:
8814 case CEIL_MOD_EXPR:
8815 case ROUND_MOD_EXPR:
8817 case TRUNC_DIV_EXPR:
8818 case FLOOR_DIV_EXPR:
8819 case CEIL_DIV_EXPR:
8820 case ROUND_DIV_EXPR:
8821 case EXACT_DIV_EXPR:
8823 /* If this is a fixed-point operation, then we cannot use the code
8824 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8825 divisions. */
8826 if (ALL_FIXED_POINT_MODE_P (mode))
8827 goto binop;
8829 if (modifier == EXPAND_STACK_PARM)
8830 target = 0;
8831 /* Possible optimization: compute the dividend with EXPAND_SUM
8832 then if the divisor is constant can optimize the case
8833 where some terms of the dividend have coeffs divisible by it. */
8834 expand_operands (treeop0, treeop1,
8835 subtarget, &op0, &op1, EXPAND_NORMAL);
8836 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
8837 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
8838 if (SCALAR_INT_MODE_P (mode)
8839 && optimize >= 2
8840 && get_range_pos_neg (treeop0) == 1
8841 && get_range_pos_neg (treeop1) == 1)
8843 /* If both arguments are known to be positive when interpreted
8844 as signed, we can expand it as both signed and unsigned
8845 division or modulo. Choose the cheaper sequence in that case. */
8846 bool speed_p = optimize_insn_for_speed_p ();
8847 do_pending_stack_adjust ();
8848 start_sequence ();
8849 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
8850 rtx_insn *uns_insns = get_insns ();
8851 end_sequence ();
8852 start_sequence ();
8853 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
8854 rtx_insn *sgn_insns = get_insns ();
8855 end_sequence ();
8856 unsigned uns_cost = seq_cost (uns_insns, speed_p);
8857 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
8859 /* If costs are the same then use as tie breaker the other
8860 other factor. */
8861 if (uns_cost == sgn_cost)
8863 uns_cost = seq_cost (uns_insns, !speed_p);
8864 sgn_cost = seq_cost (sgn_insns, !speed_p);
8867 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
8869 emit_insn (uns_insns);
8870 return uns_ret;
8872 emit_insn (sgn_insns);
8873 return sgn_ret;
8875 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
8877 case RDIV_EXPR:
8878 goto binop;
8880 case MULT_HIGHPART_EXPR:
8881 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8882 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8883 gcc_assert (temp);
8884 return temp;
8886 case FIXED_CONVERT_EXPR:
8887 op0 = expand_normal (treeop0);
8888 if (target == 0 || modifier == EXPAND_STACK_PARM)
8889 target = gen_reg_rtx (mode);
8891 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8892 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8893 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8894 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8895 else
8896 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8897 return target;
8899 case FIX_TRUNC_EXPR:
8900 op0 = expand_normal (treeop0);
8901 if (target == 0 || modifier == EXPAND_STACK_PARM)
8902 target = gen_reg_rtx (mode);
8903 expand_fix (target, op0, unsignedp);
8904 return target;
8906 case FLOAT_EXPR:
8907 op0 = expand_normal (treeop0);
8908 if (target == 0 || modifier == EXPAND_STACK_PARM)
8909 target = gen_reg_rtx (mode);
8910 /* expand_float can't figure out what to do if FROM has VOIDmode.
8911 So give it the correct mode. With -O, cse will optimize this. */
8912 if (GET_MODE (op0) == VOIDmode)
8913 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8914 op0);
8915 expand_float (target, op0,
8916 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8917 return target;
8919 case NEGATE_EXPR:
8920 op0 = expand_expr (treeop0, subtarget,
8921 VOIDmode, EXPAND_NORMAL);
8922 if (modifier == EXPAND_STACK_PARM)
8923 target = 0;
8924 temp = expand_unop (mode,
8925 optab_for_tree_code (NEGATE_EXPR, type,
8926 optab_default),
8927 op0, target, 0);
8928 gcc_assert (temp);
8929 return REDUCE_BIT_FIELD (temp);
8931 case ABS_EXPR:
8932 op0 = expand_expr (treeop0, subtarget,
8933 VOIDmode, EXPAND_NORMAL);
8934 if (modifier == EXPAND_STACK_PARM)
8935 target = 0;
8937 /* ABS_EXPR is not valid for complex arguments. */
8938 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8939 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8941 /* Unsigned abs is simply the operand. Testing here means we don't
8942 risk generating incorrect code below. */
8943 if (TYPE_UNSIGNED (type))
8944 return op0;
8946 return expand_abs (mode, op0, target, unsignedp,
8947 safe_from_p (target, treeop0, 1));
8949 case MAX_EXPR:
8950 case MIN_EXPR:
8951 target = original_target;
8952 if (target == 0
8953 || modifier == EXPAND_STACK_PARM
8954 || (MEM_P (target) && MEM_VOLATILE_P (target))
8955 || GET_MODE (target) != mode
8956 || (REG_P (target)
8957 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8958 target = gen_reg_rtx (mode);
8959 expand_operands (treeop0, treeop1,
8960 target, &op0, &op1, EXPAND_NORMAL);
8962 /* First try to do it with a special MIN or MAX instruction.
8963 If that does not win, use a conditional jump to select the proper
8964 value. */
8965 this_optab = optab_for_tree_code (code, type, optab_default);
8966 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8967 OPTAB_WIDEN);
8968 if (temp != 0)
8969 return temp;
8971 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
8972 and similarly for MAX <x, y>. */
8973 if (VECTOR_TYPE_P (type))
8975 tree t0 = make_tree (type, op0);
8976 tree t1 = make_tree (type, op1);
8977 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
8978 type, t0, t1);
8979 return expand_vec_cond_expr (type, comparison, t0, t1,
8980 original_target);
8983 /* At this point, a MEM target is no longer useful; we will get better
8984 code without it. */
8986 if (! REG_P (target))
8987 target = gen_reg_rtx (mode);
8989 /* If op1 was placed in target, swap op0 and op1. */
8990 if (target != op0 && target == op1)
8991 std::swap (op0, op1);
8993 /* We generate better code and avoid problems with op1 mentioning
8994 target by forcing op1 into a pseudo if it isn't a constant. */
8995 if (! CONSTANT_P (op1))
8996 op1 = force_reg (mode, op1);
8999 enum rtx_code comparison_code;
9000 rtx cmpop1 = op1;
9002 if (code == MAX_EXPR)
9003 comparison_code = unsignedp ? GEU : GE;
9004 else
9005 comparison_code = unsignedp ? LEU : LE;
9007 /* Canonicalize to comparisons against 0. */
9008 if (op1 == const1_rtx)
9010 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9011 or (a != 0 ? a : 1) for unsigned.
9012 For MIN we are safe converting (a <= 1 ? a : 1)
9013 into (a <= 0 ? a : 1) */
9014 cmpop1 = const0_rtx;
9015 if (code == MAX_EXPR)
9016 comparison_code = unsignedp ? NE : GT;
9018 if (op1 == constm1_rtx && !unsignedp)
9020 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9021 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9022 cmpop1 = const0_rtx;
9023 if (code == MIN_EXPR)
9024 comparison_code = LT;
9027 /* Use a conditional move if possible. */
9028 if (can_conditionally_move_p (mode))
9030 rtx insn;
9032 start_sequence ();
9034 /* Try to emit the conditional move. */
9035 insn = emit_conditional_move (target, comparison_code,
9036 op0, cmpop1, mode,
9037 op0, op1, mode,
9038 unsignedp);
9040 /* If we could do the conditional move, emit the sequence,
9041 and return. */
9042 if (insn)
9044 rtx_insn *seq = get_insns ();
9045 end_sequence ();
9046 emit_insn (seq);
9047 return target;
9050 /* Otherwise discard the sequence and fall back to code with
9051 branches. */
9052 end_sequence ();
9055 if (target != op0)
9056 emit_move_insn (target, op0);
9058 lab = gen_label_rtx ();
9059 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9060 unsignedp, mode, NULL_RTX, NULL, lab,
9061 profile_probability::uninitialized ());
9063 emit_move_insn (target, op1);
9064 emit_label (lab);
9065 return target;
9067 case BIT_NOT_EXPR:
9068 op0 = expand_expr (treeop0, subtarget,
9069 VOIDmode, EXPAND_NORMAL);
9070 if (modifier == EXPAND_STACK_PARM)
9071 target = 0;
9072 /* In case we have to reduce the result to bitfield precision
9073 for unsigned bitfield expand this as XOR with a proper constant
9074 instead. */
9075 if (reduce_bit_field && TYPE_UNSIGNED (type))
9077 int_mode = SCALAR_INT_TYPE_MODE (type);
9078 wide_int mask = wi::mask (TYPE_PRECISION (type),
9079 false, GET_MODE_PRECISION (int_mode));
9081 temp = expand_binop (int_mode, xor_optab, op0,
9082 immed_wide_int_const (mask, int_mode),
9083 target, 1, OPTAB_LIB_WIDEN);
9085 else
9086 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9087 gcc_assert (temp);
9088 return temp;
9090 /* ??? Can optimize bitwise operations with one arg constant.
9091 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9092 and (a bitwise1 b) bitwise2 b (etc)
9093 but that is probably not worth while. */
9095 case BIT_AND_EXPR:
9096 case BIT_IOR_EXPR:
9097 case BIT_XOR_EXPR:
9098 goto binop;
9100 case LROTATE_EXPR:
9101 case RROTATE_EXPR:
9102 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9103 || type_has_mode_precision_p (type));
9104 /* fall through */
9106 case LSHIFT_EXPR:
9107 case RSHIFT_EXPR:
9109 /* If this is a fixed-point operation, then we cannot use the code
9110 below because "expand_shift" doesn't support sat/no-sat fixed-point
9111 shifts. */
9112 if (ALL_FIXED_POINT_MODE_P (mode))
9113 goto binop;
9115 if (! safe_from_p (subtarget, treeop1, 1))
9116 subtarget = 0;
9117 if (modifier == EXPAND_STACK_PARM)
9118 target = 0;
9119 op0 = expand_expr (treeop0, subtarget,
9120 VOIDmode, EXPAND_NORMAL);
9122 /* Left shift optimization when shifting across word_size boundary.
9124 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9125 there isn't native instruction to support this wide mode
9126 left shift. Given below scenario:
9128 Type A = (Type) B << C
9130 |< T >|
9131 | dest_high | dest_low |
9133 | word_size |
9135 If the shift amount C caused we shift B to across the word
9136 size boundary, i.e part of B shifted into high half of
9137 destination register, and part of B remains in the low
9138 half, then GCC will use the following left shift expand
9139 logic:
9141 1. Initialize dest_low to B.
9142 2. Initialize every bit of dest_high to the sign bit of B.
9143 3. Logic left shift dest_low by C bit to finalize dest_low.
9144 The value of dest_low before this shift is kept in a temp D.
9145 4. Logic left shift dest_high by C.
9146 5. Logic right shift D by (word_size - C).
9147 6. Or the result of 4 and 5 to finalize dest_high.
9149 While, by checking gimple statements, if operand B is
9150 coming from signed extension, then we can simplify above
9151 expand logic into:
9153 1. dest_high = src_low >> (word_size - C).
9154 2. dest_low = src_low << C.
9156 We can use one arithmetic right shift to finish all the
9157 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9158 needed from 6 into 2.
9160 The case is similar for zero extension, except that we
9161 initialize dest_high to zero rather than copies of the sign
9162 bit from B. Furthermore, we need to use a logical right shift
9163 in this case.
9165 The choice of sign-extension versus zero-extension is
9166 determined entirely by whether or not B is signed and is
9167 independent of the current setting of unsignedp. */
9169 temp = NULL_RTX;
9170 if (code == LSHIFT_EXPR
9171 && target
9172 && REG_P (target)
9173 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9174 && mode == int_mode
9175 && TREE_CONSTANT (treeop1)
9176 && TREE_CODE (treeop0) == SSA_NAME)
9178 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9179 if (is_gimple_assign (def)
9180 && gimple_assign_rhs_code (def) == NOP_EXPR)
9182 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9183 (TREE_TYPE (gimple_assign_rhs1 (def)));
9185 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9186 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9187 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9188 >= GET_MODE_BITSIZE (word_mode)))
9190 rtx_insn *seq, *seq_old;
9191 unsigned int high_off = subreg_highpart_offset (word_mode,
9192 int_mode);
9193 bool extend_unsigned
9194 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9195 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9196 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9197 rtx dest_high = simplify_gen_subreg (word_mode, target,
9198 int_mode, high_off);
9199 HOST_WIDE_INT ramount = (BITS_PER_WORD
9200 - TREE_INT_CST_LOW (treeop1));
9201 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9203 start_sequence ();
9204 /* dest_high = src_low >> (word_size - C). */
9205 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9206 rshift, dest_high,
9207 extend_unsigned);
9208 if (temp != dest_high)
9209 emit_move_insn (dest_high, temp);
9211 /* dest_low = src_low << C. */
9212 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9213 treeop1, dest_low, unsignedp);
9214 if (temp != dest_low)
9215 emit_move_insn (dest_low, temp);
9217 seq = get_insns ();
9218 end_sequence ();
9219 temp = target ;
9221 if (have_insn_for (ASHIFT, int_mode))
9223 bool speed_p = optimize_insn_for_speed_p ();
9224 start_sequence ();
9225 rtx ret_old = expand_variable_shift (code, int_mode,
9226 op0, treeop1,
9227 target,
9228 unsignedp);
9230 seq_old = get_insns ();
9231 end_sequence ();
9232 if (seq_cost (seq, speed_p)
9233 >= seq_cost (seq_old, speed_p))
9235 seq = seq_old;
9236 temp = ret_old;
9239 emit_insn (seq);
9244 if (temp == NULL_RTX)
9245 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9246 unsignedp);
9247 if (code == LSHIFT_EXPR)
9248 temp = REDUCE_BIT_FIELD (temp);
9249 return temp;
9252 /* Could determine the answer when only additive constants differ. Also,
9253 the addition of one can be handled by changing the condition. */
9254 case LT_EXPR:
9255 case LE_EXPR:
9256 case GT_EXPR:
9257 case GE_EXPR:
9258 case EQ_EXPR:
9259 case NE_EXPR:
9260 case UNORDERED_EXPR:
9261 case ORDERED_EXPR:
9262 case UNLT_EXPR:
9263 case UNLE_EXPR:
9264 case UNGT_EXPR:
9265 case UNGE_EXPR:
9266 case UNEQ_EXPR:
9267 case LTGT_EXPR:
9269 temp = do_store_flag (ops,
9270 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9271 tmode != VOIDmode ? tmode : mode);
9272 if (temp)
9273 return temp;
9275 /* Use a compare and a jump for BLKmode comparisons, or for function
9276 type comparisons is have_canonicalize_funcptr_for_compare. */
9278 if ((target == 0
9279 || modifier == EXPAND_STACK_PARM
9280 || ! safe_from_p (target, treeop0, 1)
9281 || ! safe_from_p (target, treeop1, 1)
9282 /* Make sure we don't have a hard reg (such as function's return
9283 value) live across basic blocks, if not optimizing. */
9284 || (!optimize && REG_P (target)
9285 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9286 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9288 emit_move_insn (target, const0_rtx);
9290 rtx_code_label *lab1 = gen_label_rtx ();
9291 jumpifnot_1 (code, treeop0, treeop1, lab1,
9292 profile_probability::uninitialized ());
9294 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9295 emit_move_insn (target, constm1_rtx);
9296 else
9297 emit_move_insn (target, const1_rtx);
9299 emit_label (lab1);
9300 return target;
9302 case COMPLEX_EXPR:
9303 /* Get the rtx code of the operands. */
9304 op0 = expand_normal (treeop0);
9305 op1 = expand_normal (treeop1);
9307 if (!target)
9308 target = gen_reg_rtx (TYPE_MODE (type));
9309 else
9310 /* If target overlaps with op1, then either we need to force
9311 op1 into a pseudo (if target also overlaps with op0),
9312 or write the complex parts in reverse order. */
9313 switch (GET_CODE (target))
9315 case CONCAT:
9316 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9318 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9320 complex_expr_force_op1:
9321 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9322 emit_move_insn (temp, op1);
9323 op1 = temp;
9324 break;
9326 complex_expr_swap_order:
9327 /* Move the imaginary (op1) and real (op0) parts to their
9328 location. */
9329 write_complex_part (target, op1, true);
9330 write_complex_part (target, op0, false);
9332 return target;
9334 break;
9335 case MEM:
9336 temp = adjust_address_nv (target,
9337 GET_MODE_INNER (GET_MODE (target)), 0);
9338 if (reg_overlap_mentioned_p (temp, op1))
9340 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9341 temp = adjust_address_nv (target, imode,
9342 GET_MODE_SIZE (imode));
9343 if (reg_overlap_mentioned_p (temp, op0))
9344 goto complex_expr_force_op1;
9345 goto complex_expr_swap_order;
9347 break;
9348 default:
9349 if (reg_overlap_mentioned_p (target, op1))
9351 if (reg_overlap_mentioned_p (target, op0))
9352 goto complex_expr_force_op1;
9353 goto complex_expr_swap_order;
9355 break;
9358 /* Move the real (op0) and imaginary (op1) parts to their location. */
9359 write_complex_part (target, op0, false);
9360 write_complex_part (target, op1, true);
9362 return target;
9364 case WIDEN_SUM_EXPR:
9366 tree oprnd0 = treeop0;
9367 tree oprnd1 = treeop1;
9369 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9370 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9371 target, unsignedp);
9372 return target;
9375 case REDUC_MAX_EXPR:
9376 case REDUC_MIN_EXPR:
9377 case REDUC_PLUS_EXPR:
9379 op0 = expand_normal (treeop0);
9380 this_optab = optab_for_tree_code (code, type, optab_default);
9381 machine_mode vec_mode = TYPE_MODE (TREE_TYPE (treeop0));
9383 struct expand_operand ops[2];
9384 enum insn_code icode = optab_handler (this_optab, vec_mode);
9386 create_output_operand (&ops[0], target, mode);
9387 create_input_operand (&ops[1], op0, vec_mode);
9388 expand_insn (icode, 2, ops);
9389 target = ops[0].value;
9390 if (GET_MODE (target) != mode)
9391 return gen_lowpart (tmode, target);
9392 return target;
9395 case VEC_UNPACK_HI_EXPR:
9396 case VEC_UNPACK_LO_EXPR:
9398 op0 = expand_normal (treeop0);
9399 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9400 target, unsignedp);
9401 gcc_assert (temp);
9402 return temp;
9405 case VEC_UNPACK_FLOAT_HI_EXPR:
9406 case VEC_UNPACK_FLOAT_LO_EXPR:
9408 op0 = expand_normal (treeop0);
9409 /* The signedness is determined from input operand. */
9410 temp = expand_widen_pattern_expr
9411 (ops, op0, NULL_RTX, NULL_RTX,
9412 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9414 gcc_assert (temp);
9415 return temp;
9418 case VEC_WIDEN_MULT_HI_EXPR:
9419 case VEC_WIDEN_MULT_LO_EXPR:
9420 case VEC_WIDEN_MULT_EVEN_EXPR:
9421 case VEC_WIDEN_MULT_ODD_EXPR:
9422 case VEC_WIDEN_LSHIFT_HI_EXPR:
9423 case VEC_WIDEN_LSHIFT_LO_EXPR:
9424 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9425 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9426 target, unsignedp);
9427 gcc_assert (target);
9428 return target;
9430 case VEC_PACK_TRUNC_EXPR:
9431 case VEC_PACK_SAT_EXPR:
9432 case VEC_PACK_FIX_TRUNC_EXPR:
9433 mode = TYPE_MODE (TREE_TYPE (treeop0));
9434 goto binop;
9436 case VEC_PERM_EXPR:
9437 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9438 op2 = expand_normal (treeop2);
9440 /* Careful here: if the target doesn't support integral vector modes,
9441 a constant selection vector could wind up smooshed into a normal
9442 integral constant. */
9443 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
9445 tree sel_type = TREE_TYPE (treeop2);
9446 machine_mode vmode
9447 = mode_for_vector (SCALAR_TYPE_MODE (TREE_TYPE (sel_type)),
9448 TYPE_VECTOR_SUBPARTS (sel_type)).require ();
9449 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9450 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9451 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9453 else
9454 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9456 temp = expand_vec_perm (mode, op0, op1, op2, target);
9457 gcc_assert (temp);
9458 return temp;
9460 case DOT_PROD_EXPR:
9462 tree oprnd0 = treeop0;
9463 tree oprnd1 = treeop1;
9464 tree oprnd2 = treeop2;
9465 rtx op2;
9467 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9468 op2 = expand_normal (oprnd2);
9469 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9470 target, unsignedp);
9471 return target;
9474 case SAD_EXPR:
9476 tree oprnd0 = treeop0;
9477 tree oprnd1 = treeop1;
9478 tree oprnd2 = treeop2;
9479 rtx op2;
9481 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9482 op2 = expand_normal (oprnd2);
9483 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9484 target, unsignedp);
9485 return target;
9488 case REALIGN_LOAD_EXPR:
9490 tree oprnd0 = treeop0;
9491 tree oprnd1 = treeop1;
9492 tree oprnd2 = treeop2;
9493 rtx op2;
9495 this_optab = optab_for_tree_code (code, type, optab_default);
9496 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9497 op2 = expand_normal (oprnd2);
9498 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9499 target, unsignedp);
9500 gcc_assert (temp);
9501 return temp;
9504 case COND_EXPR:
9506 /* A COND_EXPR with its type being VOID_TYPE represents a
9507 conditional jump and is handled in
9508 expand_gimple_cond_expr. */
9509 gcc_assert (!VOID_TYPE_P (type));
9511 /* Note that COND_EXPRs whose type is a structure or union
9512 are required to be constructed to contain assignments of
9513 a temporary variable, so that we can evaluate them here
9514 for side effect only. If type is void, we must do likewise. */
9516 gcc_assert (!TREE_ADDRESSABLE (type)
9517 && !ignore
9518 && TREE_TYPE (treeop1) != void_type_node
9519 && TREE_TYPE (treeop2) != void_type_node);
9521 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9522 if (temp)
9523 return temp;
9525 /* If we are not to produce a result, we have no target. Otherwise,
9526 if a target was specified use it; it will not be used as an
9527 intermediate target unless it is safe. If no target, use a
9528 temporary. */
9530 if (modifier != EXPAND_STACK_PARM
9531 && original_target
9532 && safe_from_p (original_target, treeop0, 1)
9533 && GET_MODE (original_target) == mode
9534 && !MEM_P (original_target))
9535 temp = original_target;
9536 else
9537 temp = assign_temp (type, 0, 1);
9539 do_pending_stack_adjust ();
9540 NO_DEFER_POP;
9541 rtx_code_label *lab0 = gen_label_rtx ();
9542 rtx_code_label *lab1 = gen_label_rtx ();
9543 jumpifnot (treeop0, lab0,
9544 profile_probability::uninitialized ());
9545 store_expr (treeop1, temp,
9546 modifier == EXPAND_STACK_PARM,
9547 false, false);
9549 emit_jump_insn (targetm.gen_jump (lab1));
9550 emit_barrier ();
9551 emit_label (lab0);
9552 store_expr (treeop2, temp,
9553 modifier == EXPAND_STACK_PARM,
9554 false, false);
9556 emit_label (lab1);
9557 OK_DEFER_POP;
9558 return temp;
9561 case VEC_COND_EXPR:
9562 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9563 return target;
9565 case BIT_INSERT_EXPR:
9567 unsigned bitpos = tree_to_uhwi (treeop2);
9568 unsigned bitsize;
9569 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9570 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9571 else
9572 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9573 rtx op0 = expand_normal (treeop0);
9574 rtx op1 = expand_normal (treeop1);
9575 rtx dst = gen_reg_rtx (mode);
9576 emit_move_insn (dst, op0);
9577 store_bit_field (dst, bitsize, bitpos, 0, 0,
9578 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9579 return dst;
9582 default:
9583 gcc_unreachable ();
9586 /* Here to do an ordinary binary operator. */
9587 binop:
9588 expand_operands (treeop0, treeop1,
9589 subtarget, &op0, &op1, EXPAND_NORMAL);
9590 binop2:
9591 this_optab = optab_for_tree_code (code, type, optab_default);
9592 binop3:
9593 if (modifier == EXPAND_STACK_PARM)
9594 target = 0;
9595 temp = expand_binop (mode, this_optab, op0, op1, target,
9596 unsignedp, OPTAB_LIB_WIDEN);
9597 gcc_assert (temp);
9598 /* Bitwise operations do not need bitfield reduction as we expect their
9599 operands being properly truncated. */
9600 if (code == BIT_XOR_EXPR
9601 || code == BIT_AND_EXPR
9602 || code == BIT_IOR_EXPR)
9603 return temp;
9604 return REDUCE_BIT_FIELD (temp);
9606 #undef REDUCE_BIT_FIELD
9609 /* Return TRUE if expression STMT is suitable for replacement.
9610 Never consider memory loads as replaceable, because those don't ever lead
9611 into constant expressions. */
9613 static bool
9614 stmt_is_replaceable_p (gimple *stmt)
9616 if (ssa_is_replaceable_p (stmt))
9618 /* Don't move around loads. */
9619 if (!gimple_assign_single_p (stmt)
9620 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9621 return true;
9623 return false;
9627 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9628 enum expand_modifier modifier, rtx *alt_rtl,
9629 bool inner_reference_p)
9631 rtx op0, op1, temp, decl_rtl;
9632 tree type;
9633 int unsignedp;
9634 machine_mode mode, dmode;
9635 enum tree_code code = TREE_CODE (exp);
9636 rtx subtarget, original_target;
9637 int ignore;
9638 tree context;
9639 bool reduce_bit_field;
9640 location_t loc = EXPR_LOCATION (exp);
9641 struct separate_ops ops;
9642 tree treeop0, treeop1, treeop2;
9643 tree ssa_name = NULL_TREE;
9644 gimple *g;
9646 type = TREE_TYPE (exp);
9647 mode = TYPE_MODE (type);
9648 unsignedp = TYPE_UNSIGNED (type);
9650 treeop0 = treeop1 = treeop2 = NULL_TREE;
9651 if (!VL_EXP_CLASS_P (exp))
9652 switch (TREE_CODE_LENGTH (code))
9654 default:
9655 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
9656 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
9657 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
9658 case 0: break;
9660 ops.code = code;
9661 ops.type = type;
9662 ops.op0 = treeop0;
9663 ops.op1 = treeop1;
9664 ops.op2 = treeop2;
9665 ops.location = loc;
9667 ignore = (target == const0_rtx
9668 || ((CONVERT_EXPR_CODE_P (code)
9669 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9670 && TREE_CODE (type) == VOID_TYPE));
9672 /* An operation in what may be a bit-field type needs the
9673 result to be reduced to the precision of the bit-field type,
9674 which is narrower than that of the type's mode. */
9675 reduce_bit_field = (!ignore
9676 && INTEGRAL_TYPE_P (type)
9677 && !type_has_mode_precision_p (type));
9679 /* If we are going to ignore this result, we need only do something
9680 if there is a side-effect somewhere in the expression. If there
9681 is, short-circuit the most common cases here. Note that we must
9682 not call expand_expr with anything but const0_rtx in case this
9683 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9685 if (ignore)
9687 if (! TREE_SIDE_EFFECTS (exp))
9688 return const0_rtx;
9690 /* Ensure we reference a volatile object even if value is ignored, but
9691 don't do this if all we are doing is taking its address. */
9692 if (TREE_THIS_VOLATILE (exp)
9693 && TREE_CODE (exp) != FUNCTION_DECL
9694 && mode != VOIDmode && mode != BLKmode
9695 && modifier != EXPAND_CONST_ADDRESS)
9697 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9698 if (MEM_P (temp))
9699 copy_to_reg (temp);
9700 return const0_rtx;
9703 if (TREE_CODE_CLASS (code) == tcc_unary
9704 || code == BIT_FIELD_REF
9705 || code == COMPONENT_REF
9706 || code == INDIRECT_REF)
9707 return expand_expr (treeop0, const0_rtx, VOIDmode,
9708 modifier);
9710 else if (TREE_CODE_CLASS (code) == tcc_binary
9711 || TREE_CODE_CLASS (code) == tcc_comparison
9712 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9714 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9715 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9716 return const0_rtx;
9719 target = 0;
9722 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9723 target = 0;
9725 /* Use subtarget as the target for operand 0 of a binary operation. */
9726 subtarget = get_subtarget (target);
9727 original_target = target;
9729 switch (code)
9731 case LABEL_DECL:
9733 tree function = decl_function_context (exp);
9735 temp = label_rtx (exp);
9736 temp = gen_rtx_LABEL_REF (Pmode, temp);
9738 if (function != current_function_decl
9739 && function != 0)
9740 LABEL_REF_NONLOCAL_P (temp) = 1;
9742 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9743 return temp;
9746 case SSA_NAME:
9747 /* ??? ivopts calls expander, without any preparation from
9748 out-of-ssa. So fake instructions as if this was an access to the
9749 base variable. This unnecessarily allocates a pseudo, see how we can
9750 reuse it, if partition base vars have it set already. */
9751 if (!currently_expanding_to_rtl)
9753 tree var = SSA_NAME_VAR (exp);
9754 if (var && DECL_RTL_SET_P (var))
9755 return DECL_RTL (var);
9756 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9757 LAST_VIRTUAL_REGISTER + 1);
9760 g = get_gimple_for_ssa_name (exp);
9761 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9762 if (g == NULL
9763 && modifier == EXPAND_INITIALIZER
9764 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9765 && (optimize || !SSA_NAME_VAR (exp)
9766 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9767 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9768 g = SSA_NAME_DEF_STMT (exp);
9769 if (g)
9771 rtx r;
9772 location_t saved_loc = curr_insn_location ();
9773 location_t loc = gimple_location (g);
9774 if (loc != UNKNOWN_LOCATION)
9775 set_curr_insn_location (loc);
9776 ops.code = gimple_assign_rhs_code (g);
9777 switch (get_gimple_rhs_class (ops.code))
9779 case GIMPLE_TERNARY_RHS:
9780 ops.op2 = gimple_assign_rhs3 (g);
9781 /* Fallthru */
9782 case GIMPLE_BINARY_RHS:
9783 ops.op1 = gimple_assign_rhs2 (g);
9785 /* Try to expand conditonal compare. */
9786 if (targetm.gen_ccmp_first)
9788 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9789 r = expand_ccmp_expr (g, mode);
9790 if (r)
9791 break;
9793 /* Fallthru */
9794 case GIMPLE_UNARY_RHS:
9795 ops.op0 = gimple_assign_rhs1 (g);
9796 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9797 ops.location = loc;
9798 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9799 break;
9800 case GIMPLE_SINGLE_RHS:
9802 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9803 tmode, modifier, alt_rtl,
9804 inner_reference_p);
9805 break;
9807 default:
9808 gcc_unreachable ();
9810 set_curr_insn_location (saved_loc);
9811 if (REG_P (r) && !REG_EXPR (r))
9812 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9813 return r;
9816 ssa_name = exp;
9817 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9818 exp = SSA_NAME_VAR (ssa_name);
9819 goto expand_decl_rtl;
9821 case PARM_DECL:
9822 case VAR_DECL:
9823 /* If a static var's type was incomplete when the decl was written,
9824 but the type is complete now, lay out the decl now. */
9825 if (DECL_SIZE (exp) == 0
9826 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9827 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9828 layout_decl (exp, 0);
9830 /* fall through */
9832 case FUNCTION_DECL:
9833 case RESULT_DECL:
9834 decl_rtl = DECL_RTL (exp);
9835 expand_decl_rtl:
9836 gcc_assert (decl_rtl);
9838 /* DECL_MODE might change when TYPE_MODE depends on attribute target
9839 settings for VECTOR_TYPE_P that might switch for the function. */
9840 if (currently_expanding_to_rtl
9841 && code == VAR_DECL && MEM_P (decl_rtl)
9842 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
9843 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
9844 else
9845 decl_rtl = copy_rtx (decl_rtl);
9847 /* Record writes to register variables. */
9848 if (modifier == EXPAND_WRITE
9849 && REG_P (decl_rtl)
9850 && HARD_REGISTER_P (decl_rtl))
9851 add_to_hard_reg_set (&crtl->asm_clobbers,
9852 GET_MODE (decl_rtl), REGNO (decl_rtl));
9854 /* Ensure variable marked as used even if it doesn't go through
9855 a parser. If it hasn't be used yet, write out an external
9856 definition. */
9857 if (exp)
9858 TREE_USED (exp) = 1;
9860 /* Show we haven't gotten RTL for this yet. */
9861 temp = 0;
9863 /* Variables inherited from containing functions should have
9864 been lowered by this point. */
9865 if (exp)
9866 context = decl_function_context (exp);
9867 gcc_assert (!exp
9868 || SCOPE_FILE_SCOPE_P (context)
9869 || context == current_function_decl
9870 || TREE_STATIC (exp)
9871 || DECL_EXTERNAL (exp)
9872 /* ??? C++ creates functions that are not TREE_STATIC. */
9873 || TREE_CODE (exp) == FUNCTION_DECL);
9875 /* This is the case of an array whose size is to be determined
9876 from its initializer, while the initializer is still being parsed.
9877 ??? We aren't parsing while expanding anymore. */
9879 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9880 temp = validize_mem (decl_rtl);
9882 /* If DECL_RTL is memory, we are in the normal case and the
9883 address is not valid, get the address into a register. */
9885 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9887 if (alt_rtl)
9888 *alt_rtl = decl_rtl;
9889 decl_rtl = use_anchored_address (decl_rtl);
9890 if (modifier != EXPAND_CONST_ADDRESS
9891 && modifier != EXPAND_SUM
9892 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
9893 : GET_MODE (decl_rtl),
9894 XEXP (decl_rtl, 0),
9895 MEM_ADDR_SPACE (decl_rtl)))
9896 temp = replace_equiv_address (decl_rtl,
9897 copy_rtx (XEXP (decl_rtl, 0)));
9900 /* If we got something, return it. But first, set the alignment
9901 if the address is a register. */
9902 if (temp != 0)
9904 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
9905 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9907 return temp;
9910 if (exp)
9911 dmode = DECL_MODE (exp);
9912 else
9913 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
9915 /* If the mode of DECL_RTL does not match that of the decl,
9916 there are two cases: we are dealing with a BLKmode value
9917 that is returned in a register, or we are dealing with
9918 a promoted value. In the latter case, return a SUBREG
9919 of the wanted mode, but mark it so that we know that it
9920 was already extended. */
9921 if (REG_P (decl_rtl)
9922 && dmode != BLKmode
9923 && GET_MODE (decl_rtl) != dmode)
9925 machine_mode pmode;
9927 /* Get the signedness to be used for this variable. Ensure we get
9928 the same mode we got when the variable was declared. */
9929 if (code != SSA_NAME)
9930 pmode = promote_decl_mode (exp, &unsignedp);
9931 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
9932 && gimple_code (g) == GIMPLE_CALL
9933 && !gimple_call_internal_p (g))
9934 pmode = promote_function_mode (type, mode, &unsignedp,
9935 gimple_call_fntype (g),
9937 else
9938 pmode = promote_ssa_mode (ssa_name, &unsignedp);
9939 gcc_assert (GET_MODE (decl_rtl) == pmode);
9941 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9942 SUBREG_PROMOTED_VAR_P (temp) = 1;
9943 SUBREG_PROMOTED_SET (temp, unsignedp);
9944 return temp;
9947 return decl_rtl;
9949 case INTEGER_CST:
9951 /* Given that TYPE_PRECISION (type) is not always equal to
9952 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9953 the former to the latter according to the signedness of the
9954 type. */
9955 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
9956 temp = immed_wide_int_const
9957 (wi::to_wide (exp, GET_MODE_PRECISION (mode)), mode);
9958 return temp;
9961 case VECTOR_CST:
9963 tree tmp = NULL_TREE;
9964 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9965 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9966 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9967 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9968 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9969 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9970 return const_vector_from_tree (exp);
9971 scalar_int_mode int_mode;
9972 if (is_int_mode (mode, &int_mode))
9974 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
9975 return const_scalar_mask_from_tree (int_mode, exp);
9976 else
9978 tree type_for_mode
9979 = lang_hooks.types.type_for_mode (int_mode, 1);
9980 if (type_for_mode)
9981 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
9982 type_for_mode, exp);
9985 if (!tmp)
9987 vec<constructor_elt, va_gc> *v;
9988 unsigned i;
9989 vec_alloc (v, VECTOR_CST_NELTS (exp));
9990 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9991 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9992 tmp = build_constructor (type, v);
9994 return expand_expr (tmp, ignore ? const0_rtx : target,
9995 tmode, modifier);
9998 case CONST_DECL:
9999 if (modifier == EXPAND_WRITE)
10001 /* Writing into CONST_DECL is always invalid, but handle it
10002 gracefully. */
10003 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
10004 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
10005 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10006 EXPAND_NORMAL, as);
10007 op0 = memory_address_addr_space (mode, op0, as);
10008 temp = gen_rtx_MEM (mode, op0);
10009 set_mem_addr_space (temp, as);
10010 return temp;
10012 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10014 case REAL_CST:
10015 /* If optimized, generate immediate CONST_DOUBLE
10016 which will be turned into memory by reload if necessary.
10018 We used to force a register so that loop.c could see it. But
10019 this does not allow gen_* patterns to perform optimizations with
10020 the constants. It also produces two insns in cases like "x = 1.0;".
10021 On most machines, floating-point constants are not permitted in
10022 many insns, so we'd end up copying it to a register in any case.
10024 Now, we do the copying in expand_binop, if appropriate. */
10025 return const_double_from_real_value (TREE_REAL_CST (exp),
10026 TYPE_MODE (TREE_TYPE (exp)));
10028 case FIXED_CST:
10029 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10030 TYPE_MODE (TREE_TYPE (exp)));
10032 case COMPLEX_CST:
10033 /* Handle evaluating a complex constant in a CONCAT target. */
10034 if (original_target && GET_CODE (original_target) == CONCAT)
10036 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10037 rtx rtarg, itarg;
10039 rtarg = XEXP (original_target, 0);
10040 itarg = XEXP (original_target, 1);
10042 /* Move the real and imaginary parts separately. */
10043 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10044 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10046 if (op0 != rtarg)
10047 emit_move_insn (rtarg, op0);
10048 if (op1 != itarg)
10049 emit_move_insn (itarg, op1);
10051 return original_target;
10054 /* fall through */
10056 case STRING_CST:
10057 temp = expand_expr_constant (exp, 1, modifier);
10059 /* temp contains a constant address.
10060 On RISC machines where a constant address isn't valid,
10061 make some insns to get that address into a register. */
10062 if (modifier != EXPAND_CONST_ADDRESS
10063 && modifier != EXPAND_INITIALIZER
10064 && modifier != EXPAND_SUM
10065 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10066 MEM_ADDR_SPACE (temp)))
10067 return replace_equiv_address (temp,
10068 copy_rtx (XEXP (temp, 0)));
10069 return temp;
10071 case SAVE_EXPR:
10073 tree val = treeop0;
10074 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10075 inner_reference_p);
10077 if (!SAVE_EXPR_RESOLVED_P (exp))
10079 /* We can indeed still hit this case, typically via builtin
10080 expanders calling save_expr immediately before expanding
10081 something. Assume this means that we only have to deal
10082 with non-BLKmode values. */
10083 gcc_assert (GET_MODE (ret) != BLKmode);
10085 val = build_decl (curr_insn_location (),
10086 VAR_DECL, NULL, TREE_TYPE (exp));
10087 DECL_ARTIFICIAL (val) = 1;
10088 DECL_IGNORED_P (val) = 1;
10089 treeop0 = val;
10090 TREE_OPERAND (exp, 0) = treeop0;
10091 SAVE_EXPR_RESOLVED_P (exp) = 1;
10093 if (!CONSTANT_P (ret))
10094 ret = copy_to_reg (ret);
10095 SET_DECL_RTL (val, ret);
10098 return ret;
10102 case CONSTRUCTOR:
10103 /* If we don't need the result, just ensure we evaluate any
10104 subexpressions. */
10105 if (ignore)
10107 unsigned HOST_WIDE_INT idx;
10108 tree value;
10110 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10111 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10113 return const0_rtx;
10116 return expand_constructor (exp, target, modifier, false);
10118 case TARGET_MEM_REF:
10120 addr_space_t as
10121 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10122 enum insn_code icode;
10123 unsigned int align;
10125 op0 = addr_for_mem_ref (exp, as, true);
10126 op0 = memory_address_addr_space (mode, op0, as);
10127 temp = gen_rtx_MEM (mode, op0);
10128 set_mem_attributes (temp, exp, 0);
10129 set_mem_addr_space (temp, as);
10130 align = get_object_alignment (exp);
10131 if (modifier != EXPAND_WRITE
10132 && modifier != EXPAND_MEMORY
10133 && mode != BLKmode
10134 && align < GET_MODE_ALIGNMENT (mode)
10135 /* If the target does not have special handling for unaligned
10136 loads of mode then it can use regular moves for them. */
10137 && ((icode = optab_handler (movmisalign_optab, mode))
10138 != CODE_FOR_nothing))
10140 struct expand_operand ops[2];
10142 /* We've already validated the memory, and we're creating a
10143 new pseudo destination. The predicates really can't fail,
10144 nor can the generator. */
10145 create_output_operand (&ops[0], NULL_RTX, mode);
10146 create_fixed_operand (&ops[1], temp);
10147 expand_insn (icode, 2, ops);
10148 temp = ops[0].value;
10150 return temp;
10153 case MEM_REF:
10155 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10156 addr_space_t as
10157 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10158 machine_mode address_mode;
10159 tree base = TREE_OPERAND (exp, 0);
10160 gimple *def_stmt;
10161 enum insn_code icode;
10162 unsigned align;
10163 /* Handle expansion of non-aliased memory with non-BLKmode. That
10164 might end up in a register. */
10165 if (mem_ref_refers_to_non_mem_p (exp))
10167 HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr ();
10168 base = TREE_OPERAND (base, 0);
10169 if (offset == 0
10170 && !reverse
10171 && tree_fits_uhwi_p (TYPE_SIZE (type))
10172 && (GET_MODE_BITSIZE (DECL_MODE (base))
10173 == tree_to_uhwi (TYPE_SIZE (type))))
10174 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10175 target, tmode, modifier);
10176 if (TYPE_MODE (type) == BLKmode)
10178 temp = assign_stack_temp (DECL_MODE (base),
10179 GET_MODE_SIZE (DECL_MODE (base)));
10180 store_expr (base, temp, 0, false, false);
10181 temp = adjust_address (temp, BLKmode, offset);
10182 set_mem_size (temp, int_size_in_bytes (type));
10183 return temp;
10185 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10186 bitsize_int (offset * BITS_PER_UNIT));
10187 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10188 return expand_expr (exp, target, tmode, modifier);
10190 address_mode = targetm.addr_space.address_mode (as);
10191 base = TREE_OPERAND (exp, 0);
10192 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10194 tree mask = gimple_assign_rhs2 (def_stmt);
10195 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10196 gimple_assign_rhs1 (def_stmt), mask);
10197 TREE_OPERAND (exp, 0) = base;
10199 align = get_object_alignment (exp);
10200 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10201 op0 = memory_address_addr_space (mode, op0, as);
10202 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10204 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10205 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10206 op0 = memory_address_addr_space (mode, op0, as);
10208 temp = gen_rtx_MEM (mode, op0);
10209 set_mem_attributes (temp, exp, 0);
10210 set_mem_addr_space (temp, as);
10211 if (TREE_THIS_VOLATILE (exp))
10212 MEM_VOLATILE_P (temp) = 1;
10213 if (modifier != EXPAND_WRITE
10214 && modifier != EXPAND_MEMORY
10215 && !inner_reference_p
10216 && mode != BLKmode
10217 && align < GET_MODE_ALIGNMENT (mode))
10219 if ((icode = optab_handler (movmisalign_optab, mode))
10220 != CODE_FOR_nothing)
10222 struct expand_operand ops[2];
10224 /* We've already validated the memory, and we're creating a
10225 new pseudo destination. The predicates really can't fail,
10226 nor can the generator. */
10227 create_output_operand (&ops[0], NULL_RTX, mode);
10228 create_fixed_operand (&ops[1], temp);
10229 expand_insn (icode, 2, ops);
10230 temp = ops[0].value;
10232 else if (targetm.slow_unaligned_access (mode, align))
10233 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
10234 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
10235 (modifier == EXPAND_STACK_PARM
10236 ? NULL_RTX : target),
10237 mode, mode, false, alt_rtl);
10239 if (reverse
10240 && modifier != EXPAND_MEMORY
10241 && modifier != EXPAND_WRITE)
10242 temp = flip_storage_order (mode, temp);
10243 return temp;
10246 case ARRAY_REF:
10249 tree array = treeop0;
10250 tree index = treeop1;
10251 tree init;
10253 /* Fold an expression like: "foo"[2].
10254 This is not done in fold so it won't happen inside &.
10255 Don't fold if this is for wide characters since it's too
10256 difficult to do correctly and this is a very rare case. */
10258 if (modifier != EXPAND_CONST_ADDRESS
10259 && modifier != EXPAND_INITIALIZER
10260 && modifier != EXPAND_MEMORY)
10262 tree t = fold_read_from_constant_string (exp);
10264 if (t)
10265 return expand_expr (t, target, tmode, modifier);
10268 /* If this is a constant index into a constant array,
10269 just get the value from the array. Handle both the cases when
10270 we have an explicit constructor and when our operand is a variable
10271 that was declared const. */
10273 if (modifier != EXPAND_CONST_ADDRESS
10274 && modifier != EXPAND_INITIALIZER
10275 && modifier != EXPAND_MEMORY
10276 && TREE_CODE (array) == CONSTRUCTOR
10277 && ! TREE_SIDE_EFFECTS (array)
10278 && TREE_CODE (index) == INTEGER_CST)
10280 unsigned HOST_WIDE_INT ix;
10281 tree field, value;
10283 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10284 field, value)
10285 if (tree_int_cst_equal (field, index))
10287 if (!TREE_SIDE_EFFECTS (value))
10288 return expand_expr (fold (value), target, tmode, modifier);
10289 break;
10293 else if (optimize >= 1
10294 && modifier != EXPAND_CONST_ADDRESS
10295 && modifier != EXPAND_INITIALIZER
10296 && modifier != EXPAND_MEMORY
10297 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10298 && TREE_CODE (index) == INTEGER_CST
10299 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10300 && (init = ctor_for_folding (array)) != error_mark_node)
10302 if (init == NULL_TREE)
10304 tree value = build_zero_cst (type);
10305 if (TREE_CODE (value) == CONSTRUCTOR)
10307 /* If VALUE is a CONSTRUCTOR, this optimization is only
10308 useful if this doesn't store the CONSTRUCTOR into
10309 memory. If it does, it is more efficient to just
10310 load the data from the array directly. */
10311 rtx ret = expand_constructor (value, target,
10312 modifier, true);
10313 if (ret == NULL_RTX)
10314 value = NULL_TREE;
10317 if (value)
10318 return expand_expr (value, target, tmode, modifier);
10320 else if (TREE_CODE (init) == CONSTRUCTOR)
10322 unsigned HOST_WIDE_INT ix;
10323 tree field, value;
10325 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10326 field, value)
10327 if (tree_int_cst_equal (field, index))
10329 if (TREE_SIDE_EFFECTS (value))
10330 break;
10332 if (TREE_CODE (value) == CONSTRUCTOR)
10334 /* If VALUE is a CONSTRUCTOR, this
10335 optimization is only useful if
10336 this doesn't store the CONSTRUCTOR
10337 into memory. If it does, it is more
10338 efficient to just load the data from
10339 the array directly. */
10340 rtx ret = expand_constructor (value, target,
10341 modifier, true);
10342 if (ret == NULL_RTX)
10343 break;
10346 return
10347 expand_expr (fold (value), target, tmode, modifier);
10350 else if (TREE_CODE (init) == STRING_CST)
10352 tree low_bound = array_ref_low_bound (exp);
10353 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10355 /* Optimize the special case of a zero lower bound.
10357 We convert the lower bound to sizetype to avoid problems
10358 with constant folding. E.g. suppose the lower bound is
10359 1 and its mode is QI. Without the conversion
10360 (ARRAY + (INDEX - (unsigned char)1))
10361 becomes
10362 (ARRAY + (-(unsigned char)1) + INDEX)
10363 which becomes
10364 (ARRAY + 255 + INDEX). Oops! */
10365 if (!integer_zerop (low_bound))
10366 index1 = size_diffop_loc (loc, index1,
10367 fold_convert_loc (loc, sizetype,
10368 low_bound));
10370 if (tree_fits_uhwi_p (index1)
10371 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10373 tree type = TREE_TYPE (TREE_TYPE (init));
10374 scalar_int_mode mode;
10376 if (is_int_mode (TYPE_MODE (type), &mode)
10377 && GET_MODE_SIZE (mode) == 1)
10378 return gen_int_mode (TREE_STRING_POINTER (init)
10379 [TREE_INT_CST_LOW (index1)],
10380 mode);
10385 goto normal_inner_ref;
10387 case COMPONENT_REF:
10388 /* If the operand is a CONSTRUCTOR, we can just extract the
10389 appropriate field if it is present. */
10390 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10392 unsigned HOST_WIDE_INT idx;
10393 tree field, value;
10394 scalar_int_mode field_mode;
10396 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10397 idx, field, value)
10398 if (field == treeop1
10399 /* We can normally use the value of the field in the
10400 CONSTRUCTOR. However, if this is a bitfield in
10401 an integral mode that we can fit in a HOST_WIDE_INT,
10402 we must mask only the number of bits in the bitfield,
10403 since this is done implicitly by the constructor. If
10404 the bitfield does not meet either of those conditions,
10405 we can't do this optimization. */
10406 && (! DECL_BIT_FIELD (field)
10407 || (is_int_mode (DECL_MODE (field), &field_mode)
10408 && (GET_MODE_PRECISION (field_mode)
10409 <= HOST_BITS_PER_WIDE_INT))))
10411 if (DECL_BIT_FIELD (field)
10412 && modifier == EXPAND_STACK_PARM)
10413 target = 0;
10414 op0 = expand_expr (value, target, tmode, modifier);
10415 if (DECL_BIT_FIELD (field))
10417 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10418 scalar_int_mode imode
10419 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10421 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10423 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10424 imode);
10425 op0 = expand_and (imode, op0, op1, target);
10427 else
10429 int count = GET_MODE_PRECISION (imode) - bitsize;
10431 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10432 target, 0);
10433 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10434 target, 0);
10438 return op0;
10441 goto normal_inner_ref;
10443 case BIT_FIELD_REF:
10444 case ARRAY_RANGE_REF:
10445 normal_inner_ref:
10447 machine_mode mode1, mode2;
10448 HOST_WIDE_INT bitsize, bitpos;
10449 tree offset;
10450 int reversep, volatilep = 0, must_force_mem;
10451 tree tem
10452 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10453 &unsignedp, &reversep, &volatilep);
10454 rtx orig_op0, memloc;
10455 bool clear_mem_expr = false;
10457 /* If we got back the original object, something is wrong. Perhaps
10458 we are evaluating an expression too early. In any event, don't
10459 infinitely recurse. */
10460 gcc_assert (tem != exp);
10462 /* If TEM's type is a union of variable size, pass TARGET to the inner
10463 computation, since it will need a temporary and TARGET is known
10464 to have to do. This occurs in unchecked conversion in Ada. */
10465 orig_op0 = op0
10466 = expand_expr_real (tem,
10467 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10468 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10469 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10470 != INTEGER_CST)
10471 && modifier != EXPAND_STACK_PARM
10472 ? target : NULL_RTX),
10473 VOIDmode,
10474 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10475 NULL, true);
10477 /* If the field has a mode, we want to access it in the
10478 field's mode, not the computed mode.
10479 If a MEM has VOIDmode (external with incomplete type),
10480 use BLKmode for it instead. */
10481 if (MEM_P (op0))
10483 if (mode1 != VOIDmode)
10484 op0 = adjust_address (op0, mode1, 0);
10485 else if (GET_MODE (op0) == VOIDmode)
10486 op0 = adjust_address (op0, BLKmode, 0);
10489 mode2
10490 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10492 /* If we have either an offset, a BLKmode result, or a reference
10493 outside the underlying object, we must force it to memory.
10494 Such a case can occur in Ada if we have unchecked conversion
10495 of an expression from a scalar type to an aggregate type or
10496 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10497 passed a partially uninitialized object or a view-conversion
10498 to a larger size. */
10499 must_force_mem = (offset
10500 || mode1 == BLKmode
10501 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10503 /* Handle CONCAT first. */
10504 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10506 if (bitpos == 0
10507 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0))
10508 && COMPLEX_MODE_P (mode1)
10509 && COMPLEX_MODE_P (GET_MODE (op0))
10510 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10511 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10513 if (reversep)
10514 op0 = flip_storage_order (GET_MODE (op0), op0);
10515 if (mode1 != GET_MODE (op0))
10517 rtx parts[2];
10518 for (int i = 0; i < 2; i++)
10520 rtx op = read_complex_part (op0, i != 0);
10521 if (GET_CODE (op) == SUBREG)
10522 op = force_reg (GET_MODE (op), op);
10523 rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1),
10524 op);
10525 if (temp)
10526 op = temp;
10527 else
10529 if (!REG_P (op) && !MEM_P (op))
10530 op = force_reg (GET_MODE (op), op);
10531 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10533 parts[i] = op;
10535 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10537 return op0;
10539 if (bitpos == 0
10540 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10541 && bitsize)
10543 op0 = XEXP (op0, 0);
10544 mode2 = GET_MODE (op0);
10546 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10547 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10548 && bitpos
10549 && bitsize)
10551 op0 = XEXP (op0, 1);
10552 bitpos = 0;
10553 mode2 = GET_MODE (op0);
10555 else
10556 /* Otherwise force into memory. */
10557 must_force_mem = 1;
10560 /* If this is a constant, put it in a register if it is a legitimate
10561 constant and we don't need a memory reference. */
10562 if (CONSTANT_P (op0)
10563 && mode2 != BLKmode
10564 && targetm.legitimate_constant_p (mode2, op0)
10565 && !must_force_mem)
10566 op0 = force_reg (mode2, op0);
10568 /* Otherwise, if this is a constant, try to force it to the constant
10569 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10570 is a legitimate constant. */
10571 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10572 op0 = validize_mem (memloc);
10574 /* Otherwise, if this is a constant or the object is not in memory
10575 and need be, put it there. */
10576 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10578 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10579 emit_move_insn (memloc, op0);
10580 op0 = memloc;
10581 clear_mem_expr = true;
10584 if (offset)
10586 machine_mode address_mode;
10587 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10588 EXPAND_SUM);
10590 gcc_assert (MEM_P (op0));
10592 address_mode = get_address_mode (op0);
10593 if (GET_MODE (offset_rtx) != address_mode)
10595 /* We cannot be sure that the RTL in offset_rtx is valid outside
10596 of a memory address context, so force it into a register
10597 before attempting to convert it to the desired mode. */
10598 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10599 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10602 /* See the comment in expand_assignment for the rationale. */
10603 if (mode1 != VOIDmode
10604 && bitpos != 0
10605 && bitsize > 0
10606 && (bitpos % bitsize) == 0
10607 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10608 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10610 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10611 bitpos = 0;
10614 op0 = offset_address (op0, offset_rtx,
10615 highest_pow2_factor (offset));
10618 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10619 record its alignment as BIGGEST_ALIGNMENT. */
10620 if (MEM_P (op0) && bitpos == 0 && offset != 0
10621 && is_aligning_offset (offset, tem))
10622 set_mem_align (op0, BIGGEST_ALIGNMENT);
10624 /* Don't forget about volatility even if this is a bitfield. */
10625 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10627 if (op0 == orig_op0)
10628 op0 = copy_rtx (op0);
10630 MEM_VOLATILE_P (op0) = 1;
10633 /* In cases where an aligned union has an unaligned object
10634 as a field, we might be extracting a BLKmode value from
10635 an integer-mode (e.g., SImode) object. Handle this case
10636 by doing the extract into an object as wide as the field
10637 (which we know to be the width of a basic mode), then
10638 storing into memory, and changing the mode to BLKmode. */
10639 if (mode1 == VOIDmode
10640 || REG_P (op0) || GET_CODE (op0) == SUBREG
10641 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10642 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10643 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10644 && modifier != EXPAND_CONST_ADDRESS
10645 && modifier != EXPAND_INITIALIZER
10646 && modifier != EXPAND_MEMORY)
10647 /* If the bitfield is volatile and the bitsize
10648 is narrower than the access size of the bitfield,
10649 we need to extract bitfields from the access. */
10650 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10651 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10652 && mode1 != BLKmode
10653 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
10654 /* If the field isn't aligned enough to fetch as a memref,
10655 fetch it as a bit field. */
10656 || (mode1 != BLKmode
10657 && (((MEM_P (op0)
10658 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10659 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0)
10660 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10661 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0))
10662 && modifier != EXPAND_MEMORY
10663 && ((modifier == EXPAND_CONST_ADDRESS
10664 || modifier == EXPAND_INITIALIZER)
10665 ? STRICT_ALIGNMENT
10666 : targetm.slow_unaligned_access (mode1,
10667 MEM_ALIGN (op0))))
10668 || (bitpos % BITS_PER_UNIT != 0)))
10669 /* If the type and the field are a constant size and the
10670 size of the type isn't the same size as the bitfield,
10671 we must use bitfield operations. */
10672 || (bitsize >= 0
10673 && TYPE_SIZE (TREE_TYPE (exp))
10674 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10675 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10676 bitsize)))
10678 machine_mode ext_mode = mode;
10680 if (ext_mode == BLKmode
10681 && ! (target != 0 && MEM_P (op0)
10682 && MEM_P (target)
10683 && bitpos % BITS_PER_UNIT == 0))
10684 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
10686 if (ext_mode == BLKmode)
10688 if (target == 0)
10689 target = assign_temp (type, 1, 1);
10691 /* ??? Unlike the similar test a few lines below, this one is
10692 very likely obsolete. */
10693 if (bitsize == 0)
10694 return target;
10696 /* In this case, BITPOS must start at a byte boundary and
10697 TARGET, if specified, must be a MEM. */
10698 gcc_assert (MEM_P (op0)
10699 && (!target || MEM_P (target))
10700 && !(bitpos % BITS_PER_UNIT));
10702 emit_block_move (target,
10703 adjust_address (op0, VOIDmode,
10704 bitpos / BITS_PER_UNIT),
10705 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10706 / BITS_PER_UNIT),
10707 (modifier == EXPAND_STACK_PARM
10708 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10710 return target;
10713 /* If we have nothing to extract, the result will be 0 for targets
10714 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10715 return 0 for the sake of consistency, as reading a zero-sized
10716 bitfield is valid in Ada and the value is fully specified. */
10717 if (bitsize == 0)
10718 return const0_rtx;
10720 op0 = validize_mem (op0);
10722 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10723 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10725 /* If the result has a record type and the extraction is done in
10726 an integral mode, then the field may be not aligned on a byte
10727 boundary; in this case, if it has reverse storage order, it
10728 needs to be extracted as a scalar field with reverse storage
10729 order and put back into memory order afterwards. */
10730 if (TREE_CODE (type) == RECORD_TYPE
10731 && GET_MODE_CLASS (ext_mode) == MODE_INT)
10732 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
10734 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10735 (modifier == EXPAND_STACK_PARM
10736 ? NULL_RTX : target),
10737 ext_mode, ext_mode, reversep, alt_rtl);
10739 /* If the result has a record type and the mode of OP0 is an
10740 integral mode then, if BITSIZE is narrower than this mode
10741 and this is for big-endian data, we must put the field
10742 into the high-order bits. And we must also put it back
10743 into memory order if it has been previously reversed. */
10744 scalar_int_mode op0_mode;
10745 if (TREE_CODE (type) == RECORD_TYPE
10746 && is_int_mode (GET_MODE (op0), &op0_mode))
10748 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
10750 if (bitsize < size
10751 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
10752 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
10753 size - bitsize, op0, 1);
10755 if (reversep)
10756 op0 = flip_storage_order (op0_mode, op0);
10759 /* If the result type is BLKmode, store the data into a temporary
10760 of the appropriate type, but with the mode corresponding to the
10761 mode for the data we have (op0's mode). */
10762 if (mode == BLKmode)
10764 rtx new_rtx
10765 = assign_stack_temp_for_type (ext_mode,
10766 GET_MODE_BITSIZE (ext_mode),
10767 type);
10768 emit_move_insn (new_rtx, op0);
10769 op0 = copy_rtx (new_rtx);
10770 PUT_MODE (op0, BLKmode);
10773 return op0;
10776 /* If the result is BLKmode, use that to access the object
10777 now as well. */
10778 if (mode == BLKmode)
10779 mode1 = BLKmode;
10781 /* Get a reference to just this component. */
10782 if (modifier == EXPAND_CONST_ADDRESS
10783 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10784 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10785 else
10786 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10788 if (op0 == orig_op0)
10789 op0 = copy_rtx (op0);
10791 /* Don't set memory attributes if the base expression is
10792 SSA_NAME that got expanded as a MEM. In that case, we should
10793 just honor its original memory attributes. */
10794 if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0))
10795 set_mem_attributes (op0, exp, 0);
10797 if (REG_P (XEXP (op0, 0)))
10798 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10800 /* If op0 is a temporary because the original expressions was forced
10801 to memory, clear MEM_EXPR so that the original expression cannot
10802 be marked as addressable through MEM_EXPR of the temporary. */
10803 if (clear_mem_expr)
10804 set_mem_expr (op0, NULL_TREE);
10806 MEM_VOLATILE_P (op0) |= volatilep;
10808 if (reversep
10809 && modifier != EXPAND_MEMORY
10810 && modifier != EXPAND_WRITE)
10811 op0 = flip_storage_order (mode1, op0);
10813 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10814 || modifier == EXPAND_CONST_ADDRESS
10815 || modifier == EXPAND_INITIALIZER)
10816 return op0;
10818 if (target == 0)
10819 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10821 convert_move (target, op0, unsignedp);
10822 return target;
10825 case OBJ_TYPE_REF:
10826 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10828 case CALL_EXPR:
10829 /* All valid uses of __builtin_va_arg_pack () are removed during
10830 inlining. */
10831 if (CALL_EXPR_VA_ARG_PACK (exp))
10832 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10834 tree fndecl = get_callee_fndecl (exp), attr;
10836 if (fndecl
10837 && (attr = lookup_attribute ("error",
10838 DECL_ATTRIBUTES (fndecl))) != NULL)
10839 error ("%Kcall to %qs declared with attribute error: %s",
10840 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10841 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10842 if (fndecl
10843 && (attr = lookup_attribute ("warning",
10844 DECL_ATTRIBUTES (fndecl))) != NULL)
10845 warning_at (tree_nonartificial_location (exp),
10846 0, "%Kcall to %qs declared with attribute warning: %s",
10847 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10848 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10850 /* Check for a built-in function. */
10851 if (fndecl && DECL_BUILT_IN (fndecl))
10853 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10854 if (CALL_WITH_BOUNDS_P (exp))
10855 return expand_builtin_with_bounds (exp, target, subtarget,
10856 tmode, ignore);
10857 else
10858 return expand_builtin (exp, target, subtarget, tmode, ignore);
10861 return expand_call (exp, target, ignore);
10863 case VIEW_CONVERT_EXPR:
10864 op0 = NULL_RTX;
10866 /* If we are converting to BLKmode, try to avoid an intermediate
10867 temporary by fetching an inner memory reference. */
10868 if (mode == BLKmode
10869 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10870 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10871 && handled_component_p (treeop0))
10873 machine_mode mode1;
10874 HOST_WIDE_INT bitsize, bitpos;
10875 tree offset;
10876 int unsignedp, reversep, volatilep = 0;
10877 tree tem
10878 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
10879 &unsignedp, &reversep, &volatilep);
10880 rtx orig_op0;
10882 /* ??? We should work harder and deal with non-zero offsets. */
10883 if (!offset
10884 && (bitpos % BITS_PER_UNIT) == 0
10885 && !reversep
10886 && bitsize >= 0
10887 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10889 /* See the normal_inner_ref case for the rationale. */
10890 orig_op0
10891 = expand_expr_real (tem,
10892 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10893 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10894 != INTEGER_CST)
10895 && modifier != EXPAND_STACK_PARM
10896 ? target : NULL_RTX),
10897 VOIDmode,
10898 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10899 NULL, true);
10901 if (MEM_P (orig_op0))
10903 op0 = orig_op0;
10905 /* Get a reference to just this component. */
10906 if (modifier == EXPAND_CONST_ADDRESS
10907 || modifier == EXPAND_SUM
10908 || modifier == EXPAND_INITIALIZER)
10909 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10910 else
10911 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10913 if (op0 == orig_op0)
10914 op0 = copy_rtx (op0);
10916 set_mem_attributes (op0, treeop0, 0);
10917 if (REG_P (XEXP (op0, 0)))
10918 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10920 MEM_VOLATILE_P (op0) |= volatilep;
10925 if (!op0)
10926 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
10927 NULL, inner_reference_p);
10929 /* If the input and output modes are both the same, we are done. */
10930 if (mode == GET_MODE (op0))
10932 /* If neither mode is BLKmode, and both modes are the same size
10933 then we can use gen_lowpart. */
10934 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10935 && (GET_MODE_PRECISION (mode)
10936 == GET_MODE_PRECISION (GET_MODE (op0)))
10937 && !COMPLEX_MODE_P (GET_MODE (op0)))
10939 if (GET_CODE (op0) == SUBREG)
10940 op0 = force_reg (GET_MODE (op0), op0);
10941 temp = gen_lowpart_common (mode, op0);
10942 if (temp)
10943 op0 = temp;
10944 else
10946 if (!REG_P (op0) && !MEM_P (op0))
10947 op0 = force_reg (GET_MODE (op0), op0);
10948 op0 = gen_lowpart (mode, op0);
10951 /* If both types are integral, convert from one mode to the other. */
10952 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10953 op0 = convert_modes (mode, GET_MODE (op0), op0,
10954 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10955 /* If the output type is a bit-field type, do an extraction. */
10956 else if (reduce_bit_field)
10957 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
10958 TYPE_UNSIGNED (type), NULL_RTX,
10959 mode, mode, false, NULL);
10960 /* As a last resort, spill op0 to memory, and reload it in a
10961 different mode. */
10962 else if (!MEM_P (op0))
10964 /* If the operand is not a MEM, force it into memory. Since we
10965 are going to be changing the mode of the MEM, don't call
10966 force_const_mem for constants because we don't allow pool
10967 constants to change mode. */
10968 tree inner_type = TREE_TYPE (treeop0);
10970 gcc_assert (!TREE_ADDRESSABLE (exp));
10972 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10973 target
10974 = assign_stack_temp_for_type
10975 (TYPE_MODE (inner_type),
10976 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10978 emit_move_insn (target, op0);
10979 op0 = target;
10982 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10983 output type is such that the operand is known to be aligned, indicate
10984 that it is. Otherwise, we need only be concerned about alignment for
10985 non-BLKmode results. */
10986 if (MEM_P (op0))
10988 enum insn_code icode;
10990 if (modifier != EXPAND_WRITE
10991 && modifier != EXPAND_MEMORY
10992 && !inner_reference_p
10993 && mode != BLKmode
10994 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10996 /* If the target does have special handling for unaligned
10997 loads of mode then use them. */
10998 if ((icode = optab_handler (movmisalign_optab, mode))
10999 != CODE_FOR_nothing)
11001 rtx reg;
11003 op0 = adjust_address (op0, mode, 0);
11004 /* We've already validated the memory, and we're creating a
11005 new pseudo destination. The predicates really can't
11006 fail. */
11007 reg = gen_reg_rtx (mode);
11009 /* Nor can the insn generator. */
11010 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11011 emit_insn (insn);
11012 return reg;
11014 else if (STRICT_ALIGNMENT)
11016 tree inner_type = TREE_TYPE (treeop0);
11017 HOST_WIDE_INT temp_size
11018 = MAX (int_size_in_bytes (inner_type),
11019 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
11020 rtx new_rtx
11021 = assign_stack_temp_for_type (mode, temp_size, type);
11022 rtx new_with_op0_mode
11023 = adjust_address (new_rtx, GET_MODE (op0), 0);
11025 gcc_assert (!TREE_ADDRESSABLE (exp));
11027 if (GET_MODE (op0) == BLKmode)
11028 emit_block_move (new_with_op0_mode, op0,
11029 GEN_INT (GET_MODE_SIZE (mode)),
11030 (modifier == EXPAND_STACK_PARM
11031 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
11032 else
11033 emit_move_insn (new_with_op0_mode, op0);
11035 op0 = new_rtx;
11039 op0 = adjust_address (op0, mode, 0);
11042 return op0;
11044 case MODIFY_EXPR:
11046 tree lhs = treeop0;
11047 tree rhs = treeop1;
11048 gcc_assert (ignore);
11050 /* Check for |= or &= of a bitfield of size one into another bitfield
11051 of size 1. In this case, (unless we need the result of the
11052 assignment) we can do this more efficiently with a
11053 test followed by an assignment, if necessary.
11055 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11056 things change so we do, this code should be enhanced to
11057 support it. */
11058 if (TREE_CODE (lhs) == COMPONENT_REF
11059 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11060 || TREE_CODE (rhs) == BIT_AND_EXPR)
11061 && TREE_OPERAND (rhs, 0) == lhs
11062 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11063 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11064 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11066 rtx_code_label *label = gen_label_rtx ();
11067 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11068 do_jump (TREE_OPERAND (rhs, 1),
11069 value ? label : 0,
11070 value ? 0 : label,
11071 profile_probability::uninitialized ());
11072 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11073 false);
11074 do_pending_stack_adjust ();
11075 emit_label (label);
11076 return const0_rtx;
11079 expand_assignment (lhs, rhs, false);
11080 return const0_rtx;
11083 case ADDR_EXPR:
11084 return expand_expr_addr_expr (exp, target, tmode, modifier);
11086 case REALPART_EXPR:
11087 op0 = expand_normal (treeop0);
11088 return read_complex_part (op0, false);
11090 case IMAGPART_EXPR:
11091 op0 = expand_normal (treeop0);
11092 return read_complex_part (op0, true);
11094 case RETURN_EXPR:
11095 case LABEL_EXPR:
11096 case GOTO_EXPR:
11097 case SWITCH_EXPR:
11098 case ASM_EXPR:
11099 /* Expanded in cfgexpand.c. */
11100 gcc_unreachable ();
11102 case TRY_CATCH_EXPR:
11103 case CATCH_EXPR:
11104 case EH_FILTER_EXPR:
11105 case TRY_FINALLY_EXPR:
11106 /* Lowered by tree-eh.c. */
11107 gcc_unreachable ();
11109 case WITH_CLEANUP_EXPR:
11110 case CLEANUP_POINT_EXPR:
11111 case TARGET_EXPR:
11112 case CASE_LABEL_EXPR:
11113 case VA_ARG_EXPR:
11114 case BIND_EXPR:
11115 case INIT_EXPR:
11116 case CONJ_EXPR:
11117 case COMPOUND_EXPR:
11118 case PREINCREMENT_EXPR:
11119 case PREDECREMENT_EXPR:
11120 case POSTINCREMENT_EXPR:
11121 case POSTDECREMENT_EXPR:
11122 case LOOP_EXPR:
11123 case EXIT_EXPR:
11124 case COMPOUND_LITERAL_EXPR:
11125 /* Lowered by gimplify.c. */
11126 gcc_unreachable ();
11128 case FDESC_EXPR:
11129 /* Function descriptors are not valid except for as
11130 initialization constants, and should not be expanded. */
11131 gcc_unreachable ();
11133 case WITH_SIZE_EXPR:
11134 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11135 have pulled out the size to use in whatever context it needed. */
11136 return expand_expr_real (treeop0, original_target, tmode,
11137 modifier, alt_rtl, inner_reference_p);
11139 default:
11140 return expand_expr_real_2 (&ops, target, tmode, modifier);
11144 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11145 signedness of TYPE), possibly returning the result in TARGET.
11146 TYPE is known to be a partial integer type. */
11147 static rtx
11148 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11150 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11151 if (target && GET_MODE (target) != GET_MODE (exp))
11152 target = 0;
11153 /* For constant values, reduce using build_int_cst_type. */
11154 if (CONST_INT_P (exp))
11156 HOST_WIDE_INT value = INTVAL (exp);
11157 tree t = build_int_cst_type (type, value);
11158 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11160 else if (TYPE_UNSIGNED (type))
11162 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11163 rtx mask = immed_wide_int_const
11164 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11165 return expand_and (mode, exp, mask, target);
11167 else
11169 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11170 int count = GET_MODE_PRECISION (mode) - prec;
11171 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11172 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11176 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11177 when applied to the address of EXP produces an address known to be
11178 aligned more than BIGGEST_ALIGNMENT. */
11180 static int
11181 is_aligning_offset (const_tree offset, const_tree exp)
11183 /* Strip off any conversions. */
11184 while (CONVERT_EXPR_P (offset))
11185 offset = TREE_OPERAND (offset, 0);
11187 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11188 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11189 if (TREE_CODE (offset) != BIT_AND_EXPR
11190 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11191 || compare_tree_int (TREE_OPERAND (offset, 1),
11192 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11193 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11194 return 0;
11196 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11197 It must be NEGATE_EXPR. Then strip any more conversions. */
11198 offset = TREE_OPERAND (offset, 0);
11199 while (CONVERT_EXPR_P (offset))
11200 offset = TREE_OPERAND (offset, 0);
11202 if (TREE_CODE (offset) != NEGATE_EXPR)
11203 return 0;
11205 offset = TREE_OPERAND (offset, 0);
11206 while (CONVERT_EXPR_P (offset))
11207 offset = TREE_OPERAND (offset, 0);
11209 /* This must now be the address of EXP. */
11210 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11213 /* Return the tree node if an ARG corresponds to a string constant or zero
11214 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
11215 in bytes within the string that ARG is accessing. The type of the
11216 offset will be `sizetype'. */
11218 tree
11219 string_constant (tree arg, tree *ptr_offset)
11221 tree array, offset, lower_bound;
11222 STRIP_NOPS (arg);
11224 if (TREE_CODE (arg) == ADDR_EXPR)
11226 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
11228 *ptr_offset = size_zero_node;
11229 return TREE_OPERAND (arg, 0);
11231 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
11233 array = TREE_OPERAND (arg, 0);
11234 offset = size_zero_node;
11236 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
11238 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11239 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11240 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11241 return 0;
11243 /* Check if the array has a nonzero lower bound. */
11244 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
11245 if (!integer_zerop (lower_bound))
11247 /* If the offset and base aren't both constants, return 0. */
11248 if (TREE_CODE (lower_bound) != INTEGER_CST)
11249 return 0;
11250 if (TREE_CODE (offset) != INTEGER_CST)
11251 return 0;
11252 /* Adjust offset by the lower bound. */
11253 offset = size_diffop (fold_convert (sizetype, offset),
11254 fold_convert (sizetype, lower_bound));
11257 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
11259 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11260 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11261 if (TREE_CODE (array) != ADDR_EXPR)
11262 return 0;
11263 array = TREE_OPERAND (array, 0);
11264 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11265 return 0;
11267 else
11268 return 0;
11270 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11272 tree arg0 = TREE_OPERAND (arg, 0);
11273 tree arg1 = TREE_OPERAND (arg, 1);
11275 STRIP_NOPS (arg0);
11276 STRIP_NOPS (arg1);
11278 if (TREE_CODE (arg0) == ADDR_EXPR
11279 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
11280 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
11282 array = TREE_OPERAND (arg0, 0);
11283 offset = arg1;
11285 else if (TREE_CODE (arg1) == ADDR_EXPR
11286 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
11287 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
11289 array = TREE_OPERAND (arg1, 0);
11290 offset = arg0;
11292 else
11293 return 0;
11295 else
11296 return 0;
11298 if (TREE_CODE (array) == STRING_CST)
11300 *ptr_offset = fold_convert (sizetype, offset);
11301 return array;
11303 else if (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
11305 int length;
11306 tree init = ctor_for_folding (array);
11308 /* Variables initialized to string literals can be handled too. */
11309 if (init == error_mark_node
11310 || !init
11311 || TREE_CODE (init) != STRING_CST)
11312 return 0;
11314 /* Avoid const char foo[4] = "abcde"; */
11315 if (DECL_SIZE_UNIT (array) == NULL_TREE
11316 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
11317 || (length = TREE_STRING_LENGTH (init)) <= 0
11318 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
11319 return 0;
11321 /* If variable is bigger than the string literal, OFFSET must be constant
11322 and inside of the bounds of the string literal. */
11323 offset = fold_convert (sizetype, offset);
11324 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
11325 && (! tree_fits_uhwi_p (offset)
11326 || compare_tree_int (offset, length) >= 0))
11327 return 0;
11329 *ptr_offset = offset;
11330 return init;
11333 return 0;
11336 /* Generate code to calculate OPS, and exploded expression
11337 using a store-flag instruction and return an rtx for the result.
11338 OPS reflects a comparison.
11340 If TARGET is nonzero, store the result there if convenient.
11342 Return zero if there is no suitable set-flag instruction
11343 available on this machine.
11345 Once expand_expr has been called on the arguments of the comparison,
11346 we are committed to doing the store flag, since it is not safe to
11347 re-evaluate the expression. We emit the store-flag insn by calling
11348 emit_store_flag, but only expand the arguments if we have a reason
11349 to believe that emit_store_flag will be successful. If we think that
11350 it will, but it isn't, we have to simulate the store-flag with a
11351 set/jump/set sequence. */
11353 static rtx
11354 do_store_flag (sepops ops, rtx target, machine_mode mode)
11356 enum rtx_code code;
11357 tree arg0, arg1, type;
11358 machine_mode operand_mode;
11359 int unsignedp;
11360 rtx op0, op1;
11361 rtx subtarget = target;
11362 location_t loc = ops->location;
11364 arg0 = ops->op0;
11365 arg1 = ops->op1;
11367 /* Don't crash if the comparison was erroneous. */
11368 if (arg0 == error_mark_node || arg1 == error_mark_node)
11369 return const0_rtx;
11371 type = TREE_TYPE (arg0);
11372 operand_mode = TYPE_MODE (type);
11373 unsignedp = TYPE_UNSIGNED (type);
11375 /* We won't bother with BLKmode store-flag operations because it would mean
11376 passing a lot of information to emit_store_flag. */
11377 if (operand_mode == BLKmode)
11378 return 0;
11380 /* We won't bother with store-flag operations involving function pointers
11381 when function pointers must be canonicalized before comparisons. */
11382 if (targetm.have_canonicalize_funcptr_for_compare ()
11383 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
11384 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
11385 == FUNCTION_TYPE))
11386 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
11387 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
11388 == FUNCTION_TYPE))))
11389 return 0;
11391 STRIP_NOPS (arg0);
11392 STRIP_NOPS (arg1);
11394 /* For vector typed comparisons emit code to generate the desired
11395 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11396 expander for this. */
11397 if (TREE_CODE (ops->type) == VECTOR_TYPE)
11399 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
11400 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
11401 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
11402 return expand_vec_cmp_expr (ops->type, ifexp, target);
11403 else
11405 tree if_true = constant_boolean_node (true, ops->type);
11406 tree if_false = constant_boolean_node (false, ops->type);
11407 return expand_vec_cond_expr (ops->type, ifexp, if_true,
11408 if_false, target);
11412 /* Get the rtx comparison code to use. We know that EXP is a comparison
11413 operation of some type. Some comparisons against 1 and -1 can be
11414 converted to comparisons with zero. Do so here so that the tests
11415 below will be aware that we have a comparison with zero. These
11416 tests will not catch constants in the first operand, but constants
11417 are rarely passed as the first operand. */
11419 switch (ops->code)
11421 case EQ_EXPR:
11422 code = EQ;
11423 break;
11424 case NE_EXPR:
11425 code = NE;
11426 break;
11427 case LT_EXPR:
11428 if (integer_onep (arg1))
11429 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
11430 else
11431 code = unsignedp ? LTU : LT;
11432 break;
11433 case LE_EXPR:
11434 if (! unsignedp && integer_all_onesp (arg1))
11435 arg1 = integer_zero_node, code = LT;
11436 else
11437 code = unsignedp ? LEU : LE;
11438 break;
11439 case GT_EXPR:
11440 if (! unsignedp && integer_all_onesp (arg1))
11441 arg1 = integer_zero_node, code = GE;
11442 else
11443 code = unsignedp ? GTU : GT;
11444 break;
11445 case GE_EXPR:
11446 if (integer_onep (arg1))
11447 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
11448 else
11449 code = unsignedp ? GEU : GE;
11450 break;
11452 case UNORDERED_EXPR:
11453 code = UNORDERED;
11454 break;
11455 case ORDERED_EXPR:
11456 code = ORDERED;
11457 break;
11458 case UNLT_EXPR:
11459 code = UNLT;
11460 break;
11461 case UNLE_EXPR:
11462 code = UNLE;
11463 break;
11464 case UNGT_EXPR:
11465 code = UNGT;
11466 break;
11467 case UNGE_EXPR:
11468 code = UNGE;
11469 break;
11470 case UNEQ_EXPR:
11471 code = UNEQ;
11472 break;
11473 case LTGT_EXPR:
11474 code = LTGT;
11475 break;
11477 default:
11478 gcc_unreachable ();
11481 /* Put a constant second. */
11482 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
11483 || TREE_CODE (arg0) == FIXED_CST)
11485 std::swap (arg0, arg1);
11486 code = swap_condition (code);
11489 /* If this is an equality or inequality test of a single bit, we can
11490 do this by shifting the bit being tested to the low-order bit and
11491 masking the result with the constant 1. If the condition was EQ,
11492 we xor it with 1. This does not require an scc insn and is faster
11493 than an scc insn even if we have it.
11495 The code to make this transformation was moved into fold_single_bit_test,
11496 so we just call into the folder and expand its result. */
11498 if ((code == NE || code == EQ)
11499 && integer_zerop (arg1)
11500 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
11502 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
11503 if (srcstmt
11504 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
11506 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
11507 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11508 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
11509 gimple_assign_rhs1 (srcstmt),
11510 gimple_assign_rhs2 (srcstmt));
11511 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
11512 if (temp)
11513 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
11517 if (! get_subtarget (target)
11518 || GET_MODE (subtarget) != operand_mode)
11519 subtarget = 0;
11521 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
11523 if (target == 0)
11524 target = gen_reg_rtx (mode);
11526 /* Try a cstore if possible. */
11527 return emit_store_flag_force (target, code, op0, op1,
11528 operand_mode, unsignedp,
11529 (TYPE_PRECISION (ops->type) == 1
11530 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11533 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11534 0 otherwise (i.e. if there is no casesi instruction).
11536 DEFAULT_PROBABILITY is the probability of jumping to the default
11537 label. */
11539 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11540 rtx table_label, rtx default_label, rtx fallback_label,
11541 profile_probability default_probability)
11543 struct expand_operand ops[5];
11544 scalar_int_mode index_mode = SImode;
11545 rtx op1, op2, index;
11547 if (! targetm.have_casesi ())
11548 return 0;
11550 /* The index must be some form of integer. Convert it to SImode. */
11551 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
11552 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
11554 rtx rangertx = expand_normal (range);
11556 /* We must handle the endpoints in the original mode. */
11557 index_expr = build2 (MINUS_EXPR, index_type,
11558 index_expr, minval);
11559 minval = integer_zero_node;
11560 index = expand_normal (index_expr);
11561 if (default_label)
11562 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11563 omode, 1, default_label,
11564 default_probability);
11565 /* Now we can safely truncate. */
11566 index = convert_to_mode (index_mode, index, 0);
11568 else
11570 if (omode != index_mode)
11572 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11573 index_expr = fold_convert (index_type, index_expr);
11576 index = expand_normal (index_expr);
11579 do_pending_stack_adjust ();
11581 op1 = expand_normal (minval);
11582 op2 = expand_normal (range);
11584 create_input_operand (&ops[0], index, index_mode);
11585 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11586 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11587 create_fixed_operand (&ops[3], table_label);
11588 create_fixed_operand (&ops[4], (default_label
11589 ? default_label
11590 : fallback_label));
11591 expand_jump_insn (targetm.code_for_casesi, 5, ops);
11592 return 1;
11595 /* Attempt to generate a tablejump instruction; same concept. */
11596 /* Subroutine of the next function.
11598 INDEX is the value being switched on, with the lowest value
11599 in the table already subtracted.
11600 MODE is its expected mode (needed if INDEX is constant).
11601 RANGE is the length of the jump table.
11602 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11604 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11605 index value is out of range.
11606 DEFAULT_PROBABILITY is the probability of jumping to
11607 the default label. */
11609 static void
11610 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
11611 rtx default_label, profile_probability default_probability)
11613 rtx temp, vector;
11615 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11616 cfun->cfg->max_jumptable_ents = INTVAL (range);
11618 /* Do an unsigned comparison (in the proper mode) between the index
11619 expression and the value which represents the length of the range.
11620 Since we just finished subtracting the lower bound of the range
11621 from the index expression, this comparison allows us to simultaneously
11622 check that the original index expression value is both greater than
11623 or equal to the minimum value of the range and less than or equal to
11624 the maximum value of the range. */
11626 if (default_label)
11627 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11628 default_label, default_probability);
11631 /* If index is in range, it must fit in Pmode.
11632 Convert to Pmode so we can index with it. */
11633 if (mode != Pmode)
11634 index = convert_to_mode (Pmode, index, 1);
11636 /* Don't let a MEM slip through, because then INDEX that comes
11637 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11638 and break_out_memory_refs will go to work on it and mess it up. */
11639 #ifdef PIC_CASE_VECTOR_ADDRESS
11640 if (flag_pic && !REG_P (index))
11641 index = copy_to_mode_reg (Pmode, index);
11642 #endif
11644 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11645 GET_MODE_SIZE, because this indicates how large insns are. The other
11646 uses should all be Pmode, because they are addresses. This code
11647 could fail if addresses and insns are not the same size. */
11648 index = simplify_gen_binary (MULT, Pmode, index,
11649 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
11650 Pmode));
11651 index = simplify_gen_binary (PLUS, Pmode, index,
11652 gen_rtx_LABEL_REF (Pmode, table_label));
11654 #ifdef PIC_CASE_VECTOR_ADDRESS
11655 if (flag_pic)
11656 index = PIC_CASE_VECTOR_ADDRESS (index);
11657 else
11658 #endif
11659 index = memory_address (CASE_VECTOR_MODE, index);
11660 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11661 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11662 convert_move (temp, vector, 0);
11664 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
11666 /* If we are generating PIC code or if the table is PC-relative, the
11667 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11668 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11669 emit_barrier ();
11673 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11674 rtx table_label, rtx default_label,
11675 profile_probability default_probability)
11677 rtx index;
11679 if (! targetm.have_tablejump ())
11680 return 0;
11682 index_expr = fold_build2 (MINUS_EXPR, index_type,
11683 fold_convert (index_type, index_expr),
11684 fold_convert (index_type, minval));
11685 index = expand_normal (index_expr);
11686 do_pending_stack_adjust ();
11688 do_tablejump (index, TYPE_MODE (index_type),
11689 convert_modes (TYPE_MODE (index_type),
11690 TYPE_MODE (TREE_TYPE (range)),
11691 expand_normal (range),
11692 TYPE_UNSIGNED (TREE_TYPE (range))),
11693 table_label, default_label, default_probability);
11694 return 1;
11697 /* Return a CONST_VECTOR rtx representing vector mask for
11698 a VECTOR_CST of booleans. */
11699 static rtx
11700 const_vector_mask_from_tree (tree exp)
11702 rtvec v;
11703 unsigned i;
11704 int units;
11705 tree elt;
11706 machine_mode inner, mode;
11708 mode = TYPE_MODE (TREE_TYPE (exp));
11709 units = GET_MODE_NUNITS (mode);
11710 inner = GET_MODE_INNER (mode);
11712 v = rtvec_alloc (units);
11714 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11716 elt = VECTOR_CST_ELT (exp, i);
11718 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11719 if (integer_zerop (elt))
11720 RTVEC_ELT (v, i) = CONST0_RTX (inner);
11721 else if (integer_onep (elt)
11722 || integer_minus_onep (elt))
11723 RTVEC_ELT (v, i) = CONSTM1_RTX (inner);
11724 else
11725 gcc_unreachable ();
11728 return gen_rtx_CONST_VECTOR (mode, v);
11731 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
11732 Return a constant scalar rtx of mode MODE in which bit X is set if element
11733 X of EXP is nonzero. */
11734 static rtx
11735 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
11737 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
11738 tree elt;
11739 unsigned i;
11741 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11743 elt = VECTOR_CST_ELT (exp, i);
11744 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11745 if (integer_all_onesp (elt))
11746 res = wi::set_bit (res, i);
11747 else
11748 gcc_assert (integer_zerop (elt));
11751 return immed_wide_int_const (res, mode);
11754 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11755 static rtx
11756 const_vector_from_tree (tree exp)
11758 rtvec v;
11759 unsigned i;
11760 int units;
11761 tree elt;
11762 machine_mode inner, mode;
11764 mode = TYPE_MODE (TREE_TYPE (exp));
11766 if (initializer_zerop (exp))
11767 return CONST0_RTX (mode);
11769 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
11770 return const_vector_mask_from_tree (exp);
11772 units = GET_MODE_NUNITS (mode);
11773 inner = GET_MODE_INNER (mode);
11775 v = rtvec_alloc (units);
11777 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11779 elt = VECTOR_CST_ELT (exp, i);
11781 if (TREE_CODE (elt) == REAL_CST)
11782 RTVEC_ELT (v, i) = const_double_from_real_value (TREE_REAL_CST (elt),
11783 inner);
11784 else if (TREE_CODE (elt) == FIXED_CST)
11785 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11786 inner);
11787 else
11788 RTVEC_ELT (v, i) = immed_wide_int_const (elt, inner);
11791 return gen_rtx_CONST_VECTOR (mode, v);
11794 /* Build a decl for a personality function given a language prefix. */
11796 tree
11797 build_personality_function (const char *lang)
11799 const char *unwind_and_version;
11800 tree decl, type;
11801 char *name;
11803 switch (targetm_common.except_unwind_info (&global_options))
11805 case UI_NONE:
11806 return NULL;
11807 case UI_SJLJ:
11808 unwind_and_version = "_sj0";
11809 break;
11810 case UI_DWARF2:
11811 case UI_TARGET:
11812 unwind_and_version = "_v0";
11813 break;
11814 case UI_SEH:
11815 unwind_and_version = "_seh0";
11816 break;
11817 default:
11818 gcc_unreachable ();
11821 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11823 type = build_function_type_list (integer_type_node, integer_type_node,
11824 long_long_unsigned_type_node,
11825 ptr_type_node, ptr_type_node, NULL_TREE);
11826 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11827 get_identifier (name), type);
11828 DECL_ARTIFICIAL (decl) = 1;
11829 DECL_EXTERNAL (decl) = 1;
11830 TREE_PUBLIC (decl) = 1;
11832 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11833 are the flags assigned by targetm.encode_section_info. */
11834 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11836 return decl;
11839 /* Extracts the personality function of DECL and returns the corresponding
11840 libfunc. */
11843 get_personality_function (tree decl)
11845 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11846 enum eh_personality_kind pk;
11848 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11849 if (pk == eh_personality_none)
11850 return NULL;
11852 if (!personality
11853 && pk == eh_personality_any)
11854 personality = lang_hooks.eh_personality ();
11856 if (pk == eh_personality_lang)
11857 gcc_assert (personality != NULL_TREE);
11859 return XEXP (DECL_RTL (personality), 0);
11862 /* Returns a tree for the size of EXP in bytes. */
11864 static tree
11865 tree_expr_size (const_tree exp)
11867 if (DECL_P (exp)
11868 && DECL_SIZE_UNIT (exp) != 0)
11869 return DECL_SIZE_UNIT (exp);
11870 else
11871 return size_in_bytes (TREE_TYPE (exp));
11874 /* Return an rtx for the size in bytes of the value of EXP. */
11877 expr_size (tree exp)
11879 tree size;
11881 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11882 size = TREE_OPERAND (exp, 1);
11883 else
11885 size = tree_expr_size (exp);
11886 gcc_assert (size);
11887 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
11890 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
11893 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11894 if the size can vary or is larger than an integer. */
11896 static HOST_WIDE_INT
11897 int_expr_size (tree exp)
11899 tree size;
11901 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11902 size = TREE_OPERAND (exp, 1);
11903 else
11905 size = tree_expr_size (exp);
11906 gcc_assert (size);
11909 if (size == 0 || !tree_fits_shwi_p (size))
11910 return -1;
11912 return tree_to_shwi (size);