1 c Copyright (C) 1988-2017 Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.) To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
18 These extensions are available in C and Objective-C@. Most of them are
19 also available in C++. @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
26 * Statement Exprs:: Putting statements and declarations inside expressions.
27 * Local Labels:: Labels local to a block.
28 * Labels as Values:: Getting pointers to labels, and computed gotos.
29 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
30 * Constructing Calls:: Dispatching a call to another function.
31 * Typeof:: @code{typeof}: referring to the type of an expression.
32 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
33 * __int128:: 128-bit integers---@code{__int128}.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Half-Precision:: Half-Precision Floating Point.
38 * Decimal Float:: Decimal Floating Types.
39 * Hex Floats:: Hexadecimal floating-point constants.
40 * Fixed-Point:: Fixed-Point Types.
41 * Named Address Spaces::Named address spaces.
42 * Zero Length:: Zero-length arrays.
43 * Empty Structures:: Structures with no members.
44 * Variable Length:: Arrays whose length is computed at run time.
45 * Variadic Macros:: Macros with a variable number of arguments.
46 * Escaped Newlines:: Slightly looser rules for escaped newlines.
47 * Subscripting:: Any array can be subscripted, even if not an lvalue.
48 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
49 * Pointers to Arrays:: Pointers to arrays with qualifiers work as expected.
50 * Initializers:: Non-constant initializers.
51 * Compound Literals:: Compound literals give structures, unions
53 * Designated Inits:: Labeling elements of initializers.
54 * Case Ranges:: `case 1 ... 9' and such.
55 * Cast to Union:: Casting to union type from any member of the union.
56 * Mixed Declarations:: Mixing declarations and code.
57 * Function Attributes:: Declaring that functions have no side effects,
58 or that they can never return.
59 * Variable Attributes:: Specifying attributes of variables.
60 * Type Attributes:: Specifying attributes of types.
61 * Label Attributes:: Specifying attributes on labels.
62 * Enumerator Attributes:: Specifying attributes on enumerators.
63 * Statement Attributes:: Specifying attributes on statements.
64 * Attribute Syntax:: Formal syntax for attributes.
65 * Function Prototypes:: Prototype declarations and old-style definitions.
66 * C++ Comments:: C++ comments are recognized.
67 * Dollar Signs:: Dollar sign is allowed in identifiers.
68 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
69 * Alignment:: Inquiring about the alignment of a type or variable.
70 * Inline:: Defining inline functions (as fast as macros).
71 * Volatiles:: What constitutes an access to a volatile object.
72 * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
73 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
74 * Incomplete Enums:: @code{enum foo;}, with details to follow.
75 * Function Names:: Printable strings which are the name of the current
77 * Return Address:: Getting the return or frame address of a function.
78 * Vector Extensions:: Using vector instructions through built-in functions.
79 * Offsetof:: Special syntax for implementing @code{offsetof}.
80 * __sync Builtins:: Legacy built-in functions for atomic memory access.
81 * __atomic Builtins:: Atomic built-in functions with memory model.
82 * Integer Overflow Builtins:: Built-in functions to perform arithmetics and
83 arithmetic overflow checking.
84 * x86 specific memory model extensions for transactional memory:: x86 memory models.
85 * Object Size Checking:: Built-in functions for limited buffer overflow
87 * Pointer Bounds Checker builtins:: Built-in functions for Pointer Bounds Checker.
88 * Cilk Plus Builtins:: Built-in functions for the Cilk Plus language extension.
89 * Other Builtins:: Other built-in functions.
90 * Target Builtins:: Built-in functions specific to particular targets.
91 * Target Format Checks:: Format checks specific to particular targets.
92 * Pragmas:: Pragmas accepted by GCC.
93 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
94 * Thread-Local:: Per-thread variables.
95 * Binary constants:: Binary constants using the @samp{0b} prefix.
99 @section Statements and Declarations in Expressions
100 @cindex statements inside expressions
101 @cindex declarations inside expressions
102 @cindex expressions containing statements
103 @cindex macros, statements in expressions
105 @c the above section title wrapped and causes an underfull hbox.. i
106 @c changed it from "within" to "in". --mew 4feb93
107 A compound statement enclosed in parentheses may appear as an expression
108 in GNU C@. This allows you to use loops, switches, and local variables
109 within an expression.
111 Recall that a compound statement is a sequence of statements surrounded
112 by braces; in this construct, parentheses go around the braces. For
116 (@{ int y = foo (); int z;
123 is a valid (though slightly more complex than necessary) expression
124 for the absolute value of @code{foo ()}.
126 The last thing in the compound statement should be an expression
127 followed by a semicolon; the value of this subexpression serves as the
128 value of the entire construct. (If you use some other kind of statement
129 last within the braces, the construct has type @code{void}, and thus
130 effectively no value.)
132 This feature is especially useful in making macro definitions ``safe'' (so
133 that they evaluate each operand exactly once). For example, the
134 ``maximum'' function is commonly defined as a macro in standard C as
138 #define max(a,b) ((a) > (b) ? (a) : (b))
142 @cindex side effects, macro argument
143 But this definition computes either @var{a} or @var{b} twice, with bad
144 results if the operand has side effects. In GNU C, if you know the
145 type of the operands (here taken as @code{int}), you can define
146 the macro safely as follows:
149 #define maxint(a,b) \
150 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
153 Embedded statements are not allowed in constant expressions, such as
154 the value of an enumeration constant, the width of a bit-field, or
155 the initial value of a static variable.
157 If you don't know the type of the operand, you can still do this, but you
158 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
160 In G++, the result value of a statement expression undergoes array and
161 function pointer decay, and is returned by value to the enclosing
162 expression. For instance, if @code{A} is a class, then
171 constructs a temporary @code{A} object to hold the result of the
172 statement expression, and that is used to invoke @code{Foo}.
173 Therefore the @code{this} pointer observed by @code{Foo} is not the
176 In a statement expression, any temporaries created within a statement
177 are destroyed at that statement's end. This makes statement
178 expressions inside macros slightly different from function calls. In
179 the latter case temporaries introduced during argument evaluation are
180 destroyed at the end of the statement that includes the function
181 call. In the statement expression case they are destroyed during
182 the statement expression. For instance,
185 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
186 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
196 has different places where temporaries are destroyed. For the
197 @code{macro} case, the temporary @code{X} is destroyed just after
198 the initialization of @code{b}. In the @code{function} case that
199 temporary is destroyed when the function returns.
201 These considerations mean that it is probably a bad idea to use
202 statement expressions of this form in header files that are designed to
203 work with C++. (Note that some versions of the GNU C Library contained
204 header files using statement expressions that lead to precisely this
207 Jumping into a statement expression with @code{goto} or using a
208 @code{switch} statement outside the statement expression with a
209 @code{case} or @code{default} label inside the statement expression is
210 not permitted. Jumping into a statement expression with a computed
211 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
212 Jumping out of a statement expression is permitted, but if the
213 statement expression is part of a larger expression then it is
214 unspecified which other subexpressions of that expression have been
215 evaluated except where the language definition requires certain
216 subexpressions to be evaluated before or after the statement
217 expression. In any case, as with a function call, the evaluation of a
218 statement expression is not interleaved with the evaluation of other
219 parts of the containing expression. For example,
222 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
226 calls @code{foo} and @code{bar1} and does not call @code{baz} but
227 may or may not call @code{bar2}. If @code{bar2} is called, it is
228 called after @code{foo} and before @code{bar1}.
231 @section Locally Declared Labels
233 @cindex macros, local labels
235 GCC allows you to declare @dfn{local labels} in any nested block
236 scope. A local label is just like an ordinary label, but you can
237 only reference it (with a @code{goto} statement, or by taking its
238 address) within the block in which it is declared.
240 A local label declaration looks like this:
243 __label__ @var{label};
250 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
253 Local label declarations must come at the beginning of the block,
254 before any ordinary declarations or statements.
256 The label declaration defines the label @emph{name}, but does not define
257 the label itself. You must do this in the usual way, with
258 @code{@var{label}:}, within the statements of the statement expression.
260 The local label feature is useful for complex macros. If a macro
261 contains nested loops, a @code{goto} can be useful for breaking out of
262 them. However, an ordinary label whose scope is the whole function
263 cannot be used: if the macro can be expanded several times in one
264 function, the label is multiply defined in that function. A
265 local label avoids this problem. For example:
268 #define SEARCH(value, array, target) \
271 typeof (target) _SEARCH_target = (target); \
272 typeof (*(array)) *_SEARCH_array = (array); \
275 for (i = 0; i < max; i++) \
276 for (j = 0; j < max; j++) \
277 if (_SEARCH_array[i][j] == _SEARCH_target) \
278 @{ (value) = i; goto found; @} \
284 This could also be written using a statement expression:
287 #define SEARCH(array, target) \
290 typeof (target) _SEARCH_target = (target); \
291 typeof (*(array)) *_SEARCH_array = (array); \
294 for (i = 0; i < max; i++) \
295 for (j = 0; j < max; j++) \
296 if (_SEARCH_array[i][j] == _SEARCH_target) \
297 @{ value = i; goto found; @} \
304 Local label declarations also make the labels they declare visible to
305 nested functions, if there are any. @xref{Nested Functions}, for details.
307 @node Labels as Values
308 @section Labels as Values
309 @cindex labels as values
310 @cindex computed gotos
311 @cindex goto with computed label
312 @cindex address of a label
314 You can get the address of a label defined in the current function
315 (or a containing function) with the unary operator @samp{&&}. The
316 value has type @code{void *}. This value is a constant and can be used
317 wherever a constant of that type is valid. For example:
325 To use these values, you need to be able to jump to one. This is done
326 with the computed goto statement@footnote{The analogous feature in
327 Fortran is called an assigned goto, but that name seems inappropriate in
328 C, where one can do more than simply store label addresses in label
329 variables.}, @code{goto *@var{exp};}. For example,
336 Any expression of type @code{void *} is allowed.
338 One way of using these constants is in initializing a static array that
339 serves as a jump table:
342 static void *array[] = @{ &&foo, &&bar, &&hack @};
346 Then you can select a label with indexing, like this:
353 Note that this does not check whether the subscript is in bounds---array
354 indexing in C never does that.
356 Such an array of label values serves a purpose much like that of the
357 @code{switch} statement. The @code{switch} statement is cleaner, so
358 use that rather than an array unless the problem does not fit a
359 @code{switch} statement very well.
361 Another use of label values is in an interpreter for threaded code.
362 The labels within the interpreter function can be stored in the
363 threaded code for super-fast dispatching.
365 You may not use this mechanism to jump to code in a different function.
366 If you do that, totally unpredictable things happen. The best way to
367 avoid this is to store the label address only in automatic variables and
368 never pass it as an argument.
370 An alternate way to write the above example is
373 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
375 goto *(&&foo + array[i]);
379 This is more friendly to code living in shared libraries, as it reduces
380 the number of dynamic relocations that are needed, and by consequence,
381 allows the data to be read-only.
382 This alternative with label differences is not supported for the AVR target,
383 please use the first approach for AVR programs.
385 The @code{&&foo} expressions for the same label might have different
386 values if the containing function is inlined or cloned. If a program
387 relies on them being always the same,
388 @code{__attribute__((__noinline__,__noclone__))} should be used to
389 prevent inlining and cloning. If @code{&&foo} is used in a static
390 variable initializer, inlining and cloning is forbidden.
392 @node Nested Functions
393 @section Nested Functions
394 @cindex nested functions
395 @cindex downward funargs
398 A @dfn{nested function} is a function defined inside another function.
399 Nested functions are supported as an extension in GNU C, but are not
400 supported by GNU C++.
402 The nested function's name is local to the block where it is defined.
403 For example, here we define a nested function named @code{square}, and
408 foo (double a, double b)
410 double square (double z) @{ return z * z; @}
412 return square (a) + square (b);
417 The nested function can access all the variables of the containing
418 function that are visible at the point of its definition. This is
419 called @dfn{lexical scoping}. For example, here we show a nested
420 function which uses an inherited variable named @code{offset}:
424 bar (int *array, int offset, int size)
426 int access (int *array, int index)
427 @{ return array[index + offset]; @}
430 for (i = 0; i < size; i++)
431 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
436 Nested function definitions are permitted within functions in the places
437 where variable definitions are allowed; that is, in any block, mixed
438 with the other declarations and statements in the block.
440 It is possible to call the nested function from outside the scope of its
441 name by storing its address or passing the address to another function:
444 hack (int *array, int size)
446 void store (int index, int value)
447 @{ array[index] = value; @}
449 intermediate (store, size);
453 Here, the function @code{intermediate} receives the address of
454 @code{store} as an argument. If @code{intermediate} calls @code{store},
455 the arguments given to @code{store} are used to store into @code{array}.
456 But this technique works only so long as the containing function
457 (@code{hack}, in this example) does not exit.
459 If you try to call the nested function through its address after the
460 containing function exits, all hell breaks loose. If you try
461 to call it after a containing scope level exits, and if it refers
462 to some of the variables that are no longer in scope, you may be lucky,
463 but it's not wise to take the risk. If, however, the nested function
464 does not refer to anything that has gone out of scope, you should be
467 GCC implements taking the address of a nested function using a technique
468 called @dfn{trampolines}. This technique was described in
469 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
470 C++ Conference Proceedings, October 17-21, 1988).
472 A nested function can jump to a label inherited from a containing
473 function, provided the label is explicitly declared in the containing
474 function (@pxref{Local Labels}). Such a jump returns instantly to the
475 containing function, exiting the nested function that did the
476 @code{goto} and any intermediate functions as well. Here is an example:
480 bar (int *array, int offset, int size)
483 int access (int *array, int index)
487 return array[index + offset];
491 for (i = 0; i < size; i++)
492 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
496 /* @r{Control comes here from @code{access}
497 if it detects an error.} */
504 A nested function always has no linkage. Declaring one with
505 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
506 before its definition, use @code{auto} (which is otherwise meaningless
507 for function declarations).
510 bar (int *array, int offset, int size)
513 auto int access (int *, int);
515 int access (int *array, int index)
519 return array[index + offset];
525 @node Constructing Calls
526 @section Constructing Function Calls
527 @cindex constructing calls
528 @cindex forwarding calls
530 Using the built-in functions described below, you can record
531 the arguments a function received, and call another function
532 with the same arguments, without knowing the number or types
535 You can also record the return value of that function call,
536 and later return that value, without knowing what data type
537 the function tried to return (as long as your caller expects
540 However, these built-in functions may interact badly with some
541 sophisticated features or other extensions of the language. It
542 is, therefore, not recommended to use them outside very simple
543 functions acting as mere forwarders for their arguments.
545 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
546 This built-in function returns a pointer to data
547 describing how to perform a call with the same arguments as are passed
548 to the current function.
550 The function saves the arg pointer register, structure value address,
551 and all registers that might be used to pass arguments to a function
552 into a block of memory allocated on the stack. Then it returns the
553 address of that block.
556 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
557 This built-in function invokes @var{function}
558 with a copy of the parameters described by @var{arguments}
561 The value of @var{arguments} should be the value returned by
562 @code{__builtin_apply_args}. The argument @var{size} specifies the size
563 of the stack argument data, in bytes.
565 This function returns a pointer to data describing
566 how to return whatever value is returned by @var{function}. The data
567 is saved in a block of memory allocated on the stack.
569 It is not always simple to compute the proper value for @var{size}. The
570 value is used by @code{__builtin_apply} to compute the amount of data
571 that should be pushed on the stack and copied from the incoming argument
575 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
576 This built-in function returns the value described by @var{result} from
577 the containing function. You should specify, for @var{result}, a value
578 returned by @code{__builtin_apply}.
581 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
582 This built-in function represents all anonymous arguments of an inline
583 function. It can be used only in inline functions that are always
584 inlined, never compiled as a separate function, such as those using
585 @code{__attribute__ ((__always_inline__))} or
586 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
587 It must be only passed as last argument to some other function
588 with variable arguments. This is useful for writing small wrapper
589 inlines for variable argument functions, when using preprocessor
590 macros is undesirable. For example:
592 extern int myprintf (FILE *f, const char *format, ...);
593 extern inline __attribute__ ((__gnu_inline__)) int
594 myprintf (FILE *f, const char *format, ...)
596 int r = fprintf (f, "myprintf: ");
599 int s = fprintf (f, format, __builtin_va_arg_pack ());
607 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
608 This built-in function returns the number of anonymous arguments of
609 an inline function. It can be used only in inline functions that
610 are always inlined, never compiled as a separate function, such
611 as those using @code{__attribute__ ((__always_inline__))} or
612 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
613 For example following does link- or run-time checking of open
614 arguments for optimized code:
617 extern inline __attribute__((__gnu_inline__)) int
618 myopen (const char *path, int oflag, ...)
620 if (__builtin_va_arg_pack_len () > 1)
621 warn_open_too_many_arguments ();
623 if (__builtin_constant_p (oflag))
625 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
627 warn_open_missing_mode ();
628 return __open_2 (path, oflag);
630 return open (path, oflag, __builtin_va_arg_pack ());
633 if (__builtin_va_arg_pack_len () < 1)
634 return __open_2 (path, oflag);
636 return open (path, oflag, __builtin_va_arg_pack ());
643 @section Referring to a Type with @code{typeof}
646 @cindex macros, types of arguments
648 Another way to refer to the type of an expression is with @code{typeof}.
649 The syntax of using of this keyword looks like @code{sizeof}, but the
650 construct acts semantically like a type name defined with @code{typedef}.
652 There are two ways of writing the argument to @code{typeof}: with an
653 expression or with a type. Here is an example with an expression:
660 This assumes that @code{x} is an array of pointers to functions;
661 the type described is that of the values of the functions.
663 Here is an example with a typename as the argument:
670 Here the type described is that of pointers to @code{int}.
672 If you are writing a header file that must work when included in ISO C
673 programs, write @code{__typeof__} instead of @code{typeof}.
674 @xref{Alternate Keywords}.
676 A @code{typeof} construct can be used anywhere a typedef name can be
677 used. For example, you can use it in a declaration, in a cast, or inside
678 of @code{sizeof} or @code{typeof}.
680 The operand of @code{typeof} is evaluated for its side effects if and
681 only if it is an expression of variably modified type or the name of
684 @code{typeof} is often useful in conjunction with
685 statement expressions (@pxref{Statement Exprs}).
686 Here is how the two together can
687 be used to define a safe ``maximum'' macro which operates on any
688 arithmetic type and evaluates each of its arguments exactly once:
692 (@{ typeof (a) _a = (a); \
693 typeof (b) _b = (b); \
694 _a > _b ? _a : _b; @})
697 @cindex underscores in variables in macros
698 @cindex @samp{_} in variables in macros
699 @cindex local variables in macros
700 @cindex variables, local, in macros
701 @cindex macros, local variables in
703 The reason for using names that start with underscores for the local
704 variables is to avoid conflicts with variable names that occur within the
705 expressions that are substituted for @code{a} and @code{b}. Eventually we
706 hope to design a new form of declaration syntax that allows you to declare
707 variables whose scopes start only after their initializers; this will be a
708 more reliable way to prevent such conflicts.
711 Some more examples of the use of @code{typeof}:
715 This declares @code{y} with the type of what @code{x} points to.
722 This declares @code{y} as an array of such values.
729 This declares @code{y} as an array of pointers to characters:
732 typeof (typeof (char *)[4]) y;
736 It is equivalent to the following traditional C declaration:
742 To see the meaning of the declaration using @code{typeof}, and why it
743 might be a useful way to write, rewrite it with these macros:
746 #define pointer(T) typeof(T *)
747 #define array(T, N) typeof(T [N])
751 Now the declaration can be rewritten this way:
754 array (pointer (char), 4) y;
758 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
759 pointers to @code{char}.
762 In GNU C, but not GNU C++, you may also declare the type of a variable
763 as @code{__auto_type}. In that case, the declaration must declare
764 only one variable, whose declarator must just be an identifier, the
765 declaration must be initialized, and the type of the variable is
766 determined by the initializer; the name of the variable is not in
767 scope until after the initializer. (In C++, you should use C++11
768 @code{auto} for this purpose.) Using @code{__auto_type}, the
769 ``maximum'' macro above could be written as:
773 (@{ __auto_type _a = (a); \
774 __auto_type _b = (b); \
775 _a > _b ? _a : _b; @})
778 Using @code{__auto_type} instead of @code{typeof} has two advantages:
781 @item Each argument to the macro appears only once in the expansion of
782 the macro. This prevents the size of the macro expansion growing
783 exponentially when calls to such macros are nested inside arguments of
786 @item If the argument to the macro has variably modified type, it is
787 evaluated only once when using @code{__auto_type}, but twice if
788 @code{typeof} is used.
792 @section Conditionals with Omitted Operands
793 @cindex conditional expressions, extensions
794 @cindex omitted middle-operands
795 @cindex middle-operands, omitted
796 @cindex extensions, @code{?:}
797 @cindex @code{?:} extensions
799 The middle operand in a conditional expression may be omitted. Then
800 if the first operand is nonzero, its value is the value of the conditional
803 Therefore, the expression
810 has the value of @code{x} if that is nonzero; otherwise, the value of
813 This example is perfectly equivalent to
819 @cindex side effect in @code{?:}
820 @cindex @code{?:} side effect
822 In this simple case, the ability to omit the middle operand is not
823 especially useful. When it becomes useful is when the first operand does,
824 or may (if it is a macro argument), contain a side effect. Then repeating
825 the operand in the middle would perform the side effect twice. Omitting
826 the middle operand uses the value already computed without the undesirable
827 effects of recomputing it.
830 @section 128-bit Integers
831 @cindex @code{__int128} data types
833 As an extension the integer scalar type @code{__int128} is supported for
834 targets which have an integer mode wide enough to hold 128 bits.
835 Simply write @code{__int128} for a signed 128-bit integer, or
836 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
837 support in GCC for expressing an integer constant of type @code{__int128}
838 for targets with @code{long long} integer less than 128 bits wide.
841 @section Double-Word Integers
842 @cindex @code{long long} data types
843 @cindex double-word arithmetic
844 @cindex multiprecision arithmetic
845 @cindex @code{LL} integer suffix
846 @cindex @code{ULL} integer suffix
848 ISO C99 supports data types for integers that are at least 64 bits wide,
849 and as an extension GCC supports them in C90 mode and in C++.
850 Simply write @code{long long int} for a signed integer, or
851 @code{unsigned long long int} for an unsigned integer. To make an
852 integer constant of type @code{long long int}, add the suffix @samp{LL}
853 to the integer. To make an integer constant of type @code{unsigned long
854 long int}, add the suffix @samp{ULL} to the integer.
856 You can use these types in arithmetic like any other integer types.
857 Addition, subtraction, and bitwise boolean operations on these types
858 are open-coded on all types of machines. Multiplication is open-coded
859 if the machine supports a fullword-to-doubleword widening multiply
860 instruction. Division and shifts are open-coded only on machines that
861 provide special support. The operations that are not open-coded use
862 special library routines that come with GCC@.
864 There may be pitfalls when you use @code{long long} types for function
865 arguments without function prototypes. If a function
866 expects type @code{int} for its argument, and you pass a value of type
867 @code{long long int}, confusion results because the caller and the
868 subroutine disagree about the number of bytes for the argument.
869 Likewise, if the function expects @code{long long int} and you pass
870 @code{int}. The best way to avoid such problems is to use prototypes.
873 @section Complex Numbers
874 @cindex complex numbers
875 @cindex @code{_Complex} keyword
876 @cindex @code{__complex__} keyword
878 ISO C99 supports complex floating data types, and as an extension GCC
879 supports them in C90 mode and in C++. GCC also supports complex integer data
880 types which are not part of ISO C99. You can declare complex types
881 using the keyword @code{_Complex}. As an extension, the older GNU
882 keyword @code{__complex__} is also supported.
884 For example, @samp{_Complex double x;} declares @code{x} as a
885 variable whose real part and imaginary part are both of type
886 @code{double}. @samp{_Complex short int y;} declares @code{y} to
887 have real and imaginary parts of type @code{short int}; this is not
888 likely to be useful, but it shows that the set of complex types is
891 To write a constant with a complex data type, use the suffix @samp{i} or
892 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
893 has type @code{_Complex float} and @code{3i} has type
894 @code{_Complex int}. Such a constant always has a pure imaginary
895 value, but you can form any complex value you like by adding one to a
896 real constant. This is a GNU extension; if you have an ISO C99
897 conforming C library (such as the GNU C Library), and want to construct complex
898 constants of floating type, you should include @code{<complex.h>} and
899 use the macros @code{I} or @code{_Complex_I} instead.
901 @cindex @code{__real__} keyword
902 @cindex @code{__imag__} keyword
903 To extract the real part of a complex-valued expression @var{exp}, write
904 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
905 extract the imaginary part. This is a GNU extension; for values of
906 floating type, you should use the ISO C99 functions @code{crealf},
907 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
908 @code{cimagl}, declared in @code{<complex.h>} and also provided as
909 built-in functions by GCC@.
911 @cindex complex conjugation
912 The operator @samp{~} performs complex conjugation when used on a value
913 with a complex type. This is a GNU extension; for values of
914 floating type, you should use the ISO C99 functions @code{conjf},
915 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
916 provided as built-in functions by GCC@.
918 GCC can allocate complex automatic variables in a noncontiguous
919 fashion; it's even possible for the real part to be in a register while
920 the imaginary part is on the stack (or vice versa). Only the DWARF
921 debug info format can represent this, so use of DWARF is recommended.
922 If you are using the stabs debug info format, GCC describes a noncontiguous
923 complex variable as if it were two separate variables of noncomplex type.
924 If the variable's actual name is @code{foo}, the two fictitious
925 variables are named @code{foo$real} and @code{foo$imag}. You can
926 examine and set these two fictitious variables with your debugger.
929 @section Additional Floating Types
930 @cindex additional floating types
931 @cindex @code{_Float@var{n}} data types
932 @cindex @code{_Float@var{n}x} data types
933 @cindex @code{__float80} data type
934 @cindex @code{__float128} data type
935 @cindex @code{__ibm128} data type
936 @cindex @code{w} floating point suffix
937 @cindex @code{q} floating point suffix
938 @cindex @code{W} floating point suffix
939 @cindex @code{Q} floating point suffix
941 ISO/IEC TS 18661-3:2015 defines C support for additional floating
942 types @code{_Float@var{n}} and @code{_Float@var{n}x}, and GCC supports
943 these type names; the set of types supported depends on the target
944 architecture. These types are not supported when compiling C++.
945 Constants with these types use suffixes @code{f@var{n}} or
946 @code{F@var{n}} and @code{f@var{n}x} or @code{F@var{n}x}. These type
947 names can be used together with @code{_Complex} to declare complex
950 As an extension, GNU C and GNU C++ support additional floating
951 types, which are not supported by all targets.
953 @item @code{__float128} is available on i386, x86_64, IA-64, and
954 hppa HP-UX, as well as on PowerPC GNU/Linux targets that enable
955 the vector scalar (VSX) instruction set. @code{__float128} supports
956 the 128-bit floating type. On i386, x86_64, PowerPC, and IA-64
957 other than HP-UX, @code{__float128} is an alias for @code{_Float128}.
958 On hppa and IA-64 HP-UX, @code{__float128} is an alias for @code{long
961 @item @code{__float80} is available on the i386, x86_64, and IA-64
962 targets, and supports the 80-bit (@code{XFmode}) floating type. It is
963 an alias for the type name @code{_Float64x} on these targets.
965 @item @code{__ibm128} is available on PowerPC targets, and provides
966 access to the IBM extended double format which is the current format
967 used for @code{long double}. When @code{long double} transitions to
968 @code{__float128} on PowerPC in the future, @code{__ibm128} will remain
969 for use in conversions between the two types.
972 Support for these additional types includes the arithmetic operators:
973 add, subtract, multiply, divide; unary arithmetic operators;
974 relational operators; equality operators; and conversions to and from
975 integer and other floating types. Use a suffix @samp{w} or @samp{W}
976 in a literal constant of type @code{__float80} or type
977 @code{__ibm128}. Use a suffix @samp{q} or @samp{Q} for @code{_float128}.
979 In order to use @code{_Float128}, @code{__float128}, and @code{__ibm128}
980 on PowerPC Linux systems, you must use the @option{-mfloat128} option. It is
981 expected in future versions of GCC that @code{_Float128} and @code{__float128}
982 will be enabled automatically.
984 The @code{_Float128} type is supported on all systems where
985 @code{__float128} is supported or where @code{long double} has the
986 IEEE binary128 format. The @code{_Float64x} type is supported on all
987 systems where @code{__float128} is supported. The @code{_Float32}
988 type is supported on all systems supporting IEEE binary32; the
989 @code{_Float64} and @code{_Float32x} types are supported on all systems
990 supporting IEEE binary64. The @code{_Float16} type is supported on AArch64
991 systems by default, and on ARM systems when the IEEE format for 16-bit
992 floating-point types is selected with @option{-mfp16-format=ieee}.
993 GCC does not currently support @code{_Float128x} on any systems.
995 On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
996 types using the corresponding internal complex type, @code{XCmode} for
997 @code{__float80} type and @code{TCmode} for @code{__float128} type:
1000 typedef _Complex float __attribute__((mode(TC))) _Complex128;
1001 typedef _Complex float __attribute__((mode(XC))) _Complex80;
1004 On the PowerPC Linux VSX targets, you can declare complex types using
1005 the corresponding internal complex type, @code{KCmode} for
1006 @code{__float128} type and @code{ICmode} for @code{__ibm128} type:
1009 typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
1010 typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
1013 @node Half-Precision
1014 @section Half-Precision Floating Point
1015 @cindex half-precision floating point
1016 @cindex @code{__fp16} data type
1018 On ARM and AArch64 targets, GCC supports half-precision (16-bit) floating
1019 point via the @code{__fp16} type defined in the ARM C Language Extensions.
1020 On ARM systems, you must enable this type explicitly with the
1021 @option{-mfp16-format} command-line option in order to use it.
1023 ARM targets support two incompatible representations for half-precision
1024 floating-point values. You must choose one of the representations and
1025 use it consistently in your program.
1027 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
1028 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
1029 There are 11 bits of significand precision, approximately 3
1032 Specifying @option{-mfp16-format=alternative} selects the ARM
1033 alternative format. This representation is similar to the IEEE
1034 format, but does not support infinities or NaNs. Instead, the range
1035 of exponents is extended, so that this format can represent normalized
1036 values in the range of @math{2^{-14}} to 131008.
1038 The GCC port for AArch64 only supports the IEEE 754-2008 format, and does
1039 not require use of the @option{-mfp16-format} command-line option.
1041 The @code{__fp16} type may only be used as an argument to intrinsics defined
1042 in @code{<arm_fp16.h>}, or as a storage format. For purposes of
1043 arithmetic and other operations, @code{__fp16} values in C or C++
1044 expressions are automatically promoted to @code{float}.
1046 The ARM target provides hardware support for conversions between
1047 @code{__fp16} and @code{float} values
1048 as an extension to VFP and NEON (Advanced SIMD), and from ARMv8 provides
1049 hardware support for conversions between @code{__fp16} and @code{double}
1050 values. GCC generates code using these hardware instructions if you
1051 compile with options to select an FPU that provides them;
1052 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1053 in addition to the @option{-mfp16-format} option to select
1054 a half-precision format.
1056 Language-level support for the @code{__fp16} data type is
1057 independent of whether GCC generates code using hardware floating-point
1058 instructions. In cases where hardware support is not specified, GCC
1059 implements conversions between @code{__fp16} and other types as library
1062 It is recommended that portable code use the @code{_Float16} type defined
1063 by ISO/IEC TS 18661-3:2015. @xref{Floating Types}.
1066 @section Decimal Floating Types
1067 @cindex decimal floating types
1068 @cindex @code{_Decimal32} data type
1069 @cindex @code{_Decimal64} data type
1070 @cindex @code{_Decimal128} data type
1071 @cindex @code{df} integer suffix
1072 @cindex @code{dd} integer suffix
1073 @cindex @code{dl} integer suffix
1074 @cindex @code{DF} integer suffix
1075 @cindex @code{DD} integer suffix
1076 @cindex @code{DL} integer suffix
1078 As an extension, GNU C supports decimal floating types as
1079 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1080 floating types in GCC will evolve as the draft technical report changes.
1081 Calling conventions for any target might also change. Not all targets
1082 support decimal floating types.
1084 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1085 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1086 @code{float}, @code{double}, and @code{long double} whose radix is not
1087 specified by the C standard but is usually two.
1089 Support for decimal floating types includes the arithmetic operators
1090 add, subtract, multiply, divide; unary arithmetic operators;
1091 relational operators; equality operators; and conversions to and from
1092 integer and other floating types. Use a suffix @samp{df} or
1093 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1094 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1097 GCC support of decimal float as specified by the draft technical report
1102 When the value of a decimal floating type cannot be represented in the
1103 integer type to which it is being converted, the result is undefined
1104 rather than the result value specified by the draft technical report.
1107 GCC does not provide the C library functionality associated with
1108 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1109 @file{wchar.h}, which must come from a separate C library implementation.
1110 Because of this the GNU C compiler does not define macro
1111 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1112 the technical report.
1115 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1116 are supported by the DWARF debug information format.
1122 ISO C99 supports floating-point numbers written not only in the usual
1123 decimal notation, such as @code{1.55e1}, but also numbers such as
1124 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1125 supports this in C90 mode (except in some cases when strictly
1126 conforming) and in C++. In that format the
1127 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1128 mandatory. The exponent is a decimal number that indicates the power of
1129 2 by which the significant part is multiplied. Thus @samp{0x1.f} is
1136 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1137 is the same as @code{1.55e1}.
1139 Unlike for floating-point numbers in the decimal notation the exponent
1140 is always required in the hexadecimal notation. Otherwise the compiler
1141 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1142 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1143 extension for floating-point constants of type @code{float}.
1146 @section Fixed-Point Types
1147 @cindex fixed-point types
1148 @cindex @code{_Fract} data type
1149 @cindex @code{_Accum} data type
1150 @cindex @code{_Sat} data type
1151 @cindex @code{hr} fixed-suffix
1152 @cindex @code{r} fixed-suffix
1153 @cindex @code{lr} fixed-suffix
1154 @cindex @code{llr} fixed-suffix
1155 @cindex @code{uhr} fixed-suffix
1156 @cindex @code{ur} fixed-suffix
1157 @cindex @code{ulr} fixed-suffix
1158 @cindex @code{ullr} fixed-suffix
1159 @cindex @code{hk} fixed-suffix
1160 @cindex @code{k} fixed-suffix
1161 @cindex @code{lk} fixed-suffix
1162 @cindex @code{llk} fixed-suffix
1163 @cindex @code{uhk} fixed-suffix
1164 @cindex @code{uk} fixed-suffix
1165 @cindex @code{ulk} fixed-suffix
1166 @cindex @code{ullk} fixed-suffix
1167 @cindex @code{HR} fixed-suffix
1168 @cindex @code{R} fixed-suffix
1169 @cindex @code{LR} fixed-suffix
1170 @cindex @code{LLR} fixed-suffix
1171 @cindex @code{UHR} fixed-suffix
1172 @cindex @code{UR} fixed-suffix
1173 @cindex @code{ULR} fixed-suffix
1174 @cindex @code{ULLR} fixed-suffix
1175 @cindex @code{HK} fixed-suffix
1176 @cindex @code{K} fixed-suffix
1177 @cindex @code{LK} fixed-suffix
1178 @cindex @code{LLK} fixed-suffix
1179 @cindex @code{UHK} fixed-suffix
1180 @cindex @code{UK} fixed-suffix
1181 @cindex @code{ULK} fixed-suffix
1182 @cindex @code{ULLK} fixed-suffix
1184 As an extension, GNU C supports fixed-point types as
1185 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1186 types in GCC will evolve as the draft technical report changes.
1187 Calling conventions for any target might also change. Not all targets
1188 support fixed-point types.
1190 The fixed-point types are
1191 @code{short _Fract},
1194 @code{long long _Fract},
1195 @code{unsigned short _Fract},
1196 @code{unsigned _Fract},
1197 @code{unsigned long _Fract},
1198 @code{unsigned long long _Fract},
1199 @code{_Sat short _Fract},
1201 @code{_Sat long _Fract},
1202 @code{_Sat long long _Fract},
1203 @code{_Sat unsigned short _Fract},
1204 @code{_Sat unsigned _Fract},
1205 @code{_Sat unsigned long _Fract},
1206 @code{_Sat unsigned long long _Fract},
1207 @code{short _Accum},
1210 @code{long long _Accum},
1211 @code{unsigned short _Accum},
1212 @code{unsigned _Accum},
1213 @code{unsigned long _Accum},
1214 @code{unsigned long long _Accum},
1215 @code{_Sat short _Accum},
1217 @code{_Sat long _Accum},
1218 @code{_Sat long long _Accum},
1219 @code{_Sat unsigned short _Accum},
1220 @code{_Sat unsigned _Accum},
1221 @code{_Sat unsigned long _Accum},
1222 @code{_Sat unsigned long long _Accum}.
1224 Fixed-point data values contain fractional and optional integral parts.
1225 The format of fixed-point data varies and depends on the target machine.
1227 Support for fixed-point types includes:
1230 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1232 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1234 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1236 binary shift operators (@code{<<}, @code{>>})
1238 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1240 equality operators (@code{==}, @code{!=})
1242 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1243 @code{<<=}, @code{>>=})
1245 conversions to and from integer, floating-point, or fixed-point types
1248 Use a suffix in a fixed-point literal constant:
1250 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1251 @code{_Sat short _Fract}
1252 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1253 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1254 @code{_Sat long _Fract}
1255 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1256 @code{_Sat long long _Fract}
1257 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1258 @code{_Sat unsigned short _Fract}
1259 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1260 @code{_Sat unsigned _Fract}
1261 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1262 @code{_Sat unsigned long _Fract}
1263 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1264 and @code{_Sat unsigned long long _Fract}
1265 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1266 @code{_Sat short _Accum}
1267 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1268 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1269 @code{_Sat long _Accum}
1270 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1271 @code{_Sat long long _Accum}
1272 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1273 @code{_Sat unsigned short _Accum}
1274 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1275 @code{_Sat unsigned _Accum}
1276 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1277 @code{_Sat unsigned long _Accum}
1278 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1279 and @code{_Sat unsigned long long _Accum}
1282 GCC support of fixed-point types as specified by the draft technical report
1287 Pragmas to control overflow and rounding behaviors are not implemented.
1290 Fixed-point types are supported by the DWARF debug information format.
1292 @node Named Address Spaces
1293 @section Named Address Spaces
1294 @cindex Named Address Spaces
1296 As an extension, GNU C supports named address spaces as
1297 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1298 address spaces in GCC will evolve as the draft technical report
1299 changes. Calling conventions for any target might also change. At
1300 present, only the AVR, SPU, M32C, RL78, and x86 targets support
1301 address spaces other than the generic address space.
1303 Address space identifiers may be used exactly like any other C type
1304 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1305 document for more details.
1307 @anchor{AVR Named Address Spaces}
1308 @subsection AVR Named Address Spaces
1310 On the AVR target, there are several address spaces that can be used
1311 in order to put read-only data into the flash memory and access that
1312 data by means of the special instructions @code{LPM} or @code{ELPM}
1313 needed to read from flash.
1315 Devices belonging to @code{avrtiny} and @code{avrxmega3} can access
1316 flash memory by means of @code{LD*} instructions because the flash
1317 memory is mapped into the RAM address space. There is @emph{no need}
1318 for language extensions like @code{__flash} or attribute
1319 @ref{AVR Variable Attributes,,@code{progmem}}.
1320 The default linker description files for these devices cater for that
1321 feature and @code{.rodata} stays in flash: The compiler just generates
1322 @code{LD*} instructions, and the linker script adds core specific
1323 offsets to all @code{.rodata} symbols: @code{0x4000} in the case of
1324 @code{avrtiny} and @code{0x8000} in the case of @code{avrxmega3}.
1325 See @ref{AVR Options} for a list of respective devices.
1327 For devices not in @code{avrtiny} or @code{avrxmega3},
1328 any data including read-only data is located in RAM (the generic
1329 address space) because flash memory is not visible in the RAM address
1330 space. In order to locate read-only data in flash memory @emph{and}
1331 to generate the right instructions to access this data without
1332 using (inline) assembler code, special address spaces are needed.
1336 @cindex @code{__flash} AVR Named Address Spaces
1337 The @code{__flash} qualifier locates data in the
1338 @code{.progmem.data} section. Data is read using the @code{LPM}
1339 instruction. Pointers to this address space are 16 bits wide.
1346 @cindex @code{__flash1} AVR Named Address Spaces
1347 @cindex @code{__flash2} AVR Named Address Spaces
1348 @cindex @code{__flash3} AVR Named Address Spaces
1349 @cindex @code{__flash4} AVR Named Address Spaces
1350 @cindex @code{__flash5} AVR Named Address Spaces
1351 These are 16-bit address spaces locating data in section
1352 @code{.progmem@var{N}.data} where @var{N} refers to
1353 address space @code{__flash@var{N}}.
1354 The compiler sets the @code{RAMPZ} segment register appropriately
1355 before reading data by means of the @code{ELPM} instruction.
1358 @cindex @code{__memx} AVR Named Address Spaces
1359 This is a 24-bit address space that linearizes flash and RAM:
1360 If the high bit of the address is set, data is read from
1361 RAM using the lower two bytes as RAM address.
1362 If the high bit of the address is clear, data is read from flash
1363 with @code{RAMPZ} set according to the high byte of the address.
1364 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1366 Objects in this address space are located in @code{.progmemx.data}.
1372 char my_read (const __flash char ** p)
1374 /* p is a pointer to RAM that points to a pointer to flash.
1375 The first indirection of p reads that flash pointer
1376 from RAM and the second indirection reads a char from this
1382 /* Locate array[] in flash memory */
1383 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1389 /* Return 17 by reading from flash memory */
1390 return array[array[i]];
1395 For each named address space supported by avr-gcc there is an equally
1396 named but uppercase built-in macro defined.
1397 The purpose is to facilitate testing if respective address space
1398 support is available or not:
1402 const __flash int var = 1;
1409 #include <avr/pgmspace.h> /* From AVR-LibC */
1411 const int var PROGMEM = 1;
1415 return (int) pgm_read_word (&var);
1417 #endif /* __FLASH */
1421 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1422 locates data in flash but
1423 accesses to these data read from generic address space, i.e.@:
1425 so that you need special accessors like @code{pgm_read_byte}
1426 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1427 together with attribute @code{progmem}.
1430 @b{Limitations and caveats}
1434 Reading across the 64@tie{}KiB section boundary of
1435 the @code{__flash} or @code{__flash@var{N}} address spaces
1436 shows undefined behavior. The only address space that
1437 supports reading across the 64@tie{}KiB flash segment boundaries is
1441 If you use one of the @code{__flash@var{N}} address spaces
1442 you must arrange your linker script to locate the
1443 @code{.progmem@var{N}.data} sections according to your needs.
1446 Any data or pointers to the non-generic address spaces must
1447 be qualified as @code{const}, i.e.@: as read-only data.
1448 This still applies if the data in one of these address
1449 spaces like software version number or calibration lookup table are intended to
1450 be changed after load time by, say, a boot loader. In this case
1451 the right qualification is @code{const} @code{volatile} so that the compiler
1452 must not optimize away known values or insert them
1453 as immediates into operands of instructions.
1456 The following code initializes a variable @code{pfoo}
1457 located in static storage with a 24-bit address:
1459 extern const __memx char foo;
1460 const __memx void *pfoo = &foo;
1464 On the reduced Tiny devices like ATtiny40, no address spaces are supported.
1465 Just use vanilla C / C++ code without overhead as outlined above.
1466 Attribute @code{progmem} is supported but works differently,
1467 see @ref{AVR Variable Attributes}.
1471 @subsection M32C Named Address Spaces
1472 @cindex @code{__far} M32C Named Address Spaces
1474 On the M32C target, with the R8C and M16C CPU variants, variables
1475 qualified with @code{__far} are accessed using 32-bit addresses in
1476 order to access memory beyond the first 64@tie{}Ki bytes. If
1477 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1480 @subsection RL78 Named Address Spaces
1481 @cindex @code{__far} RL78 Named Address Spaces
1483 On the RL78 target, variables qualified with @code{__far} are accessed
1484 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1485 addresses. Non-far variables are assumed to appear in the topmost
1486 64@tie{}KiB of the address space.
1488 @subsection SPU Named Address Spaces
1489 @cindex @code{__ea} SPU Named Address Spaces
1491 On the SPU target variables may be declared as
1492 belonging to another address space by qualifying the type with the
1493 @code{__ea} address space identifier:
1500 The compiler generates special code to access the variable @code{i}.
1501 It may use runtime library
1502 support, or generate special machine instructions to access that address
1505 @subsection x86 Named Address Spaces
1506 @cindex x86 named address spaces
1508 On the x86 target, variables may be declared as being relative
1509 to the @code{%fs} or @code{%gs} segments.
1514 @cindex @code{__seg_fs} x86 named address space
1515 @cindex @code{__seg_gs} x86 named address space
1516 The object is accessed with the respective segment override prefix.
1518 The respective segment base must be set via some method specific to
1519 the operating system. Rather than require an expensive system call
1520 to retrieve the segment base, these address spaces are not considered
1521 to be subspaces of the generic (flat) address space. This means that
1522 explicit casts are required to convert pointers between these address
1523 spaces and the generic address space. In practice the application
1524 should cast to @code{uintptr_t} and apply the segment base offset
1525 that it installed previously.
1527 The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
1528 defined when these address spaces are supported.
1532 @section Arrays of Length Zero
1533 @cindex arrays of length zero
1534 @cindex zero-length arrays
1535 @cindex length-zero arrays
1536 @cindex flexible array members
1538 Zero-length arrays are allowed in GNU C@. They are very useful as the
1539 last element of a structure that is really a header for a variable-length
1548 struct line *thisline = (struct line *)
1549 malloc (sizeof (struct line) + this_length);
1550 thisline->length = this_length;
1553 In ISO C90, you would have to give @code{contents} a length of 1, which
1554 means either you waste space or complicate the argument to @code{malloc}.
1556 In ISO C99, you would use a @dfn{flexible array member}, which is
1557 slightly different in syntax and semantics:
1561 Flexible array members are written as @code{contents[]} without
1565 Flexible array members have incomplete type, and so the @code{sizeof}
1566 operator may not be applied. As a quirk of the original implementation
1567 of zero-length arrays, @code{sizeof} evaluates to zero.
1570 Flexible array members may only appear as the last member of a
1571 @code{struct} that is otherwise non-empty.
1574 A structure containing a flexible array member, or a union containing
1575 such a structure (possibly recursively), may not be a member of a
1576 structure or an element of an array. (However, these uses are
1577 permitted by GCC as extensions.)
1580 Non-empty initialization of zero-length
1581 arrays is treated like any case where there are more initializer
1582 elements than the array holds, in that a suitable warning about ``excess
1583 elements in array'' is given, and the excess elements (all of them, in
1584 this case) are ignored.
1586 GCC allows static initialization of flexible array members.
1587 This is equivalent to defining a new structure containing the original
1588 structure followed by an array of sufficient size to contain the data.
1589 E.g.@: in the following, @code{f1} is constructed as if it were declared
1595 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1598 struct f1 f1; int data[3];
1599 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1603 The convenience of this extension is that @code{f1} has the desired
1604 type, eliminating the need to consistently refer to @code{f2.f1}.
1606 This has symmetry with normal static arrays, in that an array of
1607 unknown size is also written with @code{[]}.
1609 Of course, this extension only makes sense if the extra data comes at
1610 the end of a top-level object, as otherwise we would be overwriting
1611 data at subsequent offsets. To avoid undue complication and confusion
1612 with initialization of deeply nested arrays, we simply disallow any
1613 non-empty initialization except when the structure is the top-level
1614 object. For example:
1617 struct foo @{ int x; int y[]; @};
1618 struct bar @{ struct foo z; @};
1620 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1621 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1622 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1623 struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1626 @node Empty Structures
1627 @section Structures with No Members
1628 @cindex empty structures
1629 @cindex zero-size structures
1631 GCC permits a C structure to have no members:
1638 The structure has size zero. In C++, empty structures are part
1639 of the language. G++ treats empty structures as if they had a single
1640 member of type @code{char}.
1642 @node Variable Length
1643 @section Arrays of Variable Length
1644 @cindex variable-length arrays
1645 @cindex arrays of variable length
1648 Variable-length automatic arrays are allowed in ISO C99, and as an
1649 extension GCC accepts them in C90 mode and in C++. These arrays are
1650 declared like any other automatic arrays, but with a length that is not
1651 a constant expression. The storage is allocated at the point of
1652 declaration and deallocated when the block scope containing the declaration
1658 concat_fopen (char *s1, char *s2, char *mode)
1660 char str[strlen (s1) + strlen (s2) + 1];
1663 return fopen (str, mode);
1667 @cindex scope of a variable length array
1668 @cindex variable-length array scope
1669 @cindex deallocating variable length arrays
1670 Jumping or breaking out of the scope of the array name deallocates the
1671 storage. Jumping into the scope is not allowed; you get an error
1674 @cindex variable-length array in a structure
1675 As an extension, GCC accepts variable-length arrays as a member of
1676 a structure or a union. For example:
1682 struct S @{ int x[n]; @};
1686 @cindex @code{alloca} vs variable-length arrays
1687 You can use the function @code{alloca} to get an effect much like
1688 variable-length arrays. The function @code{alloca} is available in
1689 many other C implementations (but not in all). On the other hand,
1690 variable-length arrays are more elegant.
1692 There are other differences between these two methods. Space allocated
1693 with @code{alloca} exists until the containing @emph{function} returns.
1694 The space for a variable-length array is deallocated as soon as the array
1695 name's scope ends, unless you also use @code{alloca} in this scope.
1697 You can also use variable-length arrays as arguments to functions:
1701 tester (int len, char data[len][len])
1707 The length of an array is computed once when the storage is allocated
1708 and is remembered for the scope of the array in case you access it with
1711 If you want to pass the array first and the length afterward, you can
1712 use a forward declaration in the parameter list---another GNU extension.
1716 tester (int len; char data[len][len], int len)
1722 @cindex parameter forward declaration
1723 The @samp{int len} before the semicolon is a @dfn{parameter forward
1724 declaration}, and it serves the purpose of making the name @code{len}
1725 known when the declaration of @code{data} is parsed.
1727 You can write any number of such parameter forward declarations in the
1728 parameter list. They can be separated by commas or semicolons, but the
1729 last one must end with a semicolon, which is followed by the ``real''
1730 parameter declarations. Each forward declaration must match a ``real''
1731 declaration in parameter name and data type. ISO C99 does not support
1732 parameter forward declarations.
1734 @node Variadic Macros
1735 @section Macros with a Variable Number of Arguments.
1736 @cindex variable number of arguments
1737 @cindex macro with variable arguments
1738 @cindex rest argument (in macro)
1739 @cindex variadic macros
1741 In the ISO C standard of 1999, a macro can be declared to accept a
1742 variable number of arguments much as a function can. The syntax for
1743 defining the macro is similar to that of a function. Here is an
1747 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1751 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1752 such a macro, it represents the zero or more tokens until the closing
1753 parenthesis that ends the invocation, including any commas. This set of
1754 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1755 wherever it appears. See the CPP manual for more information.
1757 GCC has long supported variadic macros, and used a different syntax that
1758 allowed you to give a name to the variable arguments just like any other
1759 argument. Here is an example:
1762 #define debug(format, args...) fprintf (stderr, format, args)
1766 This is in all ways equivalent to the ISO C example above, but arguably
1767 more readable and descriptive.
1769 GNU CPP has two further variadic macro extensions, and permits them to
1770 be used with either of the above forms of macro definition.
1772 In standard C, you are not allowed to leave the variable argument out
1773 entirely; but you are allowed to pass an empty argument. For example,
1774 this invocation is invalid in ISO C, because there is no comma after
1781 GNU CPP permits you to completely omit the variable arguments in this
1782 way. In the above examples, the compiler would complain, though since
1783 the expansion of the macro still has the extra comma after the format
1786 To help solve this problem, CPP behaves specially for variable arguments
1787 used with the token paste operator, @samp{##}. If instead you write
1790 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1794 and if the variable arguments are omitted or empty, the @samp{##}
1795 operator causes the preprocessor to remove the comma before it. If you
1796 do provide some variable arguments in your macro invocation, GNU CPP
1797 does not complain about the paste operation and instead places the
1798 variable arguments after the comma. Just like any other pasted macro
1799 argument, these arguments are not macro expanded.
1801 @node Escaped Newlines
1802 @section Slightly Looser Rules for Escaped Newlines
1803 @cindex escaped newlines
1804 @cindex newlines (escaped)
1806 The preprocessor treatment of escaped newlines is more relaxed
1807 than that specified by the C90 standard, which requires the newline
1808 to immediately follow a backslash.
1809 GCC's implementation allows whitespace in the form
1810 of spaces, horizontal and vertical tabs, and form feeds between the
1811 backslash and the subsequent newline. The preprocessor issues a
1812 warning, but treats it as a valid escaped newline and combines the two
1813 lines to form a single logical line. This works within comments and
1814 tokens, as well as between tokens. Comments are @emph{not} treated as
1815 whitespace for the purposes of this relaxation, since they have not
1816 yet been replaced with spaces.
1819 @section Non-Lvalue Arrays May Have Subscripts
1820 @cindex subscripting
1821 @cindex arrays, non-lvalue
1823 @cindex subscripting and function values
1824 In ISO C99, arrays that are not lvalues still decay to pointers, and
1825 may be subscripted, although they may not be modified or used after
1826 the next sequence point and the unary @samp{&} operator may not be
1827 applied to them. As an extension, GNU C allows such arrays to be
1828 subscripted in C90 mode, though otherwise they do not decay to
1829 pointers outside C99 mode. For example,
1830 this is valid in GNU C though not valid in C90:
1834 struct foo @{int a[4];@};
1840 return f().a[index];
1846 @section Arithmetic on @code{void}- and Function-Pointers
1847 @cindex void pointers, arithmetic
1848 @cindex void, size of pointer to
1849 @cindex function pointers, arithmetic
1850 @cindex function, size of pointer to
1852 In GNU C, addition and subtraction operations are supported on pointers to
1853 @code{void} and on pointers to functions. This is done by treating the
1854 size of a @code{void} or of a function as 1.
1856 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1857 and on function types, and returns 1.
1859 @opindex Wpointer-arith
1860 The option @option{-Wpointer-arith} requests a warning if these extensions
1863 @node Pointers to Arrays
1864 @section Pointers to Arrays with Qualifiers Work as Expected
1865 @cindex pointers to arrays
1866 @cindex const qualifier
1868 In GNU C, pointers to arrays with qualifiers work similar to pointers
1869 to other qualified types. For example, a value of type @code{int (*)[5]}
1870 can be used to initialize a variable of type @code{const int (*)[5]}.
1871 These types are incompatible in ISO C because the @code{const} qualifier
1872 is formally attached to the element type of the array and not the
1877 transpose (int N, int M, double out[M][N], const double in[N][M]);
1881 transpose(3, 2, y, x);
1885 @section Non-Constant Initializers
1886 @cindex initializers, non-constant
1887 @cindex non-constant initializers
1889 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1890 automatic variable are not required to be constant expressions in GNU C@.
1891 Here is an example of an initializer with run-time varying elements:
1894 foo (float f, float g)
1896 float beat_freqs[2] = @{ f-g, f+g @};
1901 @node Compound Literals
1902 @section Compound Literals
1903 @cindex constructor expressions
1904 @cindex initializations in expressions
1905 @cindex structures, constructor expression
1906 @cindex expressions, constructor
1907 @cindex compound literals
1908 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1910 A compound literal looks like a cast of a brace-enclosed aggregate
1911 initializer list. Its value is an object of the type specified in
1912 the cast, containing the elements specified in the initializer.
1913 Unlike the result of a cast, a compound literal is an lvalue. ISO
1914 C99 and later support compound literals. As an extension, GCC
1915 supports compound literals also in C90 mode and in C++, although
1916 as explained below, the C++ semantics are somewhat different.
1918 Usually, the specified type of a compound literal is a structure. Assume
1919 that @code{struct foo} and @code{structure} are declared as shown:
1922 struct foo @{int a; char b[2];@} structure;
1926 Here is an example of constructing a @code{struct foo} with a compound literal:
1929 structure = ((struct foo) @{x + y, 'a', 0@});
1933 This is equivalent to writing the following:
1937 struct foo temp = @{x + y, 'a', 0@};
1942 You can also construct an array, though this is dangerous in C++, as
1943 explained below. If all the elements of the compound literal are
1944 (made up of) simple constant expressions suitable for use in
1945 initializers of objects of static storage duration, then the compound
1946 literal can be coerced to a pointer to its first element and used in
1947 such an initializer, as shown here:
1950 char **foo = (char *[]) @{ "x", "y", "z" @};
1953 Compound literals for scalar types and union types are also allowed. In
1954 the following example the variable @code{i} is initialized to the value
1955 @code{2}, the result of incrementing the unnamed object created by
1956 the compound literal.
1959 int i = ++(int) @{ 1 @};
1962 As a GNU extension, GCC allows initialization of objects with static storage
1963 duration by compound literals (which is not possible in ISO C99 because
1964 the initializer is not a constant).
1965 It is handled as if the object were initialized only with the brace-enclosed
1966 list if the types of the compound literal and the object match.
1967 The elements of the compound literal must be constant.
1968 If the object being initialized has array type of unknown size, the size is
1969 determined by the size of the compound literal.
1972 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1973 static int y[] = (int []) @{1, 2, 3@};
1974 static int z[] = (int [3]) @{1@};
1978 The above lines are equivalent to the following:
1980 static struct foo x = @{1, 'a', 'b'@};
1981 static int y[] = @{1, 2, 3@};
1982 static int z[] = @{1, 0, 0@};
1985 In C, a compound literal designates an unnamed object with static or
1986 automatic storage duration. In C++, a compound literal designates a
1987 temporary object that only lives until the end of its full-expression.
1988 As a result, well-defined C code that takes the address of a subobject
1989 of a compound literal can be undefined in C++, so G++ rejects
1990 the conversion of a temporary array to a pointer. For instance, if
1991 the array compound literal example above appeared inside a function,
1992 any subsequent use of @code{foo} in C++ would have undefined behavior
1993 because the lifetime of the array ends after the declaration of @code{foo}.
1995 As an optimization, G++ sometimes gives array compound literals longer
1996 lifetimes: when the array either appears outside a function or has
1997 a @code{const}-qualified type. If @code{foo} and its initializer had
1998 elements of type @code{char *const} rather than @code{char *}, or if
1999 @code{foo} were a global variable, the array would have static storage
2000 duration. But it is probably safest just to avoid the use of array
2001 compound literals in C++ code.
2003 @node Designated Inits
2004 @section Designated Initializers
2005 @cindex initializers with labeled elements
2006 @cindex labeled elements in initializers
2007 @cindex case labels in initializers
2008 @cindex designated initializers
2010 Standard C90 requires the elements of an initializer to appear in a fixed
2011 order, the same as the order of the elements in the array or structure
2014 In ISO C99 you can give the elements in any order, specifying the array
2015 indices or structure field names they apply to, and GNU C allows this as
2016 an extension in C90 mode as well. This extension is not
2017 implemented in GNU C++.
2019 To specify an array index, write
2020 @samp{[@var{index}] =} before the element value. For example,
2023 int a[6] = @{ [4] = 29, [2] = 15 @};
2030 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
2034 The index values must be constant expressions, even if the array being
2035 initialized is automatic.
2037 An alternative syntax for this that has been obsolete since GCC 2.5 but
2038 GCC still accepts is to write @samp{[@var{index}]} before the element
2039 value, with no @samp{=}.
2041 To initialize a range of elements to the same value, write
2042 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
2043 extension. For example,
2046 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
2050 If the value in it has side-effects, the side-effects happen only once,
2051 not for each initialized field by the range initializer.
2054 Note that the length of the array is the highest value specified
2057 In a structure initializer, specify the name of a field to initialize
2058 with @samp{.@var{fieldname} =} before the element value. For example,
2059 given the following structure,
2062 struct point @{ int x, y; @};
2066 the following initialization
2069 struct point p = @{ .y = yvalue, .x = xvalue @};
2076 struct point p = @{ xvalue, yvalue @};
2079 Another syntax that has the same meaning, obsolete since GCC 2.5, is
2080 @samp{@var{fieldname}:}, as shown here:
2083 struct point p = @{ y: yvalue, x: xvalue @};
2086 Omitted field members are implicitly initialized the same as objects
2087 that have static storage duration.
2090 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
2091 @dfn{designator}. You can also use a designator (or the obsolete colon
2092 syntax) when initializing a union, to specify which element of the union
2093 should be used. For example,
2096 union foo @{ int i; double d; @};
2098 union foo f = @{ .d = 4 @};
2102 converts 4 to a @code{double} to store it in the union using
2103 the second element. By contrast, casting 4 to type @code{union foo}
2104 stores it into the union as the integer @code{i}, since it is
2105 an integer. @xref{Cast to Union}.
2107 You can combine this technique of naming elements with ordinary C
2108 initialization of successive elements. Each initializer element that
2109 does not have a designator applies to the next consecutive element of the
2110 array or structure. For example,
2113 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2120 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2123 Labeling the elements of an array initializer is especially useful
2124 when the indices are characters or belong to an @code{enum} type.
2129 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2130 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2133 @cindex designator lists
2134 You can also write a series of @samp{.@var{fieldname}} and
2135 @samp{[@var{index}]} designators before an @samp{=} to specify a
2136 nested subobject to initialize; the list is taken relative to the
2137 subobject corresponding to the closest surrounding brace pair. For
2138 example, with the @samp{struct point} declaration above:
2141 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2145 If the same field is initialized multiple times, it has the value from
2146 the last initialization. If any such overridden initialization has
2147 side-effect, it is unspecified whether the side-effect happens or not.
2148 Currently, GCC discards them and issues a warning.
2151 @section Case Ranges
2153 @cindex ranges in case statements
2155 You can specify a range of consecutive values in a single @code{case} label,
2159 case @var{low} ... @var{high}:
2163 This has the same effect as the proper number of individual @code{case}
2164 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2166 This feature is especially useful for ranges of ASCII character codes:
2172 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2173 it may be parsed wrong when you use it with integer values. For example,
2188 @section Cast to a Union Type
2189 @cindex cast to a union
2190 @cindex union, casting to a
2192 A cast to union type looks similar to other casts, except that the type
2193 specified is a union type. You can specify the type either with the
2194 @code{union} keyword or with a @code{typedef} name that refers to
2195 a union. A cast to a union actually creates a compound literal and
2196 yields an lvalue, not an rvalue like true casts do.
2197 @xref{Compound Literals}.
2199 The types that may be cast to the union type are those of the members
2200 of the union. Thus, given the following union and variables:
2203 union foo @{ int i; double d; @};
2209 both @code{x} and @code{y} can be cast to type @code{union foo}.
2211 Using the cast as the right-hand side of an assignment to a variable of
2212 union type is equivalent to storing in a member of the union:
2217 u = (union foo) x @equiv{} u.i = x
2218 u = (union foo) y @equiv{} u.d = y
2221 You can also use the union cast as a function argument:
2224 void hack (union foo);
2226 hack ((union foo) x);
2229 @node Mixed Declarations
2230 @section Mixed Declarations and Code
2231 @cindex mixed declarations and code
2232 @cindex declarations, mixed with code
2233 @cindex code, mixed with declarations
2235 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2236 within compound statements. As an extension, GNU C also allows this in
2237 C90 mode. For example, you could do:
2246 Each identifier is visible from where it is declared until the end of
2247 the enclosing block.
2249 @node Function Attributes
2250 @section Declaring Attributes of Functions
2251 @cindex function attributes
2252 @cindex declaring attributes of functions
2253 @cindex @code{volatile} applied to function
2254 @cindex @code{const} applied to function
2256 In GNU C, you can use function attributes to declare certain things
2257 about functions called in your program which help the compiler
2258 optimize calls and check your code more carefully. For example, you
2259 can use attributes to declare that a function never returns
2260 (@code{noreturn}), returns a value depending only on its arguments
2261 (@code{pure}), or has @code{printf}-style arguments (@code{format}).
2263 You can also use attributes to control memory placement, code
2264 generation options or call/return conventions within the function
2265 being annotated. Many of these attributes are target-specific. For
2266 example, many targets support attributes for defining interrupt
2267 handler functions, which typically must follow special register usage
2268 and return conventions.
2270 Function attributes are introduced by the @code{__attribute__} keyword
2271 on a declaration, followed by an attribute specification inside double
2272 parentheses. You can specify multiple attributes in a declaration by
2273 separating them by commas within the double parentheses or by
2274 immediately following an attribute declaration with another attribute
2275 declaration. @xref{Attribute Syntax}, for the exact rules on
2276 attribute syntax and placement.
2278 GCC also supports attributes on
2279 variable declarations (@pxref{Variable Attributes}),
2280 labels (@pxref{Label Attributes}),
2281 enumerators (@pxref{Enumerator Attributes}),
2282 statements (@pxref{Statement Attributes}),
2283 and types (@pxref{Type Attributes}).
2285 There is some overlap between the purposes of attributes and pragmas
2286 (@pxref{Pragmas,,Pragmas Accepted by GCC}). It has been
2287 found convenient to use @code{__attribute__} to achieve a natural
2288 attachment of attributes to their corresponding declarations, whereas
2289 @code{#pragma} is of use for compatibility with other compilers
2290 or constructs that do not naturally form part of the grammar.
2292 In addition to the attributes documented here,
2293 GCC plugins may provide their own attributes.
2296 * Common Function Attributes::
2297 * AArch64 Function Attributes::
2298 * ARC Function Attributes::
2299 * ARM Function Attributes::
2300 * AVR Function Attributes::
2301 * Blackfin Function Attributes::
2302 * CR16 Function Attributes::
2303 * Epiphany Function Attributes::
2304 * H8/300 Function Attributes::
2305 * IA-64 Function Attributes::
2306 * M32C Function Attributes::
2307 * M32R/D Function Attributes::
2308 * m68k Function Attributes::
2309 * MCORE Function Attributes::
2310 * MeP Function Attributes::
2311 * MicroBlaze Function Attributes::
2312 * Microsoft Windows Function Attributes::
2313 * MIPS Function Attributes::
2314 * MSP430 Function Attributes::
2315 * NDS32 Function Attributes::
2316 * Nios II Function Attributes::
2317 * Nvidia PTX Function Attributes::
2318 * PowerPC Function Attributes::
2319 * RL78 Function Attributes::
2320 * RX Function Attributes::
2321 * S/390 Function Attributes::
2322 * SH Function Attributes::
2323 * SPU Function Attributes::
2324 * Symbian OS Function Attributes::
2325 * V850 Function Attributes::
2326 * Visium Function Attributes::
2327 * x86 Function Attributes::
2328 * Xstormy16 Function Attributes::
2331 @node Common Function Attributes
2332 @subsection Common Function Attributes
2334 The following attributes are supported on most targets.
2337 @c Keep this table alphabetized by attribute name. Treat _ as space.
2339 @item alias ("@var{target}")
2340 @cindex @code{alias} function attribute
2341 The @code{alias} attribute causes the declaration to be emitted as an
2342 alias for another symbol, which must be specified. For instance,
2345 void __f () @{ /* @r{Do something.} */; @}
2346 void f () __attribute__ ((weak, alias ("__f")));
2350 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
2351 mangled name for the target must be used. It is an error if @samp{__f}
2352 is not defined in the same translation unit.
2354 This attribute requires assembler and object file support,
2355 and may not be available on all targets.
2357 @item aligned (@var{alignment})
2358 @cindex @code{aligned} function attribute
2359 This attribute specifies a minimum alignment for the function,
2362 You cannot use this attribute to decrease the alignment of a function,
2363 only to increase it. However, when you explicitly specify a function
2364 alignment this overrides the effect of the
2365 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2368 Note that the effectiveness of @code{aligned} attributes may be
2369 limited by inherent limitations in your linker. On many systems, the
2370 linker is only able to arrange for functions to be aligned up to a
2371 certain maximum alignment. (For some linkers, the maximum supported
2372 alignment may be very very small.) See your linker documentation for
2373 further information.
2375 The @code{aligned} attribute can also be used for variables and fields
2376 (@pxref{Variable Attributes}.)
2379 @cindex @code{alloc_align} function attribute
2380 The @code{alloc_align} attribute is used to tell the compiler that the
2381 function return value points to memory, where the returned pointer minimum
2382 alignment is given by one of the functions parameters. GCC uses this
2383 information to improve pointer alignment analysis.
2385 The function parameter denoting the allocated alignment is specified by
2386 one integer argument, whose number is the argument of the attribute.
2387 Argument numbering starts at one.
2392 void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
2396 declares that @code{my_memalign} returns memory with minimum alignment
2397 given by parameter 1.
2400 @cindex @code{alloc_size} function attribute
2401 The @code{alloc_size} attribute is used to tell the compiler that the
2402 function return value points to memory, where the size is given by
2403 one or two of the functions parameters. GCC uses this
2404 information to improve the correctness of @code{__builtin_object_size}.
2406 The function parameter(s) denoting the allocated size are specified by
2407 one or two integer arguments supplied to the attribute. The allocated size
2408 is either the value of the single function argument specified or the product
2409 of the two function arguments specified. Argument numbering starts at
2415 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2416 void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2420 declares that @code{my_calloc} returns memory of the size given by
2421 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2422 of the size given by parameter 2.
2425 @cindex @code{always_inline} function attribute
2426 Generally, functions are not inlined unless optimization is specified.
2427 For functions declared inline, this attribute inlines the function
2428 independent of any restrictions that otherwise apply to inlining.
2429 Failure to inline such a function is diagnosed as an error.
2430 Note that if such a function is called indirectly the compiler may
2431 or may not inline it depending on optimization level and a failure
2432 to inline an indirect call may or may not be diagnosed.
2435 @cindex @code{artificial} function attribute
2436 This attribute is useful for small inline wrappers that if possible
2437 should appear during debugging as a unit. Depending on the debug
2438 info format it either means marking the function as artificial
2439 or using the caller location for all instructions within the inlined
2442 @item assume_aligned
2443 @cindex @code{assume_aligned} function attribute
2444 The @code{assume_aligned} attribute is used to tell the compiler that the
2445 function return value points to memory, where the returned pointer minimum
2446 alignment is given by the first argument.
2447 If the attribute has two arguments, the second argument is misalignment offset.
2452 void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
2453 void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
2457 declares that @code{my_alloc1} returns 16-byte aligned pointer and
2458 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2461 @item bnd_instrument
2462 @cindex @code{bnd_instrument} function attribute
2463 The @code{bnd_instrument} attribute on functions is used to inform the
2464 compiler that the function should be instrumented when compiled
2465 with the @option{-fchkp-instrument-marked-only} option.
2468 @cindex @code{bnd_legacy} function attribute
2469 @cindex Pointer Bounds Checker attributes
2470 The @code{bnd_legacy} attribute on functions is used to inform the
2471 compiler that the function should not be instrumented when compiled
2472 with the @option{-fcheck-pointer-bounds} option.
2475 @cindex @code{cold} function attribute
2476 The @code{cold} attribute on functions is used to inform the compiler that
2477 the function is unlikely to be executed. The function is optimized for
2478 size rather than speed and on many targets it is placed into a special
2479 subsection of the text section so all cold functions appear close together,
2480 improving code locality of non-cold parts of program. The paths leading
2481 to calls of cold functions within code are marked as unlikely by the branch
2482 prediction mechanism. It is thus useful to mark functions used to handle
2483 unlikely conditions, such as @code{perror}, as cold to improve optimization
2484 of hot functions that do call marked functions in rare occasions.
2486 When profile feedback is available, via @option{-fprofile-use}, cold functions
2487 are automatically detected and this attribute is ignored.
2490 @cindex @code{const} function attribute
2491 @cindex functions that have no side effects
2492 Many functions do not examine any values except their arguments, and
2493 have no effects except the return value. Basically this is just slightly
2494 more strict class than the @code{pure} attribute below, since function is not
2495 allowed to read global memory.
2497 @cindex pointer arguments
2498 Note that a function that has pointer arguments and examines the data
2499 pointed to must @emph{not} be declared @code{const}. Likewise, a
2500 function that calls a non-@code{const} function usually must not be
2501 @code{const}. It does not make sense for a @code{const} function to
2506 @itemx constructor (@var{priority})
2507 @itemx destructor (@var{priority})
2508 @cindex @code{constructor} function attribute
2509 @cindex @code{destructor} function attribute
2510 The @code{constructor} attribute causes the function to be called
2511 automatically before execution enters @code{main ()}. Similarly, the
2512 @code{destructor} attribute causes the function to be called
2513 automatically after @code{main ()} completes or @code{exit ()} is
2514 called. Functions with these attributes are useful for
2515 initializing data that is used implicitly during the execution of
2518 You may provide an optional integer priority to control the order in
2519 which constructor and destructor functions are run. A constructor
2520 with a smaller priority number runs before a constructor with a larger
2521 priority number; the opposite relationship holds for destructors. So,
2522 if you have a constructor that allocates a resource and a destructor
2523 that deallocates the same resource, both functions typically have the
2524 same priority. The priorities for constructor and destructor
2525 functions are the same as those specified for namespace-scope C++
2526 objects (@pxref{C++ Attributes}). However, at present, the order in which
2527 constructors for C++ objects with static storage duration and functions
2528 decorated with attribute @code{constructor} are invoked is unspecified.
2529 In mixed declarations, attribute @code{init_priority} can be used to
2530 impose a specific ordering.
2533 @itemx deprecated (@var{msg})
2534 @cindex @code{deprecated} function attribute
2535 The @code{deprecated} attribute results in a warning if the function
2536 is used anywhere in the source file. This is useful when identifying
2537 functions that are expected to be removed in a future version of a
2538 program. The warning also includes the location of the declaration
2539 of the deprecated function, to enable users to easily find further
2540 information about why the function is deprecated, or what they should
2541 do instead. Note that the warnings only occurs for uses:
2544 int old_fn () __attribute__ ((deprecated));
2546 int (*fn_ptr)() = old_fn;
2550 results in a warning on line 3 but not line 2. The optional @var{msg}
2551 argument, which must be a string, is printed in the warning if
2554 The @code{deprecated} attribute can also be used for variables and
2555 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2557 @item error ("@var{message}")
2558 @itemx warning ("@var{message}")
2559 @cindex @code{error} function attribute
2560 @cindex @code{warning} function attribute
2561 If the @code{error} or @code{warning} attribute
2562 is used on a function declaration and a call to such a function
2563 is not eliminated through dead code elimination or other optimizations,
2564 an error or warning (respectively) that includes @var{message} is diagnosed.
2566 for compile-time checking, especially together with @code{__builtin_constant_p}
2567 and inline functions where checking the inline function arguments is not
2568 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2570 While it is possible to leave the function undefined and thus invoke
2571 a link failure (to define the function with
2572 a message in @code{.gnu.warning*} section),
2573 when using these attributes the problem is diagnosed
2574 earlier and with exact location of the call even in presence of inline
2575 functions or when not emitting debugging information.
2577 @item externally_visible
2578 @cindex @code{externally_visible} function attribute
2579 This attribute, attached to a global variable or function, nullifies
2580 the effect of the @option{-fwhole-program} command-line option, so the
2581 object remains visible outside the current compilation unit.
2583 If @option{-fwhole-program} is used together with @option{-flto} and
2584 @command{gold} is used as the linker plugin,
2585 @code{externally_visible} attributes are automatically added to functions
2586 (not variable yet due to a current @command{gold} issue)
2587 that are accessed outside of LTO objects according to resolution file
2588 produced by @command{gold}.
2589 For other linkers that cannot generate resolution file,
2590 explicit @code{externally_visible} attributes are still necessary.
2593 @cindex @code{flatten} function attribute
2594 Generally, inlining into a function is limited. For a function marked with
2595 this attribute, every call inside this function is inlined, if possible.
2596 Whether the function itself is considered for inlining depends on its size and
2597 the current inlining parameters.
2599 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2600 @cindex @code{format} function attribute
2601 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2603 The @code{format} attribute specifies that a function takes @code{printf},
2604 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2605 should be type-checked against a format string. For example, the
2610 my_printf (void *my_object, const char *my_format, ...)
2611 __attribute__ ((format (printf, 2, 3)));
2615 causes the compiler to check the arguments in calls to @code{my_printf}
2616 for consistency with the @code{printf} style format string argument
2619 The parameter @var{archetype} determines how the format string is
2620 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2621 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2622 @code{strfmon}. (You can also use @code{__printf__},
2623 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2624 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2625 @code{ms_strftime} are also present.
2626 @var{archetype} values such as @code{printf} refer to the formats accepted
2627 by the system's C runtime library,
2628 while values prefixed with @samp{gnu_} always refer
2629 to the formats accepted by the GNU C Library. On Microsoft Windows
2630 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2631 @file{msvcrt.dll} library.
2632 The parameter @var{string-index}
2633 specifies which argument is the format string argument (starting
2634 from 1), while @var{first-to-check} is the number of the first
2635 argument to check against the format string. For functions
2636 where the arguments are not available to be checked (such as
2637 @code{vprintf}), specify the third parameter as zero. In this case the
2638 compiler only checks the format string for consistency. For
2639 @code{strftime} formats, the third parameter is required to be zero.
2640 Since non-static C++ methods have an implicit @code{this} argument, the
2641 arguments of such methods should be counted from two, not one, when
2642 giving values for @var{string-index} and @var{first-to-check}.
2644 In the example above, the format string (@code{my_format}) is the second
2645 argument of the function @code{my_print}, and the arguments to check
2646 start with the third argument, so the correct parameters for the format
2647 attribute are 2 and 3.
2649 @opindex ffreestanding
2650 @opindex fno-builtin
2651 The @code{format} attribute allows you to identify your own functions
2652 that take format strings as arguments, so that GCC can check the
2653 calls to these functions for errors. The compiler always (unless
2654 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2655 for the standard library functions @code{printf}, @code{fprintf},
2656 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2657 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2658 warnings are requested (using @option{-Wformat}), so there is no need to
2659 modify the header file @file{stdio.h}. In C99 mode, the functions
2660 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2661 @code{vsscanf} are also checked. Except in strictly conforming C
2662 standard modes, the X/Open function @code{strfmon} is also checked as
2663 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2664 @xref{C Dialect Options,,Options Controlling C Dialect}.
2666 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2667 recognized in the same context. Declarations including these format attributes
2668 are parsed for correct syntax, however the result of checking of such format
2669 strings is not yet defined, and is not carried out by this version of the
2672 The target may also provide additional types of format checks.
2673 @xref{Target Format Checks,,Format Checks Specific to Particular
2676 @item format_arg (@var{string-index})
2677 @cindex @code{format_arg} function attribute
2678 @opindex Wformat-nonliteral
2679 The @code{format_arg} attribute specifies that a function takes a format
2680 string for a @code{printf}, @code{scanf}, @code{strftime} or
2681 @code{strfmon} style function and modifies it (for example, to translate
2682 it into another language), so the result can be passed to a
2683 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2684 function (with the remaining arguments to the format function the same
2685 as they would have been for the unmodified string). For example, the
2690 my_dgettext (char *my_domain, const char *my_format)
2691 __attribute__ ((format_arg (2)));
2695 causes the compiler to check the arguments in calls to a @code{printf},
2696 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2697 format string argument is a call to the @code{my_dgettext} function, for
2698 consistency with the format string argument @code{my_format}. If the
2699 @code{format_arg} attribute had not been specified, all the compiler
2700 could tell in such calls to format functions would be that the format
2701 string argument is not constant; this would generate a warning when
2702 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2703 without the attribute.
2705 The parameter @var{string-index} specifies which argument is the format
2706 string argument (starting from one). Since non-static C++ methods have
2707 an implicit @code{this} argument, the arguments of such methods should
2708 be counted from two.
2710 The @code{format_arg} attribute allows you to identify your own
2711 functions that modify format strings, so that GCC can check the
2712 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2713 type function whose operands are a call to one of your own function.
2714 The compiler always treats @code{gettext}, @code{dgettext}, and
2715 @code{dcgettext} in this manner except when strict ISO C support is
2716 requested by @option{-ansi} or an appropriate @option{-std} option, or
2717 @option{-ffreestanding} or @option{-fno-builtin}
2718 is used. @xref{C Dialect Options,,Options
2719 Controlling C Dialect}.
2721 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2722 @code{NSString} reference for compatibility with the @code{format} attribute
2725 The target may also allow additional types in @code{format-arg} attributes.
2726 @xref{Target Format Checks,,Format Checks Specific to Particular
2730 @cindex @code{gnu_inline} function attribute
2731 This attribute should be used with a function that is also declared
2732 with the @code{inline} keyword. It directs GCC to treat the function
2733 as if it were defined in gnu90 mode even when compiling in C99 or
2736 If the function is declared @code{extern}, then this definition of the
2737 function is used only for inlining. In no case is the function
2738 compiled as a standalone function, not even if you take its address
2739 explicitly. Such an address becomes an external reference, as if you
2740 had only declared the function, and had not defined it. This has
2741 almost the effect of a macro. The way to use this is to put a
2742 function definition in a header file with this attribute, and put
2743 another copy of the function, without @code{extern}, in a library
2744 file. The definition in the header file causes most calls to the
2745 function to be inlined. If any uses of the function remain, they
2746 refer to the single copy in the library. Note that the two
2747 definitions of the functions need not be precisely the same, although
2748 if they do not have the same effect your program may behave oddly.
2750 In C, if the function is neither @code{extern} nor @code{static}, then
2751 the function is compiled as a standalone function, as well as being
2752 inlined where possible.
2754 This is how GCC traditionally handled functions declared
2755 @code{inline}. Since ISO C99 specifies a different semantics for
2756 @code{inline}, this function attribute is provided as a transition
2757 measure and as a useful feature in its own right. This attribute is
2758 available in GCC 4.1.3 and later. It is available if either of the
2759 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2760 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2761 Function is As Fast As a Macro}.
2763 In C++, this attribute does not depend on @code{extern} in any way,
2764 but it still requires the @code{inline} keyword to enable its special
2768 @cindex @code{hot} function attribute
2769 The @code{hot} attribute on a function is used to inform the compiler that
2770 the function is a hot spot of the compiled program. The function is
2771 optimized more aggressively and on many targets it is placed into a special
2772 subsection of the text section so all hot functions appear close together,
2775 When profile feedback is available, via @option{-fprofile-use}, hot functions
2776 are automatically detected and this attribute is ignored.
2778 @item ifunc ("@var{resolver}")
2779 @cindex @code{ifunc} function attribute
2780 @cindex indirect functions
2781 @cindex functions that are dynamically resolved
2782 The @code{ifunc} attribute is used to mark a function as an indirect
2783 function using the STT_GNU_IFUNC symbol type extension to the ELF
2784 standard. This allows the resolution of the symbol value to be
2785 determined dynamically at load time, and an optimized version of the
2786 routine can be selected for the particular processor or other system
2787 characteristics determined then. To use this attribute, first define
2788 the implementation functions available, and a resolver function that
2789 returns a pointer to the selected implementation function. The
2790 implementation functions' declarations must match the API of the
2791 function being implemented, the resolver's declaration is be a
2792 function returning pointer to void function returning void:
2795 void *my_memcpy (void *dst, const void *src, size_t len)
2800 static void (*resolve_memcpy (void)) (void)
2802 return my_memcpy; // we'll just always select this routine
2807 The exported header file declaring the function the user calls would
2811 extern void *memcpy (void *, const void *, size_t);
2815 allowing the user to call this as a regular function, unaware of the
2816 implementation. Finally, the indirect function needs to be defined in
2817 the same translation unit as the resolver function:
2820 void *memcpy (void *, const void *, size_t)
2821 __attribute__ ((ifunc ("resolve_memcpy")));
2824 Indirect functions cannot be weak. Binutils version 2.20.1 or higher
2825 and GNU C Library version 2.11.1 are required to use this feature.
2828 @itemx interrupt_handler
2829 Many GCC back ends support attributes to indicate that a function is
2830 an interrupt handler, which tells the compiler to generate function
2831 entry and exit sequences that differ from those from regular
2832 functions. The exact syntax and behavior are target-specific;
2833 refer to the following subsections for details.
2836 @cindex @code{leaf} function attribute
2837 Calls to external functions with this attribute must return to the
2838 current compilation unit only by return or by exception handling. In
2839 particular, a leaf function is not allowed to invoke callback functions
2840 passed to it from the current compilation unit, directly call functions
2841 exported by the unit, or @code{longjmp} into the unit. Leaf functions
2842 might still call functions from other compilation units and thus they
2843 are not necessarily leaf in the sense that they contain no function
2846 The attribute is intended for library functions to improve dataflow
2847 analysis. The compiler takes the hint that any data not escaping the
2848 current compilation unit cannot be used or modified by the leaf
2849 function. For example, the @code{sin} function is a leaf function, but
2850 @code{qsort} is not.
2852 Note that leaf functions might indirectly run a signal handler defined
2853 in the current compilation unit that uses static variables. Similarly,
2854 when lazy symbol resolution is in effect, leaf functions might invoke
2855 indirect functions whose resolver function or implementation function is
2856 defined in the current compilation unit and uses static variables. There
2857 is no standard-compliant way to write such a signal handler, resolver
2858 function, or implementation function, and the best that you can do is to
2859 remove the @code{leaf} attribute or mark all such static variables
2860 @code{volatile}. Lastly, for ELF-based systems that support symbol
2861 interposition, care should be taken that functions defined in the
2862 current compilation unit do not unexpectedly interpose other symbols
2863 based on the defined standards mode and defined feature test macros;
2864 otherwise an inadvertent callback would be added.
2866 The attribute has no effect on functions defined within the current
2867 compilation unit. This is to allow easy merging of multiple compilation
2868 units into one, for example, by using the link-time optimization. For
2869 this reason the attribute is not allowed on types to annotate indirect
2873 @cindex @code{malloc} function attribute
2874 @cindex functions that behave like malloc
2875 This tells the compiler that a function is @code{malloc}-like, i.e.,
2876 that the pointer @var{P} returned by the function cannot alias any
2877 other pointer valid when the function returns, and moreover no
2878 pointers to valid objects occur in any storage addressed by @var{P}.
2880 Using this attribute can improve optimization. Functions like
2881 @code{malloc} and @code{calloc} have this property because they return
2882 a pointer to uninitialized or zeroed-out storage. However, functions
2883 like @code{realloc} do not have this property, as they can return a
2884 pointer to storage containing pointers.
2887 @cindex @code{no_icf} function attribute
2888 This function attribute prevents a functions from being merged with another
2889 semantically equivalent function.
2891 @item no_instrument_function
2892 @cindex @code{no_instrument_function} function attribute
2893 @opindex finstrument-functions
2894 If @option{-finstrument-functions} is given, profiling function calls are
2895 generated at entry and exit of most user-compiled functions.
2896 Functions with this attribute are not so instrumented.
2898 @item no_profile_instrument_function
2899 @cindex @code{no_profile_instrument_function} function attribute
2900 The @code{no_profile_instrument_function} attribute on functions is used
2901 to inform the compiler that it should not process any profile feedback based
2902 optimization code instrumentation.
2905 @cindex @code{no_reorder} function attribute
2906 Do not reorder functions or variables marked @code{no_reorder}
2907 against each other or top level assembler statements the executable.
2908 The actual order in the program will depend on the linker command
2909 line. Static variables marked like this are also not removed.
2910 This has a similar effect
2911 as the @option{-fno-toplevel-reorder} option, but only applies to the
2914 @item no_sanitize ("@var{sanitize_option}")
2915 @cindex @code{no_sanitize} function attribute
2916 The @code{no_sanitize} attribute on functions is used
2917 to inform the compiler that it should not do sanitization of all options
2918 mentioned in @var{sanitize_option}. A list of values acceptable by
2919 @option{-fsanitize} option can be provided.
2922 void __attribute__ ((no_sanitize ("alignment", "object-size")))
2923 f () @{ /* @r{Do something.} */; @}
2926 @item no_sanitize_address
2927 @itemx no_address_safety_analysis
2928 @cindex @code{no_sanitize_address} function attribute
2929 The @code{no_sanitize_address} attribute on functions is used
2930 to inform the compiler that it should not instrument memory accesses
2931 in the function when compiling with the @option{-fsanitize=address} option.
2932 The @code{no_address_safety_analysis} is a deprecated alias of the
2933 @code{no_sanitize_address} attribute, new code should use
2934 @code{no_sanitize_address}.
2936 @item no_sanitize_thread
2937 @cindex @code{no_sanitize_thread} function attribute
2938 The @code{no_sanitize_thread} attribute on functions is used
2939 to inform the compiler that it should not instrument memory accesses
2940 in the function when compiling with the @option{-fsanitize=thread} option.
2942 @item no_sanitize_undefined
2943 @cindex @code{no_sanitize_undefined} function attribute
2944 The @code{no_sanitize_undefined} attribute on functions is used
2945 to inform the compiler that it should not check for undefined behavior
2946 in the function when compiling with the @option{-fsanitize=undefined} option.
2948 @item no_split_stack
2949 @cindex @code{no_split_stack} function attribute
2950 @opindex fsplit-stack
2951 If @option{-fsplit-stack} is given, functions have a small
2952 prologue which decides whether to split the stack. Functions with the
2953 @code{no_split_stack} attribute do not have that prologue, and thus
2954 may run with only a small amount of stack space available.
2956 @item no_stack_limit
2957 @cindex @code{no_stack_limit} function attribute
2958 This attribute locally overrides the @option{-fstack-limit-register}
2959 and @option{-fstack-limit-symbol} command-line options; it has the effect
2960 of disabling stack limit checking in the function it applies to.
2963 @cindex @code{noclone} function attribute
2964 This function attribute prevents a function from being considered for
2965 cloning---a mechanism that produces specialized copies of functions
2966 and which is (currently) performed by interprocedural constant
2970 @cindex @code{noinline} function attribute
2971 This function attribute prevents a function from being considered for
2973 @c Don't enumerate the optimizations by name here; we try to be
2974 @c future-compatible with this mechanism.
2975 If the function does not have side-effects, there are optimizations
2976 other than inlining that cause function calls to be optimized away,
2977 although the function call is live. To keep such calls from being
2984 (@pxref{Extended Asm}) in the called function, to serve as a special
2988 @cindex @code{noipa} function attribute
2989 Disable interprocedural optimizations between the function with this
2990 attribute and its callers, as if the body of the function is not available
2991 when optimizing callers and the callers are unavailable when optimizing
2992 the body. This attribute implies @code{noinline}, @code{noclone} and
2993 @code{no_icf} attributes. However, this attribute is not equivalent
2994 to a combination of other attributes, because its purpose is to suppress
2995 existing and future optimizations employing interprocedural analysis,
2996 including those that do not have an attribute suitable for disabling
2997 them individually. This attribute is supported mainly for the purpose
2998 of testing the compiler.
3000 @item nonnull (@var{arg-index}, @dots{})
3001 @cindex @code{nonnull} function attribute
3002 @cindex functions with non-null pointer arguments
3003 The @code{nonnull} attribute specifies that some function parameters should
3004 be non-null pointers. For instance, the declaration:
3008 my_memcpy (void *dest, const void *src, size_t len)
3009 __attribute__((nonnull (1, 2)));
3013 causes the compiler to check that, in calls to @code{my_memcpy},
3014 arguments @var{dest} and @var{src} are non-null. If the compiler
3015 determines that a null pointer is passed in an argument slot marked
3016 as non-null, and the @option{-Wnonnull} option is enabled, a warning
3017 is issued. The compiler may also choose to make optimizations based
3018 on the knowledge that certain function arguments will never be null.
3020 If no argument index list is given to the @code{nonnull} attribute,
3021 all pointer arguments are marked as non-null. To illustrate, the
3022 following declaration is equivalent to the previous example:
3026 my_memcpy (void *dest, const void *src, size_t len)
3027 __attribute__((nonnull));
3031 @cindex @code{noplt} function attribute
3032 The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
3033 Calls to functions marked with this attribute in position-independent code
3038 /* Externally defined function foo. */
3039 int foo () __attribute__ ((noplt));
3042 main (/* @r{@dots{}} */)
3051 The @code{noplt} attribute on function @code{foo}
3052 tells the compiler to assume that
3053 the function @code{foo} is externally defined and that the call to
3054 @code{foo} must avoid the PLT
3055 in position-independent code.
3057 In position-dependent code, a few targets also convert calls to
3058 functions that are marked to not use the PLT to use the GOT instead.
3061 @cindex @code{noreturn} function attribute
3062 @cindex functions that never return
3063 A few standard library functions, such as @code{abort} and @code{exit},
3064 cannot return. GCC knows this automatically. Some programs define
3065 their own functions that never return. You can declare them
3066 @code{noreturn} to tell the compiler this fact. For example,
3070 void fatal () __attribute__ ((noreturn));
3073 fatal (/* @r{@dots{}} */)
3075 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3081 The @code{noreturn} keyword tells the compiler to assume that
3082 @code{fatal} cannot return. It can then optimize without regard to what
3083 would happen if @code{fatal} ever did return. This makes slightly
3084 better code. More importantly, it helps avoid spurious warnings of
3085 uninitialized variables.
3087 The @code{noreturn} keyword does not affect the exceptional path when that
3088 applies: a @code{noreturn}-marked function may still return to the caller
3089 by throwing an exception or calling @code{longjmp}.
3091 Do not assume that registers saved by the calling function are
3092 restored before calling the @code{noreturn} function.
3094 It does not make sense for a @code{noreturn} function to have a return
3095 type other than @code{void}.
3098 @cindex @code{nothrow} function attribute
3099 The @code{nothrow} attribute is used to inform the compiler that a
3100 function cannot throw an exception. For example, most functions in
3101 the standard C library can be guaranteed not to throw an exception
3102 with the notable exceptions of @code{qsort} and @code{bsearch} that
3103 take function pointer arguments.
3106 @cindex @code{optimize} function attribute
3107 The @code{optimize} attribute is used to specify that a function is to
3108 be compiled with different optimization options than specified on the
3109 command line. Arguments can either be numbers or strings. Numbers
3110 are assumed to be an optimization level. Strings that begin with
3111 @code{O} are assumed to be an optimization option, while other options
3112 are assumed to be used with a @code{-f} prefix. You can also use the
3113 @samp{#pragma GCC optimize} pragma to set the optimization options
3114 that affect more than one function.
3115 @xref{Function Specific Option Pragmas}, for details about the
3116 @samp{#pragma GCC optimize} pragma.
3118 This attribute should be used for debugging purposes only. It is not
3119 suitable in production code.
3121 @item patchable_function_entry
3122 @cindex @code{patchable_function_entry} function attribute
3123 @cindex extra NOP instructions at the function entry point
3124 In case the target's text segment can be made writable at run time by
3125 any means, padding the function entry with a number of NOPs can be
3126 used to provide a universal tool for instrumentation.
3128 The @code{patchable_function_entry} function attribute can be used to
3129 change the number of NOPs to any desired value. The two-value syntax
3130 is the same as for the command-line switch
3131 @option{-fpatchable-function-entry=N,M}, generating @var{N} NOPs, with
3132 the function entry point before the @var{M}th NOP instruction.
3133 @var{M} defaults to 0 if omitted e.g. function entry point is before
3136 If patchable function entries are enabled globally using the command-line
3137 option @option{-fpatchable-function-entry=N,M}, then you must disable
3138 instrumentation on all functions that are part of the instrumentation
3139 framework with the attribute @code{patchable_function_entry (0)}
3140 to prevent recursion.
3143 @cindex @code{pure} function attribute
3144 @cindex functions that have no side effects
3145 Many functions have no effects except the return value and their
3146 return value depends only on the parameters and/or global variables.
3147 Such a function can be subject
3148 to common subexpression elimination and loop optimization just as an
3149 arithmetic operator would be. These functions should be declared
3150 with the attribute @code{pure}. For example,
3153 int square (int) __attribute__ ((pure));
3157 says that the hypothetical function @code{square} is safe to call
3158 fewer times than the program says.
3160 Some common examples of pure functions are @code{strlen} or @code{memcmp}.
3161 Interesting non-pure functions are functions with infinite loops or those
3162 depending on volatile memory or other system resource, that may change between
3163 two consecutive calls (such as @code{feof} in a multithreading environment).
3165 @item returns_nonnull
3166 @cindex @code{returns_nonnull} function attribute
3167 The @code{returns_nonnull} attribute specifies that the function
3168 return value should be a non-null pointer. For instance, the declaration:
3172 mymalloc (size_t len) __attribute__((returns_nonnull));
3176 lets the compiler optimize callers based on the knowledge
3177 that the return value will never be null.
3180 @cindex @code{returns_twice} function attribute
3181 @cindex functions that return more than once
3182 The @code{returns_twice} attribute tells the compiler that a function may
3183 return more than one time. The compiler ensures that all registers
3184 are dead before calling such a function and emits a warning about
3185 the variables that may be clobbered after the second return from the
3186 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3187 The @code{longjmp}-like counterpart of such function, if any, might need
3188 to be marked with the @code{noreturn} attribute.
3190 @item section ("@var{section-name}")
3191 @cindex @code{section} function attribute
3192 @cindex functions in arbitrary sections
3193 Normally, the compiler places the code it generates in the @code{text} section.
3194 Sometimes, however, you need additional sections, or you need certain
3195 particular functions to appear in special sections. The @code{section}
3196 attribute specifies that a function lives in a particular section.
3197 For example, the declaration:
3200 extern void foobar (void) __attribute__ ((section ("bar")));
3204 puts the function @code{foobar} in the @code{bar} section.
3206 Some file formats do not support arbitrary sections so the @code{section}
3207 attribute is not available on all platforms.
3208 If you need to map the entire contents of a module to a particular
3209 section, consider using the facilities of the linker instead.
3212 @cindex @code{sentinel} function attribute
3213 This function attribute ensures that a parameter in a function call is
3214 an explicit @code{NULL}. The attribute is only valid on variadic
3215 functions. By default, the sentinel is located at position zero, the
3216 last parameter of the function call. If an optional integer position
3217 argument P is supplied to the attribute, the sentinel must be located at
3218 position P counting backwards from the end of the argument list.
3221 __attribute__ ((sentinel))
3223 __attribute__ ((sentinel(0)))
3226 The attribute is automatically set with a position of 0 for the built-in
3227 functions @code{execl} and @code{execlp}. The built-in function
3228 @code{execle} has the attribute set with a position of 1.
3230 A valid @code{NULL} in this context is defined as zero with any pointer
3231 type. If your system defines the @code{NULL} macro with an integer type
3232 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3233 with a copy that redefines NULL appropriately.
3235 The warnings for missing or incorrect sentinels are enabled with
3239 @itemx simd("@var{mask}")
3240 @cindex @code{simd} function attribute
3241 This attribute enables creation of one or more function versions that
3242 can process multiple arguments using SIMD instructions from a
3243 single invocation. Specifying this attribute allows compiler to
3244 assume that such versions are available at link time (provided
3245 in the same or another translation unit). Generated versions are
3246 target-dependent and described in the corresponding Vector ABI document. For
3247 x86_64 target this document can be found
3248 @w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.
3250 The optional argument @var{mask} may have the value
3251 @code{notinbranch} or @code{inbranch},
3252 and instructs the compiler to generate non-masked or masked
3253 clones correspondingly. By default, all clones are generated.
3255 The attribute should not be used together with Cilk Plus @code{vector}
3256 attribute on the same function.
3258 If the attribute is specified and @code{#pragma omp declare simd} is
3259 present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
3260 switch is specified, then the attribute is ignored.
3263 @cindex @code{stack_protect} function attribute
3264 This attribute adds stack protection code to the function if
3265 flags @option{-fstack-protector}, @option{-fstack-protector-strong}
3266 or @option{-fstack-protector-explicit} are set.
3268 @item target (@var{options})
3269 @cindex @code{target} function attribute
3270 Multiple target back ends implement the @code{target} attribute
3271 to specify that a function is to
3272 be compiled with different target options than specified on the
3273 command line. This can be used for instance to have functions
3274 compiled with a different ISA (instruction set architecture) than the
3275 default. You can also use the @samp{#pragma GCC target} pragma to set
3276 more than one function to be compiled with specific target options.
3277 @xref{Function Specific Option Pragmas}, for details about the
3278 @samp{#pragma GCC target} pragma.
3280 For instance, on an x86, you could declare one function with the
3281 @code{target("sse4.1,arch=core2")} attribute and another with
3282 @code{target("sse4a,arch=amdfam10")}. This is equivalent to
3283 compiling the first function with @option{-msse4.1} and
3284 @option{-march=core2} options, and the second function with
3285 @option{-msse4a} and @option{-march=amdfam10} options. It is up to you
3286 to make sure that a function is only invoked on a machine that
3287 supports the particular ISA it is compiled for (for example by using
3288 @code{cpuid} on x86 to determine what feature bits and architecture
3292 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3293 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3296 You can either use multiple
3297 strings separated by commas to specify multiple options,
3298 or separate the options with a comma (@samp{,}) within a single string.
3300 The options supported are specific to each target; refer to @ref{x86
3301 Function Attributes}, @ref{PowerPC Function Attributes},
3302 @ref{ARM Function Attributes},and @ref{Nios II Function Attributes},
3305 @item target_clones (@var{options})
3306 @cindex @code{target_clones} function attribute
3307 The @code{target_clones} attribute is used to specify that a function
3308 be cloned into multiple versions compiled with different target options
3309 than specified on the command line. The supported options and restrictions
3310 are the same as for @code{target} attribute.
3312 For instance, on an x86, you could compile a function with
3313 @code{target_clones("sse4.1,avx")}. GCC creates two function clones,
3314 one compiled with @option{-msse4.1} and another with @option{-mavx}.
3316 On a PowerPC, you can compile a function with
3317 @code{target_clones("cpu=power9,default")}. GCC will create two
3318 function clones, one compiled with @option{-mcpu=power9} and another
3319 with the default options. GCC must be configured to use GLIBC 2.23 or
3320 newer in order to use the @code{target_clones} attribute.
3322 It also creates a resolver function (see
3323 the @code{ifunc} attribute above) that dynamically selects a clone
3324 suitable for current architecture. The resolver is created only if there
3325 is a usage of a function with @code{target_clones} attribute.
3328 @cindex @code{unused} function attribute
3329 This attribute, attached to a function, means that the function is meant
3330 to be possibly unused. GCC does not produce a warning for this
3334 @cindex @code{used} function attribute
3335 This attribute, attached to a function, means that code must be emitted
3336 for the function even if it appears that the function is not referenced.
3337 This is useful, for example, when the function is referenced only in
3340 When applied to a member function of a C++ class template, the
3341 attribute also means that the function is instantiated if the
3342 class itself is instantiated.
3344 @item visibility ("@var{visibility_type}")
3345 @cindex @code{visibility} function attribute
3346 This attribute affects the linkage of the declaration to which it is attached.
3347 It can be applied to variables (@pxref{Common Variable Attributes}) and types
3348 (@pxref{Common Type Attributes}) as well as functions.
3350 There are four supported @var{visibility_type} values: default,
3351 hidden, protected or internal visibility.
3354 void __attribute__ ((visibility ("protected")))
3355 f () @{ /* @r{Do something.} */; @}
3356 int i __attribute__ ((visibility ("hidden")));
3359 The possible values of @var{visibility_type} correspond to the
3360 visibility settings in the ELF gABI.
3363 @c keep this list of visibilities in alphabetical order.
3366 Default visibility is the normal case for the object file format.
3367 This value is available for the visibility attribute to override other
3368 options that may change the assumed visibility of entities.
3370 On ELF, default visibility means that the declaration is visible to other
3371 modules and, in shared libraries, means that the declared entity may be
3374 On Darwin, default visibility means that the declaration is visible to
3377 Default visibility corresponds to ``external linkage'' in the language.
3380 Hidden visibility indicates that the entity declared has a new
3381 form of linkage, which we call ``hidden linkage''. Two
3382 declarations of an object with hidden linkage refer to the same object
3383 if they are in the same shared object.
3386 Internal visibility is like hidden visibility, but with additional
3387 processor specific semantics. Unless otherwise specified by the
3388 psABI, GCC defines internal visibility to mean that a function is
3389 @emph{never} called from another module. Compare this with hidden
3390 functions which, while they cannot be referenced directly by other
3391 modules, can be referenced indirectly via function pointers. By
3392 indicating that a function cannot be called from outside the module,
3393 GCC may for instance omit the load of a PIC register since it is known
3394 that the calling function loaded the correct value.
3397 Protected visibility is like default visibility except that it
3398 indicates that references within the defining module bind to the
3399 definition in that module. That is, the declared entity cannot be
3400 overridden by another module.
3404 All visibilities are supported on many, but not all, ELF targets
3405 (supported when the assembler supports the @samp{.visibility}
3406 pseudo-op). Default visibility is supported everywhere. Hidden
3407 visibility is supported on Darwin targets.
3409 The visibility attribute should be applied only to declarations that
3410 would otherwise have external linkage. The attribute should be applied
3411 consistently, so that the same entity should not be declared with
3412 different settings of the attribute.
3414 In C++, the visibility attribute applies to types as well as functions
3415 and objects, because in C++ types have linkage. A class must not have
3416 greater visibility than its non-static data member types and bases,
3417 and class members default to the visibility of their class. Also, a
3418 declaration without explicit visibility is limited to the visibility
3421 In C++, you can mark member functions and static member variables of a
3422 class with the visibility attribute. This is useful if you know a
3423 particular method or static member variable should only be used from
3424 one shared object; then you can mark it hidden while the rest of the
3425 class has default visibility. Care must be taken to avoid breaking
3426 the One Definition Rule; for example, it is usually not useful to mark
3427 an inline method as hidden without marking the whole class as hidden.
3429 A C++ namespace declaration can also have the visibility attribute.
3432 namespace nspace1 __attribute__ ((visibility ("protected")))
3433 @{ /* @r{Do something.} */; @}
3436 This attribute applies only to the particular namespace body, not to
3437 other definitions of the same namespace; it is equivalent to using
3438 @samp{#pragma GCC visibility} before and after the namespace
3439 definition (@pxref{Visibility Pragmas}).
3441 In C++, if a template argument has limited visibility, this
3442 restriction is implicitly propagated to the template instantiation.
3443 Otherwise, template instantiations and specializations default to the
3444 visibility of their template.
3446 If both the template and enclosing class have explicit visibility, the
3447 visibility from the template is used.
3449 @item warn_unused_result
3450 @cindex @code{warn_unused_result} function attribute
3451 The @code{warn_unused_result} attribute causes a warning to be emitted
3452 if a caller of the function with this attribute does not use its
3453 return value. This is useful for functions where not checking
3454 the result is either a security problem or always a bug, such as
3458 int fn () __attribute__ ((warn_unused_result));
3461 if (fn () < 0) return -1;
3468 results in warning on line 5.
3471 @cindex @code{weak} function attribute
3472 The @code{weak} attribute causes the declaration to be emitted as a weak
3473 symbol rather than a global. This is primarily useful in defining
3474 library functions that can be overridden in user code, though it can
3475 also be used with non-function declarations. Weak symbols are supported
3476 for ELF targets, and also for a.out targets when using the GNU assembler
3480 @itemx weakref ("@var{target}")
3481 @cindex @code{weakref} function attribute
3482 The @code{weakref} attribute marks a declaration as a weak reference.
3483 Without arguments, it should be accompanied by an @code{alias} attribute
3484 naming the target symbol. Optionally, the @var{target} may be given as
3485 an argument to @code{weakref} itself. In either case, @code{weakref}
3486 implicitly marks the declaration as @code{weak}. Without a
3487 @var{target}, given as an argument to @code{weakref} or to @code{alias},
3488 @code{weakref} is equivalent to @code{weak}.
3491 static int x() __attribute__ ((weakref ("y")));
3492 /* is equivalent to... */
3493 static int x() __attribute__ ((weak, weakref, alias ("y")));
3495 static int x() __attribute__ ((weakref));
3496 static int x() __attribute__ ((alias ("y")));
3499 A weak reference is an alias that does not by itself require a
3500 definition to be given for the target symbol. If the target symbol is
3501 only referenced through weak references, then it becomes a @code{weak}
3502 undefined symbol. If it is directly referenced, however, then such
3503 strong references prevail, and a definition is required for the
3504 symbol, not necessarily in the same translation unit.
3506 The effect is equivalent to moving all references to the alias to a
3507 separate translation unit, renaming the alias to the aliased symbol,
3508 declaring it as weak, compiling the two separate translation units and
3509 performing a reloadable link on them.
3511 At present, a declaration to which @code{weakref} is attached can
3512 only be @code{static}.
3517 @c This is the end of the target-independent attribute table
3519 @node AArch64 Function Attributes
3520 @subsection AArch64 Function Attributes
3522 The following target-specific function attributes are available for the
3523 AArch64 target. For the most part, these options mirror the behavior of
3524 similar command-line options (@pxref{AArch64 Options}), but on a
3528 @item general-regs-only
3529 @cindex @code{general-regs-only} function attribute, AArch64
3530 Indicates that no floating-point or Advanced SIMD registers should be
3531 used when generating code for this function. If the function explicitly
3532 uses floating-point code, then the compiler gives an error. This is
3533 the same behavior as that of the command-line option
3534 @option{-mgeneral-regs-only}.
3536 @item fix-cortex-a53-835769
3537 @cindex @code{fix-cortex-a53-835769} function attribute, AArch64
3538 Indicates that the workaround for the Cortex-A53 erratum 835769 should be
3539 applied to this function. To explicitly disable the workaround for this
3540 function specify the negated form: @code{no-fix-cortex-a53-835769}.
3541 This corresponds to the behavior of the command line options
3542 @option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.
3545 @cindex @code{cmodel=} function attribute, AArch64
3546 Indicates that code should be generated for a particular code model for
3547 this function. The behavior and permissible arguments are the same as
3548 for the command line option @option{-mcmodel=}.
3551 @cindex @code{strict-align} function attribute, AArch64
3552 Indicates that the compiler should not assume that unaligned memory references
3553 are handled by the system. The behavior is the same as for the command-line
3554 option @option{-mstrict-align}.
3556 @item omit-leaf-frame-pointer
3557 @cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
3558 Indicates that the frame pointer should be omitted for a leaf function call.
3559 To keep the frame pointer, the inverse attribute
3560 @code{no-omit-leaf-frame-pointer} can be specified. These attributes have
3561 the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
3562 and @option{-mno-omit-leaf-frame-pointer}.
3565 @cindex @code{tls-dialect=} function attribute, AArch64
3566 Specifies the TLS dialect to use for this function. The behavior and
3567 permissible arguments are the same as for the command-line option
3568 @option{-mtls-dialect=}.
3571 @cindex @code{arch=} function attribute, AArch64
3572 Specifies the architecture version and architectural extensions to use
3573 for this function. The behavior and permissible arguments are the same as
3574 for the @option{-march=} command-line option.
3577 @cindex @code{tune=} function attribute, AArch64
3578 Specifies the core for which to tune the performance of this function.
3579 The behavior and permissible arguments are the same as for the @option{-mtune=}
3580 command-line option.
3583 @cindex @code{cpu=} function attribute, AArch64
3584 Specifies the core for which to tune the performance of this function and also
3585 whose architectural features to use. The behavior and valid arguments are the
3586 same as for the @option{-mcpu=} command-line option.
3588 @item sign-return-address
3589 @cindex @code{sign-return-address} function attribute, AArch64
3590 Select the function scope on which return address signing will be applied. The
3591 behavior and permissible arguments are the same as for the command-line option
3592 @option{-msign-return-address=}. The default value is @code{none}.
3596 The above target attributes can be specified as follows:
3599 __attribute__((target("@var{attr-string}")))
3607 where @code{@var{attr-string}} is one of the attribute strings specified above.
3609 Additionally, the architectural extension string may be specified on its
3610 own. This can be used to turn on and off particular architectural extensions
3611 without having to specify a particular architecture version or core. Example:
3614 __attribute__((target("+crc+nocrypto")))
3622 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3623 extension and disables the @code{crypto} extension for the function @code{foo}
3624 without modifying an existing @option{-march=} or @option{-mcpu} option.
3626 Multiple target function attributes can be specified by separating them with
3627 a comma. For example:
3629 __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
3637 is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
3638 and @code{crypto} extensions and tunes it for @code{cortex-a53}.
3640 @subsubsection Inlining rules
3641 Specifying target attributes on individual functions or performing link-time
3642 optimization across translation units compiled with different target options
3643 can affect function inlining rules:
3645 In particular, a caller function can inline a callee function only if the
3646 architectural features available to the callee are a subset of the features
3647 available to the caller.
3648 For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
3649 or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
3650 can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
3651 because the all the architectural features that function @code{bar} requires
3652 are available to function @code{foo}. Conversely, function @code{bar} cannot
3653 inline function @code{foo}.
3655 Additionally inlining a function compiled with @option{-mstrict-align} into a
3656 function compiled without @code{-mstrict-align} is not allowed.
3657 However, inlining a function compiled without @option{-mstrict-align} into a
3658 function compiled with @option{-mstrict-align} is allowed.
3660 Note that CPU tuning options and attributes such as the @option{-mcpu=},
3661 @option{-mtune=} do not inhibit inlining unless the CPU specified by the
3662 @option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
3663 architectural feature rules specified above.
3665 @node ARC Function Attributes
3666 @subsection ARC Function Attributes
3668 These function attributes are supported by the ARC back end:
3672 @cindex @code{interrupt} function attribute, ARC
3673 Use this attribute to indicate
3674 that the specified function is an interrupt handler. The compiler generates
3675 function entry and exit sequences suitable for use in an interrupt handler
3676 when this attribute is present.
3678 On the ARC, you must specify the kind of interrupt to be handled
3679 in a parameter to the interrupt attribute like this:
3682 void f () __attribute__ ((interrupt ("ilink1")));
3685 Permissible values for this parameter are: @w{@code{ilink1}} and
3691 @cindex @code{long_call} function attribute, ARC
3692 @cindex @code{medium_call} function attribute, ARC
3693 @cindex @code{short_call} function attribute, ARC
3694 @cindex indirect calls, ARC
3695 These attributes specify how a particular function is called.
3696 These attributes override the
3697 @option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
3698 command-line switches and @code{#pragma long_calls} settings.
3700 For ARC, a function marked with the @code{long_call} attribute is
3701 always called using register-indirect jump-and-link instructions,
3702 thereby enabling the called function to be placed anywhere within the
3703 32-bit address space. A function marked with the @code{medium_call}
3704 attribute will always be close enough to be called with an unconditional
3705 branch-and-link instruction, which has a 25-bit offset from
3706 the call site. A function marked with the @code{short_call}
3707 attribute will always be close enough to be called with a conditional
3708 branch-and-link instruction, which has a 21-bit offset from
3712 @node ARM Function Attributes
3713 @subsection ARM Function Attributes
3715 These function attributes are supported for ARM targets:
3719 @cindex @code{interrupt} function attribute, ARM
3720 Use this attribute to indicate
3721 that the specified function is an interrupt handler. The compiler generates
3722 function entry and exit sequences suitable for use in an interrupt handler
3723 when this attribute is present.
3725 You can specify the kind of interrupt to be handled by
3726 adding an optional parameter to the interrupt attribute like this:
3729 void f () __attribute__ ((interrupt ("IRQ")));
3733 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
3734 @code{SWI}, @code{ABORT} and @code{UNDEF}.
3736 On ARMv7-M the interrupt type is ignored, and the attribute means the function
3737 may be called with a word-aligned stack pointer.
3740 @cindex @code{isr} function attribute, ARM
3741 Use this attribute on ARM to write Interrupt Service Routines. This is an
3742 alias to the @code{interrupt} attribute above.
3746 @cindex @code{long_call} function attribute, ARM
3747 @cindex @code{short_call} function attribute, ARM
3748 @cindex indirect calls, ARM
3749 These attributes specify how a particular function is called.
3750 These attributes override the
3751 @option{-mlong-calls} (@pxref{ARM Options})
3752 command-line switch and @code{#pragma long_calls} settings. For ARM, the
3753 @code{long_call} attribute indicates that the function might be far
3754 away from the call site and require a different (more expensive)
3755 calling sequence. The @code{short_call} attribute always places
3756 the offset to the function from the call site into the @samp{BL}
3757 instruction directly.
3760 @cindex @code{naked} function attribute, ARM
3761 This attribute allows the compiler to construct the
3762 requisite function declaration, while allowing the body of the
3763 function to be assembly code. The specified function will not have
3764 prologue/epilogue sequences generated by the compiler. Only basic
3765 @code{asm} statements can safely be included in naked functions
3766 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3767 basic @code{asm} and C code may appear to work, they cannot be
3768 depended upon to work reliably and are not supported.
3771 @cindex @code{pcs} function attribute, ARM
3773 The @code{pcs} attribute can be used to control the calling convention
3774 used for a function on ARM. The attribute takes an argument that specifies
3775 the calling convention to use.
3777 When compiling using the AAPCS ABI (or a variant of it) then valid
3778 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3779 order to use a variant other than @code{"aapcs"} then the compiler must
3780 be permitted to use the appropriate co-processor registers (i.e., the
3781 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3785 /* Argument passed in r0, and result returned in r0+r1. */
3786 double f2d (float) __attribute__((pcs("aapcs")));
3789 Variadic functions always use the @code{"aapcs"} calling convention and
3790 the compiler rejects attempts to specify an alternative.
3792 @item target (@var{options})
3793 @cindex @code{target} function attribute
3794 As discussed in @ref{Common Function Attributes}, this attribute
3795 allows specification of target-specific compilation options.
3797 On ARM, the following options are allowed:
3801 @cindex @code{target("thumb")} function attribute, ARM
3802 Force code generation in the Thumb (T16/T32) ISA, depending on the
3806 @cindex @code{target("arm")} function attribute, ARM
3807 Force code generation in the ARM (A32) ISA.
3809 Functions from different modes can be inlined in the caller's mode.
3812 @cindex @code{target("fpu=")} function attribute, ARM
3813 Specifies the fpu for which to tune the performance of this function.
3814 The behavior and permissible arguments are the same as for the @option{-mfpu=}
3815 command-line option.
3821 @node AVR Function Attributes
3822 @subsection AVR Function Attributes
3824 These function attributes are supported by the AVR back end:
3828 @cindex @code{interrupt} function attribute, AVR
3829 Use this attribute to indicate
3830 that the specified function is an interrupt handler. The compiler generates
3831 function entry and exit sequences suitable for use in an interrupt handler
3832 when this attribute is present.
3834 On the AVR, the hardware globally disables interrupts when an
3835 interrupt is executed. The first instruction of an interrupt handler
3836 declared with this attribute is a @code{SEI} instruction to
3837 re-enable interrupts. See also the @code{signal} function attribute
3838 that does not insert a @code{SEI} instruction. If both @code{signal} and
3839 @code{interrupt} are specified for the same function, @code{signal}
3840 is silently ignored.
3843 @cindex @code{naked} function attribute, AVR
3844 This attribute allows the compiler to construct the
3845 requisite function declaration, while allowing the body of the
3846 function to be assembly code. The specified function will not have
3847 prologue/epilogue sequences generated by the compiler. Only basic
3848 @code{asm} statements can safely be included in naked functions
3849 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3850 basic @code{asm} and C code may appear to work, they cannot be
3851 depended upon to work reliably and are not supported.
3854 @cindex @code{no_gccisr} function attribute, AVR
3855 Do not use @code{__gcc_isr} pseudo instructions in a function with
3856 the @code{interrupt} or @code{signal} attribute aka. interrupt
3857 service routine (ISR).
3858 Use this attribute if the preamble of the ISR prologue should always read
3862 in __tmp_reg__, __SREG__
3866 and accordingly for the postamble of the epilogue --- no matter whether
3867 the mentioned registers are actually used in the ISR or not.
3868 Situations where you might want to use this attribute include:
3871 Code that (effectively) clobbers bits of @code{SREG} other than the
3872 @code{I}-flag by writing to the memory location of @code{SREG}.
3874 Code that uses inline assembler to jump to a different function which
3875 expects (parts of) the prologue code as outlined above to be present.
3877 To disable @code{__gcc_isr} generation for the whole compilation unit,
3878 there is option @option{-mno-gas-isr-prologues}, @pxref{AVR Options}.
3882 @cindex @code{OS_main} function attribute, AVR
3883 @cindex @code{OS_task} function attribute, AVR
3884 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3885 do not save/restore any call-saved register in their prologue/epilogue.
3887 The @code{OS_main} attribute can be used when there @emph{is
3888 guarantee} that interrupts are disabled at the time when the function
3889 is entered. This saves resources when the stack pointer has to be
3890 changed to set up a frame for local variables.
3892 The @code{OS_task} attribute can be used when there is @emph{no
3893 guarantee} that interrupts are disabled at that time when the function
3894 is entered like for, e@.g@. task functions in a multi-threading operating
3895 system. In that case, changing the stack pointer register is
3896 guarded by save/clear/restore of the global interrupt enable flag.
3898 The differences to the @code{naked} function attribute are:
3900 @item @code{naked} functions do not have a return instruction whereas
3901 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
3902 @code{RETI} return instruction.
3903 @item @code{naked} functions do not set up a frame for local variables
3904 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3909 @cindex @code{signal} function attribute, AVR
3910 Use this attribute on the AVR to indicate that the specified
3911 function is an interrupt handler. The compiler generates function
3912 entry and exit sequences suitable for use in an interrupt handler when this
3913 attribute is present.
3915 See also the @code{interrupt} function attribute.
3917 The AVR hardware globally disables interrupts when an interrupt is executed.
3918 Interrupt handler functions defined with the @code{signal} attribute
3919 do not re-enable interrupts. It is save to enable interrupts in a
3920 @code{signal} handler. This ``save'' only applies to the code
3921 generated by the compiler and not to the IRQ layout of the
3922 application which is responsibility of the application.
3924 If both @code{signal} and @code{interrupt} are specified for the same
3925 function, @code{signal} is silently ignored.
3928 @node Blackfin Function Attributes
3929 @subsection Blackfin Function Attributes
3931 These function attributes are supported by the Blackfin back end:
3935 @item exception_handler
3936 @cindex @code{exception_handler} function attribute
3937 @cindex exception handler functions, Blackfin
3938 Use this attribute on the Blackfin to indicate that the specified function
3939 is an exception handler. The compiler generates function entry and
3940 exit sequences suitable for use in an exception handler when this
3941 attribute is present.
3943 @item interrupt_handler
3944 @cindex @code{interrupt_handler} function attribute, Blackfin
3945 Use this attribute to
3946 indicate that the specified function is an interrupt handler. The compiler
3947 generates function entry and exit sequences suitable for use in an
3948 interrupt handler when this attribute is present.
3951 @cindex @code{kspisusp} function attribute, Blackfin
3952 @cindex User stack pointer in interrupts on the Blackfin
3953 When used together with @code{interrupt_handler}, @code{exception_handler}
3954 or @code{nmi_handler}, code is generated to load the stack pointer
3955 from the USP register in the function prologue.
3958 @cindex @code{l1_text} function attribute, Blackfin
3959 This attribute specifies a function to be placed into L1 Instruction
3960 SRAM@. The function is put into a specific section named @code{.l1.text}.
3961 With @option{-mfdpic}, function calls with a such function as the callee
3962 or caller uses inlined PLT.
3965 @cindex @code{l2} function attribute, Blackfin
3966 This attribute specifies a function to be placed into L2
3967 SRAM. The function is put into a specific section named
3968 @code{.l2.text}. With @option{-mfdpic}, callers of such functions use
3973 @cindex indirect calls, Blackfin
3974 @cindex @code{longcall} function attribute, Blackfin
3975 @cindex @code{shortcall} function attribute, Blackfin
3976 The @code{longcall} attribute
3977 indicates that the function might be far away from the call site and
3978 require a different (more expensive) calling sequence. The
3979 @code{shortcall} attribute indicates that the function is always close
3980 enough for the shorter calling sequence to be used. These attributes
3981 override the @option{-mlongcall} switch.
3984 @cindex @code{nesting} function attribute, Blackfin
3985 @cindex Allow nesting in an interrupt handler on the Blackfin processor
3986 Use this attribute together with @code{interrupt_handler},
3987 @code{exception_handler} or @code{nmi_handler} to indicate that the function
3988 entry code should enable nested interrupts or exceptions.
3991 @cindex @code{nmi_handler} function attribute, Blackfin
3992 @cindex NMI handler functions on the Blackfin processor
3993 Use this attribute on the Blackfin to indicate that the specified function
3994 is an NMI handler. The compiler generates function entry and
3995 exit sequences suitable for use in an NMI handler when this
3996 attribute is present.
3999 @cindex @code{saveall} function attribute, Blackfin
4000 @cindex save all registers on the Blackfin
4001 Use this attribute to indicate that
4002 all registers except the stack pointer should be saved in the prologue
4003 regardless of whether they are used or not.
4006 @node CR16 Function Attributes
4007 @subsection CR16 Function Attributes
4009 These function attributes are supported by the CR16 back end:
4013 @cindex @code{interrupt} function attribute, CR16
4014 Use this attribute to indicate
4015 that the specified function is an interrupt handler. The compiler generates
4016 function entry and exit sequences suitable for use in an interrupt handler
4017 when this attribute is present.
4020 @node Epiphany Function Attributes
4021 @subsection Epiphany Function Attributes
4023 These function attributes are supported by the Epiphany back end:
4027 @cindex @code{disinterrupt} function attribute, Epiphany
4028 This attribute causes the compiler to emit
4029 instructions to disable interrupts for the duration of the given
4032 @item forwarder_section
4033 @cindex @code{forwarder_section} function attribute, Epiphany
4034 This attribute modifies the behavior of an interrupt handler.
4035 The interrupt handler may be in external memory which cannot be
4036 reached by a branch instruction, so generate a local memory trampoline
4037 to transfer control. The single parameter identifies the section where
4038 the trampoline is placed.
4041 @cindex @code{interrupt} function attribute, Epiphany
4042 Use this attribute to indicate
4043 that the specified function is an interrupt handler. The compiler generates
4044 function entry and exit sequences suitable for use in an interrupt handler
4045 when this attribute is present. It may also generate
4046 a special section with code to initialize the interrupt vector table.
4048 On Epiphany targets one or more optional parameters can be added like this:
4051 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
4054 Permissible values for these parameters are: @w{@code{reset}},
4055 @w{@code{software_exception}}, @w{@code{page_miss}},
4056 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
4057 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
4058 Multiple parameters indicate that multiple entries in the interrupt
4059 vector table should be initialized for this function, i.e.@: for each
4060 parameter @w{@var{name}}, a jump to the function is emitted in
4061 the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
4062 entirely, in which case no interrupt vector table entry is provided.
4064 Note that interrupts are enabled inside the function
4065 unless the @code{disinterrupt} attribute is also specified.
4067 The following examples are all valid uses of these attributes on
4070 void __attribute__ ((interrupt)) universal_handler ();
4071 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
4072 void __attribute__ ((interrupt ("dma0, dma1")))
4073 universal_dma_handler ();
4074 void __attribute__ ((interrupt ("timer0"), disinterrupt))
4075 fast_timer_handler ();
4076 void __attribute__ ((interrupt ("dma0, dma1"),
4077 forwarder_section ("tramp")))
4078 external_dma_handler ();
4083 @cindex @code{long_call} function attribute, Epiphany
4084 @cindex @code{short_call} function attribute, Epiphany
4085 @cindex indirect calls, Epiphany
4086 These attributes specify how a particular function is called.
4087 These attributes override the
4088 @option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
4089 command-line switch and @code{#pragma long_calls} settings.
4093 @node H8/300 Function Attributes
4094 @subsection H8/300 Function Attributes
4096 These function attributes are available for H8/300 targets:
4099 @item function_vector
4100 @cindex @code{function_vector} function attribute, H8/300
4101 Use this attribute on the H8/300, H8/300H, and H8S to indicate
4102 that the specified function should be called through the function vector.
4103 Calling a function through the function vector reduces code size; however,
4104 the function vector has a limited size (maximum 128 entries on the H8/300
4105 and 64 entries on the H8/300H and H8S)
4106 and shares space with the interrupt vector.
4108 @item interrupt_handler
4109 @cindex @code{interrupt_handler} function attribute, H8/300
4110 Use this attribute on the H8/300, H8/300H, and H8S to
4111 indicate that the specified function is an interrupt handler. The compiler
4112 generates function entry and exit sequences suitable for use in an
4113 interrupt handler when this attribute is present.
4116 @cindex @code{saveall} function attribute, H8/300
4117 @cindex save all registers on the H8/300, H8/300H, and H8S
4118 Use this attribute on the H8/300, H8/300H, and H8S to indicate that
4119 all registers except the stack pointer should be saved in the prologue
4120 regardless of whether they are used or not.
4123 @node IA-64 Function Attributes
4124 @subsection IA-64 Function Attributes
4126 These function attributes are supported on IA-64 targets:
4129 @item syscall_linkage
4130 @cindex @code{syscall_linkage} function attribute, IA-64
4131 This attribute is used to modify the IA-64 calling convention by marking
4132 all input registers as live at all function exits. This makes it possible
4133 to restart a system call after an interrupt without having to save/restore
4134 the input registers. This also prevents kernel data from leaking into
4138 @cindex @code{version_id} function attribute, IA-64
4139 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
4140 symbol to contain a version string, thus allowing for function level
4141 versioning. HP-UX system header files may use function level versioning
4142 for some system calls.
4145 extern int foo () __attribute__((version_id ("20040821")));
4149 Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
4152 @node M32C Function Attributes
4153 @subsection M32C Function Attributes
4155 These function attributes are supported by the M32C back end:
4159 @cindex @code{bank_switch} function attribute, M32C
4160 When added to an interrupt handler with the M32C port, causes the
4161 prologue and epilogue to use bank switching to preserve the registers
4162 rather than saving them on the stack.
4164 @item fast_interrupt
4165 @cindex @code{fast_interrupt} function attribute, M32C
4166 Use this attribute on the M32C port to indicate that the specified
4167 function is a fast interrupt handler. This is just like the
4168 @code{interrupt} attribute, except that @code{freit} is used to return
4169 instead of @code{reit}.
4171 @item function_vector
4172 @cindex @code{function_vector} function attribute, M16C/M32C
4173 On M16C/M32C targets, the @code{function_vector} attribute declares a
4174 special page subroutine call function. Use of this attribute reduces
4175 the code size by 2 bytes for each call generated to the
4176 subroutine. The argument to the attribute is the vector number entry
4177 from the special page vector table which contains the 16 low-order
4178 bits of the subroutine's entry address. Each vector table has special
4179 page number (18 to 255) that is used in @code{jsrs} instructions.
4180 Jump addresses of the routines are generated by adding 0x0F0000 (in
4181 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
4182 2-byte addresses set in the vector table. Therefore you need to ensure
4183 that all the special page vector routines should get mapped within the
4184 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
4187 In the following example 2 bytes are saved for each call to
4188 function @code{foo}.
4191 void foo (void) __attribute__((function_vector(0x18)));
4202 If functions are defined in one file and are called in another file,
4203 then be sure to write this declaration in both files.
4205 This attribute is ignored for R8C target.
4208 @cindex @code{interrupt} function attribute, M32C
4209 Use this attribute to indicate
4210 that the specified function is an interrupt handler. The compiler generates
4211 function entry and exit sequences suitable for use in an interrupt handler
4212 when this attribute is present.
4215 @node M32R/D Function Attributes
4216 @subsection M32R/D Function Attributes
4218 These function attributes are supported by the M32R/D back end:
4222 @cindex @code{interrupt} function attribute, M32R/D
4223 Use this attribute to indicate
4224 that the specified function is an interrupt handler. The compiler generates
4225 function entry and exit sequences suitable for use in an interrupt handler
4226 when this attribute is present.
4228 @item model (@var{model-name})
4229 @cindex @code{model} function attribute, M32R/D
4230 @cindex function addressability on the M32R/D
4232 On the M32R/D, use this attribute to set the addressability of an
4233 object, and of the code generated for a function. The identifier
4234 @var{model-name} is one of @code{small}, @code{medium}, or
4235 @code{large}, representing each of the code models.
4237 Small model objects live in the lower 16MB of memory (so that their
4238 addresses can be loaded with the @code{ld24} instruction), and are
4239 callable with the @code{bl} instruction.
4241 Medium model objects may live anywhere in the 32-bit address space (the
4242 compiler generates @code{seth/add3} instructions to load their addresses),
4243 and are callable with the @code{bl} instruction.
4245 Large model objects may live anywhere in the 32-bit address space (the
4246 compiler generates @code{seth/add3} instructions to load their addresses),
4247 and may not be reachable with the @code{bl} instruction (the compiler
4248 generates the much slower @code{seth/add3/jl} instruction sequence).
4251 @node m68k Function Attributes
4252 @subsection m68k Function Attributes
4254 These function attributes are supported by the m68k back end:
4258 @itemx interrupt_handler
4259 @cindex @code{interrupt} function attribute, m68k
4260 @cindex @code{interrupt_handler} function attribute, m68k
4261 Use this attribute to
4262 indicate that the specified function is an interrupt handler. The compiler
4263 generates function entry and exit sequences suitable for use in an
4264 interrupt handler when this attribute is present. Either name may be used.
4266 @item interrupt_thread
4267 @cindex @code{interrupt_thread} function attribute, fido
4268 Use this attribute on fido, a subarchitecture of the m68k, to indicate
4269 that the specified function is an interrupt handler that is designed
4270 to run as a thread. The compiler omits generate prologue/epilogue
4271 sequences and replaces the return instruction with a @code{sleep}
4272 instruction. This attribute is available only on fido.
4275 @node MCORE Function Attributes
4276 @subsection MCORE Function Attributes
4278 These function attributes are supported by the MCORE back end:
4282 @cindex @code{naked} function attribute, MCORE
4283 This attribute allows the compiler to construct the
4284 requisite function declaration, while allowing the body of the
4285 function to be assembly code. The specified function will not have
4286 prologue/epilogue sequences generated by the compiler. Only basic
4287 @code{asm} statements can safely be included in naked functions
4288 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4289 basic @code{asm} and C code may appear to work, they cannot be
4290 depended upon to work reliably and are not supported.
4293 @node MeP Function Attributes
4294 @subsection MeP Function Attributes
4296 These function attributes are supported by the MeP back end:
4300 @cindex @code{disinterrupt} function attribute, MeP
4301 On MeP targets, this attribute causes the compiler to emit
4302 instructions to disable interrupts for the duration of the given
4306 @cindex @code{interrupt} function attribute, MeP
4307 Use this attribute to indicate
4308 that the specified function is an interrupt handler. The compiler generates
4309 function entry and exit sequences suitable for use in an interrupt handler
4310 when this attribute is present.
4313 @cindex @code{near} function attribute, MeP
4314 This attribute causes the compiler to assume the called
4315 function is close enough to use the normal calling convention,
4316 overriding the @option{-mtf} command-line option.
4319 @cindex @code{far} function attribute, MeP
4320 On MeP targets this causes the compiler to use a calling convention
4321 that assumes the called function is too far away for the built-in
4325 @cindex @code{vliw} function attribute, MeP
4326 The @code{vliw} attribute tells the compiler to emit
4327 instructions in VLIW mode instead of core mode. Note that this
4328 attribute is not allowed unless a VLIW coprocessor has been configured
4329 and enabled through command-line options.
4332 @node MicroBlaze Function Attributes
4333 @subsection MicroBlaze Function Attributes
4335 These function attributes are supported on MicroBlaze targets:
4338 @item save_volatiles
4339 @cindex @code{save_volatiles} function attribute, MicroBlaze
4340 Use this attribute to indicate that the function is
4341 an interrupt handler. All volatile registers (in addition to non-volatile
4342 registers) are saved in the function prologue. If the function is a leaf
4343 function, only volatiles used by the function are saved. A normal function
4344 return is generated instead of a return from interrupt.
4347 @cindex @code{break_handler} function attribute, MicroBlaze
4348 @cindex break handler functions
4349 Use this attribute to indicate that
4350 the specified function is a break handler. The compiler generates function
4351 entry and exit sequences suitable for use in an break handler when this
4352 attribute is present. The return from @code{break_handler} is done through
4353 the @code{rtbd} instead of @code{rtsd}.
4356 void f () __attribute__ ((break_handler));
4359 @item interrupt_handler
4360 @itemx fast_interrupt
4361 @cindex @code{interrupt_handler} function attribute, MicroBlaze
4362 @cindex @code{fast_interrupt} function attribute, MicroBlaze
4363 These attributes indicate that the specified function is an interrupt
4364 handler. Use the @code{fast_interrupt} attribute to indicate handlers
4365 used in low-latency interrupt mode, and @code{interrupt_handler} for
4366 interrupts that do not use low-latency handlers. In both cases, GCC
4367 emits appropriate prologue code and generates a return from the handler
4368 using @code{rtid} instead of @code{rtsd}.
4371 @node Microsoft Windows Function Attributes
4372 @subsection Microsoft Windows Function Attributes
4374 The following attributes are available on Microsoft Windows and Symbian OS
4379 @cindex @code{dllexport} function attribute
4380 @cindex @code{__declspec(dllexport)}
4381 On Microsoft Windows targets and Symbian OS targets the
4382 @code{dllexport} attribute causes the compiler to provide a global
4383 pointer to a pointer in a DLL, so that it can be referenced with the
4384 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
4385 name is formed by combining @code{_imp__} and the function or variable
4388 You can use @code{__declspec(dllexport)} as a synonym for
4389 @code{__attribute__ ((dllexport))} for compatibility with other
4392 On systems that support the @code{visibility} attribute, this
4393 attribute also implies ``default'' visibility. It is an error to
4394 explicitly specify any other visibility.
4396 GCC's default behavior is to emit all inline functions with the
4397 @code{dllexport} attribute. Since this can cause object file-size bloat,
4398 you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
4399 ignore the attribute for inlined functions unless the
4400 @option{-fkeep-inline-functions} flag is used instead.
4402 The attribute is ignored for undefined symbols.
4404 When applied to C++ classes, the attribute marks defined non-inlined
4405 member functions and static data members as exports. Static consts
4406 initialized in-class are not marked unless they are also defined
4409 For Microsoft Windows targets there are alternative methods for
4410 including the symbol in the DLL's export table such as using a
4411 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
4412 the @option{--export-all} linker flag.
4415 @cindex @code{dllimport} function attribute
4416 @cindex @code{__declspec(dllimport)}
4417 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
4418 attribute causes the compiler to reference a function or variable via
4419 a global pointer to a pointer that is set up by the DLL exporting the
4420 symbol. The attribute implies @code{extern}. On Microsoft Windows
4421 targets, the pointer name is formed by combining @code{_imp__} and the
4422 function or variable name.
4424 You can use @code{__declspec(dllimport)} as a synonym for
4425 @code{__attribute__ ((dllimport))} for compatibility with other
4428 On systems that support the @code{visibility} attribute, this
4429 attribute also implies ``default'' visibility. It is an error to
4430 explicitly specify any other visibility.
4432 Currently, the attribute is ignored for inlined functions. If the
4433 attribute is applied to a symbol @emph{definition}, an error is reported.
4434 If a symbol previously declared @code{dllimport} is later defined, the
4435 attribute is ignored in subsequent references, and a warning is emitted.
4436 The attribute is also overridden by a subsequent declaration as
4439 When applied to C++ classes, the attribute marks non-inlined
4440 member functions and static data members as imports. However, the
4441 attribute is ignored for virtual methods to allow creation of vtables
4444 On the SH Symbian OS target the @code{dllimport} attribute also has
4445 another affect---it can cause the vtable and run-time type information
4446 for a class to be exported. This happens when the class has a
4447 dllimported constructor or a non-inline, non-pure virtual function
4448 and, for either of those two conditions, the class also has an inline
4449 constructor or destructor and has a key function that is defined in
4450 the current translation unit.
4452 For Microsoft Windows targets the use of the @code{dllimport}
4453 attribute on functions is not necessary, but provides a small
4454 performance benefit by eliminating a thunk in the DLL@. The use of the
4455 @code{dllimport} attribute on imported variables can be avoided by passing the
4456 @option{--enable-auto-import} switch to the GNU linker. As with
4457 functions, using the attribute for a variable eliminates a thunk in
4460 One drawback to using this attribute is that a pointer to a
4461 @emph{variable} marked as @code{dllimport} cannot be used as a constant
4462 address. However, a pointer to a @emph{function} with the
4463 @code{dllimport} attribute can be used as a constant initializer; in
4464 this case, the address of a stub function in the import lib is
4465 referenced. On Microsoft Windows targets, the attribute can be disabled
4466 for functions by setting the @option{-mnop-fun-dllimport} flag.
4469 @node MIPS Function Attributes
4470 @subsection MIPS Function Attributes
4472 These function attributes are supported by the MIPS back end:
4476 @cindex @code{interrupt} function attribute, MIPS
4477 Use this attribute to indicate that the specified function is an interrupt
4478 handler. The compiler generates function entry and exit sequences suitable
4479 for use in an interrupt handler when this attribute is present.
4480 An optional argument is supported for the interrupt attribute which allows
4481 the interrupt mode to be described. By default GCC assumes the external
4482 interrupt controller (EIC) mode is in use, this can be explicitly set using
4483 @code{eic}. When interrupts are non-masked then the requested Interrupt
4484 Priority Level (IPL) is copied to the current IPL which has the effect of only
4485 enabling higher priority interrupts. To use vectored interrupt mode use
4486 the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
4487 the behavior of the non-masked interrupt support and GCC will arrange to mask
4488 all interrupts from sw0 up to and including the specified interrupt vector.
4490 You can use the following attributes to modify the behavior
4491 of an interrupt handler:
4493 @item use_shadow_register_set
4494 @cindex @code{use_shadow_register_set} function attribute, MIPS
4495 Assume that the handler uses a shadow register set, instead of
4496 the main general-purpose registers. An optional argument @code{intstack} is
4497 supported to indicate that the shadow register set contains a valid stack
4500 @item keep_interrupts_masked
4501 @cindex @code{keep_interrupts_masked} function attribute, MIPS
4502 Keep interrupts masked for the whole function. Without this attribute,
4503 GCC tries to reenable interrupts for as much of the function as it can.
4505 @item use_debug_exception_return
4506 @cindex @code{use_debug_exception_return} function attribute, MIPS
4507 Return using the @code{deret} instruction. Interrupt handlers that don't
4508 have this attribute return using @code{eret} instead.
4511 You can use any combination of these attributes, as shown below:
4513 void __attribute__ ((interrupt)) v0 ();
4514 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
4515 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
4516 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
4517 void __attribute__ ((interrupt, use_shadow_register_set,
4518 keep_interrupts_masked)) v4 ();
4519 void __attribute__ ((interrupt, use_shadow_register_set,
4520 use_debug_exception_return)) v5 ();
4521 void __attribute__ ((interrupt, keep_interrupts_masked,
4522 use_debug_exception_return)) v6 ();
4523 void __attribute__ ((interrupt, use_shadow_register_set,
4524 keep_interrupts_masked,
4525 use_debug_exception_return)) v7 ();
4526 void __attribute__ ((interrupt("eic"))) v8 ();
4527 void __attribute__ ((interrupt("vector=hw3"))) v9 ();
4534 @cindex indirect calls, MIPS
4535 @cindex @code{long_call} function attribute, MIPS
4536 @cindex @code{short_call} function attribute, MIPS
4537 @cindex @code{near} function attribute, MIPS
4538 @cindex @code{far} function attribute, MIPS
4539 These attributes specify how a particular function is called on MIPS@.
4540 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
4541 command-line switch. The @code{long_call} and @code{far} attributes are
4542 synonyms, and cause the compiler to always call
4543 the function by first loading its address into a register, and then using
4544 the contents of that register. The @code{short_call} and @code{near}
4545 attributes are synonyms, and have the opposite
4546 effect; they specify that non-PIC calls should be made using the more
4547 efficient @code{jal} instruction.
4551 @cindex @code{mips16} function attribute, MIPS
4552 @cindex @code{nomips16} function attribute, MIPS
4554 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
4555 function attributes to locally select or turn off MIPS16 code generation.
4556 A function with the @code{mips16} attribute is emitted as MIPS16 code,
4557 while MIPS16 code generation is disabled for functions with the
4558 @code{nomips16} attribute. These attributes override the
4559 @option{-mips16} and @option{-mno-mips16} options on the command line
4560 (@pxref{MIPS Options}).
4562 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
4563 preprocessor symbol @code{__mips16} reflects the setting on the command line,
4564 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
4565 may interact badly with some GCC extensions such as @code{__builtin_apply}
4566 (@pxref{Constructing Calls}).
4568 @item micromips, MIPS
4569 @itemx nomicromips, MIPS
4570 @cindex @code{micromips} function attribute
4571 @cindex @code{nomicromips} function attribute
4573 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
4574 function attributes to locally select or turn off microMIPS code generation.
4575 A function with the @code{micromips} attribute is emitted as microMIPS code,
4576 while microMIPS code generation is disabled for functions with the
4577 @code{nomicromips} attribute. These attributes override the
4578 @option{-mmicromips} and @option{-mno-micromips} options on the command line
4579 (@pxref{MIPS Options}).
4581 When compiling files containing mixed microMIPS and non-microMIPS code, the
4582 preprocessor symbol @code{__mips_micromips} reflects the setting on the
4584 not that within individual functions. Mixed microMIPS and non-microMIPS code
4585 may interact badly with some GCC extensions such as @code{__builtin_apply}
4586 (@pxref{Constructing Calls}).
4589 @cindex @code{nocompression} function attribute, MIPS
4590 On MIPS targets, you can use the @code{nocompression} function attribute
4591 to locally turn off MIPS16 and microMIPS code generation. This attribute
4592 overrides the @option{-mips16} and @option{-mmicromips} options on the
4593 command line (@pxref{MIPS Options}).
4596 @node MSP430 Function Attributes
4597 @subsection MSP430 Function Attributes
4599 These function attributes are supported by the MSP430 back end:
4603 @cindex @code{critical} function attribute, MSP430
4604 Critical functions disable interrupts upon entry and restore the
4605 previous interrupt state upon exit. Critical functions cannot also
4606 have the @code{naked} or @code{reentrant} attributes. They can have
4607 the @code{interrupt} attribute.
4610 @cindex @code{interrupt} function attribute, MSP430
4611 Use this attribute to indicate
4612 that the specified function is an interrupt handler. The compiler generates
4613 function entry and exit sequences suitable for use in an interrupt handler
4614 when this attribute is present.
4616 You can provide an argument to the interrupt
4617 attribute which specifies a name or number. If the argument is a
4618 number it indicates the slot in the interrupt vector table (0 - 31) to
4619 which this handler should be assigned. If the argument is a name it
4620 is treated as a symbolic name for the vector slot. These names should
4621 match up with appropriate entries in the linker script. By default
4622 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
4623 @code{reset} for vector 31 are recognized.
4626 @cindex @code{naked} function attribute, MSP430
4627 This attribute allows the compiler to construct the
4628 requisite function declaration, while allowing the body of the
4629 function to be assembly code. The specified function will not have
4630 prologue/epilogue sequences generated by the compiler. Only basic
4631 @code{asm} statements can safely be included in naked functions
4632 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4633 basic @code{asm} and C code may appear to work, they cannot be
4634 depended upon to work reliably and are not supported.
4637 @cindex @code{reentrant} function attribute, MSP430
4638 Reentrant functions disable interrupts upon entry and enable them
4639 upon exit. Reentrant functions cannot also have the @code{naked}
4640 or @code{critical} attributes. They can have the @code{interrupt}
4644 @cindex @code{wakeup} function attribute, MSP430
4645 This attribute only applies to interrupt functions. It is silently
4646 ignored if applied to a non-interrupt function. A wakeup interrupt
4647 function will rouse the processor from any low-power state that it
4648 might be in when the function exits.
4653 @cindex @code{lower} function attribute, MSP430
4654 @cindex @code{upper} function attribute, MSP430
4655 @cindex @code{either} function attribute, MSP430
4656 On the MSP430 target these attributes can be used to specify whether
4657 the function or variable should be placed into low memory, high
4658 memory, or the placement should be left to the linker to decide. The
4659 attributes are only significant if compiling for the MSP430X
4662 The attributes work in conjunction with a linker script that has been
4663 augmented to specify where to place sections with a @code{.lower} and
4664 a @code{.upper} prefix. So, for example, as well as placing the
4665 @code{.data} section, the script also specifies the placement of a
4666 @code{.lower.data} and a @code{.upper.data} section. The intention
4667 is that @code{lower} sections are placed into a small but easier to
4668 access memory region and the upper sections are placed into a larger, but
4669 slower to access, region.
4671 The @code{either} attribute is special. It tells the linker to place
4672 the object into the corresponding @code{lower} section if there is
4673 room for it. If there is insufficient room then the object is placed
4674 into the corresponding @code{upper} section instead. Note that the
4675 placement algorithm is not very sophisticated. It does not attempt to
4676 find an optimal packing of the @code{lower} sections. It just makes
4677 one pass over the objects and does the best that it can. Using the
4678 @option{-ffunction-sections} and @option{-fdata-sections} command-line
4679 options can help the packing, however, since they produce smaller,
4680 easier to pack regions.
4683 @node NDS32 Function Attributes
4684 @subsection NDS32 Function Attributes
4686 These function attributes are supported by the NDS32 back end:
4690 @cindex @code{exception} function attribute
4691 @cindex exception handler functions, NDS32
4692 Use this attribute on the NDS32 target to indicate that the specified function
4693 is an exception handler. The compiler will generate corresponding sections
4694 for use in an exception handler.
4697 @cindex @code{interrupt} function attribute, NDS32
4698 On NDS32 target, this attribute indicates that the specified function
4699 is an interrupt handler. The compiler generates corresponding sections
4700 for use in an interrupt handler. You can use the following attributes
4701 to modify the behavior:
4704 @cindex @code{nested} function attribute, NDS32
4705 This interrupt service routine is interruptible.
4707 @cindex @code{not_nested} function attribute, NDS32
4708 This interrupt service routine is not interruptible.
4710 @cindex @code{nested_ready} function attribute, NDS32
4711 This interrupt service routine is interruptible after @code{PSW.GIE}
4712 (global interrupt enable) is set. This allows interrupt service routine to
4713 finish some short critical code before enabling interrupts.
4715 @cindex @code{save_all} function attribute, NDS32
4716 The system will help save all registers into stack before entering
4719 @cindex @code{partial_save} function attribute, NDS32
4720 The system will help save caller registers into stack before entering
4725 @cindex @code{naked} function attribute, NDS32
4726 This attribute allows the compiler to construct the
4727 requisite function declaration, while allowing the body of the
4728 function to be assembly code. The specified function will not have
4729 prologue/epilogue sequences generated by the compiler. Only basic
4730 @code{asm} statements can safely be included in naked functions
4731 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4732 basic @code{asm} and C code may appear to work, they cannot be
4733 depended upon to work reliably and are not supported.
4736 @cindex @code{reset} function attribute, NDS32
4737 @cindex reset handler functions
4738 Use this attribute on the NDS32 target to indicate that the specified function
4739 is a reset handler. The compiler will generate corresponding sections
4740 for use in a reset handler. You can use the following attributes
4741 to provide extra exception handling:
4744 @cindex @code{nmi} function attribute, NDS32
4745 Provide a user-defined function to handle NMI exception.
4747 @cindex @code{warm} function attribute, NDS32
4748 Provide a user-defined function to handle warm reset exception.
4752 @node Nios II Function Attributes
4753 @subsection Nios II Function Attributes
4755 These function attributes are supported by the Nios II back end:
4758 @item target (@var{options})
4759 @cindex @code{target} function attribute
4760 As discussed in @ref{Common Function Attributes}, this attribute
4761 allows specification of target-specific compilation options.
4763 When compiling for Nios II, the following options are allowed:
4766 @item custom-@var{insn}=@var{N}
4767 @itemx no-custom-@var{insn}
4768 @cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
4769 @cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
4770 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
4771 custom instruction with encoding @var{N} when generating code that uses
4772 @var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
4773 the custom instruction @var{insn}.
4774 These target attributes correspond to the
4775 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
4776 command-line options, and support the same set of @var{insn} keywords.
4777 @xref{Nios II Options}, for more information.
4779 @item custom-fpu-cfg=@var{name}
4780 @cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
4781 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
4782 command-line option, to select a predefined set of custom instructions
4784 @xref{Nios II Options}, for more information.
4788 @node Nvidia PTX Function Attributes
4789 @subsection Nvidia PTX Function Attributes
4791 These function attributes are supported by the Nvidia PTX back end:
4795 @cindex @code{kernel} attribute, Nvidia PTX
4796 This attribute indicates that the corresponding function should be compiled
4797 as a kernel function, which can be invoked from the host via the CUDA RT
4799 By default functions are only callable only from other PTX functions.
4801 Kernel functions must have @code{void} return type.
4804 @node PowerPC Function Attributes
4805 @subsection PowerPC Function Attributes
4807 These function attributes are supported by the PowerPC back end:
4812 @cindex indirect calls, PowerPC
4813 @cindex @code{longcall} function attribute, PowerPC
4814 @cindex @code{shortcall} function attribute, PowerPC
4815 The @code{longcall} attribute
4816 indicates that the function might be far away from the call site and
4817 require a different (more expensive) calling sequence. The
4818 @code{shortcall} attribute indicates that the function is always close
4819 enough for the shorter calling sequence to be used. These attributes
4820 override both the @option{-mlongcall} switch and
4821 the @code{#pragma longcall} setting.
4823 @xref{RS/6000 and PowerPC Options}, for more information on whether long
4824 calls are necessary.
4826 @item target (@var{options})
4827 @cindex @code{target} function attribute
4828 As discussed in @ref{Common Function Attributes}, this attribute
4829 allows specification of target-specific compilation options.
4831 On the PowerPC, the following options are allowed:
4836 @cindex @code{target("altivec")} function attribute, PowerPC
4837 Generate code that uses (does not use) AltiVec instructions. In
4838 32-bit code, you cannot enable AltiVec instructions unless
4839 @option{-mabi=altivec} is used on the command line.
4843 @cindex @code{target("cmpb")} function attribute, PowerPC
4844 Generate code that uses (does not use) the compare bytes instruction
4845 implemented on the POWER6 processor and other processors that support
4846 the PowerPC V2.05 architecture.
4850 @cindex @code{target("dlmzb")} function attribute, PowerPC
4851 Generate code that uses (does not use) the string-search @samp{dlmzb}
4852 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
4853 generated by default when targeting those processors.
4857 @cindex @code{target("fprnd")} function attribute, PowerPC
4858 Generate code that uses (does not use) the FP round to integer
4859 instructions implemented on the POWER5+ processor and other processors
4860 that support the PowerPC V2.03 architecture.
4864 @cindex @code{target("hard-dfp")} function attribute, PowerPC
4865 Generate code that uses (does not use) the decimal floating-point
4866 instructions implemented on some POWER processors.
4870 @cindex @code{target("isel")} function attribute, PowerPC
4871 Generate code that uses (does not use) ISEL instruction.
4875 @cindex @code{target("mfcrf")} function attribute, PowerPC
4876 Generate code that uses (does not use) the move from condition
4877 register field instruction implemented on the POWER4 processor and
4878 other processors that support the PowerPC V2.01 architecture.
4882 @cindex @code{target("mfpgpr")} function attribute, PowerPC
4883 Generate code that uses (does not use) the FP move to/from general
4884 purpose register instructions implemented on the POWER6X processor and
4885 other processors that support the extended PowerPC V2.05 architecture.
4889 @cindex @code{target("mulhw")} function attribute, PowerPC
4890 Generate code that uses (does not use) the half-word multiply and
4891 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
4892 These instructions are generated by default when targeting those
4897 @cindex @code{target("multiple")} function attribute, PowerPC
4898 Generate code that uses (does not use) the load multiple word
4899 instructions and the store multiple word instructions.
4903 @cindex @code{target("update")} function attribute, PowerPC
4904 Generate code that uses (does not use) the load or store instructions
4905 that update the base register to the address of the calculated memory
4910 @cindex @code{target("popcntb")} function attribute, PowerPC
4911 Generate code that uses (does not use) the popcount and double-precision
4912 FP reciprocal estimate instruction implemented on the POWER5
4913 processor and other processors that support the PowerPC V2.02
4918 @cindex @code{target("popcntd")} function attribute, PowerPC
4919 Generate code that uses (does not use) the popcount instruction
4920 implemented on the POWER7 processor and other processors that support
4921 the PowerPC V2.06 architecture.
4923 @item powerpc-gfxopt
4924 @itemx no-powerpc-gfxopt
4925 @cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
4926 Generate code that uses (does not use) the optional PowerPC
4927 architecture instructions in the Graphics group, including
4928 floating-point select.
4931 @itemx no-powerpc-gpopt
4932 @cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
4933 Generate code that uses (does not use) the optional PowerPC
4934 architecture instructions in the General Purpose group, including
4935 floating-point square root.
4937 @item recip-precision
4938 @itemx no-recip-precision
4939 @cindex @code{target("recip-precision")} function attribute, PowerPC
4940 Assume (do not assume) that the reciprocal estimate instructions
4941 provide higher-precision estimates than is mandated by the PowerPC
4946 @cindex @code{target("string")} function attribute, PowerPC
4947 Generate code that uses (does not use) the load string instructions
4948 and the store string word instructions to save multiple registers and
4949 do small block moves.
4953 @cindex @code{target("vsx")} function attribute, PowerPC
4954 Generate code that uses (does not use) vector/scalar (VSX)
4955 instructions, and also enable the use of built-in functions that allow
4956 more direct access to the VSX instruction set. In 32-bit code, you
4957 cannot enable VSX or AltiVec instructions unless
4958 @option{-mabi=altivec} is used on the command line.
4962 @cindex @code{target("friz")} function attribute, PowerPC
4963 Generate (do not generate) the @code{friz} instruction when the
4964 @option{-funsafe-math-optimizations} option is used to optimize
4965 rounding a floating-point value to 64-bit integer and back to floating
4966 point. The @code{friz} instruction does not return the same value if
4967 the floating-point number is too large to fit in an integer.
4969 @item avoid-indexed-addresses
4970 @itemx no-avoid-indexed-addresses
4971 @cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
4972 Generate code that tries to avoid (not avoid) the use of indexed load
4973 or store instructions.
4977 @cindex @code{target("paired")} function attribute, PowerPC
4978 Generate code that uses (does not use) the generation of PAIRED simd
4983 @cindex @code{target("longcall")} function attribute, PowerPC
4984 Generate code that assumes (does not assume) that all calls are far
4985 away so that a longer more expensive calling sequence is required.
4988 @cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
4989 Specify the architecture to generate code for when compiling the
4990 function. If you select the @code{target("cpu=power7")} attribute when
4991 generating 32-bit code, VSX and AltiVec instructions are not generated
4992 unless you use the @option{-mabi=altivec} option on the command line.
4994 @item tune=@var{TUNE}
4995 @cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
4996 Specify the architecture to tune for when compiling the function. If
4997 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
4998 you do specify the @code{target("cpu=@var{CPU}")} attribute,
4999 compilation tunes for the @var{CPU} architecture, and not the
5000 default tuning specified on the command line.
5003 On the PowerPC, the inliner does not inline a
5004 function that has different target options than the caller, unless the
5005 callee has a subset of the target options of the caller.
5008 @node RL78 Function Attributes
5009 @subsection RL78 Function Attributes
5011 These function attributes are supported by the RL78 back end:
5015 @itemx brk_interrupt
5016 @cindex @code{interrupt} function attribute, RL78
5017 @cindex @code{brk_interrupt} function attribute, RL78
5018 These attributes indicate
5019 that the specified function is an interrupt handler. The compiler generates
5020 function entry and exit sequences suitable for use in an interrupt handler
5021 when this attribute is present.
5023 Use @code{brk_interrupt} instead of @code{interrupt} for
5024 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
5025 that must end with @code{RETB} instead of @code{RETI}).
5028 @cindex @code{naked} function attribute, RL78
5029 This attribute allows the compiler to construct the
5030 requisite function declaration, while allowing the body of the
5031 function to be assembly code. The specified function will not have
5032 prologue/epilogue sequences generated by the compiler. Only basic
5033 @code{asm} statements can safely be included in naked functions
5034 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5035 basic @code{asm} and C code may appear to work, they cannot be
5036 depended upon to work reliably and are not supported.
5039 @node RX Function Attributes
5040 @subsection RX Function Attributes
5042 These function attributes are supported by the RX back end:
5045 @item fast_interrupt
5046 @cindex @code{fast_interrupt} function attribute, RX
5047 Use this attribute on the RX port to indicate that the specified
5048 function is a fast interrupt handler. This is just like the
5049 @code{interrupt} attribute, except that @code{freit} is used to return
5050 instead of @code{reit}.
5053 @cindex @code{interrupt} function attribute, RX
5054 Use this attribute to indicate
5055 that the specified function is an interrupt handler. The compiler generates
5056 function entry and exit sequences suitable for use in an interrupt handler
5057 when this attribute is present.
5059 On RX targets, you may specify one or more vector numbers as arguments
5060 to the attribute, as well as naming an alternate table name.
5061 Parameters are handled sequentially, so one handler can be assigned to
5062 multiple entries in multiple tables. One may also pass the magic
5063 string @code{"$default"} which causes the function to be used for any
5064 unfilled slots in the current table.
5066 This example shows a simple assignment of a function to one vector in
5067 the default table (note that preprocessor macros may be used for
5068 chip-specific symbolic vector names):
5070 void __attribute__ ((interrupt (5))) txd1_handler ();
5073 This example assigns a function to two slots in the default table
5074 (using preprocessor macros defined elsewhere) and makes it the default
5075 for the @code{dct} table:
5077 void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
5082 @cindex @code{naked} function attribute, RX
5083 This attribute allows the compiler to construct the
5084 requisite function declaration, while allowing the body of the
5085 function to be assembly code. The specified function will not have
5086 prologue/epilogue sequences generated by the compiler. Only basic
5087 @code{asm} statements can safely be included in naked functions
5088 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5089 basic @code{asm} and C code may appear to work, they cannot be
5090 depended upon to work reliably and are not supported.
5093 @cindex @code{vector} function attribute, RX
5094 This RX attribute is similar to the @code{interrupt} attribute, including its
5095 parameters, but does not make the function an interrupt-handler type
5096 function (i.e. it retains the normal C function calling ABI). See the
5097 @code{interrupt} attribute for a description of its arguments.
5100 @node S/390 Function Attributes
5101 @subsection S/390 Function Attributes
5103 These function attributes are supported on the S/390:
5106 @item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
5107 @cindex @code{hotpatch} function attribute, S/390
5109 On S/390 System z targets, you can use this function attribute to
5110 make GCC generate a ``hot-patching'' function prologue. If the
5111 @option{-mhotpatch=} command-line option is used at the same time,
5112 the @code{hotpatch} attribute takes precedence. The first of the
5113 two arguments specifies the number of halfwords to be added before
5114 the function label. A second argument can be used to specify the
5115 number of halfwords to be added after the function label. For
5116 both arguments the maximum allowed value is 1000000.
5118 If both arguments are zero, hotpatching is disabled.
5120 @item target (@var{options})
5121 @cindex @code{target} function attribute
5122 As discussed in @ref{Common Function Attributes}, this attribute
5123 allows specification of target-specific compilation options.
5125 On S/390, the following options are supported:
5133 @item warn-framesize=
5145 @itemx no-packed-stack
5147 @itemx no-small-exec
5150 @item warn-dynamicstack
5151 @itemx no-warn-dynamicstack
5154 The options work exactly like the S/390 specific command line
5155 options (without the prefix @option{-m}) except that they do not
5156 change any feature macros. For example,
5159 @code{target("no-vx")}
5162 does not undefine the @code{__VEC__} macro.
5165 @node SH Function Attributes
5166 @subsection SH Function Attributes
5168 These function attributes are supported on the SH family of processors:
5171 @item function_vector
5172 @cindex @code{function_vector} function attribute, SH
5173 @cindex calling functions through the function vector on SH2A
5174 On SH2A targets, this attribute declares a function to be called using the
5175 TBR relative addressing mode. The argument to this attribute is the entry
5176 number of the same function in a vector table containing all the TBR
5177 relative addressable functions. For correct operation the TBR must be setup
5178 accordingly to point to the start of the vector table before any functions with
5179 this attribute are invoked. Usually a good place to do the initialization is
5180 the startup routine. The TBR relative vector table can have at max 256 function
5181 entries. The jumps to these functions are generated using a SH2A specific,
5182 non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD
5183 from GNU binutils version 2.7 or later for this attribute to work correctly.
5185 In an application, for a function being called once, this attribute
5186 saves at least 8 bytes of code; and if other successive calls are being
5187 made to the same function, it saves 2 bytes of code per each of these
5190 @item interrupt_handler
5191 @cindex @code{interrupt_handler} function attribute, SH
5192 Use this attribute to
5193 indicate that the specified function is an interrupt handler. The compiler
5194 generates function entry and exit sequences suitable for use in an
5195 interrupt handler when this attribute is present.
5197 @item nosave_low_regs
5198 @cindex @code{nosave_low_regs} function attribute, SH
5199 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
5200 function should not save and restore registers R0..R7. This can be used on SH3*
5201 and SH4* targets that have a second R0..R7 register bank for non-reentrant
5205 @cindex @code{renesas} function attribute, SH
5206 On SH targets this attribute specifies that the function or struct follows the
5210 @cindex @code{resbank} function attribute, SH
5211 On the SH2A target, this attribute enables the high-speed register
5212 saving and restoration using a register bank for @code{interrupt_handler}
5213 routines. Saving to the bank is performed automatically after the CPU
5214 accepts an interrupt that uses a register bank.
5216 The nineteen 32-bit registers comprising general register R0 to R14,
5217 control register GBR, and system registers MACH, MACL, and PR and the
5218 vector table address offset are saved into a register bank. Register
5219 banks are stacked in first-in last-out (FILO) sequence. Restoration
5220 from the bank is executed by issuing a RESBANK instruction.
5223 @cindex @code{sp_switch} function attribute, SH
5224 Use this attribute on the SH to indicate an @code{interrupt_handler}
5225 function should switch to an alternate stack. It expects a string
5226 argument that names a global variable holding the address of the
5231 void f () __attribute__ ((interrupt_handler,
5232 sp_switch ("alt_stack")));
5236 @cindex @code{trap_exit} function attribute, SH
5237 Use this attribute on the SH for an @code{interrupt_handler} to return using
5238 @code{trapa} instead of @code{rte}. This attribute expects an integer
5239 argument specifying the trap number to be used.
5242 @cindex @code{trapa_handler} function attribute, SH
5243 On SH targets this function attribute is similar to @code{interrupt_handler}
5244 but it does not save and restore all registers.
5247 @node SPU Function Attributes
5248 @subsection SPU Function Attributes
5250 These function attributes are supported by the SPU back end:
5254 @cindex @code{naked} function attribute, SPU
5255 This attribute allows the compiler to construct the
5256 requisite function declaration, while allowing the body of the
5257 function to be assembly code. The specified function will not have
5258 prologue/epilogue sequences generated by the compiler. Only basic
5259 @code{asm} statements can safely be included in naked functions
5260 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5261 basic @code{asm} and C code may appear to work, they cannot be
5262 depended upon to work reliably and are not supported.
5265 @node Symbian OS Function Attributes
5266 @subsection Symbian OS Function Attributes
5268 @xref{Microsoft Windows Function Attributes}, for discussion of the
5269 @code{dllexport} and @code{dllimport} attributes.
5271 @node V850 Function Attributes
5272 @subsection V850 Function Attributes
5274 The V850 back end supports these function attributes:
5278 @itemx interrupt_handler
5279 @cindex @code{interrupt} function attribute, V850
5280 @cindex @code{interrupt_handler} function attribute, V850
5281 Use these attributes to indicate
5282 that the specified function is an interrupt handler. The compiler generates
5283 function entry and exit sequences suitable for use in an interrupt handler
5284 when either attribute is present.
5287 @node Visium Function Attributes
5288 @subsection Visium Function Attributes
5290 These function attributes are supported by the Visium back end:
5294 @cindex @code{interrupt} function attribute, Visium
5295 Use this attribute to indicate
5296 that the specified function is an interrupt handler. The compiler generates
5297 function entry and exit sequences suitable for use in an interrupt handler
5298 when this attribute is present.
5301 @node x86 Function Attributes
5302 @subsection x86 Function Attributes
5304 These function attributes are supported by the x86 back end:
5308 @cindex @code{cdecl} function attribute, x86-32
5309 @cindex functions that pop the argument stack on x86-32
5311 On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
5312 assume that the calling function pops off the stack space used to
5313 pass arguments. This is
5314 useful to override the effects of the @option{-mrtd} switch.
5317 @cindex @code{fastcall} function attribute, x86-32
5318 @cindex functions that pop the argument stack on x86-32
5319 On x86-32 targets, the @code{fastcall} attribute causes the compiler to
5320 pass the first argument (if of integral type) in the register ECX and
5321 the second argument (if of integral type) in the register EDX@. Subsequent
5322 and other typed arguments are passed on the stack. The called function
5323 pops the arguments off the stack. If the number of arguments is variable all
5324 arguments are pushed on the stack.
5327 @cindex @code{thiscall} function attribute, x86-32
5328 @cindex functions that pop the argument stack on x86-32
5329 On x86-32 targets, the @code{thiscall} attribute causes the compiler to
5330 pass the first argument (if of integral type) in the register ECX.
5331 Subsequent and other typed arguments are passed on the stack. The called
5332 function pops the arguments off the stack.
5333 If the number of arguments is variable all arguments are pushed on the
5335 The @code{thiscall} attribute is intended for C++ non-static member functions.
5336 As a GCC extension, this calling convention can be used for C functions
5337 and for static member methods.
5341 @cindex @code{ms_abi} function attribute, x86
5342 @cindex @code{sysv_abi} function attribute, x86
5344 On 32-bit and 64-bit x86 targets, you can use an ABI attribute
5345 to indicate which calling convention should be used for a function. The
5346 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
5347 while the @code{sysv_abi} attribute tells the compiler to use the ABI
5348 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
5349 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
5351 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
5352 requires the @option{-maccumulate-outgoing-args} option.
5354 @item callee_pop_aggregate_return (@var{number})
5355 @cindex @code{callee_pop_aggregate_return} function attribute, x86
5357 On x86-32 targets, you can use this attribute to control how
5358 aggregates are returned in memory. If the caller is responsible for
5359 popping the hidden pointer together with the rest of the arguments, specify
5360 @var{number} equal to zero. If callee is responsible for popping the
5361 hidden pointer, specify @var{number} equal to one.
5363 The default x86-32 ABI assumes that the callee pops the
5364 stack for hidden pointer. However, on x86-32 Microsoft Windows targets,
5365 the compiler assumes that the
5366 caller pops the stack for hidden pointer.
5368 @item ms_hook_prologue
5369 @cindex @code{ms_hook_prologue} function attribute, x86
5371 On 32-bit and 64-bit x86 targets, you can use
5372 this function attribute to make GCC generate the ``hot-patching'' function
5373 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
5377 @cindex @code{naked} function attribute, x86
5378 This attribute allows the compiler to construct the
5379 requisite function declaration, while allowing the body of the
5380 function to be assembly code. The specified function will not have
5381 prologue/epilogue sequences generated by the compiler. Only basic
5382 @code{asm} statements can safely be included in naked functions
5383 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5384 basic @code{asm} and C code may appear to work, they cannot be
5385 depended upon to work reliably and are not supported.
5387 @item regparm (@var{number})
5388 @cindex @code{regparm} function attribute, x86
5389 @cindex functions that are passed arguments in registers on x86-32
5390 On x86-32 targets, the @code{regparm} attribute causes the compiler to
5391 pass arguments number one to @var{number} if they are of integral type
5392 in registers EAX, EDX, and ECX instead of on the stack. Functions that
5393 take a variable number of arguments continue to be passed all of their
5394 arguments on the stack.
5396 Beware that on some ELF systems this attribute is unsuitable for
5397 global functions in shared libraries with lazy binding (which is the
5398 default). Lazy binding sends the first call via resolving code in
5399 the loader, which might assume EAX, EDX and ECX can be clobbered, as
5400 per the standard calling conventions. Solaris 8 is affected by this.
5401 Systems with the GNU C Library version 2.1 or higher
5402 and FreeBSD are believed to be
5403 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
5404 disabled with the linker or the loader if desired, to avoid the
5408 @cindex @code{sseregparm} function attribute, x86
5409 On x86-32 targets with SSE support, the @code{sseregparm} attribute
5410 causes the compiler to pass up to 3 floating-point arguments in
5411 SSE registers instead of on the stack. Functions that take a
5412 variable number of arguments continue to pass all of their
5413 floating-point arguments on the stack.
5415 @item force_align_arg_pointer
5416 @cindex @code{force_align_arg_pointer} function attribute, x86
5417 On x86 targets, the @code{force_align_arg_pointer} attribute may be
5418 applied to individual function definitions, generating an alternate
5419 prologue and epilogue that realigns the run-time stack if necessary.
5420 This supports mixing legacy codes that run with a 4-byte aligned stack
5421 with modern codes that keep a 16-byte stack for SSE compatibility.
5424 @cindex @code{stdcall} function attribute, x86-32
5425 @cindex functions that pop the argument stack on x86-32
5426 On x86-32 targets, the @code{stdcall} attribute causes the compiler to
5427 assume that the called function pops off the stack space used to
5428 pass arguments, unless it takes a variable number of arguments.
5430 @item no_caller_saved_registers
5431 @cindex @code{no_caller_saved_registers} function attribute, x86
5432 Use this attribute to indicate that the specified function has no
5433 caller-saved registers. That is, all registers are callee-saved. For
5434 example, this attribute can be used for a function called from an
5435 interrupt handler. The compiler generates proper function entry and
5436 exit sequences to save and restore any modified registers, except for
5437 the EFLAGS register. Since GCC doesn't preserve MPX, SSE, MMX nor x87
5438 states, the GCC option @option{-mgeneral-regs-only} should be used to
5439 compile functions with @code{no_caller_saved_registers} attribute.
5442 @cindex @code{interrupt} function attribute, x86
5443 Use this attribute to indicate that the specified function is an
5444 interrupt handler or an exception handler (depending on parameters passed
5445 to the function, explained further). The compiler generates function
5446 entry and exit sequences suitable for use in an interrupt handler when
5447 this attribute is present. The @code{IRET} instruction, instead of the
5448 @code{RET} instruction, is used to return from interrupt handlers. All
5449 registers, except for the EFLAGS register which is restored by the
5450 @code{IRET} instruction, are preserved by the compiler. Since GCC
5451 doesn't preserve MPX, SSE, MMX nor x87 states, the GCC option
5452 @option{-mgeneral-regs-only} should be used to compile interrupt and
5455 Any interruptible-without-stack-switch code must be compiled with
5456 @option{-mno-red-zone} since interrupt handlers can and will, because
5457 of the hardware design, touch the red zone.
5459 An interrupt handler must be declared with a mandatory pointer
5463 struct interrupt_frame;
5465 __attribute__ ((interrupt))
5467 f (struct interrupt_frame *frame)
5473 and you must define @code{struct interrupt_frame} as described in the
5476 Exception handlers differ from interrupt handlers because the system
5477 pushes an error code on the stack. An exception handler declaration is
5478 similar to that for an interrupt handler, but with a different mandatory
5479 function signature. The compiler arranges to pop the error code off the
5480 stack before the @code{IRET} instruction.
5484 typedef unsigned long long int uword_t;
5486 typedef unsigned int uword_t;
5489 struct interrupt_frame;
5491 __attribute__ ((interrupt))
5493 f (struct interrupt_frame *frame, uword_t error_code)
5499 Exception handlers should only be used for exceptions that push an error
5500 code; you should use an interrupt handler in other cases. The system
5501 will crash if the wrong kind of handler is used.
5503 @item target (@var{options})
5504 @cindex @code{target} function attribute
5505 As discussed in @ref{Common Function Attributes}, this attribute
5506 allows specification of target-specific compilation options.
5508 On the x86, the following options are allowed:
5512 @cindex @code{target("abm")} function attribute, x86
5513 Enable/disable the generation of the advanced bit instructions.
5517 @cindex @code{target("aes")} function attribute, x86
5518 Enable/disable the generation of the AES instructions.
5521 @cindex @code{target("default")} function attribute, x86
5522 @xref{Function Multiversioning}, where it is used to specify the
5523 default function version.
5527 @cindex @code{target("mmx")} function attribute, x86
5528 Enable/disable the generation of the MMX instructions.
5532 @cindex @code{target("pclmul")} function attribute, x86
5533 Enable/disable the generation of the PCLMUL instructions.
5537 @cindex @code{target("popcnt")} function attribute, x86
5538 Enable/disable the generation of the POPCNT instruction.
5542 @cindex @code{target("sse")} function attribute, x86
5543 Enable/disable the generation of the SSE instructions.
5547 @cindex @code{target("sse2")} function attribute, x86
5548 Enable/disable the generation of the SSE2 instructions.
5552 @cindex @code{target("sse3")} function attribute, x86
5553 Enable/disable the generation of the SSE3 instructions.
5557 @cindex @code{target("sse4")} function attribute, x86
5558 Enable/disable the generation of the SSE4 instructions (both SSE4.1
5563 @cindex @code{target("sse4.1")} function attribute, x86
5564 Enable/disable the generation of the sse4.1 instructions.
5568 @cindex @code{target("sse4.2")} function attribute, x86
5569 Enable/disable the generation of the sse4.2 instructions.
5573 @cindex @code{target("sse4a")} function attribute, x86
5574 Enable/disable the generation of the SSE4A instructions.
5578 @cindex @code{target("fma4")} function attribute, x86
5579 Enable/disable the generation of the FMA4 instructions.
5583 @cindex @code{target("xop")} function attribute, x86
5584 Enable/disable the generation of the XOP instructions.
5588 @cindex @code{target("lwp")} function attribute, x86
5589 Enable/disable the generation of the LWP instructions.
5593 @cindex @code{target("ssse3")} function attribute, x86
5594 Enable/disable the generation of the SSSE3 instructions.
5598 @cindex @code{target("cld")} function attribute, x86
5599 Enable/disable the generation of the CLD before string moves.
5601 @item fancy-math-387
5602 @itemx no-fancy-math-387
5603 @cindex @code{target("fancy-math-387")} function attribute, x86
5604 Enable/disable the generation of the @code{sin}, @code{cos}, and
5605 @code{sqrt} instructions on the 387 floating-point unit.
5609 @cindex @code{target("ieee-fp")} function attribute, x86
5610 Enable/disable the generation of floating point that depends on IEEE arithmetic.
5612 @item inline-all-stringops
5613 @itemx no-inline-all-stringops
5614 @cindex @code{target("inline-all-stringops")} function attribute, x86
5615 Enable/disable inlining of string operations.
5617 @item inline-stringops-dynamically
5618 @itemx no-inline-stringops-dynamically
5619 @cindex @code{target("inline-stringops-dynamically")} function attribute, x86
5620 Enable/disable the generation of the inline code to do small string
5621 operations and calling the library routines for large operations.
5623 @item align-stringops
5624 @itemx no-align-stringops
5625 @cindex @code{target("align-stringops")} function attribute, x86
5626 Do/do not align destination of inlined string operations.
5630 @cindex @code{target("recip")} function attribute, x86
5631 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
5632 instructions followed an additional Newton-Raphson step instead of
5633 doing a floating-point division.
5635 @item arch=@var{ARCH}
5636 @cindex @code{target("arch=@var{ARCH}")} function attribute, x86
5637 Specify the architecture to generate code for in compiling the function.
5639 @item tune=@var{TUNE}
5640 @cindex @code{target("tune=@var{TUNE}")} function attribute, x86
5641 Specify the architecture to tune for in compiling the function.
5643 @item fpmath=@var{FPMATH}
5644 @cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
5645 Specify which floating-point unit to use. You must specify the
5646 @code{target("fpmath=sse,387")} option as
5647 @code{target("fpmath=sse+387")} because the comma would separate
5651 On the x86, the inliner does not inline a
5652 function that has different target options than the caller, unless the
5653 callee has a subset of the target options of the caller. For example
5654 a function declared with @code{target("sse3")} can inline a function
5655 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
5658 @node Xstormy16 Function Attributes
5659 @subsection Xstormy16 Function Attributes
5661 These function attributes are supported by the Xstormy16 back end:
5665 @cindex @code{interrupt} function attribute, Xstormy16
5666 Use this attribute to indicate
5667 that the specified function is an interrupt handler. The compiler generates
5668 function entry and exit sequences suitable for use in an interrupt handler
5669 when this attribute is present.
5672 @node Variable Attributes
5673 @section Specifying Attributes of Variables
5674 @cindex attribute of variables
5675 @cindex variable attributes
5677 The keyword @code{__attribute__} allows you to specify special
5678 attributes of variables or structure fields. This keyword is followed
5679 by an attribute specification inside double parentheses. Some
5680 attributes are currently defined generically for variables.
5681 Other attributes are defined for variables on particular target
5682 systems. Other attributes are available for functions
5683 (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
5684 enumerators (@pxref{Enumerator Attributes}), statements
5685 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
5686 Other front ends might define more attributes
5687 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
5689 @xref{Attribute Syntax}, for details of the exact syntax for using
5693 * Common Variable Attributes::
5694 * AVR Variable Attributes::
5695 * Blackfin Variable Attributes::
5696 * H8/300 Variable Attributes::
5697 * IA-64 Variable Attributes::
5698 * M32R/D Variable Attributes::
5699 * MeP Variable Attributes::
5700 * Microsoft Windows Variable Attributes::
5701 * MSP430 Variable Attributes::
5702 * Nvidia PTX Variable Attributes::
5703 * PowerPC Variable Attributes::
5704 * RL78 Variable Attributes::
5705 * SPU Variable Attributes::
5706 * V850 Variable Attributes::
5707 * x86 Variable Attributes::
5708 * Xstormy16 Variable Attributes::
5711 @node Common Variable Attributes
5712 @subsection Common Variable Attributes
5714 The following attributes are supported on most targets.
5717 @cindex @code{aligned} variable attribute
5718 @item aligned (@var{alignment})
5719 This attribute specifies a minimum alignment for the variable or
5720 structure field, measured in bytes. For example, the declaration:
5723 int x __attribute__ ((aligned (16))) = 0;
5727 causes the compiler to allocate the global variable @code{x} on a
5728 16-byte boundary. On a 68040, this could be used in conjunction with
5729 an @code{asm} expression to access the @code{move16} instruction which
5730 requires 16-byte aligned operands.
5732 You can also specify the alignment of structure fields. For example, to
5733 create a double-word aligned @code{int} pair, you could write:
5736 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
5740 This is an alternative to creating a union with a @code{double} member,
5741 which forces the union to be double-word aligned.
5743 As in the preceding examples, you can explicitly specify the alignment
5744 (in bytes) that you wish the compiler to use for a given variable or
5745 structure field. Alternatively, you can leave out the alignment factor
5746 and just ask the compiler to align a variable or field to the
5747 default alignment for the target architecture you are compiling for.
5748 The default alignment is sufficient for all scalar types, but may not be
5749 enough for all vector types on a target that supports vector operations.
5750 The default alignment is fixed for a particular target ABI.
5752 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
5753 which is the largest alignment ever used for any data type on the
5754 target machine you are compiling for. For example, you could write:
5757 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
5760 The compiler automatically sets the alignment for the declared
5761 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
5762 often make copy operations more efficient, because the compiler can
5763 use whatever instructions copy the biggest chunks of memory when
5764 performing copies to or from the variables or fields that you have
5765 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
5766 may change depending on command-line options.
5768 When used on a struct, or struct member, the @code{aligned} attribute can
5769 only increase the alignment; in order to decrease it, the @code{packed}
5770 attribute must be specified as well. When used as part of a typedef, the
5771 @code{aligned} attribute can both increase and decrease alignment, and
5772 specifying the @code{packed} attribute generates a warning.
5774 Note that the effectiveness of @code{aligned} attributes may be limited
5775 by inherent limitations in your linker. On many systems, the linker is
5776 only able to arrange for variables to be aligned up to a certain maximum
5777 alignment. (For some linkers, the maximum supported alignment may
5778 be very very small.) If your linker is only able to align variables
5779 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
5780 in an @code{__attribute__} still only provides you with 8-byte
5781 alignment. See your linker documentation for further information.
5783 The @code{aligned} attribute can also be used for functions
5784 (@pxref{Common Function Attributes}.)
5786 @cindex @code{warn_if_not_aligned} variable attribute
5787 @item warn_if_not_aligned (@var{alignment})
5788 This attribute specifies a threshold for the structure field, measured
5789 in bytes. If the structure field is aligned below the threshold, a
5790 warning will be issued. For example, the declaration:
5797 unsigned long long x __attribute__((warn_if_not_aligned(16)));
5802 causes the compiler to issue an warning on @code{struct foo}, like
5803 @samp{warning: alignment 8 of 'struct foo' is less than 16}.
5804 The compiler also issues a warning, like @samp{warning: 'x' offset
5805 8 in 'struct foo' isn't aligned to 16}, when the structure field has
5806 the misaligned offset:
5813 unsigned long long x __attribute__((warn_if_not_aligned(16)));
5814 @} __attribute__((aligned(16)));
5817 This warning can be disabled by @option{-Wno-if-not-aligned}.
5818 The @code{warn_if_not_aligned} attribute can also be used for types
5819 (@pxref{Common Type Attributes}.)
5821 @item cleanup (@var{cleanup_function})
5822 @cindex @code{cleanup} variable attribute
5823 The @code{cleanup} attribute runs a function when the variable goes
5824 out of scope. This attribute can only be applied to auto function
5825 scope variables; it may not be applied to parameters or variables
5826 with static storage duration. The function must take one parameter,
5827 a pointer to a type compatible with the variable. The return value
5828 of the function (if any) is ignored.
5830 If @option{-fexceptions} is enabled, then @var{cleanup_function}
5831 is run during the stack unwinding that happens during the
5832 processing of the exception. Note that the @code{cleanup} attribute
5833 does not allow the exception to be caught, only to perform an action.
5834 It is undefined what happens if @var{cleanup_function} does not
5839 @cindex @code{common} variable attribute
5840 @cindex @code{nocommon} variable attribute
5843 The @code{common} attribute requests GCC to place a variable in
5844 ``common'' storage. The @code{nocommon} attribute requests the
5845 opposite---to allocate space for it directly.
5847 These attributes override the default chosen by the
5848 @option{-fno-common} and @option{-fcommon} flags respectively.
5851 @itemx deprecated (@var{msg})
5852 @cindex @code{deprecated} variable attribute
5853 The @code{deprecated} attribute results in a warning if the variable
5854 is used anywhere in the source file. This is useful when identifying
5855 variables that are expected to be removed in a future version of a
5856 program. The warning also includes the location of the declaration
5857 of the deprecated variable, to enable users to easily find further
5858 information about why the variable is deprecated, or what they should
5859 do instead. Note that the warning only occurs for uses:
5862 extern int old_var __attribute__ ((deprecated));
5864 int new_fn () @{ return old_var; @}
5868 results in a warning on line 3 but not line 2. The optional @var{msg}
5869 argument, which must be a string, is printed in the warning if
5872 The @code{deprecated} attribute can also be used for functions and
5873 types (@pxref{Common Function Attributes},
5874 @pxref{Common Type Attributes}).
5876 @item nonstring (@var{nonstring})
5877 @cindex @code{nonstring} variable attribute
5878 The @code{nonstring} variable attribute specifies that an object or member
5879 declaration with type array of @code{char} or pointer to @code{char} is
5880 intended to store character arrays that do not necessarily contain
5881 a terminating @code{NUL} character. This is useful to avoid warnings
5882 when such an array or pointer is used as an argument to a bounded string
5883 manipulation function such as @code{strncpy}. For example, without the
5884 attribute, GCC will issue a warning for the call below because it may
5885 truncate the copy without appending the terminating NUL character. Using
5886 the attribute makes it possible to suppress the warning.
5891 char name [32] __attribute__ ((nonstring));
5893 void f (struct Data *pd, const char *s)
5895 strncpy (pd->name, s, sizeof pd->name);
5900 @item mode (@var{mode})
5901 @cindex @code{mode} variable attribute
5902 This attribute specifies the data type for the declaration---whichever
5903 type corresponds to the mode @var{mode}. This in effect lets you
5904 request an integer or floating-point type according to its width.
5906 @xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
5907 for a list of the possible keywords for @var{mode}.
5908 You may also specify a mode of @code{byte} or @code{__byte__} to
5909 indicate the mode corresponding to a one-byte integer, @code{word} or
5910 @code{__word__} for the mode of a one-word integer, and @code{pointer}
5911 or @code{__pointer__} for the mode used to represent pointers.
5914 @cindex @code{packed} variable attribute
5915 The @code{packed} attribute specifies that a variable or structure field
5916 should have the smallest possible alignment---one byte for a variable,
5917 and one bit for a field, unless you specify a larger value with the
5918 @code{aligned} attribute.
5920 Here is a structure in which the field @code{x} is packed, so that it
5921 immediately follows @code{a}:
5927 int x[2] __attribute__ ((packed));
5931 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
5932 @code{packed} attribute on bit-fields of type @code{char}. This has
5933 been fixed in GCC 4.4 but the change can lead to differences in the
5934 structure layout. See the documentation of
5935 @option{-Wpacked-bitfield-compat} for more information.
5937 @item section ("@var{section-name}")
5938 @cindex @code{section} variable attribute
5939 Normally, the compiler places the objects it generates in sections like
5940 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
5941 or you need certain particular variables to appear in special sections,
5942 for example to map to special hardware. The @code{section}
5943 attribute specifies that a variable (or function) lives in a particular
5944 section. For example, this small program uses several specific section names:
5947 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
5948 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
5949 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
5950 int init_data __attribute__ ((section ("INITDATA")));
5954 /* @r{Initialize stack pointer} */
5955 init_sp (stack + sizeof (stack));
5957 /* @r{Initialize initialized data} */
5958 memcpy (&init_data, &data, &edata - &data);
5960 /* @r{Turn on the serial ports} */
5967 Use the @code{section} attribute with
5968 @emph{global} variables and not @emph{local} variables,
5969 as shown in the example.
5971 You may use the @code{section} attribute with initialized or
5972 uninitialized global variables but the linker requires
5973 each object be defined once, with the exception that uninitialized
5974 variables tentatively go in the @code{common} (or @code{bss}) section
5975 and can be multiply ``defined''. Using the @code{section} attribute
5976 changes what section the variable goes into and may cause the
5977 linker to issue an error if an uninitialized variable has multiple
5978 definitions. You can force a variable to be initialized with the
5979 @option{-fno-common} flag or the @code{nocommon} attribute.
5981 Some file formats do not support arbitrary sections so the @code{section}
5982 attribute is not available on all platforms.
5983 If you need to map the entire contents of a module to a particular
5984 section, consider using the facilities of the linker instead.
5986 @item tls_model ("@var{tls_model}")
5987 @cindex @code{tls_model} variable attribute
5988 The @code{tls_model} attribute sets thread-local storage model
5989 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
5990 overriding @option{-ftls-model=} command-line switch on a per-variable
5992 The @var{tls_model} argument should be one of @code{global-dynamic},
5993 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
5995 Not all targets support this attribute.
5998 @cindex @code{unused} variable attribute
5999 This attribute, attached to a variable, means that the variable is meant
6000 to be possibly unused. GCC does not produce a warning for this
6004 @cindex @code{used} variable attribute
6005 This attribute, attached to a variable with static storage, means that
6006 the variable must be emitted even if it appears that the variable is not
6009 When applied to a static data member of a C++ class template, the
6010 attribute also means that the member is instantiated if the
6011 class itself is instantiated.
6013 @item vector_size (@var{bytes})
6014 @cindex @code{vector_size} variable attribute
6015 This attribute specifies the vector size for the variable, measured in
6016 bytes. For example, the declaration:
6019 int foo __attribute__ ((vector_size (16)));
6023 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
6024 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
6025 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@.
6027 This attribute is only applicable to integral and float scalars,
6028 although arrays, pointers, and function return values are allowed in
6029 conjunction with this construct.
6031 Aggregates with this attribute are invalid, even if they are of the same
6032 size as a corresponding scalar. For example, the declaration:
6035 struct S @{ int a; @};
6036 struct S __attribute__ ((vector_size (16))) foo;
6040 is invalid even if the size of the structure is the same as the size of
6043 @item visibility ("@var{visibility_type}")
6044 @cindex @code{visibility} variable attribute
6045 This attribute affects the linkage of the declaration to which it is attached.
6046 The @code{visibility} attribute is described in
6047 @ref{Common Function Attributes}.
6050 @cindex @code{weak} variable attribute
6051 The @code{weak} attribute is described in
6052 @ref{Common Function Attributes}.
6056 @node AVR Variable Attributes
6057 @subsection AVR Variable Attributes
6061 @cindex @code{progmem} variable attribute, AVR
6062 The @code{progmem} attribute is used on the AVR to place read-only
6063 data in the non-volatile program memory (flash). The @code{progmem}
6064 attribute accomplishes this by putting respective variables into a
6065 section whose name starts with @code{.progmem}.
6067 This attribute works similar to the @code{section} attribute
6068 but adds additional checking.
6071 @item @bullet{}@tie{} Ordinary AVR cores with 32 general purpose registers:
6072 @code{progmem} affects the location
6073 of the data but not how this data is accessed.
6074 In order to read data located with the @code{progmem} attribute
6075 (inline) assembler must be used.
6077 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
6078 #include <avr/pgmspace.h>
6080 /* Locate var in flash memory */
6081 const int var[2] PROGMEM = @{ 1, 2 @};
6083 int read_var (int i)
6085 /* Access var[] by accessor macro from avr/pgmspace.h */
6086 return (int) pgm_read_word (& var[i]);
6090 AVR is a Harvard architecture processor and data and read-only data
6091 normally resides in the data memory (RAM).
6093 See also the @ref{AVR Named Address Spaces} section for
6094 an alternate way to locate and access data in flash memory.
6096 @item @bullet{}@tie{} AVR cores with flash memory visible in the RAM address range:
6097 On such devices, there is no need for attribute @code{progmem} or
6098 @ref{AVR Named Address Spaces,,@code{__flash}} qualifier at all.
6099 Just use standard C / C++. The compiler will generate @code{LD*}
6100 instructions. As flash memory is visible in the RAM address range,
6101 and the default linker script does @emph{not} locate @code{.rodata} in
6102 RAM, no special features are needed in order not to waste RAM for
6103 read-only data or to read from flash. You might even get slightly better
6105 avoiding @code{progmem} and @code{__flash}. This applies to devices from
6106 families @code{avrtiny} and @code{avrxmega3}, see @ref{AVR Options} for
6109 @item @bullet{}@tie{}Reduced AVR Tiny cores like ATtiny40:
6110 The compiler adds @code{0x4000}
6111 to the addresses of objects and declarations in @code{progmem} and locates
6112 the objects in flash memory, namely in section @code{.progmem.data}.
6113 The offset is needed because the flash memory is visible in the RAM
6114 address space starting at address @code{0x4000}.
6116 Data in @code{progmem} can be accessed by means of ordinary C@tie{}code,
6117 no special functions or macros are needed.
6120 /* var is located in flash memory */
6121 extern const int var[2] __attribute__((progmem));
6123 int read_var (int i)
6129 Please notice that on these devices, there is no need for @code{progmem}
6135 @itemx io (@var{addr})
6136 @cindex @code{io} variable attribute, AVR
6137 Variables with the @code{io} attribute are used to address
6138 memory-mapped peripherals in the io address range.
6139 If an address is specified, the variable
6140 is assigned that address, and the value is interpreted as an
6141 address in the data address space.
6145 volatile int porta __attribute__((io (0x22)));
6148 The address specified in the address in the data address range.
6150 Otherwise, the variable it is not assigned an address, but the
6151 compiler will still use in/out instructions where applicable,
6152 assuming some other module assigns an address in the io address range.
6156 extern volatile int porta __attribute__((io));
6160 @itemx io_low (@var{addr})
6161 @cindex @code{io_low} variable attribute, AVR
6162 This is like the @code{io} attribute, but additionally it informs the
6163 compiler that the object lies in the lower half of the I/O area,
6164 allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
6168 @itemx address (@var{addr})
6169 @cindex @code{address} variable attribute, AVR
6170 Variables with the @code{address} attribute are used to address
6171 memory-mapped peripherals that may lie outside the io address range.
6174 volatile int porta __attribute__((address (0x600)));
6178 @cindex @code{absdata} variable attribute, AVR
6179 Variables in static storage and with the @code{absdata} attribute can
6180 be accessed by the @code{LDS} and @code{STS} instructions which take
6185 This attribute is only supported for the reduced AVR Tiny core
6189 You must make sure that respective data is located in the
6190 address range @code{0x40}@dots{}@code{0xbf} accessible by
6191 @code{LDS} and @code{STS}. One way to achieve this as an
6192 appropriate linker description file.
6195 If the location does not fit the address range of @code{LDS}
6196 and @code{STS}, there is currently (Binutils 2.26) just an unspecific
6199 @code{module.c:(.text+0x1c): warning: internal error: out of range error}
6204 See also the @option{-mabsdata} @ref{AVR Options,command-line option}.
6208 @node Blackfin Variable Attributes
6209 @subsection Blackfin Variable Attributes
6211 Three attributes are currently defined for the Blackfin.
6217 @cindex @code{l1_data} variable attribute, Blackfin
6218 @cindex @code{l1_data_A} variable attribute, Blackfin
6219 @cindex @code{l1_data_B} variable attribute, Blackfin
6220 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
6221 Variables with @code{l1_data} attribute are put into the specific section
6222 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
6223 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
6224 attribute are put into the specific section named @code{.l1.data.B}.
6227 @cindex @code{l2} variable attribute, Blackfin
6228 Use this attribute on the Blackfin to place the variable into L2 SRAM.
6229 Variables with @code{l2} attribute are put into the specific section
6230 named @code{.l2.data}.
6233 @node H8/300 Variable Attributes
6234 @subsection H8/300 Variable Attributes
6236 These variable attributes are available for H8/300 targets:
6240 @cindex @code{eightbit_data} variable attribute, H8/300
6241 @cindex eight-bit data on the H8/300, H8/300H, and H8S
6242 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
6243 variable should be placed into the eight-bit data section.
6244 The compiler generates more efficient code for certain operations
6245 on data in the eight-bit data area. Note the eight-bit data area is limited to
6248 You must use GAS and GLD from GNU binutils version 2.7 or later for
6249 this attribute to work correctly.
6252 @cindex @code{tiny_data} variable attribute, H8/300
6253 @cindex tiny data section on the H8/300H and H8S
6254 Use this attribute on the H8/300H and H8S to indicate that the specified
6255 variable should be placed into the tiny data section.
6256 The compiler generates more efficient code for loads and stores
6257 on data in the tiny data section. Note the tiny data area is limited to
6258 slightly under 32KB of data.
6262 @node IA-64 Variable Attributes
6263 @subsection IA-64 Variable Attributes
6265 The IA-64 back end supports the following variable attribute:
6268 @item model (@var{model-name})
6269 @cindex @code{model} variable attribute, IA-64
6271 On IA-64, use this attribute to set the addressability of an object.
6272 At present, the only supported identifier for @var{model-name} is
6273 @code{small}, indicating addressability via ``small'' (22-bit)
6274 addresses (so that their addresses can be loaded with the @code{addl}
6275 instruction). Caveat: such addressing is by definition not position
6276 independent and hence this attribute must not be used for objects
6277 defined by shared libraries.
6281 @node M32R/D Variable Attributes
6282 @subsection M32R/D Variable Attributes
6284 One attribute is currently defined for the M32R/D@.
6287 @item model (@var{model-name})
6288 @cindex @code{model-name} variable attribute, M32R/D
6289 @cindex variable addressability on the M32R/D
6290 Use this attribute on the M32R/D to set the addressability of an object.
6291 The identifier @var{model-name} is one of @code{small}, @code{medium},
6292 or @code{large}, representing each of the code models.
6294 Small model objects live in the lower 16MB of memory (so that their
6295 addresses can be loaded with the @code{ld24} instruction).
6297 Medium and large model objects may live anywhere in the 32-bit address space
6298 (the compiler generates @code{seth/add3} instructions to load their
6302 @node MeP Variable Attributes
6303 @subsection MeP Variable Attributes
6305 The MeP target has a number of addressing modes and busses. The
6306 @code{near} space spans the standard memory space's first 16 megabytes
6307 (24 bits). The @code{far} space spans the entire 32-bit memory space.
6308 The @code{based} space is a 128-byte region in the memory space that
6309 is addressed relative to the @code{$tp} register. The @code{tiny}
6310 space is a 65536-byte region relative to the @code{$gp} register. In
6311 addition to these memory regions, the MeP target has a separate 16-bit
6312 control bus which is specified with @code{cb} attributes.
6317 @cindex @code{based} variable attribute, MeP
6318 Any variable with the @code{based} attribute is assigned to the
6319 @code{.based} section, and is accessed with relative to the
6320 @code{$tp} register.
6323 @cindex @code{tiny} variable attribute, MeP
6324 Likewise, the @code{tiny} attribute assigned variables to the
6325 @code{.tiny} section, relative to the @code{$gp} register.
6328 @cindex @code{near} variable attribute, MeP
6329 Variables with the @code{near} attribute are assumed to have addresses
6330 that fit in a 24-bit addressing mode. This is the default for large
6331 variables (@code{-mtiny=4} is the default) but this attribute can
6332 override @code{-mtiny=} for small variables, or override @code{-ml}.
6335 @cindex @code{far} variable attribute, MeP
6336 Variables with the @code{far} attribute are addressed using a full
6337 32-bit address. Since this covers the entire memory space, this
6338 allows modules to make no assumptions about where variables might be
6342 @cindex @code{io} variable attribute, MeP
6343 @itemx io (@var{addr})
6344 Variables with the @code{io} attribute are used to address
6345 memory-mapped peripherals. If an address is specified, the variable
6346 is assigned that address, else it is not assigned an address (it is
6347 assumed some other module assigns an address). Example:
6350 int timer_count __attribute__((io(0x123)));
6354 @itemx cb (@var{addr})
6355 @cindex @code{cb} variable attribute, MeP
6356 Variables with the @code{cb} attribute are used to access the control
6357 bus, using special instructions. @code{addr} indicates the control bus
6361 int cpu_clock __attribute__((cb(0x123)));
6366 @node Microsoft Windows Variable Attributes
6367 @subsection Microsoft Windows Variable Attributes
6369 You can use these attributes on Microsoft Windows targets.
6370 @ref{x86 Variable Attributes} for additional Windows compatibility
6371 attributes available on all x86 targets.
6376 @cindex @code{dllimport} variable attribute
6377 @cindex @code{dllexport} variable attribute
6378 The @code{dllimport} and @code{dllexport} attributes are described in
6379 @ref{Microsoft Windows Function Attributes}.
6382 @cindex @code{selectany} variable attribute
6383 The @code{selectany} attribute causes an initialized global variable to
6384 have link-once semantics. When multiple definitions of the variable are
6385 encountered by the linker, the first is selected and the remainder are
6386 discarded. Following usage by the Microsoft compiler, the linker is told
6387 @emph{not} to warn about size or content differences of the multiple
6390 Although the primary usage of this attribute is for POD types, the
6391 attribute can also be applied to global C++ objects that are initialized
6392 by a constructor. In this case, the static initialization and destruction
6393 code for the object is emitted in each translation defining the object,
6394 but the calls to the constructor and destructor are protected by a
6395 link-once guard variable.
6397 The @code{selectany} attribute is only available on Microsoft Windows
6398 targets. You can use @code{__declspec (selectany)} as a synonym for
6399 @code{__attribute__ ((selectany))} for compatibility with other
6403 @cindex @code{shared} variable attribute
6404 On Microsoft Windows, in addition to putting variable definitions in a named
6405 section, the section can also be shared among all running copies of an
6406 executable or DLL@. For example, this small program defines shared data
6407 by putting it in a named section @code{shared} and marking the section
6411 int foo __attribute__((section ("shared"), shared)) = 0;
6416 /* @r{Read and write foo. All running
6417 copies see the same value.} */
6423 You may only use the @code{shared} attribute along with @code{section}
6424 attribute with a fully-initialized global definition because of the way
6425 linkers work. See @code{section} attribute for more information.
6427 The @code{shared} attribute is only available on Microsoft Windows@.
6431 @node MSP430 Variable Attributes
6432 @subsection MSP430 Variable Attributes
6436 @cindex @code{noinit} variable attribute, MSP430
6437 Any data with the @code{noinit} attribute will not be initialised by
6438 the C runtime startup code, or the program loader. Not initialising
6439 data in this way can reduce program startup times.
6442 @cindex @code{persistent} variable attribute, MSP430
6443 Any variable with the @code{persistent} attribute will not be
6444 initialised by the C runtime startup code. Instead its value will be
6445 set once, when the application is loaded, and then never initialised
6446 again, even if the processor is reset or the program restarts.
6447 Persistent data is intended to be placed into FLASH RAM, where its
6448 value will be retained across resets. The linker script being used to
6449 create the application should ensure that persistent data is correctly
6455 @cindex @code{lower} variable attribute, MSP430
6456 @cindex @code{upper} variable attribute, MSP430
6457 @cindex @code{either} variable attribute, MSP430
6458 These attributes are the same as the MSP430 function attributes of the
6459 same name (@pxref{MSP430 Function Attributes}).
6460 These attributes can be applied to both functions and variables.
6463 @node Nvidia PTX Variable Attributes
6464 @subsection Nvidia PTX Variable Attributes
6466 These variable attributes are supported by the Nvidia PTX back end:
6470 @cindex @code{shared} attribute, Nvidia PTX
6471 Use this attribute to place a variable in the @code{.shared} memory space.
6472 This memory space is private to each cooperative thread array; only threads
6473 within one thread block refer to the same instance of the variable.
6474 The runtime does not initialize variables in this memory space.
6477 @node PowerPC Variable Attributes
6478 @subsection PowerPC Variable Attributes
6480 Three attributes currently are defined for PowerPC configurations:
6481 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6483 @cindex @code{ms_struct} variable attribute, PowerPC
6484 @cindex @code{gcc_struct} variable attribute, PowerPC
6485 For full documentation of the struct attributes please see the
6486 documentation in @ref{x86 Variable Attributes}.
6488 @cindex @code{altivec} variable attribute, PowerPC
6489 For documentation of @code{altivec} attribute please see the
6490 documentation in @ref{PowerPC Type Attributes}.
6492 @node RL78 Variable Attributes
6493 @subsection RL78 Variable Attributes
6495 @cindex @code{saddr} variable attribute, RL78
6496 The RL78 back end supports the @code{saddr} variable attribute. This
6497 specifies placement of the corresponding variable in the SADDR area,
6498 which can be accessed more efficiently than the default memory region.
6500 @node SPU Variable Attributes
6501 @subsection SPU Variable Attributes
6503 @cindex @code{spu_vector} variable attribute, SPU
6504 The SPU supports the @code{spu_vector} attribute for variables. For
6505 documentation of this attribute please see the documentation in
6506 @ref{SPU Type Attributes}.
6508 @node V850 Variable Attributes
6509 @subsection V850 Variable Attributes
6511 These variable attributes are supported by the V850 back end:
6516 @cindex @code{sda} variable attribute, V850
6517 Use this attribute to explicitly place a variable in the small data area,
6518 which can hold up to 64 kilobytes.
6521 @cindex @code{tda} variable attribute, V850
6522 Use this attribute to explicitly place a variable in the tiny data area,
6523 which can hold up to 256 bytes in total.
6526 @cindex @code{zda} variable attribute, V850
6527 Use this attribute to explicitly place a variable in the first 32 kilobytes
6531 @node x86 Variable Attributes
6532 @subsection x86 Variable Attributes
6534 Two attributes are currently defined for x86 configurations:
6535 @code{ms_struct} and @code{gcc_struct}.
6540 @cindex @code{ms_struct} variable attribute, x86
6541 @cindex @code{gcc_struct} variable attribute, x86
6543 If @code{packed} is used on a structure, or if bit-fields are used,
6544 it may be that the Microsoft ABI lays out the structure differently
6545 than the way GCC normally does. Particularly when moving packed
6546 data between functions compiled with GCC and the native Microsoft compiler
6547 (either via function call or as data in a file), it may be necessary to access
6550 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6551 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6552 command-line options, respectively;
6553 see @ref{x86 Options}, for details of how structure layout is affected.
6554 @xref{x86 Type Attributes}, for information about the corresponding
6555 attributes on types.
6559 @node Xstormy16 Variable Attributes
6560 @subsection Xstormy16 Variable Attributes
6562 One attribute is currently defined for xstormy16 configurations:
6567 @cindex @code{below100} variable attribute, Xstormy16
6569 If a variable has the @code{below100} attribute (@code{BELOW100} is
6570 allowed also), GCC places the variable in the first 0x100 bytes of
6571 memory and use special opcodes to access it. Such variables are
6572 placed in either the @code{.bss_below100} section or the
6573 @code{.data_below100} section.
6577 @node Type Attributes
6578 @section Specifying Attributes of Types
6579 @cindex attribute of types
6580 @cindex type attributes
6582 The keyword @code{__attribute__} allows you to specify special
6583 attributes of types. Some type attributes apply only to @code{struct}
6584 and @code{union} types, while others can apply to any type defined
6585 via a @code{typedef} declaration. Other attributes are defined for
6586 functions (@pxref{Function Attributes}), labels (@pxref{Label
6587 Attributes}), enumerators (@pxref{Enumerator Attributes}),
6588 statements (@pxref{Statement Attributes}), and for
6589 variables (@pxref{Variable Attributes}).
6591 The @code{__attribute__} keyword is followed by an attribute specification
6592 inside double parentheses.
6594 You may specify type attributes in an enum, struct or union type
6595 declaration or definition by placing them immediately after the
6596 @code{struct}, @code{union} or @code{enum} keyword. A less preferred
6597 syntax is to place them just past the closing curly brace of the
6600 You can also include type attributes in a @code{typedef} declaration.
6601 @xref{Attribute Syntax}, for details of the exact syntax for using
6605 * Common Type Attributes::
6606 * ARM Type Attributes::
6607 * MeP Type Attributes::
6608 * PowerPC Type Attributes::
6609 * SPU Type Attributes::
6610 * x86 Type Attributes::
6613 @node Common Type Attributes
6614 @subsection Common Type Attributes
6616 The following type attributes are supported on most targets.
6619 @cindex @code{aligned} type attribute
6620 @item aligned (@var{alignment})
6621 This attribute specifies a minimum alignment (in bytes) for variables
6622 of the specified type. For example, the declarations:
6625 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
6626 typedef int more_aligned_int __attribute__ ((aligned (8)));
6630 force the compiler to ensure (as far as it can) that each variable whose
6631 type is @code{struct S} or @code{more_aligned_int} is allocated and
6632 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
6633 variables of type @code{struct S} aligned to 8-byte boundaries allows
6634 the compiler to use the @code{ldd} and @code{std} (doubleword load and
6635 store) instructions when copying one variable of type @code{struct S} to
6636 another, thus improving run-time efficiency.
6638 Note that the alignment of any given @code{struct} or @code{union} type
6639 is required by the ISO C standard to be at least a perfect multiple of
6640 the lowest common multiple of the alignments of all of the members of
6641 the @code{struct} or @code{union} in question. This means that you @emph{can}
6642 effectively adjust the alignment of a @code{struct} or @code{union}
6643 type by attaching an @code{aligned} attribute to any one of the members
6644 of such a type, but the notation illustrated in the example above is a
6645 more obvious, intuitive, and readable way to request the compiler to
6646 adjust the alignment of an entire @code{struct} or @code{union} type.
6648 As in the preceding example, you can explicitly specify the alignment
6649 (in bytes) that you wish the compiler to use for a given @code{struct}
6650 or @code{union} type. Alternatively, you can leave out the alignment factor
6651 and just ask the compiler to align a type to the maximum
6652 useful alignment for the target machine you are compiling for. For
6653 example, you could write:
6656 struct S @{ short f[3]; @} __attribute__ ((aligned));
6659 Whenever you leave out the alignment factor in an @code{aligned}
6660 attribute specification, the compiler automatically sets the alignment
6661 for the type to the largest alignment that is ever used for any data
6662 type on the target machine you are compiling for. Doing this can often
6663 make copy operations more efficient, because the compiler can use
6664 whatever instructions copy the biggest chunks of memory when performing
6665 copies to or from the variables that have types that you have aligned
6668 In the example above, if the size of each @code{short} is 2 bytes, then
6669 the size of the entire @code{struct S} type is 6 bytes. The smallest
6670 power of two that is greater than or equal to that is 8, so the
6671 compiler sets the alignment for the entire @code{struct S} type to 8
6674 Note that although you can ask the compiler to select a time-efficient
6675 alignment for a given type and then declare only individual stand-alone
6676 objects of that type, the compiler's ability to select a time-efficient
6677 alignment is primarily useful only when you plan to create arrays of
6678 variables having the relevant (efficiently aligned) type. If you
6679 declare or use arrays of variables of an efficiently-aligned type, then
6680 it is likely that your program also does pointer arithmetic (or
6681 subscripting, which amounts to the same thing) on pointers to the
6682 relevant type, and the code that the compiler generates for these
6683 pointer arithmetic operations is often more efficient for
6684 efficiently-aligned types than for other types.
6686 Note that the effectiveness of @code{aligned} attributes may be limited
6687 by inherent limitations in your linker. On many systems, the linker is
6688 only able to arrange for variables to be aligned up to a certain maximum
6689 alignment. (For some linkers, the maximum supported alignment may
6690 be very very small.) If your linker is only able to align variables
6691 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
6692 in an @code{__attribute__} still only provides you with 8-byte
6693 alignment. See your linker documentation for further information.
6695 The @code{aligned} attribute can only increase alignment. Alignment
6696 can be decreased by specifying the @code{packed} attribute. See below.
6698 @cindex @code{warn_if_not_aligned} type attribute
6699 @item warn_if_not_aligned (@var{alignment})
6700 This attribute specifies a threshold for the structure field, measured
6701 in bytes. If the structure field is aligned below the threshold, a
6702 warning will be issued. For example, the declaration:
6705 typedef unsigned long long __u64
6706 __attribute__((aligned(4),warn_if_not_aligned(8)));
6717 causes the compiler to issue an warning on @code{struct foo}, like
6718 @samp{warning: alignment 4 of 'struct foo' is less than 8}.
6719 It is used to define @code{struct foo} in such a way that
6720 @code{struct foo} has the same layout and the structure field @code{x}
6721 has the same alignment when @code{__u64} is aligned at either 4 or
6722 8 bytes. Align @code{struct foo} to 8 bytes:
6730 @} __attribute__((aligned(8)));
6734 silences the warning. The compiler also issues a warning, like
6735 @samp{warning: 'x' offset 12 in 'struct foo' isn't aligned to 8},
6736 when the structure field has the misaligned offset:
6745 @} __attribute__((aligned(8)));
6748 This warning can be disabled by @option{-Wno-if-not-aligned}.
6750 @item bnd_variable_size
6751 @cindex @code{bnd_variable_size} type attribute
6752 @cindex Pointer Bounds Checker attributes
6753 When applied to a structure field, this attribute tells Pointer
6754 Bounds Checker that the size of this field should not be computed
6755 using static type information. It may be used to mark variably-sized
6756 static array fields placed at the end of a structure.
6764 S *p = (S *)malloc (sizeof(S) + 100);
6765 p->data[10] = 0; //Bounds violation
6769 By using an attribute for the field we may avoid unwanted bound
6776 char data[1] __attribute__((bnd_variable_size));
6778 S *p = (S *)malloc (sizeof(S) + 100);
6779 p->data[10] = 0; //OK
6783 @itemx deprecated (@var{msg})
6784 @cindex @code{deprecated} type attribute
6785 The @code{deprecated} attribute results in a warning if the type
6786 is used anywhere in the source file. This is useful when identifying
6787 types that are expected to be removed in a future version of a program.
6788 If possible, the warning also includes the location of the declaration
6789 of the deprecated type, to enable users to easily find further
6790 information about why the type is deprecated, or what they should do
6791 instead. Note that the warnings only occur for uses and then only
6792 if the type is being applied to an identifier that itself is not being
6793 declared as deprecated.
6796 typedef int T1 __attribute__ ((deprecated));
6800 typedef T1 T3 __attribute__ ((deprecated));
6801 T3 z __attribute__ ((deprecated));
6805 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
6806 warning is issued for line 4 because T2 is not explicitly
6807 deprecated. Line 5 has no warning because T3 is explicitly
6808 deprecated. Similarly for line 6. The optional @var{msg}
6809 argument, which must be a string, is printed in the warning if
6812 The @code{deprecated} attribute can also be used for functions and
6813 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
6815 @item designated_init
6816 @cindex @code{designated_init} type attribute
6817 This attribute may only be applied to structure types. It indicates
6818 that any initialization of an object of this type must use designated
6819 initializers rather than positional initializers. The intent of this
6820 attribute is to allow the programmer to indicate that a structure's
6821 layout may change, and that therefore relying on positional
6822 initialization will result in future breakage.
6824 GCC emits warnings based on this attribute by default; use
6825 @option{-Wno-designated-init} to suppress them.
6828 @cindex @code{may_alias} type attribute
6829 Accesses through pointers to types with this attribute are not subject
6830 to type-based alias analysis, but are instead assumed to be able to alias
6831 any other type of objects.
6832 In the context of section 6.5 paragraph 7 of the C99 standard,
6833 an lvalue expression
6834 dereferencing such a pointer is treated like having a character type.
6835 See @option{-fstrict-aliasing} for more information on aliasing issues.
6836 This extension exists to support some vector APIs, in which pointers to
6837 one vector type are permitted to alias pointers to a different vector type.
6839 Note that an object of a type with this attribute does not have any
6845 typedef short __attribute__((__may_alias__)) short_a;
6851 short_a *b = (short_a *) &a;
6855 if (a == 0x12345678)
6863 If you replaced @code{short_a} with @code{short} in the variable
6864 declaration, the above program would abort when compiled with
6865 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
6869 @cindex @code{packed} type attribute
6870 This attribute, attached to @code{struct} or @code{union} type
6871 definition, specifies that each member (other than zero-width bit-fields)
6872 of the structure or union is placed to minimize the memory required. When
6873 attached to an @code{enum} definition, it indicates that the smallest
6874 integral type should be used.
6876 @opindex fshort-enums
6877 Specifying the @code{packed} attribute for @code{struct} and @code{union}
6878 types is equivalent to specifying the @code{packed} attribute on each
6879 of the structure or union members. Specifying the @option{-fshort-enums}
6880 flag on the command line is equivalent to specifying the @code{packed}
6881 attribute on all @code{enum} definitions.
6883 In the following example @code{struct my_packed_struct}'s members are
6884 packed closely together, but the internal layout of its @code{s} member
6885 is not packed---to do that, @code{struct my_unpacked_struct} needs to
6889 struct my_unpacked_struct
6895 struct __attribute__ ((__packed__)) my_packed_struct
6899 struct my_unpacked_struct s;
6903 You may only specify the @code{packed} attribute attribute on the definition
6904 of an @code{enum}, @code{struct} or @code{union}, not on a @code{typedef}
6905 that does not also define the enumerated type, structure or union.
6907 @item scalar_storage_order ("@var{endianness}")
6908 @cindex @code{scalar_storage_order} type attribute
6909 When attached to a @code{union} or a @code{struct}, this attribute sets
6910 the storage order, aka endianness, of the scalar fields of the type, as
6911 well as the array fields whose component is scalar. The supported
6912 endiannesses are @code{big-endian} and @code{little-endian}. The attribute
6913 has no effects on fields which are themselves a @code{union}, a @code{struct}
6914 or an array whose component is a @code{union} or a @code{struct}, and it is
6915 possible for these fields to have a different scalar storage order than the
6918 This attribute is supported only for targets that use a uniform default
6919 scalar storage order (fortunately, most of them), i.e. targets that store
6920 the scalars either all in big-endian or all in little-endian.
6922 Additional restrictions are enforced for types with the reverse scalar
6923 storage order with regard to the scalar storage order of the target:
6926 @item Taking the address of a scalar field of a @code{union} or a
6927 @code{struct} with reverse scalar storage order is not permitted and yields
6929 @item Taking the address of an array field, whose component is scalar, of
6930 a @code{union} or a @code{struct} with reverse scalar storage order is
6931 permitted but yields a warning, unless @option{-Wno-scalar-storage-order}
6933 @item Taking the address of a @code{union} or a @code{struct} with reverse
6934 scalar storage order is permitted.
6937 These restrictions exist because the storage order attribute is lost when
6938 the address of a scalar or the address of an array with scalar component is
6939 taken, so storing indirectly through this address generally does not work.
6940 The second case is nevertheless allowed to be able to perform a block copy
6941 from or to the array.
6943 Moreover, the use of type punning or aliasing to toggle the storage order
6944 is not supported; that is to say, a given scalar object cannot be accessed
6945 through distinct types that assign a different storage order to it.
6947 @item transparent_union
6948 @cindex @code{transparent_union} type attribute
6950 This attribute, attached to a @code{union} type definition, indicates
6951 that any function parameter having that union type causes calls to that
6952 function to be treated in a special way.
6954 First, the argument corresponding to a transparent union type can be of
6955 any type in the union; no cast is required. Also, if the union contains
6956 a pointer type, the corresponding argument can be a null pointer
6957 constant or a void pointer expression; and if the union contains a void
6958 pointer type, the corresponding argument can be any pointer expression.
6959 If the union member type is a pointer, qualifiers like @code{const} on
6960 the referenced type must be respected, just as with normal pointer
6963 Second, the argument is passed to the function using the calling
6964 conventions of the first member of the transparent union, not the calling
6965 conventions of the union itself. All members of the union must have the
6966 same machine representation; this is necessary for this argument passing
6969 Transparent unions are designed for library functions that have multiple
6970 interfaces for compatibility reasons. For example, suppose the
6971 @code{wait} function must accept either a value of type @code{int *} to
6972 comply with POSIX, or a value of type @code{union wait *} to comply with
6973 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
6974 @code{wait} would accept both kinds of arguments, but it would also
6975 accept any other pointer type and this would make argument type checking
6976 less useful. Instead, @code{<sys/wait.h>} might define the interface
6980 typedef union __attribute__ ((__transparent_union__))
6984 @} wait_status_ptr_t;
6986 pid_t wait (wait_status_ptr_t);
6990 This interface allows either @code{int *} or @code{union wait *}
6991 arguments to be passed, using the @code{int *} calling convention.
6992 The program can call @code{wait} with arguments of either type:
6995 int w1 () @{ int w; return wait (&w); @}
6996 int w2 () @{ union wait w; return wait (&w); @}
7000 With this interface, @code{wait}'s implementation might look like this:
7003 pid_t wait (wait_status_ptr_t p)
7005 return waitpid (-1, p.__ip, 0);
7010 @cindex @code{unused} type attribute
7011 When attached to a type (including a @code{union} or a @code{struct}),
7012 this attribute means that variables of that type are meant to appear
7013 possibly unused. GCC does not produce a warning for any variables of
7014 that type, even if the variable appears to do nothing. This is often
7015 the case with lock or thread classes, which are usually defined and then
7016 not referenced, but contain constructors and destructors that have
7017 nontrivial bookkeeping functions.
7020 @cindex @code{visibility} type attribute
7021 In C++, attribute visibility (@pxref{Function Attributes}) can also be
7022 applied to class, struct, union and enum types. Unlike other type
7023 attributes, the attribute must appear between the initial keyword and
7024 the name of the type; it cannot appear after the body of the type.
7026 Note that the type visibility is applied to vague linkage entities
7027 associated with the class (vtable, typeinfo node, etc.). In
7028 particular, if a class is thrown as an exception in one shared object
7029 and caught in another, the class must have default visibility.
7030 Otherwise the two shared objects are unable to use the same
7031 typeinfo node and exception handling will break.
7035 To specify multiple attributes, separate them by commas within the
7036 double parentheses: for example, @samp{__attribute__ ((aligned (16),
7039 @node ARM Type Attributes
7040 @subsection ARM Type Attributes
7042 @cindex @code{notshared} type attribute, ARM
7043 On those ARM targets that support @code{dllimport} (such as Symbian
7044 OS), you can use the @code{notshared} attribute to indicate that the
7045 virtual table and other similar data for a class should not be
7046 exported from a DLL@. For example:
7049 class __declspec(notshared) C @{
7051 __declspec(dllimport) C();
7055 __declspec(dllexport)
7060 In this code, @code{C::C} is exported from the current DLL, but the
7061 virtual table for @code{C} is not exported. (You can use
7062 @code{__attribute__} instead of @code{__declspec} if you prefer, but
7063 most Symbian OS code uses @code{__declspec}.)
7065 @node MeP Type Attributes
7066 @subsection MeP Type Attributes
7068 @cindex @code{based} type attribute, MeP
7069 @cindex @code{tiny} type attribute, MeP
7070 @cindex @code{near} type attribute, MeP
7071 @cindex @code{far} type attribute, MeP
7072 Many of the MeP variable attributes may be applied to types as well.
7073 Specifically, the @code{based}, @code{tiny}, @code{near}, and
7074 @code{far} attributes may be applied to either. The @code{io} and
7075 @code{cb} attributes may not be applied to types.
7077 @node PowerPC Type Attributes
7078 @subsection PowerPC Type Attributes
7080 Three attributes currently are defined for PowerPC configurations:
7081 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
7083 @cindex @code{ms_struct} type attribute, PowerPC
7084 @cindex @code{gcc_struct} type attribute, PowerPC
7085 For full documentation of the @code{ms_struct} and @code{gcc_struct}
7086 attributes please see the documentation in @ref{x86 Type Attributes}.
7088 @cindex @code{altivec} type attribute, PowerPC
7089 The @code{altivec} attribute allows one to declare AltiVec vector data
7090 types supported by the AltiVec Programming Interface Manual. The
7091 attribute requires an argument to specify one of three vector types:
7092 @code{vector__}, @code{pixel__} (always followed by unsigned short),
7093 and @code{bool__} (always followed by unsigned).
7096 __attribute__((altivec(vector__)))
7097 __attribute__((altivec(pixel__))) unsigned short
7098 __attribute__((altivec(bool__))) unsigned
7101 These attributes mainly are intended to support the @code{__vector},
7102 @code{__pixel}, and @code{__bool} AltiVec keywords.
7104 @node SPU Type Attributes
7105 @subsection SPU Type Attributes
7107 @cindex @code{spu_vector} type attribute, SPU
7108 The SPU supports the @code{spu_vector} attribute for types. This attribute
7109 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
7110 Language Extensions Specification. It is intended to support the
7111 @code{__vector} keyword.
7113 @node x86 Type Attributes
7114 @subsection x86 Type Attributes
7116 Two attributes are currently defined for x86 configurations:
7117 @code{ms_struct} and @code{gcc_struct}.
7123 @cindex @code{ms_struct} type attribute, x86
7124 @cindex @code{gcc_struct} type attribute, x86
7126 If @code{packed} is used on a structure, or if bit-fields are used
7127 it may be that the Microsoft ABI packs them differently
7128 than GCC normally packs them. Particularly when moving packed
7129 data between functions compiled with GCC and the native Microsoft compiler
7130 (either via function call or as data in a file), it may be necessary to access
7133 The @code{ms_struct} and @code{gcc_struct} attributes correspond
7134 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
7135 command-line options, respectively;
7136 see @ref{x86 Options}, for details of how structure layout is affected.
7137 @xref{x86 Variable Attributes}, for information about the corresponding
7138 attributes on variables.
7142 @node Label Attributes
7143 @section Label Attributes
7144 @cindex Label Attributes
7146 GCC allows attributes to be set on C labels. @xref{Attribute Syntax}, for
7147 details of the exact syntax for using attributes. Other attributes are
7148 available for functions (@pxref{Function Attributes}), variables
7149 (@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
7150 statements (@pxref{Statement Attributes}), and for types
7151 (@pxref{Type Attributes}).
7153 This example uses the @code{cold} label attribute to indicate the
7154 @code{ErrorHandling} branch is unlikely to be taken and that the
7155 @code{ErrorHandling} label is unused:
7159 asm goto ("some asm" : : : : NoError);
7161 /* This branch (the fall-through from the asm) is less commonly used */
7163 __attribute__((cold, unused)); /* Semi-colon is required here */
7168 printf("no error\n");
7174 @cindex @code{unused} label attribute
7175 This feature is intended for program-generated code that may contain
7176 unused labels, but which is compiled with @option{-Wall}. It is
7177 not normally appropriate to use in it human-written code, though it
7178 could be useful in cases where the code that jumps to the label is
7179 contained within an @code{#ifdef} conditional.
7182 @cindex @code{hot} label attribute
7183 The @code{hot} attribute on a label is used to inform the compiler that
7184 the path following the label is more likely than paths that are not so
7185 annotated. This attribute is used in cases where @code{__builtin_expect}
7186 cannot be used, for instance with computed goto or @code{asm goto}.
7189 @cindex @code{cold} label attribute
7190 The @code{cold} attribute on labels is used to inform the compiler that
7191 the path following the label is unlikely to be executed. This attribute
7192 is used in cases where @code{__builtin_expect} cannot be used, for instance
7193 with computed goto or @code{asm goto}.
7197 @node Enumerator Attributes
7198 @section Enumerator Attributes
7199 @cindex Enumerator Attributes
7201 GCC allows attributes to be set on enumerators. @xref{Attribute Syntax}, for
7202 details of the exact syntax for using attributes. Other attributes are
7203 available for functions (@pxref{Function Attributes}), variables
7204 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), statements
7205 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
7207 This example uses the @code{deprecated} enumerator attribute to indicate the
7208 @code{oldval} enumerator is deprecated:
7212 oldval __attribute__((deprecated)),
7225 @cindex @code{deprecated} enumerator attribute
7226 The @code{deprecated} attribute results in a warning if the enumerator
7227 is used anywhere in the source file. This is useful when identifying
7228 enumerators that are expected to be removed in a future version of a
7229 program. The warning also includes the location of the declaration
7230 of the deprecated enumerator, to enable users to easily find further
7231 information about why the enumerator is deprecated, or what they should
7232 do instead. Note that the warnings only occurs for uses.
7236 @node Statement Attributes
7237 @section Statement Attributes
7238 @cindex Statement Attributes
7240 GCC allows attributes to be set on null statements. @xref{Attribute Syntax},
7241 for details of the exact syntax for using attributes. Other attributes are
7242 available for functions (@pxref{Function Attributes}), variables
7243 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators
7244 (@pxref{Enumerator Attributes}), and for types (@pxref{Type Attributes}).
7246 This example uses the @code{fallthrough} statement attribute to indicate that
7247 the @option{-Wimplicit-fallthrough} warning should not be emitted:
7254 __attribute__((fallthrough));
7262 @cindex @code{fallthrough} statement attribute
7263 The @code{fallthrough} attribute with a null statement serves as a
7264 fallthrough statement. It hints to the compiler that a statement
7265 that falls through to another case label, or user-defined label
7266 in a switch statement is intentional and thus the
7267 @option{-Wimplicit-fallthrough} warning must not trigger. The
7268 fallthrough attribute may appear at most once in each attribute
7269 list, and may not be mixed with other attributes. It can only
7270 be used in a switch statement (the compiler will issue an error
7271 otherwise), after a preceding statement and before a logically
7272 succeeding case label, or user-defined label.
7276 @node Attribute Syntax
7277 @section Attribute Syntax
7278 @cindex attribute syntax
7280 This section describes the syntax with which @code{__attribute__} may be
7281 used, and the constructs to which attribute specifiers bind, for the C
7282 language. Some details may vary for C++ and Objective-C@. Because of
7283 infelicities in the grammar for attributes, some forms described here
7284 may not be successfully parsed in all cases.
7286 There are some problems with the semantics of attributes in C++. For
7287 example, there are no manglings for attributes, although they may affect
7288 code generation, so problems may arise when attributed types are used in
7289 conjunction with templates or overloading. Similarly, @code{typeid}
7290 does not distinguish between types with different attributes. Support
7291 for attributes in C++ may be restricted in future to attributes on
7292 declarations only, but not on nested declarators.
7294 @xref{Function Attributes}, for details of the semantics of attributes
7295 applying to functions. @xref{Variable Attributes}, for details of the
7296 semantics of attributes applying to variables. @xref{Type Attributes},
7297 for details of the semantics of attributes applying to structure, union
7298 and enumerated types.
7299 @xref{Label Attributes}, for details of the semantics of attributes
7301 @xref{Enumerator Attributes}, for details of the semantics of attributes
7302 applying to enumerators.
7303 @xref{Statement Attributes}, for details of the semantics of attributes
7304 applying to statements.
7306 An @dfn{attribute specifier} is of the form
7307 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
7308 is a possibly empty comma-separated sequence of @dfn{attributes}, where
7309 each attribute is one of the following:
7313 Empty. Empty attributes are ignored.
7317 (which may be an identifier such as @code{unused}, or a reserved
7318 word such as @code{const}).
7321 An attribute name followed by a parenthesized list of
7322 parameters for the attribute.
7323 These parameters take one of the following forms:
7327 An identifier. For example, @code{mode} attributes use this form.
7330 An identifier followed by a comma and a non-empty comma-separated list
7331 of expressions. For example, @code{format} attributes use this form.
7334 A possibly empty comma-separated list of expressions. For example,
7335 @code{format_arg} attributes use this form with the list being a single
7336 integer constant expression, and @code{alias} attributes use this form
7337 with the list being a single string constant.
7341 An @dfn{attribute specifier list} is a sequence of one or more attribute
7342 specifiers, not separated by any other tokens.
7344 You may optionally specify attribute names with @samp{__}
7345 preceding and following the name.
7346 This allows you to use them in header files without
7347 being concerned about a possible macro of the same name. For example,
7348 you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.
7351 @subsubheading Label Attributes
7353 In GNU C, an attribute specifier list may appear after the colon following a
7354 label, other than a @code{case} or @code{default} label. GNU C++ only permits
7355 attributes on labels if the attribute specifier is immediately
7356 followed by a semicolon (i.e., the label applies to an empty
7357 statement). If the semicolon is missing, C++ label attributes are
7358 ambiguous, as it is permissible for a declaration, which could begin
7359 with an attribute list, to be labelled in C++. Declarations cannot be
7360 labelled in C90 or C99, so the ambiguity does not arise there.
7362 @subsubheading Enumerator Attributes
7364 In GNU C, an attribute specifier list may appear as part of an enumerator.
7365 The attribute goes after the enumeration constant, before @code{=}, if
7366 present. The optional attribute in the enumerator appertains to the
7367 enumeration constant. It is not possible to place the attribute after
7368 the constant expression, if present.
7370 @subsubheading Statement Attributes
7371 In GNU C, an attribute specifier list may appear as part of a null
7372 statement. The attribute goes before the semicolon.
7374 @subsubheading Type Attributes
7376 An attribute specifier list may appear as part of a @code{struct},
7377 @code{union} or @code{enum} specifier. It may go either immediately
7378 after the @code{struct}, @code{union} or @code{enum} keyword, or after
7379 the closing brace. The former syntax is preferred.
7380 Where attribute specifiers follow the closing brace, they are considered
7381 to relate to the structure, union or enumerated type defined, not to any
7382 enclosing declaration the type specifier appears in, and the type
7383 defined is not complete until after the attribute specifiers.
7384 @c Otherwise, there would be the following problems: a shift/reduce
7385 @c conflict between attributes binding the struct/union/enum and
7386 @c binding to the list of specifiers/qualifiers; and "aligned"
7387 @c attributes could use sizeof for the structure, but the size could be
7388 @c changed later by "packed" attributes.
7391 @subsubheading All other attributes
7393 Otherwise, an attribute specifier appears as part of a declaration,
7394 counting declarations of unnamed parameters and type names, and relates
7395 to that declaration (which may be nested in another declaration, for
7396 example in the case of a parameter declaration), or to a particular declarator
7397 within a declaration. Where an
7398 attribute specifier is applied to a parameter declared as a function or
7399 an array, it should apply to the function or array rather than the
7400 pointer to which the parameter is implicitly converted, but this is not
7401 yet correctly implemented.
7403 Any list of specifiers and qualifiers at the start of a declaration may
7404 contain attribute specifiers, whether or not such a list may in that
7405 context contain storage class specifiers. (Some attributes, however,
7406 are essentially in the nature of storage class specifiers, and only make
7407 sense where storage class specifiers may be used; for example,
7408 @code{section}.) There is one necessary limitation to this syntax: the
7409 first old-style parameter declaration in a function definition cannot
7410 begin with an attribute specifier, because such an attribute applies to
7411 the function instead by syntax described below (which, however, is not
7412 yet implemented in this case). In some other cases, attribute
7413 specifiers are permitted by this grammar but not yet supported by the
7414 compiler. All attribute specifiers in this place relate to the
7415 declaration as a whole. In the obsolescent usage where a type of
7416 @code{int} is implied by the absence of type specifiers, such a list of
7417 specifiers and qualifiers may be an attribute specifier list with no
7418 other specifiers or qualifiers.
7420 At present, the first parameter in a function prototype must have some
7421 type specifier that is not an attribute specifier; this resolves an
7422 ambiguity in the interpretation of @code{void f(int
7423 (__attribute__((foo)) x))}, but is subject to change. At present, if
7424 the parentheses of a function declarator contain only attributes then
7425 those attributes are ignored, rather than yielding an error or warning
7426 or implying a single parameter of type int, but this is subject to
7429 An attribute specifier list may appear immediately before a declarator
7430 (other than the first) in a comma-separated list of declarators in a
7431 declaration of more than one identifier using a single list of
7432 specifiers and qualifiers. Such attribute specifiers apply
7433 only to the identifier before whose declarator they appear. For
7437 __attribute__((noreturn)) void d0 (void),
7438 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
7443 the @code{noreturn} attribute applies to all the functions
7444 declared; the @code{format} attribute only applies to @code{d1}.
7446 An attribute specifier list may appear immediately before the comma,
7447 @code{=} or semicolon terminating the declaration of an identifier other
7448 than a function definition. Such attribute specifiers apply
7449 to the declared object or function. Where an
7450 assembler name for an object or function is specified (@pxref{Asm
7451 Labels}), the attribute must follow the @code{asm}
7454 An attribute specifier list may, in future, be permitted to appear after
7455 the declarator in a function definition (before any old-style parameter
7456 declarations or the function body).
7458 Attribute specifiers may be mixed with type qualifiers appearing inside
7459 the @code{[]} of a parameter array declarator, in the C99 construct by
7460 which such qualifiers are applied to the pointer to which the array is
7461 implicitly converted. Such attribute specifiers apply to the pointer,
7462 not to the array, but at present this is not implemented and they are
7465 An attribute specifier list may appear at the start of a nested
7466 declarator. At present, there are some limitations in this usage: the
7467 attributes correctly apply to the declarator, but for most individual
7468 attributes the semantics this implies are not implemented.
7469 When attribute specifiers follow the @code{*} of a pointer
7470 declarator, they may be mixed with any type qualifiers present.
7471 The following describes the formal semantics of this syntax. It makes the
7472 most sense if you are familiar with the formal specification of
7473 declarators in the ISO C standard.
7475 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
7476 D1}, where @code{T} contains declaration specifiers that specify a type
7477 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
7478 contains an identifier @var{ident}. The type specified for @var{ident}
7479 for derived declarators whose type does not include an attribute
7480 specifier is as in the ISO C standard.
7482 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
7483 and the declaration @code{T D} specifies the type
7484 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7485 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7486 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
7488 If @code{D1} has the form @code{*
7489 @var{type-qualifier-and-attribute-specifier-list} D}, and the
7490 declaration @code{T D} specifies the type
7491 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7492 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7493 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
7499 void (__attribute__((noreturn)) ****f) (void);
7503 specifies the type ``pointer to pointer to pointer to pointer to
7504 non-returning function returning @code{void}''. As another example,
7507 char *__attribute__((aligned(8))) *f;
7511 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
7512 Note again that this does not work with most attributes; for example,
7513 the usage of @samp{aligned} and @samp{noreturn} attributes given above
7514 is not yet supported.
7516 For compatibility with existing code written for compiler versions that
7517 did not implement attributes on nested declarators, some laxity is
7518 allowed in the placing of attributes. If an attribute that only applies
7519 to types is applied to a declaration, it is treated as applying to
7520 the type of that declaration. If an attribute that only applies to
7521 declarations is applied to the type of a declaration, it is treated
7522 as applying to that declaration; and, for compatibility with code
7523 placing the attributes immediately before the identifier declared, such
7524 an attribute applied to a function return type is treated as
7525 applying to the function type, and such an attribute applied to an array
7526 element type is treated as applying to the array type. If an
7527 attribute that only applies to function types is applied to a
7528 pointer-to-function type, it is treated as applying to the pointer
7529 target type; if such an attribute is applied to a function return type
7530 that is not a pointer-to-function type, it is treated as applying
7531 to the function type.
7533 @node Function Prototypes
7534 @section Prototypes and Old-Style Function Definitions
7535 @cindex function prototype declarations
7536 @cindex old-style function definitions
7537 @cindex promotion of formal parameters
7539 GNU C extends ISO C to allow a function prototype to override a later
7540 old-style non-prototype definition. Consider the following example:
7543 /* @r{Use prototypes unless the compiler is old-fashioned.} */
7550 /* @r{Prototype function declaration.} */
7551 int isroot P((uid_t));
7553 /* @r{Old-style function definition.} */
7555 isroot (x) /* @r{??? lossage here ???} */
7562 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
7563 not allow this example, because subword arguments in old-style
7564 non-prototype definitions are promoted. Therefore in this example the
7565 function definition's argument is really an @code{int}, which does not
7566 match the prototype argument type of @code{short}.
7568 This restriction of ISO C makes it hard to write code that is portable
7569 to traditional C compilers, because the programmer does not know
7570 whether the @code{uid_t} type is @code{short}, @code{int}, or
7571 @code{long}. Therefore, in cases like these GNU C allows a prototype
7572 to override a later old-style definition. More precisely, in GNU C, a
7573 function prototype argument type overrides the argument type specified
7574 by a later old-style definition if the former type is the same as the
7575 latter type before promotion. Thus in GNU C the above example is
7576 equivalent to the following:
7589 GNU C++ does not support old-style function definitions, so this
7590 extension is irrelevant.
7593 @section C++ Style Comments
7595 @cindex C++ comments
7596 @cindex comments, C++ style
7598 In GNU C, you may use C++ style comments, which start with @samp{//} and
7599 continue until the end of the line. Many other C implementations allow
7600 such comments, and they are included in the 1999 C standard. However,
7601 C++ style comments are not recognized if you specify an @option{-std}
7602 option specifying a version of ISO C before C99, or @option{-ansi}
7603 (equivalent to @option{-std=c90}).
7606 @section Dollar Signs in Identifier Names
7608 @cindex dollar signs in identifier names
7609 @cindex identifier names, dollar signs in
7611 In GNU C, you may normally use dollar signs in identifier names.
7612 This is because many traditional C implementations allow such identifiers.
7613 However, dollar signs in identifiers are not supported on a few target
7614 machines, typically because the target assembler does not allow them.
7616 @node Character Escapes
7617 @section The Character @key{ESC} in Constants
7619 You can use the sequence @samp{\e} in a string or character constant to
7620 stand for the ASCII character @key{ESC}.
7623 @section Inquiring on Alignment of Types or Variables
7625 @cindex type alignment
7626 @cindex variable alignment
7628 The keyword @code{__alignof__} allows you to inquire about how an object
7629 is aligned, or the minimum alignment usually required by a type. Its
7630 syntax is just like @code{sizeof}.
7632 For example, if the target machine requires a @code{double} value to be
7633 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
7634 This is true on many RISC machines. On more traditional machine
7635 designs, @code{__alignof__ (double)} is 4 or even 2.
7637 Some machines never actually require alignment; they allow reference to any
7638 data type even at an odd address. For these machines, @code{__alignof__}
7639 reports the smallest alignment that GCC gives the data type, usually as
7640 mandated by the target ABI.
7642 If the operand of @code{__alignof__} is an lvalue rather than a type,
7643 its value is the required alignment for its type, taking into account
7644 any minimum alignment specified with GCC's @code{__attribute__}
7645 extension (@pxref{Variable Attributes}). For example, after this
7649 struct foo @{ int x; char y; @} foo1;
7653 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
7654 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
7656 It is an error to ask for the alignment of an incomplete type.
7660 @section An Inline Function is As Fast As a Macro
7661 @cindex inline functions
7662 @cindex integrating function code
7664 @cindex macros, inline alternative
7666 By declaring a function inline, you can direct GCC to make
7667 calls to that function faster. One way GCC can achieve this is to
7668 integrate that function's code into the code for its callers. This
7669 makes execution faster by eliminating the function-call overhead; in
7670 addition, if any of the actual argument values are constant, their
7671 known values may permit simplifications at compile time so that not
7672 all of the inline function's code needs to be included. The effect on
7673 code size is less predictable; object code may be larger or smaller
7674 with function inlining, depending on the particular case. You can
7675 also direct GCC to try to integrate all ``simple enough'' functions
7676 into their callers with the option @option{-finline-functions}.
7678 GCC implements three different semantics of declaring a function
7679 inline. One is available with @option{-std=gnu89} or
7680 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
7681 on all inline declarations, another when
7682 @option{-std=c99}, @option{-std=c11},
7683 @option{-std=gnu99} or @option{-std=gnu11}
7684 (without @option{-fgnu89-inline}), and the third
7685 is used when compiling C++.
7687 To declare a function inline, use the @code{inline} keyword in its
7688 declaration, like this:
7698 If you are writing a header file to be included in ISO C90 programs, write
7699 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
7701 The three types of inlining behave similarly in two important cases:
7702 when the @code{inline} keyword is used on a @code{static} function,
7703 like the example above, and when a function is first declared without
7704 using the @code{inline} keyword and then is defined with
7705 @code{inline}, like this:
7708 extern int inc (int *a);
7716 In both of these common cases, the program behaves the same as if you
7717 had not used the @code{inline} keyword, except for its speed.
7719 @cindex inline functions, omission of
7720 @opindex fkeep-inline-functions
7721 When a function is both inline and @code{static}, if all calls to the
7722 function are integrated into the caller, and the function's address is
7723 never used, then the function's own assembler code is never referenced.
7724 In this case, GCC does not actually output assembler code for the
7725 function, unless you specify the option @option{-fkeep-inline-functions}.
7726 If there is a nonintegrated call, then the function is compiled to
7727 assembler code as usual. The function must also be compiled as usual if
7728 the program refers to its address, because that cannot be inlined.
7731 Note that certain usages in a function definition can make it unsuitable
7732 for inline substitution. Among these usages are: variadic functions,
7733 use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
7734 use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
7735 of @code{__builtin_longjmp} and use of @code{__builtin_return} or
7736 @code{__builtin_apply_args}. Using @option{-Winline} warns when a
7737 function marked @code{inline} could not be substituted, and gives the
7738 reason for the failure.
7740 @cindex automatic @code{inline} for C++ member fns
7741 @cindex @code{inline} automatic for C++ member fns
7742 @cindex member fns, automatically @code{inline}
7743 @cindex C++ member fns, automatically @code{inline}
7744 @opindex fno-default-inline
7745 As required by ISO C++, GCC considers member functions defined within
7746 the body of a class to be marked inline even if they are
7747 not explicitly declared with the @code{inline} keyword. You can
7748 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
7749 Options,,Options Controlling C++ Dialect}.
7751 GCC does not inline any functions when not optimizing unless you specify
7752 the @samp{always_inline} attribute for the function, like this:
7755 /* @r{Prototype.} */
7756 inline void foo (const char) __attribute__((always_inline));
7759 The remainder of this section is specific to GNU C90 inlining.
7761 @cindex non-static inline function
7762 When an inline function is not @code{static}, then the compiler must assume
7763 that there may be calls from other source files; since a global symbol can
7764 be defined only once in any program, the function must not be defined in
7765 the other source files, so the calls therein cannot be integrated.
7766 Therefore, a non-@code{static} inline function is always compiled on its
7767 own in the usual fashion.
7769 If you specify both @code{inline} and @code{extern} in the function
7770 definition, then the definition is used only for inlining. In no case
7771 is the function compiled on its own, not even if you refer to its
7772 address explicitly. Such an address becomes an external reference, as
7773 if you had only declared the function, and had not defined it.
7775 This combination of @code{inline} and @code{extern} has almost the
7776 effect of a macro. The way to use it is to put a function definition in
7777 a header file with these keywords, and put another copy of the
7778 definition (lacking @code{inline} and @code{extern}) in a library file.
7779 The definition in the header file causes most calls to the function
7780 to be inlined. If any uses of the function remain, they refer to
7781 the single copy in the library.
7784 @section When is a Volatile Object Accessed?
7785 @cindex accessing volatiles
7786 @cindex volatile read
7787 @cindex volatile write
7788 @cindex volatile access
7790 C has the concept of volatile objects. These are normally accessed by
7791 pointers and used for accessing hardware or inter-thread
7792 communication. The standard encourages compilers to refrain from
7793 optimizations concerning accesses to volatile objects, but leaves it
7794 implementation defined as to what constitutes a volatile access. The
7795 minimum requirement is that at a sequence point all previous accesses
7796 to volatile objects have stabilized and no subsequent accesses have
7797 occurred. Thus an implementation is free to reorder and combine
7798 volatile accesses that occur between sequence points, but cannot do
7799 so for accesses across a sequence point. The use of volatile does
7800 not allow you to violate the restriction on updating objects multiple
7801 times between two sequence points.
7803 Accesses to non-volatile objects are not ordered with respect to
7804 volatile accesses. You cannot use a volatile object as a memory
7805 barrier to order a sequence of writes to non-volatile memory. For
7809 int *ptr = @var{something};
7811 *ptr = @var{something};
7816 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
7817 that the write to @var{*ptr} occurs by the time the update
7818 of @var{vobj} happens. If you need this guarantee, you must use
7819 a stronger memory barrier such as:
7822 int *ptr = @var{something};
7824 *ptr = @var{something};
7825 asm volatile ("" : : : "memory");
7829 A scalar volatile object is read when it is accessed in a void context:
7832 volatile int *src = @var{somevalue};
7836 Such expressions are rvalues, and GCC implements this as a
7837 read of the volatile object being pointed to.
7839 Assignments are also expressions and have an rvalue. However when
7840 assigning to a scalar volatile, the volatile object is not reread,
7841 regardless of whether the assignment expression's rvalue is used or
7842 not. If the assignment's rvalue is used, the value is that assigned
7843 to the volatile object. For instance, there is no read of @var{vobj}
7844 in all the following cases:
7849 vobj = @var{something};
7850 obj = vobj = @var{something};
7851 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
7852 obj = (@var{something}, vobj = @var{anotherthing});
7855 If you need to read the volatile object after an assignment has
7856 occurred, you must use a separate expression with an intervening
7859 As bit-fields are not individually addressable, volatile bit-fields may
7860 be implicitly read when written to, or when adjacent bit-fields are
7861 accessed. Bit-field operations may be optimized such that adjacent
7862 bit-fields are only partially accessed, if they straddle a storage unit
7863 boundary. For these reasons it is unwise to use volatile bit-fields to
7866 @node Using Assembly Language with C
7867 @section How to Use Inline Assembly Language in C Code
7868 @cindex @code{asm} keyword
7869 @cindex assembly language in C
7870 @cindex inline assembly language
7871 @cindex mixing assembly language and C
7873 The @code{asm} keyword allows you to embed assembler instructions
7874 within C code. GCC provides two forms of inline @code{asm}
7875 statements. A @dfn{basic @code{asm}} statement is one with no
7876 operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
7877 statement (@pxref{Extended Asm}) includes one or more operands.
7878 The extended form is preferred for mixing C and assembly language
7879 within a function, but to include assembly language at
7880 top level you must use basic @code{asm}.
7882 You can also use the @code{asm} keyword to override the assembler name
7883 for a C symbol, or to place a C variable in a specific register.
7886 * Basic Asm:: Inline assembler without operands.
7887 * Extended Asm:: Inline assembler with operands.
7888 * Constraints:: Constraints for @code{asm} operands
7889 * Asm Labels:: Specifying the assembler name to use for a C symbol.
7890 * Explicit Register Variables:: Defining variables residing in specified
7892 * Size of an asm:: How GCC calculates the size of an @code{asm} block.
7896 @subsection Basic Asm --- Assembler Instructions Without Operands
7897 @cindex basic @code{asm}
7898 @cindex assembly language in C, basic
7900 A basic @code{asm} statement has the following syntax:
7903 asm @r{[} volatile @r{]} ( @var{AssemblerInstructions} )
7906 The @code{asm} keyword is a GNU extension.
7907 When writing code that can be compiled with @option{-ansi} and the
7908 various @option{-std} options, use @code{__asm__} instead of
7909 @code{asm} (@pxref{Alternate Keywords}).
7911 @subsubheading Qualifiers
7914 The optional @code{volatile} qualifier has no effect.
7915 All basic @code{asm} blocks are implicitly volatile.
7918 @subsubheading Parameters
7921 @item AssemblerInstructions
7922 This is a literal string that specifies the assembler code. The string can
7923 contain any instructions recognized by the assembler, including directives.
7924 GCC does not parse the assembler instructions themselves and
7925 does not know what they mean or even whether they are valid assembler input.
7927 You may place multiple assembler instructions together in a single @code{asm}
7928 string, separated by the characters normally used in assembly code for the
7929 system. A combination that works in most places is a newline to break the
7930 line, plus a tab character (written as @samp{\n\t}).
7931 Some assemblers allow semicolons as a line separator. However,
7932 note that some assembler dialects use semicolons to start a comment.
7935 @subsubheading Remarks
7936 Using extended @code{asm} (@pxref{Extended Asm}) typically produces
7937 smaller, safer, and more efficient code, and in most cases it is a
7938 better solution than basic @code{asm}. However, there are two
7939 situations where only basic @code{asm} can be used:
7943 Extended @code{asm} statements have to be inside a C
7944 function, so to write inline assembly language at file scope (``top-level''),
7945 outside of C functions, you must use basic @code{asm}.
7946 You can use this technique to emit assembler directives,
7947 define assembly language macros that can be invoked elsewhere in the file,
7948 or write entire functions in assembly language.
7952 with the @code{naked} attribute also require basic @code{asm}
7953 (@pxref{Function Attributes}).
7956 Safely accessing C data and calling functions from basic @code{asm} is more
7957 complex than it may appear. To access C data, it is better to use extended
7960 Do not expect a sequence of @code{asm} statements to remain perfectly
7961 consecutive after compilation. If certain instructions need to remain
7962 consecutive in the output, put them in a single multi-instruction @code{asm}
7963 statement. Note that GCC's optimizers can move @code{asm} statements
7964 relative to other code, including across jumps.
7966 @code{asm} statements may not perform jumps into other @code{asm} statements.
7967 GCC does not know about these jumps, and therefore cannot take
7968 account of them when deciding how to optimize. Jumps from @code{asm} to C
7969 labels are only supported in extended @code{asm}.
7971 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
7972 assembly code when optimizing. This can lead to unexpected duplicate
7973 symbol errors during compilation if your assembly code defines symbols or
7976 @strong{Warning:} The C standards do not specify semantics for @code{asm},
7977 making it a potential source of incompatibilities between compilers. These
7978 incompatibilities may not produce compiler warnings/errors.
7980 GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which
7981 means there is no way to communicate to the compiler what is happening
7982 inside them. GCC has no visibility of symbols in the @code{asm} and may
7983 discard them as unreferenced. It also does not know about side effects of
7984 the assembler code, such as modifications to memory or registers. Unlike
7985 some compilers, GCC assumes that no changes to general purpose registers
7986 occur. This assumption may change in a future release.
7988 To avoid complications from future changes to the semantics and the
7989 compatibility issues between compilers, consider replacing basic @code{asm}
7990 with extended @code{asm}. See
7991 @uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert
7992 from basic asm to extended asm} for information about how to perform this
7995 The compiler copies the assembler instructions in a basic @code{asm}
7996 verbatim to the assembly language output file, without
7997 processing dialects or any of the @samp{%} operators that are available with
7998 extended @code{asm}. This results in minor differences between basic
7999 @code{asm} strings and extended @code{asm} templates. For example, to refer to
8000 registers you might use @samp{%eax} in basic @code{asm} and
8001 @samp{%%eax} in extended @code{asm}.
8003 On targets such as x86 that support multiple assembler dialects,
8004 all basic @code{asm} blocks use the assembler dialect specified by the
8005 @option{-masm} command-line option (@pxref{x86 Options}).
8006 Basic @code{asm} provides no
8007 mechanism to provide different assembler strings for different dialects.
8009 For basic @code{asm} with non-empty assembler string GCC assumes
8010 the assembler block does not change any general purpose registers,
8011 but it may read or write any globally accessible variable.
8013 Here is an example of basic @code{asm} for i386:
8016 /* Note that this code will not compile with -masm=intel */
8017 #define DebugBreak() asm("int $3")
8021 @subsection Extended Asm - Assembler Instructions with C Expression Operands
8022 @cindex extended @code{asm}
8023 @cindex assembly language in C, extended
8025 With extended @code{asm} you can read and write C variables from
8026 assembler and perform jumps from assembler code to C labels.
8027 Extended @code{asm} syntax uses colons (@samp{:}) to delimit
8028 the operand parameters after the assembler template:
8031 asm @r{[}volatile@r{]} ( @var{AssemblerTemplate}
8032 : @var{OutputOperands}
8033 @r{[} : @var{InputOperands}
8034 @r{[} : @var{Clobbers} @r{]} @r{]})
8036 asm @r{[}volatile@r{]} goto ( @var{AssemblerTemplate}
8038 : @var{InputOperands}
8043 The @code{asm} keyword is a GNU extension.
8044 When writing code that can be compiled with @option{-ansi} and the
8045 various @option{-std} options, use @code{__asm__} instead of
8046 @code{asm} (@pxref{Alternate Keywords}).
8048 @subsubheading Qualifiers
8052 The typical use of extended @code{asm} statements is to manipulate input
8053 values to produce output values. However, your @code{asm} statements may
8054 also produce side effects. If so, you may need to use the @code{volatile}
8055 qualifier to disable certain optimizations. @xref{Volatile}.
8058 This qualifier informs the compiler that the @code{asm} statement may
8059 perform a jump to one of the labels listed in the @var{GotoLabels}.
8063 @subsubheading Parameters
8065 @item AssemblerTemplate
8066 This is a literal string that is the template for the assembler code. It is a
8067 combination of fixed text and tokens that refer to the input, output,
8068 and goto parameters. @xref{AssemblerTemplate}.
8070 @item OutputOperands
8071 A comma-separated list of the C variables modified by the instructions in the
8072 @var{AssemblerTemplate}. An empty list is permitted. @xref{OutputOperands}.
8075 A comma-separated list of C expressions read by the instructions in the
8076 @var{AssemblerTemplate}. An empty list is permitted. @xref{InputOperands}.
8079 A comma-separated list of registers or other values changed by the
8080 @var{AssemblerTemplate}, beyond those listed as outputs.
8081 An empty list is permitted. @xref{Clobbers}.
8084 When you are using the @code{goto} form of @code{asm}, this section contains
8085 the list of all C labels to which the code in the
8086 @var{AssemblerTemplate} may jump.
8089 @code{asm} statements may not perform jumps into other @code{asm} statements,
8090 only to the listed @var{GotoLabels}.
8091 GCC's optimizers do not know about other jumps; therefore they cannot take
8092 account of them when deciding how to optimize.
8095 The total number of input + output + goto operands is limited to 30.
8097 @subsubheading Remarks
8098 The @code{asm} statement allows you to include assembly instructions directly
8099 within C code. This may help you to maximize performance in time-sensitive
8100 code or to access assembly instructions that are not readily available to C
8103 Note that extended @code{asm} statements must be inside a function. Only
8104 basic @code{asm} may be outside functions (@pxref{Basic Asm}).
8105 Functions declared with the @code{naked} attribute also require basic
8106 @code{asm} (@pxref{Function Attributes}).
8108 While the uses of @code{asm} are many and varied, it may help to think of an
8109 @code{asm} statement as a series of low-level instructions that convert input
8110 parameters to output parameters. So a simple (if not particularly useful)
8111 example for i386 using @code{asm} might look like this:
8117 asm ("mov %1, %0\n\t"
8122 printf("%d\n", dst);
8125 This code copies @code{src} to @code{dst} and add 1 to @code{dst}.
8128 @subsubsection Volatile
8129 @cindex volatile @code{asm}
8130 @cindex @code{asm} volatile
8132 GCC's optimizers sometimes discard @code{asm} statements if they determine
8133 there is no need for the output variables. Also, the optimizers may move
8134 code out of loops if they believe that the code will always return the same
8135 result (i.e. none of its input values change between calls). Using the
8136 @code{volatile} qualifier disables these optimizations. @code{asm} statements
8137 that have no output operands, including @code{asm goto} statements,
8138 are implicitly volatile.
8140 This i386 code demonstrates a case that does not use (or require) the
8141 @code{volatile} qualifier. If it is performing assertion checking, this code
8142 uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is
8143 unreferenced by any code. As a result, the optimizers can discard the
8144 @code{asm} statement, which in turn removes the need for the entire
8145 @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it
8146 isn't needed you allow the optimizers to produce the most efficient code
8150 void DoCheck(uint32_t dwSomeValue)
8154 // Assumes dwSomeValue is not zero.
8164 The next example shows a case where the optimizers can recognize that the input
8165 (@code{dwSomeValue}) never changes during the execution of the function and can
8166 therefore move the @code{asm} outside the loop to produce more efficient code.
8167 Again, using @code{volatile} disables this type of optimization.
8170 void do_print(uint32_t dwSomeValue)
8174 for (uint32_t x=0; x < 5; x++)
8176 // Assumes dwSomeValue is not zero.
8182 printf("%u: %u %u\n", x, dwSomeValue, dwRes);
8187 The following example demonstrates a case where you need to use the
8188 @code{volatile} qualifier.
8189 It uses the x86 @code{rdtsc} instruction, which reads
8190 the computer's time-stamp counter. Without the @code{volatile} qualifier,
8191 the optimizers might assume that the @code{asm} block will always return the
8192 same value and therefore optimize away the second call.
8197 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
8198 "shl $32, %%rdx\n\t" // Shift the upper bits left.
8199 "or %%rdx, %0" // 'Or' in the lower bits.
8204 printf("msr: %llx\n", msr);
8208 // Reprint the timestamp
8209 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
8210 "shl $32, %%rdx\n\t" // Shift the upper bits left.
8211 "or %%rdx, %0" // 'Or' in the lower bits.
8216 printf("msr: %llx\n", msr);
8219 GCC's optimizers do not treat this code like the non-volatile code in the
8220 earlier examples. They do not move it out of loops or omit it on the
8221 assumption that the result from a previous call is still valid.
8223 Note that the compiler can move even volatile @code{asm} instructions relative
8224 to other code, including across jump instructions. For example, on many
8225 targets there is a system register that controls the rounding mode of
8226 floating-point operations. Setting it with a volatile @code{asm}, as in the
8227 following PowerPC example, does not work reliably.
8230 asm volatile("mtfsf 255, %0" : : "f" (fpenv));
8234 The compiler may move the addition back before the volatile @code{asm}. To
8235 make it work as expected, add an artificial dependency to the @code{asm} by
8236 referencing a variable in the subsequent code, for example:
8239 asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
8243 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
8244 assembly code when optimizing. This can lead to unexpected duplicate symbol
8245 errors during compilation if your asm code defines symbols or labels.
8247 (@pxref{AssemblerTemplate}) may help resolve this problem.
8249 @anchor{AssemblerTemplate}
8250 @subsubsection Assembler Template
8251 @cindex @code{asm} assembler template
8253 An assembler template is a literal string containing assembler instructions.
8254 The compiler replaces tokens in the template that refer
8255 to inputs, outputs, and goto labels,
8256 and then outputs the resulting string to the assembler. The
8257 string can contain any instructions recognized by the assembler, including
8258 directives. GCC does not parse the assembler instructions
8259 themselves and does not know what they mean or even whether they are valid
8260 assembler input. However, it does count the statements
8261 (@pxref{Size of an asm}).
8263 You may place multiple assembler instructions together in a single @code{asm}
8264 string, separated by the characters normally used in assembly code for the
8265 system. A combination that works in most places is a newline to break the
8266 line, plus a tab character to move to the instruction field (written as
8268 Some assemblers allow semicolons as a line separator. However, note
8269 that some assembler dialects use semicolons to start a comment.
8271 Do not expect a sequence of @code{asm} statements to remain perfectly
8272 consecutive after compilation, even when you are using the @code{volatile}
8273 qualifier. If certain instructions need to remain consecutive in the output,
8274 put them in a single multi-instruction asm statement.
8276 Accessing data from C programs without using input/output operands (such as
8277 by using global symbols directly from the assembler template) may not work as
8278 expected. Similarly, calling functions directly from an assembler template
8279 requires a detailed understanding of the target assembler and ABI.
8281 Since GCC does not parse the assembler template,
8282 it has no visibility of any
8283 symbols it references. This may result in GCC discarding those symbols as
8284 unreferenced unless they are also listed as input, output, or goto operands.
8286 @subsubheading Special format strings
8288 In addition to the tokens described by the input, output, and goto operands,
8289 these tokens have special meanings in the assembler template:
8293 Outputs a single @samp{%} into the assembler code.
8296 Outputs a number that is unique to each instance of the @code{asm}
8297 statement in the entire compilation. This option is useful when creating local
8298 labels and referring to them multiple times in a single template that
8299 generates multiple assembler instructions.
8304 Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
8305 into the assembler code. When unescaped, these characters have special
8306 meaning to indicate multiple assembler dialects, as described below.
8309 @subsubheading Multiple assembler dialects in @code{asm} templates
8311 On targets such as x86, GCC supports multiple assembler dialects.
8312 The @option{-masm} option controls which dialect GCC uses as its
8313 default for inline assembler. The target-specific documentation for the
8314 @option{-masm} option contains the list of supported dialects, as well as the
8315 default dialect if the option is not specified. This information may be
8316 important to understand, since assembler code that works correctly when
8317 compiled using one dialect will likely fail if compiled using another.
8320 If your code needs to support multiple assembler dialects (for example, if
8321 you are writing public headers that need to support a variety of compilation
8322 options), use constructs of this form:
8325 @{ dialect0 | dialect1 | dialect2... @}
8328 This construct outputs @code{dialect0}
8329 when using dialect #0 to compile the code,
8330 @code{dialect1} for dialect #1, etc. If there are fewer alternatives within the
8331 braces than the number of dialects the compiler supports, the construct
8334 For example, if an x86 compiler supports two dialects
8335 (@samp{att}, @samp{intel}), an
8336 assembler template such as this:
8339 "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
8343 is equivalent to one of
8346 "btl %[Offset],%[Base] ; jc %l2" @r{/* att dialect */}
8347 "bt %[Base],%[Offset]; jc %l2" @r{/* intel dialect */}
8350 Using that same compiler, this code:
8353 "xchg@{l@}\t@{%%@}ebx, %1"
8357 corresponds to either
8360 "xchgl\t%%ebx, %1" @r{/* att dialect */}
8361 "xchg\tebx, %1" @r{/* intel dialect */}
8364 There is no support for nesting dialect alternatives.
8366 @anchor{OutputOperands}
8367 @subsubsection Output Operands
8368 @cindex @code{asm} output operands
8370 An @code{asm} statement has zero or more output operands indicating the names
8371 of C variables modified by the assembler code.
8373 In this i386 example, @code{old} (referred to in the template string as
8374 @code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset}
8375 (@code{%2}) is an input:
8380 __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
8381 "sbb %0,%0" // Use the CF to calculate old.
8382 : "=r" (old), "+rm" (*Base)
8389 Operands are separated by commas. Each operand has this format:
8392 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
8396 @item asmSymbolicName
8397 Specifies a symbolic name for the operand.
8398 Reference the name in the assembler template
8399 by enclosing it in square brackets
8400 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8401 that contains the definition. Any valid C variable name is acceptable,
8402 including names already defined in the surrounding code. No two operands
8403 within the same @code{asm} statement can use the same symbolic name.
8405 When not using an @var{asmSymbolicName}, use the (zero-based) position
8407 in the list of operands in the assembler template. For example if there are
8408 three output operands, use @samp{%0} in the template to refer to the first,
8409 @samp{%1} for the second, and @samp{%2} for the third.
8412 A string constant specifying constraints on the placement of the operand;
8413 @xref{Constraints}, for details.
8415 Output constraints must begin with either @samp{=} (a variable overwriting an
8416 existing value) or @samp{+} (when reading and writing). When using
8417 @samp{=}, do not assume the location contains the existing value
8418 on entry to the @code{asm}, except
8419 when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.
8421 After the prefix, there must be one or more additional constraints
8422 (@pxref{Constraints}) that describe where the value resides. Common
8423 constraints include @samp{r} for register and @samp{m} for memory.
8424 When you list more than one possible location (for example, @code{"=rm"}),
8425 the compiler chooses the most efficient one based on the current context.
8426 If you list as many alternates as the @code{asm} statement allows, you permit
8427 the optimizers to produce the best possible code.
8428 If you must use a specific register, but your Machine Constraints do not
8429 provide sufficient control to select the specific register you want,
8430 local register variables may provide a solution (@pxref{Local Register
8434 Specifies a C lvalue expression to hold the output, typically a variable name.
8435 The enclosing parentheses are a required part of the syntax.
8439 When the compiler selects the registers to use to
8440 represent the output operands, it does not use any of the clobbered registers
8443 Output operand expressions must be lvalues. The compiler cannot check whether
8444 the operands have data types that are reasonable for the instruction being
8445 executed. For output expressions that are not directly addressable (for
8446 example a bit-field), the constraint must allow a register. In that case, GCC
8447 uses the register as the output of the @code{asm}, and then stores that
8448 register into the output.
8450 Operands using the @samp{+} constraint modifier count as two operands
8451 (that is, both as input and output) towards the total maximum of 30 operands
8452 per @code{asm} statement.
8454 Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
8455 operands that must not overlap an input. Otherwise,
8456 GCC may allocate the output operand in the same register as an unrelated
8457 input operand, on the assumption that the assembler code consumes its
8458 inputs before producing outputs. This assumption may be false if the assembler
8459 code actually consists of more than one instruction.
8461 The same problem can occur if one output parameter (@var{a}) allows a register
8462 constraint and another output parameter (@var{b}) allows a memory constraint.
8463 The code generated by GCC to access the memory address in @var{b} can contain
8464 registers which @emph{might} be shared by @var{a}, and GCC considers those
8465 registers to be inputs to the asm. As above, GCC assumes that such input
8466 registers are consumed before any outputs are written. This assumption may
8467 result in incorrect behavior if the asm writes to @var{a} before using
8468 @var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
8469 ensures that modifying @var{a} does not affect the address referenced by
8470 @var{b}. Otherwise, the location of @var{b}
8471 is undefined if @var{a} is modified before using @var{b}.
8473 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8474 instead of simply @samp{%2}). Typically these qualifiers are hardware
8475 dependent. The list of supported modifiers for x86 is found at
8476 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8478 If the C code that follows the @code{asm} makes no use of any of the output
8479 operands, use @code{volatile} for the @code{asm} statement to prevent the
8480 optimizers from discarding the @code{asm} statement as unneeded
8481 (see @ref{Volatile}).
8483 This code makes no use of the optional @var{asmSymbolicName}. Therefore it
8484 references the first output operand as @code{%0} (were there a second, it
8485 would be @code{%1}, etc). The number of the first input operand is one greater
8486 than that of the last output operand. In this i386 example, that makes
8487 @code{Mask} referenced as @code{%1}:
8490 uint32_t Mask = 1234;
8499 That code overwrites the variable @code{Index} (@samp{=}),
8500 placing the value in a register (@samp{r}).
8501 Using the generic @samp{r} constraint instead of a constraint for a specific
8502 register allows the compiler to pick the register to use, which can result
8503 in more efficient code. This may not be possible if an assembler instruction
8504 requires a specific register.
8506 The following i386 example uses the @var{asmSymbolicName} syntax.
8508 same result as the code above, but some may consider it more readable or more
8509 maintainable since reordering index numbers is not necessary when adding or
8510 removing operands. The names @code{aIndex} and @code{aMask}
8511 are only used in this example to emphasize which
8512 names get used where.
8513 It is acceptable to reuse the names @code{Index} and @code{Mask}.
8516 uint32_t Mask = 1234;
8519 asm ("bsfl %[aMask], %[aIndex]"
8520 : [aIndex] "=r" (Index)
8521 : [aMask] "r" (Mask)
8525 Here are some more examples of output operands.
8532 asm ("mov %[e], %[d]"
8537 Here, @code{d} may either be in a register or in memory. Since the compiler
8538 might already have the current value of the @code{uint32_t} location
8539 pointed to by @code{e}
8540 in a register, you can enable it to choose the best location
8541 for @code{d} by specifying both constraints.
8543 @anchor{FlagOutputOperands}
8544 @subsubsection Flag Output Operands
8545 @cindex @code{asm} flag output operands
8547 Some targets have a special register that holds the ``flags'' for the
8548 result of an operation or comparison. Normally, the contents of that
8549 register are either unmodifed by the asm, or the asm is considered to
8550 clobber the contents.
8552 On some targets, a special form of output operand exists by which
8553 conditions in the flags register may be outputs of the asm. The set of
8554 conditions supported are target specific, but the general rule is that
8555 the output variable must be a scalar integer, and the value is boolean.
8556 When supported, the target defines the preprocessor symbol
8557 @code{__GCC_ASM_FLAG_OUTPUTS__}.
8559 Because of the special nature of the flag output operands, the constraint
8560 may not include alternatives.
8562 Most often, the target has only one flags register, and thus is an implied
8563 operand of many instructions. In this case, the operand should not be
8564 referenced within the assembler template via @code{%0} etc, as there's
8565 no corresponding text in the assembly language.
8569 The flag output constraints for the x86 family are of the form
8570 @samp{=@@cc@var{cond}} where @var{cond} is one of the standard
8571 conditions defined in the ISA manual for @code{j@var{cc}} or
8576 ``above'' or unsigned greater than
8578 ``above or equal'' or unsigned greater than or equal
8580 ``below'' or unsigned less than
8582 ``below or equal'' or unsigned less than or equal
8587 ``equal'' or zero flag set
8591 signed greater than or equal
8595 signed less than or equal
8616 ``not'' @var{flag}, or inverted versions of those above
8621 @anchor{InputOperands}
8622 @subsubsection Input Operands
8623 @cindex @code{asm} input operands
8624 @cindex @code{asm} expressions
8626 Input operands make values from C variables and expressions available to the
8629 Operands are separated by commas. Each operand has this format:
8632 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
8636 @item asmSymbolicName
8637 Specifies a symbolic name for the operand.
8638 Reference the name in the assembler template
8639 by enclosing it in square brackets
8640 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8641 that contains the definition. Any valid C variable name is acceptable,
8642 including names already defined in the surrounding code. No two operands
8643 within the same @code{asm} statement can use the same symbolic name.
8645 When not using an @var{asmSymbolicName}, use the (zero-based) position
8647 in the list of operands in the assembler template. For example if there are
8648 two output operands and three inputs,
8649 use @samp{%2} in the template to refer to the first input operand,
8650 @samp{%3} for the second, and @samp{%4} for the third.
8653 A string constant specifying constraints on the placement of the operand;
8654 @xref{Constraints}, for details.
8656 Input constraint strings may not begin with either @samp{=} or @samp{+}.
8657 When you list more than one possible location (for example, @samp{"irm"}),
8658 the compiler chooses the most efficient one based on the current context.
8659 If you must use a specific register, but your Machine Constraints do not
8660 provide sufficient control to select the specific register you want,
8661 local register variables may provide a solution (@pxref{Local Register
8664 Input constraints can also be digits (for example, @code{"0"}). This indicates
8665 that the specified input must be in the same place as the output constraint
8666 at the (zero-based) index in the output constraint list.
8667 When using @var{asmSymbolicName} syntax for the output operands,
8668 you may use these names (enclosed in brackets @samp{[]}) instead of digits.
8671 This is the C variable or expression being passed to the @code{asm} statement
8672 as input. The enclosing parentheses are a required part of the syntax.
8676 When the compiler selects the registers to use to represent the input
8677 operands, it does not use any of the clobbered registers (@pxref{Clobbers}).
8679 If there are no output operands but there are input operands, place two
8680 consecutive colons where the output operands would go:
8683 __asm__ ("some instructions"
8685 : "r" (Offset / 8));
8688 @strong{Warning:} Do @emph{not} modify the contents of input-only operands
8689 (except for inputs tied to outputs). The compiler assumes that on exit from
8690 the @code{asm} statement these operands contain the same values as they
8691 had before executing the statement.
8692 It is @emph{not} possible to use clobbers
8693 to inform the compiler that the values in these inputs are changing. One
8694 common work-around is to tie the changing input variable to an output variable
8695 that never gets used. Note, however, that if the code that follows the
8696 @code{asm} statement makes no use of any of the output operands, the GCC
8697 optimizers may discard the @code{asm} statement as unneeded
8698 (see @ref{Volatile}).
8700 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8701 instead of simply @samp{%2}). Typically these qualifiers are hardware
8702 dependent. The list of supported modifiers for x86 is found at
8703 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8705 In this example using the fictitious @code{combine} instruction, the
8706 constraint @code{"0"} for input operand 1 says that it must occupy the same
8707 location as output operand 0. Only input operands may use numbers in
8708 constraints, and they must each refer to an output operand. Only a number (or
8709 the symbolic assembler name) in the constraint can guarantee that one operand
8710 is in the same place as another. The mere fact that @code{foo} is the value of
8711 both operands is not enough to guarantee that they are in the same place in
8712 the generated assembler code.
8715 asm ("combine %2, %0"
8717 : "0" (foo), "g" (bar));
8720 Here is an example using symbolic names.
8723 asm ("cmoveq %1, %2, %[result]"
8724 : [result] "=r"(result)
8725 : "r" (test), "r" (new), "[result]" (old));
8729 @subsubsection Clobbers
8730 @cindex @code{asm} clobbers
8732 While the compiler is aware of changes to entries listed in the output
8733 operands, the inline @code{asm} code may modify more than just the outputs. For
8734 example, calculations may require additional registers, or the processor may
8735 overwrite a register as a side effect of a particular assembler instruction.
8736 In order to inform the compiler of these changes, list them in the clobber
8737 list. Clobber list items are either register names or the special clobbers
8738 (listed below). Each clobber list item is a string constant
8739 enclosed in double quotes and separated by commas.
8741 Clobber descriptions may not in any way overlap with an input or output
8742 operand. For example, you may not have an operand describing a register class
8743 with one member when listing that register in the clobber list. Variables
8744 declared to live in specific registers (@pxref{Explicit Register
8745 Variables}) and used
8746 as @code{asm} input or output operands must have no part mentioned in the
8747 clobber description. In particular, there is no way to specify that input
8748 operands get modified without also specifying them as output operands.
8750 When the compiler selects which registers to use to represent input and output
8751 operands, it does not use any of the clobbered registers. As a result,
8752 clobbered registers are available for any use in the assembler code.
8754 Here is a realistic example for the VAX showing the use of clobbered
8758 asm volatile ("movc3 %0, %1, %2"
8760 : "g" (from), "g" (to), "g" (count)
8761 : "r0", "r1", "r2", "r3", "r4", "r5");
8764 Also, there are two special clobber arguments:
8768 The @code{"cc"} clobber indicates that the assembler code modifies the flags
8769 register. On some machines, GCC represents the condition codes as a specific
8770 hardware register; @code{"cc"} serves to name this register.
8771 On other machines, condition code handling is different,
8772 and specifying @code{"cc"} has no effect. But
8773 it is valid no matter what the target.
8776 The @code{"memory"} clobber tells the compiler that the assembly code
8778 reads or writes to items other than those listed in the input and output
8779 operands (for example, accessing the memory pointed to by one of the input
8780 parameters). To ensure memory contains correct values, GCC may need to flush
8781 specific register values to memory before executing the @code{asm}. Further,
8782 the compiler does not assume that any values read from memory before an
8783 @code{asm} remain unchanged after that @code{asm}; it reloads them as
8785 Using the @code{"memory"} clobber effectively forms a read/write
8786 memory barrier for the compiler.
8788 Note that this clobber does not prevent the @emph{processor} from doing
8789 speculative reads past the @code{asm} statement. To prevent that, you need
8790 processor-specific fence instructions.
8792 Flushing registers to memory has performance implications and may be an issue
8793 for time-sensitive code. You can use a trick to avoid this if the size of
8794 the memory being accessed is known at compile time. For example, if accessing
8795 ten bytes of a string, use a memory input like:
8797 @code{@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}}.
8802 @subsubsection Goto Labels
8803 @cindex @code{asm} goto labels
8805 @code{asm goto} allows assembly code to jump to one or more C labels. The
8806 @var{GotoLabels} section in an @code{asm goto} statement contains
8808 list of all C labels to which the assembler code may jump. GCC assumes that
8809 @code{asm} execution falls through to the next statement (if this is not the
8810 case, consider using the @code{__builtin_unreachable} intrinsic after the
8811 @code{asm} statement). Optimization of @code{asm goto} may be improved by
8812 using the @code{hot} and @code{cold} label attributes (@pxref{Label
8815 An @code{asm goto} statement cannot have outputs.
8816 This is due to an internal restriction of
8817 the compiler: control transfer instructions cannot have outputs.
8818 If the assembler code does modify anything, use the @code{"memory"} clobber
8820 optimizers to flush all register values to memory and reload them if
8821 necessary after the @code{asm} statement.
8823 Also note that an @code{asm goto} statement is always implicitly
8824 considered volatile.
8826 To reference a label in the assembler template,
8827 prefix it with @samp{%l} (lowercase @samp{L}) followed
8828 by its (zero-based) position in @var{GotoLabels} plus the number of input
8829 operands. For example, if the @code{asm} has three inputs and references two
8830 labels, refer to the first label as @samp{%l3} and the second as @samp{%l4}).
8832 Alternately, you can reference labels using the actual C label name enclosed
8833 in brackets. For example, to reference a label named @code{carry}, you can
8834 use @samp{%l[carry]}. The label must still be listed in the @var{GotoLabels}
8835 section when using this approach.
8837 Here is an example of @code{asm goto} for i386:
8844 : "r" (p1), "r" (p2)
8854 The following example shows an @code{asm goto} that uses a memory clobber.
8860 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
8871 @anchor{x86Operandmodifiers}
8872 @subsubsection x86 Operand Modifiers
8874 References to input, output, and goto operands in the assembler template
8875 of extended @code{asm} statements can use
8876 modifiers to affect the way the operands are formatted in
8877 the code output to the assembler. For example, the
8878 following code uses the @samp{h} and @samp{b} modifiers for x86:
8882 asm volatile ("xchg %h0, %b0" : "+a" (num) );
8886 These modifiers generate this assembler code:
8892 The rest of this discussion uses the following code for illustrative purposes.
8901 asm volatile goto ("some assembler instructions here"
8903 : "q" (iInt), "X" (sizeof(unsigned char) + 1)
8904 : /* No clobbers. */
8909 With no modifiers, this is what the output from the operands would be for the
8910 @samp{att} and @samp{intel} dialects of assembler:
8912 @multitable {Operand} {$.L2} {OFFSET FLAT:.L2}
8913 @headitem Operand @tab @samp{att} @tab @samp{intel}
8922 @tab @code{OFFSET FLAT:.L2}
8925 The table below shows the list of supported modifiers and their effects.
8927 @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {@samp{att}} {@samp{intel}}
8928 @headitem Modifier @tab Description @tab Operand @tab @samp{att} @tab @samp{intel}
8930 @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
8935 @tab Print the QImode name of the register.
8940 @tab Print the QImode name for a ``high'' register.
8945 @tab Print the HImode name of the register.
8950 @tab Print the SImode name of the register.
8955 @tab Print the DImode name of the register.
8960 @tab Print the label name with no punctuation.
8965 @tab Require a constant operand and print the constant expression with no punctuation.
8971 @anchor{x86floatingpointasmoperands}
8972 @subsubsection x86 Floating-Point @code{asm} Operands
8974 On x86 targets, there are several rules on the usage of stack-like registers
8975 in the operands of an @code{asm}. These rules apply only to the operands
8976 that are stack-like registers:
8980 Given a set of input registers that die in an @code{asm}, it is
8981 necessary to know which are implicitly popped by the @code{asm}, and
8982 which must be explicitly popped by GCC@.
8984 An input register that is implicitly popped by the @code{asm} must be
8985 explicitly clobbered, unless it is constrained to match an
8989 For any input register that is implicitly popped by an @code{asm}, it is
8990 necessary to know how to adjust the stack to compensate for the pop.
8991 If any non-popped input is closer to the top of the reg-stack than
8992 the implicitly popped register, it would not be possible to know what the
8993 stack looked like---it's not clear how the rest of the stack ``slides
8996 All implicitly popped input registers must be closer to the top of
8997 the reg-stack than any input that is not implicitly popped.
8999 It is possible that if an input dies in an @code{asm}, the compiler might
9000 use the input register for an output reload. Consider this example:
9003 asm ("foo" : "=t" (a) : "f" (b));
9007 This code says that input @code{b} is not popped by the @code{asm}, and that
9008 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
9009 deeper after the @code{asm} than it was before. But, it is possible that
9010 reload may think that it can use the same register for both the input and
9013 To prevent this from happening,
9014 if any input operand uses the @samp{f} constraint, all output register
9015 constraints must use the @samp{&} early-clobber modifier.
9017 The example above is correctly written as:
9020 asm ("foo" : "=&t" (a) : "f" (b));
9024 Some operands need to be in particular places on the stack. All
9025 output operands fall in this category---GCC has no other way to
9026 know which registers the outputs appear in unless you indicate
9027 this in the constraints.
9029 Output operands must specifically indicate which register an output
9030 appears in after an @code{asm}. @samp{=f} is not allowed: the operand
9031 constraints must select a class with a single register.
9034 Output operands may not be ``inserted'' between existing stack registers.
9035 Since no 387 opcode uses a read/write operand, all output operands
9036 are dead before the @code{asm}, and are pushed by the @code{asm}.
9037 It makes no sense to push anywhere but the top of the reg-stack.
9039 Output operands must start at the top of the reg-stack: output
9040 operands may not ``skip'' a register.
9043 Some @code{asm} statements may need extra stack space for internal
9044 calculations. This can be guaranteed by clobbering stack registers
9045 unrelated to the inputs and outputs.
9050 takes one input, which is internally popped, and produces two outputs.
9053 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
9057 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
9058 and replaces them with one output. The @code{st(1)} clobber is necessary
9059 for the compiler to know that @code{fyl2xp1} pops both inputs.
9062 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
9070 @subsection Controlling Names Used in Assembler Code
9071 @cindex assembler names for identifiers
9072 @cindex names used in assembler code
9073 @cindex identifiers, names in assembler code
9075 You can specify the name to be used in the assembler code for a C
9076 function or variable by writing the @code{asm} (or @code{__asm__})
9077 keyword after the declarator.
9078 It is up to you to make sure that the assembler names you choose do not
9079 conflict with any other assembler symbols, or reference registers.
9081 @subsubheading Assembler names for data:
9083 This sample shows how to specify the assembler name for data:
9086 int foo asm ("myfoo") = 2;
9090 This specifies that the name to be used for the variable @code{foo} in
9091 the assembler code should be @samp{myfoo} rather than the usual
9094 On systems where an underscore is normally prepended to the name of a C
9095 variable, this feature allows you to define names for the
9096 linker that do not start with an underscore.
9098 GCC does not support using this feature with a non-static local variable
9099 since such variables do not have assembler names. If you are
9100 trying to put the variable in a particular register, see
9101 @ref{Explicit Register Variables}.
9103 @subsubheading Assembler names for functions:
9105 To specify the assembler name for functions, write a declaration for the
9106 function before its definition and put @code{asm} there, like this:
9109 int func (int x, int y) asm ("MYFUNC");
9111 int func (int x, int y)
9117 This specifies that the name to be used for the function @code{func} in
9118 the assembler code should be @code{MYFUNC}.
9120 @node Explicit Register Variables
9121 @subsection Variables in Specified Registers
9122 @anchor{Explicit Reg Vars}
9123 @cindex explicit register variables
9124 @cindex variables in specified registers
9125 @cindex specified registers
9127 GNU C allows you to associate specific hardware registers with C
9128 variables. In almost all cases, allowing the compiler to assign
9129 registers produces the best code. However under certain unusual
9130 circumstances, more precise control over the variable storage is
9133 Both global and local variables can be associated with a register. The
9134 consequences of performing this association are very different between
9135 the two, as explained in the sections below.
9138 * Global Register Variables:: Variables declared at global scope.
9139 * Local Register Variables:: Variables declared within a function.
9142 @node Global Register Variables
9143 @subsubsection Defining Global Register Variables
9144 @anchor{Global Reg Vars}
9145 @cindex global register variables
9146 @cindex registers, global variables in
9147 @cindex registers, global allocation
9149 You can define a global register variable and associate it with a specified
9153 register int *foo asm ("r12");
9157 Here @code{r12} is the name of the register that should be used. Note that
9158 this is the same syntax used for defining local register variables, but for
9159 a global variable the declaration appears outside a function. The
9160 @code{register} keyword is required, and cannot be combined with
9161 @code{static}. The register name must be a valid register name for the
9164 Registers are a scarce resource on most systems and allowing the
9165 compiler to manage their usage usually results in the best code. However,
9166 under special circumstances it can make sense to reserve some globally.
9167 For example this may be useful in programs such as programming language
9168 interpreters that have a couple of global variables that are accessed
9171 After defining a global register variable, for the current compilation
9175 @item The register is reserved entirely for this use, and will not be
9176 allocated for any other purpose.
9177 @item The register is not saved and restored by any functions.
9178 @item Stores into this register are never deleted even if they appear to be
9179 dead, but references may be deleted, moved or simplified.
9182 Note that these points @emph{only} apply to code that is compiled with the
9183 definition. The behavior of code that is merely linked in (for example
9184 code from libraries) is not affected.
9186 If you want to recompile source files that do not actually use your global
9187 register variable so they do not use the specified register for any other
9188 purpose, you need not actually add the global register declaration to
9189 their source code. It suffices to specify the compiler option
9190 @option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the
9193 @subsubheading Declaring the variable
9195 Global register variables can not have initial values, because an
9196 executable file has no means to supply initial contents for a register.
9198 When selecting a register, choose one that is normally saved and
9199 restored by function calls on your machine. This ensures that code
9200 which is unaware of this reservation (such as library routines) will
9201 restore it before returning.
9203 On machines with register windows, be sure to choose a global
9204 register that is not affected magically by the function call mechanism.
9206 @subsubheading Using the variable
9208 @cindex @code{qsort}, and global register variables
9209 When calling routines that are not aware of the reservation, be
9210 cautious if those routines call back into code which uses them. As an
9211 example, if you call the system library version of @code{qsort}, it may
9212 clobber your registers during execution, but (if you have selected
9213 appropriate registers) it will restore them before returning. However
9214 it will @emph{not} restore them before calling @code{qsort}'s comparison
9215 function. As a result, global values will not reliably be available to
9216 the comparison function unless the @code{qsort} function itself is rebuilt.
9218 Similarly, it is not safe to access the global register variables from signal
9219 handlers or from more than one thread of control. Unless you recompile
9220 them specially for the task at hand, the system library routines may
9221 temporarily use the register for other things.
9223 @cindex register variable after @code{longjmp}
9224 @cindex global register after @code{longjmp}
9225 @cindex value after @code{longjmp}
9228 On most machines, @code{longjmp} restores to each global register
9229 variable the value it had at the time of the @code{setjmp}. On some
9230 machines, however, @code{longjmp} does not change the value of global
9231 register variables. To be portable, the function that called @code{setjmp}
9232 should make other arrangements to save the values of the global register
9233 variables, and to restore them in a @code{longjmp}. This way, the same
9234 thing happens regardless of what @code{longjmp} does.
9236 Eventually there may be a way of asking the compiler to choose a register
9237 automatically, but first we need to figure out how it should choose and
9238 how to enable you to guide the choice. No solution is evident.
9240 @node Local Register Variables
9241 @subsubsection Specifying Registers for Local Variables
9242 @anchor{Local Reg Vars}
9243 @cindex local variables, specifying registers
9244 @cindex specifying registers for local variables
9245 @cindex registers for local variables
9247 You can define a local register variable and associate it with a specified
9251 register int *foo asm ("r12");
9255 Here @code{r12} is the name of the register that should be used. Note
9256 that this is the same syntax used for defining global register variables,
9257 but for a local variable the declaration appears within a function. The
9258 @code{register} keyword is required, and cannot be combined with
9259 @code{static}. The register name must be a valid register name for the
9262 As with global register variables, it is recommended that you choose
9263 a register that is normally saved and restored by function calls on your
9264 machine, so that calls to library routines will not clobber it.
9266 The only supported use for this feature is to specify registers
9267 for input and output operands when calling Extended @code{asm}
9268 (@pxref{Extended Asm}). This may be necessary if the constraints for a
9269 particular machine don't provide sufficient control to select the desired
9270 register. To force an operand into a register, create a local variable
9271 and specify the register name after the variable's declaration. Then use
9272 the local variable for the @code{asm} operand and specify any constraint
9273 letter that matches the register:
9276 register int *p1 asm ("r0") = @dots{};
9277 register int *p2 asm ("r1") = @dots{};
9278 register int *result asm ("r0");
9279 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9282 @emph{Warning:} In the above example, be aware that a register (for example
9283 @code{r0}) can be call-clobbered by subsequent code, including function
9284 calls and library calls for arithmetic operators on other variables (for
9285 example the initialization of @code{p2}). In this case, use temporary
9286 variables for expressions between the register assignments:
9290 register int *p1 asm ("r0") = @dots{};
9291 register int *p2 asm ("r1") = t1;
9292 register int *result asm ("r0");
9293 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9296 Defining a register variable does not reserve the register. Other than
9297 when invoking the Extended @code{asm}, the contents of the specified
9298 register are not guaranteed. For this reason, the following uses
9299 are explicitly @emph{not} supported. If they appear to work, it is only
9300 happenstance, and may stop working as intended due to (seemingly)
9301 unrelated changes in surrounding code, or even minor changes in the
9302 optimization of a future version of gcc:
9305 @item Passing parameters to or from Basic @code{asm}
9306 @item Passing parameters to or from Extended @code{asm} without using input
9308 @item Passing parameters to or from routines written in assembler (or
9309 other languages) using non-standard calling conventions.
9312 Some developers use Local Register Variables in an attempt to improve
9313 gcc's allocation of registers, especially in large functions. In this
9314 case the register name is essentially a hint to the register allocator.
9315 While in some instances this can generate better code, improvements are
9316 subject to the whims of the allocator/optimizers. Since there are no
9317 guarantees that your improvements won't be lost, this usage of Local
9318 Register Variables is discouraged.
9320 On the MIPS platform, there is related use for local register variables
9321 with slightly different characteristics (@pxref{MIPS Coprocessors,,
9322 Defining coprocessor specifics for MIPS targets, gccint,
9323 GNU Compiler Collection (GCC) Internals}).
9325 @node Size of an asm
9326 @subsection Size of an @code{asm}
9328 Some targets require that GCC track the size of each instruction used
9329 in order to generate correct code. Because the final length of the
9330 code produced by an @code{asm} statement is only known by the
9331 assembler, GCC must make an estimate as to how big it will be. It
9332 does this by counting the number of instructions in the pattern of the
9333 @code{asm} and multiplying that by the length of the longest
9334 instruction supported by that processor. (When working out the number
9335 of instructions, it assumes that any occurrence of a newline or of
9336 whatever statement separator character is supported by the assembler --
9337 typically @samp{;} --- indicates the end of an instruction.)
9339 Normally, GCC's estimate is adequate to ensure that correct
9340 code is generated, but it is possible to confuse the compiler if you use
9341 pseudo instructions or assembler macros that expand into multiple real
9342 instructions, or if you use assembler directives that expand to more
9343 space in the object file than is needed for a single instruction.
9344 If this happens then the assembler may produce a diagnostic saying that
9345 a label is unreachable.
9347 @node Alternate Keywords
9348 @section Alternate Keywords
9349 @cindex alternate keywords
9350 @cindex keywords, alternate
9352 @option{-ansi} and the various @option{-std} options disable certain
9353 keywords. This causes trouble when you want to use GNU C extensions, or
9354 a general-purpose header file that should be usable by all programs,
9355 including ISO C programs. The keywords @code{asm}, @code{typeof} and
9356 @code{inline} are not available in programs compiled with
9357 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
9358 program compiled with @option{-std=c99} or @option{-std=c11}). The
9360 @code{restrict} is only available when @option{-std=gnu99} (which will
9361 eventually be the default) or @option{-std=c99} (or the equivalent
9362 @option{-std=iso9899:1999}), or an option for a later standard
9365 The way to solve these problems is to put @samp{__} at the beginning and
9366 end of each problematical keyword. For example, use @code{__asm__}
9367 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
9369 Other C compilers won't accept these alternative keywords; if you want to
9370 compile with another compiler, you can define the alternate keywords as
9371 macros to replace them with the customary keywords. It looks like this:
9379 @findex __extension__
9381 @option{-pedantic} and other options cause warnings for many GNU C extensions.
9383 prevent such warnings within one expression by writing
9384 @code{__extension__} before the expression. @code{__extension__} has no
9385 effect aside from this.
9387 @node Incomplete Enums
9388 @section Incomplete @code{enum} Types
9390 You can define an @code{enum} tag without specifying its possible values.
9391 This results in an incomplete type, much like what you get if you write
9392 @code{struct foo} without describing the elements. A later declaration
9393 that does specify the possible values completes the type.
9395 You cannot allocate variables or storage using the type while it is
9396 incomplete. However, you can work with pointers to that type.
9398 This extension may not be very useful, but it makes the handling of
9399 @code{enum} more consistent with the way @code{struct} and @code{union}
9402 This extension is not supported by GNU C++.
9404 @node Function Names
9405 @section Function Names as Strings
9406 @cindex @code{__func__} identifier
9407 @cindex @code{__FUNCTION__} identifier
9408 @cindex @code{__PRETTY_FUNCTION__} identifier
9410 GCC provides three magic constants that hold the name of the current
9411 function as a string. In C++11 and later modes, all three are treated
9412 as constant expressions and can be used in @code{constexpr} constexts.
9413 The first of these constants is @code{__func__}, which is part of
9416 The identifier @code{__func__} is implicitly declared by the translator
9417 as if, immediately following the opening brace of each function
9418 definition, the declaration
9421 static const char __func__[] = "function-name";
9425 appeared, where function-name is the name of the lexically-enclosing
9426 function. This name is the unadorned name of the function. As an
9427 extension, at file (or, in C++, namespace scope), @code{__func__}
9428 evaluates to the empty string.
9430 @code{__FUNCTION__} is another name for @code{__func__}, provided for
9431 backward compatibility with old versions of GCC.
9433 In C, @code{__PRETTY_FUNCTION__} is yet another name for
9434 @code{__func__}, except that at file (or, in C++, namespace scope),
9435 it evaluates to the string @code{"top level"}. In addition, in C++,
9436 @code{__PRETTY_FUNCTION__} contains the signature of the function as
9437 well as its bare name. For example, this program:
9440 extern "C" int printf (const char *, ...);
9446 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
9447 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
9465 __PRETTY_FUNCTION__ = void a::sub(int)
9468 These identifiers are variables, not preprocessor macros, and may not
9469 be used to initialize @code{char} arrays or be concatenated with string
9472 @node Return Address
9473 @section Getting the Return or Frame Address of a Function
9475 These functions may be used to get information about the callers of a
9478 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
9479 This function returns the return address of the current function, or of
9480 one of its callers. The @var{level} argument is number of frames to
9481 scan up the call stack. A value of @code{0} yields the return address
9482 of the current function, a value of @code{1} yields the return address
9483 of the caller of the current function, and so forth. When inlining
9484 the expected behavior is that the function returns the address of
9485 the function that is returned to. To work around this behavior use
9486 the @code{noinline} function attribute.
9488 The @var{level} argument must be a constant integer.
9490 On some machines it may be impossible to determine the return address of
9491 any function other than the current one; in such cases, or when the top
9492 of the stack has been reached, this function returns @code{0} or a
9493 random value. In addition, @code{__builtin_frame_address} may be used
9494 to determine if the top of the stack has been reached.
9496 Additional post-processing of the returned value may be needed, see
9497 @code{__builtin_extract_return_addr}.
9499 Calling this function with a nonzero argument can have unpredictable
9500 effects, including crashing the calling program. As a result, calls
9501 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9502 option is in effect. Such calls should only be made in debugging
9506 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
9507 The address as returned by @code{__builtin_return_address} may have to be fed
9508 through this function to get the actual encoded address. For example, on the
9509 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
9510 platforms an offset has to be added for the true next instruction to be
9513 If no fixup is needed, this function simply passes through @var{addr}.
9516 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
9517 This function does the reverse of @code{__builtin_extract_return_addr}.
9520 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
9521 This function is similar to @code{__builtin_return_address}, but it
9522 returns the address of the function frame rather than the return address
9523 of the function. Calling @code{__builtin_frame_address} with a value of
9524 @code{0} yields the frame address of the current function, a value of
9525 @code{1} yields the frame address of the caller of the current function,
9528 The frame is the area on the stack that holds local variables and saved
9529 registers. The frame address is normally the address of the first word
9530 pushed on to the stack by the function. However, the exact definition
9531 depends upon the processor and the calling convention. If the processor
9532 has a dedicated frame pointer register, and the function has a frame,
9533 then @code{__builtin_frame_address} returns the value of the frame
9536 On some machines it may be impossible to determine the frame address of
9537 any function other than the current one; in such cases, or when the top
9538 of the stack has been reached, this function returns @code{0} if
9539 the first frame pointer is properly initialized by the startup code.
9541 Calling this function with a nonzero argument can have unpredictable
9542 effects, including crashing the calling program. As a result, calls
9543 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9544 option is in effect. Such calls should only be made in debugging
9548 @node Vector Extensions
9549 @section Using Vector Instructions through Built-in Functions
9551 On some targets, the instruction set contains SIMD vector instructions which
9552 operate on multiple values contained in one large register at the same time.
9553 For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
9556 The first step in using these extensions is to provide the necessary data
9557 types. This should be done using an appropriate @code{typedef}:
9560 typedef int v4si __attribute__ ((vector_size (16)));
9564 The @code{int} type specifies the base type, while the attribute specifies
9565 the vector size for the variable, measured in bytes. For example, the
9566 declaration above causes the compiler to set the mode for the @code{v4si}
9567 type to be 16 bytes wide and divided into @code{int} sized units. For
9568 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
9569 corresponding mode of @code{foo} is @acronym{V4SI}.
9571 The @code{vector_size} attribute is only applicable to integral and
9572 float scalars, although arrays, pointers, and function return values
9573 are allowed in conjunction with this construct. Only sizes that are
9574 a power of two are currently allowed.
9576 All the basic integer types can be used as base types, both as signed
9577 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
9578 @code{long long}. In addition, @code{float} and @code{double} can be
9579 used to build floating-point vector types.
9581 Specifying a combination that is not valid for the current architecture
9582 causes GCC to synthesize the instructions using a narrower mode.
9583 For example, if you specify a variable of type @code{V4SI} and your
9584 architecture does not allow for this specific SIMD type, GCC
9585 produces code that uses 4 @code{SIs}.
9587 The types defined in this manner can be used with a subset of normal C
9588 operations. Currently, GCC allows using the following operators
9589 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
9591 The operations behave like C++ @code{valarrays}. Addition is defined as
9592 the addition of the corresponding elements of the operands. For
9593 example, in the code below, each of the 4 elements in @var{a} is
9594 added to the corresponding 4 elements in @var{b} and the resulting
9595 vector is stored in @var{c}.
9598 typedef int v4si __attribute__ ((vector_size (16)));
9605 Subtraction, multiplication, division, and the logical operations
9606 operate in a similar manner. Likewise, the result of using the unary
9607 minus or complement operators on a vector type is a vector whose
9608 elements are the negative or complemented values of the corresponding
9609 elements in the operand.
9611 It is possible to use shifting operators @code{<<}, @code{>>} on
9612 integer-type vectors. The operation is defined as following: @code{@{a0,
9613 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
9614 @dots{}, an >> bn@}}@. Vector operands must have the same number of
9617 For convenience, it is allowed to use a binary vector operation
9618 where one operand is a scalar. In that case the compiler transforms
9619 the scalar operand into a vector where each element is the scalar from
9620 the operation. The transformation happens only if the scalar could be
9621 safely converted to the vector-element type.
9622 Consider the following code.
9625 typedef int v4si __attribute__ ((vector_size (16)));
9630 a = b + 1; /* a = b + @{1,1,1,1@}; */
9631 a = 2 * b; /* a = @{2,2,2,2@} * b; */
9633 a = l + a; /* Error, cannot convert long to int. */
9636 Vectors can be subscripted as if the vector were an array with
9637 the same number of elements and base type. Out of bound accesses
9638 invoke undefined behavior at run time. Warnings for out of bound
9639 accesses for vector subscription can be enabled with
9640 @option{-Warray-bounds}.
9642 Vector comparison is supported with standard comparison
9643 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
9644 vector expressions of integer-type or real-type. Comparison between
9645 integer-type vectors and real-type vectors are not supported. The
9646 result of the comparison is a vector of the same width and number of
9647 elements as the comparison operands with a signed integral element
9650 Vectors are compared element-wise producing 0 when comparison is false
9651 and -1 (constant of the appropriate type where all bits are set)
9652 otherwise. Consider the following example.
9655 typedef int v4si __attribute__ ((vector_size (16)));
9657 v4si a = @{1,2,3,4@};
9658 v4si b = @{3,2,1,4@};
9661 c = a > b; /* The result would be @{0, 0,-1, 0@} */
9662 c = a == b; /* The result would be @{0,-1, 0,-1@} */
9665 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
9666 @code{b} and @code{c} are vectors of the same type and @code{a} is an
9667 integer vector with the same number of elements of the same size as @code{b}
9668 and @code{c}, computes all three arguments and creates a vector
9669 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in
9670 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
9671 As in the case of binary operations, this syntax is also accepted when
9672 one of @code{b} or @code{c} is a scalar that is then transformed into a
9673 vector. If both @code{b} and @code{c} are scalars and the type of
9674 @code{true?b:c} has the same size as the element type of @code{a}, then
9675 @code{b} and @code{c} are converted to a vector type whose elements have
9676 this type and with the same number of elements as @code{a}.
9678 In C++, the logic operators @code{!, &&, ||} are available for vectors.
9679 @code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
9680 @code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
9681 For mixed operations between a scalar @code{s} and a vector @code{v},
9682 @code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
9683 short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.
9685 Vector shuffling is available using functions
9686 @code{__builtin_shuffle (vec, mask)} and
9687 @code{__builtin_shuffle (vec0, vec1, mask)}.
9688 Both functions construct a permutation of elements from one or two
9689 vectors and return a vector of the same type as the input vector(s).
9690 The @var{mask} is an integral vector with the same width (@var{W})
9691 and element count (@var{N}) as the output vector.
9693 The elements of the input vectors are numbered in memory ordering of
9694 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
9695 elements of @var{mask} are considered modulo @var{N} in the single-operand
9696 case and modulo @math{2*@var{N}} in the two-operand case.
9698 Consider the following example,
9701 typedef int v4si __attribute__ ((vector_size (16)));
9703 v4si a = @{1,2,3,4@};
9704 v4si b = @{5,6,7,8@};
9705 v4si mask1 = @{0,1,1,3@};
9706 v4si mask2 = @{0,4,2,5@};
9709 res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
9710 res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
9713 Note that @code{__builtin_shuffle} is intentionally semantically
9714 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
9716 You can declare variables and use them in function calls and returns, as
9717 well as in assignments and some casts. You can specify a vector type as
9718 a return type for a function. Vector types can also be used as function
9719 arguments. It is possible to cast from one vector type to another,
9720 provided they are of the same size (in fact, you can also cast vectors
9721 to and from other datatypes of the same size).
9723 You cannot operate between vectors of different lengths or different
9724 signedness without a cast.
9727 @section Support for @code{offsetof}
9728 @findex __builtin_offsetof
9730 GCC implements for both C and C++ a syntactic extension to implement
9731 the @code{offsetof} macro.
9735 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
9737 offsetof_member_designator:
9739 | offsetof_member_designator "." @code{identifier}
9740 | offsetof_member_designator "[" @code{expr} "]"
9743 This extension is sufficient such that
9746 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
9750 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
9751 may be dependent. In either case, @var{member} may consist of a single
9752 identifier, or a sequence of member accesses and array references.
9754 @node __sync Builtins
9755 @section Legacy @code{__sync} Built-in Functions for Atomic Memory Access
9757 The following built-in functions
9758 are intended to be compatible with those described
9759 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
9760 section 7.4. As such, they depart from normal GCC practice by not using
9761 the @samp{__builtin_} prefix and also by being overloaded so that they
9762 work on multiple types.
9764 The definition given in the Intel documentation allows only for the use of
9765 the types @code{int}, @code{long}, @code{long long} or their unsigned
9766 counterparts. GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
9767 size other than the C type @code{_Bool} or the C++ type @code{bool}.
9768 Operations on pointer arguments are performed as if the operands were
9769 of the @code{uintptr_t} type. That is, they are not scaled by the size
9770 of the type to which the pointer points.
9772 These functions are implemented in terms of the @samp{__atomic}
9773 builtins (@pxref{__atomic Builtins}). They should not be used for new
9774 code which should use the @samp{__atomic} builtins instead.
9776 Not all operations are supported by all target processors. If a particular
9777 operation cannot be implemented on the target processor, a warning is
9778 generated and a call to an external function is generated. The external
9779 function carries the same name as the built-in version,
9780 with an additional suffix
9781 @samp{_@var{n}} where @var{n} is the size of the data type.
9783 @c ??? Should we have a mechanism to suppress this warning? This is almost
9784 @c useful for implementing the operation under the control of an external
9787 In most cases, these built-in functions are considered a @dfn{full barrier}.
9789 no memory operand is moved across the operation, either forward or
9790 backward. Further, instructions are issued as necessary to prevent the
9791 processor from speculating loads across the operation and from queuing stores
9792 after the operation.
9794 All of the routines are described in the Intel documentation to take
9795 ``an optional list of variables protected by the memory barrier''. It's
9796 not clear what is meant by that; it could mean that @emph{only} the
9797 listed variables are protected, or it could mean a list of additional
9798 variables to be protected. The list is ignored by GCC which treats it as
9799 empty. GCC interprets an empty list as meaning that all globally
9800 accessible variables should be protected.
9803 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
9804 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
9805 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
9806 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
9807 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
9808 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
9809 @findex __sync_fetch_and_add
9810 @findex __sync_fetch_and_sub
9811 @findex __sync_fetch_and_or
9812 @findex __sync_fetch_and_and
9813 @findex __sync_fetch_and_xor
9814 @findex __sync_fetch_and_nand
9815 These built-in functions perform the operation suggested by the name, and
9816 returns the value that had previously been in memory. That is, operations
9817 on integer operands have the following semantics. Operations on pointer
9818 arguments are performed as if the operands were of the @code{uintptr_t}
9819 type. That is, they are not scaled by the size of the type to which
9823 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
9824 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
9827 The object pointed to by the first argument must be of integer or pointer
9828 type. It must not be a boolean type.
9830 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
9831 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
9833 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
9834 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
9835 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
9836 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
9837 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
9838 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
9839 @findex __sync_add_and_fetch
9840 @findex __sync_sub_and_fetch
9841 @findex __sync_or_and_fetch
9842 @findex __sync_and_and_fetch
9843 @findex __sync_xor_and_fetch
9844 @findex __sync_nand_and_fetch
9845 These built-in functions perform the operation suggested by the name, and
9846 return the new value. That is, operations on integer operands have
9847 the following semantics. Operations on pointer operands are performed as
9848 if the operand's type were @code{uintptr_t}.
9851 @{ *ptr @var{op}= value; return *ptr; @}
9852 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
9855 The same constraints on arguments apply as for the corresponding
9856 @code{__sync_op_and_fetch} built-in functions.
9858 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
9859 as @code{*ptr = ~(*ptr & value)} instead of
9860 @code{*ptr = ~*ptr & value}.
9862 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9863 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9864 @findex __sync_bool_compare_and_swap
9865 @findex __sync_val_compare_and_swap
9866 These built-in functions perform an atomic compare and swap.
9867 That is, if the current
9868 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
9871 The ``bool'' version returns true if the comparison is successful and
9872 @var{newval} is written. The ``val'' version returns the contents
9873 of @code{*@var{ptr}} before the operation.
9875 @item __sync_synchronize (...)
9876 @findex __sync_synchronize
9877 This built-in function issues a full memory barrier.
9879 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
9880 @findex __sync_lock_test_and_set
9881 This built-in function, as described by Intel, is not a traditional test-and-set
9882 operation, but rather an atomic exchange operation. It writes @var{value}
9883 into @code{*@var{ptr}}, and returns the previous contents of
9886 Many targets have only minimal support for such locks, and do not support
9887 a full exchange operation. In this case, a target may support reduced
9888 functionality here by which the @emph{only} valid value to store is the
9889 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
9890 is implementation defined.
9892 This built-in function is not a full barrier,
9893 but rather an @dfn{acquire barrier}.
9894 This means that references after the operation cannot move to (or be
9895 speculated to) before the operation, but previous memory stores may not
9896 be globally visible yet, and previous memory loads may not yet be
9899 @item void __sync_lock_release (@var{type} *ptr, ...)
9900 @findex __sync_lock_release
9901 This built-in function releases the lock acquired by
9902 @code{__sync_lock_test_and_set}.
9903 Normally this means writing the constant 0 to @code{*@var{ptr}}.
9905 This built-in function is not a full barrier,
9906 but rather a @dfn{release barrier}.
9907 This means that all previous memory stores are globally visible, and all
9908 previous memory loads have been satisfied, but following memory reads
9909 are not prevented from being speculated to before the barrier.
9912 @node __atomic Builtins
9913 @section Built-in Functions for Memory Model Aware Atomic Operations
9915 The following built-in functions approximately match the requirements
9916 for the C++11 memory model. They are all
9917 identified by being prefixed with @samp{__atomic} and most are
9918 overloaded so that they work with multiple types.
9920 These functions are intended to replace the legacy @samp{__sync}
9921 builtins. The main difference is that the memory order that is requested
9922 is a parameter to the functions. New code should always use the
9923 @samp{__atomic} builtins rather than the @samp{__sync} builtins.
9925 Note that the @samp{__atomic} builtins assume that programs will
9926 conform to the C++11 memory model. In particular, they assume
9927 that programs are free of data races. See the C++11 standard for
9928 detailed requirements.
9930 The @samp{__atomic} builtins can be used with any integral scalar or
9931 pointer type that is 1, 2, 4, or 8 bytes in length. 16-byte integral
9932 types are also allowed if @samp{__int128} (@pxref{__int128}) is
9933 supported by the architecture.
9935 The four non-arithmetic functions (load, store, exchange, and
9936 compare_exchange) all have a generic version as well. This generic
9937 version works on any data type. It uses the lock-free built-in function
9938 if the specific data type size makes that possible; otherwise, an
9939 external call is left to be resolved at run time. This external call is
9940 the same format with the addition of a @samp{size_t} parameter inserted
9941 as the first parameter indicating the size of the object being pointed to.
9942 All objects must be the same size.
9944 There are 6 different memory orders that can be specified. These map
9945 to the C++11 memory orders with the same names, see the C++11 standard
9946 or the @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
9947 on atomic synchronization} for detailed definitions. Individual
9948 targets may also support additional memory orders for use on specific
9949 architectures. Refer to the target documentation for details of
9952 An atomic operation can both constrain code motion and
9953 be mapped to hardware instructions for synchronization between threads
9954 (e.g., a fence). To which extent this happens is controlled by the
9955 memory orders, which are listed here in approximately ascending order of
9956 strength. The description of each memory order is only meant to roughly
9957 illustrate the effects and is not a specification; see the C++11
9958 memory model for precise semantics.
9961 @item __ATOMIC_RELAXED
9962 Implies no inter-thread ordering constraints.
9963 @item __ATOMIC_CONSUME
9964 This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
9965 memory order because of a deficiency in C++11's semantics for
9966 @code{memory_order_consume}.
9967 @item __ATOMIC_ACQUIRE
9968 Creates an inter-thread happens-before constraint from the release (or
9969 stronger) semantic store to this acquire load. Can prevent hoisting
9970 of code to before the operation.
9971 @item __ATOMIC_RELEASE
9972 Creates an inter-thread happens-before constraint to acquire (or stronger)
9973 semantic loads that read from this release store. Can prevent sinking
9974 of code to after the operation.
9975 @item __ATOMIC_ACQ_REL
9976 Combines the effects of both @code{__ATOMIC_ACQUIRE} and
9977 @code{__ATOMIC_RELEASE}.
9978 @item __ATOMIC_SEQ_CST
9979 Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
9982 Note that in the C++11 memory model, @emph{fences} (e.g.,
9983 @samp{__atomic_thread_fence}) take effect in combination with other
9984 atomic operations on specific memory locations (e.g., atomic loads);
9985 operations on specific memory locations do not necessarily affect other
9986 operations in the same way.
9988 Target architectures are encouraged to provide their own patterns for
9989 each of the atomic built-in functions. If no target is provided, the original
9990 non-memory model set of @samp{__sync} atomic built-in functions are
9991 used, along with any required synchronization fences surrounding it in
9992 order to achieve the proper behavior. Execution in this case is subject
9993 to the same restrictions as those built-in functions.
9995 If there is no pattern or mechanism to provide a lock-free instruction
9996 sequence, a call is made to an external routine with the same parameters
9997 to be resolved at run time.
9999 When implementing patterns for these built-in functions, the memory order
10000 parameter can be ignored as long as the pattern implements the most
10001 restrictive @code{__ATOMIC_SEQ_CST} memory order. Any of the other memory
10002 orders execute correctly with this memory order but they may not execute as
10003 efficiently as they could with a more appropriate implementation of the
10004 relaxed requirements.
10006 Note that the C++11 standard allows for the memory order parameter to be
10007 determined at run time rather than at compile time. These built-in
10008 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
10009 than invoke a runtime library call or inline a switch statement. This is
10010 standard compliant, safe, and the simplest approach for now.
10012 The memory order parameter is a signed int, but only the lower 16 bits are
10013 reserved for the memory order. The remainder of the signed int is reserved
10014 for target use and should be 0. Use of the predefined atomic values
10015 ensures proper usage.
10017 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
10018 This built-in function implements an atomic load operation. It returns the
10019 contents of @code{*@var{ptr}}.
10021 The valid memory order variants are
10022 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
10023 and @code{__ATOMIC_CONSUME}.
10027 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
10028 This is the generic version of an atomic load. It returns the
10029 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
10033 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
10034 This built-in function implements an atomic store operation. It writes
10035 @code{@var{val}} into @code{*@var{ptr}}.
10037 The valid memory order variants are
10038 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
10042 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
10043 This is the generic version of an atomic store. It stores the value
10044 of @code{*@var{val}} into @code{*@var{ptr}}.
10048 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
10049 This built-in function implements an atomic exchange operation. It writes
10050 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
10053 The valid memory order variants are
10054 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
10055 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
10059 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
10060 This is the generic version of an atomic exchange. It stores the
10061 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
10062 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
10066 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
10067 This built-in function implements an atomic compare and exchange operation.
10068 This compares the contents of @code{*@var{ptr}} with the contents of
10069 @code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
10070 operation that writes @var{desired} into @code{*@var{ptr}}. If they are not
10071 equal, the operation is a @emph{read} and the current contents of
10072 @code{*@var{ptr}} are written into @code{*@var{expected}}. @var{weak} is true
10073 for weak compare_exchange, which may fail spuriously, and false for
10074 the strong variation, which never fails spuriously. Many targets
10075 only offer the strong variation and ignore the parameter. When in doubt, use
10076 the strong variation.
10078 If @var{desired} is written into @code{*@var{ptr}} then true is returned
10079 and memory is affected according to the
10080 memory order specified by @var{success_memorder}. There are no
10081 restrictions on what memory order can be used here.
10083 Otherwise, false is returned and memory is affected according
10084 to @var{failure_memorder}. This memory order cannot be
10085 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
10086 stronger order than that specified by @var{success_memorder}.
10090 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
10091 This built-in function implements the generic version of
10092 @code{__atomic_compare_exchange}. The function is virtually identical to
10093 @code{__atomic_compare_exchange_n}, except the desired value is also a
10098 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
10099 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
10100 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
10101 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
10102 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
10103 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
10104 These built-in functions perform the operation suggested by the name, and
10105 return the result of the operation. Operations on pointer arguments are
10106 performed as if the operands were of the @code{uintptr_t} type. That is,
10107 they are not scaled by the size of the type to which the pointer points.
10110 @{ *ptr @var{op}= val; return *ptr; @}
10113 The object pointed to by the first argument must be of integer or pointer
10114 type. It must not be a boolean type. All memory orders are valid.
10118 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
10119 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
10120 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
10121 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
10122 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
10123 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
10124 These built-in functions perform the operation suggested by the name, and
10125 return the value that had previously been in @code{*@var{ptr}}. Operations
10126 on pointer arguments are performed as if the operands were of
10127 the @code{uintptr_t} type. That is, they are not scaled by the size of
10128 the type to which the pointer points.
10131 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
10134 The same constraints on arguments apply as for the corresponding
10135 @code{__atomic_op_fetch} built-in functions. All memory orders are valid.
10139 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)
10141 This built-in function performs an atomic test-and-set operation on
10142 the byte at @code{*@var{ptr}}. The byte is set to some implementation
10143 defined nonzero ``set'' value and the return value is @code{true} if and only
10144 if the previous contents were ``set''.
10145 It should be only used for operands of type @code{bool} or @code{char}. For
10146 other types only part of the value may be set.
10148 All memory orders are valid.
10152 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)
10154 This built-in function performs an atomic clear operation on
10155 @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0.
10156 It should be only used for operands of type @code{bool} or @code{char} and
10157 in conjunction with @code{__atomic_test_and_set}.
10158 For other types it may only clear partially. If the type is not @code{bool}
10159 prefer using @code{__atomic_store}.
10161 The valid memory order variants are
10162 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
10163 @code{__ATOMIC_RELEASE}.
10167 @deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)
10169 This built-in function acts as a synchronization fence between threads
10170 based on the specified memory order.
10172 All memory orders are valid.
10176 @deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)
10178 This built-in function acts as a synchronization fence between a thread
10179 and signal handlers based in the same thread.
10181 All memory orders are valid.
10185 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
10187 This built-in function returns true if objects of @var{size} bytes always
10188 generate lock-free atomic instructions for the target architecture.
10189 @var{size} must resolve to a compile-time constant and the result also
10190 resolves to a compile-time constant.
10192 @var{ptr} is an optional pointer to the object that may be used to determine
10193 alignment. A value of 0 indicates typical alignment should be used. The
10194 compiler may also ignore this parameter.
10197 if (__atomic_always_lock_free (sizeof (long long), 0))
10202 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
10204 This built-in function returns true if objects of @var{size} bytes always
10205 generate lock-free atomic instructions for the target architecture. If
10206 the built-in function is not known to be lock-free, a call is made to a
10207 runtime routine named @code{__atomic_is_lock_free}.
10209 @var{ptr} is an optional pointer to the object that may be used to determine
10210 alignment. A value of 0 indicates typical alignment should be used. The
10211 compiler may also ignore this parameter.
10214 @node Integer Overflow Builtins
10215 @section Built-in Functions to Perform Arithmetic with Overflow Checking
10217 The following built-in functions allow performing simple arithmetic operations
10218 together with checking whether the operations overflowed.
10220 @deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10221 @deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
10222 @deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
10223 @deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long long int *res)
10224 @deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
10225 @deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10226 @deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10228 These built-in functions promote the first two operands into infinite precision signed
10229 type and perform addition on those promoted operands. The result is then
10230 cast to the type the third pointer argument points to and stored there.
10231 If the stored result is equal to the infinite precision result, the built-in
10232 functions return false, otherwise they return true. As the addition is
10233 performed in infinite signed precision, these built-in functions have fully defined
10234 behavior for all argument values.
10236 The first built-in function allows arbitrary integral types for operands and
10237 the result type must be pointer to some integral type other than enumerated or
10238 boolean type, the rest of the built-in functions have explicit integer types.
10240 The compiler will attempt to use hardware instructions to implement
10241 these built-in functions where possible, like conditional jump on overflow
10242 after addition, conditional jump on carry etc.
10246 @deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10247 @deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
10248 @deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
10249 @deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long long int *res)
10250 @deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
10251 @deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10252 @deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10254 These built-in functions are similar to the add overflow checking built-in
10255 functions above, except they perform subtraction, subtract the second argument
10256 from the first one, instead of addition.
10260 @deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10261 @deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
10262 @deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
10263 @deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long long int *res)
10264 @deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
10265 @deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10266 @deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10268 These built-in functions are similar to the add overflow checking built-in
10269 functions above, except they perform multiplication, instead of addition.
10273 The following built-in functions allow checking if simple arithmetic operation
10276 @deftypefn {Built-in Function} bool __builtin_add_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10277 @deftypefnx {Built-in Function} bool __builtin_sub_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10278 @deftypefnx {Built-in Function} bool __builtin_mul_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10280 These built-in functions are similar to @code{__builtin_add_overflow},
10281 @code{__builtin_sub_overflow}, or @code{__builtin_mul_overflow}, except that
10282 they don't store the result of the arithmetic operation anywhere and the
10283 last argument is not a pointer, but some expression with integral type other
10284 than enumerated or boolean type.
10286 The built-in functions promote the first two operands into infinite precision signed type
10287 and perform addition on those promoted operands. The result is then
10288 cast to the type of the third argument. If the cast result is equal to the infinite
10289 precision result, the built-in functions return false, otherwise they return true.
10290 The value of the third argument is ignored, just the side-effects in the third argument
10291 are evaluated, and no integral argument promotions are performed on the last argument.
10292 If the third argument is a bit-field, the type used for the result cast has the
10293 precision and signedness of the given bit-field, rather than precision and signedness
10294 of the underlying type.
10296 For example, the following macro can be used to portably check, at
10297 compile-time, whether or not adding two constant integers will overflow,
10298 and perform the addition only when it is known to be safe and not to trigger
10299 a @option{-Woverflow} warning.
10302 #define INT_ADD_OVERFLOW_P(a, b) \
10303 __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
10306 A = INT_MAX, B = 3,
10307 C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
10308 D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
10312 The compiler will attempt to use hardware instructions to implement
10313 these built-in functions where possible, like conditional jump on overflow
10314 after addition, conditional jump on carry etc.
10318 @node x86 specific memory model extensions for transactional memory
10319 @section x86-Specific Memory Model Extensions for Transactional Memory
10321 The x86 architecture supports additional memory ordering flags
10322 to mark critical sections for hardware lock elision.
10323 These must be specified in addition to an existing memory order to
10327 @item __ATOMIC_HLE_ACQUIRE
10328 Start lock elision on a lock variable.
10329 Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
10330 @item __ATOMIC_HLE_RELEASE
10331 End lock elision on a lock variable.
10332 Memory order must be @code{__ATOMIC_RELEASE} or stronger.
10335 When a lock acquire fails, it is required for good performance to abort
10336 the transaction quickly. This can be done with a @code{_mm_pause}.
10339 #include <immintrin.h> // For _mm_pause
10343 /* Acquire lock with lock elision */
10344 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
10345 _mm_pause(); /* Abort failed transaction */
10347 /* Free lock with lock elision */
10348 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
10351 @node Object Size Checking
10352 @section Object Size Checking Built-in Functions
10353 @findex __builtin_object_size
10354 @findex __builtin___memcpy_chk
10355 @findex __builtin___mempcpy_chk
10356 @findex __builtin___memmove_chk
10357 @findex __builtin___memset_chk
10358 @findex __builtin___strcpy_chk
10359 @findex __builtin___stpcpy_chk
10360 @findex __builtin___strncpy_chk
10361 @findex __builtin___strcat_chk
10362 @findex __builtin___strncat_chk
10363 @findex __builtin___sprintf_chk
10364 @findex __builtin___snprintf_chk
10365 @findex __builtin___vsprintf_chk
10366 @findex __builtin___vsnprintf_chk
10367 @findex __builtin___printf_chk
10368 @findex __builtin___vprintf_chk
10369 @findex __builtin___fprintf_chk
10370 @findex __builtin___vfprintf_chk
10372 GCC implements a limited buffer overflow protection mechanism that can
10373 prevent some buffer overflow attacks by determining the sizes of objects
10374 into which data is about to be written and preventing the writes when
10375 the size isn't sufficient. The built-in functions described below yield
10376 the best results when used together and when optimization is enabled.
10377 For example, to detect object sizes across function boundaries or to
10378 follow pointer assignments through non-trivial control flow they rely
10379 on various optimization passes enabled with @option{-O2}. However, to
10380 a limited extent, they can be used without optimization as well.
10382 @deftypefn {Built-in Function} {size_t} __builtin_object_size (const void * @var{ptr}, int @var{type})
10383 is a built-in construct that returns a constant number of bytes from
10384 @var{ptr} to the end of the object @var{ptr} pointer points to
10385 (if known at compile time). @code{__builtin_object_size} never evaluates
10386 its arguments for side-effects. If there are any side-effects in them, it
10387 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10388 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
10389 point to and all of them are known at compile time, the returned number
10390 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
10391 0 and minimum if nonzero. If it is not possible to determine which objects
10392 @var{ptr} points to at compile time, @code{__builtin_object_size} should
10393 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10394 for @var{type} 2 or 3.
10396 @var{type} is an integer constant from 0 to 3. If the least significant
10397 bit is clear, objects are whole variables, if it is set, a closest
10398 surrounding subobject is considered the object a pointer points to.
10399 The second bit determines if maximum or minimum of remaining bytes
10403 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
10404 char *p = &var.buf1[1], *q = &var.b;
10406 /* Here the object p points to is var. */
10407 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
10408 /* The subobject p points to is var.buf1. */
10409 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
10410 /* The object q points to is var. */
10411 assert (__builtin_object_size (q, 0)
10412 == (char *) (&var + 1) - (char *) &var.b);
10413 /* The subobject q points to is var.b. */
10414 assert (__builtin_object_size (q, 1) == sizeof (var.b));
10418 There are built-in functions added for many common string operation
10419 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
10420 built-in is provided. This built-in has an additional last argument,
10421 which is the number of bytes remaining in the object the @var{dest}
10422 argument points to or @code{(size_t) -1} if the size is not known.
10424 The built-in functions are optimized into the normal string functions
10425 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
10426 it is known at compile time that the destination object will not
10427 be overflowed. If the compiler can determine at compile time that the
10428 object will always be overflowed, it issues a warning.
10430 The intended use can be e.g.@:
10434 #define bos0(dest) __builtin_object_size (dest, 0)
10435 #define memcpy(dest, src, n) \
10436 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
10440 /* It is unknown what object p points to, so this is optimized
10441 into plain memcpy - no checking is possible. */
10442 memcpy (p, "abcde", n);
10443 /* Destination is known and length too. It is known at compile
10444 time there will be no overflow. */
10445 memcpy (&buf[5], "abcde", 5);
10446 /* Destination is known, but the length is not known at compile time.
10447 This will result in __memcpy_chk call that can check for overflow
10449 memcpy (&buf[5], "abcde", n);
10450 /* Destination is known and it is known at compile time there will
10451 be overflow. There will be a warning and __memcpy_chk call that
10452 will abort the program at run time. */
10453 memcpy (&buf[6], "abcde", 5);
10456 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
10457 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
10458 @code{strcat} and @code{strncat}.
10460 There are also checking built-in functions for formatted output functions.
10462 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
10463 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10464 const char *fmt, ...);
10465 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
10467 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10468 const char *fmt, va_list ap);
10471 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
10472 etc.@: functions and can contain implementation specific flags on what
10473 additional security measures the checking function might take, such as
10474 handling @code{%n} differently.
10476 The @var{os} argument is the object size @var{s} points to, like in the
10477 other built-in functions. There is a small difference in the behavior
10478 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
10479 optimized into the non-checking functions only if @var{flag} is 0, otherwise
10480 the checking function is called with @var{os} argument set to
10481 @code{(size_t) -1}.
10483 In addition to this, there are checking built-in functions
10484 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
10485 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
10486 These have just one additional argument, @var{flag}, right before
10487 format string @var{fmt}. If the compiler is able to optimize them to
10488 @code{fputc} etc.@: functions, it does, otherwise the checking function
10489 is called and the @var{flag} argument passed to it.
10491 @node Pointer Bounds Checker builtins
10492 @section Pointer Bounds Checker Built-in Functions
10493 @cindex Pointer Bounds Checker builtins
10494 @findex __builtin___bnd_set_ptr_bounds
10495 @findex __builtin___bnd_narrow_ptr_bounds
10496 @findex __builtin___bnd_copy_ptr_bounds
10497 @findex __builtin___bnd_init_ptr_bounds
10498 @findex __builtin___bnd_null_ptr_bounds
10499 @findex __builtin___bnd_store_ptr_bounds
10500 @findex __builtin___bnd_chk_ptr_lbounds
10501 @findex __builtin___bnd_chk_ptr_ubounds
10502 @findex __builtin___bnd_chk_ptr_bounds
10503 @findex __builtin___bnd_get_ptr_lbound
10504 @findex __builtin___bnd_get_ptr_ubound
10506 GCC provides a set of built-in functions to control Pointer Bounds Checker
10507 instrumentation. Note that all Pointer Bounds Checker builtins can be used
10508 even if you compile with Pointer Bounds Checker off
10509 (@option{-fno-check-pointer-bounds}).
10510 The behavior may differ in such case as documented below.
10512 @deftypefn {Built-in Function} {void *} __builtin___bnd_set_ptr_bounds (const void *@var{q}, size_t @var{size})
10514 This built-in function returns a new pointer with the value of @var{q}, and
10515 associate it with the bounds [@var{q}, @var{q}+@var{size}-1]. With Pointer
10516 Bounds Checker off, the built-in function just returns the first argument.
10519 extern void *__wrap_malloc (size_t n)
10521 void *p = (void *)__real_malloc (n);
10522 if (!p) return __builtin___bnd_null_ptr_bounds (p);
10523 return __builtin___bnd_set_ptr_bounds (p, n);
10529 @deftypefn {Built-in Function} {void *} __builtin___bnd_narrow_ptr_bounds (const void *@var{p}, const void *@var{q}, size_t @var{size})
10531 This built-in function returns a new pointer with the value of @var{p}
10532 and associates it with the narrowed bounds formed by the intersection
10533 of bounds associated with @var{q} and the bounds
10534 [@var{p}, @var{p} + @var{size} - 1].
10535 With Pointer Bounds Checker off, the built-in function just returns the first
10539 void init_objects (object *objs, size_t size)
10542 /* Initialize objects one-by-one passing pointers with bounds of
10543 an object, not the full array of objects. */
10544 for (i = 0; i < size; i++)
10545 init_object (__builtin___bnd_narrow_ptr_bounds (objs + i, objs,
10552 @deftypefn {Built-in Function} {void *} __builtin___bnd_copy_ptr_bounds (const void *@var{q}, const void *@var{r})
10554 This built-in function returns a new pointer with the value of @var{q},
10555 and associates it with the bounds already associated with pointer @var{r}.
10556 With Pointer Bounds Checker off, the built-in function just returns the first
10560 /* Here is a way to get pointer to object's field but
10561 still with the full object's bounds. */
10562 int *field_ptr = __builtin___bnd_copy_ptr_bounds (&objptr->int_field,
10568 @deftypefn {Built-in Function} {void *} __builtin___bnd_init_ptr_bounds (const void *@var{q})
10570 This built-in function returns a new pointer with the value of @var{q}, and
10571 associates it with INIT (allowing full memory access) bounds. With Pointer
10572 Bounds Checker off, the built-in function just returns the first argument.
10576 @deftypefn {Built-in Function} {void *} __builtin___bnd_null_ptr_bounds (const void *@var{q})
10578 This built-in function returns a new pointer with the value of @var{q}, and
10579 associates it with NULL (allowing no memory access) bounds. With Pointer
10580 Bounds Checker off, the built-in function just returns the first argument.
10584 @deftypefn {Built-in Function} void __builtin___bnd_store_ptr_bounds (const void **@var{ptr_addr}, const void *@var{ptr_val})
10586 This built-in function stores the bounds associated with pointer @var{ptr_val}
10587 and location @var{ptr_addr} into Bounds Table. This can be useful to propagate
10588 bounds from legacy code without touching the associated pointer's memory when
10589 pointers are copied as integers. With Pointer Bounds Checker off, the built-in
10590 function call is ignored.
10594 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_lbounds (const void *@var{q})
10596 This built-in function checks if the pointer @var{q} is within the lower
10597 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10598 function call is ignored.
10601 extern void *__wrap_memset (void *dst, int c, size_t len)
10605 __builtin___bnd_chk_ptr_lbounds (dst);
10606 __builtin___bnd_chk_ptr_ubounds ((char *)dst + len - 1);
10607 __real_memset (dst, c, len);
10615 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_ubounds (const void *@var{q})
10617 This built-in function checks if the pointer @var{q} is within the upper
10618 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10619 function call is ignored.
10623 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_bounds (const void *@var{q}, size_t @var{size})
10625 This built-in function checks if [@var{q}, @var{q} + @var{size} - 1] is within
10626 the lower and upper bounds associated with @var{q}. With Pointer Bounds Checker
10627 off, the built-in function call is ignored.
10630 extern void *__wrap_memcpy (void *dst, const void *src, size_t n)
10634 __bnd_chk_ptr_bounds (dst, n);
10635 __bnd_chk_ptr_bounds (src, n);
10636 __real_memcpy (dst, src, n);
10644 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_lbound (const void *@var{q})
10646 This built-in function returns the lower bound associated
10647 with the pointer @var{q}, as a pointer value.
10648 This is useful for debugging using @code{printf}.
10649 With Pointer Bounds Checker off, the built-in function returns 0.
10652 void *lb = __builtin___bnd_get_ptr_lbound (q);
10653 void *ub = __builtin___bnd_get_ptr_ubound (q);
10654 printf ("q = %p lb(q) = %p ub(q) = %p", q, lb, ub);
10659 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_ubound (const void *@var{q})
10661 This built-in function returns the upper bound (which is a pointer) associated
10662 with the pointer @var{q}. With Pointer Bounds Checker off,
10663 the built-in function returns -1.
10667 @node Cilk Plus Builtins
10668 @section Cilk Plus C/C++ Language Extension Built-in Functions
10670 GCC provides support for the following built-in reduction functions if Cilk Plus
10671 is enabled. Cilk Plus can be enabled using the @option{-fcilkplus} flag.
10674 @item @code{__sec_implicit_index}
10675 @item @code{__sec_reduce}
10676 @item @code{__sec_reduce_add}
10677 @item @code{__sec_reduce_all_nonzero}
10678 @item @code{__sec_reduce_all_zero}
10679 @item @code{__sec_reduce_any_nonzero}
10680 @item @code{__sec_reduce_any_zero}
10681 @item @code{__sec_reduce_max}
10682 @item @code{__sec_reduce_min}
10683 @item @code{__sec_reduce_max_ind}
10684 @item @code{__sec_reduce_min_ind}
10685 @item @code{__sec_reduce_mul}
10686 @item @code{__sec_reduce_mutating}
10689 Further details and examples about these built-in functions are described
10690 in the Cilk Plus language manual which can be found at
10691 @uref{https://www.cilkplus.org}.
10693 @node Other Builtins
10694 @section Other Built-in Functions Provided by GCC
10695 @cindex built-in functions
10696 @findex __builtin_alloca
10697 @findex __builtin_alloca_with_align
10698 @findex __builtin_call_with_static_chain
10699 @findex __builtin_fpclassify
10700 @findex __builtin_isfinite
10701 @findex __builtin_isnormal
10702 @findex __builtin_isgreater
10703 @findex __builtin_isgreaterequal
10704 @findex __builtin_isinf_sign
10705 @findex __builtin_isless
10706 @findex __builtin_islessequal
10707 @findex __builtin_islessgreater
10708 @findex __builtin_isunordered
10709 @findex __builtin_powi
10710 @findex __builtin_powif
10711 @findex __builtin_powil
10872 @findex fprintf_unlocked
10874 @findex fputs_unlocked
10982 @findex nexttowardf
10983 @findex nexttowardl
10991 @findex printf_unlocked
11021 @findex signbitd128
11022 @findex significand
11023 @findex significandf
11024 @findex significandl
11052 @findex strncasecmp
11095 GCC provides a large number of built-in functions other than the ones
11096 mentioned above. Some of these are for internal use in the processing
11097 of exceptions or variable-length argument lists and are not
11098 documented here because they may change from time to time; we do not
11099 recommend general use of these functions.
11101 The remaining functions are provided for optimization purposes.
11103 With the exception of built-ins that have library equivalents such as
11104 the standard C library functions discussed below, or that expand to
11105 library calls, GCC built-in functions are always expanded inline and
11106 thus do not have corresponding entry points and their address cannot
11107 be obtained. Attempting to use them in an expression other than
11108 a function call results in a compile-time error.
11110 @opindex fno-builtin
11111 GCC includes built-in versions of many of the functions in the standard
11112 C library. These functions come in two forms: one whose names start with
11113 the @code{__builtin_} prefix, and the other without. Both forms have the
11114 same type (including prototype), the same address (when their address is
11115 taken), and the same meaning as the C library functions even if you specify
11116 the @option{-fno-builtin} option @pxref{C Dialect Options}). Many of these
11117 functions are only optimized in certain cases; if they are not optimized in
11118 a particular case, a call to the library function is emitted.
11122 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
11123 @option{-std=c99} or @option{-std=c11}), the functions
11124 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
11125 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
11126 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
11127 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
11128 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
11129 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
11130 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
11131 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
11132 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
11133 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
11134 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
11135 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
11136 @code{signbitd64}, @code{signbitd128}, @code{significandf},
11137 @code{significandl}, @code{significand}, @code{sincosf},
11138 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
11139 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
11140 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
11141 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
11143 may be handled as built-in functions.
11144 All these functions have corresponding versions
11145 prefixed with @code{__builtin_}, which may be used even in strict C90
11148 The ISO C99 functions
11149 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
11150 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
11151 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
11152 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
11153 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
11154 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
11155 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
11156 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
11157 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
11158 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
11159 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
11160 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
11161 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
11162 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
11163 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
11164 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
11165 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
11166 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
11167 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
11168 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
11169 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
11170 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
11171 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
11172 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
11173 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
11174 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
11175 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
11176 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
11177 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
11178 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
11179 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
11180 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
11181 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
11182 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
11183 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
11184 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
11185 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
11186 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
11187 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
11188 are handled as built-in functions
11189 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
11191 There are also built-in versions of the ISO C99 functions
11192 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
11193 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
11194 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
11195 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
11196 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
11197 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
11198 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
11199 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
11200 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
11201 that are recognized in any mode since ISO C90 reserves these names for
11202 the purpose to which ISO C99 puts them. All these functions have
11203 corresponding versions prefixed with @code{__builtin_}.
11205 There are also built-in functions @code{__builtin_fabsf@var{n}},
11206 @code{__builtin_fabsf@var{n}x}, @code{__builtin_copysignf@var{n}} and
11207 @code{__builtin_copysignf@var{n}x}, corresponding to the TS 18661-3
11208 functions @code{fabsf@var{n}}, @code{fabsf@var{n}x},
11209 @code{copysignf@var{n}} and @code{copysignf@var{n}x}, for supported
11210 types @code{_Float@var{n}} and @code{_Float@var{n}x}.
11212 There are also GNU extension functions @code{clog10}, @code{clog10f} and
11213 @code{clog10l} which names are reserved by ISO C99 for future use.
11214 All these functions have versions prefixed with @code{__builtin_}.
11216 The ISO C94 functions
11217 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
11218 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
11219 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
11221 are handled as built-in functions
11222 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
11224 The ISO C90 functions
11225 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
11226 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
11227 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
11228 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
11229 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
11230 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
11231 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
11232 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
11233 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
11234 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
11235 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
11236 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
11237 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
11238 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
11239 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
11240 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
11241 are all recognized as built-in functions unless
11242 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
11243 is specified for an individual function). All of these functions have
11244 corresponding versions prefixed with @code{__builtin_}.
11246 GCC provides built-in versions of the ISO C99 floating-point comparison
11247 macros that avoid raising exceptions for unordered operands. They have
11248 the same names as the standard macros ( @code{isgreater},
11249 @code{isgreaterequal}, @code{isless}, @code{islessequal},
11250 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
11251 prefixed. We intend for a library implementor to be able to simply
11252 @code{#define} each standard macro to its built-in equivalent.
11253 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
11254 @code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
11255 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
11256 built-in functions appear both with and without the @code{__builtin_} prefix.
11258 @deftypefn {Built-in Function} void *__builtin_alloca (size_t size)
11259 The @code{__builtin_alloca} function must be called at block scope.
11260 The function allocates an object @var{size} bytes large on the stack
11261 of the calling function. The object is aligned on the default stack
11262 alignment boundary for the target determined by the
11263 @code{__BIGGEST_ALIGNMENT__} macro. The @code{__builtin_alloca}
11264 function returns a pointer to the first byte of the allocated object.
11265 The lifetime of the allocated object ends just before the calling
11266 function returns to its caller. This is so even when
11267 @code{__builtin_alloca} is called within a nested block.
11269 For example, the following function allocates eight objects of @code{n}
11270 bytes each on the stack, storing a pointer to each in consecutive elements
11271 of the array @code{a}. It then passes the array to function @code{g}
11272 which can safely use the storage pointed to by each of the array elements.
11275 void f (unsigned n)
11278 for (int i = 0; i != 8; ++i)
11279 a [i] = __builtin_alloca (n);
11281 g (a, n); // @r{safe}
11285 Since the @code{__builtin_alloca} function doesn't validate its argument
11286 it is the responsibility of its caller to make sure the argument doesn't
11287 cause it to exceed the stack size limit.
11288 The @code{__builtin_alloca} function is provided to make it possible to
11289 allocate on the stack arrays of bytes with an upper bound that may be
11290 computed at run time. Since C99 Variable Length Arrays offer
11291 similar functionality under a portable, more convenient, and safer
11292 interface they are recommended instead, in both C99 and C++ programs
11293 where GCC provides them as an extension.
11294 @xref{Variable Length}, for details.
11298 @deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment)
11299 The @code{__builtin_alloca_with_align} function must be called at block
11300 scope. The function allocates an object @var{size} bytes large on
11301 the stack of the calling function. The allocated object is aligned on
11302 the boundary specified by the argument @var{alignment} whose unit is given
11303 in bits (not bytes). The @var{size} argument must be positive and not
11304 exceed the stack size limit. The @var{alignment} argument must be a constant
11305 integer expression that evaluates to a power of 2 greater than or equal to
11306 @code{CHAR_BIT} and less than some unspecified maximum. Invocations
11307 with other values are rejected with an error indicating the valid bounds.
11308 The function returns a pointer to the first byte of the allocated object.
11309 The lifetime of the allocated object ends at the end of the block in which
11310 the function was called. The allocated storage is released no later than
11311 just before the calling function returns to its caller, but may be released
11312 at the end of the block in which the function was called.
11314 For example, in the following function the call to @code{g} is unsafe
11315 because when @code{overalign} is non-zero, the space allocated by
11316 @code{__builtin_alloca_with_align} may have been released at the end
11317 of the @code{if} statement in which it was called.
11320 void f (unsigned n, bool overalign)
11324 p = __builtin_alloca_with_align (n, 64 /* bits */);
11326 p = __builtin_alloc (n);
11328 g (p, n); // @r{unsafe}
11332 Since the @code{__builtin_alloca_with_align} function doesn't validate its
11333 @var{size} argument it is the responsibility of its caller to make sure
11334 the argument doesn't cause it to exceed the stack size limit.
11335 The @code{__builtin_alloca_with_align} function is provided to make
11336 it possible to allocate on the stack overaligned arrays of bytes with
11337 an upper bound that may be computed at run time. Since C99
11338 Variable Length Arrays offer the same functionality under
11339 a portable, more convenient, and safer interface they are recommended
11340 instead, in both C99 and C++ programs where GCC provides them as
11341 an extension. @xref{Variable Length}, for details.
11345 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
11347 You can use the built-in function @code{__builtin_types_compatible_p} to
11348 determine whether two types are the same.
11350 This built-in function returns 1 if the unqualified versions of the
11351 types @var{type1} and @var{type2} (which are types, not expressions) are
11352 compatible, 0 otherwise. The result of this built-in function can be
11353 used in integer constant expressions.
11355 This built-in function ignores top level qualifiers (e.g., @code{const},
11356 @code{volatile}). For example, @code{int} is equivalent to @code{const
11359 The type @code{int[]} and @code{int[5]} are compatible. On the other
11360 hand, @code{int} and @code{char *} are not compatible, even if the size
11361 of their types, on the particular architecture are the same. Also, the
11362 amount of pointer indirection is taken into account when determining
11363 similarity. Consequently, @code{short *} is not similar to
11364 @code{short **}. Furthermore, two types that are typedefed are
11365 considered compatible if their underlying types are compatible.
11367 An @code{enum} type is not considered to be compatible with another
11368 @code{enum} type even if both are compatible with the same integer
11369 type; this is what the C standard specifies.
11370 For example, @code{enum @{foo, bar@}} is not similar to
11371 @code{enum @{hot, dog@}}.
11373 You typically use this function in code whose execution varies
11374 depending on the arguments' types. For example:
11379 typeof (x) tmp = (x); \
11380 if (__builtin_types_compatible_p (typeof (x), long double)) \
11381 tmp = foo_long_double (tmp); \
11382 else if (__builtin_types_compatible_p (typeof (x), double)) \
11383 tmp = foo_double (tmp); \
11384 else if (__builtin_types_compatible_p (typeof (x), float)) \
11385 tmp = foo_float (tmp); \
11392 @emph{Note:} This construct is only available for C@.
11396 @deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})
11398 The @var{call_exp} expression must be a function call, and the
11399 @var{pointer_exp} expression must be a pointer. The @var{pointer_exp}
11400 is passed to the function call in the target's static chain location.
11401 The result of builtin is the result of the function call.
11403 @emph{Note:} This builtin is only available for C@.
11404 This builtin can be used to call Go closures from C.
11408 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
11410 You can use the built-in function @code{__builtin_choose_expr} to
11411 evaluate code depending on the value of a constant expression. This
11412 built-in function returns @var{exp1} if @var{const_exp}, which is an
11413 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
11415 This built-in function is analogous to the @samp{? :} operator in C,
11416 except that the expression returned has its type unaltered by promotion
11417 rules. Also, the built-in function does not evaluate the expression
11418 that is not chosen. For example, if @var{const_exp} evaluates to true,
11419 @var{exp2} is not evaluated even if it has side-effects.
11421 This built-in function can return an lvalue if the chosen argument is an
11424 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
11425 type. Similarly, if @var{exp2} is returned, its return type is the same
11432 __builtin_choose_expr ( \
11433 __builtin_types_compatible_p (typeof (x), double), \
11435 __builtin_choose_expr ( \
11436 __builtin_types_compatible_p (typeof (x), float), \
11438 /* @r{The void expression results in a compile-time error} \
11439 @r{when assigning the result to something.} */ \
11443 @emph{Note:} This construct is only available for C@. Furthermore, the
11444 unused expression (@var{exp1} or @var{exp2} depending on the value of
11445 @var{const_exp}) may still generate syntax errors. This may change in
11450 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
11452 The built-in function @code{__builtin_complex} is provided for use in
11453 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
11454 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
11455 real binary floating-point type, and the result has the corresponding
11456 complex type with real and imaginary parts @var{real} and @var{imag}.
11457 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
11458 infinities, NaNs and negative zeros are involved.
11462 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
11463 You can use the built-in function @code{__builtin_constant_p} to
11464 determine if a value is known to be constant at compile time and hence
11465 that GCC can perform constant-folding on expressions involving that
11466 value. The argument of the function is the value to test. The function
11467 returns the integer 1 if the argument is known to be a compile-time
11468 constant and 0 if it is not known to be a compile-time constant. A
11469 return of 0 does not indicate that the value is @emph{not} a constant,
11470 but merely that GCC cannot prove it is a constant with the specified
11471 value of the @option{-O} option.
11473 You typically use this function in an embedded application where
11474 memory is a critical resource. If you have some complex calculation,
11475 you may want it to be folded if it involves constants, but need to call
11476 a function if it does not. For example:
11479 #define Scale_Value(X) \
11480 (__builtin_constant_p (X) \
11481 ? ((X) * SCALE + OFFSET) : Scale (X))
11484 You may use this built-in function in either a macro or an inline
11485 function. However, if you use it in an inlined function and pass an
11486 argument of the function as the argument to the built-in, GCC
11487 never returns 1 when you call the inline function with a string constant
11488 or compound literal (@pxref{Compound Literals}) and does not return 1
11489 when you pass a constant numeric value to the inline function unless you
11490 specify the @option{-O} option.
11492 You may also use @code{__builtin_constant_p} in initializers for static
11493 data. For instance, you can write
11496 static const int table[] = @{
11497 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
11503 This is an acceptable initializer even if @var{EXPRESSION} is not a
11504 constant expression, including the case where
11505 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
11506 folded to a constant but @var{EXPRESSION} contains operands that are
11507 not otherwise permitted in a static initializer (for example,
11508 @code{0 && foo ()}). GCC must be more conservative about evaluating the
11509 built-in in this case, because it has no opportunity to perform
11513 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
11514 @opindex fprofile-arcs
11515 You may use @code{__builtin_expect} to provide the compiler with
11516 branch prediction information. In general, you should prefer to
11517 use actual profile feedback for this (@option{-fprofile-arcs}), as
11518 programmers are notoriously bad at predicting how their programs
11519 actually perform. However, there are applications in which this
11520 data is hard to collect.
11522 The return value is the value of @var{exp}, which should be an integral
11523 expression. The semantics of the built-in are that it is expected that
11524 @var{exp} == @var{c}. For example:
11527 if (__builtin_expect (x, 0))
11532 indicates that we do not expect to call @code{foo}, since
11533 we expect @code{x} to be zero. Since you are limited to integral
11534 expressions for @var{exp}, you should use constructions such as
11537 if (__builtin_expect (ptr != NULL, 1))
11542 when testing pointer or floating-point values.
11545 @deftypefn {Built-in Function} void __builtin_trap (void)
11546 This function causes the program to exit abnormally. GCC implements
11547 this function by using a target-dependent mechanism (such as
11548 intentionally executing an illegal instruction) or by calling
11549 @code{abort}. The mechanism used may vary from release to release so
11550 you should not rely on any particular implementation.
11553 @deftypefn {Built-in Function} void __builtin_unreachable (void)
11554 If control flow reaches the point of the @code{__builtin_unreachable},
11555 the program is undefined. It is useful in situations where the
11556 compiler cannot deduce the unreachability of the code.
11558 One such case is immediately following an @code{asm} statement that
11559 either never terminates, or one that transfers control elsewhere
11560 and never returns. In this example, without the
11561 @code{__builtin_unreachable}, GCC issues a warning that control
11562 reaches the end of a non-void function. It also generates code
11563 to return after the @code{asm}.
11566 int f (int c, int v)
11574 asm("jmp error_handler");
11575 __builtin_unreachable ();
11581 Because the @code{asm} statement unconditionally transfers control out
11582 of the function, control never reaches the end of the function
11583 body. The @code{__builtin_unreachable} is in fact unreachable and
11584 communicates this fact to the compiler.
11586 Another use for @code{__builtin_unreachable} is following a call a
11587 function that never returns but that is not declared
11588 @code{__attribute__((noreturn))}, as in this example:
11591 void function_that_never_returns (void);
11601 function_that_never_returns ();
11602 __builtin_unreachable ();
11609 @deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
11610 This function returns its first argument, and allows the compiler
11611 to assume that the returned pointer is at least @var{align} bytes
11612 aligned. This built-in can have either two or three arguments,
11613 if it has three, the third argument should have integer type, and
11614 if it is nonzero means misalignment offset. For example:
11617 void *x = __builtin_assume_aligned (arg, 16);
11621 means that the compiler can assume @code{x}, set to @code{arg}, is at least
11622 16-byte aligned, while:
11625 void *x = __builtin_assume_aligned (arg, 32, 8);
11629 means that the compiler can assume for @code{x}, set to @code{arg}, that
11630 @code{(char *) x - 8} is 32-byte aligned.
11633 @deftypefn {Built-in Function} int __builtin_LINE ()
11634 This function is the equivalent of the preprocessor @code{__LINE__}
11635 macro and returns a constant integer expression that evaluates to
11636 the line number of the invocation of the built-in. When used as a C++
11637 default argument for a function @var{F}, it returns the line number
11638 of the call to @var{F}.
11641 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
11642 This function is the equivalent of the @code{__FUNCTION__} symbol
11643 and returns an address constant pointing to the name of the function
11644 from which the built-in was invoked, or the empty string if
11645 the invocation is not at function scope. When used as a C++ default
11646 argument for a function @var{F}, it returns the name of @var{F}'s
11647 caller or the empty string if the call was not made at function
11651 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
11652 This function is the equivalent of the preprocessor @code{__FILE__}
11653 macro and returns an address constant pointing to the file name
11654 containing the invocation of the built-in, or the empty string if
11655 the invocation is not at function scope. When used as a C++ default
11656 argument for a function @var{F}, it returns the file name of the call
11657 to @var{F} or the empty string if the call was not made at function
11660 For example, in the following, each call to function @code{foo} will
11661 print a line similar to @code{"file.c:123: foo: message"} with the name
11662 of the file and the line number of the @code{printf} call, the name of
11663 the function @code{foo}, followed by the word @code{message}.
11667 function (const char *func = __builtin_FUNCTION ())
11674 printf ("%s:%i: %s: message\n", file (), line (), function ());
11680 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
11681 This function is used to flush the processor's instruction cache for
11682 the region of memory between @var{begin} inclusive and @var{end}
11683 exclusive. Some targets require that the instruction cache be
11684 flushed, after modifying memory containing code, in order to obtain
11685 deterministic behavior.
11687 If the target does not require instruction cache flushes,
11688 @code{__builtin___clear_cache} has no effect. Otherwise either
11689 instructions are emitted in-line to clear the instruction cache or a
11690 call to the @code{__clear_cache} function in libgcc is made.
11693 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
11694 This function is used to minimize cache-miss latency by moving data into
11695 a cache before it is accessed.
11696 You can insert calls to @code{__builtin_prefetch} into code for which
11697 you know addresses of data in memory that is likely to be accessed soon.
11698 If the target supports them, data prefetch instructions are generated.
11699 If the prefetch is done early enough before the access then the data will
11700 be in the cache by the time it is accessed.
11702 The value of @var{addr} is the address of the memory to prefetch.
11703 There are two optional arguments, @var{rw} and @var{locality}.
11704 The value of @var{rw} is a compile-time constant one or zero; one
11705 means that the prefetch is preparing for a write to the memory address
11706 and zero, the default, means that the prefetch is preparing for a read.
11707 The value @var{locality} must be a compile-time constant integer between
11708 zero and three. A value of zero means that the data has no temporal
11709 locality, so it need not be left in the cache after the access. A value
11710 of three means that the data has a high degree of temporal locality and
11711 should be left in all levels of cache possible. Values of one and two
11712 mean, respectively, a low or moderate degree of temporal locality. The
11716 for (i = 0; i < n; i++)
11718 a[i] = a[i] + b[i];
11719 __builtin_prefetch (&a[i+j], 1, 1);
11720 __builtin_prefetch (&b[i+j], 0, 1);
11725 Data prefetch does not generate faults if @var{addr} is invalid, but
11726 the address expression itself must be valid. For example, a prefetch
11727 of @code{p->next} does not fault if @code{p->next} is not a valid
11728 address, but evaluation faults if @code{p} is not a valid address.
11730 If the target does not support data prefetch, the address expression
11731 is evaluated if it includes side effects but no other code is generated
11732 and GCC does not issue a warning.
11735 @deftypefn {Built-in Function} double __builtin_huge_val (void)
11736 Returns a positive infinity, if supported by the floating-point format,
11737 else @code{DBL_MAX}. This function is suitable for implementing the
11738 ISO C macro @code{HUGE_VAL}.
11741 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
11742 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
11745 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
11746 Similar to @code{__builtin_huge_val}, except the return
11747 type is @code{long double}.
11750 @deftypefn {Built-in Function} _Float@var{n} __builtin_huge_valf@var{n} (void)
11751 Similar to @code{__builtin_huge_val}, except the return type is
11752 @code{_Float@var{n}}.
11755 @deftypefn {Built-in Function} _Float@var{n}x __builtin_huge_valf@var{n}x (void)
11756 Similar to @code{__builtin_huge_val}, except the return type is
11757 @code{_Float@var{n}x}.
11760 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
11761 This built-in implements the C99 fpclassify functionality. The first
11762 five int arguments should be the target library's notion of the
11763 possible FP classes and are used for return values. They must be
11764 constant values and they must appear in this order: @code{FP_NAN},
11765 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
11766 @code{FP_ZERO}. The ellipsis is for exactly one floating-point value
11767 to classify. GCC treats the last argument as type-generic, which
11768 means it does not do default promotion from float to double.
11771 @deftypefn {Built-in Function} double __builtin_inf (void)
11772 Similar to @code{__builtin_huge_val}, except a warning is generated
11773 if the target floating-point format does not support infinities.
11776 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
11777 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
11780 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
11781 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
11784 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
11785 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
11788 @deftypefn {Built-in Function} float __builtin_inff (void)
11789 Similar to @code{__builtin_inf}, except the return type is @code{float}.
11790 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
11793 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
11794 Similar to @code{__builtin_inf}, except the return
11795 type is @code{long double}.
11798 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n} (void)
11799 Similar to @code{__builtin_inf}, except the return
11800 type is @code{_Float@var{n}}.
11803 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n}x (void)
11804 Similar to @code{__builtin_inf}, except the return
11805 type is @code{_Float@var{n}x}.
11808 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
11809 Similar to @code{isinf}, except the return value is -1 for
11810 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
11811 Note while the parameter list is an
11812 ellipsis, this function only accepts exactly one floating-point
11813 argument. GCC treats this parameter as type-generic, which means it
11814 does not do default promotion from float to double.
11817 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
11818 This is an implementation of the ISO C99 function @code{nan}.
11820 Since ISO C99 defines this function in terms of @code{strtod}, which we
11821 do not implement, a description of the parsing is in order. The string
11822 is parsed as by @code{strtol}; that is, the base is recognized by
11823 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
11824 in the significand such that the least significant bit of the number
11825 is at the least significant bit of the significand. The number is
11826 truncated to fit the significand field provided. The significand is
11827 forced to be a quiet NaN@.
11829 This function, if given a string literal all of which would have been
11830 consumed by @code{strtol}, is evaluated early enough that it is considered a
11831 compile-time constant.
11834 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
11835 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
11838 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
11839 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
11842 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
11843 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
11846 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
11847 Similar to @code{__builtin_nan}, except the return type is @code{float}.
11850 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
11851 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
11854 @deftypefn {Built-in Function} _Float@var{n} __builtin_nanf@var{n} (const char *str)
11855 Similar to @code{__builtin_nan}, except the return type is
11856 @code{_Float@var{n}}.
11859 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nanf@var{n}x (const char *str)
11860 Similar to @code{__builtin_nan}, except the return type is
11861 @code{_Float@var{n}x}.
11864 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
11865 Similar to @code{__builtin_nan}, except the significand is forced
11866 to be a signaling NaN@. The @code{nans} function is proposed by
11867 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
11870 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
11871 Similar to @code{__builtin_nans}, except the return type is @code{float}.
11874 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
11875 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
11878 @deftypefn {Built-in Function} _Float@var{n} __builtin_nansf@var{n} (const char *str)
11879 Similar to @code{__builtin_nans}, except the return type is
11880 @code{_Float@var{n}}.
11883 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nansf@var{n}x (const char *str)
11884 Similar to @code{__builtin_nans}, except the return type is
11885 @code{_Float@var{n}x}.
11888 @deftypefn {Built-in Function} int __builtin_ffs (int x)
11889 Returns one plus the index of the least significant 1-bit of @var{x}, or
11890 if @var{x} is zero, returns zero.
11893 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
11894 Returns the number of leading 0-bits in @var{x}, starting at the most
11895 significant bit position. If @var{x} is 0, the result is undefined.
11898 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
11899 Returns the number of trailing 0-bits in @var{x}, starting at the least
11900 significant bit position. If @var{x} is 0, the result is undefined.
11903 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
11904 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
11905 number of bits following the most significant bit that are identical
11906 to it. There are no special cases for 0 or other values.
11909 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
11910 Returns the number of 1-bits in @var{x}.
11913 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
11914 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
11918 @deftypefn {Built-in Function} int __builtin_ffsl (long)
11919 Similar to @code{__builtin_ffs}, except the argument type is
11923 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
11924 Similar to @code{__builtin_clz}, except the argument type is
11925 @code{unsigned long}.
11928 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
11929 Similar to @code{__builtin_ctz}, except the argument type is
11930 @code{unsigned long}.
11933 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
11934 Similar to @code{__builtin_clrsb}, except the argument type is
11938 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
11939 Similar to @code{__builtin_popcount}, except the argument type is
11940 @code{unsigned long}.
11943 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
11944 Similar to @code{__builtin_parity}, except the argument type is
11945 @code{unsigned long}.
11948 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
11949 Similar to @code{__builtin_ffs}, except the argument type is
11953 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
11954 Similar to @code{__builtin_clz}, except the argument type is
11955 @code{unsigned long long}.
11958 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
11959 Similar to @code{__builtin_ctz}, except the argument type is
11960 @code{unsigned long long}.
11963 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
11964 Similar to @code{__builtin_clrsb}, except the argument type is
11968 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
11969 Similar to @code{__builtin_popcount}, except the argument type is
11970 @code{unsigned long long}.
11973 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
11974 Similar to @code{__builtin_parity}, except the argument type is
11975 @code{unsigned long long}.
11978 @deftypefn {Built-in Function} double __builtin_powi (double, int)
11979 Returns the first argument raised to the power of the second. Unlike the
11980 @code{pow} function no guarantees about precision and rounding are made.
11983 @deftypefn {Built-in Function} float __builtin_powif (float, int)
11984 Similar to @code{__builtin_powi}, except the argument and return types
11988 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
11989 Similar to @code{__builtin_powi}, except the argument and return types
11990 are @code{long double}.
11993 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
11994 Returns @var{x} with the order of the bytes reversed; for example,
11995 @code{0xaabb} becomes @code{0xbbaa}. Byte here always means
11999 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
12000 Similar to @code{__builtin_bswap16}, except the argument and return types
12004 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
12005 Similar to @code{__builtin_bswap32}, except the argument and return types
12009 @node Target Builtins
12010 @section Built-in Functions Specific to Particular Target Machines
12012 On some target machines, GCC supports many built-in functions specific
12013 to those machines. Generally these generate calls to specific machine
12014 instructions, but allow the compiler to schedule those calls.
12017 * AArch64 Built-in Functions::
12018 * Alpha Built-in Functions::
12019 * Altera Nios II Built-in Functions::
12020 * ARC Built-in Functions::
12021 * ARC SIMD Built-in Functions::
12022 * ARM iWMMXt Built-in Functions::
12023 * ARM C Language Extensions (ACLE)::
12024 * ARM Floating Point Status and Control Intrinsics::
12025 * ARM ARMv8-M Security Extensions::
12026 * AVR Built-in Functions::
12027 * Blackfin Built-in Functions::
12028 * FR-V Built-in Functions::
12029 * MIPS DSP Built-in Functions::
12030 * MIPS Paired-Single Support::
12031 * MIPS Loongson Built-in Functions::
12032 * MIPS SIMD Architecture (MSA) Support::
12033 * Other MIPS Built-in Functions::
12034 * MSP430 Built-in Functions::
12035 * NDS32 Built-in Functions::
12036 * picoChip Built-in Functions::
12037 * PowerPC Built-in Functions::
12038 * PowerPC AltiVec/VSX Built-in Functions::
12039 * PowerPC Hardware Transactional Memory Built-in Functions::
12040 * RX Built-in Functions::
12041 * S/390 System z Built-in Functions::
12042 * SH Built-in Functions::
12043 * SPARC VIS Built-in Functions::
12044 * SPU Built-in Functions::
12045 * TI C6X Built-in Functions::
12046 * TILE-Gx Built-in Functions::
12047 * TILEPro Built-in Functions::
12048 * x86 Built-in Functions::
12049 * x86 transactional memory intrinsics::
12052 @node AArch64 Built-in Functions
12053 @subsection AArch64 Built-in Functions
12055 These built-in functions are available for the AArch64 family of
12058 unsigned int __builtin_aarch64_get_fpcr ()
12059 void __builtin_aarch64_set_fpcr (unsigned int)
12060 unsigned int __builtin_aarch64_get_fpsr ()
12061 void __builtin_aarch64_set_fpsr (unsigned int)
12064 @node Alpha Built-in Functions
12065 @subsection Alpha Built-in Functions
12067 These built-in functions are available for the Alpha family of
12068 processors, depending on the command-line switches used.
12070 The following built-in functions are always available. They
12071 all generate the machine instruction that is part of the name.
12074 long __builtin_alpha_implver (void)
12075 long __builtin_alpha_rpcc (void)
12076 long __builtin_alpha_amask (long)
12077 long __builtin_alpha_cmpbge (long, long)
12078 long __builtin_alpha_extbl (long, long)
12079 long __builtin_alpha_extwl (long, long)
12080 long __builtin_alpha_extll (long, long)
12081 long __builtin_alpha_extql (long, long)
12082 long __builtin_alpha_extwh (long, long)
12083 long __builtin_alpha_extlh (long, long)
12084 long __builtin_alpha_extqh (long, long)
12085 long __builtin_alpha_insbl (long, long)
12086 long __builtin_alpha_inswl (long, long)
12087 long __builtin_alpha_insll (long, long)
12088 long __builtin_alpha_insql (long, long)
12089 long __builtin_alpha_inswh (long, long)
12090 long __builtin_alpha_inslh (long, long)
12091 long __builtin_alpha_insqh (long, long)
12092 long __builtin_alpha_mskbl (long, long)
12093 long __builtin_alpha_mskwl (long, long)
12094 long __builtin_alpha_mskll (long, long)
12095 long __builtin_alpha_mskql (long, long)
12096 long __builtin_alpha_mskwh (long, long)
12097 long __builtin_alpha_msklh (long, long)
12098 long __builtin_alpha_mskqh (long, long)
12099 long __builtin_alpha_umulh (long, long)
12100 long __builtin_alpha_zap (long, long)
12101 long __builtin_alpha_zapnot (long, long)
12104 The following built-in functions are always with @option{-mmax}
12105 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
12106 later. They all generate the machine instruction that is part
12110 long __builtin_alpha_pklb (long)
12111 long __builtin_alpha_pkwb (long)
12112 long __builtin_alpha_unpkbl (long)
12113 long __builtin_alpha_unpkbw (long)
12114 long __builtin_alpha_minub8 (long, long)
12115 long __builtin_alpha_minsb8 (long, long)
12116 long __builtin_alpha_minuw4 (long, long)
12117 long __builtin_alpha_minsw4 (long, long)
12118 long __builtin_alpha_maxub8 (long, long)
12119 long __builtin_alpha_maxsb8 (long, long)
12120 long __builtin_alpha_maxuw4 (long, long)
12121 long __builtin_alpha_maxsw4 (long, long)
12122 long __builtin_alpha_perr (long, long)
12125 The following built-in functions are always with @option{-mcix}
12126 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
12127 later. They all generate the machine instruction that is part
12131 long __builtin_alpha_cttz (long)
12132 long __builtin_alpha_ctlz (long)
12133 long __builtin_alpha_ctpop (long)
12136 The following built-in functions are available on systems that use the OSF/1
12137 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
12138 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
12139 @code{rdval} and @code{wrval}.
12142 void *__builtin_thread_pointer (void)
12143 void __builtin_set_thread_pointer (void *)
12146 @node Altera Nios II Built-in Functions
12147 @subsection Altera Nios II Built-in Functions
12149 These built-in functions are available for the Altera Nios II
12150 family of processors.
12152 The following built-in functions are always available. They
12153 all generate the machine instruction that is part of the name.
12156 int __builtin_ldbio (volatile const void *)
12157 int __builtin_ldbuio (volatile const void *)
12158 int __builtin_ldhio (volatile const void *)
12159 int __builtin_ldhuio (volatile const void *)
12160 int __builtin_ldwio (volatile const void *)
12161 void __builtin_stbio (volatile void *, int)
12162 void __builtin_sthio (volatile void *, int)
12163 void __builtin_stwio (volatile void *, int)
12164 void __builtin_sync (void)
12165 int __builtin_rdctl (int)
12166 int __builtin_rdprs (int, int)
12167 void __builtin_wrctl (int, int)
12168 void __builtin_flushd (volatile void *)
12169 void __builtin_flushda (volatile void *)
12170 int __builtin_wrpie (int);
12171 void __builtin_eni (int);
12172 int __builtin_ldex (volatile const void *)
12173 int __builtin_stex (volatile void *, int)
12174 int __builtin_ldsex (volatile const void *)
12175 int __builtin_stsex (volatile void *, int)
12178 The following built-in functions are always available. They
12179 all generate a Nios II Custom Instruction. The name of the
12180 function represents the types that the function takes and
12181 returns. The letter before the @code{n} is the return type
12182 or void if absent. The @code{n} represents the first parameter
12183 to all the custom instructions, the custom instruction number.
12184 The two letters after the @code{n} represent the up to two
12185 parameters to the function.
12187 The letters represent the following data types:
12190 @code{void} for return type and no parameter for parameter types.
12193 @code{int} for return type and parameter type
12196 @code{float} for return type and parameter type
12199 @code{void *} for return type and parameter type
12203 And the function names are:
12205 void __builtin_custom_n (void)
12206 void __builtin_custom_ni (int)
12207 void __builtin_custom_nf (float)
12208 void __builtin_custom_np (void *)
12209 void __builtin_custom_nii (int, int)
12210 void __builtin_custom_nif (int, float)
12211 void __builtin_custom_nip (int, void *)
12212 void __builtin_custom_nfi (float, int)
12213 void __builtin_custom_nff (float, float)
12214 void __builtin_custom_nfp (float, void *)
12215 void __builtin_custom_npi (void *, int)
12216 void __builtin_custom_npf (void *, float)
12217 void __builtin_custom_npp (void *, void *)
12218 int __builtin_custom_in (void)
12219 int __builtin_custom_ini (int)
12220 int __builtin_custom_inf (float)
12221 int __builtin_custom_inp (void *)
12222 int __builtin_custom_inii (int, int)
12223 int __builtin_custom_inif (int, float)
12224 int __builtin_custom_inip (int, void *)
12225 int __builtin_custom_infi (float, int)
12226 int __builtin_custom_inff (float, float)
12227 int __builtin_custom_infp (float, void *)
12228 int __builtin_custom_inpi (void *, int)
12229 int __builtin_custom_inpf (void *, float)
12230 int __builtin_custom_inpp (void *, void *)
12231 float __builtin_custom_fn (void)
12232 float __builtin_custom_fni (int)
12233 float __builtin_custom_fnf (float)
12234 float __builtin_custom_fnp (void *)
12235 float __builtin_custom_fnii (int, int)
12236 float __builtin_custom_fnif (int, float)
12237 float __builtin_custom_fnip (int, void *)
12238 float __builtin_custom_fnfi (float, int)
12239 float __builtin_custom_fnff (float, float)
12240 float __builtin_custom_fnfp (float, void *)
12241 float __builtin_custom_fnpi (void *, int)
12242 float __builtin_custom_fnpf (void *, float)
12243 float __builtin_custom_fnpp (void *, void *)
12244 void * __builtin_custom_pn (void)
12245 void * __builtin_custom_pni (int)
12246 void * __builtin_custom_pnf (float)
12247 void * __builtin_custom_pnp (void *)
12248 void * __builtin_custom_pnii (int, int)
12249 void * __builtin_custom_pnif (int, float)
12250 void * __builtin_custom_pnip (int, void *)
12251 void * __builtin_custom_pnfi (float, int)
12252 void * __builtin_custom_pnff (float, float)
12253 void * __builtin_custom_pnfp (float, void *)
12254 void * __builtin_custom_pnpi (void *, int)
12255 void * __builtin_custom_pnpf (void *, float)
12256 void * __builtin_custom_pnpp (void *, void *)
12259 @node ARC Built-in Functions
12260 @subsection ARC Built-in Functions
12262 The following built-in functions are provided for ARC targets. The
12263 built-ins generate the corresponding assembly instructions. In the
12264 examples given below, the generated code often requires an operand or
12265 result to be in a register. Where necessary further code will be
12266 generated to ensure this is true, but for brevity this is not
12267 described in each case.
12269 @emph{Note:} Using a built-in to generate an instruction not supported
12270 by a target may cause problems. At present the compiler is not
12271 guaranteed to detect such misuse, and as a result an internal compiler
12272 error may be generated.
12274 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
12275 Return 1 if @var{val} is known to have the byte alignment given
12276 by @var{alignval}, otherwise return 0.
12277 Note that this is different from
12279 __alignof__(*(char *)@var{val}) >= alignval
12281 because __alignof__ sees only the type of the dereference, whereas
12282 __builtin_arc_align uses alignment information from the pointer
12283 as well as from the pointed-to type.
12284 The information available will depend on optimization level.
12287 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
12294 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
12295 The operand is the number of a register to be read. Generates:
12297 mov @var{dest}, r@var{regno}
12299 where the value in @var{dest} will be the result returned from the
12303 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
12304 The first operand is the number of a register to be written, the
12305 second operand is a compile time constant to write into that
12306 register. Generates:
12308 mov r@var{regno}, @var{val}
12312 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
12313 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
12316 divaw @var{dest}, @var{a}, @var{b}
12318 where the value in @var{dest} will be the result returned from the
12322 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
12329 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
12330 The operand, @var{auxv}, is the address of an auxiliary register and
12331 must be a compile time constant. Generates:
12333 lr @var{dest}, [@var{auxr}]
12335 Where the value in @var{dest} will be the result returned from the
12339 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
12340 Only available with @option{-mmul64}. Generates:
12342 mul64 @var{a}, @var{b}
12346 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
12347 Only available with @option{-mmul64}. Generates:
12349 mulu64 @var{a}, @var{b}
12353 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
12360 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
12361 Only valid if the @samp{norm} instruction is available through the
12362 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12365 norm @var{dest}, @var{src}
12367 Where the value in @var{dest} will be the result returned from the
12371 @deftypefn {Built-in Function} {short int} __builtin_arc_normw (short int @var{src})
12372 Only valid if the @samp{normw} instruction is available through the
12373 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12376 normw @var{dest}, @var{src}
12378 Where the value in @var{dest} will be the result returned from the
12382 @deftypefn {Built-in Function} void __builtin_arc_rtie (void)
12389 @deftypefn {Built-in Function} void __builtin_arc_sleep (int @var{a}
12396 @deftypefn {Built-in Function} void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
12397 The first argument, @var{auxv}, is the address of an auxiliary
12398 register, the second argument, @var{val}, is a compile time constant
12399 to be written to the register. Generates:
12401 sr @var{auxr}, [@var{val}]
12405 @deftypefn {Built-in Function} int __builtin_arc_swap (int @var{src})
12406 Only valid with @option{-mswap}. Generates:
12408 swap @var{dest}, @var{src}
12410 Where the value in @var{dest} will be the result returned from the
12414 @deftypefn {Built-in Function} void __builtin_arc_swi (void)
12421 @deftypefn {Built-in Function} void __builtin_arc_sync (void)
12422 Only available with @option{-mcpu=ARC700}. Generates:
12428 @deftypefn {Built-in Function} void __builtin_arc_trap_s (unsigned int @var{c})
12429 Only available with @option{-mcpu=ARC700}. Generates:
12435 @deftypefn {Built-in Function} void __builtin_arc_unimp_s (void)
12436 Only available with @option{-mcpu=ARC700}. Generates:
12442 The instructions generated by the following builtins are not
12443 considered as candidates for scheduling. They are not moved around by
12444 the compiler during scheduling, and thus can be expected to appear
12445 where they are put in the C code:
12447 __builtin_arc_brk()
12448 __builtin_arc_core_read()
12449 __builtin_arc_core_write()
12450 __builtin_arc_flag()
12452 __builtin_arc_sleep()
12454 __builtin_arc_swi()
12457 @node ARC SIMD Built-in Functions
12458 @subsection ARC SIMD Built-in Functions
12460 SIMD builtins provided by the compiler can be used to generate the
12461 vector instructions. This section describes the available builtins
12462 and their usage in programs. With the @option{-msimd} option, the
12463 compiler provides 128-bit vector types, which can be specified using
12464 the @code{vector_size} attribute. The header file @file{arc-simd.h}
12465 can be included to use the following predefined types:
12467 typedef int __v4si __attribute__((vector_size(16)));
12468 typedef short __v8hi __attribute__((vector_size(16)));
12471 These types can be used to define 128-bit variables. The built-in
12472 functions listed in the following section can be used on these
12473 variables to generate the vector operations.
12475 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
12476 @file{arc-simd.h} also provides equivalent macros called
12477 @code{_@var{someinsn}} that can be used for programming ease and
12478 improved readability. The following macros for DMA control are also
12481 #define _setup_dma_in_channel_reg _vdiwr
12482 #define _setup_dma_out_channel_reg _vdowr
12485 The following is a complete list of all the SIMD built-ins provided
12486 for ARC, grouped by calling signature.
12488 The following take two @code{__v8hi} arguments and return a
12489 @code{__v8hi} result:
12491 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
12492 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
12493 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
12494 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
12495 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
12496 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
12497 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
12498 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
12499 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
12500 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
12501 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
12502 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
12503 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
12504 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
12505 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
12506 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
12507 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
12508 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
12509 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
12510 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
12511 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
12512 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
12513 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
12514 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
12515 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
12516 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
12517 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
12518 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
12519 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
12520 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
12521 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
12522 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
12523 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
12524 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
12525 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
12526 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
12527 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
12528 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
12529 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
12530 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
12531 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
12532 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
12533 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
12534 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
12535 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
12536 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
12537 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
12538 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
12541 The following take one @code{__v8hi} and one @code{int} argument and return a
12542 @code{__v8hi} result:
12545 __v8hi __builtin_arc_vbaddw (__v8hi, int)
12546 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
12547 __v8hi __builtin_arc_vbminw (__v8hi, int)
12548 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
12549 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
12550 __v8hi __builtin_arc_vbmulw (__v8hi, int)
12551 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
12552 __v8hi __builtin_arc_vbsubw (__v8hi, int)
12555 The following take one @code{__v8hi} argument and one @code{int} argument which
12556 must be a 3-bit compile time constant indicating a register number
12557 I0-I7. They return a @code{__v8hi} result.
12559 __v8hi __builtin_arc_vasrw (__v8hi, const int)
12560 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
12561 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
12564 The following take one @code{__v8hi} argument and one @code{int}
12565 argument which must be a 6-bit compile time constant. They return a
12566 @code{__v8hi} result.
12568 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
12569 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
12570 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
12571 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
12572 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
12573 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
12574 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
12577 The following take one @code{__v8hi} argument and one @code{int} argument which
12578 must be a 8-bit compile time constant. They return a @code{__v8hi}
12581 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
12582 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
12583 __v8hi __builtin_arc_vmvw (__v8hi, const int)
12584 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
12587 The following take two @code{int} arguments, the second of which which
12588 must be a 8-bit compile time constant. They return a @code{__v8hi}
12591 __v8hi __builtin_arc_vmovaw (int, const int)
12592 __v8hi __builtin_arc_vmovw (int, const int)
12593 __v8hi __builtin_arc_vmovzw (int, const int)
12596 The following take a single @code{__v8hi} argument and return a
12597 @code{__v8hi} result:
12599 __v8hi __builtin_arc_vabsaw (__v8hi)
12600 __v8hi __builtin_arc_vabsw (__v8hi)
12601 __v8hi __builtin_arc_vaddsuw (__v8hi)
12602 __v8hi __builtin_arc_vexch1 (__v8hi)
12603 __v8hi __builtin_arc_vexch2 (__v8hi)
12604 __v8hi __builtin_arc_vexch4 (__v8hi)
12605 __v8hi __builtin_arc_vsignw (__v8hi)
12606 __v8hi __builtin_arc_vupbaw (__v8hi)
12607 __v8hi __builtin_arc_vupbw (__v8hi)
12608 __v8hi __builtin_arc_vupsbaw (__v8hi)
12609 __v8hi __builtin_arc_vupsbw (__v8hi)
12612 The following take two @code{int} arguments and return no result:
12614 void __builtin_arc_vdirun (int, int)
12615 void __builtin_arc_vdorun (int, int)
12618 The following take two @code{int} arguments and return no result. The
12619 first argument must a 3-bit compile time constant indicating one of
12620 the DR0-DR7 DMA setup channels:
12622 void __builtin_arc_vdiwr (const int, int)
12623 void __builtin_arc_vdowr (const int, int)
12626 The following take an @code{int} argument and return no result:
12628 void __builtin_arc_vendrec (int)
12629 void __builtin_arc_vrec (int)
12630 void __builtin_arc_vrecrun (int)
12631 void __builtin_arc_vrun (int)
12634 The following take a @code{__v8hi} argument and two @code{int}
12635 arguments and return a @code{__v8hi} result. The second argument must
12636 be a 3-bit compile time constants, indicating one the registers I0-I7,
12637 and the third argument must be an 8-bit compile time constant.
12639 @emph{Note:} Although the equivalent hardware instructions do not take
12640 an SIMD register as an operand, these builtins overwrite the relevant
12641 bits of the @code{__v8hi} register provided as the first argument with
12642 the value loaded from the @code{[Ib, u8]} location in the SDM.
12645 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
12646 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
12647 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
12648 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
12651 The following take two @code{int} arguments and return a @code{__v8hi}
12652 result. The first argument must be a 3-bit compile time constants,
12653 indicating one the registers I0-I7, and the second argument must be an
12654 8-bit compile time constant.
12657 __v8hi __builtin_arc_vld128 (const int, const int)
12658 __v8hi __builtin_arc_vld64w (const int, const int)
12661 The following take a @code{__v8hi} argument and two @code{int}
12662 arguments and return no result. The second argument must be a 3-bit
12663 compile time constants, indicating one the registers I0-I7, and the
12664 third argument must be an 8-bit compile time constant.
12667 void __builtin_arc_vst128 (__v8hi, const int, const int)
12668 void __builtin_arc_vst64 (__v8hi, const int, const int)
12671 The following take a @code{__v8hi} argument and three @code{int}
12672 arguments and return no result. The second argument must be a 3-bit
12673 compile-time constant, identifying the 16-bit sub-register to be
12674 stored, the third argument must be a 3-bit compile time constants,
12675 indicating one the registers I0-I7, and the fourth argument must be an
12676 8-bit compile time constant.
12679 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
12680 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
12683 @node ARM iWMMXt Built-in Functions
12684 @subsection ARM iWMMXt Built-in Functions
12686 These built-in functions are available for the ARM family of
12687 processors when the @option{-mcpu=iwmmxt} switch is used:
12690 typedef int v2si __attribute__ ((vector_size (8)));
12691 typedef short v4hi __attribute__ ((vector_size (8)));
12692 typedef char v8qi __attribute__ ((vector_size (8)));
12694 int __builtin_arm_getwcgr0 (void)
12695 void __builtin_arm_setwcgr0 (int)
12696 int __builtin_arm_getwcgr1 (void)
12697 void __builtin_arm_setwcgr1 (int)
12698 int __builtin_arm_getwcgr2 (void)
12699 void __builtin_arm_setwcgr2 (int)
12700 int __builtin_arm_getwcgr3 (void)
12701 void __builtin_arm_setwcgr3 (int)
12702 int __builtin_arm_textrmsb (v8qi, int)
12703 int __builtin_arm_textrmsh (v4hi, int)
12704 int __builtin_arm_textrmsw (v2si, int)
12705 int __builtin_arm_textrmub (v8qi, int)
12706 int __builtin_arm_textrmuh (v4hi, int)
12707 int __builtin_arm_textrmuw (v2si, int)
12708 v8qi __builtin_arm_tinsrb (v8qi, int, int)
12709 v4hi __builtin_arm_tinsrh (v4hi, int, int)
12710 v2si __builtin_arm_tinsrw (v2si, int, int)
12711 long long __builtin_arm_tmia (long long, int, int)
12712 long long __builtin_arm_tmiabb (long long, int, int)
12713 long long __builtin_arm_tmiabt (long long, int, int)
12714 long long __builtin_arm_tmiaph (long long, int, int)
12715 long long __builtin_arm_tmiatb (long long, int, int)
12716 long long __builtin_arm_tmiatt (long long, int, int)
12717 int __builtin_arm_tmovmskb (v8qi)
12718 int __builtin_arm_tmovmskh (v4hi)
12719 int __builtin_arm_tmovmskw (v2si)
12720 long long __builtin_arm_waccb (v8qi)
12721 long long __builtin_arm_wacch (v4hi)
12722 long long __builtin_arm_waccw (v2si)
12723 v8qi __builtin_arm_waddb (v8qi, v8qi)
12724 v8qi __builtin_arm_waddbss (v8qi, v8qi)
12725 v8qi __builtin_arm_waddbus (v8qi, v8qi)
12726 v4hi __builtin_arm_waddh (v4hi, v4hi)
12727 v4hi __builtin_arm_waddhss (v4hi, v4hi)
12728 v4hi __builtin_arm_waddhus (v4hi, v4hi)
12729 v2si __builtin_arm_waddw (v2si, v2si)
12730 v2si __builtin_arm_waddwss (v2si, v2si)
12731 v2si __builtin_arm_waddwus (v2si, v2si)
12732 v8qi __builtin_arm_walign (v8qi, v8qi, int)
12733 long long __builtin_arm_wand(long long, long long)
12734 long long __builtin_arm_wandn (long long, long long)
12735 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
12736 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
12737 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
12738 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
12739 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
12740 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
12741 v2si __builtin_arm_wcmpeqw (v2si, v2si)
12742 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
12743 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
12744 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
12745 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
12746 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
12747 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
12748 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
12749 long long __builtin_arm_wmacsz (v4hi, v4hi)
12750 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
12751 long long __builtin_arm_wmacuz (v4hi, v4hi)
12752 v4hi __builtin_arm_wmadds (v4hi, v4hi)
12753 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
12754 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
12755 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
12756 v2si __builtin_arm_wmaxsw (v2si, v2si)
12757 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
12758 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
12759 v2si __builtin_arm_wmaxuw (v2si, v2si)
12760 v8qi __builtin_arm_wminsb (v8qi, v8qi)
12761 v4hi __builtin_arm_wminsh (v4hi, v4hi)
12762 v2si __builtin_arm_wminsw (v2si, v2si)
12763 v8qi __builtin_arm_wminub (v8qi, v8qi)
12764 v4hi __builtin_arm_wminuh (v4hi, v4hi)
12765 v2si __builtin_arm_wminuw (v2si, v2si)
12766 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
12767 v4hi __builtin_arm_wmulul (v4hi, v4hi)
12768 v4hi __builtin_arm_wmulum (v4hi, v4hi)
12769 long long __builtin_arm_wor (long long, long long)
12770 v2si __builtin_arm_wpackdss (long long, long long)
12771 v2si __builtin_arm_wpackdus (long long, long long)
12772 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
12773 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
12774 v4hi __builtin_arm_wpackwss (v2si, v2si)
12775 v4hi __builtin_arm_wpackwus (v2si, v2si)
12776 long long __builtin_arm_wrord (long long, long long)
12777 long long __builtin_arm_wrordi (long long, int)
12778 v4hi __builtin_arm_wrorh (v4hi, long long)
12779 v4hi __builtin_arm_wrorhi (v4hi, int)
12780 v2si __builtin_arm_wrorw (v2si, long long)
12781 v2si __builtin_arm_wrorwi (v2si, int)
12782 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
12783 v2si __builtin_arm_wsadbz (v8qi, v8qi)
12784 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
12785 v2si __builtin_arm_wsadhz (v4hi, v4hi)
12786 v4hi __builtin_arm_wshufh (v4hi, int)
12787 long long __builtin_arm_wslld (long long, long long)
12788 long long __builtin_arm_wslldi (long long, int)
12789 v4hi __builtin_arm_wsllh (v4hi, long long)
12790 v4hi __builtin_arm_wsllhi (v4hi, int)
12791 v2si __builtin_arm_wsllw (v2si, long long)
12792 v2si __builtin_arm_wsllwi (v2si, int)
12793 long long __builtin_arm_wsrad (long long, long long)
12794 long long __builtin_arm_wsradi (long long, int)
12795 v4hi __builtin_arm_wsrah (v4hi, long long)
12796 v4hi __builtin_arm_wsrahi (v4hi, int)
12797 v2si __builtin_arm_wsraw (v2si, long long)
12798 v2si __builtin_arm_wsrawi (v2si, int)
12799 long long __builtin_arm_wsrld (long long, long long)
12800 long long __builtin_arm_wsrldi (long long, int)
12801 v4hi __builtin_arm_wsrlh (v4hi, long long)
12802 v4hi __builtin_arm_wsrlhi (v4hi, int)
12803 v2si __builtin_arm_wsrlw (v2si, long long)
12804 v2si __builtin_arm_wsrlwi (v2si, int)
12805 v8qi __builtin_arm_wsubb (v8qi, v8qi)
12806 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
12807 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
12808 v4hi __builtin_arm_wsubh (v4hi, v4hi)
12809 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
12810 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
12811 v2si __builtin_arm_wsubw (v2si, v2si)
12812 v2si __builtin_arm_wsubwss (v2si, v2si)
12813 v2si __builtin_arm_wsubwus (v2si, v2si)
12814 v4hi __builtin_arm_wunpckehsb (v8qi)
12815 v2si __builtin_arm_wunpckehsh (v4hi)
12816 long long __builtin_arm_wunpckehsw (v2si)
12817 v4hi __builtin_arm_wunpckehub (v8qi)
12818 v2si __builtin_arm_wunpckehuh (v4hi)
12819 long long __builtin_arm_wunpckehuw (v2si)
12820 v4hi __builtin_arm_wunpckelsb (v8qi)
12821 v2si __builtin_arm_wunpckelsh (v4hi)
12822 long long __builtin_arm_wunpckelsw (v2si)
12823 v4hi __builtin_arm_wunpckelub (v8qi)
12824 v2si __builtin_arm_wunpckeluh (v4hi)
12825 long long __builtin_arm_wunpckeluw (v2si)
12826 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
12827 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
12828 v2si __builtin_arm_wunpckihw (v2si, v2si)
12829 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
12830 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
12831 v2si __builtin_arm_wunpckilw (v2si, v2si)
12832 long long __builtin_arm_wxor (long long, long long)
12833 long long __builtin_arm_wzero ()
12837 @node ARM C Language Extensions (ACLE)
12838 @subsection ARM C Language Extensions (ACLE)
12840 GCC implements extensions for C as described in the ARM C Language
12841 Extensions (ACLE) specification, which can be found at
12842 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf}.
12844 As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
12845 the ARM C Language Extensions Specification. The complete list of Advanced SIMD
12846 intrinsics can be found at
12847 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf}.
12848 The built-in intrinsics for the Advanced SIMD extension are available when
12851 Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully. Both
12852 back ends support CRC32 intrinsics and the ARM back end supports the
12853 Coprocessor intrinsics, all from @file{arm_acle.h}. The ARM back end's 16-bit
12854 floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
12855 AArch64's back end does not have support for 16-bit floating point Advanced SIMD
12858 See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
12859 availability of extensions.
12861 @node ARM Floating Point Status and Control Intrinsics
12862 @subsection ARM Floating Point Status and Control Intrinsics
12864 These built-in functions are available for the ARM family of
12865 processors with floating-point unit.
12868 unsigned int __builtin_arm_get_fpscr ()
12869 void __builtin_arm_set_fpscr (unsigned int)
12872 @node ARM ARMv8-M Security Extensions
12873 @subsection ARM ARMv8-M Security Extensions
12875 GCC implements the ARMv8-M Security Extensions as described in the ARMv8-M
12876 Security Extensions: Requirements on Development Tools Engineering
12877 Specification, which can be found at
12878 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
12880 As part of the Security Extensions GCC implements two new function attributes:
12881 @code{cmse_nonsecure_entry} and @code{cmse_nonsecure_call}.
12883 As part of the Security Extensions GCC implements the intrinsics below. FPTR
12884 is used here to mean any function pointer type.
12887 cmse_address_info_t cmse_TT (void *)
12888 cmse_address_info_t cmse_TT_fptr (FPTR)
12889 cmse_address_info_t cmse_TTT (void *)
12890 cmse_address_info_t cmse_TTT_fptr (FPTR)
12891 cmse_address_info_t cmse_TTA (void *)
12892 cmse_address_info_t cmse_TTA_fptr (FPTR)
12893 cmse_address_info_t cmse_TTAT (void *)
12894 cmse_address_info_t cmse_TTAT_fptr (FPTR)
12895 void * cmse_check_address_range (void *, size_t, int)
12896 typeof(p) cmse_nsfptr_create (FPTR p)
12897 intptr_t cmse_is_nsfptr (FPTR)
12898 int cmse_nonsecure_caller (void)
12901 @node AVR Built-in Functions
12902 @subsection AVR Built-in Functions
12904 For each built-in function for AVR, there is an equally named,
12905 uppercase built-in macro defined. That way users can easily query if
12906 or if not a specific built-in is implemented or not. For example, if
12907 @code{__builtin_avr_nop} is available the macro
12908 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
12912 @item void __builtin_avr_nop (void)
12913 @itemx void __builtin_avr_sei (void)
12914 @itemx void __builtin_avr_cli (void)
12915 @itemx void __builtin_avr_sleep (void)
12916 @itemx void __builtin_avr_wdr (void)
12917 @itemx unsigned char __builtin_avr_swap (unsigned char)
12918 @itemx unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
12919 @itemx int __builtin_avr_fmuls (char, char)
12920 @itemx int __builtin_avr_fmulsu (char, unsigned char)
12921 These built-in functions map to the respective machine
12922 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
12923 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
12924 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
12925 as library call if no hardware multiplier is available.
12927 @item void __builtin_avr_delay_cycles (unsigned long ticks)
12928 Delay execution for @var{ticks} cycles. Note that this
12929 built-in does not take into account the effect of interrupts that
12930 might increase delay time. @var{ticks} must be a compile-time
12931 integer constant; delays with a variable number of cycles are not supported.
12933 @item char __builtin_avr_flash_segment (const __memx void*)
12934 This built-in takes a byte address to the 24-bit
12935 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
12936 the number of the flash segment (the 64 KiB chunk) where the address
12937 points to. Counting starts at @code{0}.
12938 If the address does not point to flash memory, return @code{-1}.
12940 @item uint8_t __builtin_avr_insert_bits (uint32_t map, uint8_t bits, uint8_t val)
12941 Insert bits from @var{bits} into @var{val} and return the resulting
12942 value. The nibbles of @var{map} determine how the insertion is
12943 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
12945 @item If @var{X} is @code{0xf},
12946 then the @var{n}-th bit of @var{val} is returned unaltered.
12948 @item If X is in the range 0@dots{}7,
12949 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
12951 @item If X is in the range 8@dots{}@code{0xe},
12952 then the @var{n}-th result bit is undefined.
12956 One typical use case for this built-in is adjusting input and
12957 output values to non-contiguous port layouts. Some examples:
12960 // same as val, bits is unused
12961 __builtin_avr_insert_bits (0xffffffff, bits, val)
12965 // same as bits, val is unused
12966 __builtin_avr_insert_bits (0x76543210, bits, val)
12970 // same as rotating bits by 4
12971 __builtin_avr_insert_bits (0x32107654, bits, 0)
12975 // high nibble of result is the high nibble of val
12976 // low nibble of result is the low nibble of bits
12977 __builtin_avr_insert_bits (0xffff3210, bits, val)
12981 // reverse the bit order of bits
12982 __builtin_avr_insert_bits (0x01234567, bits, 0)
12985 @item void __builtin_avr_nops (unsigned count)
12986 Insert @var{count} @code{NOP} instructions.
12987 The number of instructions must be a compile-time integer constant.
12992 There are many more AVR-specific built-in functions that are used to
12993 implement the ISO/IEC TR 18037 ``Embedded C'' fixed-point functions of
12994 section 7.18a.6. You don't need to use these built-ins directly.
12995 Instead, use the declarations as supplied by the @code{stdfix.h} header
12999 #include <stdfix.h>
13001 // Re-interpret the bit representation of unsigned 16-bit
13002 // integer @var{uval} as Q-format 0.16 value.
13003 unsigned fract get_bits (uint_ur_t uval)
13005 return urbits (uval);
13009 @node Blackfin Built-in Functions
13010 @subsection Blackfin Built-in Functions
13012 Currently, there are two Blackfin-specific built-in functions. These are
13013 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
13014 using inline assembly; by using these built-in functions the compiler can
13015 automatically add workarounds for hardware errata involving these
13016 instructions. These functions are named as follows:
13019 void __builtin_bfin_csync (void)
13020 void __builtin_bfin_ssync (void)
13023 @node FR-V Built-in Functions
13024 @subsection FR-V Built-in Functions
13026 GCC provides many FR-V-specific built-in functions. In general,
13027 these functions are intended to be compatible with those described
13028 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
13029 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
13030 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
13031 pointer rather than by value.
13033 Most of the functions are named after specific FR-V instructions.
13034 Such functions are said to be ``directly mapped'' and are summarized
13035 here in tabular form.
13039 * Directly-mapped Integer Functions::
13040 * Directly-mapped Media Functions::
13041 * Raw read/write Functions::
13042 * Other Built-in Functions::
13045 @node Argument Types
13046 @subsubsection Argument Types
13048 The arguments to the built-in functions can be divided into three groups:
13049 register numbers, compile-time constants and run-time values. In order
13050 to make this classification clear at a glance, the arguments and return
13051 values are given the following pseudo types:
13053 @multitable @columnfractions .20 .30 .15 .35
13054 @item Pseudo type @tab Real C type @tab Constant? @tab Description
13055 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
13056 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
13057 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
13058 @item @code{uw2} @tab @code{unsigned long long} @tab No
13059 @tab an unsigned doubleword
13060 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
13061 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
13062 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
13063 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
13066 These pseudo types are not defined by GCC, they are simply a notational
13067 convenience used in this manual.
13069 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
13070 and @code{sw2} are evaluated at run time. They correspond to
13071 register operands in the underlying FR-V instructions.
13073 @code{const} arguments represent immediate operands in the underlying
13074 FR-V instructions. They must be compile-time constants.
13076 @code{acc} arguments are evaluated at compile time and specify the number
13077 of an accumulator register. For example, an @code{acc} argument of 2
13078 selects the ACC2 register.
13080 @code{iacc} arguments are similar to @code{acc} arguments but specify the
13081 number of an IACC register. See @pxref{Other Built-in Functions}
13084 @node Directly-mapped Integer Functions
13085 @subsubsection Directly-Mapped Integer Functions
13087 The functions listed below map directly to FR-V I-type instructions.
13089 @multitable @columnfractions .45 .32 .23
13090 @item Function prototype @tab Example usage @tab Assembly output
13091 @item @code{sw1 __ADDSS (sw1, sw1)}
13092 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
13093 @tab @code{ADDSS @var{a},@var{b},@var{c}}
13094 @item @code{sw1 __SCAN (sw1, sw1)}
13095 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
13096 @tab @code{SCAN @var{a},@var{b},@var{c}}
13097 @item @code{sw1 __SCUTSS (sw1)}
13098 @tab @code{@var{b} = __SCUTSS (@var{a})}
13099 @tab @code{SCUTSS @var{a},@var{b}}
13100 @item @code{sw1 __SLASS (sw1, sw1)}
13101 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
13102 @tab @code{SLASS @var{a},@var{b},@var{c}}
13103 @item @code{void __SMASS (sw1, sw1)}
13104 @tab @code{__SMASS (@var{a}, @var{b})}
13105 @tab @code{SMASS @var{a},@var{b}}
13106 @item @code{void __SMSSS (sw1, sw1)}
13107 @tab @code{__SMSSS (@var{a}, @var{b})}
13108 @tab @code{SMSSS @var{a},@var{b}}
13109 @item @code{void __SMU (sw1, sw1)}
13110 @tab @code{__SMU (@var{a}, @var{b})}
13111 @tab @code{SMU @var{a},@var{b}}
13112 @item @code{sw2 __SMUL (sw1, sw1)}
13113 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
13114 @tab @code{SMUL @var{a},@var{b},@var{c}}
13115 @item @code{sw1 __SUBSS (sw1, sw1)}
13116 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
13117 @tab @code{SUBSS @var{a},@var{b},@var{c}}
13118 @item @code{uw2 __UMUL (uw1, uw1)}
13119 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
13120 @tab @code{UMUL @var{a},@var{b},@var{c}}
13123 @node Directly-mapped Media Functions
13124 @subsubsection Directly-Mapped Media Functions
13126 The functions listed below map directly to FR-V M-type instructions.
13128 @multitable @columnfractions .45 .32 .23
13129 @item Function prototype @tab Example usage @tab Assembly output
13130 @item @code{uw1 __MABSHS (sw1)}
13131 @tab @code{@var{b} = __MABSHS (@var{a})}
13132 @tab @code{MABSHS @var{a},@var{b}}
13133 @item @code{void __MADDACCS (acc, acc)}
13134 @tab @code{__MADDACCS (@var{b}, @var{a})}
13135 @tab @code{MADDACCS @var{a},@var{b}}
13136 @item @code{sw1 __MADDHSS (sw1, sw1)}
13137 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
13138 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
13139 @item @code{uw1 __MADDHUS (uw1, uw1)}
13140 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
13141 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
13142 @item @code{uw1 __MAND (uw1, uw1)}
13143 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
13144 @tab @code{MAND @var{a},@var{b},@var{c}}
13145 @item @code{void __MASACCS (acc, acc)}
13146 @tab @code{__MASACCS (@var{b}, @var{a})}
13147 @tab @code{MASACCS @var{a},@var{b}}
13148 @item @code{uw1 __MAVEH (uw1, uw1)}
13149 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
13150 @tab @code{MAVEH @var{a},@var{b},@var{c}}
13151 @item @code{uw2 __MBTOH (uw1)}
13152 @tab @code{@var{b} = __MBTOH (@var{a})}
13153 @tab @code{MBTOH @var{a},@var{b}}
13154 @item @code{void __MBTOHE (uw1 *, uw1)}
13155 @tab @code{__MBTOHE (&@var{b}, @var{a})}
13156 @tab @code{MBTOHE @var{a},@var{b}}
13157 @item @code{void __MCLRACC (acc)}
13158 @tab @code{__MCLRACC (@var{a})}
13159 @tab @code{MCLRACC @var{a}}
13160 @item @code{void __MCLRACCA (void)}
13161 @tab @code{__MCLRACCA ()}
13162 @tab @code{MCLRACCA}
13163 @item @code{uw1 __Mcop1 (uw1, uw1)}
13164 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
13165 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
13166 @item @code{uw1 __Mcop2 (uw1, uw1)}
13167 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
13168 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
13169 @item @code{uw1 __MCPLHI (uw2, const)}
13170 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
13171 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
13172 @item @code{uw1 __MCPLI (uw2, const)}
13173 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
13174 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
13175 @item @code{void __MCPXIS (acc, sw1, sw1)}
13176 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
13177 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
13178 @item @code{void __MCPXIU (acc, uw1, uw1)}
13179 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
13180 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
13181 @item @code{void __MCPXRS (acc, sw1, sw1)}
13182 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
13183 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
13184 @item @code{void __MCPXRU (acc, uw1, uw1)}
13185 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
13186 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
13187 @item @code{uw1 __MCUT (acc, uw1)}
13188 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
13189 @tab @code{MCUT @var{a},@var{b},@var{c}}
13190 @item @code{uw1 __MCUTSS (acc, sw1)}
13191 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
13192 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
13193 @item @code{void __MDADDACCS (acc, acc)}
13194 @tab @code{__MDADDACCS (@var{b}, @var{a})}
13195 @tab @code{MDADDACCS @var{a},@var{b}}
13196 @item @code{void __MDASACCS (acc, acc)}
13197 @tab @code{__MDASACCS (@var{b}, @var{a})}
13198 @tab @code{MDASACCS @var{a},@var{b}}
13199 @item @code{uw2 __MDCUTSSI (acc, const)}
13200 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
13201 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
13202 @item @code{uw2 __MDPACKH (uw2, uw2)}
13203 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
13204 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
13205 @item @code{uw2 __MDROTLI (uw2, const)}
13206 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
13207 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
13208 @item @code{void __MDSUBACCS (acc, acc)}
13209 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
13210 @tab @code{MDSUBACCS @var{a},@var{b}}
13211 @item @code{void __MDUNPACKH (uw1 *, uw2)}
13212 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
13213 @tab @code{MDUNPACKH @var{a},@var{b}}
13214 @item @code{uw2 __MEXPDHD (uw1, const)}
13215 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
13216 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
13217 @item @code{uw1 __MEXPDHW (uw1, const)}
13218 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
13219 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
13220 @item @code{uw1 __MHDSETH (uw1, const)}
13221 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
13222 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
13223 @item @code{sw1 __MHDSETS (const)}
13224 @tab @code{@var{b} = __MHDSETS (@var{a})}
13225 @tab @code{MHDSETS #@var{a},@var{b}}
13226 @item @code{uw1 __MHSETHIH (uw1, const)}
13227 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
13228 @tab @code{MHSETHIH #@var{a},@var{b}}
13229 @item @code{sw1 __MHSETHIS (sw1, const)}
13230 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
13231 @tab @code{MHSETHIS #@var{a},@var{b}}
13232 @item @code{uw1 __MHSETLOH (uw1, const)}
13233 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
13234 @tab @code{MHSETLOH #@var{a},@var{b}}
13235 @item @code{sw1 __MHSETLOS (sw1, const)}
13236 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
13237 @tab @code{MHSETLOS #@var{a},@var{b}}
13238 @item @code{uw1 __MHTOB (uw2)}
13239 @tab @code{@var{b} = __MHTOB (@var{a})}
13240 @tab @code{MHTOB @var{a},@var{b}}
13241 @item @code{void __MMACHS (acc, sw1, sw1)}
13242 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
13243 @tab @code{MMACHS @var{a},@var{b},@var{c}}
13244 @item @code{void __MMACHU (acc, uw1, uw1)}
13245 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
13246 @tab @code{MMACHU @var{a},@var{b},@var{c}}
13247 @item @code{void __MMRDHS (acc, sw1, sw1)}
13248 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
13249 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
13250 @item @code{void __MMRDHU (acc, uw1, uw1)}
13251 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
13252 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
13253 @item @code{void __MMULHS (acc, sw1, sw1)}
13254 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
13255 @tab @code{MMULHS @var{a},@var{b},@var{c}}
13256 @item @code{void __MMULHU (acc, uw1, uw1)}
13257 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
13258 @tab @code{MMULHU @var{a},@var{b},@var{c}}
13259 @item @code{void __MMULXHS (acc, sw1, sw1)}
13260 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
13261 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
13262 @item @code{void __MMULXHU (acc, uw1, uw1)}
13263 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
13264 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
13265 @item @code{uw1 __MNOT (uw1)}
13266 @tab @code{@var{b} = __MNOT (@var{a})}
13267 @tab @code{MNOT @var{a},@var{b}}
13268 @item @code{uw1 __MOR (uw1, uw1)}
13269 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
13270 @tab @code{MOR @var{a},@var{b},@var{c}}
13271 @item @code{uw1 __MPACKH (uh, uh)}
13272 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
13273 @tab @code{MPACKH @var{a},@var{b},@var{c}}
13274 @item @code{sw2 __MQADDHSS (sw2, sw2)}
13275 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
13276 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
13277 @item @code{uw2 __MQADDHUS (uw2, uw2)}
13278 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
13279 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
13280 @item @code{void __MQCPXIS (acc, sw2, sw2)}
13281 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
13282 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
13283 @item @code{void __MQCPXIU (acc, uw2, uw2)}
13284 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
13285 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
13286 @item @code{void __MQCPXRS (acc, sw2, sw2)}
13287 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
13288 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
13289 @item @code{void __MQCPXRU (acc, uw2, uw2)}
13290 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
13291 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
13292 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
13293 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
13294 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
13295 @item @code{sw2 __MQLMTHS (sw2, sw2)}
13296 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
13297 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
13298 @item @code{void __MQMACHS (acc, sw2, sw2)}
13299 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
13300 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
13301 @item @code{void __MQMACHU (acc, uw2, uw2)}
13302 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
13303 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
13304 @item @code{void __MQMACXHS (acc, sw2, sw2)}
13305 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
13306 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
13307 @item @code{void __MQMULHS (acc, sw2, sw2)}
13308 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
13309 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
13310 @item @code{void __MQMULHU (acc, uw2, uw2)}
13311 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
13312 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
13313 @item @code{void __MQMULXHS (acc, sw2, sw2)}
13314 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
13315 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
13316 @item @code{void __MQMULXHU (acc, uw2, uw2)}
13317 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
13318 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
13319 @item @code{sw2 __MQSATHS (sw2, sw2)}
13320 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
13321 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
13322 @item @code{uw2 __MQSLLHI (uw2, int)}
13323 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
13324 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
13325 @item @code{sw2 __MQSRAHI (sw2, int)}
13326 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
13327 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
13328 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
13329 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
13330 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
13331 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
13332 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
13333 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
13334 @item @code{void __MQXMACHS (acc, sw2, sw2)}
13335 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
13336 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
13337 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
13338 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
13339 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
13340 @item @code{uw1 __MRDACC (acc)}
13341 @tab @code{@var{b} = __MRDACC (@var{a})}
13342 @tab @code{MRDACC @var{a},@var{b}}
13343 @item @code{uw1 __MRDACCG (acc)}
13344 @tab @code{@var{b} = __MRDACCG (@var{a})}
13345 @tab @code{MRDACCG @var{a},@var{b}}
13346 @item @code{uw1 __MROTLI (uw1, const)}
13347 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
13348 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
13349 @item @code{uw1 __MROTRI (uw1, const)}
13350 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
13351 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
13352 @item @code{sw1 __MSATHS (sw1, sw1)}
13353 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
13354 @tab @code{MSATHS @var{a},@var{b},@var{c}}
13355 @item @code{uw1 __MSATHU (uw1, uw1)}
13356 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
13357 @tab @code{MSATHU @var{a},@var{b},@var{c}}
13358 @item @code{uw1 __MSLLHI (uw1, const)}
13359 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
13360 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
13361 @item @code{sw1 __MSRAHI (sw1, const)}
13362 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
13363 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
13364 @item @code{uw1 __MSRLHI (uw1, const)}
13365 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
13366 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
13367 @item @code{void __MSUBACCS (acc, acc)}
13368 @tab @code{__MSUBACCS (@var{b}, @var{a})}
13369 @tab @code{MSUBACCS @var{a},@var{b}}
13370 @item @code{sw1 __MSUBHSS (sw1, sw1)}
13371 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
13372 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
13373 @item @code{uw1 __MSUBHUS (uw1, uw1)}
13374 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
13375 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
13376 @item @code{void __MTRAP (void)}
13377 @tab @code{__MTRAP ()}
13379 @item @code{uw2 __MUNPACKH (uw1)}
13380 @tab @code{@var{b} = __MUNPACKH (@var{a})}
13381 @tab @code{MUNPACKH @var{a},@var{b}}
13382 @item @code{uw1 __MWCUT (uw2, uw1)}
13383 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
13384 @tab @code{MWCUT @var{a},@var{b},@var{c}}
13385 @item @code{void __MWTACC (acc, uw1)}
13386 @tab @code{__MWTACC (@var{b}, @var{a})}
13387 @tab @code{MWTACC @var{a},@var{b}}
13388 @item @code{void __MWTACCG (acc, uw1)}
13389 @tab @code{__MWTACCG (@var{b}, @var{a})}
13390 @tab @code{MWTACCG @var{a},@var{b}}
13391 @item @code{uw1 __MXOR (uw1, uw1)}
13392 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
13393 @tab @code{MXOR @var{a},@var{b},@var{c}}
13396 @node Raw read/write Functions
13397 @subsubsection Raw Read/Write Functions
13399 This sections describes built-in functions related to read and write
13400 instructions to access memory. These functions generate
13401 @code{membar} instructions to flush the I/O load and stores where
13402 appropriate, as described in Fujitsu's manual described above.
13406 @item unsigned char __builtin_read8 (void *@var{data})
13407 @item unsigned short __builtin_read16 (void *@var{data})
13408 @item unsigned long __builtin_read32 (void *@var{data})
13409 @item unsigned long long __builtin_read64 (void *@var{data})
13411 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
13412 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
13413 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
13414 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
13417 @node Other Built-in Functions
13418 @subsubsection Other Built-in Functions
13420 This section describes built-in functions that are not named after
13421 a specific FR-V instruction.
13424 @item sw2 __IACCreadll (iacc @var{reg})
13425 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
13426 for future expansion and must be 0.
13428 @item sw1 __IACCreadl (iacc @var{reg})
13429 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
13430 Other values of @var{reg} are rejected as invalid.
13432 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
13433 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
13434 is reserved for future expansion and must be 0.
13436 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
13437 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
13438 is 1. Other values of @var{reg} are rejected as invalid.
13440 @item void __data_prefetch0 (const void *@var{x})
13441 Use the @code{dcpl} instruction to load the contents of address @var{x}
13442 into the data cache.
13444 @item void __data_prefetch (const void *@var{x})
13445 Use the @code{nldub} instruction to load the contents of address @var{x}
13446 into the data cache. The instruction is issued in slot I1@.
13449 @node MIPS DSP Built-in Functions
13450 @subsection MIPS DSP Built-in Functions
13452 The MIPS DSP Application-Specific Extension (ASE) includes new
13453 instructions that are designed to improve the performance of DSP and
13454 media applications. It provides instructions that operate on packed
13455 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
13457 GCC supports MIPS DSP operations using both the generic
13458 vector extensions (@pxref{Vector Extensions}) and a collection of
13459 MIPS-specific built-in functions. Both kinds of support are
13460 enabled by the @option{-mdsp} command-line option.
13462 Revision 2 of the ASE was introduced in the second half of 2006.
13463 This revision adds extra instructions to the original ASE, but is
13464 otherwise backwards-compatible with it. You can select revision 2
13465 using the command-line option @option{-mdspr2}; this option implies
13468 The SCOUNT and POS bits of the DSP control register are global. The
13469 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
13470 POS bits. During optimization, the compiler does not delete these
13471 instructions and it does not delete calls to functions containing
13472 these instructions.
13474 At present, GCC only provides support for operations on 32-bit
13475 vectors. The vector type associated with 8-bit integer data is
13476 usually called @code{v4i8}, the vector type associated with Q7
13477 is usually called @code{v4q7}, the vector type associated with 16-bit
13478 integer data is usually called @code{v2i16}, and the vector type
13479 associated with Q15 is usually called @code{v2q15}. They can be
13480 defined in C as follows:
13483 typedef signed char v4i8 __attribute__ ((vector_size(4)));
13484 typedef signed char v4q7 __attribute__ ((vector_size(4)));
13485 typedef short v2i16 __attribute__ ((vector_size(4)));
13486 typedef short v2q15 __attribute__ ((vector_size(4)));
13489 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
13490 initialized in the same way as aggregates. For example:
13493 v4i8 a = @{1, 2, 3, 4@};
13495 b = (v4i8) @{5, 6, 7, 8@};
13497 v2q15 c = @{0x0fcb, 0x3a75@};
13499 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
13502 @emph{Note:} The CPU's endianness determines the order in which values
13503 are packed. On little-endian targets, the first value is the least
13504 significant and the last value is the most significant. The opposite
13505 order applies to big-endian targets. For example, the code above
13506 sets the lowest byte of @code{a} to @code{1} on little-endian targets
13507 and @code{4} on big-endian targets.
13509 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
13510 representation. As shown in this example, the integer representation
13511 of a Q7 value can be obtained by multiplying the fractional value by
13512 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
13513 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
13516 The table below lists the @code{v4i8} and @code{v2q15} operations for which
13517 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
13518 and @code{c} and @code{d} are @code{v2q15} values.
13520 @multitable @columnfractions .50 .50
13521 @item C code @tab MIPS instruction
13522 @item @code{a + b} @tab @code{addu.qb}
13523 @item @code{c + d} @tab @code{addq.ph}
13524 @item @code{a - b} @tab @code{subu.qb}
13525 @item @code{c - d} @tab @code{subq.ph}
13528 The table below lists the @code{v2i16} operation for which
13529 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
13530 @code{v2i16} values.
13532 @multitable @columnfractions .50 .50
13533 @item C code @tab MIPS instruction
13534 @item @code{e * f} @tab @code{mul.ph}
13537 It is easier to describe the DSP built-in functions if we first define
13538 the following types:
13543 typedef unsigned int ui32;
13544 typedef long long a64;
13547 @code{q31} and @code{i32} are actually the same as @code{int}, but we
13548 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
13549 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
13550 @code{long long}, but we use @code{a64} to indicate values that are
13551 placed in one of the four DSP accumulators (@code{$ac0},
13552 @code{$ac1}, @code{$ac2} or @code{$ac3}).
13554 Also, some built-in functions prefer or require immediate numbers as
13555 parameters, because the corresponding DSP instructions accept both immediate
13556 numbers and register operands, or accept immediate numbers only. The
13557 immediate parameters are listed as follows.
13565 imm0_255: 0 to 255.
13566 imm_n32_31: -32 to 31.
13567 imm_n512_511: -512 to 511.
13570 The following built-in functions map directly to a particular MIPS DSP
13571 instruction. Please refer to the architecture specification
13572 for details on what each instruction does.
13575 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
13576 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
13577 q31 __builtin_mips_addq_s_w (q31, q31)
13578 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
13579 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
13580 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
13581 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
13582 q31 __builtin_mips_subq_s_w (q31, q31)
13583 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
13584 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
13585 i32 __builtin_mips_addsc (i32, i32)
13586 i32 __builtin_mips_addwc (i32, i32)
13587 i32 __builtin_mips_modsub (i32, i32)
13588 i32 __builtin_mips_raddu_w_qb (v4i8)
13589 v2q15 __builtin_mips_absq_s_ph (v2q15)
13590 q31 __builtin_mips_absq_s_w (q31)
13591 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
13592 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
13593 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
13594 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
13595 q31 __builtin_mips_preceq_w_phl (v2q15)
13596 q31 __builtin_mips_preceq_w_phr (v2q15)
13597 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
13598 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
13599 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
13600 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
13601 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
13602 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
13603 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
13604 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
13605 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
13606 v4i8 __builtin_mips_shll_qb (v4i8, i32)
13607 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
13608 v2q15 __builtin_mips_shll_ph (v2q15, i32)
13609 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
13610 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
13611 q31 __builtin_mips_shll_s_w (q31, imm0_31)
13612 q31 __builtin_mips_shll_s_w (q31, i32)
13613 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
13614 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
13615 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
13616 v2q15 __builtin_mips_shra_ph (v2q15, i32)
13617 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
13618 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
13619 q31 __builtin_mips_shra_r_w (q31, imm0_31)
13620 q31 __builtin_mips_shra_r_w (q31, i32)
13621 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
13622 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
13623 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
13624 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
13625 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
13626 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
13627 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
13628 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
13629 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
13630 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
13631 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
13632 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
13633 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
13634 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
13635 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
13636 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
13637 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
13638 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
13639 i32 __builtin_mips_bitrev (i32)
13640 i32 __builtin_mips_insv (i32, i32)
13641 v4i8 __builtin_mips_repl_qb (imm0_255)
13642 v4i8 __builtin_mips_repl_qb (i32)
13643 v2q15 __builtin_mips_repl_ph (imm_n512_511)
13644 v2q15 __builtin_mips_repl_ph (i32)
13645 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
13646 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
13647 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
13648 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
13649 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
13650 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
13651 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
13652 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
13653 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
13654 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
13655 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
13656 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
13657 i32 __builtin_mips_extr_w (a64, imm0_31)
13658 i32 __builtin_mips_extr_w (a64, i32)
13659 i32 __builtin_mips_extr_r_w (a64, imm0_31)
13660 i32 __builtin_mips_extr_s_h (a64, i32)
13661 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
13662 i32 __builtin_mips_extr_rs_w (a64, i32)
13663 i32 __builtin_mips_extr_s_h (a64, imm0_31)
13664 i32 __builtin_mips_extr_r_w (a64, i32)
13665 i32 __builtin_mips_extp (a64, imm0_31)
13666 i32 __builtin_mips_extp (a64, i32)
13667 i32 __builtin_mips_extpdp (a64, imm0_31)
13668 i32 __builtin_mips_extpdp (a64, i32)
13669 a64 __builtin_mips_shilo (a64, imm_n32_31)
13670 a64 __builtin_mips_shilo (a64, i32)
13671 a64 __builtin_mips_mthlip (a64, i32)
13672 void __builtin_mips_wrdsp (i32, imm0_63)
13673 i32 __builtin_mips_rddsp (imm0_63)
13674 i32 __builtin_mips_lbux (void *, i32)
13675 i32 __builtin_mips_lhx (void *, i32)
13676 i32 __builtin_mips_lwx (void *, i32)
13677 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
13678 i32 __builtin_mips_bposge32 (void)
13679 a64 __builtin_mips_madd (a64, i32, i32);
13680 a64 __builtin_mips_maddu (a64, ui32, ui32);
13681 a64 __builtin_mips_msub (a64, i32, i32);
13682 a64 __builtin_mips_msubu (a64, ui32, ui32);
13683 a64 __builtin_mips_mult (i32, i32);
13684 a64 __builtin_mips_multu (ui32, ui32);
13687 The following built-in functions map directly to a particular MIPS DSP REV 2
13688 instruction. Please refer to the architecture specification
13689 for details on what each instruction does.
13692 v4q7 __builtin_mips_absq_s_qb (v4q7);
13693 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
13694 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
13695 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
13696 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
13697 i32 __builtin_mips_append (i32, i32, imm0_31);
13698 i32 __builtin_mips_balign (i32, i32, imm0_3);
13699 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
13700 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
13701 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
13702 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
13703 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
13704 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
13705 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
13706 q31 __builtin_mips_mulq_rs_w (q31, q31);
13707 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
13708 q31 __builtin_mips_mulq_s_w (q31, q31);
13709 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
13710 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
13711 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
13712 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
13713 i32 __builtin_mips_prepend (i32, i32, imm0_31);
13714 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
13715 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
13716 v4i8 __builtin_mips_shra_qb (v4i8, i32);
13717 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
13718 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
13719 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
13720 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
13721 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
13722 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
13723 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
13724 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
13725 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
13726 q31 __builtin_mips_addqh_w (q31, q31);
13727 q31 __builtin_mips_addqh_r_w (q31, q31);
13728 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
13729 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
13730 q31 __builtin_mips_subqh_w (q31, q31);
13731 q31 __builtin_mips_subqh_r_w (q31, q31);
13732 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
13733 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
13734 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
13735 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
13736 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
13737 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
13741 @node MIPS Paired-Single Support
13742 @subsection MIPS Paired-Single Support
13744 The MIPS64 architecture includes a number of instructions that
13745 operate on pairs of single-precision floating-point values.
13746 Each pair is packed into a 64-bit floating-point register,
13747 with one element being designated the ``upper half'' and
13748 the other being designated the ``lower half''.
13750 GCC supports paired-single operations using both the generic
13751 vector extensions (@pxref{Vector Extensions}) and a collection of
13752 MIPS-specific built-in functions. Both kinds of support are
13753 enabled by the @option{-mpaired-single} command-line option.
13755 The vector type associated with paired-single values is usually
13756 called @code{v2sf}. It can be defined in C as follows:
13759 typedef float v2sf __attribute__ ((vector_size (8)));
13762 @code{v2sf} values are initialized in the same way as aggregates.
13766 v2sf a = @{1.5, 9.1@};
13769 b = (v2sf) @{e, f@};
13772 @emph{Note:} The CPU's endianness determines which value is stored in
13773 the upper half of a register and which value is stored in the lower half.
13774 On little-endian targets, the first value is the lower one and the second
13775 value is the upper one. The opposite order applies to big-endian targets.
13776 For example, the code above sets the lower half of @code{a} to
13777 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
13779 @node MIPS Loongson Built-in Functions
13780 @subsection MIPS Loongson Built-in Functions
13782 GCC provides intrinsics to access the SIMD instructions provided by the
13783 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
13784 available after inclusion of the @code{loongson.h} header file,
13785 operate on the following 64-bit vector types:
13788 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
13789 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
13790 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
13791 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
13792 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
13793 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
13796 The intrinsics provided are listed below; each is named after the
13797 machine instruction to which it corresponds, with suffixes added as
13798 appropriate to distinguish intrinsics that expand to the same machine
13799 instruction yet have different argument types. Refer to the architecture
13800 documentation for a description of the functionality of each
13804 int16x4_t packsswh (int32x2_t s, int32x2_t t);
13805 int8x8_t packsshb (int16x4_t s, int16x4_t t);
13806 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
13807 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
13808 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
13809 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
13810 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
13811 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
13812 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
13813 uint64_t paddd_u (uint64_t s, uint64_t t);
13814 int64_t paddd_s (int64_t s, int64_t t);
13815 int16x4_t paddsh (int16x4_t s, int16x4_t t);
13816 int8x8_t paddsb (int8x8_t s, int8x8_t t);
13817 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
13818 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
13819 uint64_t pandn_ud (uint64_t s, uint64_t t);
13820 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
13821 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
13822 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
13823 int64_t pandn_sd (int64_t s, int64_t t);
13824 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
13825 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
13826 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
13827 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
13828 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
13829 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
13830 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
13831 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
13832 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
13833 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
13834 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
13835 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
13836 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
13837 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
13838 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
13839 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
13840 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
13841 uint16x4_t pextrh_u (uint16x4_t s, int field);
13842 int16x4_t pextrh_s (int16x4_t s, int field);
13843 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
13844 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
13845 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
13846 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
13847 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
13848 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
13849 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
13850 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
13851 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
13852 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
13853 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
13854 int16x4_t pminsh (int16x4_t s, int16x4_t t);
13855 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
13856 uint8x8_t pmovmskb_u (uint8x8_t s);
13857 int8x8_t pmovmskb_s (int8x8_t s);
13858 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
13859 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
13860 int16x4_t pmullh (int16x4_t s, int16x4_t t);
13861 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
13862 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
13863 uint16x4_t biadd (uint8x8_t s);
13864 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
13865 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
13866 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
13867 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
13868 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
13869 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
13870 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
13871 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
13872 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
13873 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
13874 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
13875 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
13876 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
13877 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
13878 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
13879 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
13880 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
13881 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
13882 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
13883 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
13884 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
13885 uint64_t psubd_u (uint64_t s, uint64_t t);
13886 int64_t psubd_s (int64_t s, int64_t t);
13887 int16x4_t psubsh (int16x4_t s, int16x4_t t);
13888 int8x8_t psubsb (int8x8_t s, int8x8_t t);
13889 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
13890 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
13891 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
13892 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
13893 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
13894 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
13895 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
13896 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
13897 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
13898 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
13899 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
13900 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
13901 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
13902 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
13906 * Paired-Single Arithmetic::
13907 * Paired-Single Built-in Functions::
13908 * MIPS-3D Built-in Functions::
13911 @node Paired-Single Arithmetic
13912 @subsubsection Paired-Single Arithmetic
13914 The table below lists the @code{v2sf} operations for which hardware
13915 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
13916 values and @code{x} is an integral value.
13918 @multitable @columnfractions .50 .50
13919 @item C code @tab MIPS instruction
13920 @item @code{a + b} @tab @code{add.ps}
13921 @item @code{a - b} @tab @code{sub.ps}
13922 @item @code{-a} @tab @code{neg.ps}
13923 @item @code{a * b} @tab @code{mul.ps}
13924 @item @code{a * b + c} @tab @code{madd.ps}
13925 @item @code{a * b - c} @tab @code{msub.ps}
13926 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
13927 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
13928 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
13931 Note that the multiply-accumulate instructions can be disabled
13932 using the command-line option @code{-mno-fused-madd}.
13934 @node Paired-Single Built-in Functions
13935 @subsubsection Paired-Single Built-in Functions
13937 The following paired-single functions map directly to a particular
13938 MIPS instruction. Please refer to the architecture specification
13939 for details on what each instruction does.
13942 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
13943 Pair lower lower (@code{pll.ps}).
13945 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
13946 Pair upper lower (@code{pul.ps}).
13948 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
13949 Pair lower upper (@code{plu.ps}).
13951 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
13952 Pair upper upper (@code{puu.ps}).
13954 @item v2sf __builtin_mips_cvt_ps_s (float, float)
13955 Convert pair to paired single (@code{cvt.ps.s}).
13957 @item float __builtin_mips_cvt_s_pl (v2sf)
13958 Convert pair lower to single (@code{cvt.s.pl}).
13960 @item float __builtin_mips_cvt_s_pu (v2sf)
13961 Convert pair upper to single (@code{cvt.s.pu}).
13963 @item v2sf __builtin_mips_abs_ps (v2sf)
13964 Absolute value (@code{abs.ps}).
13966 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
13967 Align variable (@code{alnv.ps}).
13969 @emph{Note:} The value of the third parameter must be 0 or 4
13970 modulo 8, otherwise the result is unpredictable. Please read the
13971 instruction description for details.
13974 The following multi-instruction functions are also available.
13975 In each case, @var{cond} can be any of the 16 floating-point conditions:
13976 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13977 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
13978 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13981 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13982 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13983 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
13984 @code{movt.ps}/@code{movf.ps}).
13986 The @code{movt} functions return the value @var{x} computed by:
13989 c.@var{cond}.ps @var{cc},@var{a},@var{b}
13990 mov.ps @var{x},@var{c}
13991 movt.ps @var{x},@var{d},@var{cc}
13994 The @code{movf} functions are similar but use @code{movf.ps} instead
13997 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13998 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13999 Comparison of two paired-single values (@code{c.@var{cond}.ps},
14000 @code{bc1t}/@code{bc1f}).
14002 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
14003 and return either the upper or lower half of the result. For example:
14007 if (__builtin_mips_upper_c_eq_ps (a, b))
14008 upper_halves_are_equal ();
14010 upper_halves_are_unequal ();
14012 if (__builtin_mips_lower_c_eq_ps (a, b))
14013 lower_halves_are_equal ();
14015 lower_halves_are_unequal ();
14019 @node MIPS-3D Built-in Functions
14020 @subsubsection MIPS-3D Built-in Functions
14022 The MIPS-3D Application-Specific Extension (ASE) includes additional
14023 paired-single instructions that are designed to improve the performance
14024 of 3D graphics operations. Support for these instructions is controlled
14025 by the @option{-mips3d} command-line option.
14027 The functions listed below map directly to a particular MIPS-3D
14028 instruction. Please refer to the architecture specification for
14029 more details on what each instruction does.
14032 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
14033 Reduction add (@code{addr.ps}).
14035 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
14036 Reduction multiply (@code{mulr.ps}).
14038 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
14039 Convert paired single to paired word (@code{cvt.pw.ps}).
14041 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
14042 Convert paired word to paired single (@code{cvt.ps.pw}).
14044 @item float __builtin_mips_recip1_s (float)
14045 @itemx double __builtin_mips_recip1_d (double)
14046 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
14047 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
14049 @item float __builtin_mips_recip2_s (float, float)
14050 @itemx double __builtin_mips_recip2_d (double, double)
14051 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
14052 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
14054 @item float __builtin_mips_rsqrt1_s (float)
14055 @itemx double __builtin_mips_rsqrt1_d (double)
14056 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
14057 Reduced-precision reciprocal square root (sequence step 1)
14058 (@code{rsqrt1.@var{fmt}}).
14060 @item float __builtin_mips_rsqrt2_s (float, float)
14061 @itemx double __builtin_mips_rsqrt2_d (double, double)
14062 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
14063 Reduced-precision reciprocal square root (sequence step 2)
14064 (@code{rsqrt2.@var{fmt}}).
14067 The following multi-instruction functions are also available.
14068 In each case, @var{cond} can be any of the 16 floating-point conditions:
14069 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
14070 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
14071 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
14074 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
14075 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
14076 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
14077 @code{bc1t}/@code{bc1f}).
14079 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
14080 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
14085 if (__builtin_mips_cabs_eq_s (a, b))
14091 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14092 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14093 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
14094 @code{bc1t}/@code{bc1f}).
14096 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
14097 and return either the upper or lower half of the result. For example:
14101 if (__builtin_mips_upper_cabs_eq_ps (a, b))
14102 upper_halves_are_equal ();
14104 upper_halves_are_unequal ();
14106 if (__builtin_mips_lower_cabs_eq_ps (a, b))
14107 lower_halves_are_equal ();
14109 lower_halves_are_unequal ();
14112 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14113 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14114 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
14115 @code{movt.ps}/@code{movf.ps}).
14117 The @code{movt} functions return the value @var{x} computed by:
14120 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
14121 mov.ps @var{x},@var{c}
14122 movt.ps @var{x},@var{d},@var{cc}
14125 The @code{movf} functions are similar but use @code{movf.ps} instead
14128 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14129 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14130 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14131 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14132 Comparison of two paired-single values
14133 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
14134 @code{bc1any2t}/@code{bc1any2f}).
14136 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
14137 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
14138 result is true and the @code{all} forms return true if both results are true.
14143 if (__builtin_mips_any_c_eq_ps (a, b))
14148 if (__builtin_mips_all_c_eq_ps (a, b))
14154 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14155 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14156 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14157 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14158 Comparison of four paired-single values
14159 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
14160 @code{bc1any4t}/@code{bc1any4f}).
14162 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
14163 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
14164 The @code{any} forms return true if any of the four results are true
14165 and the @code{all} forms return true if all four results are true.
14170 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
14175 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
14182 @node MIPS SIMD Architecture (MSA) Support
14183 @subsection MIPS SIMD Architecture (MSA) Support
14186 * MIPS SIMD Architecture Built-in Functions::
14189 GCC provides intrinsics to access the SIMD instructions provided by the
14190 MSA MIPS SIMD Architecture. The interface is made available by including
14191 @code{<msa.h>} and using @option{-mmsa -mhard-float -mfp64 -mnan=2008}.
14192 For each @code{__builtin_msa_*}, there is a shortened name of the intrinsic,
14195 MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
14196 64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
14197 data elements. The following vectors typedefs are included in @code{msa.h}:
14199 @item @code{v16i8}, a vector of sixteen signed 8-bit integers;
14200 @item @code{v16u8}, a vector of sixteen unsigned 8-bit integers;
14201 @item @code{v8i16}, a vector of eight signed 16-bit integers;
14202 @item @code{v8u16}, a vector of eight unsigned 16-bit integers;
14203 @item @code{v4i32}, a vector of four signed 32-bit integers;
14204 @item @code{v4u32}, a vector of four unsigned 32-bit integers;
14205 @item @code{v2i64}, a vector of two signed 64-bit integers;
14206 @item @code{v2u64}, a vector of two unsigned 64-bit integers;
14207 @item @code{v4f32}, a vector of four 32-bit floats;
14208 @item @code{v2f64}, a vector of two 64-bit doubles.
14211 Instructions and corresponding built-ins may have additional restrictions and/or
14212 input/output values manipulated:
14214 @item @code{imm0_1}, an integer literal in range 0 to 1;
14215 @item @code{imm0_3}, an integer literal in range 0 to 3;
14216 @item @code{imm0_7}, an integer literal in range 0 to 7;
14217 @item @code{imm0_15}, an integer literal in range 0 to 15;
14218 @item @code{imm0_31}, an integer literal in range 0 to 31;
14219 @item @code{imm0_63}, an integer literal in range 0 to 63;
14220 @item @code{imm0_255}, an integer literal in range 0 to 255;
14221 @item @code{imm_n16_15}, an integer literal in range -16 to 15;
14222 @item @code{imm_n512_511}, an integer literal in range -512 to 511;
14223 @item @code{imm_n1024_1022}, an integer literal in range -512 to 511 left
14224 shifted by 1 bit, i.e., -1024, -1022, @dots{}, 1020, 1022;
14225 @item @code{imm_n2048_2044}, an integer literal in range -512 to 511 left
14226 shifted by 2 bits, i.e., -2048, -2044, @dots{}, 2040, 2044;
14227 @item @code{imm_n4096_4088}, an integer literal in range -512 to 511 left
14228 shifted by 3 bits, i.e., -4096, -4088, @dots{}, 4080, 4088;
14229 @item @code{imm1_4}, an integer literal in range 1 to 4;
14230 @item @code{i32, i64, u32, u64, f32, f64}, defined as follows:
14236 #if __LONG_MAX__ == __LONG_LONG_MAX__
14239 typedef long long i64;
14242 typedef unsigned int u32;
14243 #if __LONG_MAX__ == __LONG_LONG_MAX__
14244 typedef unsigned long u64;
14246 typedef unsigned long long u64;
14249 typedef double f64;
14254 @node MIPS SIMD Architecture Built-in Functions
14255 @subsubsection MIPS SIMD Architecture Built-in Functions
14257 The intrinsics provided are listed below; each is named after the
14258 machine instruction.
14261 v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
14262 v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
14263 v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
14264 v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
14266 v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
14267 v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
14268 v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
14269 v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
14271 v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
14272 v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
14273 v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
14274 v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
14276 v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
14277 v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
14278 v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
14279 v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
14281 v16i8 __builtin_msa_addv_b (v16i8, v16i8);
14282 v8i16 __builtin_msa_addv_h (v8i16, v8i16);
14283 v4i32 __builtin_msa_addv_w (v4i32, v4i32);
14284 v2i64 __builtin_msa_addv_d (v2i64, v2i64);
14286 v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
14287 v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
14288 v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
14289 v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
14291 v16u8 __builtin_msa_and_v (v16u8, v16u8);
14293 v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
14295 v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
14296 v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
14297 v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
14298 v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
14300 v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
14301 v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
14302 v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
14303 v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
14305 v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
14306 v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
14307 v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
14308 v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
14310 v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
14311 v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
14312 v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
14313 v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
14315 v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
14316 v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
14317 v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
14318 v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
14320 v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
14321 v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
14322 v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
14323 v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
14325 v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
14326 v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
14327 v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
14328 v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
14330 v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
14331 v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
14332 v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
14333 v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
14335 v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
14336 v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
14337 v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
14338 v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
14340 v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
14341 v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
14342 v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
14343 v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
14345 v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
14346 v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
14347 v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
14348 v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
14350 v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
14351 v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
14352 v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
14353 v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
14355 v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
14357 v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
14359 v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
14361 v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
14363 v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
14364 v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
14365 v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
14366 v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
14368 v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
14369 v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
14370 v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
14371 v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
14373 i32 __builtin_msa_bnz_b (v16u8);
14374 i32 __builtin_msa_bnz_h (v8u16);
14375 i32 __builtin_msa_bnz_w (v4u32);
14376 i32 __builtin_msa_bnz_d (v2u64);
14378 i32 __builtin_msa_bnz_v (v16u8);
14380 v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
14382 v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
14384 v16u8 __builtin_msa_bset_b (v16u8, v16u8);
14385 v8u16 __builtin_msa_bset_h (v8u16, v8u16);
14386 v4u32 __builtin_msa_bset_w (v4u32, v4u32);
14387 v2u64 __builtin_msa_bset_d (v2u64, v2u64);
14389 v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
14390 v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
14391 v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
14392 v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
14394 i32 __builtin_msa_bz_b (v16u8);
14395 i32 __builtin_msa_bz_h (v8u16);
14396 i32 __builtin_msa_bz_w (v4u32);
14397 i32 __builtin_msa_bz_d (v2u64);
14399 i32 __builtin_msa_bz_v (v16u8);
14401 v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
14402 v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
14403 v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
14404 v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
14406 v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
14407 v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
14408 v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
14409 v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
14411 i32 __builtin_msa_cfcmsa (imm0_31);
14413 v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
14414 v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
14415 v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
14416 v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
14418 v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
14419 v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
14420 v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
14421 v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
14423 v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
14424 v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
14425 v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
14426 v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
14428 v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
14429 v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
14430 v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
14431 v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
14433 v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
14434 v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
14435 v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
14436 v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
14438 v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
14439 v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
14440 v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
14441 v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
14443 v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
14444 v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
14445 v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
14446 v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
14448 v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
14449 v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
14450 v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
14451 v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
14453 i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
14454 i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
14455 i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
14456 i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
14458 u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
14459 u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
14460 u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
14461 u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
14463 void __builtin_msa_ctcmsa (imm0_31, i32);
14465 v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
14466 v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
14467 v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
14468 v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
14470 v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
14471 v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
14472 v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
14473 v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
14475 v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
14476 v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
14477 v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
14479 v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
14480 v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
14481 v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
14483 v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
14484 v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
14485 v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
14487 v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
14488 v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
14489 v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
14491 v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
14492 v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
14493 v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
14495 v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
14496 v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
14497 v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
14499 v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
14500 v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
14502 v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
14503 v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
14505 v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
14506 v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
14508 v4i32 __builtin_msa_fclass_w (v4f32);
14509 v2i64 __builtin_msa_fclass_d (v2f64);
14511 v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
14512 v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
14514 v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
14515 v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
14517 v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
14518 v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
14520 v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
14521 v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
14523 v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
14524 v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
14526 v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
14527 v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
14529 v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
14530 v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
14532 v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
14533 v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
14535 v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
14536 v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
14538 v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
14539 v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
14541 v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
14542 v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
14544 v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
14545 v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
14547 v4f32 __builtin_msa_fexupl_w (v8i16);
14548 v2f64 __builtin_msa_fexupl_d (v4f32);
14550 v4f32 __builtin_msa_fexupr_w (v8i16);
14551 v2f64 __builtin_msa_fexupr_d (v4f32);
14553 v4f32 __builtin_msa_ffint_s_w (v4i32);
14554 v2f64 __builtin_msa_ffint_s_d (v2i64);
14556 v4f32 __builtin_msa_ffint_u_w (v4u32);
14557 v2f64 __builtin_msa_ffint_u_d (v2u64);
14559 v4f32 __builtin_msa_ffql_w (v8i16);
14560 v2f64 __builtin_msa_ffql_d (v4i32);
14562 v4f32 __builtin_msa_ffqr_w (v8i16);
14563 v2f64 __builtin_msa_ffqr_d (v4i32);
14565 v16i8 __builtin_msa_fill_b (i32);
14566 v8i16 __builtin_msa_fill_h (i32);
14567 v4i32 __builtin_msa_fill_w (i32);
14568 v2i64 __builtin_msa_fill_d (i64);
14570 v4f32 __builtin_msa_flog2_w (v4f32);
14571 v2f64 __builtin_msa_flog2_d (v2f64);
14573 v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
14574 v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
14576 v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
14577 v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
14579 v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
14580 v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
14582 v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
14583 v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
14585 v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
14586 v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
14588 v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
14589 v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
14591 v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
14592 v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
14594 v4f32 __builtin_msa_frint_w (v4f32);
14595 v2f64 __builtin_msa_frint_d (v2f64);
14597 v4f32 __builtin_msa_frcp_w (v4f32);
14598 v2f64 __builtin_msa_frcp_d (v2f64);
14600 v4f32 __builtin_msa_frsqrt_w (v4f32);
14601 v2f64 __builtin_msa_frsqrt_d (v2f64);
14603 v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
14604 v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
14606 v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
14607 v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
14609 v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
14610 v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
14612 v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
14613 v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
14615 v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
14616 v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
14618 v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
14619 v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
14621 v4f32 __builtin_msa_fsqrt_w (v4f32);
14622 v2f64 __builtin_msa_fsqrt_d (v2f64);
14624 v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
14625 v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
14627 v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
14628 v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
14630 v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
14631 v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
14633 v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
14634 v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
14636 v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
14637 v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
14639 v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
14640 v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
14642 v4i32 __builtin_msa_ftint_s_w (v4f32);
14643 v2i64 __builtin_msa_ftint_s_d (v2f64);
14645 v4u32 __builtin_msa_ftint_u_w (v4f32);
14646 v2u64 __builtin_msa_ftint_u_d (v2f64);
14648 v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
14649 v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
14651 v4i32 __builtin_msa_ftrunc_s_w (v4f32);
14652 v2i64 __builtin_msa_ftrunc_s_d (v2f64);
14654 v4u32 __builtin_msa_ftrunc_u_w (v4f32);
14655 v2u64 __builtin_msa_ftrunc_u_d (v2f64);
14657 v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
14658 v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
14659 v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
14661 v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
14662 v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
14663 v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
14665 v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
14666 v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
14667 v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
14669 v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
14670 v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
14671 v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
14673 v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
14674 v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
14675 v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
14676 v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
14678 v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
14679 v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
14680 v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
14681 v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
14683 v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
14684 v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
14685 v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
14686 v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
14688 v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
14689 v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
14690 v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
14691 v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
14693 v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
14694 v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
14695 v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
14696 v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
14698 v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
14699 v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
14700 v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
14701 v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
14703 v16i8 __builtin_msa_ld_b (void *, imm_n512_511);
14704 v8i16 __builtin_msa_ld_h (void *, imm_n1024_1022);
14705 v4i32 __builtin_msa_ld_w (void *, imm_n2048_2044);
14706 v2i64 __builtin_msa_ld_d (void *, imm_n4096_4088);
14708 v16i8 __builtin_msa_ldi_b (imm_n512_511);
14709 v8i16 __builtin_msa_ldi_h (imm_n512_511);
14710 v4i32 __builtin_msa_ldi_w (imm_n512_511);
14711 v2i64 __builtin_msa_ldi_d (imm_n512_511);
14713 v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
14714 v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
14716 v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
14717 v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
14719 v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
14720 v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
14721 v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
14722 v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
14724 v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
14725 v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
14726 v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
14727 v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
14729 v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
14730 v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
14731 v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
14732 v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
14734 v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
14735 v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
14736 v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
14737 v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
14739 v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
14740 v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
14741 v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
14742 v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
14744 v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
14745 v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
14746 v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
14747 v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
14749 v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
14750 v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
14751 v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
14752 v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
14754 v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
14755 v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
14756 v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
14757 v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
14759 v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
14760 v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
14761 v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
14762 v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
14764 v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
14765 v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
14766 v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
14767 v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
14769 v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
14770 v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
14771 v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
14772 v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
14774 v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
14775 v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
14776 v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
14777 v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
14779 v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
14780 v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
14781 v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
14782 v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
14784 v16i8 __builtin_msa_move_v (v16i8);
14786 v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
14787 v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
14789 v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
14790 v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
14792 v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
14793 v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
14794 v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
14795 v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
14797 v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
14798 v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
14800 v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
14801 v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
14803 v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
14804 v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
14805 v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
14806 v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
14808 v16i8 __builtin_msa_nloc_b (v16i8);
14809 v8i16 __builtin_msa_nloc_h (v8i16);
14810 v4i32 __builtin_msa_nloc_w (v4i32);
14811 v2i64 __builtin_msa_nloc_d (v2i64);
14813 v16i8 __builtin_msa_nlzc_b (v16i8);
14814 v8i16 __builtin_msa_nlzc_h (v8i16);
14815 v4i32 __builtin_msa_nlzc_w (v4i32);
14816 v2i64 __builtin_msa_nlzc_d (v2i64);
14818 v16u8 __builtin_msa_nor_v (v16u8, v16u8);
14820 v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
14822 v16u8 __builtin_msa_or_v (v16u8, v16u8);
14824 v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
14826 v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
14827 v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
14828 v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
14829 v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
14831 v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
14832 v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
14833 v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
14834 v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
14836 v16i8 __builtin_msa_pcnt_b (v16i8);
14837 v8i16 __builtin_msa_pcnt_h (v8i16);
14838 v4i32 __builtin_msa_pcnt_w (v4i32);
14839 v2i64 __builtin_msa_pcnt_d (v2i64);
14841 v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
14842 v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
14843 v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
14844 v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
14846 v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
14847 v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
14848 v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
14849 v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
14851 v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
14852 v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
14853 v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
14855 v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
14856 v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
14857 v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
14858 v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
14860 v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
14861 v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
14862 v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
14863 v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
14865 v16i8 __builtin_msa_sll_b (v16i8, v16i8);
14866 v8i16 __builtin_msa_sll_h (v8i16, v8i16);
14867 v4i32 __builtin_msa_sll_w (v4i32, v4i32);
14868 v2i64 __builtin_msa_sll_d (v2i64, v2i64);
14870 v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
14871 v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
14872 v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
14873 v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
14875 v16i8 __builtin_msa_splat_b (v16i8, i32);
14876 v8i16 __builtin_msa_splat_h (v8i16, i32);
14877 v4i32 __builtin_msa_splat_w (v4i32, i32);
14878 v2i64 __builtin_msa_splat_d (v2i64, i32);
14880 v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
14881 v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
14882 v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
14883 v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
14885 v16i8 __builtin_msa_sra_b (v16i8, v16i8);
14886 v8i16 __builtin_msa_sra_h (v8i16, v8i16);
14887 v4i32 __builtin_msa_sra_w (v4i32, v4i32);
14888 v2i64 __builtin_msa_sra_d (v2i64, v2i64);
14890 v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
14891 v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
14892 v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
14893 v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
14895 v16i8 __builtin_msa_srar_b (v16i8, v16i8);
14896 v8i16 __builtin_msa_srar_h (v8i16, v8i16);
14897 v4i32 __builtin_msa_srar_w (v4i32, v4i32);
14898 v2i64 __builtin_msa_srar_d (v2i64, v2i64);
14900 v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
14901 v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
14902 v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
14903 v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
14905 v16i8 __builtin_msa_srl_b (v16i8, v16i8);
14906 v8i16 __builtin_msa_srl_h (v8i16, v8i16);
14907 v4i32 __builtin_msa_srl_w (v4i32, v4i32);
14908 v2i64 __builtin_msa_srl_d (v2i64, v2i64);
14910 v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
14911 v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
14912 v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
14913 v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
14915 v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
14916 v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
14917 v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
14918 v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
14920 v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
14921 v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
14922 v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
14923 v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
14925 void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
14926 void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
14927 void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
14928 void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
14930 v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
14931 v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
14932 v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
14933 v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
14935 v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
14936 v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
14937 v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
14938 v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
14940 v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
14941 v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
14942 v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
14943 v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
14945 v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
14946 v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
14947 v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
14948 v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
14950 v16i8 __builtin_msa_subv_b (v16i8, v16i8);
14951 v8i16 __builtin_msa_subv_h (v8i16, v8i16);
14952 v4i32 __builtin_msa_subv_w (v4i32, v4i32);
14953 v2i64 __builtin_msa_subv_d (v2i64, v2i64);
14955 v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
14956 v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
14957 v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
14958 v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
14960 v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
14961 v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
14962 v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
14963 v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
14965 v16u8 __builtin_msa_xor_v (v16u8, v16u8);
14967 v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
14970 @node Other MIPS Built-in Functions
14971 @subsection Other MIPS Built-in Functions
14973 GCC provides other MIPS-specific built-in functions:
14976 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
14977 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
14978 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
14979 when this function is available.
14981 @item unsigned int __builtin_mips_get_fcsr (void)
14982 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
14983 Get and set the contents of the floating-point control and status register
14984 (FPU control register 31). These functions are only available in hard-float
14985 code but can be called in both MIPS16 and non-MIPS16 contexts.
14987 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
14988 register except the condition codes, which GCC assumes are preserved.
14991 @node MSP430 Built-in Functions
14992 @subsection MSP430 Built-in Functions
14994 GCC provides a couple of special builtin functions to aid in the
14995 writing of interrupt handlers in C.
14998 @item __bic_SR_register_on_exit (int @var{mask})
14999 This clears the indicated bits in the saved copy of the status register
15000 currently residing on the stack. This only works inside interrupt
15001 handlers and the changes to the status register will only take affect
15002 once the handler returns.
15004 @item __bis_SR_register_on_exit (int @var{mask})
15005 This sets the indicated bits in the saved copy of the status register
15006 currently residing on the stack. This only works inside interrupt
15007 handlers and the changes to the status register will only take affect
15008 once the handler returns.
15010 @item __delay_cycles (long long @var{cycles})
15011 This inserts an instruction sequence that takes exactly @var{cycles}
15012 cycles (between 0 and about 17E9) to complete. The inserted sequence
15013 may use jumps, loops, or no-ops, and does not interfere with any other
15014 instructions. Note that @var{cycles} must be a compile-time constant
15015 integer - that is, you must pass a number, not a variable that may be
15016 optimized to a constant later. The number of cycles delayed by this
15020 @node NDS32 Built-in Functions
15021 @subsection NDS32 Built-in Functions
15023 These built-in functions are available for the NDS32 target:
15025 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
15026 Insert an ISYNC instruction into the instruction stream where
15027 @var{addr} is an instruction address for serialization.
15030 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
15031 Insert an ISB instruction into the instruction stream.
15034 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
15035 Return the content of a system register which is mapped by @var{sr}.
15038 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
15039 Return the content of a user space register which is mapped by @var{usr}.
15042 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
15043 Move the @var{value} to a system register which is mapped by @var{sr}.
15046 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
15047 Move the @var{value} to a user space register which is mapped by @var{usr}.
15050 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
15051 Enable global interrupt.
15054 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
15055 Disable global interrupt.
15058 @node picoChip Built-in Functions
15059 @subsection picoChip Built-in Functions
15061 GCC provides an interface to selected machine instructions from the
15062 picoChip instruction set.
15065 @item int __builtin_sbc (int @var{value})
15066 Sign bit count. Return the number of consecutive bits in @var{value}
15067 that have the same value as the sign bit. The result is the number of
15068 leading sign bits minus one, giving the number of redundant sign bits in
15071 @item int __builtin_byteswap (int @var{value})
15072 Byte swap. Return the result of swapping the upper and lower bytes of
15075 @item int __builtin_brev (int @var{value})
15076 Bit reversal. Return the result of reversing the bits in
15077 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
15080 @item int __builtin_adds (int @var{x}, int @var{y})
15081 Saturating addition. Return the result of adding @var{x} and @var{y},
15082 storing the value 32767 if the result overflows.
15084 @item int __builtin_subs (int @var{x}, int @var{y})
15085 Saturating subtraction. Return the result of subtracting @var{y} from
15086 @var{x}, storing the value @minus{}32768 if the result overflows.
15088 @item void __builtin_halt (void)
15089 Halt. The processor stops execution. This built-in is useful for
15090 implementing assertions.
15094 @node PowerPC Built-in Functions
15095 @subsection PowerPC Built-in Functions
15097 The following built-in functions are always available and can be used to
15098 check the PowerPC target platform type:
15100 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
15101 This function is a @code{nop} on the PowerPC platform and is included solely
15102 to maintain API compatibility with the x86 builtins.
15105 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
15106 This function returns a value of @code{1} if the run-time CPU is of type
15107 @var{cpuname} and returns @code{0} otherwise
15109 The @code{__builtin_cpu_is} function requires GLIBC 2.23 or newer
15110 which exports the hardware capability bits. GCC defines the macro
15111 @code{__BUILTIN_CPU_SUPPORTS__} if the @code{__builtin_cpu_supports}
15112 built-in function is fully supported.
15114 If GCC was configured to use a GLIBC before 2.23, the built-in
15115 function @code{__builtin_cpu_is} always returns a 0 and the compiler
15118 The following CPU names can be detected:
15122 IBM POWER9 Server CPU.
15124 IBM POWER8 Server CPU.
15126 IBM POWER7 Server CPU.
15128 IBM POWER6 Server CPU (RAW mode).
15130 IBM POWER6 Server CPU (Architected mode).
15132 IBM POWER5+ Server CPU.
15134 IBM POWER5 Server CPU.
15136 IBM 970 Server CPU (ie, Apple G5).
15138 IBM POWER4 Server CPU.
15140 IBM A2 64-bit Embedded CPU
15142 IBM PowerPC 476FP 32-bit Embedded CPU.
15144 IBM PowerPC 464 32-bit Embedded CPU.
15146 PowerPC 440 32-bit Embedded CPU.
15148 PowerPC 405 32-bit Embedded CPU.
15150 IBM PowerPC Cell Broadband Engine Architecture CPU.
15153 Here is an example:
15155 #ifdef __BUILTIN_CPU_SUPPORTS__
15156 if (__builtin_cpu_is ("power8"))
15158 do_power8 (); // POWER8 specific implementation.
15163 do_generic (); // Generic implementation.
15168 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
15169 This function returns a value of @code{1} if the run-time CPU supports the HWCAP
15170 feature @var{feature} and returns @code{0} otherwise.
15172 The @code{__builtin_cpu_supports} function requires GLIBC 2.23 or
15173 newer which exports the hardware capability bits. GCC defines the
15174 macro @code{__BUILTIN_CPU_SUPPORTS__} if the
15175 @code{__builtin_cpu_supports} built-in function is fully supported.
15177 If GCC was configured to use a GLIBC before 2.23, the built-in
15178 function @code{__builtin_cpu_suports} always returns a 0 and the
15179 compiler issues a warning.
15181 The following features can be
15186 4xx CPU has a Multiply Accumulator.
15188 CPU has a SIMD/Vector Unit.
15190 CPU supports ISA 2.05 (eg, POWER6)
15192 CPU supports ISA 2.06 (eg, POWER7)
15194 CPU supports ISA 2.07 (eg, POWER8)
15196 CPU supports ISA 3.0 (eg, POWER9)
15198 CPU supports the set of compatible performance monitoring events.
15200 CPU supports the Embedded ISA category.
15202 CPU has a CELL broadband engine.
15204 CPU has a decimal floating point unit.
15206 CPU supports the data stream control register.
15208 CPU supports event base branching.
15210 CPU has a SPE double precision floating point unit.
15212 CPU has a SPE single precision floating point unit.
15214 CPU has a floating point unit.
15216 CPU has hardware transaction memory instructions.
15218 Kernel aborts hardware transactions when a syscall is made.
15220 CPU supports icache snooping capabilities.
15222 CPU supports 128-bit IEEE binary floating point instructions.
15224 CPU supports the integer select instruction.
15226 CPU has a memory management unit.
15228 CPU does not have a timebase (eg, 601 and 403gx).
15230 CPU supports the PA Semi 6T CORE ISA.
15232 CPU supports ISA 2.00 (eg, POWER4)
15234 CPU supports ISA 2.02 (eg, POWER5)
15236 CPU supports ISA 2.03 (eg, POWER5+)
15238 CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
15240 CPU supports 32-bit mode execution.
15242 CPU supports the old POWER ISA (eg, 601)
15244 CPU supports 64-bit mode execution.
15246 CPU supports a little-endian mode that uses address swizzling.
15248 CPU support simultaneous multi-threading.
15250 CPU has a signal processing extension unit.
15252 CPU supports the target address register.
15254 CPU supports true little-endian mode.
15256 CPU has unified I/D cache.
15258 CPU supports the vector cryptography instructions.
15260 CPU supports the vector-scalar extension.
15263 Here is an example:
15265 #ifdef __BUILTIN_CPU_SUPPORTS__
15266 if (__builtin_cpu_supports ("fpu"))
15268 asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
15273 dst = __fadd (src1, src2); // Software FP addition function.
15278 These built-in functions are available for the PowerPC family of
15281 float __builtin_recipdivf (float, float);
15282 float __builtin_rsqrtf (float);
15283 double __builtin_recipdiv (double, double);
15284 double __builtin_rsqrt (double);
15285 uint64_t __builtin_ppc_get_timebase ();
15286 unsigned long __builtin_ppc_mftb ();
15287 double __builtin_unpack_longdouble (long double, int);
15288 long double __builtin_pack_longdouble (double, double);
15291 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
15292 @code{__builtin_rsqrtf} functions generate multiple instructions to
15293 implement the reciprocal sqrt functionality using reciprocal sqrt
15294 estimate instructions.
15296 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
15297 functions generate multiple instructions to implement division using
15298 the reciprocal estimate instructions.
15300 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
15301 functions generate instructions to read the Time Base Register. The
15302 @code{__builtin_ppc_get_timebase} function may generate multiple
15303 instructions and always returns the 64 bits of the Time Base Register.
15304 The @code{__builtin_ppc_mftb} function always generates one instruction and
15305 returns the Time Base Register value as an unsigned long, throwing away
15306 the most significant word on 32-bit environments.
15308 Additional built-in functions are available for the 64-bit PowerPC
15309 family of processors, for efficient use of 128-bit floating point
15310 (@code{__float128}) values.
15312 The following floating-point built-in functions are available with
15313 @code{-mfloat128} and Altivec support. All of them implement the
15314 function that is part of the name.
15317 __float128 __builtin_fabsq (__float128)
15318 __float128 __builtin_copysignq (__float128, __float128)
15321 The following built-in functions are available with @code{-mfloat128}
15322 and Altivec support.
15325 @item __float128 __builtin_infq (void)
15326 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
15327 @findex __builtin_infq
15329 @item __float128 __builtin_huge_valq (void)
15330 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
15331 @findex __builtin_huge_valq
15333 @item __float128 __builtin_nanq (void)
15334 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
15335 @findex __builtin_nanq
15337 @item __float128 __builtin_nansq (void)
15338 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
15339 @findex __builtin_nansq
15342 The following built-in functions are available for the PowerPC family
15343 of processors, starting with ISA 2.05 or later (@option{-mcpu=power6}
15344 or @option{-mcmpb}):
15346 unsigned long long __builtin_cmpb (unsigned long long int, unsigned long long int);
15347 unsigned int __builtin_cmpb (unsigned int, unsigned int);
15350 The @code{__builtin_cmpb} function
15351 performs a byte-wise compare on the contents of its two arguments,
15352 returning the result of the byte-wise comparison as the returned
15353 value. For each byte comparison, the corresponding byte of the return
15354 value holds 0xff if the input bytes are equal and 0 if the input bytes
15355 are not equal. If either of the arguments to this built-in function
15356 is wider than 32 bits, the function call expands into the form that
15357 expects @code{unsigned long long int} arguments
15358 which is only available on 64-bit targets.
15360 The following built-in functions are available for the PowerPC family
15361 of processors, starting with ISA 2.06 or later (@option{-mcpu=power7}
15362 or @option{-mpopcntd}):
15364 long __builtin_bpermd (long, long);
15365 int __builtin_divwe (int, int);
15366 int __builtin_divweo (int, int);
15367 unsigned int __builtin_divweu (unsigned int, unsigned int);
15368 unsigned int __builtin_divweuo (unsigned int, unsigned int);
15369 long __builtin_divde (long, long);
15370 long __builtin_divdeo (long, long);
15371 unsigned long __builtin_divdeu (unsigned long, unsigned long);
15372 unsigned long __builtin_divdeuo (unsigned long, unsigned long);
15373 unsigned int cdtbcd (unsigned int);
15374 unsigned int cbcdtd (unsigned int);
15375 unsigned int addg6s (unsigned int, unsigned int);
15378 The @code{__builtin_divde}, @code{__builtin_divdeo},
15379 @code{__builtin_divdeu}, @code{__builtin_divdeou} functions require a
15380 64-bit environment support ISA 2.06 or later.
15382 The following built-in functions are available for the PowerPC family
15383 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
15385 long long __builtin_darn (void);
15386 long long __builtin_darn_raw (void);
15387 int __builtin_darn_32 (void);
15389 unsigned int scalar_extract_exp (double source);
15390 unsigned long long int scalar_extract_exp (__ieee128 source);
15392 unsigned long long int scalar_extract_sig (double source);
15393 unsigned __int128 scalar_extract_sig (__ieee128 source);
15396 scalar_insert_exp (unsigned long long int significand, unsigned long long int exponent);
15398 scalar_insert_exp (double significand, unsigned long long int exponent);
15401 scalar_insert_exp (unsigned __int128 significand, unsigned long long int exponent);
15403 scalar_insert_exp (ieee_128 significand, unsigned long long int exponent);
15405 int scalar_cmp_exp_gt (double arg1, double arg2);
15406 int scalar_cmp_exp_lt (double arg1, double arg2);
15407 int scalar_cmp_exp_eq (double arg1, double arg2);
15408 int scalar_cmp_exp_unordered (double arg1, double arg2);
15410 bool scalar_test_data_class (float source, const int condition);
15411 bool scalar_test_data_class (double source, const int condition);
15412 bool scalar_test_data_class (__ieee128 source, const int condition);
15414 bool scalar_test_neg (float source);
15415 bool scalar_test_neg (double source);
15416 bool scalar_test_neg (__ieee128 source);
15418 int __builtin_byte_in_set (unsigned char u, unsigned long long set);
15419 int __builtin_byte_in_range (unsigned char u, unsigned int range);
15420 int __builtin_byte_in_either_range (unsigned char u, unsigned int ranges);
15422 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
15423 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
15424 int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
15425 int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);
15427 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
15428 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
15429 int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
15430 int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);
15432 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
15433 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
15434 int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
15435 int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);
15437 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
15438 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
15439 int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
15440 int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);
15443 The @code{__builtin_darn} and @code{__builtin_darn_raw}
15444 functions require a
15445 64-bit environment supporting ISA 3.0 or later.
15446 The @code{__builtin_darn} function provides a 64-bit conditioned
15447 random number. The @code{__builtin_darn_raw} function provides a
15448 64-bit raw random number. The @code{__builtin_darn_32} function
15449 provides a 32-bit random number.
15451 The @code{scalar_extract_exp} and @code{scalar_extract_sig}
15452 functions require a 64-bit environment supporting ISA 3.0 or later.
15453 The @code{scalar_extract_exp} and @code{scalar_extract_sig} built-in
15454 functions return the significand and the biased exponent value
15455 respectively of their @code{source} arguments.
15456 When supplied with a 64-bit @code{source} argument, the
15457 result returned by @code{scalar_extract_sig} has
15458 the @code{0x0010000000000000} bit set if the
15459 function's @code{source} argument is in normalized form.
15460 Otherwise, this bit is set to 0.
15461 When supplied with a 128-bit @code{source} argument, the
15462 @code{0x00010000000000000000000000000000} bit of the result is
15464 Note that the sign of the significand is not represented in the result
15465 returned from the @code{scalar_extract_sig} function. Use the
15466 @code{scalar_test_neg} function to test the sign of its @code{double}
15469 The @code{scalar_insert_exp}
15470 functions require a 64-bit environment supporting ISA 3.0 or later.
15471 When supplied with a 64-bit first argument, the
15472 @code{scalar_insert_exp} built-in function returns a double-precision
15473 floating point value that is constructed by assembling the values of its
15474 @code{significand} and @code{exponent} arguments. The sign of the
15475 result is copied from the most significant bit of the
15476 @code{significand} argument. The significand and exponent components
15477 of the result are composed of the least significant 11 bits of the
15478 @code{exponent} argument and the least significant 52 bits of the
15479 @code{significand} argument respectively.
15481 When supplied with a 128-bit first argument, the
15482 @code{scalar_insert_exp} built-in function returns a quad-precision
15483 ieee floating point value. The sign bit of the result is copied from
15484 the most significant bit of the @code{significand} argument.
15485 The significand and exponent components of the result are composed of
15486 the least significant 15 bits of the @code{exponent} argument and the
15487 least significant 112 bits of the @code{significand} argument respectively.
15489 The @code{scalar_cmp_exp_gt}, @code{scalar_cmp_exp_lt},
15490 @code{scalar_cmp_exp_eq}, and @code{scalar_cmp_exp_unordered} built-in
15491 functions return a non-zero value if @code{arg1} is greater than, less
15492 than, equal to, or not comparable to @code{arg2} respectively. The
15493 arguments are not comparable if one or the other equals NaN (not a
15496 The @code{scalar_test_data_class} built-in function returns 1
15497 if any of the condition tests enabled by the value of the
15498 @code{condition} variable are true, and 0 otherwise. The
15499 @code{condition} argument must be a compile-time constant integer with
15500 value not exceeding 127. The
15501 @code{condition} argument is encoded as a bitmask with each bit
15502 enabling the testing of a different condition, as characterized by the
15506 0x20 Test for +Infinity
15507 0x10 Test for -Infinity
15508 0x08 Test for +Zero
15509 0x04 Test for -Zero
15510 0x02 Test for +Denormal
15511 0x01 Test for -Denormal
15514 The @code{scalar_test_neg} built-in function returns 1 if its
15515 @code{source} argument holds a negative value, 0 otherwise.
15517 The @code{__builtin_byte_in_set} function requires a
15518 64-bit environment supporting ISA 3.0 or later. This function returns
15519 a non-zero value if and only if its @code{u} argument exactly equals one of
15520 the eight bytes contained within its 64-bit @code{set} argument.
15522 The @code{__builtin_byte_in_range} and
15523 @code{__builtin_byte_in_either_range} require an environment
15524 supporting ISA 3.0 or later. For these two functions, the
15525 @code{range} argument is encoded as 4 bytes, organized as
15526 @code{hi_1:lo_1:hi_2:lo_2}.
15527 The @code{__builtin_byte_in_range} function returns a
15528 non-zero value if and only if its @code{u} argument is within the
15529 range bounded between @code{lo_2} and @code{hi_2} inclusive.
15530 The @code{__builtin_byte_in_either_range} function returns non-zero if
15531 and only if its @code{u} argument is within either the range bounded
15532 between @code{lo_1} and @code{hi_1} inclusive or the range bounded
15533 between @code{lo_2} and @code{hi_2} inclusive.
15535 The @code{__builtin_dfp_dtstsfi_lt} function returns a non-zero value
15536 if and only if the number of signficant digits of its @code{value} argument
15537 is less than its @code{comparison} argument. The
15538 @code{__builtin_dfp_dtstsfi_lt_dd} and
15539 @code{__builtin_dfp_dtstsfi_lt_td} functions behave similarly, but
15540 require that the type of the @code{value} argument be
15541 @code{__Decimal64} and @code{__Decimal128} respectively.
15543 The @code{__builtin_dfp_dtstsfi_gt} function returns a non-zero value
15544 if and only if the number of signficant digits of its @code{value} argument
15545 is greater than its @code{comparison} argument. The
15546 @code{__builtin_dfp_dtstsfi_gt_dd} and
15547 @code{__builtin_dfp_dtstsfi_gt_td} functions behave similarly, but
15548 require that the type of the @code{value} argument be
15549 @code{__Decimal64} and @code{__Decimal128} respectively.
15551 The @code{__builtin_dfp_dtstsfi_eq} function returns a non-zero value
15552 if and only if the number of signficant digits of its @code{value} argument
15553 equals its @code{comparison} argument. The
15554 @code{__builtin_dfp_dtstsfi_eq_dd} and
15555 @code{__builtin_dfp_dtstsfi_eq_td} functions behave similarly, but
15556 require that the type of the @code{value} argument be
15557 @code{__Decimal64} and @code{__Decimal128} respectively.
15559 The @code{__builtin_dfp_dtstsfi_ov} function returns a non-zero value
15560 if and only if its @code{value} argument has an undefined number of
15561 significant digits, such as when @code{value} is an encoding of @code{NaN}.
15562 The @code{__builtin_dfp_dtstsfi_ov_dd} and
15563 @code{__builtin_dfp_dtstsfi_ov_td} functions behave similarly, but
15564 require that the type of the @code{value} argument be
15565 @code{__Decimal64} and @code{__Decimal128} respectively.
15567 The following built-in functions are also available for the PowerPC family
15568 of processors, starting with ISA 3.0 or later
15569 (@option{-mcpu=power9}). These string functions are described
15570 separately in order to group the descriptions closer to the function
15573 int vec_all_nez (vector signed char, vector signed char);
15574 int vec_all_nez (vector unsigned char, vector unsigned char);
15575 int vec_all_nez (vector signed short, vector signed short);
15576 int vec_all_nez (vector unsigned short, vector unsigned short);
15577 int vec_all_nez (vector signed int, vector signed int);
15578 int vec_all_nez (vector unsigned int, vector unsigned int);
15580 int vec_any_eqz (vector signed char, vector signed char);
15581 int vec_any_eqz (vector unsigned char, vector unsigned char);
15582 int vec_any_eqz (vector signed short, vector signed short);
15583 int vec_any_eqz (vector unsigned short, vector unsigned short);
15584 int vec_any_eqz (vector signed int, vector signed int);
15585 int vec_any_eqz (vector unsigned int, vector unsigned int);
15587 vector bool char vec_cmpnez (vector signed char arg1, vector signed char arg2);
15588 vector bool char vec_cmpnez (vector unsigned char arg1, vector unsigned char arg2);
15589 vector bool short vec_cmpnez (vector signed short arg1, vector signed short arg2);
15590 vector bool short vec_cmpnez (vector unsigned short arg1, vector unsigned short arg2);
15591 vector bool int vec_cmpnez (vector signed int arg1, vector signed int arg2);
15592 vector bool int vec_cmpnez (vector unsigned int, vector unsigned int);
15594 vector signed char vec_cnttz (vector signed char);
15595 vector unsigned char vec_cnttz (vector unsigned char);
15596 vector signed short vec_cnttz (vector signed short);
15597 vector unsigned short vec_cnttz (vector unsigned short);
15598 vector signed int vec_cnttz (vector signed int);
15599 vector unsigned int vec_cnttz (vector unsigned int);
15600 vector signed long long vec_cnttz (vector signed long long);
15601 vector unsigned long long vec_cnttz (vector unsigned long long);
15603 signed int vec_cntlz_lsbb (vector signed char);
15604 signed int vec_cntlz_lsbb (vector unsigned char);
15606 signed int vec_cnttz_lsbb (vector signed char);
15607 signed int vec_cnttz_lsbb (vector unsigned char);
15609 vector unsigned short vec_pack_to_short_fp32 (vector float, vector float);
15611 vector signed char vec_xl_be (signed long long, signed char *);
15612 vector unsigned char vec_xl_be (signed long long, unsigned char *);
15613 vector signed int vec_xl_be (signed long long, signed int *);
15614 vector unsigned int vec_xl_be (signed long long, unsigned int *);
15615 vector signed __int128 vec_xl_be (signed long long, signed __int128 *);
15616 vector unsigned __int128 vec_xl_be (signed long long, unsigned __int128 *);
15617 vector signed long long vec_xl_be (signed long long, signed long long *);
15618 vector unsigned long long vec_xl_be (signed long long, unsigned long long *);
15619 vector signed short vec_xl_be (signed long long, signed short *);
15620 vector unsigned short vec_xl_be (signed long long, unsigned short *);
15621 vector double vec_xl_be (signed long long, double *);
15622 vector float vec_xl_be (signed long long, float *);
15624 vector signed char vec_xl_len (signed char *addr, size_t len);
15625 vector unsigned char vec_xl_len (unsigned char *addr, size_t len);
15626 vector signed int vec_xl_len (signed int *addr, size_t len);
15627 vector unsigned int vec_xl_len (unsigned int *addr, size_t len);
15628 vector signed __int128 vec_xl_len (signed __int128 *addr, size_t len);
15629 vector unsigned __int128 vec_xl_len (unsigned __int128 *addr, size_t len);
15630 vector signed long long vec_xl_len (signed long long *addr, size_t len);
15631 vector unsigned long long vec_xl_len (unsigned long long *addr, size_t len);
15632 vector signed short vec_xl_len (signed short *addr, size_t len);
15633 vector unsigned short vec_xl_len (unsigned short *addr, size_t len);
15634 vector double vec_xl_len (double *addr, size_t len);
15635 vector float vec_xl_len (float *addr, size_t len);
15637 void vec_xst_len (vector signed char data, signed char *addr, size_t len);
15638 void vec_xst_len (vector unsigned char data, unsigned char *addr, size_t len);
15639 void vec_xst_len (vector signed int data, signed int *addr, size_t len);
15640 void vec_xst_len (vector unsigned int data, unsigned int *addr, size_t len);
15641 void vec_xst_len (vector unsigned __int128 data, unsigned __int128 *addr, size_t len);
15642 void vec_xst_len (vector signed long long data, signed long long *addr, size_t len);
15643 void vec_xst_len (vector unsigned long long data, unsigned long long *addr, size_t len);
15644 void vec_xst_len (vector signed short data, signed short *addr, size_t len);
15645 void vec_xst_len (vector unsigned short data, unsigned short *addr, size_t len);
15646 void vec_xst_len (vector signed __int128 data, signed __int128 *addr, size_t len);
15647 void vec_xst_len (vector double data, double *addr, size_t len);
15648 void vec_xst_len (vector float data, float *addr, size_t len);
15650 signed char vec_xlx (unsigned int index, vector signed char data);
15651 unsigned char vec_xlx (unsigned int index, vector unsigned char data);
15652 signed short vec_xlx (unsigned int index, vector signed short data);
15653 unsigned short vec_xlx (unsigned int index, vector unsigned short data);
15654 signed int vec_xlx (unsigned int index, vector signed int data);
15655 unsigned int vec_xlx (unsigned int index, vector unsigned int data);
15656 float vec_xlx (unsigned int index, vector float data);
15658 signed char vec_xrx (unsigned int index, vector signed char data);
15659 unsigned char vec_xrx (unsigned int index, vector unsigned char data);
15660 signed short vec_xrx (unsigned int index, vector signed short data);
15661 unsigned short vec_xrx (unsigned int index, vector unsigned short data);
15662 signed int vec_xrx (unsigned int index, vector signed int data);
15663 unsigned int vec_xrx (unsigned int index, vector unsigned int data);
15664 float vec_xrx (unsigned int index, vector float data);
15667 The @code{vec_all_nez}, @code{vec_any_eqz}, and @code{vec_cmpnez}
15668 perform pairwise comparisons between the elements at the same
15669 positions within their two vector arguments.
15670 The @code{vec_all_nez} function returns a
15671 non-zero value if and only if all pairwise comparisons are not
15672 equal and no element of either vector argument contains a zero.
15673 The @code{vec_any_eqz} function returns a
15674 non-zero value if and only if at least one pairwise comparison is equal
15675 or if at least one element of either vector argument contains a zero.
15676 The @code{vec_cmpnez} function returns a vector of the same type as
15677 its two arguments, within which each element consists of all ones to
15678 denote that either the corresponding elements of the incoming arguments are
15679 not equal or that at least one of the corresponding elements contains
15680 zero. Otherwise, the element of the returned vector contains all zeros.
15682 The @code{vec_cntlz_lsbb} function returns the count of the number of
15683 consecutive leading byte elements (starting from position 0 within the
15684 supplied vector argument) for which the least-significant bit
15685 equals zero. The @code{vec_cnttz_lsbb} function returns the count of
15686 the number of consecutive trailing byte elements (starting from
15687 position 15 and counting backwards within the supplied vector
15688 argument) for which the least-significant bit equals zero.
15690 The @code{vec_xl_len} and @code{vec_xst_len} functions require a
15691 64-bit environment supporting ISA 3.0 or later. The @code{vec_xl_len}
15692 function loads a variable length vector from memory. The
15693 @code{vec_xst_len} function stores a variable length vector to memory.
15694 With both the @code{vec_xl_len} and @code{vec_xst_len} functions, the
15695 @code{addr} argument represents the memory address to or from which
15696 data will be transferred, and the
15697 @code{len} argument represents the number of bytes to be
15698 transferred, as computed by the C expression @code{min((len & 0xff), 16)}.
15699 If this expression's value is not a multiple of the vector element's
15700 size, the behavior of this function is undefined.
15701 In the case that the underlying computer is configured to run in
15702 big-endian mode, the data transfer moves bytes 0 to @code{(len - 1)} of
15703 the corresponding vector. In little-endian mode, the data transfer
15704 moves bytes @code{(16 - len)} to @code{15} of the corresponding
15705 vector. For the load function, any bytes of the result vector that
15706 are not loaded from memory are set to zero.
15707 The value of the @code{addr} argument need not be aligned on a
15708 multiple of the vector's element size.
15710 The @code{vec_xlx} and @code{vec_xrx} functions extract the single
15711 element selected by the @code{index} argument from the vector
15712 represented by the @code{data} argument. The @code{index} argument
15713 always specifies a byte offset, regardless of the size of the vector
15714 element. With @code{vec_xlx}, @code{index} is the offset of the first
15715 byte of the element to be extracted. With @code{vec_xrx}, @code{index}
15716 represents the last byte of the element to be extracted, measured
15717 from the right end of the vector. In other words, the last byte of
15718 the element to be extracted is found at position @code{(15 - index)}.
15719 There is no requirement that @code{index} be a multiple of the vector
15720 element size. However, if the size of the vector element added to
15721 @code{index} is greater than 15, the content of the returned value is
15724 The following built-in functions are available for the PowerPC family
15725 of processors when hardware decimal floating point
15726 (@option{-mhard-dfp}) is available:
15728 long long __builtin_dxex (_Decimal64);
15729 long long __builtin_dxexq (_Decimal128);
15730 _Decimal64 __builtin_ddedpd (int, _Decimal64);
15731 _Decimal128 __builtin_ddedpdq (int, _Decimal128);
15732 _Decimal64 __builtin_denbcd (int, _Decimal64);
15733 _Decimal128 __builtin_denbcdq (int, _Decimal128);
15734 _Decimal64 __builtin_diex (long long, _Decimal64);
15735 _Decimal128 _builtin_diexq (long long, _Decimal128);
15736 _Decimal64 __builtin_dscli (_Decimal64, int);
15737 _Decimal128 __builtin_dscliq (_Decimal128, int);
15738 _Decimal64 __builtin_dscri (_Decimal64, int);
15739 _Decimal128 __builtin_dscriq (_Decimal128, int);
15740 unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
15741 _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
15744 The following built-in functions are available for the PowerPC family
15745 of processors when the Vector Scalar (vsx) instruction set is
15748 unsigned long long __builtin_unpack_vector_int128 (vector __int128_t, int);
15749 vector __int128_t __builtin_pack_vector_int128 (unsigned long long,
15750 unsigned long long);
15753 @node PowerPC AltiVec/VSX Built-in Functions
15754 @subsection PowerPC AltiVec Built-in Functions
15756 GCC provides an interface for the PowerPC family of processors to access
15757 the AltiVec operations described in Motorola's AltiVec Programming
15758 Interface Manual. The interface is made available by including
15759 @code{<altivec.h>} and using @option{-maltivec} and
15760 @option{-mabi=altivec}. The interface supports the following vector
15764 vector unsigned char
15768 vector unsigned short
15769 vector signed short
15773 vector unsigned int
15779 If @option{-mvsx} is used the following additional vector types are
15783 vector unsigned long
15788 The long types are only implemented for 64-bit code generation, and
15789 the long type is only used in the floating point/integer conversion
15792 GCC's implementation of the high-level language interface available from
15793 C and C++ code differs from Motorola's documentation in several ways.
15798 A vector constant is a list of constant expressions within curly braces.
15801 A vector initializer requires no cast if the vector constant is of the
15802 same type as the variable it is initializing.
15805 If @code{signed} or @code{unsigned} is omitted, the signedness of the
15806 vector type is the default signedness of the base type. The default
15807 varies depending on the operating system, so a portable program should
15808 always specify the signedness.
15811 Compiling with @option{-maltivec} adds keywords @code{__vector},
15812 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
15813 @code{bool}. When compiling ISO C, the context-sensitive substitution
15814 of the keywords @code{vector}, @code{pixel} and @code{bool} is
15815 disabled. To use them, you must include @code{<altivec.h>} instead.
15818 GCC allows using a @code{typedef} name as the type specifier for a
15822 For C, overloaded functions are implemented with macros so the following
15826 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
15830 Since @code{vec_add} is a macro, the vector constant in the example
15831 is treated as four separate arguments. Wrap the entire argument in
15832 parentheses for this to work.
15835 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
15836 Internally, GCC uses built-in functions to achieve the functionality in
15837 the aforementioned header file, but they are not supported and are
15838 subject to change without notice.
15840 GCC complies with the OpenPOWER 64-Bit ELF V2 ABI Specification,
15841 which may be found at
15842 @uref{http://openpowerfoundation.org/wp-content/uploads/resources/leabi-prd/content/index.html}.
15843 Appendix A of this document lists the vector API interfaces that must be
15844 provided by compliant compilers. Programmers should preferentially use
15845 the interfaces described therein. However, historically GCC has provided
15846 additional interfaces for access to vector instructions. These are
15847 briefly described below.
15849 The following interfaces are supported for the generic and specific
15850 AltiVec operations and the AltiVec predicates. In cases where there
15851 is a direct mapping between generic and specific operations, only the
15852 generic names are shown here, although the specific operations can also
15855 Arguments that are documented as @code{const int} require literal
15856 integral values within the range required for that operation.
15859 vector signed char vec_abs (vector signed char);
15860 vector signed short vec_abs (vector signed short);
15861 vector signed int vec_abs (vector signed int);
15862 vector float vec_abs (vector float);
15864 vector signed char vec_abss (vector signed char);
15865 vector signed short vec_abss (vector signed short);
15866 vector signed int vec_abss (vector signed int);
15868 vector signed char vec_add (vector bool char, vector signed char);
15869 vector signed char vec_add (vector signed char, vector bool char);
15870 vector signed char vec_add (vector signed char, vector signed char);
15871 vector unsigned char vec_add (vector bool char, vector unsigned char);
15872 vector unsigned char vec_add (vector unsigned char, vector bool char);
15873 vector unsigned char vec_add (vector unsigned char,
15874 vector unsigned char);
15875 vector signed short vec_add (vector bool short, vector signed short);
15876 vector signed short vec_add (vector signed short, vector bool short);
15877 vector signed short vec_add (vector signed short, vector signed short);
15878 vector unsigned short vec_add (vector bool short,
15879 vector unsigned short);
15880 vector unsigned short vec_add (vector unsigned short,
15881 vector bool short);
15882 vector unsigned short vec_add (vector unsigned short,
15883 vector unsigned short);
15884 vector signed int vec_add (vector bool int, vector signed int);
15885 vector signed int vec_add (vector signed int, vector bool int);
15886 vector signed int vec_add (vector signed int, vector signed int);
15887 vector unsigned int vec_add (vector bool int, vector unsigned int);
15888 vector unsigned int vec_add (vector unsigned int, vector bool int);
15889 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
15890 vector float vec_add (vector float, vector float);
15892 vector float vec_vaddfp (vector float, vector float);
15894 vector signed int vec_vadduwm (vector bool int, vector signed int);
15895 vector signed int vec_vadduwm (vector signed int, vector bool int);
15896 vector signed int vec_vadduwm (vector signed int, vector signed int);
15897 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
15898 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
15899 vector unsigned int vec_vadduwm (vector unsigned int,
15900 vector unsigned int);
15902 vector signed short vec_vadduhm (vector bool short,
15903 vector signed short);
15904 vector signed short vec_vadduhm (vector signed short,
15905 vector bool short);
15906 vector signed short vec_vadduhm (vector signed short,
15907 vector signed short);
15908 vector unsigned short vec_vadduhm (vector bool short,
15909 vector unsigned short);
15910 vector unsigned short vec_vadduhm (vector unsigned short,
15911 vector bool short);
15912 vector unsigned short vec_vadduhm (vector unsigned short,
15913 vector unsigned short);
15915 vector signed char vec_vaddubm (vector bool char, vector signed char);
15916 vector signed char vec_vaddubm (vector signed char, vector bool char);
15917 vector signed char vec_vaddubm (vector signed char, vector signed char);
15918 vector unsigned char vec_vaddubm (vector bool char,
15919 vector unsigned char);
15920 vector unsigned char vec_vaddubm (vector unsigned char,
15922 vector unsigned char vec_vaddubm (vector unsigned char,
15923 vector unsigned char);
15925 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
15927 vector unsigned char vec_adds (vector bool char, vector unsigned char);
15928 vector unsigned char vec_adds (vector unsigned char, vector bool char);
15929 vector unsigned char vec_adds (vector unsigned char,
15930 vector unsigned char);
15931 vector signed char vec_adds (vector bool char, vector signed char);
15932 vector signed char vec_adds (vector signed char, vector bool char);
15933 vector signed char vec_adds (vector signed char, vector signed char);
15934 vector unsigned short vec_adds (vector bool short,
15935 vector unsigned short);
15936 vector unsigned short vec_adds (vector unsigned short,
15937 vector bool short);
15938 vector unsigned short vec_adds (vector unsigned short,
15939 vector unsigned short);
15940 vector signed short vec_adds (vector bool short, vector signed short);
15941 vector signed short vec_adds (vector signed short, vector bool short);
15942 vector signed short vec_adds (vector signed short, vector signed short);
15943 vector unsigned int vec_adds (vector bool int, vector unsigned int);
15944 vector unsigned int vec_adds (vector unsigned int, vector bool int);
15945 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
15946 vector signed int vec_adds (vector bool int, vector signed int);
15947 vector signed int vec_adds (vector signed int, vector bool int);
15948 vector signed int vec_adds (vector signed int, vector signed int);
15950 vector signed int vec_vaddsws (vector bool int, vector signed int);
15951 vector signed int vec_vaddsws (vector signed int, vector bool int);
15952 vector signed int vec_vaddsws (vector signed int, vector signed int);
15954 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
15955 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
15956 vector unsigned int vec_vadduws (vector unsigned int,
15957 vector unsigned int);
15959 vector signed short vec_vaddshs (vector bool short,
15960 vector signed short);
15961 vector signed short vec_vaddshs (vector signed short,
15962 vector bool short);
15963 vector signed short vec_vaddshs (vector signed short,
15964 vector signed short);
15966 vector unsigned short vec_vadduhs (vector bool short,
15967 vector unsigned short);
15968 vector unsigned short vec_vadduhs (vector unsigned short,
15969 vector bool short);
15970 vector unsigned short vec_vadduhs (vector unsigned short,
15971 vector unsigned short);
15973 vector signed char vec_vaddsbs (vector bool char, vector signed char);
15974 vector signed char vec_vaddsbs (vector signed char, vector bool char);
15975 vector signed char vec_vaddsbs (vector signed char, vector signed char);
15977 vector unsigned char vec_vaddubs (vector bool char,
15978 vector unsigned char);
15979 vector unsigned char vec_vaddubs (vector unsigned char,
15981 vector unsigned char vec_vaddubs (vector unsigned char,
15982 vector unsigned char);
15984 vector float vec_and (vector float, vector float);
15985 vector float vec_and (vector float, vector bool int);
15986 vector float vec_and (vector bool int, vector float);
15987 vector bool int vec_and (vector bool int, vector bool int);
15988 vector signed int vec_and (vector bool int, vector signed int);
15989 vector signed int vec_and (vector signed int, vector bool int);
15990 vector signed int vec_and (vector signed int, vector signed int);
15991 vector unsigned int vec_and (vector bool int, vector unsigned int);
15992 vector unsigned int vec_and (vector unsigned int, vector bool int);
15993 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
15994 vector bool short vec_and (vector bool short, vector bool short);
15995 vector signed short vec_and (vector bool short, vector signed short);
15996 vector signed short vec_and (vector signed short, vector bool short);
15997 vector signed short vec_and (vector signed short, vector signed short);
15998 vector unsigned short vec_and (vector bool short,
15999 vector unsigned short);
16000 vector unsigned short vec_and (vector unsigned short,
16001 vector bool short);
16002 vector unsigned short vec_and (vector unsigned short,
16003 vector unsigned short);
16004 vector signed char vec_and (vector bool char, vector signed char);
16005 vector bool char vec_and (vector bool char, vector bool char);
16006 vector signed char vec_and (vector signed char, vector bool char);
16007 vector signed char vec_and (vector signed char, vector signed char);
16008 vector unsigned char vec_and (vector bool char, vector unsigned char);
16009 vector unsigned char vec_and (vector unsigned char, vector bool char);
16010 vector unsigned char vec_and (vector unsigned char,
16011 vector unsigned char);
16013 vector float vec_andc (vector float, vector float);
16014 vector float vec_andc (vector float, vector bool int);
16015 vector float vec_andc (vector bool int, vector float);
16016 vector bool int vec_andc (vector bool int, vector bool int);
16017 vector signed int vec_andc (vector bool int, vector signed int);
16018 vector signed int vec_andc (vector signed int, vector bool int);
16019 vector signed int vec_andc (vector signed int, vector signed int);
16020 vector unsigned int vec_andc (vector bool int, vector unsigned int);
16021 vector unsigned int vec_andc (vector unsigned int, vector bool int);
16022 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
16023 vector bool short vec_andc (vector bool short, vector bool short);
16024 vector signed short vec_andc (vector bool short, vector signed short);
16025 vector signed short vec_andc (vector signed short, vector bool short);
16026 vector signed short vec_andc (vector signed short, vector signed short);
16027 vector unsigned short vec_andc (vector bool short,
16028 vector unsigned short);
16029 vector unsigned short vec_andc (vector unsigned short,
16030 vector bool short);
16031 vector unsigned short vec_andc (vector unsigned short,
16032 vector unsigned short);
16033 vector signed char vec_andc (vector bool char, vector signed char);
16034 vector bool char vec_andc (vector bool char, vector bool char);
16035 vector signed char vec_andc (vector signed char, vector bool char);
16036 vector signed char vec_andc (vector signed char, vector signed char);
16037 vector unsigned char vec_andc (vector bool char, vector unsigned char);
16038 vector unsigned char vec_andc (vector unsigned char, vector bool char);
16039 vector unsigned char vec_andc (vector unsigned char,
16040 vector unsigned char);
16042 vector unsigned char vec_avg (vector unsigned char,
16043 vector unsigned char);
16044 vector signed char vec_avg (vector signed char, vector signed char);
16045 vector unsigned short vec_avg (vector unsigned short,
16046 vector unsigned short);
16047 vector signed short vec_avg (vector signed short, vector signed short);
16048 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
16049 vector signed int vec_avg (vector signed int, vector signed int);
16051 vector signed int vec_vavgsw (vector signed int, vector signed int);
16053 vector unsigned int vec_vavguw (vector unsigned int,
16054 vector unsigned int);
16056 vector signed short vec_vavgsh (vector signed short,
16057 vector signed short);
16059 vector unsigned short vec_vavguh (vector unsigned short,
16060 vector unsigned short);
16062 vector signed char vec_vavgsb (vector signed char, vector signed char);
16064 vector unsigned char vec_vavgub (vector unsigned char,
16065 vector unsigned char);
16067 vector float vec_copysign (vector float);
16069 vector float vec_ceil (vector float);
16071 vector signed int vec_cmpb (vector float, vector float);
16073 vector bool char vec_cmpeq (vector bool char, vector bool char);
16074 vector bool short vec_cmpeq (vector bool short, vector bool short);
16075 vector bool int vec_cmpeq (vector bool int, vector bool int);
16076 vector bool char vec_cmpeq (vector signed char, vector signed char);
16077 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
16078 vector bool short vec_cmpeq (vector signed short, vector signed short);
16079 vector bool short vec_cmpeq (vector unsigned short,
16080 vector unsigned short);
16081 vector bool int vec_cmpeq (vector signed int, vector signed int);
16082 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
16083 vector bool int vec_cmpeq (vector float, vector float);
16085 vector bool int vec_vcmpeqfp (vector float, vector float);
16087 vector bool int vec_vcmpequw (vector signed int, vector signed int);
16088 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
16090 vector bool short vec_vcmpequh (vector signed short,
16091 vector signed short);
16092 vector bool short vec_vcmpequh (vector unsigned short,
16093 vector unsigned short);
16095 vector bool char vec_vcmpequb (vector signed char, vector signed char);
16096 vector bool char vec_vcmpequb (vector unsigned char,
16097 vector unsigned char);
16099 vector bool int vec_cmpge (vector float, vector float);
16101 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
16102 vector bool char vec_cmpgt (vector signed char, vector signed char);
16103 vector bool short vec_cmpgt (vector unsigned short,
16104 vector unsigned short);
16105 vector bool short vec_cmpgt (vector signed short, vector signed short);
16106 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
16107 vector bool int vec_cmpgt (vector signed int, vector signed int);
16108 vector bool int vec_cmpgt (vector float, vector float);
16110 vector bool int vec_vcmpgtfp (vector float, vector float);
16112 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
16114 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
16116 vector bool short vec_vcmpgtsh (vector signed short,
16117 vector signed short);
16119 vector bool short vec_vcmpgtuh (vector unsigned short,
16120 vector unsigned short);
16122 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
16124 vector bool char vec_vcmpgtub (vector unsigned char,
16125 vector unsigned char);
16127 vector bool int vec_cmple (vector float, vector float);
16129 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
16130 vector bool char vec_cmplt (vector signed char, vector signed char);
16131 vector bool short vec_cmplt (vector unsigned short,
16132 vector unsigned short);
16133 vector bool short vec_cmplt (vector signed short, vector signed short);
16134 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
16135 vector bool int vec_cmplt (vector signed int, vector signed int);
16136 vector bool int vec_cmplt (vector float, vector float);
16138 vector float vec_cpsgn (vector float, vector float);
16140 vector float vec_ctf (vector unsigned int, const int);
16141 vector float vec_ctf (vector signed int, const int);
16142 vector double vec_ctf (vector unsigned long, const int);
16143 vector double vec_ctf (vector signed long, const int);
16145 vector float vec_vcfsx (vector signed int, const int);
16147 vector float vec_vcfux (vector unsigned int, const int);
16149 vector signed int vec_cts (vector float, const int);
16150 vector signed long vec_cts (vector double, const int);
16152 vector unsigned int vec_ctu (vector float, const int);
16153 vector unsigned long vec_ctu (vector double, const int);
16155 vector double vec_doublee (vector float);
16156 vector double vec_doublee (vector signed int);
16157 vector double vec_doublee (vector unsigned int);
16159 vector double vec_doubleo (vector float);
16160 vector double vec_doubleo (vector signed int);
16161 vector double vec_doubleo (vector unsigned int);
16163 vector double vec_doubleh (vector float);
16164 vector double vec_doubleh (vector signed int);
16165 vector double vec_doubleh (vector unsigned int);
16167 vector double vec_doublel (vector float);
16168 vector double vec_doublel (vector signed int);
16169 vector double vec_doublel (vector unsigned int);
16171 void vec_dss (const int);
16173 void vec_dssall (void);
16175 void vec_dst (const vector unsigned char *, int, const int);
16176 void vec_dst (const vector signed char *, int, const int);
16177 void vec_dst (const vector bool char *, int, const int);
16178 void vec_dst (const vector unsigned short *, int, const int);
16179 void vec_dst (const vector signed short *, int, const int);
16180 void vec_dst (const vector bool short *, int, const int);
16181 void vec_dst (const vector pixel *, int, const int);
16182 void vec_dst (const vector unsigned int *, int, const int);
16183 void vec_dst (const vector signed int *, int, const int);
16184 void vec_dst (const vector bool int *, int, const int);
16185 void vec_dst (const vector float *, int, const int);
16186 void vec_dst (const unsigned char *, int, const int);
16187 void vec_dst (const signed char *, int, const int);
16188 void vec_dst (const unsigned short *, int, const int);
16189 void vec_dst (const short *, int, const int);
16190 void vec_dst (const unsigned int *, int, const int);
16191 void vec_dst (const int *, int, const int);
16192 void vec_dst (const unsigned long *, int, const int);
16193 void vec_dst (const long *, int, const int);
16194 void vec_dst (const float *, int, const int);
16196 void vec_dstst (const vector unsigned char *, int, const int);
16197 void vec_dstst (const vector signed char *, int, const int);
16198 void vec_dstst (const vector bool char *, int, const int);
16199 void vec_dstst (const vector unsigned short *, int, const int);
16200 void vec_dstst (const vector signed short *, int, const int);
16201 void vec_dstst (const vector bool short *, int, const int);
16202 void vec_dstst (const vector pixel *, int, const int);
16203 void vec_dstst (const vector unsigned int *, int, const int);
16204 void vec_dstst (const vector signed int *, int, const int);
16205 void vec_dstst (const vector bool int *, int, const int);
16206 void vec_dstst (const vector float *, int, const int);
16207 void vec_dstst (const unsigned char *, int, const int);
16208 void vec_dstst (const signed char *, int, const int);
16209 void vec_dstst (const unsigned short *, int, const int);
16210 void vec_dstst (const short *, int, const int);
16211 void vec_dstst (const unsigned int *, int, const int);
16212 void vec_dstst (const int *, int, const int);
16213 void vec_dstst (const unsigned long *, int, const int);
16214 void vec_dstst (const long *, int, const int);
16215 void vec_dstst (const float *, int, const int);
16217 void vec_dststt (const vector unsigned char *, int, const int);
16218 void vec_dststt (const vector signed char *, int, const int);
16219 void vec_dststt (const vector bool char *, int, const int);
16220 void vec_dststt (const vector unsigned short *, int, const int);
16221 void vec_dststt (const vector signed short *, int, const int);
16222 void vec_dststt (const vector bool short *, int, const int);
16223 void vec_dststt (const vector pixel *, int, const int);
16224 void vec_dststt (const vector unsigned int *, int, const int);
16225 void vec_dststt (const vector signed int *, int, const int);
16226 void vec_dststt (const vector bool int *, int, const int);
16227 void vec_dststt (const vector float *, int, const int);
16228 void vec_dststt (const unsigned char *, int, const int);
16229 void vec_dststt (const signed char *, int, const int);
16230 void vec_dststt (const unsigned short *, int, const int);
16231 void vec_dststt (const short *, int, const int);
16232 void vec_dststt (const unsigned int *, int, const int);
16233 void vec_dststt (const int *, int, const int);
16234 void vec_dststt (const unsigned long *, int, const int);
16235 void vec_dststt (const long *, int, const int);
16236 void vec_dststt (const float *, int, const int);
16238 void vec_dstt (const vector unsigned char *, int, const int);
16239 void vec_dstt (const vector signed char *, int, const int);
16240 void vec_dstt (const vector bool char *, int, const int);
16241 void vec_dstt (const vector unsigned short *, int, const int);
16242 void vec_dstt (const vector signed short *, int, const int);
16243 void vec_dstt (const vector bool short *, int, const int);
16244 void vec_dstt (const vector pixel *, int, const int);
16245 void vec_dstt (const vector unsigned int *, int, const int);
16246 void vec_dstt (const vector signed int *, int, const int);
16247 void vec_dstt (const vector bool int *, int, const int);
16248 void vec_dstt (const vector float *, int, const int);
16249 void vec_dstt (const unsigned char *, int, const int);
16250 void vec_dstt (const signed char *, int, const int);
16251 void vec_dstt (const unsigned short *, int, const int);
16252 void vec_dstt (const short *, int, const int);
16253 void vec_dstt (const unsigned int *, int, const int);
16254 void vec_dstt (const int *, int, const int);
16255 void vec_dstt (const unsigned long *, int, const int);
16256 void vec_dstt (const long *, int, const int);
16257 void vec_dstt (const float *, int, const int);
16259 vector float vec_expte (vector float);
16261 vector float vec_floor (vector float);
16263 vector float vec_float (vector signed int);
16264 vector float vec_float (vector unsigned int);
16266 vector float vec_float2 (vector signed long long, vector signed long long);
16267 vector float vec_float2 (vector unsigned long long, vector signed long long);
16269 vector float vec_floate (vector double);
16270 vector float vec_floate (vector signed long long);
16271 vector float vec_floate (vector unsigned long long);
16273 vector float vec_floato (vector double);
16274 vector float vec_floato (vector signed long long);
16275 vector float vec_floato (vector unsigned long long);
16277 vector float vec_ld (int, const vector float *);
16278 vector float vec_ld (int, const float *);
16279 vector bool int vec_ld (int, const vector bool int *);
16280 vector signed int vec_ld (int, const vector signed int *);
16281 vector signed int vec_ld (int, const int *);
16282 vector signed int vec_ld (int, const long *);
16283 vector unsigned int vec_ld (int, const vector unsigned int *);
16284 vector unsigned int vec_ld (int, const unsigned int *);
16285 vector unsigned int vec_ld (int, const unsigned long *);
16286 vector bool short vec_ld (int, const vector bool short *);
16287 vector pixel vec_ld (int, const vector pixel *);
16288 vector signed short vec_ld (int, const vector signed short *);
16289 vector signed short vec_ld (int, const short *);
16290 vector unsigned short vec_ld (int, const vector unsigned short *);
16291 vector unsigned short vec_ld (int, const unsigned short *);
16292 vector bool char vec_ld (int, const vector bool char *);
16293 vector signed char vec_ld (int, const vector signed char *);
16294 vector signed char vec_ld (int, const signed char *);
16295 vector unsigned char vec_ld (int, const vector unsigned char *);
16296 vector unsigned char vec_ld (int, const unsigned char *);
16298 vector signed char vec_lde (int, const signed char *);
16299 vector unsigned char vec_lde (int, const unsigned char *);
16300 vector signed short vec_lde (int, const short *);
16301 vector unsigned short vec_lde (int, const unsigned short *);
16302 vector float vec_lde (int, const float *);
16303 vector signed int vec_lde (int, const int *);
16304 vector unsigned int vec_lde (int, const unsigned int *);
16305 vector signed int vec_lde (int, const long *);
16306 vector unsigned int vec_lde (int, const unsigned long *);
16308 vector float vec_lvewx (int, float *);
16309 vector signed int vec_lvewx (int, int *);
16310 vector unsigned int vec_lvewx (int, unsigned int *);
16311 vector signed int vec_lvewx (int, long *);
16312 vector unsigned int vec_lvewx (int, unsigned long *);
16314 vector signed short vec_lvehx (int, short *);
16315 vector unsigned short vec_lvehx (int, unsigned short *);
16317 vector signed char vec_lvebx (int, char *);
16318 vector unsigned char vec_lvebx (int, unsigned char *);
16320 vector float vec_ldl (int, const vector float *);
16321 vector float vec_ldl (int, const float *);
16322 vector bool int vec_ldl (int, const vector bool int *);
16323 vector signed int vec_ldl (int, const vector signed int *);
16324 vector signed int vec_ldl (int, const int *);
16325 vector signed int vec_ldl (int, const long *);
16326 vector unsigned int vec_ldl (int, const vector unsigned int *);
16327 vector unsigned int vec_ldl (int, const unsigned int *);
16328 vector unsigned int vec_ldl (int, const unsigned long *);
16329 vector bool short vec_ldl (int, const vector bool short *);
16330 vector pixel vec_ldl (int, const vector pixel *);
16331 vector signed short vec_ldl (int, const vector signed short *);
16332 vector signed short vec_ldl (int, const short *);
16333 vector unsigned short vec_ldl (int, const vector unsigned short *);
16334 vector unsigned short vec_ldl (int, const unsigned short *);
16335 vector bool char vec_ldl (int, const vector bool char *);
16336 vector signed char vec_ldl (int, const vector signed char *);
16337 vector signed char vec_ldl (int, const signed char *);
16338 vector unsigned char vec_ldl (int, const vector unsigned char *);
16339 vector unsigned char vec_ldl (int, const unsigned char *);
16341 vector float vec_loge (vector float);
16343 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
16344 vector unsigned char vec_lvsl (int, const volatile signed char *);
16345 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
16346 vector unsigned char vec_lvsl (int, const volatile short *);
16347 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
16348 vector unsigned char vec_lvsl (int, const volatile int *);
16349 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
16350 vector unsigned char vec_lvsl (int, const volatile long *);
16351 vector unsigned char vec_lvsl (int, const volatile float *);
16353 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
16354 vector unsigned char vec_lvsr (int, const volatile signed char *);
16355 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
16356 vector unsigned char vec_lvsr (int, const volatile short *);
16357 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
16358 vector unsigned char vec_lvsr (int, const volatile int *);
16359 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
16360 vector unsigned char vec_lvsr (int, const volatile long *);
16361 vector unsigned char vec_lvsr (int, const volatile float *);
16363 vector float vec_madd (vector float, vector float, vector float);
16365 vector signed short vec_madds (vector signed short,
16366 vector signed short,
16367 vector signed short);
16369 vector unsigned char vec_max (vector bool char, vector unsigned char);
16370 vector unsigned char vec_max (vector unsigned char, vector bool char);
16371 vector unsigned char vec_max (vector unsigned char,
16372 vector unsigned char);
16373 vector signed char vec_max (vector bool char, vector signed char);
16374 vector signed char vec_max (vector signed char, vector bool char);
16375 vector signed char vec_max (vector signed char, vector signed char);
16376 vector unsigned short vec_max (vector bool short,
16377 vector unsigned short);
16378 vector unsigned short vec_max (vector unsigned short,
16379 vector bool short);
16380 vector unsigned short vec_max (vector unsigned short,
16381 vector unsigned short);
16382 vector signed short vec_max (vector bool short, vector signed short);
16383 vector signed short vec_max (vector signed short, vector bool short);
16384 vector signed short vec_max (vector signed short, vector signed short);
16385 vector unsigned int vec_max (vector bool int, vector unsigned int);
16386 vector unsigned int vec_max (vector unsigned int, vector bool int);
16387 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
16388 vector signed int vec_max (vector bool int, vector signed int);
16389 vector signed int vec_max (vector signed int, vector bool int);
16390 vector signed int vec_max (vector signed int, vector signed int);
16391 vector float vec_max (vector float, vector float);
16393 vector float vec_vmaxfp (vector float, vector float);
16395 vector signed int vec_vmaxsw (vector bool int, vector signed int);
16396 vector signed int vec_vmaxsw (vector signed int, vector bool int);
16397 vector signed int vec_vmaxsw (vector signed int, vector signed int);
16399 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
16400 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
16401 vector unsigned int vec_vmaxuw (vector unsigned int,
16402 vector unsigned int);
16404 vector signed short vec_vmaxsh (vector bool short, vector signed short);
16405 vector signed short vec_vmaxsh (vector signed short, vector bool short);
16406 vector signed short vec_vmaxsh (vector signed short,
16407 vector signed short);
16409 vector unsigned short vec_vmaxuh (vector bool short,
16410 vector unsigned short);
16411 vector unsigned short vec_vmaxuh (vector unsigned short,
16412 vector bool short);
16413 vector unsigned short vec_vmaxuh (vector unsigned short,
16414 vector unsigned short);
16416 vector signed char vec_vmaxsb (vector bool char, vector signed char);
16417 vector signed char vec_vmaxsb (vector signed char, vector bool char);
16418 vector signed char vec_vmaxsb (vector signed char, vector signed char);
16420 vector unsigned char vec_vmaxub (vector bool char,
16421 vector unsigned char);
16422 vector unsigned char vec_vmaxub (vector unsigned char,
16424 vector unsigned char vec_vmaxub (vector unsigned char,
16425 vector unsigned char);
16427 vector bool char vec_mergeh (vector bool char, vector bool char);
16428 vector signed char vec_mergeh (vector signed char, vector signed char);
16429 vector unsigned char vec_mergeh (vector unsigned char,
16430 vector unsigned char);
16431 vector bool short vec_mergeh (vector bool short, vector bool short);
16432 vector pixel vec_mergeh (vector pixel, vector pixel);
16433 vector signed short vec_mergeh (vector signed short,
16434 vector signed short);
16435 vector unsigned short vec_mergeh (vector unsigned short,
16436 vector unsigned short);
16437 vector float vec_mergeh (vector float, vector float);
16438 vector bool int vec_mergeh (vector bool int, vector bool int);
16439 vector signed int vec_mergeh (vector signed int, vector signed int);
16440 vector unsigned int vec_mergeh (vector unsigned int,
16441 vector unsigned int);
16443 vector float vec_vmrghw (vector float, vector float);
16444 vector bool int vec_vmrghw (vector bool int, vector bool int);
16445 vector signed int vec_vmrghw (vector signed int, vector signed int);
16446 vector unsigned int vec_vmrghw (vector unsigned int,
16447 vector unsigned int);
16449 vector bool short vec_vmrghh (vector bool short, vector bool short);
16450 vector signed short vec_vmrghh (vector signed short,
16451 vector signed short);
16452 vector unsigned short vec_vmrghh (vector unsigned short,
16453 vector unsigned short);
16454 vector pixel vec_vmrghh (vector pixel, vector pixel);
16456 vector bool char vec_vmrghb (vector bool char, vector bool char);
16457 vector signed char vec_vmrghb (vector signed char, vector signed char);
16458 vector unsigned char vec_vmrghb (vector unsigned char,
16459 vector unsigned char);
16461 vector bool char vec_mergel (vector bool char, vector bool char);
16462 vector signed char vec_mergel (vector signed char, vector signed char);
16463 vector unsigned char vec_mergel (vector unsigned char,
16464 vector unsigned char);
16465 vector bool short vec_mergel (vector bool short, vector bool short);
16466 vector pixel vec_mergel (vector pixel, vector pixel);
16467 vector signed short vec_mergel (vector signed short,
16468 vector signed short);
16469 vector unsigned short vec_mergel (vector unsigned short,
16470 vector unsigned short);
16471 vector float vec_mergel (vector float, vector float);
16472 vector bool int vec_mergel (vector bool int, vector bool int);
16473 vector signed int vec_mergel (vector signed int, vector signed int);
16474 vector unsigned int vec_mergel (vector unsigned int,
16475 vector unsigned int);
16477 vector float vec_vmrglw (vector float, vector float);
16478 vector signed int vec_vmrglw (vector signed int, vector signed int);
16479 vector unsigned int vec_vmrglw (vector unsigned int,
16480 vector unsigned int);
16481 vector bool int vec_vmrglw (vector bool int, vector bool int);
16483 vector bool short vec_vmrglh (vector bool short, vector bool short);
16484 vector signed short vec_vmrglh (vector signed short,
16485 vector signed short);
16486 vector unsigned short vec_vmrglh (vector unsigned short,
16487 vector unsigned short);
16488 vector pixel vec_vmrglh (vector pixel, vector pixel);
16490 vector bool char vec_vmrglb (vector bool char, vector bool char);
16491 vector signed char vec_vmrglb (vector signed char, vector signed char);
16492 vector unsigned char vec_vmrglb (vector unsigned char,
16493 vector unsigned char);
16495 vector unsigned short vec_mfvscr (void);
16497 vector unsigned char vec_min (vector bool char, vector unsigned char);
16498 vector unsigned char vec_min (vector unsigned char, vector bool char);
16499 vector unsigned char vec_min (vector unsigned char,
16500 vector unsigned char);
16501 vector signed char vec_min (vector bool char, vector signed char);
16502 vector signed char vec_min (vector signed char, vector bool char);
16503 vector signed char vec_min (vector signed char, vector signed char);
16504 vector unsigned short vec_min (vector bool short,
16505 vector unsigned short);
16506 vector unsigned short vec_min (vector unsigned short,
16507 vector bool short);
16508 vector unsigned short vec_min (vector unsigned short,
16509 vector unsigned short);
16510 vector signed short vec_min (vector bool short, vector signed short);
16511 vector signed short vec_min (vector signed short, vector bool short);
16512 vector signed short vec_min (vector signed short, vector signed short);
16513 vector unsigned int vec_min (vector bool int, vector unsigned int);
16514 vector unsigned int vec_min (vector unsigned int, vector bool int);
16515 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
16516 vector signed int vec_min (vector bool int, vector signed int);
16517 vector signed int vec_min (vector signed int, vector bool int);
16518 vector signed int vec_min (vector signed int, vector signed int);
16519 vector float vec_min (vector float, vector float);
16521 vector float vec_vminfp (vector float, vector float);
16523 vector signed int vec_vminsw (vector bool int, vector signed int);
16524 vector signed int vec_vminsw (vector signed int, vector bool int);
16525 vector signed int vec_vminsw (vector signed int, vector signed int);
16527 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
16528 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
16529 vector unsigned int vec_vminuw (vector unsigned int,
16530 vector unsigned int);
16532 vector signed short vec_vminsh (vector bool short, vector signed short);
16533 vector signed short vec_vminsh (vector signed short, vector bool short);
16534 vector signed short vec_vminsh (vector signed short,
16535 vector signed short);
16537 vector unsigned short vec_vminuh (vector bool short,
16538 vector unsigned short);
16539 vector unsigned short vec_vminuh (vector unsigned short,
16540 vector bool short);
16541 vector unsigned short vec_vminuh (vector unsigned short,
16542 vector unsigned short);
16544 vector signed char vec_vminsb (vector bool char, vector signed char);
16545 vector signed char vec_vminsb (vector signed char, vector bool char);
16546 vector signed char vec_vminsb (vector signed char, vector signed char);
16548 vector unsigned char vec_vminub (vector bool char,
16549 vector unsigned char);
16550 vector unsigned char vec_vminub (vector unsigned char,
16552 vector unsigned char vec_vminub (vector unsigned char,
16553 vector unsigned char);
16555 vector signed short vec_mladd (vector signed short,
16556 vector signed short,
16557 vector signed short);
16558 vector signed short vec_mladd (vector signed short,
16559 vector unsigned short,
16560 vector unsigned short);
16561 vector signed short vec_mladd (vector unsigned short,
16562 vector signed short,
16563 vector signed short);
16564 vector unsigned short vec_mladd (vector unsigned short,
16565 vector unsigned short,
16566 vector unsigned short);
16568 vector signed short vec_mradds (vector signed short,
16569 vector signed short,
16570 vector signed short);
16572 vector unsigned int vec_msum (vector unsigned char,
16573 vector unsigned char,
16574 vector unsigned int);
16575 vector signed int vec_msum (vector signed char,
16576 vector unsigned char,
16577 vector signed int);
16578 vector unsigned int vec_msum (vector unsigned short,
16579 vector unsigned short,
16580 vector unsigned int);
16581 vector signed int vec_msum (vector signed short,
16582 vector signed short,
16583 vector signed int);
16585 vector signed int vec_vmsumshm (vector signed short,
16586 vector signed short,
16587 vector signed int);
16589 vector unsigned int vec_vmsumuhm (vector unsigned short,
16590 vector unsigned short,
16591 vector unsigned int);
16593 vector signed int vec_vmsummbm (vector signed char,
16594 vector unsigned char,
16595 vector signed int);
16597 vector unsigned int vec_vmsumubm (vector unsigned char,
16598 vector unsigned char,
16599 vector unsigned int);
16601 vector unsigned int vec_msums (vector unsigned short,
16602 vector unsigned short,
16603 vector unsigned int);
16604 vector signed int vec_msums (vector signed short,
16605 vector signed short,
16606 vector signed int);
16608 vector signed int vec_vmsumshs (vector signed short,
16609 vector signed short,
16610 vector signed int);
16612 vector unsigned int vec_vmsumuhs (vector unsigned short,
16613 vector unsigned short,
16614 vector unsigned int);
16616 void vec_mtvscr (vector signed int);
16617 void vec_mtvscr (vector unsigned int);
16618 void vec_mtvscr (vector bool int);
16619 void vec_mtvscr (vector signed short);
16620 void vec_mtvscr (vector unsigned short);
16621 void vec_mtvscr (vector bool short);
16622 void vec_mtvscr (vector pixel);
16623 void vec_mtvscr (vector signed char);
16624 void vec_mtvscr (vector unsigned char);
16625 void vec_mtvscr (vector bool char);
16627 vector unsigned short vec_mule (vector unsigned char,
16628 vector unsigned char);
16629 vector signed short vec_mule (vector signed char,
16630 vector signed char);
16631 vector unsigned int vec_mule (vector unsigned short,
16632 vector unsigned short);
16633 vector signed int vec_mule (vector signed short, vector signed short);
16634 vector unsigned long long vec_mule (vector unsigned int,
16635 vector unsigned int);
16636 vector signed long long vec_mule (vector signed int,
16637 vector signed int);
16639 vector signed int vec_vmulesh (vector signed short,
16640 vector signed short);
16642 vector unsigned int vec_vmuleuh (vector unsigned short,
16643 vector unsigned short);
16645 vector signed short vec_vmulesb (vector signed char,
16646 vector signed char);
16648 vector unsigned short vec_vmuleub (vector unsigned char,
16649 vector unsigned char);
16651 vector unsigned short vec_mulo (vector unsigned char,
16652 vector unsigned char);
16653 vector signed short vec_mulo (vector signed char, vector signed char);
16654 vector unsigned int vec_mulo (vector unsigned short,
16655 vector unsigned short);
16656 vector signed int vec_mulo (vector signed short, vector signed short);
16657 vector unsigned long long vec_mulo (vector unsigned int,
16658 vector unsigned int);
16659 vector signed long long vec_mulo (vector signed int,
16660 vector signed int);
16662 vector signed int vec_vmulosh (vector signed short,
16663 vector signed short);
16665 vector unsigned int vec_vmulouh (vector unsigned short,
16666 vector unsigned short);
16668 vector signed short vec_vmulosb (vector signed char,
16669 vector signed char);
16671 vector unsigned short vec_vmuloub (vector unsigned char,
16672 vector unsigned char);
16674 vector float vec_nmsub (vector float, vector float, vector float);
16676 vector signed char vec_nabs (vector signed char);
16677 vector signed short vec_nabs (vector signed short);
16678 vector signed int vec_nabs (vector signed int);
16679 vector float vec_nabs (vector float);
16680 vector double vec_nabs (vector double);
16682 vector signed char vec_neg (vector signed char);
16683 vector signed short vec_neg (vector signed short);
16684 vector signed int vec_neg (vector signed int);
16685 vector signed long long vec_neg (vector signed long long);
16686 vector float char vec_neg (vector float);
16687 vector double vec_neg (vector double);
16689 vector float vec_nor (vector float, vector float);
16690 vector signed int vec_nor (vector signed int, vector signed int);
16691 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
16692 vector bool int vec_nor (vector bool int, vector bool int);
16693 vector signed short vec_nor (vector signed short, vector signed short);
16694 vector unsigned short vec_nor (vector unsigned short,
16695 vector unsigned short);
16696 vector bool short vec_nor (vector bool short, vector bool short);
16697 vector signed char vec_nor (vector signed char, vector signed char);
16698 vector unsigned char vec_nor (vector unsigned char,
16699 vector unsigned char);
16700 vector bool char vec_nor (vector bool char, vector bool char);
16702 vector float vec_or (vector float, vector float);
16703 vector float vec_or (vector float, vector bool int);
16704 vector float vec_or (vector bool int, vector float);
16705 vector bool int vec_or (vector bool int, vector bool int);
16706 vector signed int vec_or (vector bool int, vector signed int);
16707 vector signed int vec_or (vector signed int, vector bool int);
16708 vector signed int vec_or (vector signed int, vector signed int);
16709 vector unsigned int vec_or (vector bool int, vector unsigned int);
16710 vector unsigned int vec_or (vector unsigned int, vector bool int);
16711 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
16712 vector bool short vec_or (vector bool short, vector bool short);
16713 vector signed short vec_or (vector bool short, vector signed short);
16714 vector signed short vec_or (vector signed short, vector bool short);
16715 vector signed short vec_or (vector signed short, vector signed short);
16716 vector unsigned short vec_or (vector bool short, vector unsigned short);
16717 vector unsigned short vec_or (vector unsigned short, vector bool short);
16718 vector unsigned short vec_or (vector unsigned short,
16719 vector unsigned short);
16720 vector signed char vec_or (vector bool char, vector signed char);
16721 vector bool char vec_or (vector bool char, vector bool char);
16722 vector signed char vec_or (vector signed char, vector bool char);
16723 vector signed char vec_or (vector signed char, vector signed char);
16724 vector unsigned char vec_or (vector bool char, vector unsigned char);
16725 vector unsigned char vec_or (vector unsigned char, vector bool char);
16726 vector unsigned char vec_or (vector unsigned char,
16727 vector unsigned char);
16729 vector signed char vec_pack (vector signed short, vector signed short);
16730 vector unsigned char vec_pack (vector unsigned short,
16731 vector unsigned short);
16732 vector bool char vec_pack (vector bool short, vector bool short);
16733 vector signed short vec_pack (vector signed int, vector signed int);
16734 vector unsigned short vec_pack (vector unsigned int,
16735 vector unsigned int);
16736 vector bool short vec_pack (vector bool int, vector bool int);
16738 vector bool short vec_vpkuwum (vector bool int, vector bool int);
16739 vector signed short vec_vpkuwum (vector signed int, vector signed int);
16740 vector unsigned short vec_vpkuwum (vector unsigned int,
16741 vector unsigned int);
16743 vector bool char vec_vpkuhum (vector bool short, vector bool short);
16744 vector signed char vec_vpkuhum (vector signed short,
16745 vector signed short);
16746 vector unsigned char vec_vpkuhum (vector unsigned short,
16747 vector unsigned short);
16749 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
16751 vector unsigned char vec_packs (vector unsigned short,
16752 vector unsigned short);
16753 vector signed char vec_packs (vector signed short, vector signed short);
16754 vector unsigned short vec_packs (vector unsigned int,
16755 vector unsigned int);
16756 vector signed short vec_packs (vector signed int, vector signed int);
16758 vector signed short vec_vpkswss (vector signed int, vector signed int);
16760 vector unsigned short vec_vpkuwus (vector unsigned int,
16761 vector unsigned int);
16763 vector signed char vec_vpkshss (vector signed short,
16764 vector signed short);
16766 vector unsigned char vec_vpkuhus (vector unsigned short,
16767 vector unsigned short);
16769 vector unsigned char vec_packsu (vector unsigned short,
16770 vector unsigned short);
16771 vector unsigned char vec_packsu (vector signed short,
16772 vector signed short);
16773 vector unsigned short vec_packsu (vector unsigned int,
16774 vector unsigned int);
16775 vector unsigned short vec_packsu (vector signed int, vector signed int);
16777 vector unsigned short vec_vpkswus (vector signed int,
16778 vector signed int);
16780 vector unsigned char vec_vpkshus (vector signed short,
16781 vector signed short);
16783 vector float vec_perm (vector float,
16785 vector unsigned char);
16786 vector signed int vec_perm (vector signed int,
16788 vector unsigned char);
16789 vector unsigned int vec_perm (vector unsigned int,
16790 vector unsigned int,
16791 vector unsigned char);
16792 vector bool int vec_perm (vector bool int,
16794 vector unsigned char);
16795 vector signed short vec_perm (vector signed short,
16796 vector signed short,
16797 vector unsigned char);
16798 vector unsigned short vec_perm (vector unsigned short,
16799 vector unsigned short,
16800 vector unsigned char);
16801 vector bool short vec_perm (vector bool short,
16803 vector unsigned char);
16804 vector pixel vec_perm (vector pixel,
16806 vector unsigned char);
16807 vector signed char vec_perm (vector signed char,
16808 vector signed char,
16809 vector unsigned char);
16810 vector unsigned char vec_perm (vector unsigned char,
16811 vector unsigned char,
16812 vector unsigned char);
16813 vector bool char vec_perm (vector bool char,
16815 vector unsigned char);
16817 vector float vec_re (vector float);
16819 vector bool char vec_reve (vector bool char);
16820 vector signed char vec_reve (vector signed char);
16821 vector unsigned char vec_reve (vector unsigned char);
16822 vector bool int vec_reve (vector bool int);
16823 vector signed int vec_reve (vector signed int);
16824 vector unsigned int vec_reve (vector unsigned int);
16825 vector bool long long vec_reve (vector bool long long);
16826 vector signed long long vec_reve (vector signed long long);
16827 vector unsigned long long vec_reve (vector unsigned long long);
16828 vector bool short vec_reve (vector bool short);
16829 vector signed short vec_reve (vector signed short);
16830 vector unsigned short vec_reve (vector unsigned short);
16832 vector signed char vec_rl (vector signed char,
16833 vector unsigned char);
16834 vector unsigned char vec_rl (vector unsigned char,
16835 vector unsigned char);
16836 vector signed short vec_rl (vector signed short, vector unsigned short);
16837 vector unsigned short vec_rl (vector unsigned short,
16838 vector unsigned short);
16839 vector signed int vec_rl (vector signed int, vector unsigned int);
16840 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
16842 vector signed int vec_vrlw (vector signed int, vector unsigned int);
16843 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
16845 vector signed short vec_vrlh (vector signed short,
16846 vector unsigned short);
16847 vector unsigned short vec_vrlh (vector unsigned short,
16848 vector unsigned short);
16850 vector signed char vec_vrlb (vector signed char, vector unsigned char);
16851 vector unsigned char vec_vrlb (vector unsigned char,
16852 vector unsigned char);
16854 vector float vec_round (vector float);
16856 vector float vec_recip (vector float, vector float);
16858 vector float vec_rsqrt (vector float);
16860 vector float vec_rsqrte (vector float);
16862 vector float vec_sel (vector float, vector float, vector bool int);
16863 vector float vec_sel (vector float, vector float, vector unsigned int);
16864 vector signed int vec_sel (vector signed int,
16867 vector signed int vec_sel (vector signed int,
16869 vector unsigned int);
16870 vector unsigned int vec_sel (vector unsigned int,
16871 vector unsigned int,
16873 vector unsigned int vec_sel (vector unsigned int,
16874 vector unsigned int,
16875 vector unsigned int);
16876 vector bool int vec_sel (vector bool int,
16879 vector bool int vec_sel (vector bool int,
16881 vector unsigned int);
16882 vector signed short vec_sel (vector signed short,
16883 vector signed short,
16884 vector bool short);
16885 vector signed short vec_sel (vector signed short,
16886 vector signed short,
16887 vector unsigned short);
16888 vector unsigned short vec_sel (vector unsigned short,
16889 vector unsigned short,
16890 vector bool short);
16891 vector unsigned short vec_sel (vector unsigned short,
16892 vector unsigned short,
16893 vector unsigned short);
16894 vector bool short vec_sel (vector bool short,
16896 vector bool short);
16897 vector bool short vec_sel (vector bool short,
16899 vector unsigned short);
16900 vector signed char vec_sel (vector signed char,
16901 vector signed char,
16903 vector signed char vec_sel (vector signed char,
16904 vector signed char,
16905 vector unsigned char);
16906 vector unsigned char vec_sel (vector unsigned char,
16907 vector unsigned char,
16909 vector unsigned char vec_sel (vector unsigned char,
16910 vector unsigned char,
16911 vector unsigned char);
16912 vector bool char vec_sel (vector bool char,
16915 vector bool char vec_sel (vector bool char,
16917 vector unsigned char);
16919 vector signed long long vec_signed (vector double);
16920 vector signed int vec_signed (vector float);
16922 vector signed int vec_signede (vector double);
16923 vector signed int vec_signedo (vector double);
16924 vector signed int vec_signed2 (vector double, vector double);
16926 vector signed char vec_sl (vector signed char,
16927 vector unsigned char);
16928 vector unsigned char vec_sl (vector unsigned char,
16929 vector unsigned char);
16930 vector signed short vec_sl (vector signed short, vector unsigned short);
16931 vector unsigned short vec_sl (vector unsigned short,
16932 vector unsigned short);
16933 vector signed int vec_sl (vector signed int, vector unsigned int);
16934 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
16936 vector signed int vec_vslw (vector signed int, vector unsigned int);
16937 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
16939 vector signed short vec_vslh (vector signed short,
16940 vector unsigned short);
16941 vector unsigned short vec_vslh (vector unsigned short,
16942 vector unsigned short);
16944 vector signed char vec_vslb (vector signed char, vector unsigned char);
16945 vector unsigned char vec_vslb (vector unsigned char,
16946 vector unsigned char);
16948 vector float vec_sld (vector float, vector float, const int);
16949 vector double vec_sld (vector double, vector double, const int);
16951 vector signed int vec_sld (vector signed int,
16954 vector unsigned int vec_sld (vector unsigned int,
16955 vector unsigned int,
16957 vector bool int vec_sld (vector bool int,
16960 vector signed short vec_sld (vector signed short,
16961 vector signed short,
16963 vector unsigned short vec_sld (vector unsigned short,
16964 vector unsigned short,
16966 vector bool short vec_sld (vector bool short,
16969 vector pixel vec_sld (vector pixel,
16972 vector signed char vec_sld (vector signed char,
16973 vector signed char,
16975 vector unsigned char vec_sld (vector unsigned char,
16976 vector unsigned char,
16978 vector bool char vec_sld (vector bool char,
16982 vector signed char vec_sldw (vector signed char,
16983 vector signed char,
16985 vector unsigned char vec_sldw (vector unsigned char,
16986 vector unsigned char,
16988 vector signed short vec_sldw (vector signed short,
16989 vector signed short,
16991 vector unsigned short vec_sldw (vector unsigned short,
16992 vector unsigned short,
16994 vector signed int vec_sldw (vector signed int,
16997 vector unsigned int vec_sldw (vector unsigned int,
16998 vector unsigned int,
17000 vector signed long long vec_sldw (vector signed long long,
17001 vector signed long long,
17003 vector unsigned long long vec_sldw (vector unsigned long long,
17004 vector unsigned long long,
17007 vector signed int vec_sll (vector signed int,
17008 vector unsigned int);
17009 vector signed int vec_sll (vector signed int,
17010 vector unsigned short);
17011 vector signed int vec_sll (vector signed int,
17012 vector unsigned char);
17013 vector unsigned int vec_sll (vector unsigned int,
17014 vector unsigned int);
17015 vector unsigned int vec_sll (vector unsigned int,
17016 vector unsigned short);
17017 vector unsigned int vec_sll (vector unsigned int,
17018 vector unsigned char);
17019 vector bool int vec_sll (vector bool int,
17020 vector unsigned int);
17021 vector bool int vec_sll (vector bool int,
17022 vector unsigned short);
17023 vector bool int vec_sll (vector bool int,
17024 vector unsigned char);
17025 vector signed short vec_sll (vector signed short,
17026 vector unsigned int);
17027 vector signed short vec_sll (vector signed short,
17028 vector unsigned short);
17029 vector signed short vec_sll (vector signed short,
17030 vector unsigned char);
17031 vector unsigned short vec_sll (vector unsigned short,
17032 vector unsigned int);
17033 vector unsigned short vec_sll (vector unsigned short,
17034 vector unsigned short);
17035 vector unsigned short vec_sll (vector unsigned short,
17036 vector unsigned char);
17037 vector bool short vec_sll (vector bool short, vector unsigned int);
17038 vector bool short vec_sll (vector bool short, vector unsigned short);
17039 vector bool short vec_sll (vector bool short, vector unsigned char);
17040 vector pixel vec_sll (vector pixel, vector unsigned int);
17041 vector pixel vec_sll (vector pixel, vector unsigned short);
17042 vector pixel vec_sll (vector pixel, vector unsigned char);
17043 vector signed char vec_sll (vector signed char, vector unsigned int);
17044 vector signed char vec_sll (vector signed char, vector unsigned short);
17045 vector signed char vec_sll (vector signed char, vector unsigned char);
17046 vector unsigned char vec_sll (vector unsigned char,
17047 vector unsigned int);
17048 vector unsigned char vec_sll (vector unsigned char,
17049 vector unsigned short);
17050 vector unsigned char vec_sll (vector unsigned char,
17051 vector unsigned char);
17052 vector bool char vec_sll (vector bool char, vector unsigned int);
17053 vector bool char vec_sll (vector bool char, vector unsigned short);
17054 vector bool char vec_sll (vector bool char, vector unsigned char);
17056 vector float vec_slo (vector float, vector signed char);
17057 vector float vec_slo (vector float, vector unsigned char);
17058 vector signed int vec_slo (vector signed int, vector signed char);
17059 vector signed int vec_slo (vector signed int, vector unsigned char);
17060 vector unsigned int vec_slo (vector unsigned int, vector signed char);
17061 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
17062 vector signed short vec_slo (vector signed short, vector signed char);
17063 vector signed short vec_slo (vector signed short, vector unsigned char);
17064 vector unsigned short vec_slo (vector unsigned short,
17065 vector signed char);
17066 vector unsigned short vec_slo (vector unsigned short,
17067 vector unsigned char);
17068 vector pixel vec_slo (vector pixel, vector signed char);
17069 vector pixel vec_slo (vector pixel, vector unsigned char);
17070 vector signed char vec_slo (vector signed char, vector signed char);
17071 vector signed char vec_slo (vector signed char, vector unsigned char);
17072 vector unsigned char vec_slo (vector unsigned char, vector signed char);
17073 vector unsigned char vec_slo (vector unsigned char,
17074 vector unsigned char);
17075 vector signed long long vec_slo (vector signed long long, vector signed char);
17076 vector signed long long vec_slo (vector signed long long, vector unsigned char);
17077 vector unsigned long long vec_slo (vector unsigned long long, vector signed char);
17078 vector unsigned long long vec_slo (vector unsigned long long, vector unsigned char);
17080 vector signed char vec_splat (vector signed char, const int);
17081 vector unsigned char vec_splat (vector unsigned char, const int);
17082 vector bool char vec_splat (vector bool char, const int);
17083 vector signed short vec_splat (vector signed short, const int);
17084 vector unsigned short vec_splat (vector unsigned short, const int);
17085 vector bool short vec_splat (vector bool short, const int);
17086 vector pixel vec_splat (vector pixel, const int);
17087 vector float vec_splat (vector float, const int);
17088 vector signed int vec_splat (vector signed int, const int);
17089 vector unsigned int vec_splat (vector unsigned int, const int);
17090 vector bool int vec_splat (vector bool int, const int);
17091 vector signed long vec_splat (vector signed long, const int);
17092 vector unsigned long vec_splat (vector unsigned long, const int);
17094 vector signed char vec_splats (signed char);
17095 vector unsigned char vec_splats (unsigned char);
17096 vector signed short vec_splats (signed short);
17097 vector unsigned short vec_splats (unsigned short);
17098 vector signed int vec_splats (signed int);
17099 vector unsigned int vec_splats (unsigned int);
17100 vector float vec_splats (float);
17102 vector float vec_vspltw (vector float, const int);
17103 vector signed int vec_vspltw (vector signed int, const int);
17104 vector unsigned int vec_vspltw (vector unsigned int, const int);
17105 vector bool int vec_vspltw (vector bool int, const int);
17107 vector bool short vec_vsplth (vector bool short, const int);
17108 vector signed short vec_vsplth (vector signed short, const int);
17109 vector unsigned short vec_vsplth (vector unsigned short, const int);
17110 vector pixel vec_vsplth (vector pixel, const int);
17112 vector signed char vec_vspltb (vector signed char, const int);
17113 vector unsigned char vec_vspltb (vector unsigned char, const int);
17114 vector bool char vec_vspltb (vector bool char, const int);
17116 vector signed char vec_splat_s8 (const int);
17118 vector signed short vec_splat_s16 (const int);
17120 vector signed int vec_splat_s32 (const int);
17122 vector unsigned char vec_splat_u8 (const int);
17124 vector unsigned short vec_splat_u16 (const int);
17126 vector unsigned int vec_splat_u32 (const int);
17128 vector signed char vec_sr (vector signed char, vector unsigned char);
17129 vector unsigned char vec_sr (vector unsigned char,
17130 vector unsigned char);
17131 vector signed short vec_sr (vector signed short,
17132 vector unsigned short);
17133 vector unsigned short vec_sr (vector unsigned short,
17134 vector unsigned short);
17135 vector signed int vec_sr (vector signed int, vector unsigned int);
17136 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
17138 vector signed int vec_vsrw (vector signed int, vector unsigned int);
17139 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
17141 vector signed short vec_vsrh (vector signed short,
17142 vector unsigned short);
17143 vector unsigned short vec_vsrh (vector unsigned short,
17144 vector unsigned short);
17146 vector signed char vec_vsrb (vector signed char, vector unsigned char);
17147 vector unsigned char vec_vsrb (vector unsigned char,
17148 vector unsigned char);
17150 vector signed char vec_sra (vector signed char, vector unsigned char);
17151 vector unsigned char vec_sra (vector unsigned char,
17152 vector unsigned char);
17153 vector signed short vec_sra (vector signed short,
17154 vector unsigned short);
17155 vector unsigned short vec_sra (vector unsigned short,
17156 vector unsigned short);
17157 vector signed int vec_sra (vector signed int, vector unsigned int);
17158 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
17160 vector signed int vec_vsraw (vector signed int, vector unsigned int);
17161 vector unsigned int vec_vsraw (vector unsigned int,
17162 vector unsigned int);
17164 vector signed short vec_vsrah (vector signed short,
17165 vector unsigned short);
17166 vector unsigned short vec_vsrah (vector unsigned short,
17167 vector unsigned short);
17169 vector signed char vec_vsrab (vector signed char, vector unsigned char);
17170 vector unsigned char vec_vsrab (vector unsigned char,
17171 vector unsigned char);
17173 vector signed int vec_srl (vector signed int, vector unsigned int);
17174 vector signed int vec_srl (vector signed int, vector unsigned short);
17175 vector signed int vec_srl (vector signed int, vector unsigned char);
17176 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
17177 vector unsigned int vec_srl (vector unsigned int,
17178 vector unsigned short);
17179 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
17180 vector bool int vec_srl (vector bool int, vector unsigned int);
17181 vector bool int vec_srl (vector bool int, vector unsigned short);
17182 vector bool int vec_srl (vector bool int, vector unsigned char);
17183 vector signed short vec_srl (vector signed short, vector unsigned int);
17184 vector signed short vec_srl (vector signed short,
17185 vector unsigned short);
17186 vector signed short vec_srl (vector signed short, vector unsigned char);
17187 vector unsigned short vec_srl (vector unsigned short,
17188 vector unsigned int);
17189 vector unsigned short vec_srl (vector unsigned short,
17190 vector unsigned short);
17191 vector unsigned short vec_srl (vector unsigned short,
17192 vector unsigned char);
17193 vector bool short vec_srl (vector bool short, vector unsigned int);
17194 vector bool short vec_srl (vector bool short, vector unsigned short);
17195 vector bool short vec_srl (vector bool short, vector unsigned char);
17196 vector pixel vec_srl (vector pixel, vector unsigned int);
17197 vector pixel vec_srl (vector pixel, vector unsigned short);
17198 vector pixel vec_srl (vector pixel, vector unsigned char);
17199 vector signed char vec_srl (vector signed char, vector unsigned int);
17200 vector signed char vec_srl (vector signed char, vector unsigned short);
17201 vector signed char vec_srl (vector signed char, vector unsigned char);
17202 vector unsigned char vec_srl (vector unsigned char,
17203 vector unsigned int);
17204 vector unsigned char vec_srl (vector unsigned char,
17205 vector unsigned short);
17206 vector unsigned char vec_srl (vector unsigned char,
17207 vector unsigned char);
17208 vector bool char vec_srl (vector bool char, vector unsigned int);
17209 vector bool char vec_srl (vector bool char, vector unsigned short);
17210 vector bool char vec_srl (vector bool char, vector unsigned char);
17212 vector float vec_sro (vector float, vector signed char);
17213 vector float vec_sro (vector float, vector unsigned char);
17214 vector signed int vec_sro (vector signed int, vector signed char);
17215 vector signed int vec_sro (vector signed int, vector unsigned char);
17216 vector unsigned int vec_sro (vector unsigned int, vector signed char);
17217 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
17218 vector signed short vec_sro (vector signed short, vector signed char);
17219 vector signed short vec_sro (vector signed short, vector unsigned char);
17220 vector unsigned short vec_sro (vector unsigned short,
17221 vector signed char);
17222 vector unsigned short vec_sro (vector unsigned short,
17223 vector unsigned char);
17224 vector pixel vec_sro (vector pixel, vector signed char);
17225 vector pixel vec_sro (vector pixel, vector unsigned char);
17226 vector signed char vec_sro (vector signed char, vector signed char);
17227 vector signed char vec_sro (vector signed char, vector unsigned char);
17228 vector unsigned char vec_sro (vector unsigned char, vector signed char);
17229 vector unsigned char vec_sro (vector unsigned char,
17230 vector unsigned char);
17232 void vec_st (vector float, int, vector float *);
17233 void vec_st (vector float, int, float *);
17234 void vec_st (vector signed int, int, vector signed int *);
17235 void vec_st (vector signed int, int, int *);
17236 void vec_st (vector unsigned int, int, vector unsigned int *);
17237 void vec_st (vector unsigned int, int, unsigned int *);
17238 void vec_st (vector bool int, int, vector bool int *);
17239 void vec_st (vector bool int, int, unsigned int *);
17240 void vec_st (vector bool int, int, int *);
17241 void vec_st (vector signed short, int, vector signed short *);
17242 void vec_st (vector signed short, int, short *);
17243 void vec_st (vector unsigned short, int, vector unsigned short *);
17244 void vec_st (vector unsigned short, int, unsigned short *);
17245 void vec_st (vector bool short, int, vector bool short *);
17246 void vec_st (vector bool short, int, unsigned short *);
17247 void vec_st (vector pixel, int, vector pixel *);
17248 void vec_st (vector pixel, int, unsigned short *);
17249 void vec_st (vector pixel, int, short *);
17250 void vec_st (vector bool short, int, short *);
17251 void vec_st (vector signed char, int, vector signed char *);
17252 void vec_st (vector signed char, int, signed char *);
17253 void vec_st (vector unsigned char, int, vector unsigned char *);
17254 void vec_st (vector unsigned char, int, unsigned char *);
17255 void vec_st (vector bool char, int, vector bool char *);
17256 void vec_st (vector bool char, int, unsigned char *);
17257 void vec_st (vector bool char, int, signed char *);
17259 void vec_ste (vector signed char, int, signed char *);
17260 void vec_ste (vector unsigned char, int, unsigned char *);
17261 void vec_ste (vector bool char, int, signed char *);
17262 void vec_ste (vector bool char, int, unsigned char *);
17263 void vec_ste (vector signed short, int, short *);
17264 void vec_ste (vector unsigned short, int, unsigned short *);
17265 void vec_ste (vector bool short, int, short *);
17266 void vec_ste (vector bool short, int, unsigned short *);
17267 void vec_ste (vector pixel, int, short *);
17268 void vec_ste (vector pixel, int, unsigned short *);
17269 void vec_ste (vector float, int, float *);
17270 void vec_ste (vector signed int, int, int *);
17271 void vec_ste (vector unsigned int, int, unsigned int *);
17272 void vec_ste (vector bool int, int, int *);
17273 void vec_ste (vector bool int, int, unsigned int *);
17275 void vec_stvewx (vector float, int, float *);
17276 void vec_stvewx (vector signed int, int, int *);
17277 void vec_stvewx (vector unsigned int, int, unsigned int *);
17278 void vec_stvewx (vector bool int, int, int *);
17279 void vec_stvewx (vector bool int, int, unsigned int *);
17281 void vec_stvehx (vector signed short, int, short *);
17282 void vec_stvehx (vector unsigned short, int, unsigned short *);
17283 void vec_stvehx (vector bool short, int, short *);
17284 void vec_stvehx (vector bool short, int, unsigned short *);
17285 void vec_stvehx (vector pixel, int, short *);
17286 void vec_stvehx (vector pixel, int, unsigned short *);
17288 void vec_stvebx (vector signed char, int, signed char *);
17289 void vec_stvebx (vector unsigned char, int, unsigned char *);
17290 void vec_stvebx (vector bool char, int, signed char *);
17291 void vec_stvebx (vector bool char, int, unsigned char *);
17293 void vec_stl (vector float, int, vector float *);
17294 void vec_stl (vector float, int, float *);
17295 void vec_stl (vector signed int, int, vector signed int *);
17296 void vec_stl (vector signed int, int, int *);
17297 void vec_stl (vector unsigned int, int, vector unsigned int *);
17298 void vec_stl (vector unsigned int, int, unsigned int *);
17299 void vec_stl (vector bool int, int, vector bool int *);
17300 void vec_stl (vector bool int, int, unsigned int *);
17301 void vec_stl (vector bool int, int, int *);
17302 void vec_stl (vector signed short, int, vector signed short *);
17303 void vec_stl (vector signed short, int, short *);
17304 void vec_stl (vector unsigned short, int, vector unsigned short *);
17305 void vec_stl (vector unsigned short, int, unsigned short *);
17306 void vec_stl (vector bool short, int, vector bool short *);
17307 void vec_stl (vector bool short, int, unsigned short *);
17308 void vec_stl (vector bool short, int, short *);
17309 void vec_stl (vector pixel, int, vector pixel *);
17310 void vec_stl (vector pixel, int, unsigned short *);
17311 void vec_stl (vector pixel, int, short *);
17312 void vec_stl (vector signed char, int, vector signed char *);
17313 void vec_stl (vector signed char, int, signed char *);
17314 void vec_stl (vector unsigned char, int, vector unsigned char *);
17315 void vec_stl (vector unsigned char, int, unsigned char *);
17316 void vec_stl (vector bool char, int, vector bool char *);
17317 void vec_stl (vector bool char, int, unsigned char *);
17318 void vec_stl (vector bool char, int, signed char *);
17320 vector signed char vec_sub (vector bool char, vector signed char);
17321 vector signed char vec_sub (vector signed char, vector bool char);
17322 vector signed char vec_sub (vector signed char, vector signed char);
17323 vector unsigned char vec_sub (vector bool char, vector unsigned char);
17324 vector unsigned char vec_sub (vector unsigned char, vector bool char);
17325 vector unsigned char vec_sub (vector unsigned char,
17326 vector unsigned char);
17327 vector signed short vec_sub (vector bool short, vector signed short);
17328 vector signed short vec_sub (vector signed short, vector bool short);
17329 vector signed short vec_sub (vector signed short, vector signed short);
17330 vector unsigned short vec_sub (vector bool short,
17331 vector unsigned short);
17332 vector unsigned short vec_sub (vector unsigned short,
17333 vector bool short);
17334 vector unsigned short vec_sub (vector unsigned short,
17335 vector unsigned short);
17336 vector signed int vec_sub (vector bool int, vector signed int);
17337 vector signed int vec_sub (vector signed int, vector bool int);
17338 vector signed int vec_sub (vector signed int, vector signed int);
17339 vector unsigned int vec_sub (vector bool int, vector unsigned int);
17340 vector unsigned int vec_sub (vector unsigned int, vector bool int);
17341 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
17342 vector float vec_sub (vector float, vector float);
17344 vector float vec_vsubfp (vector float, vector float);
17346 vector signed int vec_vsubuwm (vector bool int, vector signed int);
17347 vector signed int vec_vsubuwm (vector signed int, vector bool int);
17348 vector signed int vec_vsubuwm (vector signed int, vector signed int);
17349 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
17350 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
17351 vector unsigned int vec_vsubuwm (vector unsigned int,
17352 vector unsigned int);
17354 vector signed short vec_vsubuhm (vector bool short,
17355 vector signed short);
17356 vector signed short vec_vsubuhm (vector signed short,
17357 vector bool short);
17358 vector signed short vec_vsubuhm (vector signed short,
17359 vector signed short);
17360 vector unsigned short vec_vsubuhm (vector bool short,
17361 vector unsigned short);
17362 vector unsigned short vec_vsubuhm (vector unsigned short,
17363 vector bool short);
17364 vector unsigned short vec_vsubuhm (vector unsigned short,
17365 vector unsigned short);
17367 vector signed char vec_vsububm (vector bool char, vector signed char);
17368 vector signed char vec_vsububm (vector signed char, vector bool char);
17369 vector signed char vec_vsububm (vector signed char, vector signed char);
17370 vector unsigned char vec_vsububm (vector bool char,
17371 vector unsigned char);
17372 vector unsigned char vec_vsububm (vector unsigned char,
17374 vector unsigned char vec_vsububm (vector unsigned char,
17375 vector unsigned char);
17377 vector signed int vec_subc (vector signed int, vector signed int);
17378 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
17379 vector signed __int128 vec_subc (vector signed __int128,
17380 vector signed __int128);
17381 vector unsigned __int128 vec_subc (vector unsigned __int128,
17382 vector unsigned __int128);
17384 vector signed int vec_sube (vector signed int, vector signed int,
17385 vector signed int);
17386 vector unsigned int vec_sube (vector unsigned int, vector unsigned int,
17387 vector unsigned int);
17388 vector signed __int128 vec_sube (vector signed __int128,
17389 vector signed __int128,
17390 vector signed __int128);
17391 vector unsigned __int128 vec_sube (vector unsigned __int128,
17392 vector unsigned __int128,
17393 vector unsigned __int128);
17395 vector signed int vec_subec (vector signed int, vector signed int,
17396 vector signed int);
17397 vector unsigned int vec_subec (vector unsigned int, vector unsigned int,
17398 vector unsigned int);
17399 vector signed __int128 vec_subec (vector signed __int128,
17400 vector signed __int128,
17401 vector signed __int128);
17402 vector unsigned __int128 vec_subec (vector unsigned __int128,
17403 vector unsigned __int128,
17404 vector unsigned __int128);
17406 vector unsigned char vec_subs (vector bool char, vector unsigned char);
17407 vector unsigned char vec_subs (vector unsigned char, vector bool char);
17408 vector unsigned char vec_subs (vector unsigned char,
17409 vector unsigned char);
17410 vector signed char vec_subs (vector bool char, vector signed char);
17411 vector signed char vec_subs (vector signed char, vector bool char);
17412 vector signed char vec_subs (vector signed char, vector signed char);
17413 vector unsigned short vec_subs (vector bool short,
17414 vector unsigned short);
17415 vector unsigned short vec_subs (vector unsigned short,
17416 vector bool short);
17417 vector unsigned short vec_subs (vector unsigned short,
17418 vector unsigned short);
17419 vector signed short vec_subs (vector bool short, vector signed short);
17420 vector signed short vec_subs (vector signed short, vector bool short);
17421 vector signed short vec_subs (vector signed short, vector signed short);
17422 vector unsigned int vec_subs (vector bool int, vector unsigned int);
17423 vector unsigned int vec_subs (vector unsigned int, vector bool int);
17424 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
17425 vector signed int vec_subs (vector bool int, vector signed int);
17426 vector signed int vec_subs (vector signed int, vector bool int);
17427 vector signed int vec_subs (vector signed int, vector signed int);
17429 vector signed int vec_vsubsws (vector bool int, vector signed int);
17430 vector signed int vec_vsubsws (vector signed int, vector bool int);
17431 vector signed int vec_vsubsws (vector signed int, vector signed int);
17433 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
17434 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
17435 vector unsigned int vec_vsubuws (vector unsigned int,
17436 vector unsigned int);
17438 vector signed short vec_vsubshs (vector bool short,
17439 vector signed short);
17440 vector signed short vec_vsubshs (vector signed short,
17441 vector bool short);
17442 vector signed short vec_vsubshs (vector signed short,
17443 vector signed short);
17445 vector unsigned short vec_vsubuhs (vector bool short,
17446 vector unsigned short);
17447 vector unsigned short vec_vsubuhs (vector unsigned short,
17448 vector bool short);
17449 vector unsigned short vec_vsubuhs (vector unsigned short,
17450 vector unsigned short);
17452 vector signed char vec_vsubsbs (vector bool char, vector signed char);
17453 vector signed char vec_vsubsbs (vector signed char, vector bool char);
17454 vector signed char vec_vsubsbs (vector signed char, vector signed char);
17456 vector unsigned char vec_vsububs (vector bool char,
17457 vector unsigned char);
17458 vector unsigned char vec_vsububs (vector unsigned char,
17460 vector unsigned char vec_vsububs (vector unsigned char,
17461 vector unsigned char);
17463 vector unsigned int vec_sum4s (vector unsigned char,
17464 vector unsigned int);
17465 vector signed int vec_sum4s (vector signed char, vector signed int);
17466 vector signed int vec_sum4s (vector signed short, vector signed int);
17468 vector signed int vec_vsum4shs (vector signed short, vector signed int);
17470 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
17472 vector unsigned int vec_vsum4ubs (vector unsigned char,
17473 vector unsigned int);
17475 vector signed int vec_sum2s (vector signed int, vector signed int);
17477 vector signed int vec_sums (vector signed int, vector signed int);
17479 vector float vec_trunc (vector float);
17481 vector signed long long vec_unsigned (vector double);
17482 vector signed int vec_unsigned (vector float);
17484 vector signed int vec_unsignede (vector double);
17485 vector signed int vec_unsignedo (vector double);
17486 vector signed int vec_unsigned2 (vector double, vector double);
17488 vector signed short vec_unpackh (vector signed char);
17489 vector bool short vec_unpackh (vector bool char);
17490 vector signed int vec_unpackh (vector signed short);
17491 vector bool int vec_unpackh (vector bool short);
17492 vector unsigned int vec_unpackh (vector pixel);
17494 vector bool int vec_vupkhsh (vector bool short);
17495 vector signed int vec_vupkhsh (vector signed short);
17497 vector unsigned int vec_vupkhpx (vector pixel);
17499 vector bool short vec_vupkhsb (vector bool char);
17500 vector signed short vec_vupkhsb (vector signed char);
17502 vector signed short vec_unpackl (vector signed char);
17503 vector bool short vec_unpackl (vector bool char);
17504 vector unsigned int vec_unpackl (vector pixel);
17505 vector signed int vec_unpackl (vector signed short);
17506 vector bool int vec_unpackl (vector bool short);
17508 vector unsigned int vec_vupklpx (vector pixel);
17510 vector bool int vec_vupklsh (vector bool short);
17511 vector signed int vec_vupklsh (vector signed short);
17513 vector bool short vec_vupklsb (vector bool char);
17514 vector signed short vec_vupklsb (vector signed char);
17516 vector float vec_xor (vector float, vector float);
17517 vector float vec_xor (vector float, vector bool int);
17518 vector float vec_xor (vector bool int, vector float);
17519 vector bool int vec_xor (vector bool int, vector bool int);
17520 vector signed int vec_xor (vector bool int, vector signed int);
17521 vector signed int vec_xor (vector signed int, vector bool int);
17522 vector signed int vec_xor (vector signed int, vector signed int);
17523 vector unsigned int vec_xor (vector bool int, vector unsigned int);
17524 vector unsigned int vec_xor (vector unsigned int, vector bool int);
17525 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
17526 vector bool short vec_xor (vector bool short, vector bool short);
17527 vector signed short vec_xor (vector bool short, vector signed short);
17528 vector signed short vec_xor (vector signed short, vector bool short);
17529 vector signed short vec_xor (vector signed short, vector signed short);
17530 vector unsigned short vec_xor (vector bool short,
17531 vector unsigned short);
17532 vector unsigned short vec_xor (vector unsigned short,
17533 vector bool short);
17534 vector unsigned short vec_xor (vector unsigned short,
17535 vector unsigned short);
17536 vector signed char vec_xor (vector bool char, vector signed char);
17537 vector bool char vec_xor (vector bool char, vector bool char);
17538 vector signed char vec_xor (vector signed char, vector bool char);
17539 vector signed char vec_xor (vector signed char, vector signed char);
17540 vector unsigned char vec_xor (vector bool char, vector unsigned char);
17541 vector unsigned char vec_xor (vector unsigned char, vector bool char);
17542 vector unsigned char vec_xor (vector unsigned char,
17543 vector unsigned char);
17545 int vec_all_eq (vector signed char, vector bool char);
17546 int vec_all_eq (vector signed char, vector signed char);
17547 int vec_all_eq (vector unsigned char, vector bool char);
17548 int vec_all_eq (vector unsigned char, vector unsigned char);
17549 int vec_all_eq (vector bool char, vector bool char);
17550 int vec_all_eq (vector bool char, vector unsigned char);
17551 int vec_all_eq (vector bool char, vector signed char);
17552 int vec_all_eq (vector signed short, vector bool short);
17553 int vec_all_eq (vector signed short, vector signed short);
17554 int vec_all_eq (vector unsigned short, vector bool short);
17555 int vec_all_eq (vector unsigned short, vector unsigned short);
17556 int vec_all_eq (vector bool short, vector bool short);
17557 int vec_all_eq (vector bool short, vector unsigned short);
17558 int vec_all_eq (vector bool short, vector signed short);
17559 int vec_all_eq (vector pixel, vector pixel);
17560 int vec_all_eq (vector signed int, vector bool int);
17561 int vec_all_eq (vector signed int, vector signed int);
17562 int vec_all_eq (vector unsigned int, vector bool int);
17563 int vec_all_eq (vector unsigned int, vector unsigned int);
17564 int vec_all_eq (vector bool int, vector bool int);
17565 int vec_all_eq (vector bool int, vector unsigned int);
17566 int vec_all_eq (vector bool int, vector signed int);
17567 int vec_all_eq (vector float, vector float);
17569 int vec_all_ge (vector bool char, vector unsigned char);
17570 int vec_all_ge (vector unsigned char, vector bool char);
17571 int vec_all_ge (vector unsigned char, vector unsigned char);
17572 int vec_all_ge (vector bool char, vector signed char);
17573 int vec_all_ge (vector signed char, vector bool char);
17574 int vec_all_ge (vector signed char, vector signed char);
17575 int vec_all_ge (vector bool short, vector unsigned short);
17576 int vec_all_ge (vector unsigned short, vector bool short);
17577 int vec_all_ge (vector unsigned short, vector unsigned short);
17578 int vec_all_ge (vector signed short, vector signed short);
17579 int vec_all_ge (vector bool short, vector signed short);
17580 int vec_all_ge (vector signed short, vector bool short);
17581 int vec_all_ge (vector bool int, vector unsigned int);
17582 int vec_all_ge (vector unsigned int, vector bool int);
17583 int vec_all_ge (vector unsigned int, vector unsigned int);
17584 int vec_all_ge (vector bool int, vector signed int);
17585 int vec_all_ge (vector signed int, vector bool int);
17586 int vec_all_ge (vector signed int, vector signed int);
17587 int vec_all_ge (vector float, vector float);
17589 int vec_all_gt (vector bool char, vector unsigned char);
17590 int vec_all_gt (vector unsigned char, vector bool char);
17591 int vec_all_gt (vector unsigned char, vector unsigned char);
17592 int vec_all_gt (vector bool char, vector signed char);
17593 int vec_all_gt (vector signed char, vector bool char);
17594 int vec_all_gt (vector signed char, vector signed char);
17595 int vec_all_gt (vector bool short, vector unsigned short);
17596 int vec_all_gt (vector unsigned short, vector bool short);
17597 int vec_all_gt (vector unsigned short, vector unsigned short);
17598 int vec_all_gt (vector bool short, vector signed short);
17599 int vec_all_gt (vector signed short, vector bool short);
17600 int vec_all_gt (vector signed short, vector signed short);
17601 int vec_all_gt (vector bool int, vector unsigned int);
17602 int vec_all_gt (vector unsigned int, vector bool int);
17603 int vec_all_gt (vector unsigned int, vector unsigned int);
17604 int vec_all_gt (vector bool int, vector signed int);
17605 int vec_all_gt (vector signed int, vector bool int);
17606 int vec_all_gt (vector signed int, vector signed int);
17607 int vec_all_gt (vector float, vector float);
17609 int vec_all_in (vector float, vector float);
17611 int vec_all_le (vector bool char, vector unsigned char);
17612 int vec_all_le (vector unsigned char, vector bool char);
17613 int vec_all_le (vector unsigned char, vector unsigned char);
17614 int vec_all_le (vector bool char, vector signed char);
17615 int vec_all_le (vector signed char, vector bool char);
17616 int vec_all_le (vector signed char, vector signed char);
17617 int vec_all_le (vector bool short, vector unsigned short);
17618 int vec_all_le (vector unsigned short, vector bool short);
17619 int vec_all_le (vector unsigned short, vector unsigned short);
17620 int vec_all_le (vector bool short, vector signed short);
17621 int vec_all_le (vector signed short, vector bool short);
17622 int vec_all_le (vector signed short, vector signed short);
17623 int vec_all_le (vector bool int, vector unsigned int);
17624 int vec_all_le (vector unsigned int, vector bool int);
17625 int vec_all_le (vector unsigned int, vector unsigned int);
17626 int vec_all_le (vector bool int, vector signed int);
17627 int vec_all_le (vector signed int, vector bool int);
17628 int vec_all_le (vector signed int, vector signed int);
17629 int vec_all_le (vector float, vector float);
17631 int vec_all_lt (vector bool char, vector unsigned char);
17632 int vec_all_lt (vector unsigned char, vector bool char);
17633 int vec_all_lt (vector unsigned char, vector unsigned char);
17634 int vec_all_lt (vector bool char, vector signed char);
17635 int vec_all_lt (vector signed char, vector bool char);
17636 int vec_all_lt (vector signed char, vector signed char);
17637 int vec_all_lt (vector bool short, vector unsigned short);
17638 int vec_all_lt (vector unsigned short, vector bool short);
17639 int vec_all_lt (vector unsigned short, vector unsigned short);
17640 int vec_all_lt (vector bool short, vector signed short);
17641 int vec_all_lt (vector signed short, vector bool short);
17642 int vec_all_lt (vector signed short, vector signed short);
17643 int vec_all_lt (vector bool int, vector unsigned int);
17644 int vec_all_lt (vector unsigned int, vector bool int);
17645 int vec_all_lt (vector unsigned int, vector unsigned int);
17646 int vec_all_lt (vector bool int, vector signed int);
17647 int vec_all_lt (vector signed int, vector bool int);
17648 int vec_all_lt (vector signed int, vector signed int);
17649 int vec_all_lt (vector float, vector float);
17651 int vec_all_nan (vector float);
17653 int vec_all_ne (vector signed char, vector bool char);
17654 int vec_all_ne (vector signed char, vector signed char);
17655 int vec_all_ne (vector unsigned char, vector bool char);
17656 int vec_all_ne (vector unsigned char, vector unsigned char);
17657 int vec_all_ne (vector bool char, vector bool char);
17658 int vec_all_ne (vector bool char, vector unsigned char);
17659 int vec_all_ne (vector bool char, vector signed char);
17660 int vec_all_ne (vector signed short, vector bool short);
17661 int vec_all_ne (vector signed short, vector signed short);
17662 int vec_all_ne (vector unsigned short, vector bool short);
17663 int vec_all_ne (vector unsigned short, vector unsigned short);
17664 int vec_all_ne (vector bool short, vector bool short);
17665 int vec_all_ne (vector bool short, vector unsigned short);
17666 int vec_all_ne (vector bool short, vector signed short);
17667 int vec_all_ne (vector pixel, vector pixel);
17668 int vec_all_ne (vector signed int, vector bool int);
17669 int vec_all_ne (vector signed int, vector signed int);
17670 int vec_all_ne (vector unsigned int, vector bool int);
17671 int vec_all_ne (vector unsigned int, vector unsigned int);
17672 int vec_all_ne (vector bool int, vector bool int);
17673 int vec_all_ne (vector bool int, vector unsigned int);
17674 int vec_all_ne (vector bool int, vector signed int);
17675 int vec_all_ne (vector float, vector float);
17677 int vec_all_nge (vector float, vector float);
17679 int vec_all_ngt (vector float, vector float);
17681 int vec_all_nle (vector float, vector float);
17683 int vec_all_nlt (vector float, vector float);
17685 int vec_all_numeric (vector float);
17687 int vec_any_eq (vector signed char, vector bool char);
17688 int vec_any_eq (vector signed char, vector signed char);
17689 int vec_any_eq (vector unsigned char, vector bool char);
17690 int vec_any_eq (vector unsigned char, vector unsigned char);
17691 int vec_any_eq (vector bool char, vector bool char);
17692 int vec_any_eq (vector bool char, vector unsigned char);
17693 int vec_any_eq (vector bool char, vector signed char);
17694 int vec_any_eq (vector signed short, vector bool short);
17695 int vec_any_eq (vector signed short, vector signed short);
17696 int vec_any_eq (vector unsigned short, vector bool short);
17697 int vec_any_eq (vector unsigned short, vector unsigned short);
17698 int vec_any_eq (vector bool short, vector bool short);
17699 int vec_any_eq (vector bool short, vector unsigned short);
17700 int vec_any_eq (vector bool short, vector signed short);
17701 int vec_any_eq (vector pixel, vector pixel);
17702 int vec_any_eq (vector signed int, vector bool int);
17703 int vec_any_eq (vector signed int, vector signed int);
17704 int vec_any_eq (vector unsigned int, vector bool int);
17705 int vec_any_eq (vector unsigned int, vector unsigned int);
17706 int vec_any_eq (vector bool int, vector bool int);
17707 int vec_any_eq (vector bool int, vector unsigned int);
17708 int vec_any_eq (vector bool int, vector signed int);
17709 int vec_any_eq (vector float, vector float);
17711 int vec_any_ge (vector signed char, vector bool char);
17712 int vec_any_ge (vector unsigned char, vector bool char);
17713 int vec_any_ge (vector unsigned char, vector unsigned char);
17714 int vec_any_ge (vector signed char, vector signed char);
17715 int vec_any_ge (vector bool char, vector unsigned char);
17716 int vec_any_ge (vector bool char, vector signed char);
17717 int vec_any_ge (vector unsigned short, vector bool short);
17718 int vec_any_ge (vector unsigned short, vector unsigned short);
17719 int vec_any_ge (vector signed short, vector signed short);
17720 int vec_any_ge (vector signed short, vector bool short);
17721 int vec_any_ge (vector bool short, vector unsigned short);
17722 int vec_any_ge (vector bool short, vector signed short);
17723 int vec_any_ge (vector signed int, vector bool int);
17724 int vec_any_ge (vector unsigned int, vector bool int);
17725 int vec_any_ge (vector unsigned int, vector unsigned int);
17726 int vec_any_ge (vector signed int, vector signed int);
17727 int vec_any_ge (vector bool int, vector unsigned int);
17728 int vec_any_ge (vector bool int, vector signed int);
17729 int vec_any_ge (vector float, vector float);
17731 int vec_any_gt (vector bool char, vector unsigned char);
17732 int vec_any_gt (vector unsigned char, vector bool char);
17733 int vec_any_gt (vector unsigned char, vector unsigned char);
17734 int vec_any_gt (vector bool char, vector signed char);
17735 int vec_any_gt (vector signed char, vector bool char);
17736 int vec_any_gt (vector signed char, vector signed char);
17737 int vec_any_gt (vector bool short, vector unsigned short);
17738 int vec_any_gt (vector unsigned short, vector bool short);
17739 int vec_any_gt (vector unsigned short, vector unsigned short);
17740 int vec_any_gt (vector bool short, vector signed short);
17741 int vec_any_gt (vector signed short, vector bool short);
17742 int vec_any_gt (vector signed short, vector signed short);
17743 int vec_any_gt (vector bool int, vector unsigned int);
17744 int vec_any_gt (vector unsigned int, vector bool int);
17745 int vec_any_gt (vector unsigned int, vector unsigned int);
17746 int vec_any_gt (vector bool int, vector signed int);
17747 int vec_any_gt (vector signed int, vector bool int);
17748 int vec_any_gt (vector signed int, vector signed int);
17749 int vec_any_gt (vector float, vector float);
17751 int vec_any_le (vector bool char, vector unsigned char);
17752 int vec_any_le (vector unsigned char, vector bool char);
17753 int vec_any_le (vector unsigned char, vector unsigned char);
17754 int vec_any_le (vector bool char, vector signed char);
17755 int vec_any_le (vector signed char, vector bool char);
17756 int vec_any_le (vector signed char, vector signed char);
17757 int vec_any_le (vector bool short, vector unsigned short);
17758 int vec_any_le (vector unsigned short, vector bool short);
17759 int vec_any_le (vector unsigned short, vector unsigned short);
17760 int vec_any_le (vector bool short, vector signed short);
17761 int vec_any_le (vector signed short, vector bool short);
17762 int vec_any_le (vector signed short, vector signed short);
17763 int vec_any_le (vector bool int, vector unsigned int);
17764 int vec_any_le (vector unsigned int, vector bool int);
17765 int vec_any_le (vector unsigned int, vector unsigned int);
17766 int vec_any_le (vector bool int, vector signed int);
17767 int vec_any_le (vector signed int, vector bool int);
17768 int vec_any_le (vector signed int, vector signed int);
17769 int vec_any_le (vector float, vector float);
17771 int vec_any_lt (vector bool char, vector unsigned char);
17772 int vec_any_lt (vector unsigned char, vector bool char);
17773 int vec_any_lt (vector unsigned char, vector unsigned char);
17774 int vec_any_lt (vector bool char, vector signed char);
17775 int vec_any_lt (vector signed char, vector bool char);
17776 int vec_any_lt (vector signed char, vector signed char);
17777 int vec_any_lt (vector bool short, vector unsigned short);
17778 int vec_any_lt (vector unsigned short, vector bool short);
17779 int vec_any_lt (vector unsigned short, vector unsigned short);
17780 int vec_any_lt (vector bool short, vector signed short);
17781 int vec_any_lt (vector signed short, vector bool short);
17782 int vec_any_lt (vector signed short, vector signed short);
17783 int vec_any_lt (vector bool int, vector unsigned int);
17784 int vec_any_lt (vector unsigned int, vector bool int);
17785 int vec_any_lt (vector unsigned int, vector unsigned int);
17786 int vec_any_lt (vector bool int, vector signed int);
17787 int vec_any_lt (vector signed int, vector bool int);
17788 int vec_any_lt (vector signed int, vector signed int);
17789 int vec_any_lt (vector float, vector float);
17791 int vec_any_nan (vector float);
17793 int vec_any_ne (vector signed char, vector bool char);
17794 int vec_any_ne (vector signed char, vector signed char);
17795 int vec_any_ne (vector unsigned char, vector bool char);
17796 int vec_any_ne (vector unsigned char, vector unsigned char);
17797 int vec_any_ne (vector bool char, vector bool char);
17798 int vec_any_ne (vector bool char, vector unsigned char);
17799 int vec_any_ne (vector bool char, vector signed char);
17800 int vec_any_ne (vector signed short, vector bool short);
17801 int vec_any_ne (vector signed short, vector signed short);
17802 int vec_any_ne (vector unsigned short, vector bool short);
17803 int vec_any_ne (vector unsigned short, vector unsigned short);
17804 int vec_any_ne (vector bool short, vector bool short);
17805 int vec_any_ne (vector bool short, vector unsigned short);
17806 int vec_any_ne (vector bool short, vector signed short);
17807 int vec_any_ne (vector pixel, vector pixel);
17808 int vec_any_ne (vector signed int, vector bool int);
17809 int vec_any_ne (vector signed int, vector signed int);
17810 int vec_any_ne (vector unsigned int, vector bool int);
17811 int vec_any_ne (vector unsigned int, vector unsigned int);
17812 int vec_any_ne (vector bool int, vector bool int);
17813 int vec_any_ne (vector bool int, vector unsigned int);
17814 int vec_any_ne (vector bool int, vector signed int);
17815 int vec_any_ne (vector float, vector float);
17817 int vec_any_nge (vector float, vector float);
17819 int vec_any_ngt (vector float, vector float);
17821 int vec_any_nle (vector float, vector float);
17823 int vec_any_nlt (vector float, vector float);
17825 int vec_any_numeric (vector float);
17827 int vec_any_out (vector float, vector float);
17830 If the vector/scalar (VSX) instruction set is available, the following
17831 additional functions are available:
17834 vector double vec_abs (vector double);
17835 vector double vec_add (vector double, vector double);
17836 vector double vec_and (vector double, vector double);
17837 vector double vec_and (vector double, vector bool long);
17838 vector double vec_and (vector bool long, vector double);
17839 vector long vec_and (vector long, vector long);
17840 vector long vec_and (vector long, vector bool long);
17841 vector long vec_and (vector bool long, vector long);
17842 vector unsigned long vec_and (vector unsigned long, vector unsigned long);
17843 vector unsigned long vec_and (vector unsigned long, vector bool long);
17844 vector unsigned long vec_and (vector bool long, vector unsigned long);
17845 vector double vec_andc (vector double, vector double);
17846 vector double vec_andc (vector double, vector bool long);
17847 vector double vec_andc (vector bool long, vector double);
17848 vector long vec_andc (vector long, vector long);
17849 vector long vec_andc (vector long, vector bool long);
17850 vector long vec_andc (vector bool long, vector long);
17851 vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
17852 vector unsigned long vec_andc (vector unsigned long, vector bool long);
17853 vector unsigned long vec_andc (vector bool long, vector unsigned long);
17854 vector double vec_ceil (vector double);
17855 vector bool long vec_cmpeq (vector double, vector double);
17856 vector bool long vec_cmpge (vector double, vector double);
17857 vector bool long vec_cmpgt (vector double, vector double);
17858 vector bool long vec_cmple (vector double, vector double);
17859 vector bool long vec_cmplt (vector double, vector double);
17860 vector double vec_cpsgn (vector double, vector double);
17861 vector float vec_div (vector float, vector float);
17862 vector double vec_div (vector double, vector double);
17863 vector long vec_div (vector long, vector long);
17864 vector unsigned long vec_div (vector unsigned long, vector unsigned long);
17865 vector double vec_floor (vector double);
17866 vector double vec_ld (int, const vector double *);
17867 vector double vec_ld (int, const double *);
17868 vector double vec_ldl (int, const vector double *);
17869 vector double vec_ldl (int, const double *);
17870 vector unsigned char vec_lvsl (int, const volatile double *);
17871 vector unsigned char vec_lvsr (int, const volatile double *);
17872 vector double vec_madd (vector double, vector double, vector double);
17873 vector double vec_max (vector double, vector double);
17874 vector signed long vec_mergeh (vector signed long, vector signed long);
17875 vector signed long vec_mergeh (vector signed long, vector bool long);
17876 vector signed long vec_mergeh (vector bool long, vector signed long);
17877 vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
17878 vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
17879 vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
17880 vector signed long vec_mergel (vector signed long, vector signed long);
17881 vector signed long vec_mergel (vector signed long, vector bool long);
17882 vector signed long vec_mergel (vector bool long, vector signed long);
17883 vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
17884 vector unsigned long vec_mergel (vector unsigned long, vector bool long);
17885 vector unsigned long vec_mergel (vector bool long, vector unsigned long);
17886 vector double vec_min (vector double, vector double);
17887 vector float vec_msub (vector float, vector float, vector float);
17888 vector double vec_msub (vector double, vector double, vector double);
17889 vector float vec_mul (vector float, vector float);
17890 vector double vec_mul (vector double, vector double);
17891 vector long vec_mul (vector long, vector long);
17892 vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
17893 vector float vec_nearbyint (vector float);
17894 vector double vec_nearbyint (vector double);
17895 vector float vec_nmadd (vector float, vector float, vector float);
17896 vector double vec_nmadd (vector double, vector double, vector double);
17897 vector double vec_nmsub (vector double, vector double, vector double);
17898 vector double vec_nor (vector double, vector double);
17899 vector long vec_nor (vector long, vector long);
17900 vector long vec_nor (vector long, vector bool long);
17901 vector long vec_nor (vector bool long, vector long);
17902 vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
17903 vector unsigned long vec_nor (vector unsigned long, vector bool long);
17904 vector unsigned long vec_nor (vector bool long, vector unsigned long);
17905 vector double vec_or (vector double, vector double);
17906 vector double vec_or (vector double, vector bool long);
17907 vector double vec_or (vector bool long, vector double);
17908 vector long vec_or (vector long, vector long);
17909 vector long vec_or (vector long, vector bool long);
17910 vector long vec_or (vector bool long, vector long);
17911 vector unsigned long vec_or (vector unsigned long, vector unsigned long);
17912 vector unsigned long vec_or (vector unsigned long, vector bool long);
17913 vector unsigned long vec_or (vector bool long, vector unsigned long);
17914 vector double vec_perm (vector double, vector double, vector unsigned char);
17915 vector long vec_perm (vector long, vector long, vector unsigned char);
17916 vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
17917 vector unsigned char);
17918 vector double vec_rint (vector double);
17919 vector double vec_recip (vector double, vector double);
17920 vector double vec_rsqrt (vector double);
17921 vector double vec_rsqrte (vector double);
17922 vector double vec_sel (vector double, vector double, vector bool long);
17923 vector double vec_sel (vector double, vector double, vector unsigned long);
17924 vector long vec_sel (vector long, vector long, vector long);
17925 vector long vec_sel (vector long, vector long, vector unsigned long);
17926 vector long vec_sel (vector long, vector long, vector bool long);
17927 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17929 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17930 vector unsigned long);
17931 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17933 vector double vec_splats (double);
17934 vector signed long vec_splats (signed long);
17935 vector unsigned long vec_splats (unsigned long);
17936 vector float vec_sqrt (vector float);
17937 vector double vec_sqrt (vector double);
17938 void vec_st (vector double, int, vector double *);
17939 void vec_st (vector double, int, double *);
17940 vector double vec_sub (vector double, vector double);
17941 vector double vec_trunc (vector double);
17942 vector double vec_xl (int, vector double *);
17943 vector double vec_xl (int, double *);
17944 vector long long vec_xl (int, vector long long *);
17945 vector long long vec_xl (int, long long *);
17946 vector unsigned long long vec_xl (int, vector unsigned long long *);
17947 vector unsigned long long vec_xl (int, unsigned long long *);
17948 vector float vec_xl (int, vector float *);
17949 vector float vec_xl (int, float *);
17950 vector int vec_xl (int, vector int *);
17951 vector int vec_xl (int, int *);
17952 vector unsigned int vec_xl (int, vector unsigned int *);
17953 vector unsigned int vec_xl (int, unsigned int *);
17954 vector double vec_xor (vector double, vector double);
17955 vector double vec_xor (vector double, vector bool long);
17956 vector double vec_xor (vector bool long, vector double);
17957 vector long vec_xor (vector long, vector long);
17958 vector long vec_xor (vector long, vector bool long);
17959 vector long vec_xor (vector bool long, vector long);
17960 vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
17961 vector unsigned long vec_xor (vector unsigned long, vector bool long);
17962 vector unsigned long vec_xor (vector bool long, vector unsigned long);
17963 void vec_xst (vector double, int, vector double *);
17964 void vec_xst (vector double, int, double *);
17965 void vec_xst (vector long long, int, vector long long *);
17966 void vec_xst (vector long long, int, long long *);
17967 void vec_xst (vector unsigned long long, int, vector unsigned long long *);
17968 void vec_xst (vector unsigned long long, int, unsigned long long *);
17969 void vec_xst (vector float, int, vector float *);
17970 void vec_xst (vector float, int, float *);
17971 void vec_xst (vector int, int, vector int *);
17972 void vec_xst (vector int, int, int *);
17973 void vec_xst (vector unsigned int, int, vector unsigned int *);
17974 void vec_xst (vector unsigned int, int, unsigned int *);
17975 int vec_all_eq (vector double, vector double);
17976 int vec_all_ge (vector double, vector double);
17977 int vec_all_gt (vector double, vector double);
17978 int vec_all_le (vector double, vector double);
17979 int vec_all_lt (vector double, vector double);
17980 int vec_all_nan (vector double);
17981 int vec_all_ne (vector double, vector double);
17982 int vec_all_nge (vector double, vector double);
17983 int vec_all_ngt (vector double, vector double);
17984 int vec_all_nle (vector double, vector double);
17985 int vec_all_nlt (vector double, vector double);
17986 int vec_all_numeric (vector double);
17987 int vec_any_eq (vector double, vector double);
17988 int vec_any_ge (vector double, vector double);
17989 int vec_any_gt (vector double, vector double);
17990 int vec_any_le (vector double, vector double);
17991 int vec_any_lt (vector double, vector double);
17992 int vec_any_nan (vector double);
17993 int vec_any_ne (vector double, vector double);
17994 int vec_any_nge (vector double, vector double);
17995 int vec_any_ngt (vector double, vector double);
17996 int vec_any_nle (vector double, vector double);
17997 int vec_any_nlt (vector double, vector double);
17998 int vec_any_numeric (vector double);
18000 vector double vec_vsx_ld (int, const vector double *);
18001 vector double vec_vsx_ld (int, const double *);
18002 vector float vec_vsx_ld (int, const vector float *);
18003 vector float vec_vsx_ld (int, const float *);
18004 vector bool int vec_vsx_ld (int, const vector bool int *);
18005 vector signed int vec_vsx_ld (int, const vector signed int *);
18006 vector signed int vec_vsx_ld (int, const int *);
18007 vector signed int vec_vsx_ld (int, const long *);
18008 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
18009 vector unsigned int vec_vsx_ld (int, const unsigned int *);
18010 vector unsigned int vec_vsx_ld (int, const unsigned long *);
18011 vector bool short vec_vsx_ld (int, const vector bool short *);
18012 vector pixel vec_vsx_ld (int, const vector pixel *);
18013 vector signed short vec_vsx_ld (int, const vector signed short *);
18014 vector signed short vec_vsx_ld (int, const short *);
18015 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
18016 vector unsigned short vec_vsx_ld (int, const unsigned short *);
18017 vector bool char vec_vsx_ld (int, const vector bool char *);
18018 vector signed char vec_vsx_ld (int, const vector signed char *);
18019 vector signed char vec_vsx_ld (int, const signed char *);
18020 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
18021 vector unsigned char vec_vsx_ld (int, const unsigned char *);
18023 void vec_vsx_st (vector double, int, vector double *);
18024 void vec_vsx_st (vector double, int, double *);
18025 void vec_vsx_st (vector float, int, vector float *);
18026 void vec_vsx_st (vector float, int, float *);
18027 void vec_vsx_st (vector signed int, int, vector signed int *);
18028 void vec_vsx_st (vector signed int, int, int *);
18029 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
18030 void vec_vsx_st (vector unsigned int, int, unsigned int *);
18031 void vec_vsx_st (vector bool int, int, vector bool int *);
18032 void vec_vsx_st (vector bool int, int, unsigned int *);
18033 void vec_vsx_st (vector bool int, int, int *);
18034 void vec_vsx_st (vector signed short, int, vector signed short *);
18035 void vec_vsx_st (vector signed short, int, short *);
18036 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
18037 void vec_vsx_st (vector unsigned short, int, unsigned short *);
18038 void vec_vsx_st (vector bool short, int, vector bool short *);
18039 void vec_vsx_st (vector bool short, int, unsigned short *);
18040 void vec_vsx_st (vector pixel, int, vector pixel *);
18041 void vec_vsx_st (vector pixel, int, unsigned short *);
18042 void vec_vsx_st (vector pixel, int, short *);
18043 void vec_vsx_st (vector bool short, int, short *);
18044 void vec_vsx_st (vector signed char, int, vector signed char *);
18045 void vec_vsx_st (vector signed char, int, signed char *);
18046 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
18047 void vec_vsx_st (vector unsigned char, int, unsigned char *);
18048 void vec_vsx_st (vector bool char, int, vector bool char *);
18049 void vec_vsx_st (vector bool char, int, unsigned char *);
18050 void vec_vsx_st (vector bool char, int, signed char *);
18052 vector double vec_xxpermdi (vector double, vector double, const int);
18053 vector float vec_xxpermdi (vector float, vector float, const int);
18054 vector long long vec_xxpermdi (vector long long, vector long long, const int);
18055 vector unsigned long long vec_xxpermdi (vector unsigned long long,
18056 vector unsigned long long, const int);
18057 vector int vec_xxpermdi (vector int, vector int, const int);
18058 vector unsigned int vec_xxpermdi (vector unsigned int,
18059 vector unsigned int, const int);
18060 vector short vec_xxpermdi (vector short, vector short, const int);
18061 vector unsigned short vec_xxpermdi (vector unsigned short,
18062 vector unsigned short, const int);
18063 vector signed char vec_xxpermdi (vector signed char, vector signed char,
18065 vector unsigned char vec_xxpermdi (vector unsigned char,
18066 vector unsigned char, const int);
18068 vector double vec_xxsldi (vector double, vector double, int);
18069 vector float vec_xxsldi (vector float, vector float, int);
18070 vector long long vec_xxsldi (vector long long, vector long long, int);
18071 vector unsigned long long vec_xxsldi (vector unsigned long long,
18072 vector unsigned long long, int);
18073 vector int vec_xxsldi (vector int, vector int, int);
18074 vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
18075 vector short vec_xxsldi (vector short, vector short, int);
18076 vector unsigned short vec_xxsldi (vector unsigned short,
18077 vector unsigned short, int);
18078 vector signed char vec_xxsldi (vector signed char, vector signed char, int);
18079 vector unsigned char vec_xxsldi (vector unsigned char,
18080 vector unsigned char, int);
18083 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
18084 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
18085 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
18086 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
18087 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
18089 If the ISA 2.07 additions to the vector/scalar (power8-vector)
18090 instruction set are available, the following additional functions are
18091 available for both 32-bit and 64-bit targets. For 64-bit targets, you
18092 can use @var{vector long} instead of @var{vector long long},
18093 @var{vector bool long} instead of @var{vector bool long long}, and
18094 @var{vector unsigned long} instead of @var{vector unsigned long long}.
18097 vector long long vec_abs (vector long long);
18099 vector long long vec_add (vector long long, vector long long);
18100 vector unsigned long long vec_add (vector unsigned long long,
18101 vector unsigned long long);
18103 int vec_all_eq (vector long long, vector long long);
18104 int vec_all_eq (vector unsigned long long, vector unsigned long long);
18105 int vec_all_ge (vector long long, vector long long);
18106 int vec_all_ge (vector unsigned long long, vector unsigned long long);
18107 int vec_all_gt (vector long long, vector long long);
18108 int vec_all_gt (vector unsigned long long, vector unsigned long long);
18109 int vec_all_le (vector long long, vector long long);
18110 int vec_all_le (vector unsigned long long, vector unsigned long long);
18111 int vec_all_lt (vector long long, vector long long);
18112 int vec_all_lt (vector unsigned long long, vector unsigned long long);
18113 int vec_all_ne (vector long long, vector long long);
18114 int vec_all_ne (vector unsigned long long, vector unsigned long long);
18116 int vec_any_eq (vector long long, vector long long);
18117 int vec_any_eq (vector unsigned long long, vector unsigned long long);
18118 int vec_any_ge (vector long long, vector long long);
18119 int vec_any_ge (vector unsigned long long, vector unsigned long long);
18120 int vec_any_gt (vector long long, vector long long);
18121 int vec_any_gt (vector unsigned long long, vector unsigned long long);
18122 int vec_any_le (vector long long, vector long long);
18123 int vec_any_le (vector unsigned long long, vector unsigned long long);
18124 int vec_any_lt (vector long long, vector long long);
18125 int vec_any_lt (vector unsigned long long, vector unsigned long long);
18126 int vec_any_ne (vector long long, vector long long);
18127 int vec_any_ne (vector unsigned long long, vector unsigned long long);
18129 vector bool long long vec_cmpeq (vector bool long long, vector bool long long);
18131 vector long long vec_eqv (vector long long, vector long long);
18132 vector long long vec_eqv (vector bool long long, vector long long);
18133 vector long long vec_eqv (vector long long, vector bool long long);
18134 vector unsigned long long vec_eqv (vector unsigned long long,
18135 vector unsigned long long);
18136 vector unsigned long long vec_eqv (vector bool long long,
18137 vector unsigned long long);
18138 vector unsigned long long vec_eqv (vector unsigned long long,
18139 vector bool long long);
18140 vector int vec_eqv (vector int, vector int);
18141 vector int vec_eqv (vector bool int, vector int);
18142 vector int vec_eqv (vector int, vector bool int);
18143 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
18144 vector unsigned int vec_eqv (vector bool unsigned int,
18145 vector unsigned int);
18146 vector unsigned int vec_eqv (vector unsigned int,
18147 vector bool unsigned int);
18148 vector short vec_eqv (vector short, vector short);
18149 vector short vec_eqv (vector bool short, vector short);
18150 vector short vec_eqv (vector short, vector bool short);
18151 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
18152 vector unsigned short vec_eqv (vector bool unsigned short,
18153 vector unsigned short);
18154 vector unsigned short vec_eqv (vector unsigned short,
18155 vector bool unsigned short);
18156 vector signed char vec_eqv (vector signed char, vector signed char);
18157 vector signed char vec_eqv (vector bool signed char, vector signed char);
18158 vector signed char vec_eqv (vector signed char, vector bool signed char);
18159 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
18160 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
18161 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
18163 vector long long vec_max (vector long long, vector long long);
18164 vector unsigned long long vec_max (vector unsigned long long,
18165 vector unsigned long long);
18167 vector signed int vec_mergee (vector signed int, vector signed int);
18168 vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
18169 vector bool int vec_mergee (vector bool int, vector bool int);
18171 vector signed int vec_mergeo (vector signed int, vector signed int);
18172 vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
18173 vector bool int vec_mergeo (vector bool int, vector bool int);
18175 vector long long vec_min (vector long long, vector long long);
18176 vector unsigned long long vec_min (vector unsigned long long,
18177 vector unsigned long long);
18179 vector signed long long vec_nabs (vector signed long long);
18181 vector long long vec_nand (vector long long, vector long long);
18182 vector long long vec_nand (vector bool long long, vector long long);
18183 vector long long vec_nand (vector long long, vector bool long long);
18184 vector unsigned long long vec_nand (vector unsigned long long,
18185 vector unsigned long long);
18186 vector unsigned long long vec_nand (vector bool long long,
18187 vector unsigned long long);
18188 vector unsigned long long vec_nand (vector unsigned long long,
18189 vector bool long long);
18190 vector int vec_nand (vector int, vector int);
18191 vector int vec_nand (vector bool int, vector int);
18192 vector int vec_nand (vector int, vector bool int);
18193 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
18194 vector unsigned int vec_nand (vector bool unsigned int,
18195 vector unsigned int);
18196 vector unsigned int vec_nand (vector unsigned int,
18197 vector bool unsigned int);
18198 vector short vec_nand (vector short, vector short);
18199 vector short vec_nand (vector bool short, vector short);
18200 vector short vec_nand (vector short, vector bool short);
18201 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
18202 vector unsigned short vec_nand (vector bool unsigned short,
18203 vector unsigned short);
18204 vector unsigned short vec_nand (vector unsigned short,
18205 vector bool unsigned short);
18206 vector signed char vec_nand (vector signed char, vector signed char);
18207 vector signed char vec_nand (vector bool signed char, vector signed char);
18208 vector signed char vec_nand (vector signed char, vector bool signed char);
18209 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
18210 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
18211 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
18213 vector long long vec_orc (vector long long, vector long long);
18214 vector long long vec_orc (vector bool long long, vector long long);
18215 vector long long vec_orc (vector long long, vector bool long long);
18216 vector unsigned long long vec_orc (vector unsigned long long,
18217 vector unsigned long long);
18218 vector unsigned long long vec_orc (vector bool long long,
18219 vector unsigned long long);
18220 vector unsigned long long vec_orc (vector unsigned long long,
18221 vector bool long long);
18222 vector int vec_orc (vector int, vector int);
18223 vector int vec_orc (vector bool int, vector int);
18224 vector int vec_orc (vector int, vector bool int);
18225 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
18226 vector unsigned int vec_orc (vector bool unsigned int,
18227 vector unsigned int);
18228 vector unsigned int vec_orc (vector unsigned int,
18229 vector bool unsigned int);
18230 vector short vec_orc (vector short, vector short);
18231 vector short vec_orc (vector bool short, vector short);
18232 vector short vec_orc (vector short, vector bool short);
18233 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
18234 vector unsigned short vec_orc (vector bool unsigned short,
18235 vector unsigned short);
18236 vector unsigned short vec_orc (vector unsigned short,
18237 vector bool unsigned short);
18238 vector signed char vec_orc (vector signed char, vector signed char);
18239 vector signed char vec_orc (vector bool signed char, vector signed char);
18240 vector signed char vec_orc (vector signed char, vector bool signed char);
18241 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
18242 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
18243 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
18245 vector int vec_pack (vector long long, vector long long);
18246 vector unsigned int vec_pack (vector unsigned long long,
18247 vector unsigned long long);
18248 vector bool int vec_pack (vector bool long long, vector bool long long);
18249 vector float vec_pack (vector double, vector double);
18251 vector int vec_packs (vector long long, vector long long);
18252 vector unsigned int vec_packs (vector unsigned long long,
18253 vector unsigned long long);
18255 vector unsigned int vec_packsu (vector long long, vector long long);
18256 vector unsigned int vec_packsu (vector unsigned long long,
18257 vector unsigned long long);
18259 vector unsigned char vec_popcnt (vector signed char);
18260 vector unsigned char vec_popcnt (vector unsigned char);
18261 vector unsigned short vec_popcnt (vector signed short);
18262 vector unsigned short vec_popcnt (vector unsigned short);
18263 vector unsigned int vec_popcnt (vector signed int);
18264 vector unsigned int vec_popcnt (vector unsigned int);
18265 vector unsigned long long vec_popcnt (vector signed long long);
18266 vector unsigned long long vec_popcnt (vector unsigned long long);
18268 vector long long vec_rl (vector long long,
18269 vector unsigned long long);
18270 vector long long vec_rl (vector unsigned long long,
18271 vector unsigned long long);
18273 vector long long vec_sl (vector long long, vector unsigned long long);
18274 vector long long vec_sl (vector unsigned long long,
18275 vector unsigned long long);
18277 vector long long vec_sr (vector long long, vector unsigned long long);
18278 vector unsigned long long char vec_sr (vector unsigned long long,
18279 vector unsigned long long);
18281 vector long long vec_sra (vector long long, vector unsigned long long);
18282 vector unsigned long long vec_sra (vector unsigned long long,
18283 vector unsigned long long);
18285 vector long long vec_sub (vector long long, vector long long);
18286 vector unsigned long long vec_sub (vector unsigned long long,
18287 vector unsigned long long);
18289 vector long long vec_unpackh (vector int);
18290 vector unsigned long long vec_unpackh (vector unsigned int);
18292 vector long long vec_unpackl (vector int);
18293 vector unsigned long long vec_unpackl (vector unsigned int);
18295 vector long long vec_vaddudm (vector long long, vector long long);
18296 vector long long vec_vaddudm (vector bool long long, vector long long);
18297 vector long long vec_vaddudm (vector long long, vector bool long long);
18298 vector unsigned long long vec_vaddudm (vector unsigned long long,
18299 vector unsigned long long);
18300 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
18301 vector unsigned long long);
18302 vector unsigned long long vec_vaddudm (vector unsigned long long,
18303 vector bool unsigned long long);
18305 vector long long vec_vbpermq (vector signed char, vector signed char);
18306 vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
18308 vector unsigned char vec_bperm (vector unsigned char, vector unsigned char);
18309 vector unsigned char vec_bperm (vector unsigned long long,
18310 vector unsigned char);
18311 vector unsigned long long vec_bperm (vector unsigned __int128,
18312 vector unsigned char);
18314 vector long long vec_cntlz (vector long long);
18315 vector unsigned long long vec_cntlz (vector unsigned long long);
18316 vector int vec_cntlz (vector int);
18317 vector unsigned int vec_cntlz (vector int);
18318 vector short vec_cntlz (vector short);
18319 vector unsigned short vec_cntlz (vector unsigned short);
18320 vector signed char vec_cntlz (vector signed char);
18321 vector unsigned char vec_cntlz (vector unsigned char);
18323 vector long long vec_vclz (vector long long);
18324 vector unsigned long long vec_vclz (vector unsigned long long);
18325 vector int vec_vclz (vector int);
18326 vector unsigned int vec_vclz (vector int);
18327 vector short vec_vclz (vector short);
18328 vector unsigned short vec_vclz (vector unsigned short);
18329 vector signed char vec_vclz (vector signed char);
18330 vector unsigned char vec_vclz (vector unsigned char);
18332 vector signed char vec_vclzb (vector signed char);
18333 vector unsigned char vec_vclzb (vector unsigned char);
18335 vector long long vec_vclzd (vector long long);
18336 vector unsigned long long vec_vclzd (vector unsigned long long);
18338 vector short vec_vclzh (vector short);
18339 vector unsigned short vec_vclzh (vector unsigned short);
18341 vector int vec_vclzw (vector int);
18342 vector unsigned int vec_vclzw (vector int);
18344 vector signed char vec_vgbbd (vector signed char);
18345 vector unsigned char vec_vgbbd (vector unsigned char);
18347 vector long long vec_vmaxsd (vector long long, vector long long);
18349 vector unsigned long long vec_vmaxud (vector unsigned long long,
18350 unsigned vector long long);
18352 vector long long vec_vminsd (vector long long, vector long long);
18354 vector unsigned long long vec_vminud (vector long long,
18357 vector int vec_vpksdss (vector long long, vector long long);
18358 vector unsigned int vec_vpksdss (vector long long, vector long long);
18360 vector unsigned int vec_vpkudus (vector unsigned long long,
18361 vector unsigned long long);
18363 vector int vec_vpkudum (vector long long, vector long long);
18364 vector unsigned int vec_vpkudum (vector unsigned long long,
18365 vector unsigned long long);
18366 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
18368 vector long long vec_vpopcnt (vector long long);
18369 vector unsigned long long vec_vpopcnt (vector unsigned long long);
18370 vector int vec_vpopcnt (vector int);
18371 vector unsigned int vec_vpopcnt (vector int);
18372 vector short vec_vpopcnt (vector short);
18373 vector unsigned short vec_vpopcnt (vector unsigned short);
18374 vector signed char vec_vpopcnt (vector signed char);
18375 vector unsigned char vec_vpopcnt (vector unsigned char);
18377 vector signed char vec_vpopcntb (vector signed char);
18378 vector unsigned char vec_vpopcntb (vector unsigned char);
18380 vector long long vec_vpopcntd (vector long long);
18381 vector unsigned long long vec_vpopcntd (vector unsigned long long);
18383 vector short vec_vpopcnth (vector short);
18384 vector unsigned short vec_vpopcnth (vector unsigned short);
18386 vector int vec_vpopcntw (vector int);
18387 vector unsigned int vec_vpopcntw (vector int);
18389 vector long long vec_vrld (vector long long, vector unsigned long long);
18390 vector unsigned long long vec_vrld (vector unsigned long long,
18391 vector unsigned long long);
18393 vector long long vec_vsld (vector long long, vector unsigned long long);
18394 vector long long vec_vsld (vector unsigned long long,
18395 vector unsigned long long);
18397 vector long long vec_vsrad (vector long long, vector unsigned long long);
18398 vector unsigned long long vec_vsrad (vector unsigned long long,
18399 vector unsigned long long);
18401 vector long long vec_vsrd (vector long long, vector unsigned long long);
18402 vector unsigned long long char vec_vsrd (vector unsigned long long,
18403 vector unsigned long long);
18405 vector long long vec_vsubudm (vector long long, vector long long);
18406 vector long long vec_vsubudm (vector bool long long, vector long long);
18407 vector long long vec_vsubudm (vector long long, vector bool long long);
18408 vector unsigned long long vec_vsubudm (vector unsigned long long,
18409 vector unsigned long long);
18410 vector unsigned long long vec_vsubudm (vector bool long long,
18411 vector unsigned long long);
18412 vector unsigned long long vec_vsubudm (vector unsigned long long,
18413 vector bool long long);
18415 vector long long vec_vupkhsw (vector int);
18416 vector unsigned long long vec_vupkhsw (vector unsigned int);
18418 vector long long vec_vupklsw (vector int);
18419 vector unsigned long long vec_vupklsw (vector int);
18422 If the ISA 2.07 additions to the vector/scalar (power8-vector)
18423 instruction set are available, the following additional functions are
18424 available for 64-bit targets. New vector types
18425 (@var{vector __int128_t} and @var{vector __uint128_t}) are available
18426 to hold the @var{__int128_t} and @var{__uint128_t} types to use these
18429 The normal vector extract, and set operations work on
18430 @var{vector __int128_t} and @var{vector __uint128_t} types,
18431 but the index value must be 0.
18434 vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
18435 vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
18437 vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
18438 vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
18440 vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
18441 vector __int128_t);
18442 vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
18443 vector __uint128_t);
18445 vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
18446 vector __int128_t);
18447 vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
18448 vector __uint128_t);
18450 vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
18451 vector __int128_t);
18452 vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
18453 vector __uint128_t);
18455 vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
18456 vector __int128_t);
18457 vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
18458 vector __uint128_t);
18460 vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
18461 vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
18463 __int128_t vec_vsubuqm (__int128_t, __int128_t);
18464 __uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
18466 vector __int128_t __builtin_bcdadd (vector __int128_t, vector__int128_t);
18467 int __builtin_bcdadd_lt (vector __int128_t, vector__int128_t);
18468 int __builtin_bcdadd_eq (vector __int128_t, vector__int128_t);
18469 int __builtin_bcdadd_gt (vector __int128_t, vector__int128_t);
18470 int __builtin_bcdadd_ov (vector __int128_t, vector__int128_t);
18471 vector __int128_t bcdsub (vector __int128_t, vector__int128_t);
18472 int __builtin_bcdsub_lt (vector __int128_t, vector__int128_t);
18473 int __builtin_bcdsub_eq (vector __int128_t, vector__int128_t);
18474 int __builtin_bcdsub_gt (vector __int128_t, vector__int128_t);
18475 int __builtin_bcdsub_ov (vector __int128_t, vector__int128_t);
18478 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
18482 vector unsigned long long vec_bperm (vector unsigned long long,
18483 vector unsigned char);
18485 vector bool char vec_cmpne (vector bool char, vector bool char);
18486 vector bool short vec_cmpne (vector bool short, vector bool short);
18487 vector bool int vec_cmpne (vector bool int, vector bool int);
18488 vector bool long long vec_cmpne (vector bool long long, vector bool long long);
18490 vector float vec_extract_fp32_from_shorth (vector unsigned short);
18491 vector float vec_extract_fp32_from_shortl (vector unsigned short);
18493 vector long long vec_vctz (vector long long);
18494 vector unsigned long long vec_vctz (vector unsigned long long);
18495 vector int vec_vctz (vector int);
18496 vector unsigned int vec_vctz (vector int);
18497 vector short vec_vctz (vector short);
18498 vector unsigned short vec_vctz (vector unsigned short);
18499 vector signed char vec_vctz (vector signed char);
18500 vector unsigned char vec_vctz (vector unsigned char);
18502 vector signed char vec_vctzb (vector signed char);
18503 vector unsigned char vec_vctzb (vector unsigned char);
18505 vector long long vec_vctzd (vector long long);
18506 vector unsigned long long vec_vctzd (vector unsigned long long);
18508 vector short vec_vctzh (vector short);
18509 vector unsigned short vec_vctzh (vector unsigned short);
18511 vector int vec_vctzw (vector int);
18512 vector unsigned int vec_vctzw (vector int);
18514 long long vec_vextract4b (const vector signed char, const int);
18515 long long vec_vextract4b (const vector unsigned char, const int);
18517 vector signed char vec_insert4b (vector int, vector signed char, const int);
18518 vector unsigned char vec_insert4b (vector unsigned int, vector unsigned char,
18520 vector signed char vec_insert4b (long long, vector signed char, const int);
18521 vector unsigned char vec_insert4b (long long, vector unsigned char, const int);
18523 vector unsigned int vec_parity_lsbb (vector signed int);
18524 vector unsigned int vec_parity_lsbb (vector unsigned int);
18525 vector unsigned __int128 vec_parity_lsbb (vector signed __int128);
18526 vector unsigned __int128 vec_parity_lsbb (vector unsigned __int128);
18527 vector unsigned long long vec_parity_lsbb (vector signed long long);
18528 vector unsigned long long vec_parity_lsbb (vector unsigned long long);
18530 vector int vec_vprtyb (vector int);
18531 vector unsigned int vec_vprtyb (vector unsigned int);
18532 vector long long vec_vprtyb (vector long long);
18533 vector unsigned long long vec_vprtyb (vector unsigned long long);
18535 vector int vec_vprtybw (vector int);
18536 vector unsigned int vec_vprtybw (vector unsigned int);
18538 vector long long vec_vprtybd (vector long long);
18539 vector unsigned long long vec_vprtybd (vector unsigned long long);
18542 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
18546 vector long vec_vprtyb (vector long);
18547 vector unsigned long vec_vprtyb (vector unsigned long);
18548 vector __int128_t vec_vprtyb (vector __int128_t);
18549 vector __uint128_t vec_vprtyb (vector __uint128_t);
18551 vector long vec_vprtybd (vector long);
18552 vector unsigned long vec_vprtybd (vector unsigned long);
18554 vector __int128_t vec_vprtybq (vector __int128_t);
18555 vector __uint128_t vec_vprtybd (vector __uint128_t);
18558 The following built-in vector functions are available for the PowerPC family
18559 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18561 __vector unsigned char
18562 vec_slv (__vector unsigned char src, __vector unsigned char shift_distance);
18563 __vector unsigned char
18564 vec_srv (__vector unsigned char src, __vector unsigned char shift_distance);
18567 The @code{vec_slv} and @code{vec_srv} functions operate on
18568 all of the bytes of their @code{src} and @code{shift_distance}
18569 arguments in parallel. The behavior of the @code{vec_slv} is as if
18570 there existed a temporary array of 17 unsigned characters
18571 @code{slv_array} within which elements 0 through 15 are the same as
18572 the entries in the @code{src} array and element 16 equals 0. The
18573 result returned from the @code{vec_slv} function is a
18574 @code{__vector} of 16 unsigned characters within which element
18575 @code{i} is computed using the C expression
18576 @code{0xff & (*((unsigned short *)(slv_array + i)) << (0x07 &
18577 shift_distance[i]))},
18578 with this resulting value coerced to the @code{unsigned char} type.
18579 The behavior of the @code{vec_srv} is as if
18580 there existed a temporary array of 17 unsigned characters
18581 @code{srv_array} within which element 0 equals zero and
18582 elements 1 through 16 equal the elements 0 through 15 of
18583 the @code{src} array. The
18584 result returned from the @code{vec_srv} function is a
18585 @code{__vector} of 16 unsigned characters within which element
18586 @code{i} is computed using the C expression
18587 @code{0xff & (*((unsigned short *)(srv_array + i)) >>
18588 (0x07 & shift_distance[i]))},
18589 with this resulting value coerced to the @code{unsigned char} type.
18591 The following built-in functions are available for the PowerPC family
18592 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18594 __vector unsigned char
18595 vec_absd (__vector unsigned char arg1, __vector unsigned char arg2);
18596 __vector unsigned short
18597 vec_absd (__vector unsigned short arg1, __vector unsigned short arg2);
18598 __vector unsigned int
18599 vec_absd (__vector unsigned int arg1, __vector unsigned int arg2);
18601 __vector unsigned char
18602 vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
18603 __vector unsigned short
18604 vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
18605 __vector unsigned int
18606 vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
18609 The @code{vec_absd}, @code{vec_absdb}, @code{vec_absdh}, and
18610 @code{vec_absdw} built-in functions each computes the absolute
18611 differences of the pairs of vector elements supplied in its two vector
18612 arguments, placing the absolute differences into the corresponding
18613 elements of the vector result.
18615 The following built-in functions are available for the PowerPC family
18616 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18618 __vector unsigned int
18619 vec_extract_exp (__vector float source);
18620 __vector unsigned long long int
18621 vec_extract_exp (__vector double source);
18623 __vector unsigned int
18624 vec_extract_sig (__vector float source);
18625 __vector unsigned long long int
18626 vec_extract_sig (__vector double source);
18629 vec_insert_exp (__vector unsigned int significands,
18630 __vector unsigned int exponents);
18632 vec_insert_exp (__vector unsigned float significands,
18633 __vector unsigned int exponents);
18635 vec_insert_exp (__vector unsigned long long int significands,
18636 __vector unsigned long long int exponents);
18638 vec_insert_exp (__vector unsigned double significands,
18639 __vector unsigned long long int exponents);
18641 __vector bool int vec_test_data_class (__vector float source,
18642 const int condition);
18643 __vector bool long long int vec_test_data_class (__vector double source,
18644 const int condition);
18647 The @code{vec_extract_sig} and @code{vec_extract_exp} built-in
18648 functions return vectors representing the significands and biased
18649 exponent values of their @code{source} arguments respectively.
18650 Within the result vector returned by @code{vec_extract_sig}, the
18651 @code{0x800000} bit of each vector element returned when the
18652 function's @code{source} argument is of type @code{float} is set to 1
18653 if the corresponding floating point value is in normalized form.
18654 Otherwise, this bit is set to 0. When the @code{source} argument is
18655 of type @code{double}, the @code{0x10000000000000} bit within each of
18656 the result vector's elements is set according to the same rules.
18657 Note that the sign of the significand is not represented in the result
18658 returned from the @code{vec_extract_sig} function. To extract the
18660 @code{vec_cpsgn} function, which returns a new vector within which all
18661 of the sign bits of its second argument vector are overwritten with the
18662 sign bits copied from the coresponding elements of its first argument
18663 vector, and all other (non-sign) bits of the second argument vector
18664 are copied unchanged into the result vector.
18666 The @code{vec_insert_exp} built-in functions return a vector of
18667 single- or double-precision floating
18668 point values constructed by assembling the values of their
18669 @code{significands} and @code{exponents} arguments into the
18670 corresponding elements of the returned vector.
18672 element of the result is copied from the most significant bit of the
18673 corresponding entry within the @code{significands} argument.
18674 Note that the relevant
18675 bits of the @code{significands} argument are the same, for both integer
18676 and floating point types.
18678 significand and exponent components of each element of the result are
18679 composed of the least significant bits of the corresponding
18680 @code{significands} element and the least significant bits of the
18681 corresponding @code{exponents} element.
18683 The @code{vec_test_data_class} built-in function returns a vector
18684 representing the results of testing the @code{source} vector for the
18685 condition selected by the @code{condition} argument. The
18686 @code{condition} argument must be a compile-time constant integer with
18687 value not exceeding 127. The
18688 @code{condition} argument is encoded as a bitmask with each bit
18689 enabling the testing of a different condition, as characterized by the
18693 0x20 Test for +Infinity
18694 0x10 Test for -Infinity
18695 0x08 Test for +Zero
18696 0x04 Test for -Zero
18697 0x02 Test for +Denormal
18698 0x01 Test for -Denormal
18701 If any of the enabled test conditions is true, the corresponding entry
18702 in the result vector is -1. Otherwise (all of the enabled test
18703 conditions are false), the corresponding entry of the result vector is 0.
18705 The following built-in functions are available for the PowerPC family
18706 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18708 vector unsigned int vec_rlmi (vector unsigned int, vector unsigned int,
18709 vector unsigned int);
18710 vector unsigned long long vec_rlmi (vector unsigned long long,
18711 vector unsigned long long,
18712 vector unsigned long long);
18713 vector unsigned int vec_rlnm (vector unsigned int, vector unsigned int,
18714 vector unsigned int);
18715 vector unsigned long long vec_rlnm (vector unsigned long long,
18716 vector unsigned long long,
18717 vector unsigned long long);
18718 vector unsigned int vec_vrlnm (vector unsigned int, vector unsigned int);
18719 vector unsigned long long vec_vrlnm (vector unsigned long long,
18720 vector unsigned long long);
18723 The result of @code{vec_rlmi} is obtained by rotating each element of
18724 the first argument vector left and inserting it under mask into the
18725 second argument vector. The third argument vector contains the mask
18726 beginning in bits 11:15, the mask end in bits 19:23, and the shift
18727 count in bits 27:31, of each element.
18729 The result of @code{vec_rlnm} is obtained by rotating each element of
18730 the first argument vector left and ANDing it with a mask specified by
18731 the second and third argument vectors. The second argument vector
18732 contains the shift count for each element in the low-order byte. The
18733 third argument vector contains the mask end for each element in the
18734 low-order byte, with the mask begin in the next higher byte.
18736 The result of @code{vec_vrlnm} is obtained by rotating each element
18737 of the first argument vector left and ANDing it with a mask. The
18738 second argument vector contains the mask beginning in bits 11:15,
18739 the mask end in bits 19:23, and the shift count in bits 27:31,
18742 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
18745 vector signed bool char vec_revb (vector signed char);
18746 vector signed char vec_revb (vector signed char);
18747 vector unsigned char vec_revb (vector unsigned char);
18748 vector bool short vec_revb (vector bool short);
18749 vector short vec_revb (vector short);
18750 vector unsigned short vec_revb (vector unsigned short);
18751 vector bool int vec_revb (vector bool int);
18752 vector int vec_revb (vector int);
18753 vector unsigned int vec_revb (vector unsigned int);
18754 vector float vec_revb (vector float);
18755 vector bool long long vec_revb (vector bool long long);
18756 vector long long vec_revb (vector long long);
18757 vector unsigned long long vec_revb (vector unsigned long long);
18758 vector double vec_revb (vector double);
18761 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
18764 vector long vec_revb (vector long);
18765 vector unsigned long vec_revb (vector unsigned long);
18766 vector __int128_t vec_revb (vector __int128_t);
18767 vector __uint128_t vec_revb (vector __uint128_t);
18770 The @code{vec_revb} built-in function reverses the bytes on an element
18771 by element basis. A vector of @code{vector unsigned char} or
18772 @code{vector signed char} reverses the bytes in the whole word.
18774 If the cryptographic instructions are enabled (@option{-mcrypto} or
18775 @option{-mcpu=power8}), the following builtins are enabled.
18778 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
18780 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
18781 vector unsigned long long);
18783 vector unsigned long long __builtin_crypto_vcipherlast
18784 (vector unsigned long long,
18785 vector unsigned long long);
18787 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
18788 vector unsigned long long);
18790 vector unsigned long long __builtin_crypto_vncipherlast
18791 (vector unsigned long long,
18792 vector unsigned long long);
18794 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
18795 vector unsigned char,
18796 vector unsigned char);
18798 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
18799 vector unsigned short,
18800 vector unsigned short);
18802 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
18803 vector unsigned int,
18804 vector unsigned int);
18806 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
18807 vector unsigned long long,
18808 vector unsigned long long);
18810 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
18811 vector unsigned char);
18813 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
18814 vector unsigned short);
18816 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
18817 vector unsigned int);
18819 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
18820 vector unsigned long long);
18822 vector unsigned long long __builtin_crypto_vshasigmad
18823 (vector unsigned long long, int, int);
18825 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
18829 The second argument to @var{__builtin_crypto_vshasigmad} and
18830 @var{__builtin_crypto_vshasigmaw} must be a constant
18831 integer that is 0 or 1. The third argument to these built-in functions
18832 must be a constant integer in the range of 0 to 15.
18834 If the ISA 3.0 instruction set additions
18835 are enabled (@option{-mcpu=power9}), the following additional
18836 functions are available for both 32-bit and 64-bit targets.
18838 vector short vec_xl (int, vector short *);
18839 vector short vec_xl (int, short *);
18840 vector unsigned short vec_xl (int, vector unsigned short *);
18841 vector unsigned short vec_xl (int, unsigned short *);
18842 vector char vec_xl (int, vector char *);
18843 vector char vec_xl (int, char *);
18844 vector unsigned char vec_xl (int, vector unsigned char *);
18845 vector unsigned char vec_xl (int, unsigned char *);
18847 void vec_xst (vector short, int, vector short *);
18848 void vec_xst (vector short, int, short *);
18849 void vec_xst (vector unsigned short, int, vector unsigned short *);
18850 void vec_xst (vector unsigned short, int, unsigned short *);
18851 void vec_xst (vector char, int, vector char *);
18852 void vec_xst (vector char, int, char *);
18853 void vec_xst (vector unsigned char, int, vector unsigned char *);
18854 void vec_xst (vector unsigned char, int, unsigned char *);
18856 @node PowerPC Hardware Transactional Memory Built-in Functions
18857 @subsection PowerPC Hardware Transactional Memory Built-in Functions
18858 GCC provides two interfaces for accessing the Hardware Transactional
18859 Memory (HTM) instructions available on some of the PowerPC family
18860 of processors (eg, POWER8). The two interfaces come in a low level
18861 interface, consisting of built-in functions specific to PowerPC and a
18862 higher level interface consisting of inline functions that are common
18863 between PowerPC and S/390.
18865 @subsubsection PowerPC HTM Low Level Built-in Functions
18867 The following low level built-in functions are available with
18868 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
18869 They all generate the machine instruction that is part of the name.
18871 The HTM builtins (with the exception of @code{__builtin_tbegin}) return
18872 the full 4-bit condition register value set by their associated hardware
18873 instruction. The header file @code{htmintrin.h} defines some macros that can
18874 be used to decipher the return value. The @code{__builtin_tbegin} builtin
18875 returns a simple true or false value depending on whether a transaction was
18876 successfully started or not. The arguments of the builtins match exactly the
18877 type and order of the associated hardware instruction's operands, except for
18878 the @code{__builtin_tcheck} builtin, which does not take any input arguments.
18879 Refer to the ISA manual for a description of each instruction's operands.
18882 unsigned int __builtin_tbegin (unsigned int)
18883 unsigned int __builtin_tend (unsigned int)
18885 unsigned int __builtin_tabort (unsigned int)
18886 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
18887 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
18888 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
18889 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
18891 unsigned int __builtin_tcheck (void)
18892 unsigned int __builtin_treclaim (unsigned int)
18893 unsigned int __builtin_trechkpt (void)
18894 unsigned int __builtin_tsr (unsigned int)
18897 In addition to the above HTM built-ins, we have added built-ins for
18898 some common extended mnemonics of the HTM instructions:
18901 unsigned int __builtin_tendall (void)
18902 unsigned int __builtin_tresume (void)
18903 unsigned int __builtin_tsuspend (void)
18906 Note that the semantics of the above HTM builtins are required to mimic
18907 the locking semantics used for critical sections. Builtins that are used
18908 to create a new transaction or restart a suspended transaction must have
18909 lock acquisition like semantics while those builtins that end or suspend a
18910 transaction must have lock release like semantics. Specifically, this must
18911 mimic lock semantics as specified by C++11, for example: Lock acquisition is
18912 as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
18913 that returns 0, and lock release is as-if an execution of
18914 __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
18915 implicit implementation-defined lock used for all transactions. The HTM
18916 instructions associated with with the builtins inherently provide the
18917 correct acquisition and release hardware barriers required. However,
18918 the compiler must also be prohibited from moving loads and stores across
18919 the builtins in a way that would violate their semantics. This has been
18920 accomplished by adding memory barriers to the associated HTM instructions
18921 (which is a conservative approach to provide acquire and release semantics).
18922 Earlier versions of the compiler did not treat the HTM instructions as
18923 memory barriers. A @code{__TM_FENCE__} macro has been added, which can
18924 be used to determine whether the current compiler treats HTM instructions
18925 as memory barriers or not. This allows the user to explicitly add memory
18926 barriers to their code when using an older version of the compiler.
18928 The following set of built-in functions are available to gain access
18929 to the HTM specific special purpose registers.
18932 unsigned long __builtin_get_texasr (void)
18933 unsigned long __builtin_get_texasru (void)
18934 unsigned long __builtin_get_tfhar (void)
18935 unsigned long __builtin_get_tfiar (void)
18937 void __builtin_set_texasr (unsigned long);
18938 void __builtin_set_texasru (unsigned long);
18939 void __builtin_set_tfhar (unsigned long);
18940 void __builtin_set_tfiar (unsigned long);
18943 Example usage of these low level built-in functions may look like:
18946 #include <htmintrin.h>
18948 int num_retries = 10;
18952 if (__builtin_tbegin (0))
18954 /* Transaction State Initiated. */
18955 if (is_locked (lock))
18956 __builtin_tabort (0);
18957 ... transaction code...
18958 __builtin_tend (0);
18963 /* Transaction State Failed. Use locks if the transaction
18964 failure is "persistent" or we've tried too many times. */
18965 if (num_retries-- <= 0
18966 || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
18968 acquire_lock (lock);
18969 ... non transactional fallback path...
18970 release_lock (lock);
18977 One final built-in function has been added that returns the value of
18978 the 2-bit Transaction State field of the Machine Status Register (MSR)
18979 as stored in @code{CR0}.
18982 unsigned long __builtin_ttest (void)
18985 This built-in can be used to determine the current transaction state
18986 using the following code example:
18989 #include <htmintrin.h>
18991 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
18993 if (tx_state == _HTM_TRANSACTIONAL)
18995 /* Code to use in transactional state. */
18997 else if (tx_state == _HTM_NONTRANSACTIONAL)
18999 /* Code to use in non-transactional state. */
19001 else if (tx_state == _HTM_SUSPENDED)
19003 /* Code to use in transaction suspended state. */
19007 @subsubsection PowerPC HTM High Level Inline Functions
19009 The following high level HTM interface is made available by including
19010 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
19011 where CPU is `power8' or later. This interface is common between PowerPC
19012 and S/390, allowing users to write one HTM source implementation that
19013 can be compiled and executed on either system.
19016 long __TM_simple_begin (void)
19017 long __TM_begin (void* const TM_buff)
19018 long __TM_end (void)
19019 void __TM_abort (void)
19020 void __TM_named_abort (unsigned char const code)
19021 void __TM_resume (void)
19022 void __TM_suspend (void)
19024 long __TM_is_user_abort (void* const TM_buff)
19025 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
19026 long __TM_is_illegal (void* const TM_buff)
19027 long __TM_is_footprint_exceeded (void* const TM_buff)
19028 long __TM_nesting_depth (void* const TM_buff)
19029 long __TM_is_nested_too_deep(void* const TM_buff)
19030 long __TM_is_conflict(void* const TM_buff)
19031 long __TM_is_failure_persistent(void* const TM_buff)
19032 long __TM_failure_address(void* const TM_buff)
19033 long long __TM_failure_code(void* const TM_buff)
19036 Using these common set of HTM inline functions, we can create
19037 a more portable version of the HTM example in the previous
19038 section that will work on either PowerPC or S/390:
19041 #include <htmxlintrin.h>
19043 int num_retries = 10;
19044 TM_buff_type TM_buff;
19048 if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
19050 /* Transaction State Initiated. */
19051 if (is_locked (lock))
19053 ... transaction code...
19059 /* Transaction State Failed. Use locks if the transaction
19060 failure is "persistent" or we've tried too many times. */
19061 if (num_retries-- <= 0
19062 || __TM_is_failure_persistent (TM_buff))
19064 acquire_lock (lock);
19065 ... non transactional fallback path...
19066 release_lock (lock);
19073 @node RX Built-in Functions
19074 @subsection RX Built-in Functions
19075 GCC supports some of the RX instructions which cannot be expressed in
19076 the C programming language via the use of built-in functions. The
19077 following functions are supported:
19079 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
19080 Generates the @code{brk} machine instruction.
19083 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
19084 Generates the @code{clrpsw} machine instruction to clear the specified
19085 bit in the processor status word.
19088 @deftypefn {Built-in Function} void __builtin_rx_int (int)
19089 Generates the @code{int} machine instruction to generate an interrupt
19090 with the specified value.
19093 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
19094 Generates the @code{machi} machine instruction to add the result of
19095 multiplying the top 16 bits of the two arguments into the
19099 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
19100 Generates the @code{maclo} machine instruction to add the result of
19101 multiplying the bottom 16 bits of the two arguments into the
19105 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
19106 Generates the @code{mulhi} machine instruction to place the result of
19107 multiplying the top 16 bits of the two arguments into the
19111 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
19112 Generates the @code{mullo} machine instruction to place the result of
19113 multiplying the bottom 16 bits of the two arguments into the
19117 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
19118 Generates the @code{mvfachi} machine instruction to read the top
19119 32 bits of the accumulator.
19122 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
19123 Generates the @code{mvfacmi} machine instruction to read the middle
19124 32 bits of the accumulator.
19127 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
19128 Generates the @code{mvfc} machine instruction which reads the control
19129 register specified in its argument and returns its value.
19132 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
19133 Generates the @code{mvtachi} machine instruction to set the top
19134 32 bits of the accumulator.
19137 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
19138 Generates the @code{mvtaclo} machine instruction to set the bottom
19139 32 bits of the accumulator.
19142 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
19143 Generates the @code{mvtc} machine instruction which sets control
19144 register number @code{reg} to @code{val}.
19147 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
19148 Generates the @code{mvtipl} machine instruction set the interrupt
19152 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
19153 Generates the @code{racw} machine instruction to round the accumulator
19154 according to the specified mode.
19157 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
19158 Generates the @code{revw} machine instruction which swaps the bytes in
19159 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
19160 and also bits 16--23 occupy bits 24--31 and vice versa.
19163 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
19164 Generates the @code{rmpa} machine instruction which initiates a
19165 repeated multiply and accumulate sequence.
19168 @deftypefn {Built-in Function} void __builtin_rx_round (float)
19169 Generates the @code{round} machine instruction which returns the
19170 floating-point argument rounded according to the current rounding mode
19171 set in the floating-point status word register.
19174 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
19175 Generates the @code{sat} machine instruction which returns the
19176 saturated value of the argument.
19179 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
19180 Generates the @code{setpsw} machine instruction to set the specified
19181 bit in the processor status word.
19184 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
19185 Generates the @code{wait} machine instruction.
19188 @node S/390 System z Built-in Functions
19189 @subsection S/390 System z Built-in Functions
19190 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
19191 Generates the @code{tbegin} machine instruction starting a
19192 non-constrained hardware transaction. If the parameter is non-NULL the
19193 memory area is used to store the transaction diagnostic buffer and
19194 will be passed as first operand to @code{tbegin}. This buffer can be
19195 defined using the @code{struct __htm_tdb} C struct defined in
19196 @code{htmintrin.h} and must reside on a double-word boundary. The
19197 second tbegin operand is set to @code{0xff0c}. This enables
19198 save/restore of all GPRs and disables aborts for FPR and AR
19199 manipulations inside the transaction body. The condition code set by
19200 the tbegin instruction is returned as integer value. The tbegin
19201 instruction by definition overwrites the content of all FPRs. The
19202 compiler will generate code which saves and restores the FPRs. For
19203 soft-float code it is recommended to used the @code{*_nofloat}
19204 variant. In order to prevent a TDB from being written it is required
19205 to pass a constant zero value as parameter. Passing a zero value
19206 through a variable is not sufficient. Although modifications of
19207 access registers inside the transaction will not trigger an
19208 transaction abort it is not supported to actually modify them. Access
19209 registers do not get saved when entering a transaction. They will have
19210 undefined state when reaching the abort code.
19213 Macros for the possible return codes of tbegin are defined in the
19214 @code{htmintrin.h} header file:
19217 @item _HTM_TBEGIN_STARTED
19218 @code{tbegin} has been executed as part of normal processing. The
19219 transaction body is supposed to be executed.
19220 @item _HTM_TBEGIN_INDETERMINATE
19221 The transaction was aborted due to an indeterminate condition which
19222 might be persistent.
19223 @item _HTM_TBEGIN_TRANSIENT
19224 The transaction aborted due to a transient failure. The transaction
19225 should be re-executed in that case.
19226 @item _HTM_TBEGIN_PERSISTENT
19227 The transaction aborted due to a persistent failure. Re-execution
19228 under same circumstances will not be productive.
19231 @defmac _HTM_FIRST_USER_ABORT_CODE
19232 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
19233 specifies the first abort code which can be used for
19234 @code{__builtin_tabort}. Values below this threshold are reserved for
19238 @deftp {Data type} {struct __htm_tdb}
19239 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
19240 the structure of the transaction diagnostic block as specified in the
19241 Principles of Operation manual chapter 5-91.
19244 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
19245 Same as @code{__builtin_tbegin} but without FPR saves and restores.
19246 Using this variant in code making use of FPRs will leave the FPRs in
19247 undefined state when entering the transaction abort handler code.
19250 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
19251 In addition to @code{__builtin_tbegin} a loop for transient failures
19252 is generated. If tbegin returns a condition code of 2 the transaction
19253 will be retried as often as specified in the second argument. The
19254 perform processor assist instruction is used to tell the CPU about the
19255 number of fails so far.
19258 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
19259 Same as @code{__builtin_tbegin_retry} but without FPR saves and
19260 restores. Using this variant in code making use of FPRs will leave
19261 the FPRs in undefined state when entering the transaction abort
19265 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
19266 Generates the @code{tbeginc} machine instruction starting a constrained
19267 hardware transaction. The second operand is set to @code{0xff08}.
19270 @deftypefn {Built-in Function} int __builtin_tend (void)
19271 Generates the @code{tend} machine instruction finishing a transaction
19272 and making the changes visible to other threads. The condition code
19273 generated by tend is returned as integer value.
19276 @deftypefn {Built-in Function} void __builtin_tabort (int)
19277 Generates the @code{tabort} machine instruction with the specified
19278 abort code. Abort codes from 0 through 255 are reserved and will
19279 result in an error message.
19282 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
19283 Generates the @code{ppa rX,rY,1} machine instruction. Where the
19284 integer parameter is loaded into rX and a value of zero is loaded into
19285 rY. The integer parameter specifies the number of times the
19286 transaction repeatedly aborted.
19289 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
19290 Generates the @code{etnd} machine instruction. The current nesting
19291 depth is returned as integer value. For a nesting depth of 0 the code
19292 is not executed as part of an transaction.
19295 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
19297 Generates the @code{ntstg} machine instruction. The second argument
19298 is written to the first arguments location. The store operation will
19299 not be rolled-back in case of an transaction abort.
19302 @node SH Built-in Functions
19303 @subsection SH Built-in Functions
19304 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
19305 families of processors:
19307 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
19308 Sets the @samp{GBR} register to the specified value @var{ptr}. This is usually
19309 used by system code that manages threads and execution contexts. The compiler
19310 normally does not generate code that modifies the contents of @samp{GBR} and
19311 thus the value is preserved across function calls. Changing the @samp{GBR}
19312 value in user code must be done with caution, since the compiler might use
19313 @samp{GBR} in order to access thread local variables.
19317 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
19318 Returns the value that is currently set in the @samp{GBR} register.
19319 Memory loads and stores that use the thread pointer as a base address are
19320 turned into @samp{GBR} based displacement loads and stores, if possible.
19328 int get_tcb_value (void)
19330 // Generate @samp{mov.l @@(8,gbr),r0} instruction
19331 return ((my_tcb*)__builtin_thread_pointer ())->c;
19337 @deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
19338 Returns the value that is currently set in the @samp{FPSCR} register.
19341 @deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
19342 Sets the @samp{FPSCR} register to the specified value @var{val}, while
19343 preserving the current values of the FR, SZ and PR bits.
19346 @node SPARC VIS Built-in Functions
19347 @subsection SPARC VIS Built-in Functions
19349 GCC supports SIMD operations on the SPARC using both the generic vector
19350 extensions (@pxref{Vector Extensions}) as well as built-in functions for
19351 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
19352 switch, the VIS extension is exposed as the following built-in functions:
19355 typedef int v1si __attribute__ ((vector_size (4)));
19356 typedef int v2si __attribute__ ((vector_size (8)));
19357 typedef short v4hi __attribute__ ((vector_size (8)));
19358 typedef short v2hi __attribute__ ((vector_size (4)));
19359 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
19360 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
19362 void __builtin_vis_write_gsr (int64_t);
19363 int64_t __builtin_vis_read_gsr (void);
19365 void * __builtin_vis_alignaddr (void *, long);
19366 void * __builtin_vis_alignaddrl (void *, long);
19367 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
19368 v2si __builtin_vis_faligndatav2si (v2si, v2si);
19369 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
19370 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
19372 v4hi __builtin_vis_fexpand (v4qi);
19374 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
19375 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
19376 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
19377 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
19378 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
19379 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
19380 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
19382 v4qi __builtin_vis_fpack16 (v4hi);
19383 v8qi __builtin_vis_fpack32 (v2si, v8qi);
19384 v2hi __builtin_vis_fpackfix (v2si);
19385 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
19387 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
19389 long __builtin_vis_edge8 (void *, void *);
19390 long __builtin_vis_edge8l (void *, void *);
19391 long __builtin_vis_edge16 (void *, void *);
19392 long __builtin_vis_edge16l (void *, void *);
19393 long __builtin_vis_edge32 (void *, void *);
19394 long __builtin_vis_edge32l (void *, void *);
19396 long __builtin_vis_fcmple16 (v4hi, v4hi);
19397 long __builtin_vis_fcmple32 (v2si, v2si);
19398 long __builtin_vis_fcmpne16 (v4hi, v4hi);
19399 long __builtin_vis_fcmpne32 (v2si, v2si);
19400 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
19401 long __builtin_vis_fcmpgt32 (v2si, v2si);
19402 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
19403 long __builtin_vis_fcmpeq32 (v2si, v2si);
19405 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
19406 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
19407 v2si __builtin_vis_fpadd32 (v2si, v2si);
19408 v1si __builtin_vis_fpadd32s (v1si, v1si);
19409 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
19410 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
19411 v2si __builtin_vis_fpsub32 (v2si, v2si);
19412 v1si __builtin_vis_fpsub32s (v1si, v1si);
19414 long __builtin_vis_array8 (long, long);
19415 long __builtin_vis_array16 (long, long);
19416 long __builtin_vis_array32 (long, long);
19419 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
19420 functions also become available:
19423 long __builtin_vis_bmask (long, long);
19424 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
19425 v2si __builtin_vis_bshufflev2si (v2si, v2si);
19426 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
19427 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
19429 long __builtin_vis_edge8n (void *, void *);
19430 long __builtin_vis_edge8ln (void *, void *);
19431 long __builtin_vis_edge16n (void *, void *);
19432 long __builtin_vis_edge16ln (void *, void *);
19433 long __builtin_vis_edge32n (void *, void *);
19434 long __builtin_vis_edge32ln (void *, void *);
19437 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
19438 functions also become available:
19441 void __builtin_vis_cmask8 (long);
19442 void __builtin_vis_cmask16 (long);
19443 void __builtin_vis_cmask32 (long);
19445 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
19447 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
19448 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
19449 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
19450 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
19451 v2si __builtin_vis_fsll16 (v2si, v2si);
19452 v2si __builtin_vis_fslas16 (v2si, v2si);
19453 v2si __builtin_vis_fsrl16 (v2si, v2si);
19454 v2si __builtin_vis_fsra16 (v2si, v2si);
19456 long __builtin_vis_pdistn (v8qi, v8qi);
19458 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
19460 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
19461 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
19463 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
19464 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
19465 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
19466 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
19467 v2si __builtin_vis_fpadds32 (v2si, v2si);
19468 v1si __builtin_vis_fpadds32s (v1si, v1si);
19469 v2si __builtin_vis_fpsubs32 (v2si, v2si);
19470 v1si __builtin_vis_fpsubs32s (v1si, v1si);
19472 long __builtin_vis_fucmple8 (v8qi, v8qi);
19473 long __builtin_vis_fucmpne8 (v8qi, v8qi);
19474 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
19475 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
19477 float __builtin_vis_fhadds (float, float);
19478 double __builtin_vis_fhaddd (double, double);
19479 float __builtin_vis_fhsubs (float, float);
19480 double __builtin_vis_fhsubd (double, double);
19481 float __builtin_vis_fnhadds (float, float);
19482 double __builtin_vis_fnhaddd (double, double);
19484 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
19485 int64_t __builtin_vis_xmulx (int64_t, int64_t);
19486 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
19489 When you use the @option{-mvis4} switch, the VIS version 4.0 built-in
19490 functions also become available:
19493 v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
19494 v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
19495 v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
19496 v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);
19498 v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
19499 v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
19500 v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
19501 v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);
19503 long __builtin_vis_fpcmple8 (v8qi, v8qi);
19504 long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
19505 long __builtin_vis_fpcmpule16 (v4hi, v4hi);
19506 long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
19507 long __builtin_vis_fpcmpule32 (v2si, v2si);
19508 long __builtin_vis_fpcmpugt32 (v2si, v2si);
19510 v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
19511 v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
19512 v2si __builtin_vis_fpmax32 (v2si, v2si);
19514 v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
19515 v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
19516 v2si __builtin_vis_fpmaxu32 (v2si, v2si);
19519 v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
19520 v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
19521 v2si __builtin_vis_fpmin32 (v2si, v2si);
19523 v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
19524 v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
19525 v2si __builtin_vis_fpminu32 (v2si, v2si);
19528 When you use the @option{-mvis4b} switch, the VIS version 4.0B
19529 built-in functions also become available:
19532 v8qi __builtin_vis_dictunpack8 (double, int);
19533 v4hi __builtin_vis_dictunpack16 (double, int);
19534 v2si __builtin_vis_dictunpack32 (double, int);
19536 long __builtin_vis_fpcmple8shl (v8qi, v8qi, int);
19537 long __builtin_vis_fpcmpgt8shl (v8qi, v8qi, int);
19538 long __builtin_vis_fpcmpeq8shl (v8qi, v8qi, int);
19539 long __builtin_vis_fpcmpne8shl (v8qi, v8qi, int);
19541 long __builtin_vis_fpcmple16shl (v4hi, v4hi, int);
19542 long __builtin_vis_fpcmpgt16shl (v4hi, v4hi, int);
19543 long __builtin_vis_fpcmpeq16shl (v4hi, v4hi, int);
19544 long __builtin_vis_fpcmpne16shl (v4hi, v4hi, int);
19546 long __builtin_vis_fpcmple32shl (v2si, v2si, int);
19547 long __builtin_vis_fpcmpgt32shl (v2si, v2si, int);
19548 long __builtin_vis_fpcmpeq32shl (v2si, v2si, int);
19549 long __builtin_vis_fpcmpne32shl (v2si, v2si, int);
19551 long __builtin_vis_fpcmpule8shl (v8qi, v8qi, int);
19552 long __builtin_vis_fpcmpugt8shl (v8qi, v8qi, int);
19553 long __builtin_vis_fpcmpule16shl (v4hi, v4hi, int);
19554 long __builtin_vis_fpcmpugt16shl (v4hi, v4hi, int);
19555 long __builtin_vis_fpcmpule32shl (v2si, v2si, int);
19556 long __builtin_vis_fpcmpugt32shl (v2si, v2si, int);
19558 long __builtin_vis_fpcmpde8shl (v8qi, v8qi, int);
19559 long __builtin_vis_fpcmpde16shl (v4hi, v4hi, int);
19560 long __builtin_vis_fpcmpde32shl (v2si, v2si, int);
19562 long __builtin_vis_fpcmpur8shl (v8qi, v8qi, int);
19563 long __builtin_vis_fpcmpur16shl (v4hi, v4hi, int);
19564 long __builtin_vis_fpcmpur32shl (v2si, v2si, int);
19567 @node SPU Built-in Functions
19568 @subsection SPU Built-in Functions
19570 GCC provides extensions for the SPU processor as described in the
19571 Sony/Toshiba/IBM SPU Language Extensions Specification. GCC's
19572 implementation differs in several ways.
19577 The optional extension of specifying vector constants in parentheses is
19581 A vector initializer requires no cast if the vector constant is of the
19582 same type as the variable it is initializing.
19585 If @code{signed} or @code{unsigned} is omitted, the signedness of the
19586 vector type is the default signedness of the base type. The default
19587 varies depending on the operating system, so a portable program should
19588 always specify the signedness.
19591 By default, the keyword @code{__vector} is added. The macro
19592 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
19596 GCC allows using a @code{typedef} name as the type specifier for a
19600 For C, overloaded functions are implemented with macros so the following
19604 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
19608 Since @code{spu_add} is a macro, the vector constant in the example
19609 is treated as four separate arguments. Wrap the entire argument in
19610 parentheses for this to work.
19613 The extended version of @code{__builtin_expect} is not supported.
19617 @emph{Note:} Only the interface described in the aforementioned
19618 specification is supported. Internally, GCC uses built-in functions to
19619 implement the required functionality, but these are not supported and
19620 are subject to change without notice.
19622 @node TI C6X Built-in Functions
19623 @subsection TI C6X Built-in Functions
19625 GCC provides intrinsics to access certain instructions of the TI C6X
19626 processors. These intrinsics, listed below, are available after
19627 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
19628 to C6X instructions.
19632 int _sadd (int, int)
19633 int _ssub (int, int)
19634 int _sadd2 (int, int)
19635 int _ssub2 (int, int)
19636 long long _mpy2 (int, int)
19637 long long _smpy2 (int, int)
19638 int _add4 (int, int)
19639 int _sub4 (int, int)
19640 int _saddu4 (int, int)
19642 int _smpy (int, int)
19643 int _smpyh (int, int)
19644 int _smpyhl (int, int)
19645 int _smpylh (int, int)
19647 int _sshl (int, int)
19648 int _subc (int, int)
19650 int _avg2 (int, int)
19651 int _avgu4 (int, int)
19653 int _clrr (int, int)
19654 int _extr (int, int)
19655 int _extru (int, int)
19661 @node TILE-Gx Built-in Functions
19662 @subsection TILE-Gx Built-in Functions
19664 GCC provides intrinsics to access every instruction of the TILE-Gx
19665 processor. The intrinsics are of the form:
19669 unsigned long long __insn_@var{op} (...)
19673 Where @var{op} is the name of the instruction. Refer to the ISA manual
19674 for the complete list of instructions.
19676 GCC also provides intrinsics to directly access the network registers.
19677 The intrinsics are:
19681 unsigned long long __tile_idn0_receive (void)
19682 unsigned long long __tile_idn1_receive (void)
19683 unsigned long long __tile_udn0_receive (void)
19684 unsigned long long __tile_udn1_receive (void)
19685 unsigned long long __tile_udn2_receive (void)
19686 unsigned long long __tile_udn3_receive (void)
19687 void __tile_idn_send (unsigned long long)
19688 void __tile_udn_send (unsigned long long)
19692 The intrinsic @code{void __tile_network_barrier (void)} is used to
19693 guarantee that no network operations before it are reordered with
19696 @node TILEPro Built-in Functions
19697 @subsection TILEPro Built-in Functions
19699 GCC provides intrinsics to access every instruction of the TILEPro
19700 processor. The intrinsics are of the form:
19704 unsigned __insn_@var{op} (...)
19709 where @var{op} is the name of the instruction. Refer to the ISA manual
19710 for the complete list of instructions.
19712 GCC also provides intrinsics to directly access the network registers.
19713 The intrinsics are:
19717 unsigned __tile_idn0_receive (void)
19718 unsigned __tile_idn1_receive (void)
19719 unsigned __tile_sn_receive (void)
19720 unsigned __tile_udn0_receive (void)
19721 unsigned __tile_udn1_receive (void)
19722 unsigned __tile_udn2_receive (void)
19723 unsigned __tile_udn3_receive (void)
19724 void __tile_idn_send (unsigned)
19725 void __tile_sn_send (unsigned)
19726 void __tile_udn_send (unsigned)
19730 The intrinsic @code{void __tile_network_barrier (void)} is used to
19731 guarantee that no network operations before it are reordered with
19734 @node x86 Built-in Functions
19735 @subsection x86 Built-in Functions
19737 These built-in functions are available for the x86-32 and x86-64 family
19738 of computers, depending on the command-line switches used.
19740 If you specify command-line switches such as @option{-msse},
19741 the compiler could use the extended instruction sets even if the built-ins
19742 are not used explicitly in the program. For this reason, applications
19743 that perform run-time CPU detection must compile separate files for each
19744 supported architecture, using the appropriate flags. In particular,
19745 the file containing the CPU detection code should be compiled without
19748 The following machine modes are available for use with MMX built-in functions
19749 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
19750 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
19751 vector of eight 8-bit integers. Some of the built-in functions operate on
19752 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
19754 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
19755 of two 32-bit floating-point values.
19757 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
19758 floating-point values. Some instructions use a vector of four 32-bit
19759 integers, these use @code{V4SI}. Finally, some instructions operate on an
19760 entire vector register, interpreting it as a 128-bit integer, these use mode
19763 The x86-32 and x86-64 family of processors use additional built-in
19764 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
19765 floating point and @code{TC} 128-bit complex floating-point values.
19767 The following floating-point built-in functions are always available. All
19768 of them implement the function that is part of the name.
19771 __float128 __builtin_fabsq (__float128)
19772 __float128 __builtin_copysignq (__float128, __float128)
19775 The following built-in functions are always available.
19778 @item __float128 __builtin_infq (void)
19779 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
19780 @findex __builtin_infq
19782 @item __float128 __builtin_huge_valq (void)
19783 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
19784 @findex __builtin_huge_valq
19786 @item __float128 __builtin_nanq (void)
19787 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
19788 @findex __builtin_nanq
19790 @item __float128 __builtin_nansq (void)
19791 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
19792 @findex __builtin_nansq
19795 The following built-in function is always available.
19798 @item void __builtin_ia32_pause (void)
19799 Generates the @code{pause} machine instruction with a compiler memory
19803 The following built-in functions are always available and can be used to
19804 check the target platform type.
19806 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
19807 This function runs the CPU detection code to check the type of CPU and the
19808 features supported. This built-in function needs to be invoked along with the built-in functions
19809 to check CPU type and features, @code{__builtin_cpu_is} and
19810 @code{__builtin_cpu_supports}, only when used in a function that is
19811 executed before any constructors are called. The CPU detection code is
19812 automatically executed in a very high priority constructor.
19814 For example, this function has to be used in @code{ifunc} resolvers that
19815 check for CPU type using the built-in functions @code{__builtin_cpu_is}
19816 and @code{__builtin_cpu_supports}, or in constructors on targets that
19817 don't support constructor priority.
19820 static void (*resolve_memcpy (void)) (void)
19822 // ifunc resolvers fire before constructors, explicitly call the init
19824 __builtin_cpu_init ();
19825 if (__builtin_cpu_supports ("ssse3"))
19826 return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
19828 return default_memcpy;
19831 void *memcpy (void *, const void *, size_t)
19832 __attribute__ ((ifunc ("resolve_memcpy")));
19837 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
19838 This function returns a positive integer if the run-time CPU
19839 is of type @var{cpuname}
19840 and returns @code{0} otherwise. The following CPU names can be detected:
19856 Intel Core i7 Nehalem CPU.
19859 Intel Core i7 Westmere CPU.
19862 Intel Core i7 Sandy Bridge CPU.
19868 AMD Family 10h CPU.
19871 AMD Family 10h Barcelona CPU.
19874 AMD Family 10h Shanghai CPU.
19877 AMD Family 10h Istanbul CPU.
19880 AMD Family 14h CPU.
19883 AMD Family 15h CPU.
19886 AMD Family 15h Bulldozer version 1.
19889 AMD Family 15h Bulldozer version 2.
19892 AMD Family 15h Bulldozer version 3.
19895 AMD Family 15h Bulldozer version 4.
19898 AMD Family 16h CPU.
19901 AMD Family 17h CPU.
19904 Here is an example:
19906 if (__builtin_cpu_is ("corei7"))
19908 do_corei7 (); // Core i7 specific implementation.
19912 do_generic (); // Generic implementation.
19917 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
19918 This function returns a positive integer if the run-time CPU
19919 supports @var{feature}
19920 and returns @code{0} otherwise. The following features can be detected:
19928 POPCNT instruction.
19936 SSSE3 instructions.
19938 SSE4.1 instructions.
19940 SSE4.2 instructions.
19946 AVX512F instructions.
19949 Here is an example:
19951 if (__builtin_cpu_supports ("popcnt"))
19953 asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
19957 count = generic_countbits (n); //generic implementation.
19963 The following built-in functions are made available by @option{-mmmx}.
19964 All of them generate the machine instruction that is part of the name.
19967 v8qi __builtin_ia32_paddb (v8qi, v8qi)
19968 v4hi __builtin_ia32_paddw (v4hi, v4hi)
19969 v2si __builtin_ia32_paddd (v2si, v2si)
19970 v8qi __builtin_ia32_psubb (v8qi, v8qi)
19971 v4hi __builtin_ia32_psubw (v4hi, v4hi)
19972 v2si __builtin_ia32_psubd (v2si, v2si)
19973 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
19974 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
19975 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
19976 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
19977 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
19978 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
19979 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
19980 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
19981 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
19982 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
19983 di __builtin_ia32_pand (di, di)
19984 di __builtin_ia32_pandn (di,di)
19985 di __builtin_ia32_por (di, di)
19986 di __builtin_ia32_pxor (di, di)
19987 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
19988 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
19989 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
19990 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
19991 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
19992 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
19993 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
19994 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
19995 v2si __builtin_ia32_punpckhdq (v2si, v2si)
19996 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
19997 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
19998 v2si __builtin_ia32_punpckldq (v2si, v2si)
19999 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
20000 v4hi __builtin_ia32_packssdw (v2si, v2si)
20001 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
20003 v4hi __builtin_ia32_psllw (v4hi, v4hi)
20004 v2si __builtin_ia32_pslld (v2si, v2si)
20005 v1di __builtin_ia32_psllq (v1di, v1di)
20006 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
20007 v2si __builtin_ia32_psrld (v2si, v2si)
20008 v1di __builtin_ia32_psrlq (v1di, v1di)
20009 v4hi __builtin_ia32_psraw (v4hi, v4hi)
20010 v2si __builtin_ia32_psrad (v2si, v2si)
20011 v4hi __builtin_ia32_psllwi (v4hi, int)
20012 v2si __builtin_ia32_pslldi (v2si, int)
20013 v1di __builtin_ia32_psllqi (v1di, int)
20014 v4hi __builtin_ia32_psrlwi (v4hi, int)
20015 v2si __builtin_ia32_psrldi (v2si, int)
20016 v1di __builtin_ia32_psrlqi (v1di, int)
20017 v4hi __builtin_ia32_psrawi (v4hi, int)
20018 v2si __builtin_ia32_psradi (v2si, int)
20022 The following built-in functions are made available either with
20023 @option{-msse}, or with @option{-m3dnowa}. All of them generate
20024 the machine instruction that is part of the name.
20027 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
20028 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
20029 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
20030 v1di __builtin_ia32_psadbw (v8qi, v8qi)
20031 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
20032 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
20033 v8qi __builtin_ia32_pminub (v8qi, v8qi)
20034 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
20035 int __builtin_ia32_pmovmskb (v8qi)
20036 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
20037 void __builtin_ia32_movntq (di *, di)
20038 void __builtin_ia32_sfence (void)
20041 The following built-in functions are available when @option{-msse} is used.
20042 All of them generate the machine instruction that is part of the name.
20045 int __builtin_ia32_comieq (v4sf, v4sf)
20046 int __builtin_ia32_comineq (v4sf, v4sf)
20047 int __builtin_ia32_comilt (v4sf, v4sf)
20048 int __builtin_ia32_comile (v4sf, v4sf)
20049 int __builtin_ia32_comigt (v4sf, v4sf)
20050 int __builtin_ia32_comige (v4sf, v4sf)
20051 int __builtin_ia32_ucomieq (v4sf, v4sf)
20052 int __builtin_ia32_ucomineq (v4sf, v4sf)
20053 int __builtin_ia32_ucomilt (v4sf, v4sf)
20054 int __builtin_ia32_ucomile (v4sf, v4sf)
20055 int __builtin_ia32_ucomigt (v4sf, v4sf)
20056 int __builtin_ia32_ucomige (v4sf, v4sf)
20057 v4sf __builtin_ia32_addps (v4sf, v4sf)
20058 v4sf __builtin_ia32_subps (v4sf, v4sf)
20059 v4sf __builtin_ia32_mulps (v4sf, v4sf)
20060 v4sf __builtin_ia32_divps (v4sf, v4sf)
20061 v4sf __builtin_ia32_addss (v4sf, v4sf)
20062 v4sf __builtin_ia32_subss (v4sf, v4sf)
20063 v4sf __builtin_ia32_mulss (v4sf, v4sf)
20064 v4sf __builtin_ia32_divss (v4sf, v4sf)
20065 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
20066 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
20067 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
20068 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
20069 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
20070 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
20071 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
20072 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
20073 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
20074 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
20075 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
20076 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
20077 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
20078 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
20079 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
20080 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
20081 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
20082 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
20083 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
20084 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
20085 v4sf __builtin_ia32_maxps (v4sf, v4sf)
20086 v4sf __builtin_ia32_maxss (v4sf, v4sf)
20087 v4sf __builtin_ia32_minps (v4sf, v4sf)
20088 v4sf __builtin_ia32_minss (v4sf, v4sf)
20089 v4sf __builtin_ia32_andps (v4sf, v4sf)
20090 v4sf __builtin_ia32_andnps (v4sf, v4sf)
20091 v4sf __builtin_ia32_orps (v4sf, v4sf)
20092 v4sf __builtin_ia32_xorps (v4sf, v4sf)
20093 v4sf __builtin_ia32_movss (v4sf, v4sf)
20094 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
20095 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
20096 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
20097 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
20098 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
20099 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
20100 v2si __builtin_ia32_cvtps2pi (v4sf)
20101 int __builtin_ia32_cvtss2si (v4sf)
20102 v2si __builtin_ia32_cvttps2pi (v4sf)
20103 int __builtin_ia32_cvttss2si (v4sf)
20104 v4sf __builtin_ia32_rcpps (v4sf)
20105 v4sf __builtin_ia32_rsqrtps (v4sf)
20106 v4sf __builtin_ia32_sqrtps (v4sf)
20107 v4sf __builtin_ia32_rcpss (v4sf)
20108 v4sf __builtin_ia32_rsqrtss (v4sf)
20109 v4sf __builtin_ia32_sqrtss (v4sf)
20110 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
20111 void __builtin_ia32_movntps (float *, v4sf)
20112 int __builtin_ia32_movmskps (v4sf)
20115 The following built-in functions are available when @option{-msse} is used.
20118 @item v4sf __builtin_ia32_loadups (float *)
20119 Generates the @code{movups} machine instruction as a load from memory.
20120 @item void __builtin_ia32_storeups (float *, v4sf)
20121 Generates the @code{movups} machine instruction as a store to memory.
20122 @item v4sf __builtin_ia32_loadss (float *)
20123 Generates the @code{movss} machine instruction as a load from memory.
20124 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
20125 Generates the @code{movhps} machine instruction as a load from memory.
20126 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
20127 Generates the @code{movlps} machine instruction as a load from memory
20128 @item void __builtin_ia32_storehps (v2sf *, v4sf)
20129 Generates the @code{movhps} machine instruction as a store to memory.
20130 @item void __builtin_ia32_storelps (v2sf *, v4sf)
20131 Generates the @code{movlps} machine instruction as a store to memory.
20134 The following built-in functions are available when @option{-msse2} is used.
20135 All of them generate the machine instruction that is part of the name.
20138 int __builtin_ia32_comisdeq (v2df, v2df)
20139 int __builtin_ia32_comisdlt (v2df, v2df)
20140 int __builtin_ia32_comisdle (v2df, v2df)
20141 int __builtin_ia32_comisdgt (v2df, v2df)
20142 int __builtin_ia32_comisdge (v2df, v2df)
20143 int __builtin_ia32_comisdneq (v2df, v2df)
20144 int __builtin_ia32_ucomisdeq (v2df, v2df)
20145 int __builtin_ia32_ucomisdlt (v2df, v2df)
20146 int __builtin_ia32_ucomisdle (v2df, v2df)
20147 int __builtin_ia32_ucomisdgt (v2df, v2df)
20148 int __builtin_ia32_ucomisdge (v2df, v2df)
20149 int __builtin_ia32_ucomisdneq (v2df, v2df)
20150 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
20151 v2df __builtin_ia32_cmpltpd (v2df, v2df)
20152 v2df __builtin_ia32_cmplepd (v2df, v2df)
20153 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
20154 v2df __builtin_ia32_cmpgepd (v2df, v2df)
20155 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
20156 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
20157 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
20158 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
20159 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
20160 v2df __builtin_ia32_cmpngepd (v2df, v2df)
20161 v2df __builtin_ia32_cmpordpd (v2df, v2df)
20162 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
20163 v2df __builtin_ia32_cmpltsd (v2df, v2df)
20164 v2df __builtin_ia32_cmplesd (v2df, v2df)
20165 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
20166 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
20167 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
20168 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
20169 v2df __builtin_ia32_cmpordsd (v2df, v2df)
20170 v2di __builtin_ia32_paddq (v2di, v2di)
20171 v2di __builtin_ia32_psubq (v2di, v2di)
20172 v2df __builtin_ia32_addpd (v2df, v2df)
20173 v2df __builtin_ia32_subpd (v2df, v2df)
20174 v2df __builtin_ia32_mulpd (v2df, v2df)
20175 v2df __builtin_ia32_divpd (v2df, v2df)
20176 v2df __builtin_ia32_addsd (v2df, v2df)
20177 v2df __builtin_ia32_subsd (v2df, v2df)
20178 v2df __builtin_ia32_mulsd (v2df, v2df)
20179 v2df __builtin_ia32_divsd (v2df, v2df)
20180 v2df __builtin_ia32_minpd (v2df, v2df)
20181 v2df __builtin_ia32_maxpd (v2df, v2df)
20182 v2df __builtin_ia32_minsd (v2df, v2df)
20183 v2df __builtin_ia32_maxsd (v2df, v2df)
20184 v2df __builtin_ia32_andpd (v2df, v2df)
20185 v2df __builtin_ia32_andnpd (v2df, v2df)
20186 v2df __builtin_ia32_orpd (v2df, v2df)
20187 v2df __builtin_ia32_xorpd (v2df, v2df)
20188 v2df __builtin_ia32_movsd (v2df, v2df)
20189 v2df __builtin_ia32_unpckhpd (v2df, v2df)
20190 v2df __builtin_ia32_unpcklpd (v2df, v2df)
20191 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
20192 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
20193 v4si __builtin_ia32_paddd128 (v4si, v4si)
20194 v2di __builtin_ia32_paddq128 (v2di, v2di)
20195 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
20196 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
20197 v4si __builtin_ia32_psubd128 (v4si, v4si)
20198 v2di __builtin_ia32_psubq128 (v2di, v2di)
20199 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
20200 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
20201 v2di __builtin_ia32_pand128 (v2di, v2di)
20202 v2di __builtin_ia32_pandn128 (v2di, v2di)
20203 v2di __builtin_ia32_por128 (v2di, v2di)
20204 v2di __builtin_ia32_pxor128 (v2di, v2di)
20205 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
20206 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
20207 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
20208 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
20209 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
20210 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
20211 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
20212 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
20213 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
20214 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
20215 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
20216 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
20217 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
20218 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
20219 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
20220 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
20221 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
20222 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
20223 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
20224 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
20225 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
20226 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
20227 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
20228 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
20229 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
20230 v2df __builtin_ia32_loadupd (double *)
20231 void __builtin_ia32_storeupd (double *, v2df)
20232 v2df __builtin_ia32_loadhpd (v2df, double const *)
20233 v2df __builtin_ia32_loadlpd (v2df, double const *)
20234 int __builtin_ia32_movmskpd (v2df)
20235 int __builtin_ia32_pmovmskb128 (v16qi)
20236 void __builtin_ia32_movnti (int *, int)
20237 void __builtin_ia32_movnti64 (long long int *, long long int)
20238 void __builtin_ia32_movntpd (double *, v2df)
20239 void __builtin_ia32_movntdq (v2df *, v2df)
20240 v4si __builtin_ia32_pshufd (v4si, int)
20241 v8hi __builtin_ia32_pshuflw (v8hi, int)
20242 v8hi __builtin_ia32_pshufhw (v8hi, int)
20243 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
20244 v2df __builtin_ia32_sqrtpd (v2df)
20245 v2df __builtin_ia32_sqrtsd (v2df)
20246 v2df __builtin_ia32_shufpd (v2df, v2df, int)
20247 v2df __builtin_ia32_cvtdq2pd (v4si)
20248 v4sf __builtin_ia32_cvtdq2ps (v4si)
20249 v4si __builtin_ia32_cvtpd2dq (v2df)
20250 v2si __builtin_ia32_cvtpd2pi (v2df)
20251 v4sf __builtin_ia32_cvtpd2ps (v2df)
20252 v4si __builtin_ia32_cvttpd2dq (v2df)
20253 v2si __builtin_ia32_cvttpd2pi (v2df)
20254 v2df __builtin_ia32_cvtpi2pd (v2si)
20255 int __builtin_ia32_cvtsd2si (v2df)
20256 int __builtin_ia32_cvttsd2si (v2df)
20257 long long __builtin_ia32_cvtsd2si64 (v2df)
20258 long long __builtin_ia32_cvttsd2si64 (v2df)
20259 v4si __builtin_ia32_cvtps2dq (v4sf)
20260 v2df __builtin_ia32_cvtps2pd (v4sf)
20261 v4si __builtin_ia32_cvttps2dq (v4sf)
20262 v2df __builtin_ia32_cvtsi2sd (v2df, int)
20263 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
20264 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
20265 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
20266 void __builtin_ia32_clflush (const void *)
20267 void __builtin_ia32_lfence (void)
20268 void __builtin_ia32_mfence (void)
20269 v16qi __builtin_ia32_loaddqu (const char *)
20270 void __builtin_ia32_storedqu (char *, v16qi)
20271 v1di __builtin_ia32_pmuludq (v2si, v2si)
20272 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
20273 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
20274 v4si __builtin_ia32_pslld128 (v4si, v4si)
20275 v2di __builtin_ia32_psllq128 (v2di, v2di)
20276 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
20277 v4si __builtin_ia32_psrld128 (v4si, v4si)
20278 v2di __builtin_ia32_psrlq128 (v2di, v2di)
20279 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
20280 v4si __builtin_ia32_psrad128 (v4si, v4si)
20281 v2di __builtin_ia32_pslldqi128 (v2di, int)
20282 v8hi __builtin_ia32_psllwi128 (v8hi, int)
20283 v4si __builtin_ia32_pslldi128 (v4si, int)
20284 v2di __builtin_ia32_psllqi128 (v2di, int)
20285 v2di __builtin_ia32_psrldqi128 (v2di, int)
20286 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
20287 v4si __builtin_ia32_psrldi128 (v4si, int)
20288 v2di __builtin_ia32_psrlqi128 (v2di, int)
20289 v8hi __builtin_ia32_psrawi128 (v8hi, int)
20290 v4si __builtin_ia32_psradi128 (v4si, int)
20291 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
20292 v2di __builtin_ia32_movq128 (v2di)
20295 The following built-in functions are available when @option{-msse3} is used.
20296 All of them generate the machine instruction that is part of the name.
20299 v2df __builtin_ia32_addsubpd (v2df, v2df)
20300 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
20301 v2df __builtin_ia32_haddpd (v2df, v2df)
20302 v4sf __builtin_ia32_haddps (v4sf, v4sf)
20303 v2df __builtin_ia32_hsubpd (v2df, v2df)
20304 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
20305 v16qi __builtin_ia32_lddqu (char const *)
20306 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
20307 v4sf __builtin_ia32_movshdup (v4sf)
20308 v4sf __builtin_ia32_movsldup (v4sf)
20309 void __builtin_ia32_mwait (unsigned int, unsigned int)
20312 The following built-in functions are available when @option{-mssse3} is used.
20313 All of them generate the machine instruction that is part of the name.
20316 v2si __builtin_ia32_phaddd (v2si, v2si)
20317 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
20318 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
20319 v2si __builtin_ia32_phsubd (v2si, v2si)
20320 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
20321 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
20322 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
20323 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
20324 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
20325 v8qi __builtin_ia32_psignb (v8qi, v8qi)
20326 v2si __builtin_ia32_psignd (v2si, v2si)
20327 v4hi __builtin_ia32_psignw (v4hi, v4hi)
20328 v1di __builtin_ia32_palignr (v1di, v1di, int)
20329 v8qi __builtin_ia32_pabsb (v8qi)
20330 v2si __builtin_ia32_pabsd (v2si)
20331 v4hi __builtin_ia32_pabsw (v4hi)
20334 The following built-in functions are available when @option{-mssse3} is used.
20335 All of them generate the machine instruction that is part of the name.
20338 v4si __builtin_ia32_phaddd128 (v4si, v4si)
20339 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
20340 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
20341 v4si __builtin_ia32_phsubd128 (v4si, v4si)
20342 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
20343 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
20344 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
20345 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
20346 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
20347 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
20348 v4si __builtin_ia32_psignd128 (v4si, v4si)
20349 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
20350 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
20351 v16qi __builtin_ia32_pabsb128 (v16qi)
20352 v4si __builtin_ia32_pabsd128 (v4si)
20353 v8hi __builtin_ia32_pabsw128 (v8hi)
20356 The following built-in functions are available when @option{-msse4.1} is
20357 used. All of them generate the machine instruction that is part of the
20361 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
20362 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
20363 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
20364 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
20365 v2df __builtin_ia32_dppd (v2df, v2df, const int)
20366 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
20367 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
20368 v2di __builtin_ia32_movntdqa (v2di *);
20369 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
20370 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
20371 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
20372 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
20373 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
20374 v8hi __builtin_ia32_phminposuw128 (v8hi)
20375 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
20376 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
20377 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
20378 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
20379 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
20380 v4si __builtin_ia32_pminsd128 (v4si, v4si)
20381 v4si __builtin_ia32_pminud128 (v4si, v4si)
20382 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
20383 v4si __builtin_ia32_pmovsxbd128 (v16qi)
20384 v2di __builtin_ia32_pmovsxbq128 (v16qi)
20385 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
20386 v2di __builtin_ia32_pmovsxdq128 (v4si)
20387 v4si __builtin_ia32_pmovsxwd128 (v8hi)
20388 v2di __builtin_ia32_pmovsxwq128 (v8hi)
20389 v4si __builtin_ia32_pmovzxbd128 (v16qi)
20390 v2di __builtin_ia32_pmovzxbq128 (v16qi)
20391 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
20392 v2di __builtin_ia32_pmovzxdq128 (v4si)
20393 v4si __builtin_ia32_pmovzxwd128 (v8hi)
20394 v2di __builtin_ia32_pmovzxwq128 (v8hi)
20395 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
20396 v4si __builtin_ia32_pmulld128 (v4si, v4si)
20397 int __builtin_ia32_ptestc128 (v2di, v2di)
20398 int __builtin_ia32_ptestnzc128 (v2di, v2di)
20399 int __builtin_ia32_ptestz128 (v2di, v2di)
20400 v2df __builtin_ia32_roundpd (v2df, const int)
20401 v4sf __builtin_ia32_roundps (v4sf, const int)
20402 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
20403 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
20406 The following built-in functions are available when @option{-msse4.1} is
20410 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
20411 Generates the @code{insertps} machine instruction.
20412 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
20413 Generates the @code{pextrb} machine instruction.
20414 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
20415 Generates the @code{pinsrb} machine instruction.
20416 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
20417 Generates the @code{pinsrd} machine instruction.
20418 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
20419 Generates the @code{pinsrq} machine instruction in 64bit mode.
20422 The following built-in functions are changed to generate new SSE4.1
20423 instructions when @option{-msse4.1} is used.
20426 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
20427 Generates the @code{extractps} machine instruction.
20428 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
20429 Generates the @code{pextrd} machine instruction.
20430 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
20431 Generates the @code{pextrq} machine instruction in 64bit mode.
20434 The following built-in functions are available when @option{-msse4.2} is
20435 used. All of them generate the machine instruction that is part of the
20439 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
20440 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
20441 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
20442 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
20443 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
20444 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
20445 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
20446 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
20447 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
20448 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
20449 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
20450 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
20451 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
20452 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
20453 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
20456 The following built-in functions are available when @option{-msse4.2} is
20460 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
20461 Generates the @code{crc32b} machine instruction.
20462 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
20463 Generates the @code{crc32w} machine instruction.
20464 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
20465 Generates the @code{crc32l} machine instruction.
20466 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
20467 Generates the @code{crc32q} machine instruction.
20470 The following built-in functions are changed to generate new SSE4.2
20471 instructions when @option{-msse4.2} is used.
20474 @item int __builtin_popcount (unsigned int)
20475 Generates the @code{popcntl} machine instruction.
20476 @item int __builtin_popcountl (unsigned long)
20477 Generates the @code{popcntl} or @code{popcntq} machine instruction,
20478 depending on the size of @code{unsigned long}.
20479 @item int __builtin_popcountll (unsigned long long)
20480 Generates the @code{popcntq} machine instruction.
20483 The following built-in functions are available when @option{-mavx} is
20484 used. All of them generate the machine instruction that is part of the
20488 v4df __builtin_ia32_addpd256 (v4df,v4df)
20489 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
20490 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
20491 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
20492 v4df __builtin_ia32_andnpd256 (v4df,v4df)
20493 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
20494 v4df __builtin_ia32_andpd256 (v4df,v4df)
20495 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
20496 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
20497 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
20498 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
20499 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
20500 v2df __builtin_ia32_cmppd (v2df,v2df,int)
20501 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
20502 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
20503 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
20504 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
20505 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
20506 v4df __builtin_ia32_cvtdq2pd256 (v4si)
20507 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
20508 v4si __builtin_ia32_cvtpd2dq256 (v4df)
20509 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
20510 v8si __builtin_ia32_cvtps2dq256 (v8sf)
20511 v4df __builtin_ia32_cvtps2pd256 (v4sf)
20512 v4si __builtin_ia32_cvttpd2dq256 (v4df)
20513 v8si __builtin_ia32_cvttps2dq256 (v8sf)
20514 v4df __builtin_ia32_divpd256 (v4df,v4df)
20515 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
20516 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
20517 v4df __builtin_ia32_haddpd256 (v4df,v4df)
20518 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
20519 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
20520 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
20521 v32qi __builtin_ia32_lddqu256 (pcchar)
20522 v32qi __builtin_ia32_loaddqu256 (pcchar)
20523 v4df __builtin_ia32_loadupd256 (pcdouble)
20524 v8sf __builtin_ia32_loadups256 (pcfloat)
20525 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
20526 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
20527 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
20528 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
20529 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
20530 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
20531 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
20532 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
20533 v4df __builtin_ia32_maxpd256 (v4df,v4df)
20534 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
20535 v4df __builtin_ia32_minpd256 (v4df,v4df)
20536 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
20537 v4df __builtin_ia32_movddup256 (v4df)
20538 int __builtin_ia32_movmskpd256 (v4df)
20539 int __builtin_ia32_movmskps256 (v8sf)
20540 v8sf __builtin_ia32_movshdup256 (v8sf)
20541 v8sf __builtin_ia32_movsldup256 (v8sf)
20542 v4df __builtin_ia32_mulpd256 (v4df,v4df)
20543 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
20544 v4df __builtin_ia32_orpd256 (v4df,v4df)
20545 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
20546 v2df __builtin_ia32_pd_pd256 (v4df)
20547 v4df __builtin_ia32_pd256_pd (v2df)
20548 v4sf __builtin_ia32_ps_ps256 (v8sf)
20549 v8sf __builtin_ia32_ps256_ps (v4sf)
20550 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
20551 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
20552 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
20553 v8sf __builtin_ia32_rcpps256 (v8sf)
20554 v4df __builtin_ia32_roundpd256 (v4df,int)
20555 v8sf __builtin_ia32_roundps256 (v8sf,int)
20556 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
20557 v8sf __builtin_ia32_rsqrtps256 (v8sf)
20558 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
20559 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
20560 v4si __builtin_ia32_si_si256 (v8si)
20561 v8si __builtin_ia32_si256_si (v4si)
20562 v4df __builtin_ia32_sqrtpd256 (v4df)
20563 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
20564 v8sf __builtin_ia32_sqrtps256 (v8sf)
20565 void __builtin_ia32_storedqu256 (pchar,v32qi)
20566 void __builtin_ia32_storeupd256 (pdouble,v4df)
20567 void __builtin_ia32_storeups256 (pfloat,v8sf)
20568 v4df __builtin_ia32_subpd256 (v4df,v4df)
20569 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
20570 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
20571 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
20572 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
20573 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
20574 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
20575 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
20576 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
20577 v4sf __builtin_ia32_vbroadcastss (pcfloat)
20578 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
20579 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
20580 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
20581 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
20582 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
20583 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
20584 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
20585 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
20586 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
20587 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
20588 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
20589 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
20590 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
20591 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
20592 v2df __builtin_ia32_vpermilpd (v2df,int)
20593 v4df __builtin_ia32_vpermilpd256 (v4df,int)
20594 v4sf __builtin_ia32_vpermilps (v4sf,int)
20595 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
20596 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
20597 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
20598 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
20599 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
20600 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
20601 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
20602 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
20603 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
20604 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
20605 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
20606 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
20607 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
20608 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
20609 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
20610 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
20611 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
20612 void __builtin_ia32_vzeroall (void)
20613 void __builtin_ia32_vzeroupper (void)
20614 v4df __builtin_ia32_xorpd256 (v4df,v4df)
20615 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
20618 The following built-in functions are available when @option{-mavx2} is
20619 used. All of them generate the machine instruction that is part of the
20623 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
20624 v32qi __builtin_ia32_pabsb256 (v32qi)
20625 v16hi __builtin_ia32_pabsw256 (v16hi)
20626 v8si __builtin_ia32_pabsd256 (v8si)
20627 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
20628 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
20629 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
20630 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
20631 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
20632 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
20633 v8si __builtin_ia32_paddd256 (v8si,v8si)
20634 v4di __builtin_ia32_paddq256 (v4di,v4di)
20635 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
20636 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
20637 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
20638 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
20639 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
20640 v4di __builtin_ia32_andsi256 (v4di,v4di)
20641 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
20642 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
20643 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
20644 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
20645 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
20646 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
20647 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
20648 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
20649 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
20650 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
20651 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
20652 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
20653 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
20654 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
20655 v8si __builtin_ia32_phaddd256 (v8si,v8si)
20656 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
20657 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
20658 v8si __builtin_ia32_phsubd256 (v8si,v8si)
20659 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
20660 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
20661 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
20662 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
20663 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
20664 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
20665 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
20666 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
20667 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
20668 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
20669 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
20670 v8si __builtin_ia32_pminsd256 (v8si,v8si)
20671 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
20672 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
20673 v8si __builtin_ia32_pminud256 (v8si,v8si)
20674 int __builtin_ia32_pmovmskb256 (v32qi)
20675 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
20676 v8si __builtin_ia32_pmovsxbd256 (v16qi)
20677 v4di __builtin_ia32_pmovsxbq256 (v16qi)
20678 v8si __builtin_ia32_pmovsxwd256 (v8hi)
20679 v4di __builtin_ia32_pmovsxwq256 (v8hi)
20680 v4di __builtin_ia32_pmovsxdq256 (v4si)
20681 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
20682 v8si __builtin_ia32_pmovzxbd256 (v16qi)
20683 v4di __builtin_ia32_pmovzxbq256 (v16qi)
20684 v8si __builtin_ia32_pmovzxwd256 (v8hi)
20685 v4di __builtin_ia32_pmovzxwq256 (v8hi)
20686 v4di __builtin_ia32_pmovzxdq256 (v4si)
20687 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
20688 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
20689 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
20690 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
20691 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
20692 v8si __builtin_ia32_pmulld256 (v8si,v8si)
20693 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
20694 v4di __builtin_ia32_por256 (v4di,v4di)
20695 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
20696 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
20697 v8si __builtin_ia32_pshufd256 (v8si,int)
20698 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
20699 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
20700 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
20701 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
20702 v8si __builtin_ia32_psignd256 (v8si,v8si)
20703 v4di __builtin_ia32_pslldqi256 (v4di,int)
20704 v16hi __builtin_ia32_psllwi256 (16hi,int)
20705 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
20706 v8si __builtin_ia32_pslldi256 (v8si,int)
20707 v8si __builtin_ia32_pslld256(v8si,v4si)
20708 v4di __builtin_ia32_psllqi256 (v4di,int)
20709 v4di __builtin_ia32_psllq256(v4di,v2di)
20710 v16hi __builtin_ia32_psrawi256 (v16hi,int)
20711 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
20712 v8si __builtin_ia32_psradi256 (v8si,int)
20713 v8si __builtin_ia32_psrad256 (v8si,v4si)
20714 v4di __builtin_ia32_psrldqi256 (v4di, int)
20715 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
20716 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
20717 v8si __builtin_ia32_psrldi256 (v8si,int)
20718 v8si __builtin_ia32_psrld256 (v8si,v4si)
20719 v4di __builtin_ia32_psrlqi256 (v4di,int)
20720 v4di __builtin_ia32_psrlq256(v4di,v2di)
20721 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
20722 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
20723 v8si __builtin_ia32_psubd256 (v8si,v8si)
20724 v4di __builtin_ia32_psubq256 (v4di,v4di)
20725 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
20726 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
20727 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
20728 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
20729 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
20730 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
20731 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
20732 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
20733 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
20734 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
20735 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
20736 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
20737 v4di __builtin_ia32_pxor256 (v4di,v4di)
20738 v4di __builtin_ia32_movntdqa256 (pv4di)
20739 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
20740 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
20741 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
20742 v4di __builtin_ia32_vbroadcastsi256 (v2di)
20743 v4si __builtin_ia32_pblendd128 (v4si,v4si)
20744 v8si __builtin_ia32_pblendd256 (v8si,v8si)
20745 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
20746 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
20747 v8si __builtin_ia32_pbroadcastd256 (v4si)
20748 v4di __builtin_ia32_pbroadcastq256 (v2di)
20749 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
20750 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
20751 v4si __builtin_ia32_pbroadcastd128 (v4si)
20752 v2di __builtin_ia32_pbroadcastq128 (v2di)
20753 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
20754 v4df __builtin_ia32_permdf256 (v4df,int)
20755 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
20756 v4di __builtin_ia32_permdi256 (v4di,int)
20757 v4di __builtin_ia32_permti256 (v4di,v4di,int)
20758 v4di __builtin_ia32_extract128i256 (v4di,int)
20759 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
20760 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
20761 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
20762 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
20763 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
20764 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
20765 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
20766 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
20767 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
20768 v8si __builtin_ia32_psllv8si (v8si,v8si)
20769 v4si __builtin_ia32_psllv4si (v4si,v4si)
20770 v4di __builtin_ia32_psllv4di (v4di,v4di)
20771 v2di __builtin_ia32_psllv2di (v2di,v2di)
20772 v8si __builtin_ia32_psrav8si (v8si,v8si)
20773 v4si __builtin_ia32_psrav4si (v4si,v4si)
20774 v8si __builtin_ia32_psrlv8si (v8si,v8si)
20775 v4si __builtin_ia32_psrlv4si (v4si,v4si)
20776 v4di __builtin_ia32_psrlv4di (v4di,v4di)
20777 v2di __builtin_ia32_psrlv2di (v2di,v2di)
20778 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
20779 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
20780 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
20781 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
20782 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
20783 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
20784 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
20785 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
20786 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
20787 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
20788 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
20789 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
20790 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
20791 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
20792 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
20793 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
20796 The following built-in functions are available when @option{-maes} is
20797 used. All of them generate the machine instruction that is part of the
20801 v2di __builtin_ia32_aesenc128 (v2di, v2di)
20802 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
20803 v2di __builtin_ia32_aesdec128 (v2di, v2di)
20804 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
20805 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
20806 v2di __builtin_ia32_aesimc128 (v2di)
20809 The following built-in function is available when @option{-mpclmul} is
20813 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
20814 Generates the @code{pclmulqdq} machine instruction.
20817 The following built-in function is available when @option{-mfsgsbase} is
20818 used. All of them generate the machine instruction that is part of the
20822 unsigned int __builtin_ia32_rdfsbase32 (void)
20823 unsigned long long __builtin_ia32_rdfsbase64 (void)
20824 unsigned int __builtin_ia32_rdgsbase32 (void)
20825 unsigned long long __builtin_ia32_rdgsbase64 (void)
20826 void _writefsbase_u32 (unsigned int)
20827 void _writefsbase_u64 (unsigned long long)
20828 void _writegsbase_u32 (unsigned int)
20829 void _writegsbase_u64 (unsigned long long)
20832 The following built-in function is available when @option{-mrdrnd} is
20833 used. All of them generate the machine instruction that is part of the
20837 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
20838 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
20839 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
20842 The following built-in functions are available when @option{-msse4a} is used.
20843 All of them generate the machine instruction that is part of the name.
20846 void __builtin_ia32_movntsd (double *, v2df)
20847 void __builtin_ia32_movntss (float *, v4sf)
20848 v2di __builtin_ia32_extrq (v2di, v16qi)
20849 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
20850 v2di __builtin_ia32_insertq (v2di, v2di)
20851 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
20854 The following built-in functions are available when @option{-mxop} is used.
20856 v2df __builtin_ia32_vfrczpd (v2df)
20857 v4sf __builtin_ia32_vfrczps (v4sf)
20858 v2df __builtin_ia32_vfrczsd (v2df)
20859 v4sf __builtin_ia32_vfrczss (v4sf)
20860 v4df __builtin_ia32_vfrczpd256 (v4df)
20861 v8sf __builtin_ia32_vfrczps256 (v8sf)
20862 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
20863 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
20864 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
20865 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
20866 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
20867 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
20868 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
20869 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
20870 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
20871 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
20872 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
20873 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
20874 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
20875 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
20876 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
20877 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
20878 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
20879 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
20880 v4si __builtin_ia32_vpcomequd (v4si, v4si)
20881 v2di __builtin_ia32_vpcomequq (v2di, v2di)
20882 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
20883 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
20884 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
20885 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
20886 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
20887 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
20888 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
20889 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
20890 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
20891 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
20892 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
20893 v4si __builtin_ia32_vpcomged (v4si, v4si)
20894 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
20895 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
20896 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
20897 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
20898 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
20899 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
20900 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
20901 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
20902 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
20903 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
20904 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
20905 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
20906 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
20907 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
20908 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
20909 v4si __builtin_ia32_vpcomled (v4si, v4si)
20910 v2di __builtin_ia32_vpcomleq (v2di, v2di)
20911 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
20912 v4si __builtin_ia32_vpcomleud (v4si, v4si)
20913 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
20914 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
20915 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
20916 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
20917 v4si __builtin_ia32_vpcomltd (v4si, v4si)
20918 v2di __builtin_ia32_vpcomltq (v2di, v2di)
20919 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
20920 v4si __builtin_ia32_vpcomltud (v4si, v4si)
20921 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
20922 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
20923 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
20924 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
20925 v4si __builtin_ia32_vpcomned (v4si, v4si)
20926 v2di __builtin_ia32_vpcomneq (v2di, v2di)
20927 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
20928 v4si __builtin_ia32_vpcomneud (v4si, v4si)
20929 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
20930 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
20931 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
20932 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
20933 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
20934 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
20935 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
20936 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
20937 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
20938 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
20939 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
20940 v4si __builtin_ia32_vphaddbd (v16qi)
20941 v2di __builtin_ia32_vphaddbq (v16qi)
20942 v8hi __builtin_ia32_vphaddbw (v16qi)
20943 v2di __builtin_ia32_vphadddq (v4si)
20944 v4si __builtin_ia32_vphaddubd (v16qi)
20945 v2di __builtin_ia32_vphaddubq (v16qi)
20946 v8hi __builtin_ia32_vphaddubw (v16qi)
20947 v2di __builtin_ia32_vphaddudq (v4si)
20948 v4si __builtin_ia32_vphadduwd (v8hi)
20949 v2di __builtin_ia32_vphadduwq (v8hi)
20950 v4si __builtin_ia32_vphaddwd (v8hi)
20951 v2di __builtin_ia32_vphaddwq (v8hi)
20952 v8hi __builtin_ia32_vphsubbw (v16qi)
20953 v2di __builtin_ia32_vphsubdq (v4si)
20954 v4si __builtin_ia32_vphsubwd (v8hi)
20955 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
20956 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
20957 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
20958 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
20959 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
20960 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
20961 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
20962 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
20963 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
20964 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
20965 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
20966 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
20967 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
20968 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
20969 v4si __builtin_ia32_vprotd (v4si, v4si)
20970 v2di __builtin_ia32_vprotq (v2di, v2di)
20971 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
20972 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
20973 v4si __builtin_ia32_vpshad (v4si, v4si)
20974 v2di __builtin_ia32_vpshaq (v2di, v2di)
20975 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
20976 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
20977 v4si __builtin_ia32_vpshld (v4si, v4si)
20978 v2di __builtin_ia32_vpshlq (v2di, v2di)
20979 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
20982 The following built-in functions are available when @option{-mfma4} is used.
20983 All of them generate the machine instruction that is part of the name.
20986 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
20987 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
20988 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
20989 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
20990 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
20991 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
20992 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
20993 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
20994 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
20995 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
20996 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
20997 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
20998 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
20999 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
21000 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
21001 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
21002 v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
21003 v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
21004 v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
21005 v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
21006 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
21007 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
21008 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
21009 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
21010 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
21011 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
21012 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
21013 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
21014 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
21015 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
21016 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
21017 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
21021 The following built-in functions are available when @option{-mlwp} is used.
21024 void __builtin_ia32_llwpcb16 (void *);
21025 void __builtin_ia32_llwpcb32 (void *);
21026 void __builtin_ia32_llwpcb64 (void *);
21027 void * __builtin_ia32_llwpcb16 (void);
21028 void * __builtin_ia32_llwpcb32 (void);
21029 void * __builtin_ia32_llwpcb64 (void);
21030 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
21031 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
21032 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
21033 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
21034 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
21035 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
21038 The following built-in functions are available when @option{-mbmi} is used.
21039 All of them generate the machine instruction that is part of the name.
21041 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
21042 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
21045 The following built-in functions are available when @option{-mbmi2} is used.
21046 All of them generate the machine instruction that is part of the name.
21048 unsigned int _bzhi_u32 (unsigned int, unsigned int)
21049 unsigned int _pdep_u32 (unsigned int, unsigned int)
21050 unsigned int _pext_u32 (unsigned int, unsigned int)
21051 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
21052 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
21053 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
21056 The following built-in functions are available when @option{-mlzcnt} is used.
21057 All of them generate the machine instruction that is part of the name.
21059 unsigned short __builtin_ia32_lzcnt_u16(unsigned short);
21060 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
21061 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
21064 The following built-in functions are available when @option{-mfxsr} is used.
21065 All of them generate the machine instruction that is part of the name.
21067 void __builtin_ia32_fxsave (void *)
21068 void __builtin_ia32_fxrstor (void *)
21069 void __builtin_ia32_fxsave64 (void *)
21070 void __builtin_ia32_fxrstor64 (void *)
21073 The following built-in functions are available when @option{-mxsave} is used.
21074 All of them generate the machine instruction that is part of the name.
21076 void __builtin_ia32_xsave (void *, long long)
21077 void __builtin_ia32_xrstor (void *, long long)
21078 void __builtin_ia32_xsave64 (void *, long long)
21079 void __builtin_ia32_xrstor64 (void *, long long)
21082 The following built-in functions are available when @option{-mxsaveopt} is used.
21083 All of them generate the machine instruction that is part of the name.
21085 void __builtin_ia32_xsaveopt (void *, long long)
21086 void __builtin_ia32_xsaveopt64 (void *, long long)
21089 The following built-in functions are available when @option{-mtbm} is used.
21090 Both of them generate the immediate form of the bextr machine instruction.
21092 unsigned int __builtin_ia32_bextri_u32 (unsigned int,
21093 const unsigned int);
21094 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long,
21095 const unsigned long long);
21099 The following built-in functions are available when @option{-m3dnow} is used.
21100 All of them generate the machine instruction that is part of the name.
21103 void __builtin_ia32_femms (void)
21104 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
21105 v2si __builtin_ia32_pf2id (v2sf)
21106 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
21107 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
21108 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
21109 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
21110 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
21111 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
21112 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
21113 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
21114 v2sf __builtin_ia32_pfrcp (v2sf)
21115 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
21116 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
21117 v2sf __builtin_ia32_pfrsqrt (v2sf)
21118 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
21119 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
21120 v2sf __builtin_ia32_pi2fd (v2si)
21121 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
21124 The following built-in functions are available when @option{-m3dnowa} is used.
21125 All of them generate the machine instruction that is part of the name.
21128 v2si __builtin_ia32_pf2iw (v2sf)
21129 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
21130 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
21131 v2sf __builtin_ia32_pi2fw (v2si)
21132 v2sf __builtin_ia32_pswapdsf (v2sf)
21133 v2si __builtin_ia32_pswapdsi (v2si)
21136 The following built-in functions are available when @option{-mrtm} is used
21137 They are used for restricted transactional memory. These are the internal
21138 low level functions. Normally the functions in
21139 @ref{x86 transactional memory intrinsics} should be used instead.
21142 int __builtin_ia32_xbegin ()
21143 void __builtin_ia32_xend ()
21144 void __builtin_ia32_xabort (status)
21145 int __builtin_ia32_xtest ()
21148 The following built-in functions are available when @option{-mmwaitx} is used.
21149 All of them generate the machine instruction that is part of the name.
21151 void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
21152 void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
21155 The following built-in functions are available when @option{-mclzero} is used.
21156 All of them generate the machine instruction that is part of the name.
21158 void __builtin_i32_clzero (void *)
21161 The following built-in functions are available when @option{-mpku} is used.
21162 They generate reads and writes to PKRU.
21164 void __builtin_ia32_wrpkru (unsigned int)
21165 unsigned int __builtin_ia32_rdpkru ()
21168 @node x86 transactional memory intrinsics
21169 @subsection x86 Transactional Memory Intrinsics
21171 These hardware transactional memory intrinsics for x86 allow you to use
21172 memory transactions with RTM (Restricted Transactional Memory).
21173 This support is enabled with the @option{-mrtm} option.
21174 For using HLE (Hardware Lock Elision) see
21175 @ref{x86 specific memory model extensions for transactional memory} instead.
21177 A memory transaction commits all changes to memory in an atomic way,
21178 as visible to other threads. If the transaction fails it is rolled back
21179 and all side effects discarded.
21181 Generally there is no guarantee that a memory transaction ever succeeds
21182 and suitable fallback code always needs to be supplied.
21184 @deftypefn {RTM Function} {unsigned} _xbegin ()
21185 Start a RTM (Restricted Transactional Memory) transaction.
21186 Returns @code{_XBEGIN_STARTED} when the transaction
21187 started successfully (note this is not 0, so the constant has to be
21188 explicitly tested).
21190 If the transaction aborts, all side-effects
21191 are undone and an abort code encoded as a bit mask is returned.
21192 The following macros are defined:
21195 @item _XABORT_EXPLICIT
21196 Transaction was explicitly aborted with @code{_xabort}. The parameter passed
21197 to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
21198 @item _XABORT_RETRY
21199 Transaction retry is possible.
21200 @item _XABORT_CONFLICT
21201 Transaction abort due to a memory conflict with another thread.
21202 @item _XABORT_CAPACITY
21203 Transaction abort due to the transaction using too much memory.
21204 @item _XABORT_DEBUG
21205 Transaction abort due to a debug trap.
21206 @item _XABORT_NESTED
21207 Transaction abort in an inner nested transaction.
21210 There is no guarantee
21211 any transaction ever succeeds, so there always needs to be a valid
21215 @deftypefn {RTM Function} {void} _xend ()
21216 Commit the current transaction. When no transaction is active this faults.
21217 All memory side-effects of the transaction become visible
21218 to other threads in an atomic manner.
21221 @deftypefn {RTM Function} {int} _xtest ()
21222 Return a nonzero value if a transaction is currently active, otherwise 0.
21225 @deftypefn {RTM Function} {void} _xabort (status)
21226 Abort the current transaction. When no transaction is active this is a no-op.
21227 The @var{status} is an 8-bit constant; its value is encoded in the return
21228 value from @code{_xbegin}.
21231 Here is an example showing handling for @code{_XABORT_RETRY}
21232 and a fallback path for other failures:
21235 #include <immintrin.h>
21237 int n_tries, max_tries;
21238 unsigned status = _XABORT_EXPLICIT;
21241 for (n_tries = 0; n_tries < max_tries; n_tries++)
21243 status = _xbegin ();
21244 if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
21247 if (status == _XBEGIN_STARTED)
21249 ... transaction code...
21254 ... non-transactional fallback path...
21259 Note that, in most cases, the transactional and non-transactional code
21260 must synchronize together to ensure consistency.
21262 @node Target Format Checks
21263 @section Format Checks Specific to Particular Target Machines
21265 For some target machines, GCC supports additional options to the
21267 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
21270 * Solaris Format Checks::
21271 * Darwin Format Checks::
21274 @node Solaris Format Checks
21275 @subsection Solaris Format Checks
21277 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
21278 check. @code{cmn_err} accepts a subset of the standard @code{printf}
21279 conversions, and the two-argument @code{%b} conversion for displaying
21280 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
21282 @node Darwin Format Checks
21283 @subsection Darwin Format Checks
21285 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
21286 attribute context. Declarations made with such attribution are parsed for correct syntax
21287 and format argument types. However, parsing of the format string itself is currently undefined
21288 and is not carried out by this version of the compiler.
21290 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
21291 also be used as format arguments. Note that the relevant headers are only likely to be
21292 available on Darwin (OSX) installations. On such installations, the XCode and system
21293 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
21294 associated functions.
21297 @section Pragmas Accepted by GCC
21299 @cindex @code{#pragma}
21301 GCC supports several types of pragmas, primarily in order to compile
21302 code originally written for other compilers. Note that in general
21303 we do not recommend the use of pragmas; @xref{Function Attributes},
21304 for further explanation.
21307 * AArch64 Pragmas::
21311 * RS/6000 and PowerPC Pragmas::
21314 * Solaris Pragmas::
21315 * Symbol-Renaming Pragmas::
21316 * Structure-Layout Pragmas::
21318 * Diagnostic Pragmas::
21319 * Visibility Pragmas::
21320 * Push/Pop Macro Pragmas::
21321 * Function Specific Option Pragmas::
21322 * Loop-Specific Pragmas::
21325 @node AArch64 Pragmas
21326 @subsection AArch64 Pragmas
21328 The pragmas defined by the AArch64 target correspond to the AArch64
21329 target function attributes. They can be specified as below:
21331 #pragma GCC target("string")
21334 where @code{@var{string}} can be any string accepted as an AArch64 target
21335 attribute. @xref{AArch64 Function Attributes}, for more details
21336 on the permissible values of @code{string}.
21339 @subsection ARM Pragmas
21341 The ARM target defines pragmas for controlling the default addition of
21342 @code{long_call} and @code{short_call} attributes to functions.
21343 @xref{Function Attributes}, for information about the effects of these
21348 @cindex pragma, long_calls
21349 Set all subsequent functions to have the @code{long_call} attribute.
21351 @item no_long_calls
21352 @cindex pragma, no_long_calls
21353 Set all subsequent functions to have the @code{short_call} attribute.
21355 @item long_calls_off
21356 @cindex pragma, long_calls_off
21357 Do not affect the @code{long_call} or @code{short_call} attributes of
21358 subsequent functions.
21362 @subsection M32C Pragmas
21365 @item GCC memregs @var{number}
21366 @cindex pragma, memregs
21367 Overrides the command-line option @code{-memregs=} for the current
21368 file. Use with care! This pragma must be before any function in the
21369 file, and mixing different memregs values in different objects may
21370 make them incompatible. This pragma is useful when a
21371 performance-critical function uses a memreg for temporary values,
21372 as it may allow you to reduce the number of memregs used.
21374 @item ADDRESS @var{name} @var{address}
21375 @cindex pragma, address
21376 For any declared symbols matching @var{name}, this does three things
21377 to that symbol: it forces the symbol to be located at the given
21378 address (a number), it forces the symbol to be volatile, and it
21379 changes the symbol's scope to be static. This pragma exists for
21380 compatibility with other compilers, but note that the common
21381 @code{1234H} numeric syntax is not supported (use @code{0x1234}
21385 #pragma ADDRESS port3 0x103
21392 @subsection MeP Pragmas
21396 @item custom io_volatile (on|off)
21397 @cindex pragma, custom io_volatile
21398 Overrides the command-line option @code{-mio-volatile} for the current
21399 file. Note that for compatibility with future GCC releases, this
21400 option should only be used once before any @code{io} variables in each
21403 @item GCC coprocessor available @var{registers}
21404 @cindex pragma, coprocessor available
21405 Specifies which coprocessor registers are available to the register
21406 allocator. @var{registers} may be a single register, register range
21407 separated by ellipses, or comma-separated list of those. Example:
21410 #pragma GCC coprocessor available $c0...$c10, $c28
21413 @item GCC coprocessor call_saved @var{registers}
21414 @cindex pragma, coprocessor call_saved
21415 Specifies which coprocessor registers are to be saved and restored by
21416 any function using them. @var{registers} may be a single register,
21417 register range separated by ellipses, or comma-separated list of
21421 #pragma GCC coprocessor call_saved $c4...$c6, $c31
21424 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
21425 @cindex pragma, coprocessor subclass
21426 Creates and defines a register class. These register classes can be
21427 used by inline @code{asm} constructs. @var{registers} may be a single
21428 register, register range separated by ellipses, or comma-separated
21429 list of those. Example:
21432 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
21434 asm ("cpfoo %0" : "=B" (x));
21437 @item GCC disinterrupt @var{name} , @var{name} @dots{}
21438 @cindex pragma, disinterrupt
21439 For the named functions, the compiler adds code to disable interrupts
21440 for the duration of those functions. If any functions so named
21441 are not encountered in the source, a warning is emitted that the pragma is
21442 not used. Examples:
21445 #pragma disinterrupt foo
21446 #pragma disinterrupt bar, grill
21447 int foo () @{ @dots{} @}
21450 @item GCC call @var{name} , @var{name} @dots{}
21451 @cindex pragma, call
21452 For the named functions, the compiler always uses a register-indirect
21453 call model when calling the named functions. Examples:
21462 @node RS/6000 and PowerPC Pragmas
21463 @subsection RS/6000 and PowerPC Pragmas
21465 The RS/6000 and PowerPC targets define one pragma for controlling
21466 whether or not the @code{longcall} attribute is added to function
21467 declarations by default. This pragma overrides the @option{-mlongcall}
21468 option, but not the @code{longcall} and @code{shortcall} attributes.
21469 @xref{RS/6000 and PowerPC Options}, for more information about when long
21470 calls are and are not necessary.
21474 @cindex pragma, longcall
21475 Apply the @code{longcall} attribute to all subsequent function
21479 Do not apply the @code{longcall} attribute to subsequent function
21483 @c Describe h8300 pragmas here.
21484 @c Describe sh pragmas here.
21485 @c Describe v850 pragmas here.
21487 @node S/390 Pragmas
21488 @subsection S/390 Pragmas
21490 The pragmas defined by the S/390 target correspond to the S/390
21491 target function attributes and some the additional options:
21498 Note that options of the pragma, unlike options of the target
21499 attribute, do change the value of preprocessor macros like
21500 @code{__VEC__}. They can be specified as below:
21503 #pragma GCC target("string[,string]...")
21504 #pragma GCC target("string"[,"string"]...)
21507 @node Darwin Pragmas
21508 @subsection Darwin Pragmas
21510 The following pragmas are available for all architectures running the
21511 Darwin operating system. These are useful for compatibility with other
21515 @item mark @var{tokens}@dots{}
21516 @cindex pragma, mark
21517 This pragma is accepted, but has no effect.
21519 @item options align=@var{alignment}
21520 @cindex pragma, options align
21521 This pragma sets the alignment of fields in structures. The values of
21522 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
21523 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
21524 properly; to restore the previous setting, use @code{reset} for the
21527 @item segment @var{tokens}@dots{}
21528 @cindex pragma, segment
21529 This pragma is accepted, but has no effect.
21531 @item unused (@var{var} [, @var{var}]@dots{})
21532 @cindex pragma, unused
21533 This pragma declares variables to be possibly unused. GCC does not
21534 produce warnings for the listed variables. The effect is similar to
21535 that of the @code{unused} attribute, except that this pragma may appear
21536 anywhere within the variables' scopes.
21539 @node Solaris Pragmas
21540 @subsection Solaris Pragmas
21542 The Solaris target supports @code{#pragma redefine_extname}
21543 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
21544 @code{#pragma} directives for compatibility with the system compiler.
21547 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
21548 @cindex pragma, align
21550 Increase the minimum alignment of each @var{variable} to @var{alignment}.
21551 This is the same as GCC's @code{aligned} attribute @pxref{Variable
21552 Attributes}). Macro expansion occurs on the arguments to this pragma
21553 when compiling C and Objective-C@. It does not currently occur when
21554 compiling C++, but this is a bug which may be fixed in a future
21557 @item fini (@var{function} [, @var{function}]...)
21558 @cindex pragma, fini
21560 This pragma causes each listed @var{function} to be called after
21561 main, or during shared module unloading, by adding a call to the
21562 @code{.fini} section.
21564 @item init (@var{function} [, @var{function}]...)
21565 @cindex pragma, init
21567 This pragma causes each listed @var{function} to be called during
21568 initialization (before @code{main}) or during shared module loading, by
21569 adding a call to the @code{.init} section.
21573 @node Symbol-Renaming Pragmas
21574 @subsection Symbol-Renaming Pragmas
21576 GCC supports a @code{#pragma} directive that changes the name used in
21577 assembly for a given declaration. While this pragma is supported on all
21578 platforms, it is intended primarily to provide compatibility with the
21579 Solaris system headers. This effect can also be achieved using the asm
21580 labels extension (@pxref{Asm Labels}).
21583 @item redefine_extname @var{oldname} @var{newname}
21584 @cindex pragma, redefine_extname
21586 This pragma gives the C function @var{oldname} the assembly symbol
21587 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
21588 is defined if this pragma is available (currently on all platforms).
21591 This pragma and the asm labels extension interact in a complicated
21592 manner. Here are some corner cases you may want to be aware of:
21595 @item This pragma silently applies only to declarations with external
21596 linkage. Asm labels do not have this restriction.
21598 @item In C++, this pragma silently applies only to declarations with
21599 ``C'' linkage. Again, asm labels do not have this restriction.
21601 @item If either of the ways of changing the assembly name of a
21602 declaration are applied to a declaration whose assembly name has
21603 already been determined (either by a previous use of one of these
21604 features, or because the compiler needed the assembly name in order to
21605 generate code), and the new name is different, a warning issues and
21606 the name does not change.
21608 @item The @var{oldname} used by @code{#pragma redefine_extname} is
21609 always the C-language name.
21612 @node Structure-Layout Pragmas
21613 @subsection Structure-Layout Pragmas
21615 For compatibility with Microsoft Windows compilers, GCC supports a
21616 set of @code{#pragma} directives that change the maximum alignment of
21617 members of structures (other than zero-width bit-fields), unions, and
21618 classes subsequently defined. The @var{n} value below always is required
21619 to be a small power of two and specifies the new alignment in bytes.
21622 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
21623 @item @code{#pragma pack()} sets the alignment to the one that was in
21624 effect when compilation started (see also command-line option
21625 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
21626 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
21627 setting on an internal stack and then optionally sets the new alignment.
21628 @item @code{#pragma pack(pop)} restores the alignment setting to the one
21629 saved at the top of the internal stack (and removes that stack entry).
21630 Note that @code{#pragma pack([@var{n}])} does not influence this internal
21631 stack; thus it is possible to have @code{#pragma pack(push)} followed by
21632 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
21633 @code{#pragma pack(pop)}.
21636 Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
21637 directive which lays out structures and unions subsequently defined as the
21638 documented @code{__attribute__ ((ms_struct))}.
21641 @item @code{#pragma ms_struct on} turns on the Microsoft layout.
21642 @item @code{#pragma ms_struct off} turns off the Microsoft layout.
21643 @item @code{#pragma ms_struct reset} goes back to the default layout.
21646 Most targets also support the @code{#pragma scalar_storage_order} directive
21647 which lays out structures and unions subsequently defined as the documented
21648 @code{__attribute__ ((scalar_storage_order))}.
21651 @item @code{#pragma scalar_storage_order big-endian} sets the storage order
21652 of the scalar fields to big-endian.
21653 @item @code{#pragma scalar_storage_order little-endian} sets the storage order
21654 of the scalar fields to little-endian.
21655 @item @code{#pragma scalar_storage_order default} goes back to the endianness
21656 that was in effect when compilation started (see also command-line option
21657 @option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
21661 @subsection Weak Pragmas
21663 For compatibility with SVR4, GCC supports a set of @code{#pragma}
21664 directives for declaring symbols to be weak, and defining weak
21668 @item #pragma weak @var{symbol}
21669 @cindex pragma, weak
21670 This pragma declares @var{symbol} to be weak, as if the declaration
21671 had the attribute of the same name. The pragma may appear before
21672 or after the declaration of @var{symbol}. It is not an error for
21673 @var{symbol} to never be defined at all.
21675 @item #pragma weak @var{symbol1} = @var{symbol2}
21676 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
21677 It is an error if @var{symbol2} is not defined in the current
21681 @node Diagnostic Pragmas
21682 @subsection Diagnostic Pragmas
21684 GCC allows the user to selectively enable or disable certain types of
21685 diagnostics, and change the kind of the diagnostic. For example, a
21686 project's policy might require that all sources compile with
21687 @option{-Werror} but certain files might have exceptions allowing
21688 specific types of warnings. Or, a project might selectively enable
21689 diagnostics and treat them as errors depending on which preprocessor
21690 macros are defined.
21693 @item #pragma GCC diagnostic @var{kind} @var{option}
21694 @cindex pragma, diagnostic
21696 Modifies the disposition of a diagnostic. Note that not all
21697 diagnostics are modifiable; at the moment only warnings (normally
21698 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
21699 Use @option{-fdiagnostics-show-option} to determine which diagnostics
21700 are controllable and which option controls them.
21702 @var{kind} is @samp{error} to treat this diagnostic as an error,
21703 @samp{warning} to treat it like a warning (even if @option{-Werror} is
21704 in effect), or @samp{ignored} if the diagnostic is to be ignored.
21705 @var{option} is a double quoted string that matches the command-line
21709 #pragma GCC diagnostic warning "-Wformat"
21710 #pragma GCC diagnostic error "-Wformat"
21711 #pragma GCC diagnostic ignored "-Wformat"
21714 Note that these pragmas override any command-line options. GCC keeps
21715 track of the location of each pragma, and issues diagnostics according
21716 to the state as of that point in the source file. Thus, pragmas occurring
21717 after a line do not affect diagnostics caused by that line.
21719 @item #pragma GCC diagnostic push
21720 @itemx #pragma GCC diagnostic pop
21722 Causes GCC to remember the state of the diagnostics as of each
21723 @code{push}, and restore to that point at each @code{pop}. If a
21724 @code{pop} has no matching @code{push}, the command-line options are
21728 #pragma GCC diagnostic error "-Wuninitialized"
21729 foo(a); /* error is given for this one */
21730 #pragma GCC diagnostic push
21731 #pragma GCC diagnostic ignored "-Wuninitialized"
21732 foo(b); /* no diagnostic for this one */
21733 #pragma GCC diagnostic pop
21734 foo(c); /* error is given for this one */
21735 #pragma GCC diagnostic pop
21736 foo(d); /* depends on command-line options */
21741 GCC also offers a simple mechanism for printing messages during
21745 @item #pragma message @var{string}
21746 @cindex pragma, diagnostic
21748 Prints @var{string} as a compiler message on compilation. The message
21749 is informational only, and is neither a compilation warning nor an error.
21752 #pragma message "Compiling " __FILE__ "..."
21755 @var{string} may be parenthesized, and is printed with location
21756 information. For example,
21759 #define DO_PRAGMA(x) _Pragma (#x)
21760 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
21762 TODO(Remember to fix this)
21766 prints @samp{/tmp/file.c:4: note: #pragma message:
21767 TODO - Remember to fix this}.
21771 @node Visibility Pragmas
21772 @subsection Visibility Pragmas
21775 @item #pragma GCC visibility push(@var{visibility})
21776 @itemx #pragma GCC visibility pop
21777 @cindex pragma, visibility
21779 This pragma allows the user to set the visibility for multiple
21780 declarations without having to give each a visibility attribute
21781 (@pxref{Function Attributes}).
21783 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
21784 declarations. Class members and template specializations are not
21785 affected; if you want to override the visibility for a particular
21786 member or instantiation, you must use an attribute.
21791 @node Push/Pop Macro Pragmas
21792 @subsection Push/Pop Macro Pragmas
21794 For compatibility with Microsoft Windows compilers, GCC supports
21795 @samp{#pragma push_macro(@var{"macro_name"})}
21796 and @samp{#pragma pop_macro(@var{"macro_name"})}.
21799 @item #pragma push_macro(@var{"macro_name"})
21800 @cindex pragma, push_macro
21801 This pragma saves the value of the macro named as @var{macro_name} to
21802 the top of the stack for this macro.
21804 @item #pragma pop_macro(@var{"macro_name"})
21805 @cindex pragma, pop_macro
21806 This pragma sets the value of the macro named as @var{macro_name} to
21807 the value on top of the stack for this macro. If the stack for
21808 @var{macro_name} is empty, the value of the macro remains unchanged.
21815 #pragma push_macro("X")
21818 #pragma pop_macro("X")
21823 In this example, the definition of X as 1 is saved by @code{#pragma
21824 push_macro} and restored by @code{#pragma pop_macro}.
21826 @node Function Specific Option Pragmas
21827 @subsection Function Specific Option Pragmas
21830 @item #pragma GCC target (@var{"string"}...)
21831 @cindex pragma GCC target
21833 This pragma allows you to set target specific options for functions
21834 defined later in the source file. One or more strings can be
21835 specified. Each function that is defined after this point is as
21836 if @code{attribute((target("STRING")))} was specified for that
21837 function. The parenthesis around the options is optional.
21838 @xref{Function Attributes}, for more information about the
21839 @code{target} attribute and the attribute syntax.
21841 The @code{#pragma GCC target} pragma is presently implemented for
21842 x86, PowerPC, and Nios II targets only.
21846 @item #pragma GCC optimize (@var{"string"}...)
21847 @cindex pragma GCC optimize
21849 This pragma allows you to set global optimization options for functions
21850 defined later in the source file. One or more strings can be
21851 specified. Each function that is defined after this point is as
21852 if @code{attribute((optimize("STRING")))} was specified for that
21853 function. The parenthesis around the options is optional.
21854 @xref{Function Attributes}, for more information about the
21855 @code{optimize} attribute and the attribute syntax.
21859 @item #pragma GCC push_options
21860 @itemx #pragma GCC pop_options
21861 @cindex pragma GCC push_options
21862 @cindex pragma GCC pop_options
21864 These pragmas maintain a stack of the current target and optimization
21865 options. It is intended for include files where you temporarily want
21866 to switch to using a different @samp{#pragma GCC target} or
21867 @samp{#pragma GCC optimize} and then to pop back to the previous
21872 @item #pragma GCC reset_options
21873 @cindex pragma GCC reset_options
21875 This pragma clears the current @code{#pragma GCC target} and
21876 @code{#pragma GCC optimize} to use the default switches as specified
21877 on the command line.
21880 @node Loop-Specific Pragmas
21881 @subsection Loop-Specific Pragmas
21884 @item #pragma GCC ivdep
21885 @cindex pragma GCC ivdep
21888 With this pragma, the programmer asserts that there are no loop-carried
21889 dependencies which would prevent consecutive iterations of
21890 the following loop from executing concurrently with SIMD
21891 (single instruction multiple data) instructions.
21893 For example, the compiler can only unconditionally vectorize the following
21894 loop with the pragma:
21897 void foo (int n, int *a, int *b, int *c)
21901 for (i = 0; i < n; ++i)
21902 a[i] = b[i] + c[i];
21907 In this example, using the @code{restrict} qualifier had the same
21908 effect. In the following example, that would not be possible. Assume
21909 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
21910 that it can unconditionally vectorize the following loop:
21913 void ignore_vec_dep (int *a, int k, int c, int m)
21916 for (int i = 0; i < m; i++)
21917 a[i] = a[i + k] * c;
21922 @node Unnamed Fields
21923 @section Unnamed Structure and Union Fields
21924 @cindex @code{struct}
21925 @cindex @code{union}
21927 As permitted by ISO C11 and for compatibility with other compilers,
21928 GCC allows you to define
21929 a structure or union that contains, as fields, structures and unions
21930 without names. For example:
21944 In this example, you are able to access members of the unnamed
21945 union with code like @samp{foo.b}. Note that only unnamed structs and
21946 unions are allowed, you may not have, for example, an unnamed
21949 You must never create such structures that cause ambiguous field definitions.
21950 For example, in this structure:
21962 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
21963 The compiler gives errors for such constructs.
21965 @opindex fms-extensions
21966 Unless @option{-fms-extensions} is used, the unnamed field must be a
21967 structure or union definition without a tag (for example, @samp{struct
21968 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
21969 also be a definition with a tag such as @samp{struct foo @{ int a;
21970 @};}, a reference to a previously defined structure or union such as
21971 @samp{struct foo;}, or a reference to a @code{typedef} name for a
21972 previously defined structure or union type.
21974 @opindex fplan9-extensions
21975 The option @option{-fplan9-extensions} enables
21976 @option{-fms-extensions} as well as two other extensions. First, a
21977 pointer to a structure is automatically converted to a pointer to an
21978 anonymous field for assignments and function calls. For example:
21981 struct s1 @{ int a; @};
21982 struct s2 @{ struct s1; @};
21983 extern void f1 (struct s1 *);
21984 void f2 (struct s2 *p) @{ f1 (p); @}
21988 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
21989 converted into a pointer to the anonymous field.
21991 Second, when the type of an anonymous field is a @code{typedef} for a
21992 @code{struct} or @code{union}, code may refer to the field using the
21993 name of the @code{typedef}.
21996 typedef struct @{ int a; @} s1;
21997 struct s2 @{ s1; @};
21998 s1 f1 (struct s2 *p) @{ return p->s1; @}
22001 These usages are only permitted when they are not ambiguous.
22004 @section Thread-Local Storage
22005 @cindex Thread-Local Storage
22006 @cindex @acronym{TLS}
22007 @cindex @code{__thread}
22009 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
22010 are allocated such that there is one instance of the variable per extant
22011 thread. The runtime model GCC uses to implement this originates
22012 in the IA-64 processor-specific ABI, but has since been migrated
22013 to other processors as well. It requires significant support from
22014 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
22015 system libraries (@file{libc.so} and @file{libpthread.so}), so it
22016 is not available everywhere.
22018 At the user level, the extension is visible with a new storage
22019 class keyword: @code{__thread}. For example:
22023 extern __thread struct state s;
22024 static __thread char *p;
22027 The @code{__thread} specifier may be used alone, with the @code{extern}
22028 or @code{static} specifiers, but with no other storage class specifier.
22029 When used with @code{extern} or @code{static}, @code{__thread} must appear
22030 immediately after the other storage class specifier.
22032 The @code{__thread} specifier may be applied to any global, file-scoped
22033 static, function-scoped static, or static data member of a class. It may
22034 not be applied to block-scoped automatic or non-static data member.
22036 When the address-of operator is applied to a thread-local variable, it is
22037 evaluated at run time and returns the address of the current thread's
22038 instance of that variable. An address so obtained may be used by any
22039 thread. When a thread terminates, any pointers to thread-local variables
22040 in that thread become invalid.
22042 No static initialization may refer to the address of a thread-local variable.
22044 In C++, if an initializer is present for a thread-local variable, it must
22045 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
22048 See @uref{https://www.akkadia.org/drepper/tls.pdf,
22049 ELF Handling For Thread-Local Storage} for a detailed explanation of
22050 the four thread-local storage addressing models, and how the runtime
22051 is expected to function.
22054 * C99 Thread-Local Edits::
22055 * C++98 Thread-Local Edits::
22058 @node C99 Thread-Local Edits
22059 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
22061 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
22062 that document the exact semantics of the language extension.
22066 @cite{5.1.2 Execution environments}
22068 Add new text after paragraph 1
22071 Within either execution environment, a @dfn{thread} is a flow of
22072 control within a program. It is implementation defined whether
22073 or not there may be more than one thread associated with a program.
22074 It is implementation defined how threads beyond the first are
22075 created, the name and type of the function called at thread
22076 startup, and how threads may be terminated. However, objects
22077 with thread storage duration shall be initialized before thread
22082 @cite{6.2.4 Storage durations of objects}
22084 Add new text before paragraph 3
22087 An object whose identifier is declared with the storage-class
22088 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
22089 Its lifetime is the entire execution of the thread, and its
22090 stored value is initialized only once, prior to thread startup.
22094 @cite{6.4.1 Keywords}
22096 Add @code{__thread}.
22099 @cite{6.7.1 Storage-class specifiers}
22101 Add @code{__thread} to the list of storage class specifiers in
22104 Change paragraph 2 to
22107 With the exception of @code{__thread}, at most one storage-class
22108 specifier may be given [@dots{}]. The @code{__thread} specifier may
22109 be used alone, or immediately following @code{extern} or
22113 Add new text after paragraph 6
22116 The declaration of an identifier for a variable that has
22117 block scope that specifies @code{__thread} shall also
22118 specify either @code{extern} or @code{static}.
22120 The @code{__thread} specifier shall be used only with
22125 @node C++98 Thread-Local Edits
22126 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
22128 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
22129 that document the exact semantics of the language extension.
22133 @b{[intro.execution]}
22135 New text after paragraph 4
22138 A @dfn{thread} is a flow of control within the abstract machine.
22139 It is implementation defined whether or not there may be more than
22143 New text after paragraph 7
22146 It is unspecified whether additional action must be taken to
22147 ensure when and whether side effects are visible to other threads.
22153 Add @code{__thread}.
22156 @b{[basic.start.main]}
22158 Add after paragraph 5
22161 The thread that begins execution at the @code{main} function is called
22162 the @dfn{main thread}. It is implementation defined how functions
22163 beginning threads other than the main thread are designated or typed.
22164 A function so designated, as well as the @code{main} function, is called
22165 a @dfn{thread startup function}. It is implementation defined what
22166 happens if a thread startup function returns. It is implementation
22167 defined what happens to other threads when any thread calls @code{exit}.
22171 @b{[basic.start.init]}
22173 Add after paragraph 4
22176 The storage for an object of thread storage duration shall be
22177 statically initialized before the first statement of the thread startup
22178 function. An object of thread storage duration shall not require
22179 dynamic initialization.
22183 @b{[basic.start.term]}
22185 Add after paragraph 3
22188 The type of an object with thread storage duration shall not have a
22189 non-trivial destructor, nor shall it be an array type whose elements
22190 (directly or indirectly) have non-trivial destructors.
22196 Add ``thread storage duration'' to the list in paragraph 1.
22201 Thread, static, and automatic storage durations are associated with
22202 objects introduced by declarations [@dots{}].
22205 Add @code{__thread} to the list of specifiers in paragraph 3.
22208 @b{[basic.stc.thread]}
22210 New section before @b{[basic.stc.static]}
22213 The keyword @code{__thread} applied to a non-local object gives the
22214 object thread storage duration.
22216 A local variable or class data member declared both @code{static}
22217 and @code{__thread} gives the variable or member thread storage
22222 @b{[basic.stc.static]}
22227 All objects that have neither thread storage duration, dynamic
22228 storage duration nor are local [@dots{}].
22234 Add @code{__thread} to the list in paragraph 1.
22239 With the exception of @code{__thread}, at most one
22240 @var{storage-class-specifier} shall appear in a given
22241 @var{decl-specifier-seq}. The @code{__thread} specifier may
22242 be used alone, or immediately following the @code{extern} or
22243 @code{static} specifiers. [@dots{}]
22246 Add after paragraph 5
22249 The @code{__thread} specifier can be applied only to the names of objects
22250 and to anonymous unions.
22256 Add after paragraph 6
22259 Non-@code{static} members shall not be @code{__thread}.
22263 @node Binary constants
22264 @section Binary Constants using the @samp{0b} Prefix
22265 @cindex Binary constants using the @samp{0b} prefix
22267 Integer constants can be written as binary constants, consisting of a
22268 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
22269 @samp{0B}. This is particularly useful in environments that operate a
22270 lot on the bit level (like microcontrollers).
22272 The following statements are identical:
22281 The type of these constants follows the same rules as for octal or
22282 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
22285 @node C++ Extensions
22286 @chapter Extensions to the C++ Language
22287 @cindex extensions, C++ language
22288 @cindex C++ language extensions
22290 The GNU compiler provides these extensions to the C++ language (and you
22291 can also use most of the C language extensions in your C++ programs). If you
22292 want to write code that checks whether these features are available, you can
22293 test for the GNU compiler the same way as for C programs: check for a
22294 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
22295 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
22296 Predefined Macros,cpp,The GNU C Preprocessor}).
22299 * C++ Volatiles:: What constitutes an access to a volatile object.
22300 * Restricted Pointers:: C99 restricted pointers and references.
22301 * Vague Linkage:: Where G++ puts inlines, vtables and such.
22302 * C++ Interface:: You can use a single C++ header file for both
22303 declarations and definitions.
22304 * Template Instantiation:: Methods for ensuring that exactly one copy of
22305 each needed template instantiation is emitted.
22306 * Bound member functions:: You can extract a function pointer to the
22307 method denoted by a @samp{->*} or @samp{.*} expression.
22308 * C++ Attributes:: Variable, function, and type attributes for C++ only.
22309 * Function Multiversioning:: Declaring multiple function versions.
22310 * Type Traits:: Compiler support for type traits.
22311 * C++ Concepts:: Improved support for generic programming.
22312 * Deprecated Features:: Things will disappear from G++.
22313 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
22316 @node C++ Volatiles
22317 @section When is a Volatile C++ Object Accessed?
22318 @cindex accessing volatiles
22319 @cindex volatile read
22320 @cindex volatile write
22321 @cindex volatile access
22323 The C++ standard differs from the C standard in its treatment of
22324 volatile objects. It fails to specify what constitutes a volatile
22325 access, except to say that C++ should behave in a similar manner to C
22326 with respect to volatiles, where possible. However, the different
22327 lvalueness of expressions between C and C++ complicate the behavior.
22328 G++ behaves the same as GCC for volatile access, @xref{C
22329 Extensions,,Volatiles}, for a description of GCC's behavior.
22331 The C and C++ language specifications differ when an object is
22332 accessed in a void context:
22335 volatile int *src = @var{somevalue};
22339 The C++ standard specifies that such expressions do not undergo lvalue
22340 to rvalue conversion, and that the type of the dereferenced object may
22341 be incomplete. The C++ standard does not specify explicitly that it
22342 is lvalue to rvalue conversion that is responsible for causing an
22343 access. There is reason to believe that it is, because otherwise
22344 certain simple expressions become undefined. However, because it
22345 would surprise most programmers, G++ treats dereferencing a pointer to
22346 volatile object of complete type as GCC would do for an equivalent
22347 type in C@. When the object has incomplete type, G++ issues a
22348 warning; if you wish to force an error, you must force a conversion to
22349 rvalue with, for instance, a static cast.
22351 When using a reference to volatile, G++ does not treat equivalent
22352 expressions as accesses to volatiles, but instead issues a warning that
22353 no volatile is accessed. The rationale for this is that otherwise it
22354 becomes difficult to determine where volatile access occur, and not
22355 possible to ignore the return value from functions returning volatile
22356 references. Again, if you wish to force a read, cast the reference to
22359 G++ implements the same behavior as GCC does when assigning to a
22360 volatile object---there is no reread of the assigned-to object, the
22361 assigned rvalue is reused. Note that in C++ assignment expressions
22362 are lvalues, and if used as an lvalue, the volatile object is
22363 referred to. For instance, @var{vref} refers to @var{vobj}, as
22364 expected, in the following example:
22368 volatile int &vref = vobj = @var{something};
22371 @node Restricted Pointers
22372 @section Restricting Pointer Aliasing
22373 @cindex restricted pointers
22374 @cindex restricted references
22375 @cindex restricted this pointer
22377 As with the C front end, G++ understands the C99 feature of restricted pointers,
22378 specified with the @code{__restrict__}, or @code{__restrict} type
22379 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
22380 language flag, @code{restrict} is not a keyword in C++.
22382 In addition to allowing restricted pointers, you can specify restricted
22383 references, which indicate that the reference is not aliased in the local
22387 void fn (int *__restrict__ rptr, int &__restrict__ rref)
22394 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
22395 @var{rref} refers to a (different) unaliased integer.
22397 You may also specify whether a member function's @var{this} pointer is
22398 unaliased by using @code{__restrict__} as a member function qualifier.
22401 void T::fn () __restrict__
22408 Within the body of @code{T::fn}, @var{this} has the effective
22409 definition @code{T *__restrict__ const this}. Notice that the
22410 interpretation of a @code{__restrict__} member function qualifier is
22411 different to that of @code{const} or @code{volatile} qualifier, in that it
22412 is applied to the pointer rather than the object. This is consistent with
22413 other compilers that implement restricted pointers.
22415 As with all outermost parameter qualifiers, @code{__restrict__} is
22416 ignored in function definition matching. This means you only need to
22417 specify @code{__restrict__} in a function definition, rather than
22418 in a function prototype as well.
22420 @node Vague Linkage
22421 @section Vague Linkage
22422 @cindex vague linkage
22424 There are several constructs in C++ that require space in the object
22425 file but are not clearly tied to a single translation unit. We say that
22426 these constructs have ``vague linkage''. Typically such constructs are
22427 emitted wherever they are needed, though sometimes we can be more
22431 @item Inline Functions
22432 Inline functions are typically defined in a header file which can be
22433 included in many different compilations. Hopefully they can usually be
22434 inlined, but sometimes an out-of-line copy is necessary, if the address
22435 of the function is taken or if inlining fails. In general, we emit an
22436 out-of-line copy in all translation units where one is needed. As an
22437 exception, we only emit inline virtual functions with the vtable, since
22438 it always requires a copy.
22440 Local static variables and string constants used in an inline function
22441 are also considered to have vague linkage, since they must be shared
22442 between all inlined and out-of-line instances of the function.
22446 C++ virtual functions are implemented in most compilers using a lookup
22447 table, known as a vtable. The vtable contains pointers to the virtual
22448 functions provided by a class, and each object of the class contains a
22449 pointer to its vtable (or vtables, in some multiple-inheritance
22450 situations). If the class declares any non-inline, non-pure virtual
22451 functions, the first one is chosen as the ``key method'' for the class,
22452 and the vtable is only emitted in the translation unit where the key
22455 @emph{Note:} If the chosen key method is later defined as inline, the
22456 vtable is still emitted in every translation unit that defines it.
22457 Make sure that any inline virtuals are declared inline in the class
22458 body, even if they are not defined there.
22460 @item @code{type_info} objects
22461 @cindex @code{type_info}
22463 C++ requires information about types to be written out in order to
22464 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
22465 For polymorphic classes (classes with virtual functions), the @samp{type_info}
22466 object is written out along with the vtable so that @samp{dynamic_cast}
22467 can determine the dynamic type of a class object at run time. For all
22468 other types, we write out the @samp{type_info} object when it is used: when
22469 applying @samp{typeid} to an expression, throwing an object, or
22470 referring to a type in a catch clause or exception specification.
22472 @item Template Instantiations
22473 Most everything in this section also applies to template instantiations,
22474 but there are other options as well.
22475 @xref{Template Instantiation,,Where's the Template?}.
22479 When used with GNU ld version 2.8 or later on an ELF system such as
22480 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
22481 these constructs will be discarded at link time. This is known as
22484 On targets that don't support COMDAT, but do support weak symbols, GCC
22485 uses them. This way one copy overrides all the others, but
22486 the unused copies still take up space in the executable.
22488 For targets that do not support either COMDAT or weak symbols,
22489 most entities with vague linkage are emitted as local symbols to
22490 avoid duplicate definition errors from the linker. This does not happen
22491 for local statics in inlines, however, as having multiple copies
22492 almost certainly breaks things.
22494 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
22495 another way to control placement of these constructs.
22497 @node C++ Interface
22498 @section C++ Interface and Implementation Pragmas
22500 @cindex interface and implementation headers, C++
22501 @cindex C++ interface and implementation headers
22502 @cindex pragmas, interface and implementation
22504 @code{#pragma interface} and @code{#pragma implementation} provide the
22505 user with a way of explicitly directing the compiler to emit entities
22506 with vague linkage (and debugging information) in a particular
22509 @emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
22510 by COMDAT support and the ``key method'' heuristic
22511 mentioned in @ref{Vague Linkage}. Using them can actually cause your
22512 program to grow due to unnecessary out-of-line copies of inline
22516 @item #pragma interface
22517 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
22518 @kindex #pragma interface
22519 Use this directive in @emph{header files} that define object classes, to save
22520 space in most of the object files that use those classes. Normally,
22521 local copies of certain information (backup copies of inline member
22522 functions, debugging information, and the internal tables that implement
22523 virtual functions) must be kept in each object file that includes class
22524 definitions. You can use this pragma to avoid such duplication. When a
22525 header file containing @samp{#pragma interface} is included in a
22526 compilation, this auxiliary information is not generated (unless
22527 the main input source file itself uses @samp{#pragma implementation}).
22528 Instead, the object files contain references to be resolved at link
22531 The second form of this directive is useful for the case where you have
22532 multiple headers with the same name in different directories. If you
22533 use this form, you must specify the same string to @samp{#pragma
22536 @item #pragma implementation
22537 @itemx #pragma implementation "@var{objects}.h"
22538 @kindex #pragma implementation
22539 Use this pragma in a @emph{main input file}, when you want full output from
22540 included header files to be generated (and made globally visible). The
22541 included header file, in turn, should use @samp{#pragma interface}.
22542 Backup copies of inline member functions, debugging information, and the
22543 internal tables used to implement virtual functions are all generated in
22544 implementation files.
22546 @cindex implied @code{#pragma implementation}
22547 @cindex @code{#pragma implementation}, implied
22548 @cindex naming convention, implementation headers
22549 If you use @samp{#pragma implementation} with no argument, it applies to
22550 an include file with the same basename@footnote{A file's @dfn{basename}
22551 is the name stripped of all leading path information and of trailing
22552 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
22553 file. For example, in @file{allclass.cc}, giving just
22554 @samp{#pragma implementation}
22555 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
22557 Use the string argument if you want a single implementation file to
22558 include code from multiple header files. (You must also use
22559 @samp{#include} to include the header file; @samp{#pragma
22560 implementation} only specifies how to use the file---it doesn't actually
22563 There is no way to split up the contents of a single header file into
22564 multiple implementation files.
22567 @cindex inlining and C++ pragmas
22568 @cindex C++ pragmas, effect on inlining
22569 @cindex pragmas in C++, effect on inlining
22570 @samp{#pragma implementation} and @samp{#pragma interface} also have an
22571 effect on function inlining.
22573 If you define a class in a header file marked with @samp{#pragma
22574 interface}, the effect on an inline function defined in that class is
22575 similar to an explicit @code{extern} declaration---the compiler emits
22576 no code at all to define an independent version of the function. Its
22577 definition is used only for inlining with its callers.
22579 @opindex fno-implement-inlines
22580 Conversely, when you include the same header file in a main source file
22581 that declares it as @samp{#pragma implementation}, the compiler emits
22582 code for the function itself; this defines a version of the function
22583 that can be found via pointers (or by callers compiled without
22584 inlining). If all calls to the function can be inlined, you can avoid
22585 emitting the function by compiling with @option{-fno-implement-inlines}.
22586 If any calls are not inlined, you will get linker errors.
22588 @node Template Instantiation
22589 @section Where's the Template?
22590 @cindex template instantiation
22592 C++ templates were the first language feature to require more
22593 intelligence from the environment than was traditionally found on a UNIX
22594 system. Somehow the compiler and linker have to make sure that each
22595 template instance occurs exactly once in the executable if it is needed,
22596 and not at all otherwise. There are two basic approaches to this
22597 problem, which are referred to as the Borland model and the Cfront model.
22600 @item Borland model
22601 Borland C++ solved the template instantiation problem by adding the code
22602 equivalent of common blocks to their linker; the compiler emits template
22603 instances in each translation unit that uses them, and the linker
22604 collapses them together. The advantage of this model is that the linker
22605 only has to consider the object files themselves; there is no external
22606 complexity to worry about. The disadvantage is that compilation time
22607 is increased because the template code is being compiled repeatedly.
22608 Code written for this model tends to include definitions of all
22609 templates in the header file, since they must be seen to be
22613 The AT&T C++ translator, Cfront, solved the template instantiation
22614 problem by creating the notion of a template repository, an
22615 automatically maintained place where template instances are stored. A
22616 more modern version of the repository works as follows: As individual
22617 object files are built, the compiler places any template definitions and
22618 instantiations encountered in the repository. At link time, the link
22619 wrapper adds in the objects in the repository and compiles any needed
22620 instances that were not previously emitted. The advantages of this
22621 model are more optimal compilation speed and the ability to use the
22622 system linker; to implement the Borland model a compiler vendor also
22623 needs to replace the linker. The disadvantages are vastly increased
22624 complexity, and thus potential for error; for some code this can be
22625 just as transparent, but in practice it can been very difficult to build
22626 multiple programs in one directory and one program in multiple
22627 directories. Code written for this model tends to separate definitions
22628 of non-inline member templates into a separate file, which should be
22629 compiled separately.
22632 G++ implements the Borland model on targets where the linker supports it,
22633 including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
22634 Otherwise G++ implements neither automatic model.
22636 You have the following options for dealing with template instantiations:
22640 Do nothing. Code written for the Borland model works fine, but
22641 each translation unit contains instances of each of the templates it
22642 uses. The duplicate instances will be discarded by the linker, but in
22643 a large program, this can lead to an unacceptable amount of code
22644 duplication in object files or shared libraries.
22646 Duplicate instances of a template can be avoided by defining an explicit
22647 instantiation in one object file, and preventing the compiler from doing
22648 implicit instantiations in any other object files by using an explicit
22649 instantiation declaration, using the @code{extern template} syntax:
22652 extern template int max (int, int);
22655 This syntax is defined in the C++ 2011 standard, but has been supported by
22656 G++ and other compilers since well before 2011.
22658 Explicit instantiations can be used for the largest or most frequently
22659 duplicated instances, without having to know exactly which other instances
22660 are used in the rest of the program. You can scatter the explicit
22661 instantiations throughout your program, perhaps putting them in the
22662 translation units where the instances are used or the translation units
22663 that define the templates themselves; you can put all of the explicit
22664 instantiations you need into one big file; or you can create small files
22671 template class Foo<int>;
22672 template ostream& operator <<
22673 (ostream&, const Foo<int>&);
22677 for each of the instances you need, and create a template instantiation
22678 library from those.
22680 This is the simplest option, but also offers flexibility and
22681 fine-grained control when necessary. It is also the most portable
22682 alternative and programs using this approach will work with most modern
22687 Compile your template-using code with @option{-frepo}. The compiler
22688 generates files with the extension @samp{.rpo} listing all of the
22689 template instantiations used in the corresponding object files that
22690 could be instantiated there; the link wrapper, @samp{collect2},
22691 then updates the @samp{.rpo} files to tell the compiler where to place
22692 those instantiations and rebuild any affected object files. The
22693 link-time overhead is negligible after the first pass, as the compiler
22694 continues to place the instantiations in the same files.
22696 This can be a suitable option for application code written for the Borland
22697 model, as it usually just works. Code written for the Cfront model
22698 needs to be modified so that the template definitions are available at
22699 one or more points of instantiation; usually this is as simple as adding
22700 @code{#include <tmethods.cc>} to the end of each template header.
22702 For library code, if you want the library to provide all of the template
22703 instantiations it needs, just try to link all of its object files
22704 together; the link will fail, but cause the instantiations to be
22705 generated as a side effect. Be warned, however, that this may cause
22706 conflicts if multiple libraries try to provide the same instantiations.
22707 For greater control, use explicit instantiation as described in the next
22711 @opindex fno-implicit-templates
22712 Compile your code with @option{-fno-implicit-templates} to disable the
22713 implicit generation of template instances, and explicitly instantiate
22714 all the ones you use. This approach requires more knowledge of exactly
22715 which instances you need than do the others, but it's less
22716 mysterious and allows greater control if you want to ensure that only
22717 the intended instances are used.
22719 If you are using Cfront-model code, you can probably get away with not
22720 using @option{-fno-implicit-templates} when compiling files that don't
22721 @samp{#include} the member template definitions.
22723 If you use one big file to do the instantiations, you may want to
22724 compile it without @option{-fno-implicit-templates} so you get all of the
22725 instances required by your explicit instantiations (but not by any
22726 other files) without having to specify them as well.
22728 In addition to forward declaration of explicit instantiations
22729 (with @code{extern}), G++ has extended the template instantiation
22730 syntax to support instantiation of the compiler support data for a
22731 template class (i.e.@: the vtable) without instantiating any of its
22732 members (with @code{inline}), and instantiation of only the static data
22733 members of a template class, without the support data or member
22734 functions (with @code{static}):
22737 inline template class Foo<int>;
22738 static template class Foo<int>;
22742 @node Bound member functions
22743 @section Extracting the Function Pointer from a Bound Pointer to Member Function
22745 @cindex pointer to member function
22746 @cindex bound pointer to member function
22748 In C++, pointer to member functions (PMFs) are implemented using a wide
22749 pointer of sorts to handle all the possible call mechanisms; the PMF
22750 needs to store information about how to adjust the @samp{this} pointer,
22751 and if the function pointed to is virtual, where to find the vtable, and
22752 where in the vtable to look for the member function. If you are using
22753 PMFs in an inner loop, you should really reconsider that decision. If
22754 that is not an option, you can extract the pointer to the function that
22755 would be called for a given object/PMF pair and call it directly inside
22756 the inner loop, to save a bit of time.
22758 Note that you still pay the penalty for the call through a
22759 function pointer; on most modern architectures, such a call defeats the
22760 branch prediction features of the CPU@. This is also true of normal
22761 virtual function calls.
22763 The syntax for this extension is
22767 extern int (A::*fp)();
22768 typedef int (*fptr)(A *);
22770 fptr p = (fptr)(a.*fp);
22773 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
22774 no object is needed to obtain the address of the function. They can be
22775 converted to function pointers directly:
22778 fptr p1 = (fptr)(&A::foo);
22781 @opindex Wno-pmf-conversions
22782 You must specify @option{-Wno-pmf-conversions} to use this extension.
22784 @node C++ Attributes
22785 @section C++-Specific Variable, Function, and Type Attributes
22787 Some attributes only make sense for C++ programs.
22790 @item abi_tag ("@var{tag}", ...)
22791 @cindex @code{abi_tag} function attribute
22792 @cindex @code{abi_tag} variable attribute
22793 @cindex @code{abi_tag} type attribute
22794 The @code{abi_tag} attribute can be applied to a function, variable, or class
22795 declaration. It modifies the mangled name of the entity to
22796 incorporate the tag name, in order to distinguish the function or
22797 class from an earlier version with a different ABI; perhaps the class
22798 has changed size, or the function has a different return type that is
22799 not encoded in the mangled name.
22801 The attribute can also be applied to an inline namespace, but does not
22802 affect the mangled name of the namespace; in this case it is only used
22803 for @option{-Wabi-tag} warnings and automatic tagging of functions and
22804 variables. Tagging inline namespaces is generally preferable to
22805 tagging individual declarations, but the latter is sometimes
22806 necessary, such as when only certain members of a class need to be
22809 The argument can be a list of strings of arbitrary length. The
22810 strings are sorted on output, so the order of the list is
22813 A redeclaration of an entity must not add new ABI tags,
22814 since doing so would change the mangled name.
22816 The ABI tags apply to a name, so all instantiations and
22817 specializations of a template have the same tags. The attribute will
22818 be ignored if applied to an explicit specialization or instantiation.
22820 The @option{-Wabi-tag} flag enables a warning about a class which does
22821 not have all the ABI tags used by its subobjects and virtual functions; for users with code
22822 that needs to coexist with an earlier ABI, using this option can help
22823 to find all affected types that need to be tagged.
22825 When a type involving an ABI tag is used as the type of a variable or
22826 return type of a function where that tag is not already present in the
22827 signature of the function, the tag is automatically applied to the
22828 variable or function. @option{-Wabi-tag} also warns about this
22829 situation; this warning can be avoided by explicitly tagging the
22830 variable or function or moving it into a tagged inline namespace.
22832 @item init_priority (@var{priority})
22833 @cindex @code{init_priority} variable attribute
22835 In Standard C++, objects defined at namespace scope are guaranteed to be
22836 initialized in an order in strict accordance with that of their definitions
22837 @emph{in a given translation unit}. No guarantee is made for initializations
22838 across translation units. However, GNU C++ allows users to control the
22839 order of initialization of objects defined at namespace scope with the
22840 @code{init_priority} attribute by specifying a relative @var{priority},
22841 a constant integral expression currently bounded between 101 and 65535
22842 inclusive. Lower numbers indicate a higher priority.
22844 In the following example, @code{A} would normally be created before
22845 @code{B}, but the @code{init_priority} attribute reverses that order:
22848 Some_Class A __attribute__ ((init_priority (2000)));
22849 Some_Class B __attribute__ ((init_priority (543)));
22853 Note that the particular values of @var{priority} do not matter; only their
22857 @cindex @code{warn_unused} type attribute
22859 For C++ types with non-trivial constructors and/or destructors it is
22860 impossible for the compiler to determine whether a variable of this
22861 type is truly unused if it is not referenced. This type attribute
22862 informs the compiler that variables of this type should be warned
22863 about if they appear to be unused, just like variables of fundamental
22866 This attribute is appropriate for types which just represent a value,
22867 such as @code{std::string}; it is not appropriate for types which
22868 control a resource, such as @code{std::lock_guard}.
22870 This attribute is also accepted in C, but it is unnecessary because C
22871 does not have constructors or destructors.
22875 @node Function Multiversioning
22876 @section Function Multiversioning
22877 @cindex function versions
22879 With the GNU C++ front end, for x86 targets, you may specify multiple
22880 versions of a function, where each function is specialized for a
22881 specific target feature. At runtime, the appropriate version of the
22882 function is automatically executed depending on the characteristics of
22883 the execution platform. Here is an example.
22886 __attribute__ ((target ("default")))
22889 // The default version of foo.
22893 __attribute__ ((target ("sse4.2")))
22896 // foo version for SSE4.2
22900 __attribute__ ((target ("arch=atom")))
22903 // foo version for the Intel ATOM processor
22907 __attribute__ ((target ("arch=amdfam10")))
22910 // foo version for the AMD Family 0x10 processors.
22917 assert ((*p) () == foo ());
22922 In the above example, four versions of function foo are created. The
22923 first version of foo with the target attribute "default" is the default
22924 version. This version gets executed when no other target specific
22925 version qualifies for execution on a particular platform. A new version
22926 of foo is created by using the same function signature but with a
22927 different target string. Function foo is called or a pointer to it is
22928 taken just like a regular function. GCC takes care of doing the
22929 dispatching to call the right version at runtime. Refer to the
22930 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
22931 Function Multiversioning} for more details.
22934 @section Type Traits
22936 The C++ front end implements syntactic extensions that allow
22937 compile-time determination of
22938 various characteristics of a type (or of a
22942 @item __has_nothrow_assign (type)
22943 If @code{type} is const qualified or is a reference type then the trait is
22944 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
22945 is true, else if @code{type} is a cv class or union type with copy assignment
22946 operators that are known not to throw an exception then the trait is true,
22947 else it is false. Requires: @code{type} shall be a complete type,
22948 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22950 @item __has_nothrow_copy (type)
22951 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
22952 @code{type} is a cv class or union type with copy constructors that
22953 are known not to throw an exception then the trait is true, else it is false.
22954 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
22955 @code{void}, or an array of unknown bound.
22957 @item __has_nothrow_constructor (type)
22958 If @code{__has_trivial_constructor (type)} is true then the trait is
22959 true, else if @code{type} is a cv class or union type (or array
22960 thereof) with a default constructor that is known not to throw an
22961 exception then the trait is true, else it is false. Requires:
22962 @code{type} shall be a complete type, (possibly cv-qualified)
22963 @code{void}, or an array of unknown bound.
22965 @item __has_trivial_assign (type)
22966 If @code{type} is const qualified or is a reference type then the trait is
22967 false. Otherwise if @code{__is_pod (type)} is true then the trait is
22968 true, else if @code{type} is a cv class or union type with a trivial
22969 copy assignment ([class.copy]) then the trait is true, else it is
22970 false. Requires: @code{type} shall be a complete type, (possibly
22971 cv-qualified) @code{void}, or an array of unknown bound.
22973 @item __has_trivial_copy (type)
22974 If @code{__is_pod (type)} is true or @code{type} is a reference type
22975 then the trait is true, else if @code{type} is a cv class or union type
22976 with a trivial copy constructor ([class.copy]) then the trait
22977 is true, else it is false. Requires: @code{type} shall be a complete
22978 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22980 @item __has_trivial_constructor (type)
22981 If @code{__is_pod (type)} is true then the trait is true, else if
22982 @code{type} is a cv class or union type (or array thereof) with a
22983 trivial default constructor ([class.ctor]) then the trait is true,
22984 else it is false. Requires: @code{type} shall be a complete
22985 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22987 @item __has_trivial_destructor (type)
22988 If @code{__is_pod (type)} is true or @code{type} is a reference type then
22989 the trait is true, else if @code{type} is a cv class or union type (or
22990 array thereof) with a trivial destructor ([class.dtor]) then the trait
22991 is true, else it is false. Requires: @code{type} shall be a complete
22992 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22994 @item __has_virtual_destructor (type)
22995 If @code{type} is a class type with a virtual destructor
22996 ([class.dtor]) then the trait is true, else it is false. Requires:
22997 @code{type} shall be a complete type, (possibly cv-qualified)
22998 @code{void}, or an array of unknown bound.
23000 @item __is_abstract (type)
23001 If @code{type} is an abstract class ([class.abstract]) then the trait
23002 is true, else it is false. Requires: @code{type} shall be a complete
23003 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23005 @item __is_base_of (base_type, derived_type)
23006 If @code{base_type} is a base class of @code{derived_type}
23007 ([class.derived]) then the trait is true, otherwise it is false.
23008 Top-level cv qualifications of @code{base_type} and
23009 @code{derived_type} are ignored. For the purposes of this trait, a
23010 class type is considered is own base. Requires: if @code{__is_class
23011 (base_type)} and @code{__is_class (derived_type)} are true and
23012 @code{base_type} and @code{derived_type} are not the same type
23013 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
23014 type. A diagnostic is produced if this requirement is not met.
23016 @item __is_class (type)
23017 If @code{type} is a cv class type, and not a union type
23018 ([basic.compound]) the trait is true, else it is false.
23020 @item __is_empty (type)
23021 If @code{__is_class (type)} is false then the trait is false.
23022 Otherwise @code{type} is considered empty if and only if: @code{type}
23023 has no non-static data members, or all non-static data members, if
23024 any, are bit-fields of length 0, and @code{type} has no virtual
23025 members, and @code{type} has no virtual base classes, and @code{type}
23026 has no base classes @code{base_type} for which
23027 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
23028 be a complete type, (possibly cv-qualified) @code{void}, or an array
23031 @item __is_enum (type)
23032 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
23033 true, else it is false.
23035 @item __is_literal_type (type)
23036 If @code{type} is a literal type ([basic.types]) the trait is
23037 true, else it is false. Requires: @code{type} shall be a complete type,
23038 (possibly cv-qualified) @code{void}, or an array of unknown bound.
23040 @item __is_pod (type)
23041 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
23042 else it is false. Requires: @code{type} shall be a complete type,
23043 (possibly cv-qualified) @code{void}, or an array of unknown bound.
23045 @item __is_polymorphic (type)
23046 If @code{type} is a polymorphic class ([class.virtual]) then the trait
23047 is true, else it is false. Requires: @code{type} shall be a complete
23048 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23050 @item __is_standard_layout (type)
23051 If @code{type} is a standard-layout type ([basic.types]) the trait is
23052 true, else it is false. Requires: @code{type} shall be a complete
23053 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23055 @item __is_trivial (type)
23056 If @code{type} is a trivial type ([basic.types]) the trait is
23057 true, else it is false. Requires: @code{type} shall be a complete
23058 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23060 @item __is_union (type)
23061 If @code{type} is a cv union type ([basic.compound]) the trait is
23062 true, else it is false.
23064 @item __underlying_type (type)
23065 The underlying type of @code{type}. Requires: @code{type} shall be
23066 an enumeration type ([dcl.enum]).
23068 @item __integer_pack (length)
23069 When used as the pattern of a pack expansion within a template
23070 definition, expands to a template argument pack containing integers
23071 from @code{0} to @code{length-1}. This is provided for efficient
23072 implementation of @code{std::make_integer_sequence}.
23078 @section C++ Concepts
23080 C++ concepts provide much-improved support for generic programming. In
23081 particular, they allow the specification of constraints on template arguments.
23082 The constraints are used to extend the usual overloading and partial
23083 specialization capabilities of the language, allowing generic data structures
23084 and algorithms to be ``refined'' based on their properties rather than their
23087 The following keywords are reserved for concepts.
23091 States an expression as an assumption, and if possible, verifies that the
23092 assumption is valid. For example, @code{assume(n > 0)}.
23095 Introduces an axiom definition. Axioms introduce requirements on values.
23098 Introduces a universally quantified object in an axiom. For example,
23099 @code{forall (int n) n + 0 == n}).
23102 Introduces a concept definition. Concepts are sets of syntactic and semantic
23103 requirements on types and their values.
23106 Introduces constraints on template arguments or requirements for a member
23107 function of a class template.
23111 The front end also exposes a number of internal mechanism that can be used
23112 to simplify the writing of type traits. Note that some of these traits are
23113 likely to be removed in the future.
23116 @item __is_same (type1, type2)
23117 A binary type trait: true whenever the type arguments are the same.
23122 @node Deprecated Features
23123 @section Deprecated Features
23125 In the past, the GNU C++ compiler was extended to experiment with new
23126 features, at a time when the C++ language was still evolving. Now that
23127 the C++ standard is complete, some of those features are superseded by
23128 superior alternatives. Using the old features might cause a warning in
23129 some cases that the feature will be dropped in the future. In other
23130 cases, the feature might be gone already.
23132 While the list below is not exhaustive, it documents some of the options
23133 that are now deprecated:
23136 @item -fexternal-templates
23137 @itemx -falt-external-templates
23138 These are two of the many ways for G++ to implement template
23139 instantiation. @xref{Template Instantiation}. The C++ standard clearly
23140 defines how template definitions have to be organized across
23141 implementation units. G++ has an implicit instantiation mechanism that
23142 should work just fine for standard-conforming code.
23144 @item -fstrict-prototype
23145 @itemx -fno-strict-prototype
23146 Previously it was possible to use an empty prototype parameter list to
23147 indicate an unspecified number of parameters (like C), rather than no
23148 parameters, as C++ demands. This feature has been removed, except where
23149 it is required for backwards compatibility. @xref{Backwards Compatibility}.
23152 G++ allows a virtual function returning @samp{void *} to be overridden
23153 by one returning a different pointer type. This extension to the
23154 covariant return type rules is now deprecated and will be removed from a
23157 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
23158 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
23159 and are now removed from G++. Code using these operators should be
23160 modified to use @code{std::min} and @code{std::max} instead.
23162 The named return value extension has been deprecated, and is now
23165 The use of initializer lists with new expressions has been deprecated,
23166 and is now removed from G++.
23168 Floating and complex non-type template parameters have been deprecated,
23169 and are now removed from G++.
23171 The implicit typename extension has been deprecated and is now
23174 The use of default arguments in function pointers, function typedefs
23175 and other places where they are not permitted by the standard is
23176 deprecated and will be removed from a future version of G++.
23178 G++ allows floating-point literals to appear in integral constant expressions,
23179 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
23180 This extension is deprecated and will be removed from a future version.
23182 G++ allows static data members of const floating-point type to be declared
23183 with an initializer in a class definition. The standard only allows
23184 initializers for static members of const integral types and const
23185 enumeration types so this extension has been deprecated and will be removed
23186 from a future version.
23188 @node Backwards Compatibility
23189 @section Backwards Compatibility
23190 @cindex Backwards Compatibility
23191 @cindex ARM [Annotated C++ Reference Manual]
23193 Now that there is a definitive ISO standard C++, G++ has a specification
23194 to adhere to. The C++ language evolved over time, and features that
23195 used to be acceptable in previous drafts of the standard, such as the ARM
23196 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
23197 compilation of C++ written to such drafts, G++ contains some backwards
23198 compatibilities. @emph{All such backwards compatibility features are
23199 liable to disappear in future versions of G++.} They should be considered
23200 deprecated. @xref{Deprecated Features}.
23204 If a variable is declared at for scope, it used to remain in scope until
23205 the end of the scope that contained the for statement (rather than just
23206 within the for scope). G++ retains this, but issues a warning, if such a
23207 variable is accessed outside the for scope.
23209 @item Implicit C language
23210 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
23211 scope to set the language. On such systems, all header files are
23212 implicitly scoped inside a C language scope. Also, an empty prototype
23213 @code{()} is treated as an unspecified number of arguments, rather
23214 than no arguments, as C++ demands.
23217 @c LocalWords: emph deftypefn builtin ARCv2EM SIMD builtins msimd
23218 @c LocalWords: typedef v4si v8hi DMA dma vdiwr vdowr