2010-10-21 Janus Weil <janus@gcc.gnu.org>
[official-gcc.git] / gcc / tree-cfg.c
blobbffa67922ce91d9f4040820d72eaf805dc919ef6
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "toplev.h"
42 #include "except.h"
43 #include "cfgloop.h"
44 #include "cfglayout.h"
45 #include "tree-ssa-propagate.h"
46 #include "value-prof.h"
47 #include "pointer-set.h"
48 #include "tree-inline.h"
50 /* This file contains functions for building the Control Flow Graph (CFG)
51 for a function tree. */
53 /* Local declarations. */
55 /* Initial capacity for the basic block array. */
56 static const int initial_cfg_capacity = 20;
58 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
59 which use a particular edge. The CASE_LABEL_EXPRs are chained together
60 via their TREE_CHAIN field, which we clear after we're done with the
61 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
63 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
64 update the case vector in response to edge redirections.
66 Right now this table is set up and torn down at key points in the
67 compilation process. It would be nice if we could make the table
68 more persistent. The key is getting notification of changes to
69 the CFG (particularly edge removal, creation and redirection). */
71 static struct pointer_map_t *edge_to_cases;
73 /* If we record edge_to_cases, this bitmap will hold indexes
74 of basic blocks that end in a GIMPLE_SWITCH which we touched
75 due to edge manipulations. */
77 static bitmap touched_switch_bbs;
79 /* CFG statistics. */
80 struct cfg_stats_d
82 long num_merged_labels;
85 static struct cfg_stats_d cfg_stats;
87 /* Nonzero if we found a computed goto while building basic blocks. */
88 static bool found_computed_goto;
90 /* Hash table to store last discriminator assigned for each locus. */
91 struct locus_discrim_map
93 location_t locus;
94 int discriminator;
96 static htab_t discriminator_per_locus;
98 /* Basic blocks and flowgraphs. */
99 static void make_blocks (gimple_seq);
100 static void factor_computed_gotos (void);
102 /* Edges. */
103 static void make_edges (void);
104 static void make_cond_expr_edges (basic_block);
105 static void make_gimple_switch_edges (basic_block);
106 static void make_goto_expr_edges (basic_block);
107 static void make_gimple_asm_edges (basic_block);
108 static unsigned int locus_map_hash (const void *);
109 static int locus_map_eq (const void *, const void *);
110 static void assign_discriminator (location_t, basic_block);
111 static edge gimple_redirect_edge_and_branch (edge, basic_block);
112 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
113 static unsigned int split_critical_edges (void);
115 /* Various helpers. */
116 static inline bool stmt_starts_bb_p (gimple, gimple);
117 static int gimple_verify_flow_info (void);
118 static void gimple_make_forwarder_block (edge);
119 static void gimple_cfg2vcg (FILE *);
120 static gimple first_non_label_stmt (basic_block);
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
164 void
165 init_empty_tree_cfg (void)
167 init_empty_tree_cfg_for_function (cfun);
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
177 static void
178 build_gimple_cfg (gimple_seq seq)
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
185 init_empty_tree_cfg ();
187 found_computed_goto = 0;
188 make_blocks (seq);
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
221 /* Debugging dumps. */
223 /* Write the flowgraph to a VCG file. */
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
235 static unsigned int
236 execute_build_cfg (void)
238 gimple_seq body = gimple_body (current_function_decl);
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
247 return 0;
250 struct gimple_opt_pass pass_build_cfg =
253 GIMPLE_PASS,
254 "cfg", /* name */
255 NULL, /* gate */
256 execute_build_cfg, /* execute */
257 NULL, /* sub */
258 NULL, /* next */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg
266 | TODO_dump_func /* todo_flags_finish */
271 /* Return true if T is a computed goto. */
273 static bool
274 computed_goto_p (gimple t)
276 return (gimple_code (t) == GIMPLE_GOTO
277 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
281 /* Search the CFG for any computed gotos. If found, factor them to a
282 common computed goto site. Also record the location of that site so
283 that we can un-factor the gotos after we have converted back to
284 normal form. */
286 static void
287 factor_computed_gotos (void)
289 basic_block bb;
290 tree factored_label_decl = NULL;
291 tree var = NULL;
292 gimple factored_computed_goto_label = NULL;
293 gimple factored_computed_goto = NULL;
295 /* We know there are one or more computed gotos in this function.
296 Examine the last statement in each basic block to see if the block
297 ends with a computed goto. */
299 FOR_EACH_BB (bb)
301 gimple_stmt_iterator gsi = gsi_last_bb (bb);
302 gimple last;
304 if (gsi_end_p (gsi))
305 continue;
307 last = gsi_stmt (gsi);
309 /* Ignore the computed goto we create when we factor the original
310 computed gotos. */
311 if (last == factored_computed_goto)
312 continue;
314 /* If the last statement is a computed goto, factor it. */
315 if (computed_goto_p (last))
317 gimple assignment;
319 /* The first time we find a computed goto we need to create
320 the factored goto block and the variable each original
321 computed goto will use for their goto destination. */
322 if (!factored_computed_goto)
324 basic_block new_bb = create_empty_bb (bb);
325 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
327 /* Create the destination of the factored goto. Each original
328 computed goto will put its desired destination into this
329 variable and jump to the label we create immediately
330 below. */
331 var = create_tmp_var (ptr_type_node, "gotovar");
333 /* Build a label for the new block which will contain the
334 factored computed goto. */
335 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
336 factored_computed_goto_label
337 = gimple_build_label (factored_label_decl);
338 gsi_insert_after (&new_gsi, factored_computed_goto_label,
339 GSI_NEW_STMT);
341 /* Build our new computed goto. */
342 factored_computed_goto = gimple_build_goto (var);
343 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
346 /* Copy the original computed goto's destination into VAR. */
347 assignment = gimple_build_assign (var, gimple_goto_dest (last));
348 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
350 /* And re-vector the computed goto to the new destination. */
351 gimple_goto_set_dest (last, factored_label_decl);
357 /* Build a flowgraph for the sequence of stmts SEQ. */
359 static void
360 make_blocks (gimple_seq seq)
362 gimple_stmt_iterator i = gsi_start (seq);
363 gimple stmt = NULL;
364 bool start_new_block = true;
365 bool first_stmt_of_seq = true;
366 basic_block bb = ENTRY_BLOCK_PTR;
368 while (!gsi_end_p (i))
370 gimple prev_stmt;
372 prev_stmt = stmt;
373 stmt = gsi_stmt (i);
375 /* If the statement starts a new basic block or if we have determined
376 in a previous pass that we need to create a new block for STMT, do
377 so now. */
378 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
380 if (!first_stmt_of_seq)
381 seq = gsi_split_seq_before (&i);
382 bb = create_basic_block (seq, NULL, bb);
383 start_new_block = false;
386 /* Now add STMT to BB and create the subgraphs for special statement
387 codes. */
388 gimple_set_bb (stmt, bb);
390 if (computed_goto_p (stmt))
391 found_computed_goto = true;
393 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
394 next iteration. */
395 if (stmt_ends_bb_p (stmt))
397 /* If the stmt can make abnormal goto use a new temporary
398 for the assignment to the LHS. This makes sure the old value
399 of the LHS is available on the abnormal edge. Otherwise
400 we will end up with overlapping life-ranges for abnormal
401 SSA names. */
402 if (gimple_has_lhs (stmt)
403 && stmt_can_make_abnormal_goto (stmt)
404 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
406 tree lhs = gimple_get_lhs (stmt);
407 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
408 gimple s = gimple_build_assign (lhs, tmp);
409 gimple_set_location (s, gimple_location (stmt));
410 gimple_set_block (s, gimple_block (stmt));
411 gimple_set_lhs (stmt, tmp);
412 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
413 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
414 DECL_GIMPLE_REG_P (tmp) = 1;
415 gsi_insert_after (&i, s, GSI_SAME_STMT);
417 start_new_block = true;
420 gsi_next (&i);
421 first_stmt_of_seq = false;
426 /* Create and return a new empty basic block after bb AFTER. */
428 static basic_block
429 create_bb (void *h, void *e, basic_block after)
431 basic_block bb;
433 gcc_assert (!e);
435 /* Create and initialize a new basic block. Since alloc_block uses
436 GC allocation that clears memory to allocate a basic block, we do
437 not have to clear the newly allocated basic block here. */
438 bb = alloc_block ();
440 bb->index = last_basic_block;
441 bb->flags = BB_NEW;
442 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
443 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
445 /* Add the new block to the linked list of blocks. */
446 link_block (bb, after);
448 /* Grow the basic block array if needed. */
449 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
451 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
452 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
455 /* Add the newly created block to the array. */
456 SET_BASIC_BLOCK (last_basic_block, bb);
458 n_basic_blocks++;
459 last_basic_block++;
461 return bb;
465 /*---------------------------------------------------------------------------
466 Edge creation
467 ---------------------------------------------------------------------------*/
469 /* Fold COND_EXPR_COND of each COND_EXPR. */
471 void
472 fold_cond_expr_cond (void)
474 basic_block bb;
476 FOR_EACH_BB (bb)
478 gimple stmt = last_stmt (bb);
480 if (stmt && gimple_code (stmt) == GIMPLE_COND)
482 location_t loc = gimple_location (stmt);
483 tree cond;
484 bool zerop, onep;
486 fold_defer_overflow_warnings ();
487 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
488 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
489 if (cond)
491 zerop = integer_zerop (cond);
492 onep = integer_onep (cond);
494 else
495 zerop = onep = false;
497 fold_undefer_overflow_warnings (zerop || onep,
498 stmt,
499 WARN_STRICT_OVERFLOW_CONDITIONAL);
500 if (zerop)
501 gimple_cond_make_false (stmt);
502 else if (onep)
503 gimple_cond_make_true (stmt);
508 /* Join all the blocks in the flowgraph. */
510 static void
511 make_edges (void)
513 basic_block bb;
514 struct omp_region *cur_region = NULL;
516 /* Create an edge from entry to the first block with executable
517 statements in it. */
518 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
520 /* Traverse the basic block array placing edges. */
521 FOR_EACH_BB (bb)
523 gimple last = last_stmt (bb);
524 bool fallthru;
526 if (last)
528 enum gimple_code code = gimple_code (last);
529 switch (code)
531 case GIMPLE_GOTO:
532 make_goto_expr_edges (bb);
533 fallthru = false;
534 break;
535 case GIMPLE_RETURN:
536 make_edge (bb, EXIT_BLOCK_PTR, 0);
537 fallthru = false;
538 break;
539 case GIMPLE_COND:
540 make_cond_expr_edges (bb);
541 fallthru = false;
542 break;
543 case GIMPLE_SWITCH:
544 make_gimple_switch_edges (bb);
545 fallthru = false;
546 break;
547 case GIMPLE_RESX:
548 make_eh_edges (last);
549 fallthru = false;
550 break;
551 case GIMPLE_EH_DISPATCH:
552 fallthru = make_eh_dispatch_edges (last);
553 break;
555 case GIMPLE_CALL:
556 /* If this function receives a nonlocal goto, then we need to
557 make edges from this call site to all the nonlocal goto
558 handlers. */
559 if (stmt_can_make_abnormal_goto (last))
560 make_abnormal_goto_edges (bb, true);
562 /* If this statement has reachable exception handlers, then
563 create abnormal edges to them. */
564 make_eh_edges (last);
566 /* BUILTIN_RETURN is really a return statement. */
567 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
568 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
569 /* Some calls are known not to return. */
570 else
571 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
572 break;
574 case GIMPLE_ASSIGN:
575 /* A GIMPLE_ASSIGN may throw internally and thus be considered
576 control-altering. */
577 if (is_ctrl_altering_stmt (last))
578 make_eh_edges (last);
579 fallthru = true;
580 break;
582 case GIMPLE_ASM:
583 make_gimple_asm_edges (bb);
584 fallthru = true;
585 break;
587 case GIMPLE_OMP_PARALLEL:
588 case GIMPLE_OMP_TASK:
589 case GIMPLE_OMP_FOR:
590 case GIMPLE_OMP_SINGLE:
591 case GIMPLE_OMP_MASTER:
592 case GIMPLE_OMP_ORDERED:
593 case GIMPLE_OMP_CRITICAL:
594 case GIMPLE_OMP_SECTION:
595 cur_region = new_omp_region (bb, code, cur_region);
596 fallthru = true;
597 break;
599 case GIMPLE_OMP_SECTIONS:
600 cur_region = new_omp_region (bb, code, cur_region);
601 fallthru = true;
602 break;
604 case GIMPLE_OMP_SECTIONS_SWITCH:
605 fallthru = false;
606 break;
608 case GIMPLE_OMP_ATOMIC_LOAD:
609 case GIMPLE_OMP_ATOMIC_STORE:
610 fallthru = true;
611 break;
613 case GIMPLE_OMP_RETURN:
614 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
615 somewhere other than the next block. This will be
616 created later. */
617 cur_region->exit = bb;
618 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
619 cur_region = cur_region->outer;
620 break;
622 case GIMPLE_OMP_CONTINUE:
623 cur_region->cont = bb;
624 switch (cur_region->type)
626 case GIMPLE_OMP_FOR:
627 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
628 succs edges as abnormal to prevent splitting
629 them. */
630 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
631 /* Make the loopback edge. */
632 make_edge (bb, single_succ (cur_region->entry),
633 EDGE_ABNORMAL);
635 /* Create an edge from GIMPLE_OMP_FOR to exit, which
636 corresponds to the case that the body of the loop
637 is not executed at all. */
638 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
639 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
640 fallthru = false;
641 break;
643 case GIMPLE_OMP_SECTIONS:
644 /* Wire up the edges into and out of the nested sections. */
646 basic_block switch_bb = single_succ (cur_region->entry);
648 struct omp_region *i;
649 for (i = cur_region->inner; i ; i = i->next)
651 gcc_assert (i->type == GIMPLE_OMP_SECTION);
652 make_edge (switch_bb, i->entry, 0);
653 make_edge (i->exit, bb, EDGE_FALLTHRU);
656 /* Make the loopback edge to the block with
657 GIMPLE_OMP_SECTIONS_SWITCH. */
658 make_edge (bb, switch_bb, 0);
660 /* Make the edge from the switch to exit. */
661 make_edge (switch_bb, bb->next_bb, 0);
662 fallthru = false;
664 break;
666 default:
667 gcc_unreachable ();
669 break;
671 default:
672 gcc_assert (!stmt_ends_bb_p (last));
673 fallthru = true;
676 else
677 fallthru = true;
679 if (fallthru)
681 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
682 if (last)
683 assign_discriminator (gimple_location (last), bb->next_bb);
687 if (root_omp_region)
688 free_omp_regions ();
690 /* Fold COND_EXPR_COND of each COND_EXPR. */
691 fold_cond_expr_cond ();
694 /* Trivial hash function for a location_t. ITEM is a pointer to
695 a hash table entry that maps a location_t to a discriminator. */
697 static unsigned int
698 locus_map_hash (const void *item)
700 return ((const struct locus_discrim_map *) item)->locus;
703 /* Equality function for the locus-to-discriminator map. VA and VB
704 point to the two hash table entries to compare. */
706 static int
707 locus_map_eq (const void *va, const void *vb)
709 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
710 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
711 return a->locus == b->locus;
714 /* Find the next available discriminator value for LOCUS. The
715 discriminator distinguishes among several basic blocks that
716 share a common locus, allowing for more accurate sample-based
717 profiling. */
719 static int
720 next_discriminator_for_locus (location_t locus)
722 struct locus_discrim_map item;
723 struct locus_discrim_map **slot;
725 item.locus = locus;
726 item.discriminator = 0;
727 slot = (struct locus_discrim_map **)
728 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
729 (hashval_t) locus, INSERT);
730 gcc_assert (slot);
731 if (*slot == HTAB_EMPTY_ENTRY)
733 *slot = XNEW (struct locus_discrim_map);
734 gcc_assert (*slot);
735 (*slot)->locus = locus;
736 (*slot)->discriminator = 0;
738 (*slot)->discriminator++;
739 return (*slot)->discriminator;
742 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
744 static bool
745 same_line_p (location_t locus1, location_t locus2)
747 expanded_location from, to;
749 if (locus1 == locus2)
750 return true;
752 from = expand_location (locus1);
753 to = expand_location (locus2);
755 if (from.line != to.line)
756 return false;
757 if (from.file == to.file)
758 return true;
759 return (from.file != NULL
760 && to.file != NULL
761 && strcmp (from.file, to.file) == 0);
764 /* Assign a unique discriminator value to block BB if it begins at the same
765 LOCUS as its predecessor block. */
767 static void
768 assign_discriminator (location_t locus, basic_block bb)
770 gimple first_in_to_bb, last_in_to_bb;
772 if (locus == 0 || bb->discriminator != 0)
773 return;
775 first_in_to_bb = first_non_label_stmt (bb);
776 last_in_to_bb = last_stmt (bb);
777 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
778 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
779 bb->discriminator = next_discriminator_for_locus (locus);
782 /* Create the edges for a GIMPLE_COND starting at block BB. */
784 static void
785 make_cond_expr_edges (basic_block bb)
787 gimple entry = last_stmt (bb);
788 gimple then_stmt, else_stmt;
789 basic_block then_bb, else_bb;
790 tree then_label, else_label;
791 edge e;
792 location_t entry_locus;
794 gcc_assert (entry);
795 gcc_assert (gimple_code (entry) == GIMPLE_COND);
797 entry_locus = gimple_location (entry);
799 /* Entry basic blocks for each component. */
800 then_label = gimple_cond_true_label (entry);
801 else_label = gimple_cond_false_label (entry);
802 then_bb = label_to_block (then_label);
803 else_bb = label_to_block (else_label);
804 then_stmt = first_stmt (then_bb);
805 else_stmt = first_stmt (else_bb);
807 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
808 assign_discriminator (entry_locus, then_bb);
809 e->goto_locus = gimple_location (then_stmt);
810 if (e->goto_locus)
811 e->goto_block = gimple_block (then_stmt);
812 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
813 if (e)
815 assign_discriminator (entry_locus, else_bb);
816 e->goto_locus = gimple_location (else_stmt);
817 if (e->goto_locus)
818 e->goto_block = gimple_block (else_stmt);
821 /* We do not need the labels anymore. */
822 gimple_cond_set_true_label (entry, NULL_TREE);
823 gimple_cond_set_false_label (entry, NULL_TREE);
827 /* Called for each element in the hash table (P) as we delete the
828 edge to cases hash table.
830 Clear all the TREE_CHAINs to prevent problems with copying of
831 SWITCH_EXPRs and structure sharing rules, then free the hash table
832 element. */
834 static bool
835 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
836 void *data ATTRIBUTE_UNUSED)
838 tree t, next;
840 for (t = (tree) *value; t; t = next)
842 next = TREE_CHAIN (t);
843 TREE_CHAIN (t) = NULL;
846 *value = NULL;
847 return false;
850 /* Start recording information mapping edges to case labels. */
852 void
853 start_recording_case_labels (void)
855 gcc_assert (edge_to_cases == NULL);
856 edge_to_cases = pointer_map_create ();
857 touched_switch_bbs = BITMAP_ALLOC (NULL);
860 /* Return nonzero if we are recording information for case labels. */
862 static bool
863 recording_case_labels_p (void)
865 return (edge_to_cases != NULL);
868 /* Stop recording information mapping edges to case labels and
869 remove any information we have recorded. */
870 void
871 end_recording_case_labels (void)
873 bitmap_iterator bi;
874 unsigned i;
875 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
876 pointer_map_destroy (edge_to_cases);
877 edge_to_cases = NULL;
878 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
880 basic_block bb = BASIC_BLOCK (i);
881 if (bb)
883 gimple stmt = last_stmt (bb);
884 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
885 group_case_labels_stmt (stmt);
888 BITMAP_FREE (touched_switch_bbs);
891 /* If we are inside a {start,end}_recording_cases block, then return
892 a chain of CASE_LABEL_EXPRs from T which reference E.
894 Otherwise return NULL. */
896 static tree
897 get_cases_for_edge (edge e, gimple t)
899 void **slot;
900 size_t i, n;
902 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
903 chains available. Return NULL so the caller can detect this case. */
904 if (!recording_case_labels_p ())
905 return NULL;
907 slot = pointer_map_contains (edge_to_cases, e);
908 if (slot)
909 return (tree) *slot;
911 /* If we did not find E in the hash table, then this must be the first
912 time we have been queried for information about E & T. Add all the
913 elements from T to the hash table then perform the query again. */
915 n = gimple_switch_num_labels (t);
916 for (i = 0; i < n; i++)
918 tree elt = gimple_switch_label (t, i);
919 tree lab = CASE_LABEL (elt);
920 basic_block label_bb = label_to_block (lab);
921 edge this_edge = find_edge (e->src, label_bb);
923 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
924 a new chain. */
925 slot = pointer_map_insert (edge_to_cases, this_edge);
926 TREE_CHAIN (elt) = (tree) *slot;
927 *slot = elt;
930 return (tree) *pointer_map_contains (edge_to_cases, e);
933 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
935 static void
936 make_gimple_switch_edges (basic_block bb)
938 gimple entry = last_stmt (bb);
939 location_t entry_locus;
940 size_t i, n;
942 entry_locus = gimple_location (entry);
944 n = gimple_switch_num_labels (entry);
946 for (i = 0; i < n; ++i)
948 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
949 basic_block label_bb = label_to_block (lab);
950 make_edge (bb, label_bb, 0);
951 assign_discriminator (entry_locus, label_bb);
956 /* Return the basic block holding label DEST. */
958 basic_block
959 label_to_block_fn (struct function *ifun, tree dest)
961 int uid = LABEL_DECL_UID (dest);
963 /* We would die hard when faced by an undefined label. Emit a label to
964 the very first basic block. This will hopefully make even the dataflow
965 and undefined variable warnings quite right. */
966 if (seen_error () && uid < 0)
968 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
969 gimple stmt;
971 stmt = gimple_build_label (dest);
972 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
973 uid = LABEL_DECL_UID (dest);
975 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
976 <= (unsigned int) uid)
977 return NULL;
978 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
981 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
982 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
984 void
985 make_abnormal_goto_edges (basic_block bb, bool for_call)
987 basic_block target_bb;
988 gimple_stmt_iterator gsi;
990 FOR_EACH_BB (target_bb)
991 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
993 gimple label_stmt = gsi_stmt (gsi);
994 tree target;
996 if (gimple_code (label_stmt) != GIMPLE_LABEL)
997 break;
999 target = gimple_label_label (label_stmt);
1001 /* Make an edge to every label block that has been marked as a
1002 potential target for a computed goto or a non-local goto. */
1003 if ((FORCED_LABEL (target) && !for_call)
1004 || (DECL_NONLOCAL (target) && for_call))
1006 make_edge (bb, target_bb, EDGE_ABNORMAL);
1007 break;
1012 /* Create edges for a goto statement at block BB. */
1014 static void
1015 make_goto_expr_edges (basic_block bb)
1017 gimple_stmt_iterator last = gsi_last_bb (bb);
1018 gimple goto_t = gsi_stmt (last);
1020 /* A simple GOTO creates normal edges. */
1021 if (simple_goto_p (goto_t))
1023 tree dest = gimple_goto_dest (goto_t);
1024 basic_block label_bb = label_to_block (dest);
1025 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1026 e->goto_locus = gimple_location (goto_t);
1027 assign_discriminator (e->goto_locus, label_bb);
1028 if (e->goto_locus)
1029 e->goto_block = gimple_block (goto_t);
1030 gsi_remove (&last, true);
1031 return;
1034 /* A computed GOTO creates abnormal edges. */
1035 make_abnormal_goto_edges (bb, false);
1038 /* Create edges for an asm statement with labels at block BB. */
1040 static void
1041 make_gimple_asm_edges (basic_block bb)
1043 gimple stmt = last_stmt (bb);
1044 location_t stmt_loc = gimple_location (stmt);
1045 int i, n = gimple_asm_nlabels (stmt);
1047 for (i = 0; i < n; ++i)
1049 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1050 basic_block label_bb = label_to_block (label);
1051 make_edge (bb, label_bb, 0);
1052 assign_discriminator (stmt_loc, label_bb);
1056 /*---------------------------------------------------------------------------
1057 Flowgraph analysis
1058 ---------------------------------------------------------------------------*/
1060 /* Cleanup useless labels in basic blocks. This is something we wish
1061 to do early because it allows us to group case labels before creating
1062 the edges for the CFG, and it speeds up block statement iterators in
1063 all passes later on.
1064 We rerun this pass after CFG is created, to get rid of the labels that
1065 are no longer referenced. After then we do not run it any more, since
1066 (almost) no new labels should be created. */
1068 /* A map from basic block index to the leading label of that block. */
1069 static struct label_record
1071 /* The label. */
1072 tree label;
1074 /* True if the label is referenced from somewhere. */
1075 bool used;
1076 } *label_for_bb;
1078 /* Given LABEL return the first label in the same basic block. */
1080 static tree
1081 main_block_label (tree label)
1083 basic_block bb = label_to_block (label);
1084 tree main_label = label_for_bb[bb->index].label;
1086 /* label_to_block possibly inserted undefined label into the chain. */
1087 if (!main_label)
1089 label_for_bb[bb->index].label = label;
1090 main_label = label;
1093 label_for_bb[bb->index].used = true;
1094 return main_label;
1097 /* Clean up redundant labels within the exception tree. */
1099 static void
1100 cleanup_dead_labels_eh (void)
1102 eh_landing_pad lp;
1103 eh_region r;
1104 tree lab;
1105 int i;
1107 if (cfun->eh == NULL)
1108 return;
1110 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1111 if (lp && lp->post_landing_pad)
1113 lab = main_block_label (lp->post_landing_pad);
1114 if (lab != lp->post_landing_pad)
1116 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1117 EH_LANDING_PAD_NR (lab) = lp->index;
1121 FOR_ALL_EH_REGION (r)
1122 switch (r->type)
1124 case ERT_CLEANUP:
1125 case ERT_MUST_NOT_THROW:
1126 break;
1128 case ERT_TRY:
1130 eh_catch c;
1131 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1133 lab = c->label;
1134 if (lab)
1135 c->label = main_block_label (lab);
1138 break;
1140 case ERT_ALLOWED_EXCEPTIONS:
1141 lab = r->u.allowed.label;
1142 if (lab)
1143 r->u.allowed.label = main_block_label (lab);
1144 break;
1149 /* Cleanup redundant labels. This is a three-step process:
1150 1) Find the leading label for each block.
1151 2) Redirect all references to labels to the leading labels.
1152 3) Cleanup all useless labels. */
1154 void
1155 cleanup_dead_labels (void)
1157 basic_block bb;
1158 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1160 /* Find a suitable label for each block. We use the first user-defined
1161 label if there is one, or otherwise just the first label we see. */
1162 FOR_EACH_BB (bb)
1164 gimple_stmt_iterator i;
1166 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1168 tree label;
1169 gimple stmt = gsi_stmt (i);
1171 if (gimple_code (stmt) != GIMPLE_LABEL)
1172 break;
1174 label = gimple_label_label (stmt);
1176 /* If we have not yet seen a label for the current block,
1177 remember this one and see if there are more labels. */
1178 if (!label_for_bb[bb->index].label)
1180 label_for_bb[bb->index].label = label;
1181 continue;
1184 /* If we did see a label for the current block already, but it
1185 is an artificially created label, replace it if the current
1186 label is a user defined label. */
1187 if (!DECL_ARTIFICIAL (label)
1188 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1190 label_for_bb[bb->index].label = label;
1191 break;
1196 /* Now redirect all jumps/branches to the selected label.
1197 First do so for each block ending in a control statement. */
1198 FOR_EACH_BB (bb)
1200 gimple stmt = last_stmt (bb);
1201 if (!stmt)
1202 continue;
1204 switch (gimple_code (stmt))
1206 case GIMPLE_COND:
1208 tree true_label = gimple_cond_true_label (stmt);
1209 tree false_label = gimple_cond_false_label (stmt);
1211 if (true_label)
1212 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1213 if (false_label)
1214 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1215 break;
1218 case GIMPLE_SWITCH:
1220 size_t i, n = gimple_switch_num_labels (stmt);
1222 /* Replace all destination labels. */
1223 for (i = 0; i < n; ++i)
1225 tree case_label = gimple_switch_label (stmt, i);
1226 tree label = main_block_label (CASE_LABEL (case_label));
1227 CASE_LABEL (case_label) = label;
1229 break;
1232 case GIMPLE_ASM:
1234 int i, n = gimple_asm_nlabels (stmt);
1236 for (i = 0; i < n; ++i)
1238 tree cons = gimple_asm_label_op (stmt, i);
1239 tree label = main_block_label (TREE_VALUE (cons));
1240 TREE_VALUE (cons) = label;
1242 break;
1245 /* We have to handle gotos until they're removed, and we don't
1246 remove them until after we've created the CFG edges. */
1247 case GIMPLE_GOTO:
1248 if (!computed_goto_p (stmt))
1250 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1251 gimple_goto_set_dest (stmt, new_dest);
1253 break;
1255 default:
1256 break;
1260 /* Do the same for the exception region tree labels. */
1261 cleanup_dead_labels_eh ();
1263 /* Finally, purge dead labels. All user-defined labels and labels that
1264 can be the target of non-local gotos and labels which have their
1265 address taken are preserved. */
1266 FOR_EACH_BB (bb)
1268 gimple_stmt_iterator i;
1269 tree label_for_this_bb = label_for_bb[bb->index].label;
1271 if (!label_for_this_bb)
1272 continue;
1274 /* If the main label of the block is unused, we may still remove it. */
1275 if (!label_for_bb[bb->index].used)
1276 label_for_this_bb = NULL;
1278 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1280 tree label;
1281 gimple stmt = gsi_stmt (i);
1283 if (gimple_code (stmt) != GIMPLE_LABEL)
1284 break;
1286 label = gimple_label_label (stmt);
1288 if (label == label_for_this_bb
1289 || !DECL_ARTIFICIAL (label)
1290 || DECL_NONLOCAL (label)
1291 || FORCED_LABEL (label))
1292 gsi_next (&i);
1293 else
1294 gsi_remove (&i, true);
1298 free (label_for_bb);
1301 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1302 the ones jumping to the same label.
1303 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1305 static void
1306 group_case_labels_stmt (gimple stmt)
1308 int old_size = gimple_switch_num_labels (stmt);
1309 int i, j, new_size = old_size;
1310 tree default_case = NULL_TREE;
1311 tree default_label = NULL_TREE;
1312 bool has_default;
1314 /* The default label is always the first case in a switch
1315 statement after gimplification if it was not optimized
1316 away */
1317 if (!CASE_LOW (gimple_switch_default_label (stmt))
1318 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1320 default_case = gimple_switch_default_label (stmt);
1321 default_label = CASE_LABEL (default_case);
1322 has_default = true;
1324 else
1325 has_default = false;
1327 /* Look for possible opportunities to merge cases. */
1328 if (has_default)
1329 i = 1;
1330 else
1331 i = 0;
1332 while (i < old_size)
1334 tree base_case, base_label, base_high;
1335 base_case = gimple_switch_label (stmt, i);
1337 gcc_assert (base_case);
1338 base_label = CASE_LABEL (base_case);
1340 /* Discard cases that have the same destination as the
1341 default case. */
1342 if (base_label == default_label)
1344 gimple_switch_set_label (stmt, i, NULL_TREE);
1345 i++;
1346 new_size--;
1347 continue;
1350 base_high = CASE_HIGH (base_case)
1351 ? CASE_HIGH (base_case)
1352 : CASE_LOW (base_case);
1353 i++;
1355 /* Try to merge case labels. Break out when we reach the end
1356 of the label vector or when we cannot merge the next case
1357 label with the current one. */
1358 while (i < old_size)
1360 tree merge_case = gimple_switch_label (stmt, i);
1361 tree merge_label = CASE_LABEL (merge_case);
1362 tree t = int_const_binop (PLUS_EXPR, base_high,
1363 integer_one_node, 1);
1365 /* Merge the cases if they jump to the same place,
1366 and their ranges are consecutive. */
1367 if (merge_label == base_label
1368 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1370 base_high = CASE_HIGH (merge_case) ?
1371 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1372 CASE_HIGH (base_case) = base_high;
1373 gimple_switch_set_label (stmt, i, NULL_TREE);
1374 new_size--;
1375 i++;
1377 else
1378 break;
1382 /* Compress the case labels in the label vector, and adjust the
1383 length of the vector. */
1384 for (i = 0, j = 0; i < new_size; i++)
1386 while (! gimple_switch_label (stmt, j))
1387 j++;
1388 gimple_switch_set_label (stmt, i,
1389 gimple_switch_label (stmt, j++));
1392 gcc_assert (new_size <= old_size);
1393 gimple_switch_set_num_labels (stmt, new_size);
1396 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1397 and scan the sorted vector of cases. Combine the ones jumping to the
1398 same label. */
1400 void
1401 group_case_labels (void)
1403 basic_block bb;
1405 FOR_EACH_BB (bb)
1407 gimple stmt = last_stmt (bb);
1408 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1409 group_case_labels_stmt (stmt);
1413 /* Checks whether we can merge block B into block A. */
1415 static bool
1416 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1418 gimple stmt;
1419 gimple_stmt_iterator gsi;
1420 gimple_seq phis;
1422 if (!single_succ_p (a))
1423 return false;
1425 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1426 return false;
1428 if (single_succ (a) != b)
1429 return false;
1431 if (!single_pred_p (b))
1432 return false;
1434 if (b == EXIT_BLOCK_PTR)
1435 return false;
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt = last_stmt (a);
1440 if (stmt && stmt_ends_bb_p (stmt))
1441 return false;
1443 /* Do not allow a block with only a non-local label to be merged. */
1444 if (stmt
1445 && gimple_code (stmt) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt)))
1447 return false;
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1452 tree lab;
1453 stmt = gsi_stmt (gsi);
1454 if (gimple_code (stmt) != GIMPLE_LABEL)
1455 break;
1456 lab = gimple_label_label (stmt);
1458 /* Do not remove user labels. */
1459 if (!DECL_ARTIFICIAL (lab))
1460 return false;
1463 /* Protect the loop latches. */
1464 if (current_loops && b->loop_father->latch == b)
1465 return false;
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 phis = phi_nodes (b);
1471 if (!gimple_seq_empty_p (phis)
1472 && name_mappings_registered_p ())
1473 return false;
1475 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 if (!optimize
1477 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1479 location_t goto_locus = single_succ_edge (a)->goto_locus;
1480 gimple_stmt_iterator prev, next;
1481 prev = gsi_last_nondebug_bb (a);
1482 next = gsi_after_labels (b);
1483 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1484 gsi_next_nondebug (&next);
1485 if ((gsi_end_p (prev)
1486 || gimple_location (gsi_stmt (prev)) != goto_locus)
1487 && (gsi_end_p (next)
1488 || gimple_location (gsi_stmt (next)) != goto_locus))
1489 return false;
1492 return true;
1495 /* Return true if the var whose chain of uses starts at PTR has no
1496 nondebug uses. */
1497 bool
1498 has_zero_uses_1 (const ssa_use_operand_t *head)
1500 const ssa_use_operand_t *ptr;
1502 for (ptr = head->next; ptr != head; ptr = ptr->next)
1503 if (!is_gimple_debug (USE_STMT (ptr)))
1504 return false;
1506 return true;
1509 /* Return true if the var whose chain of uses starts at PTR has a
1510 single nondebug use. Set USE_P and STMT to that single nondebug
1511 use, if so, or to NULL otherwise. */
1512 bool
1513 single_imm_use_1 (const ssa_use_operand_t *head,
1514 use_operand_p *use_p, gimple *stmt)
1516 ssa_use_operand_t *ptr, *single_use = 0;
1518 for (ptr = head->next; ptr != head; ptr = ptr->next)
1519 if (!is_gimple_debug (USE_STMT (ptr)))
1521 if (single_use)
1523 single_use = NULL;
1524 break;
1526 single_use = ptr;
1529 if (use_p)
1530 *use_p = single_use;
1532 if (stmt)
1533 *stmt = single_use ? single_use->loc.stmt : NULL;
1535 return !!single_use;
1538 /* Replaces all uses of NAME by VAL. */
1540 void
1541 replace_uses_by (tree name, tree val)
1543 imm_use_iterator imm_iter;
1544 use_operand_p use;
1545 gimple stmt;
1546 edge e;
1548 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1550 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1552 replace_exp (use, val);
1554 if (gimple_code (stmt) == GIMPLE_PHI)
1556 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1557 if (e->flags & EDGE_ABNORMAL)
1559 /* This can only occur for virtual operands, since
1560 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1561 would prevent replacement. */
1562 gcc_assert (!is_gimple_reg (name));
1563 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1568 if (gimple_code (stmt) != GIMPLE_PHI)
1570 size_t i;
1572 fold_stmt_inplace (stmt);
1573 if (cfgcleanup_altered_bbs)
1574 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1576 /* FIXME. This should go in update_stmt. */
1577 for (i = 0; i < gimple_num_ops (stmt); i++)
1579 tree op = gimple_op (stmt, i);
1580 /* Operands may be empty here. For example, the labels
1581 of a GIMPLE_COND are nulled out following the creation
1582 of the corresponding CFG edges. */
1583 if (op && TREE_CODE (op) == ADDR_EXPR)
1584 recompute_tree_invariant_for_addr_expr (op);
1587 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1588 update_stmt (stmt);
1592 gcc_assert (has_zero_uses (name));
1594 /* Also update the trees stored in loop structures. */
1595 if (current_loops)
1597 struct loop *loop;
1598 loop_iterator li;
1600 FOR_EACH_LOOP (li, loop, 0)
1602 substitute_in_loop_info (loop, name, val);
1607 /* Merge block B into block A. */
1609 static void
1610 gimple_merge_blocks (basic_block a, basic_block b)
1612 gimple_stmt_iterator last, gsi, psi;
1613 gimple_seq phis = phi_nodes (b);
1615 if (dump_file)
1616 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1618 /* Remove all single-valued PHI nodes from block B of the form
1619 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1620 gsi = gsi_last_bb (a);
1621 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1623 gimple phi = gsi_stmt (psi);
1624 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1625 gimple copy;
1626 bool may_replace_uses = !is_gimple_reg (def)
1627 || may_propagate_copy (def, use);
1629 /* In case we maintain loop closed ssa form, do not propagate arguments
1630 of loop exit phi nodes. */
1631 if (current_loops
1632 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1633 && is_gimple_reg (def)
1634 && TREE_CODE (use) == SSA_NAME
1635 && a->loop_father != b->loop_father)
1636 may_replace_uses = false;
1638 if (!may_replace_uses)
1640 gcc_assert (is_gimple_reg (def));
1642 /* Note that just emitting the copies is fine -- there is no problem
1643 with ordering of phi nodes. This is because A is the single
1644 predecessor of B, therefore results of the phi nodes cannot
1645 appear as arguments of the phi nodes. */
1646 copy = gimple_build_assign (def, use);
1647 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1648 remove_phi_node (&psi, false);
1650 else
1652 /* If we deal with a PHI for virtual operands, we can simply
1653 propagate these without fussing with folding or updating
1654 the stmt. */
1655 if (!is_gimple_reg (def))
1657 imm_use_iterator iter;
1658 use_operand_p use_p;
1659 gimple stmt;
1661 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1662 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1663 SET_USE (use_p, use);
1665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1666 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1668 else
1669 replace_uses_by (def, use);
1671 remove_phi_node (&psi, true);
1675 /* Ensure that B follows A. */
1676 move_block_after (b, a);
1678 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1679 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1681 /* Remove labels from B and set gimple_bb to A for other statements. */
1682 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1684 gimple stmt = gsi_stmt (gsi);
1685 if (gimple_code (stmt) == GIMPLE_LABEL)
1687 tree label = gimple_label_label (stmt);
1688 int lp_nr;
1690 gsi_remove (&gsi, false);
1692 /* Now that we can thread computed gotos, we might have
1693 a situation where we have a forced label in block B
1694 However, the label at the start of block B might still be
1695 used in other ways (think about the runtime checking for
1696 Fortran assigned gotos). So we can not just delete the
1697 label. Instead we move the label to the start of block A. */
1698 if (FORCED_LABEL (label))
1700 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1701 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1704 lp_nr = EH_LANDING_PAD_NR (label);
1705 if (lp_nr)
1707 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1708 lp->post_landing_pad = NULL;
1711 else
1713 gimple_set_bb (stmt, a);
1714 gsi_next (&gsi);
1718 /* Merge the sequences. */
1719 last = gsi_last_bb (a);
1720 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1721 set_bb_seq (b, NULL);
1723 if (cfgcleanup_altered_bbs)
1724 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1728 /* Return the one of two successors of BB that is not reachable by a
1729 complex edge, if there is one. Else, return BB. We use
1730 this in optimizations that use post-dominators for their heuristics,
1731 to catch the cases in C++ where function calls are involved. */
1733 basic_block
1734 single_noncomplex_succ (basic_block bb)
1736 edge e0, e1;
1737 if (EDGE_COUNT (bb->succs) != 2)
1738 return bb;
1740 e0 = EDGE_SUCC (bb, 0);
1741 e1 = EDGE_SUCC (bb, 1);
1742 if (e0->flags & EDGE_COMPLEX)
1743 return e1->dest;
1744 if (e1->flags & EDGE_COMPLEX)
1745 return e0->dest;
1747 return bb;
1750 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1752 void
1753 notice_special_calls (gimple call)
1755 int flags = gimple_call_flags (call);
1757 if (flags & ECF_MAY_BE_ALLOCA)
1758 cfun->calls_alloca = true;
1759 if (flags & ECF_RETURNS_TWICE)
1760 cfun->calls_setjmp = true;
1764 /* Clear flags set by notice_special_calls. Used by dead code removal
1765 to update the flags. */
1767 void
1768 clear_special_calls (void)
1770 cfun->calls_alloca = false;
1771 cfun->calls_setjmp = false;
1774 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1776 static void
1777 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1779 /* Since this block is no longer reachable, we can just delete all
1780 of its PHI nodes. */
1781 remove_phi_nodes (bb);
1783 /* Remove edges to BB's successors. */
1784 while (EDGE_COUNT (bb->succs) > 0)
1785 remove_edge (EDGE_SUCC (bb, 0));
1789 /* Remove statements of basic block BB. */
1791 static void
1792 remove_bb (basic_block bb)
1794 gimple_stmt_iterator i;
1796 if (dump_file)
1798 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1799 if (dump_flags & TDF_DETAILS)
1801 dump_bb (bb, dump_file, 0);
1802 fprintf (dump_file, "\n");
1806 if (current_loops)
1808 struct loop *loop = bb->loop_father;
1810 /* If a loop gets removed, clean up the information associated
1811 with it. */
1812 if (loop->latch == bb
1813 || loop->header == bb)
1814 free_numbers_of_iterations_estimates_loop (loop);
1817 /* Remove all the instructions in the block. */
1818 if (bb_seq (bb) != NULL)
1820 /* Walk backwards so as to get a chance to substitute all
1821 released DEFs into debug stmts. See
1822 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 details. */
1824 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1826 gimple stmt = gsi_stmt (i);
1827 if (gimple_code (stmt) == GIMPLE_LABEL
1828 && (FORCED_LABEL (gimple_label_label (stmt))
1829 || DECL_NONLOCAL (gimple_label_label (stmt))))
1831 basic_block new_bb;
1832 gimple_stmt_iterator new_gsi;
1834 /* A non-reachable non-local label may still be referenced.
1835 But it no longer needs to carry the extra semantics of
1836 non-locality. */
1837 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1839 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1840 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1843 new_bb = bb->prev_bb;
1844 new_gsi = gsi_start_bb (new_bb);
1845 gsi_remove (&i, false);
1846 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1848 else
1850 /* Release SSA definitions if we are in SSA. Note that we
1851 may be called when not in SSA. For example,
1852 final_cleanup calls this function via
1853 cleanup_tree_cfg. */
1854 if (gimple_in_ssa_p (cfun))
1855 release_defs (stmt);
1857 gsi_remove (&i, true);
1860 if (gsi_end_p (i))
1861 i = gsi_last_bb (bb);
1862 else
1863 gsi_prev (&i);
1867 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1868 bb->il.gimple = NULL;
1872 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1873 predicate VAL, return the edge that will be taken out of the block.
1874 If VAL does not match a unique edge, NULL is returned. */
1876 edge
1877 find_taken_edge (basic_block bb, tree val)
1879 gimple stmt;
1881 stmt = last_stmt (bb);
1883 gcc_assert (stmt);
1884 gcc_assert (is_ctrl_stmt (stmt));
1886 if (val == NULL)
1887 return NULL;
1889 if (!is_gimple_min_invariant (val))
1890 return NULL;
1892 if (gimple_code (stmt) == GIMPLE_COND)
1893 return find_taken_edge_cond_expr (bb, val);
1895 if (gimple_code (stmt) == GIMPLE_SWITCH)
1896 return find_taken_edge_switch_expr (bb, val);
1898 if (computed_goto_p (stmt))
1900 /* Only optimize if the argument is a label, if the argument is
1901 not a label then we can not construct a proper CFG.
1903 It may be the case that we only need to allow the LABEL_REF to
1904 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1905 appear inside a LABEL_EXPR just to be safe. */
1906 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1907 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1908 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1909 return NULL;
1912 gcc_unreachable ();
1915 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1916 statement, determine which of the outgoing edges will be taken out of the
1917 block. Return NULL if either edge may be taken. */
1919 static edge
1920 find_taken_edge_computed_goto (basic_block bb, tree val)
1922 basic_block dest;
1923 edge e = NULL;
1925 dest = label_to_block (val);
1926 if (dest)
1928 e = find_edge (bb, dest);
1929 gcc_assert (e != NULL);
1932 return e;
1935 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1936 statement, determine which of the two edges will be taken out of the
1937 block. Return NULL if either edge may be taken. */
1939 static edge
1940 find_taken_edge_cond_expr (basic_block bb, tree val)
1942 edge true_edge, false_edge;
1944 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1946 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1947 return (integer_zerop (val) ? false_edge : true_edge);
1950 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1951 statement, determine which edge will be taken out of the block. Return
1952 NULL if any edge may be taken. */
1954 static edge
1955 find_taken_edge_switch_expr (basic_block bb, tree val)
1957 basic_block dest_bb;
1958 edge e;
1959 gimple switch_stmt;
1960 tree taken_case;
1962 switch_stmt = last_stmt (bb);
1963 taken_case = find_case_label_for_value (switch_stmt, val);
1964 dest_bb = label_to_block (CASE_LABEL (taken_case));
1966 e = find_edge (bb, dest_bb);
1967 gcc_assert (e);
1968 return e;
1972 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1973 We can make optimal use here of the fact that the case labels are
1974 sorted: We can do a binary search for a case matching VAL. */
1976 static tree
1977 find_case_label_for_value (gimple switch_stmt, tree val)
1979 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1980 tree default_case = gimple_switch_default_label (switch_stmt);
1982 for (low = 0, high = n; high - low > 1; )
1984 size_t i = (high + low) / 2;
1985 tree t = gimple_switch_label (switch_stmt, i);
1986 int cmp;
1988 /* Cache the result of comparing CASE_LOW and val. */
1989 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1991 if (cmp > 0)
1992 high = i;
1993 else
1994 low = i;
1996 if (CASE_HIGH (t) == NULL)
1998 /* A singe-valued case label. */
1999 if (cmp == 0)
2000 return t;
2002 else
2004 /* A case range. We can only handle integer ranges. */
2005 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2006 return t;
2010 return default_case;
2014 /* Dump a basic block on stderr. */
2016 void
2017 gimple_debug_bb (basic_block bb)
2019 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2023 /* Dump basic block with index N on stderr. */
2025 basic_block
2026 gimple_debug_bb_n (int n)
2028 gimple_debug_bb (BASIC_BLOCK (n));
2029 return BASIC_BLOCK (n);
2033 /* Dump the CFG on stderr.
2035 FLAGS are the same used by the tree dumping functions
2036 (see TDF_* in tree-pass.h). */
2038 void
2039 gimple_debug_cfg (int flags)
2041 gimple_dump_cfg (stderr, flags);
2045 /* Dump the program showing basic block boundaries on the given FILE.
2047 FLAGS are the same used by the tree dumping functions (see TDF_* in
2048 tree.h). */
2050 void
2051 gimple_dump_cfg (FILE *file, int flags)
2053 if (flags & TDF_DETAILS)
2055 const char *funcname
2056 = lang_hooks.decl_printable_name (current_function_decl, 2);
2058 fputc ('\n', file);
2059 fprintf (file, ";; Function %s\n\n", funcname);
2060 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2061 n_basic_blocks, n_edges, last_basic_block);
2063 brief_dump_cfg (file);
2064 fprintf (file, "\n");
2067 if (flags & TDF_STATS)
2068 dump_cfg_stats (file);
2070 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2074 /* Dump CFG statistics on FILE. */
2076 void
2077 dump_cfg_stats (FILE *file)
2079 static long max_num_merged_labels = 0;
2080 unsigned long size, total = 0;
2081 long num_edges;
2082 basic_block bb;
2083 const char * const fmt_str = "%-30s%-13s%12s\n";
2084 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2085 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2086 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2087 const char *funcname
2088 = lang_hooks.decl_printable_name (current_function_decl, 2);
2091 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2093 fprintf (file, "---------------------------------------------------------\n");
2094 fprintf (file, fmt_str, "", " Number of ", "Memory");
2095 fprintf (file, fmt_str, "", " instances ", "used ");
2096 fprintf (file, "---------------------------------------------------------\n");
2098 size = n_basic_blocks * sizeof (struct basic_block_def);
2099 total += size;
2100 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2101 SCALE (size), LABEL (size));
2103 num_edges = 0;
2104 FOR_EACH_BB (bb)
2105 num_edges += EDGE_COUNT (bb->succs);
2106 size = num_edges * sizeof (struct edge_def);
2107 total += size;
2108 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2110 fprintf (file, "---------------------------------------------------------\n");
2111 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2112 LABEL (total));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, "\n");
2116 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2117 max_num_merged_labels = cfg_stats.num_merged_labels;
2119 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2120 cfg_stats.num_merged_labels, max_num_merged_labels);
2122 fprintf (file, "\n");
2126 /* Dump CFG statistics on stderr. Keep extern so that it's always
2127 linked in the final executable. */
2129 DEBUG_FUNCTION void
2130 debug_cfg_stats (void)
2132 dump_cfg_stats (stderr);
2136 /* Dump the flowgraph to a .vcg FILE. */
2138 static void
2139 gimple_cfg2vcg (FILE *file)
2141 edge e;
2142 edge_iterator ei;
2143 basic_block bb;
2144 const char *funcname
2145 = lang_hooks.decl_printable_name (current_function_decl, 2);
2147 /* Write the file header. */
2148 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2149 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2150 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2152 /* Write blocks and edges. */
2153 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2155 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2156 e->dest->index);
2158 if (e->flags & EDGE_FAKE)
2159 fprintf (file, " linestyle: dotted priority: 10");
2160 else
2161 fprintf (file, " linestyle: solid priority: 100");
2163 fprintf (file, " }\n");
2165 fputc ('\n', file);
2167 FOR_EACH_BB (bb)
2169 enum gimple_code head_code, end_code;
2170 const char *head_name, *end_name;
2171 int head_line = 0;
2172 int end_line = 0;
2173 gimple first = first_stmt (bb);
2174 gimple last = last_stmt (bb);
2176 if (first)
2178 head_code = gimple_code (first);
2179 head_name = gimple_code_name[head_code];
2180 head_line = get_lineno (first);
2182 else
2183 head_name = "no-statement";
2185 if (last)
2187 end_code = gimple_code (last);
2188 end_name = gimple_code_name[end_code];
2189 end_line = get_lineno (last);
2191 else
2192 end_name = "no-statement";
2194 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2195 bb->index, bb->index, head_name, head_line, end_name,
2196 end_line);
2198 FOR_EACH_EDGE (e, ei, bb->succs)
2200 if (e->dest == EXIT_BLOCK_PTR)
2201 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2202 else
2203 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2205 if (e->flags & EDGE_FAKE)
2206 fprintf (file, " priority: 10 linestyle: dotted");
2207 else
2208 fprintf (file, " priority: 100 linestyle: solid");
2210 fprintf (file, " }\n");
2213 if (bb->next_bb != EXIT_BLOCK_PTR)
2214 fputc ('\n', file);
2217 fputs ("}\n\n", file);
2222 /*---------------------------------------------------------------------------
2223 Miscellaneous helpers
2224 ---------------------------------------------------------------------------*/
2226 /* Return true if T represents a stmt that always transfers control. */
2228 bool
2229 is_ctrl_stmt (gimple t)
2231 switch (gimple_code (t))
2233 case GIMPLE_COND:
2234 case GIMPLE_SWITCH:
2235 case GIMPLE_GOTO:
2236 case GIMPLE_RETURN:
2237 case GIMPLE_RESX:
2238 return true;
2239 default:
2240 return false;
2245 /* Return true if T is a statement that may alter the flow of control
2246 (e.g., a call to a non-returning function). */
2248 bool
2249 is_ctrl_altering_stmt (gimple t)
2251 gcc_assert (t);
2253 switch (gimple_code (t))
2255 case GIMPLE_CALL:
2257 int flags = gimple_call_flags (t);
2259 /* A non-pure/const call alters flow control if the current
2260 function has nonlocal labels. */
2261 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2262 && cfun->has_nonlocal_label)
2263 return true;
2265 /* A call also alters control flow if it does not return. */
2266 if (flags & ECF_NORETURN)
2267 return true;
2269 /* BUILT_IN_RETURN call is same as return statement. */
2270 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2271 return true;
2273 break;
2275 case GIMPLE_EH_DISPATCH:
2276 /* EH_DISPATCH branches to the individual catch handlers at
2277 this level of a try or allowed-exceptions region. It can
2278 fallthru to the next statement as well. */
2279 return true;
2281 case GIMPLE_ASM:
2282 if (gimple_asm_nlabels (t) > 0)
2283 return true;
2284 break;
2286 CASE_GIMPLE_OMP:
2287 /* OpenMP directives alter control flow. */
2288 return true;
2290 default:
2291 break;
2294 /* If a statement can throw, it alters control flow. */
2295 return stmt_can_throw_internal (t);
2299 /* Return true if T is a simple local goto. */
2301 bool
2302 simple_goto_p (gimple t)
2304 return (gimple_code (t) == GIMPLE_GOTO
2305 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2309 /* Return true if T can make an abnormal transfer of control flow.
2310 Transfers of control flow associated with EH are excluded. */
2312 bool
2313 stmt_can_make_abnormal_goto (gimple t)
2315 if (computed_goto_p (t))
2316 return true;
2317 if (is_gimple_call (t))
2318 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2319 && !(gimple_call_flags (t) & ECF_LEAF));
2320 return false;
2324 /* Return true if STMT should start a new basic block. PREV_STMT is
2325 the statement preceding STMT. It is used when STMT is a label or a
2326 case label. Labels should only start a new basic block if their
2327 previous statement wasn't a label. Otherwise, sequence of labels
2328 would generate unnecessary basic blocks that only contain a single
2329 label. */
2331 static inline bool
2332 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2334 if (stmt == NULL)
2335 return false;
2337 /* Labels start a new basic block only if the preceding statement
2338 wasn't a label of the same type. This prevents the creation of
2339 consecutive blocks that have nothing but a single label. */
2340 if (gimple_code (stmt) == GIMPLE_LABEL)
2342 /* Nonlocal and computed GOTO targets always start a new block. */
2343 if (DECL_NONLOCAL (gimple_label_label (stmt))
2344 || FORCED_LABEL (gimple_label_label (stmt)))
2345 return true;
2347 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2349 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2350 return true;
2352 cfg_stats.num_merged_labels++;
2353 return false;
2355 else
2356 return true;
2359 return false;
2363 /* Return true if T should end a basic block. */
2365 bool
2366 stmt_ends_bb_p (gimple t)
2368 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2371 /* Remove block annotations and other data structures. */
2373 void
2374 delete_tree_cfg_annotations (void)
2376 label_to_block_map = NULL;
2380 /* Return the first statement in basic block BB. */
2382 gimple
2383 first_stmt (basic_block bb)
2385 gimple_stmt_iterator i = gsi_start_bb (bb);
2386 gimple stmt = NULL;
2388 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2390 gsi_next (&i);
2391 stmt = NULL;
2393 return stmt;
2396 /* Return the first non-label statement in basic block BB. */
2398 static gimple
2399 first_non_label_stmt (basic_block bb)
2401 gimple_stmt_iterator i = gsi_start_bb (bb);
2402 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2403 gsi_next (&i);
2404 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2407 /* Return the last statement in basic block BB. */
2409 gimple
2410 last_stmt (basic_block bb)
2412 gimple_stmt_iterator i = gsi_last_bb (bb);
2413 gimple stmt = NULL;
2415 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2417 gsi_prev (&i);
2418 stmt = NULL;
2420 return stmt;
2423 /* Return the last statement of an otherwise empty block. Return NULL
2424 if the block is totally empty, or if it contains more than one
2425 statement. */
2427 gimple
2428 last_and_only_stmt (basic_block bb)
2430 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2431 gimple last, prev;
2433 if (gsi_end_p (i))
2434 return NULL;
2436 last = gsi_stmt (i);
2437 gsi_prev_nondebug (&i);
2438 if (gsi_end_p (i))
2439 return last;
2441 /* Empty statements should no longer appear in the instruction stream.
2442 Everything that might have appeared before should be deleted by
2443 remove_useless_stmts, and the optimizers should just gsi_remove
2444 instead of smashing with build_empty_stmt.
2446 Thus the only thing that should appear here in a block containing
2447 one executable statement is a label. */
2448 prev = gsi_stmt (i);
2449 if (gimple_code (prev) == GIMPLE_LABEL)
2450 return last;
2451 else
2452 return NULL;
2455 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2457 static void
2458 reinstall_phi_args (edge new_edge, edge old_edge)
2460 edge_var_map_vector v;
2461 edge_var_map *vm;
2462 int i;
2463 gimple_stmt_iterator phis;
2465 v = redirect_edge_var_map_vector (old_edge);
2466 if (!v)
2467 return;
2469 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2470 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2471 i++, gsi_next (&phis))
2473 gimple phi = gsi_stmt (phis);
2474 tree result = redirect_edge_var_map_result (vm);
2475 tree arg = redirect_edge_var_map_def (vm);
2477 gcc_assert (result == gimple_phi_result (phi));
2479 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2482 redirect_edge_var_map_clear (old_edge);
2485 /* Returns the basic block after which the new basic block created
2486 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2487 near its "logical" location. This is of most help to humans looking
2488 at debugging dumps. */
2490 static basic_block
2491 split_edge_bb_loc (edge edge_in)
2493 basic_block dest = edge_in->dest;
2494 basic_block dest_prev = dest->prev_bb;
2496 if (dest_prev)
2498 edge e = find_edge (dest_prev, dest);
2499 if (e && !(e->flags & EDGE_COMPLEX))
2500 return edge_in->src;
2502 return dest_prev;
2505 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2506 Abort on abnormal edges. */
2508 static basic_block
2509 gimple_split_edge (edge edge_in)
2511 basic_block new_bb, after_bb, dest;
2512 edge new_edge, e;
2514 /* Abnormal edges cannot be split. */
2515 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2517 dest = edge_in->dest;
2519 after_bb = split_edge_bb_loc (edge_in);
2521 new_bb = create_empty_bb (after_bb);
2522 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2523 new_bb->count = edge_in->count;
2524 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2525 new_edge->probability = REG_BR_PROB_BASE;
2526 new_edge->count = edge_in->count;
2528 e = redirect_edge_and_branch (edge_in, new_bb);
2529 gcc_assert (e == edge_in);
2530 reinstall_phi_args (new_edge, e);
2532 return new_bb;
2536 /* Verify properties of the address expression T with base object BASE. */
2538 static tree
2539 verify_address (tree t, tree base)
2541 bool old_constant;
2542 bool old_side_effects;
2543 bool new_constant;
2544 bool new_side_effects;
2546 old_constant = TREE_CONSTANT (t);
2547 old_side_effects = TREE_SIDE_EFFECTS (t);
2549 recompute_tree_invariant_for_addr_expr (t);
2550 new_side_effects = TREE_SIDE_EFFECTS (t);
2551 new_constant = TREE_CONSTANT (t);
2553 if (old_constant != new_constant)
2555 error ("constant not recomputed when ADDR_EXPR changed");
2556 return t;
2558 if (old_side_effects != new_side_effects)
2560 error ("side effects not recomputed when ADDR_EXPR changed");
2561 return t;
2564 if (!(TREE_CODE (base) == VAR_DECL
2565 || TREE_CODE (base) == PARM_DECL
2566 || TREE_CODE (base) == RESULT_DECL))
2567 return NULL_TREE;
2569 if (DECL_GIMPLE_REG_P (base))
2571 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2572 return base;
2575 return NULL_TREE;
2578 /* Callback for walk_tree, check that all elements with address taken are
2579 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2580 inside a PHI node. */
2582 static tree
2583 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2585 tree t = *tp, x;
2587 if (TYPE_P (t))
2588 *walk_subtrees = 0;
2590 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2591 #define CHECK_OP(N, MSG) \
2592 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2593 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2595 switch (TREE_CODE (t))
2597 case SSA_NAME:
2598 if (SSA_NAME_IN_FREE_LIST (t))
2600 error ("SSA name in freelist but still referenced");
2601 return *tp;
2603 break;
2605 case INDIRECT_REF:
2606 error ("INDIRECT_REF in gimple IL");
2607 return t;
2609 case MEM_REF:
2610 x = TREE_OPERAND (t, 0);
2611 if (!POINTER_TYPE_P (TREE_TYPE (x))
2612 || !is_gimple_mem_ref_addr (x))
2614 error ("Invalid first operand of MEM_REF.");
2615 return x;
2617 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2618 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2620 error ("Invalid offset operand of MEM_REF.");
2621 return TREE_OPERAND (t, 1);
2623 if (TREE_CODE (x) == ADDR_EXPR
2624 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2625 return x;
2626 *walk_subtrees = 0;
2627 break;
2629 case ASSERT_EXPR:
2630 x = fold (ASSERT_EXPR_COND (t));
2631 if (x == boolean_false_node)
2633 error ("ASSERT_EXPR with an always-false condition");
2634 return *tp;
2636 break;
2638 case MODIFY_EXPR:
2639 error ("MODIFY_EXPR not expected while having tuples.");
2640 return *tp;
2642 case ADDR_EXPR:
2644 tree tem;
2646 gcc_assert (is_gimple_address (t));
2648 /* Skip any references (they will be checked when we recurse down the
2649 tree) and ensure that any variable used as a prefix is marked
2650 addressable. */
2651 for (x = TREE_OPERAND (t, 0);
2652 handled_component_p (x);
2653 x = TREE_OPERAND (x, 0))
2656 if ((tem = verify_address (t, x)))
2657 return tem;
2659 if (!(TREE_CODE (x) == VAR_DECL
2660 || TREE_CODE (x) == PARM_DECL
2661 || TREE_CODE (x) == RESULT_DECL))
2662 return NULL;
2664 if (!TREE_ADDRESSABLE (x))
2666 error ("address taken, but ADDRESSABLE bit not set");
2667 return x;
2670 break;
2673 case COND_EXPR:
2674 x = COND_EXPR_COND (t);
2675 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2677 error ("non-integral used in condition");
2678 return x;
2680 if (!is_gimple_condexpr (x))
2682 error ("invalid conditional operand");
2683 return x;
2685 break;
2687 case NON_LVALUE_EXPR:
2688 gcc_unreachable ();
2690 CASE_CONVERT:
2691 case FIX_TRUNC_EXPR:
2692 case FLOAT_EXPR:
2693 case NEGATE_EXPR:
2694 case ABS_EXPR:
2695 case BIT_NOT_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 CHECK_OP (0, "invalid operand to unary operator");
2698 break;
2700 case REALPART_EXPR:
2701 case IMAGPART_EXPR:
2702 case COMPONENT_REF:
2703 case ARRAY_REF:
2704 case ARRAY_RANGE_REF:
2705 case BIT_FIELD_REF:
2706 case VIEW_CONVERT_EXPR:
2707 /* We have a nest of references. Verify that each of the operands
2708 that determine where to reference is either a constant or a variable,
2709 verify that the base is valid, and then show we've already checked
2710 the subtrees. */
2711 while (handled_component_p (t))
2713 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2714 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2715 else if (TREE_CODE (t) == ARRAY_REF
2716 || TREE_CODE (t) == ARRAY_RANGE_REF)
2718 CHECK_OP (1, "invalid array index");
2719 if (TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid array lower bound");
2721 if (TREE_OPERAND (t, 3))
2722 CHECK_OP (3, "invalid array stride");
2724 else if (TREE_CODE (t) == BIT_FIELD_REF)
2726 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2727 || !host_integerp (TREE_OPERAND (t, 2), 1))
2729 error ("invalid position or size operand to BIT_FIELD_REF");
2730 return t;
2732 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && (TYPE_PRECISION (TREE_TYPE (t))
2734 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2736 error ("integral result type precision does not match "
2737 "field size of BIT_FIELD_REF");
2738 return t;
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2741 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2742 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2744 error ("mode precision of non-integral result does not "
2745 "match field size of BIT_FIELD_REF");
2746 return t;
2750 t = TREE_OPERAND (t, 0);
2753 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2755 error ("invalid reference prefix");
2756 return t;
2758 *walk_subtrees = 0;
2759 break;
2760 case PLUS_EXPR:
2761 case MINUS_EXPR:
2762 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2763 POINTER_PLUS_EXPR. */
2764 if (POINTER_TYPE_P (TREE_TYPE (t)))
2766 error ("invalid operand to plus/minus, type is a pointer");
2767 return t;
2769 CHECK_OP (0, "invalid operand to binary operator");
2770 CHECK_OP (1, "invalid operand to binary operator");
2771 break;
2773 case POINTER_PLUS_EXPR:
2774 /* Check to make sure the first operand is a pointer or reference type. */
2775 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2777 error ("invalid operand to pointer plus, first operand is not a pointer");
2778 return t;
2780 /* Check to make sure the second operand is an integer with type of
2781 sizetype. */
2782 if (!useless_type_conversion_p (sizetype,
2783 TREE_TYPE (TREE_OPERAND (t, 1))))
2785 error ("invalid operand to pointer plus, second operand is not an "
2786 "integer with type of sizetype.");
2787 return t;
2789 /* FALLTHROUGH */
2790 case LT_EXPR:
2791 case LE_EXPR:
2792 case GT_EXPR:
2793 case GE_EXPR:
2794 case EQ_EXPR:
2795 case NE_EXPR:
2796 case UNORDERED_EXPR:
2797 case ORDERED_EXPR:
2798 case UNLT_EXPR:
2799 case UNLE_EXPR:
2800 case UNGT_EXPR:
2801 case UNGE_EXPR:
2802 case UNEQ_EXPR:
2803 case LTGT_EXPR:
2804 case MULT_EXPR:
2805 case TRUNC_DIV_EXPR:
2806 case CEIL_DIV_EXPR:
2807 case FLOOR_DIV_EXPR:
2808 case ROUND_DIV_EXPR:
2809 case TRUNC_MOD_EXPR:
2810 case CEIL_MOD_EXPR:
2811 case FLOOR_MOD_EXPR:
2812 case ROUND_MOD_EXPR:
2813 case RDIV_EXPR:
2814 case EXACT_DIV_EXPR:
2815 case MIN_EXPR:
2816 case MAX_EXPR:
2817 case LSHIFT_EXPR:
2818 case RSHIFT_EXPR:
2819 case LROTATE_EXPR:
2820 case RROTATE_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 case BIT_AND_EXPR:
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2828 case CONSTRUCTOR:
2829 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2830 *walk_subtrees = 0;
2831 break;
2833 default:
2834 break;
2836 return NULL;
2838 #undef CHECK_OP
2842 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2843 Returns true if there is an error, otherwise false. */
2845 static bool
2846 verify_types_in_gimple_min_lval (tree expr)
2848 tree op;
2850 if (is_gimple_id (expr))
2851 return false;
2853 if (TREE_CODE (expr) != TARGET_MEM_REF
2854 && TREE_CODE (expr) != MEM_REF)
2856 error ("invalid expression for min lvalue");
2857 return true;
2860 /* TARGET_MEM_REFs are strange beasts. */
2861 if (TREE_CODE (expr) == TARGET_MEM_REF)
2862 return false;
2864 op = TREE_OPERAND (expr, 0);
2865 if (!is_gimple_val (op))
2867 error ("invalid operand in indirect reference");
2868 debug_generic_stmt (op);
2869 return true;
2871 /* Memory references now generally can involve a value conversion. */
2873 return false;
2876 /* Verify if EXPR is a valid GIMPLE reference expression. If
2877 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2878 if there is an error, otherwise false. */
2880 static bool
2881 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2883 while (handled_component_p (expr))
2885 tree op = TREE_OPERAND (expr, 0);
2887 if (TREE_CODE (expr) == ARRAY_REF
2888 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2890 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2891 || (TREE_OPERAND (expr, 2)
2892 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2893 || (TREE_OPERAND (expr, 3)
2894 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2896 error ("invalid operands to array reference");
2897 debug_generic_stmt (expr);
2898 return true;
2902 /* Verify if the reference array element types are compatible. */
2903 if (TREE_CODE (expr) == ARRAY_REF
2904 && !useless_type_conversion_p (TREE_TYPE (expr),
2905 TREE_TYPE (TREE_TYPE (op))))
2907 error ("type mismatch in array reference");
2908 debug_generic_stmt (TREE_TYPE (expr));
2909 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2910 return true;
2912 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2913 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2914 TREE_TYPE (TREE_TYPE (op))))
2916 error ("type mismatch in array range reference");
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2918 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2919 return true;
2922 if ((TREE_CODE (expr) == REALPART_EXPR
2923 || TREE_CODE (expr) == IMAGPART_EXPR)
2924 && !useless_type_conversion_p (TREE_TYPE (expr),
2925 TREE_TYPE (TREE_TYPE (op))))
2927 error ("type mismatch in real/imagpart reference");
2928 debug_generic_stmt (TREE_TYPE (expr));
2929 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2930 return true;
2933 if (TREE_CODE (expr) == COMPONENT_REF
2934 && !useless_type_conversion_p (TREE_TYPE (expr),
2935 TREE_TYPE (TREE_OPERAND (expr, 1))))
2937 error ("type mismatch in component reference");
2938 debug_generic_stmt (TREE_TYPE (expr));
2939 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2940 return true;
2943 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2945 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2946 that their operand is not an SSA name or an invariant when
2947 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2948 bug). Otherwise there is nothing to verify, gross mismatches at
2949 most invoke undefined behavior. */
2950 if (require_lvalue
2951 && (TREE_CODE (op) == SSA_NAME
2952 || is_gimple_min_invariant (op)))
2954 error ("Conversion of an SSA_NAME on the left hand side.");
2955 debug_generic_stmt (expr);
2956 return true;
2958 else if (TREE_CODE (op) == SSA_NAME
2959 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2961 error ("Conversion of register to a different size.");
2962 debug_generic_stmt (expr);
2963 return true;
2965 else if (!handled_component_p (op))
2966 return false;
2969 expr = op;
2972 if (TREE_CODE (expr) == MEM_REF)
2974 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2976 error ("Invalid address operand in MEM_REF.");
2977 debug_generic_stmt (expr);
2978 return true;
2980 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2981 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2983 error ("Invalid offset operand in MEM_REF.");
2984 debug_generic_stmt (expr);
2985 return true;
2988 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2990 if (!TMR_BASE (expr)
2991 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2993 error ("Invalid address operand in in TARGET_MEM_REF.");
2994 return true;
2996 if (!TMR_OFFSET (expr)
2997 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2998 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3000 error ("Invalid offset operand in TARGET_MEM_REF.");
3001 debug_generic_stmt (expr);
3002 return true;
3006 return ((require_lvalue || !is_gimple_min_invariant (expr))
3007 && verify_types_in_gimple_min_lval (expr));
3010 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3011 list of pointer-to types that is trivially convertible to DEST. */
3013 static bool
3014 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3016 tree src;
3018 if (!TYPE_POINTER_TO (src_obj))
3019 return true;
3021 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3022 if (useless_type_conversion_p (dest, src))
3023 return true;
3025 return false;
3028 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3029 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3031 static bool
3032 valid_fixed_convert_types_p (tree type1, tree type2)
3034 return (FIXED_POINT_TYPE_P (type1)
3035 && (INTEGRAL_TYPE_P (type2)
3036 || SCALAR_FLOAT_TYPE_P (type2)
3037 || FIXED_POINT_TYPE_P (type2)));
3040 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3041 is a problem, otherwise false. */
3043 static bool
3044 verify_gimple_call (gimple stmt)
3046 tree fn = gimple_call_fn (stmt);
3047 tree fntype;
3048 unsigned i;
3050 if (TREE_CODE (fn) != OBJ_TYPE_REF
3051 && !is_gimple_val (fn))
3053 error ("invalid function in gimple call");
3054 debug_generic_stmt (fn);
3055 return true;
3058 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3059 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3060 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3062 error ("non-function in gimple call");
3063 return true;
3066 if (gimple_call_lhs (stmt)
3067 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3068 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3070 error ("invalid LHS in gimple call");
3071 return true;
3074 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3076 error ("LHS in noreturn call");
3077 return true;
3080 fntype = TREE_TYPE (TREE_TYPE (fn));
3081 if (gimple_call_lhs (stmt)
3082 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3083 TREE_TYPE (fntype))
3084 /* ??? At least C++ misses conversions at assignments from
3085 void * call results.
3086 ??? Java is completely off. Especially with functions
3087 returning java.lang.Object.
3088 For now simply allow arbitrary pointer type conversions. */
3089 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3090 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3092 error ("invalid conversion in gimple call");
3093 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3094 debug_generic_stmt (TREE_TYPE (fntype));
3095 return true;
3098 if (gimple_call_chain (stmt)
3099 && !is_gimple_val (gimple_call_chain (stmt)))
3101 error ("invalid static chain in gimple call");
3102 debug_generic_stmt (gimple_call_chain (stmt));
3103 return true;
3106 /* If there is a static chain argument, this should not be an indirect
3107 call, and the decl should have DECL_STATIC_CHAIN set. */
3108 if (gimple_call_chain (stmt))
3110 if (!gimple_call_fndecl (stmt))
3112 error ("static chain in indirect gimple call");
3113 return true;
3115 fn = TREE_OPERAND (fn, 0);
3117 if (!DECL_STATIC_CHAIN (fn))
3119 error ("static chain with function that doesn't use one");
3120 return true;
3124 /* ??? The C frontend passes unpromoted arguments in case it
3125 didn't see a function declaration before the call. So for now
3126 leave the call arguments mostly unverified. Once we gimplify
3127 unit-at-a-time we have a chance to fix this. */
3129 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3131 tree arg = gimple_call_arg (stmt, i);
3132 if ((is_gimple_reg_type (TREE_TYPE (arg))
3133 && !is_gimple_val (arg))
3134 || (!is_gimple_reg_type (TREE_TYPE (arg))
3135 && !is_gimple_lvalue (arg)))
3137 error ("invalid argument to gimple call");
3138 debug_generic_expr (arg);
3142 return false;
3145 /* Verifies the gimple comparison with the result type TYPE and
3146 the operands OP0 and OP1. */
3148 static bool
3149 verify_gimple_comparison (tree type, tree op0, tree op1)
3151 tree op0_type = TREE_TYPE (op0);
3152 tree op1_type = TREE_TYPE (op1);
3154 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3156 error ("invalid operands in gimple comparison");
3157 return true;
3160 /* For comparisons we do not have the operations type as the
3161 effective type the comparison is carried out in. Instead
3162 we require that either the first operand is trivially
3163 convertible into the second, or the other way around.
3164 The resulting type of a comparison may be any integral type.
3165 Because we special-case pointers to void we allow
3166 comparisons of pointers with the same mode as well. */
3167 if ((!useless_type_conversion_p (op0_type, op1_type)
3168 && !useless_type_conversion_p (op1_type, op0_type)
3169 && (!POINTER_TYPE_P (op0_type)
3170 || !POINTER_TYPE_P (op1_type)
3171 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3172 || !INTEGRAL_TYPE_P (type))
3174 error ("type mismatch in comparison expression");
3175 debug_generic_expr (type);
3176 debug_generic_expr (op0_type);
3177 debug_generic_expr (op1_type);
3178 return true;
3181 return false;
3184 /* Verify a gimple assignment statement STMT with an unary rhs.
3185 Returns true if anything is wrong. */
3187 static bool
3188 verify_gimple_assign_unary (gimple stmt)
3190 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3191 tree lhs = gimple_assign_lhs (stmt);
3192 tree lhs_type = TREE_TYPE (lhs);
3193 tree rhs1 = gimple_assign_rhs1 (stmt);
3194 tree rhs1_type = TREE_TYPE (rhs1);
3196 if (!is_gimple_reg (lhs)
3197 && !(optimize == 0
3198 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3200 error ("non-register as LHS of unary operation");
3201 return true;
3204 if (!is_gimple_val (rhs1))
3206 error ("invalid operand in unary operation");
3207 return true;
3210 /* First handle conversions. */
3211 switch (rhs_code)
3213 CASE_CONVERT:
3215 /* Allow conversions between integral types and pointers only if
3216 there is no sign or zero extension involved.
3217 For targets were the precision of sizetype doesn't match that
3218 of pointers we need to allow arbitrary conversions from and
3219 to sizetype. */
3220 if ((POINTER_TYPE_P (lhs_type)
3221 && INTEGRAL_TYPE_P (rhs1_type)
3222 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3223 || rhs1_type == sizetype))
3224 || (POINTER_TYPE_P (rhs1_type)
3225 && INTEGRAL_TYPE_P (lhs_type)
3226 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3227 || lhs_type == sizetype)))
3228 return false;
3230 /* Allow conversion from integer to offset type and vice versa. */
3231 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3232 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3233 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3234 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3235 return false;
3237 /* Otherwise assert we are converting between types of the
3238 same kind. */
3239 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3241 error ("invalid types in nop conversion");
3242 debug_generic_expr (lhs_type);
3243 debug_generic_expr (rhs1_type);
3244 return true;
3247 return false;
3250 case ADDR_SPACE_CONVERT_EXPR:
3252 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3253 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3254 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3256 error ("invalid types in address space conversion");
3257 debug_generic_expr (lhs_type);
3258 debug_generic_expr (rhs1_type);
3259 return true;
3262 return false;
3265 case FIXED_CONVERT_EXPR:
3267 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3268 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3270 error ("invalid types in fixed-point conversion");
3271 debug_generic_expr (lhs_type);
3272 debug_generic_expr (rhs1_type);
3273 return true;
3276 return false;
3279 case FLOAT_EXPR:
3281 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3283 error ("invalid types in conversion to floating point");
3284 debug_generic_expr (lhs_type);
3285 debug_generic_expr (rhs1_type);
3286 return true;
3289 return false;
3292 case FIX_TRUNC_EXPR:
3294 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3296 error ("invalid types in conversion to integer");
3297 debug_generic_expr (lhs_type);
3298 debug_generic_expr (rhs1_type);
3299 return true;
3302 return false;
3305 case VEC_UNPACK_HI_EXPR:
3306 case VEC_UNPACK_LO_EXPR:
3307 case REDUC_MAX_EXPR:
3308 case REDUC_MIN_EXPR:
3309 case REDUC_PLUS_EXPR:
3310 case VEC_UNPACK_FLOAT_HI_EXPR:
3311 case VEC_UNPACK_FLOAT_LO_EXPR:
3312 /* FIXME. */
3313 return false;
3315 case TRUTH_NOT_EXPR:
3316 case NEGATE_EXPR:
3317 case ABS_EXPR:
3318 case BIT_NOT_EXPR:
3319 case PAREN_EXPR:
3320 case NON_LVALUE_EXPR:
3321 case CONJ_EXPR:
3322 break;
3324 default:
3325 gcc_unreachable ();
3328 /* For the remaining codes assert there is no conversion involved. */
3329 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3331 error ("non-trivial conversion in unary operation");
3332 debug_generic_expr (lhs_type);
3333 debug_generic_expr (rhs1_type);
3334 return true;
3337 return false;
3340 /* Verify a gimple assignment statement STMT with a binary rhs.
3341 Returns true if anything is wrong. */
3343 static bool
3344 verify_gimple_assign_binary (gimple stmt)
3346 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3347 tree lhs = gimple_assign_lhs (stmt);
3348 tree lhs_type = TREE_TYPE (lhs);
3349 tree rhs1 = gimple_assign_rhs1 (stmt);
3350 tree rhs1_type = TREE_TYPE (rhs1);
3351 tree rhs2 = gimple_assign_rhs2 (stmt);
3352 tree rhs2_type = TREE_TYPE (rhs2);
3354 if (!is_gimple_reg (lhs)
3355 && !(optimize == 0
3356 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3358 error ("non-register as LHS of binary operation");
3359 return true;
3362 if (!is_gimple_val (rhs1)
3363 || !is_gimple_val (rhs2))
3365 error ("invalid operands in binary operation");
3366 return true;
3369 /* First handle operations that involve different types. */
3370 switch (rhs_code)
3372 case COMPLEX_EXPR:
3374 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3375 || !(INTEGRAL_TYPE_P (rhs1_type)
3376 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3377 || !(INTEGRAL_TYPE_P (rhs2_type)
3378 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3380 error ("type mismatch in complex expression");
3381 debug_generic_expr (lhs_type);
3382 debug_generic_expr (rhs1_type);
3383 debug_generic_expr (rhs2_type);
3384 return true;
3387 return false;
3390 case LSHIFT_EXPR:
3391 case RSHIFT_EXPR:
3392 case LROTATE_EXPR:
3393 case RROTATE_EXPR:
3395 /* Shifts and rotates are ok on integral types, fixed point
3396 types and integer vector types. */
3397 if ((!INTEGRAL_TYPE_P (rhs1_type)
3398 && !FIXED_POINT_TYPE_P (rhs1_type)
3399 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3400 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3401 || (!INTEGRAL_TYPE_P (rhs2_type)
3402 /* Vector shifts of vectors are also ok. */
3403 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3404 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3405 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3406 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3407 || !useless_type_conversion_p (lhs_type, rhs1_type))
3409 error ("type mismatch in shift expression");
3410 debug_generic_expr (lhs_type);
3411 debug_generic_expr (rhs1_type);
3412 debug_generic_expr (rhs2_type);
3413 return true;
3416 return false;
3419 case VEC_LSHIFT_EXPR:
3420 case VEC_RSHIFT_EXPR:
3422 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3423 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3424 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3425 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3426 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3427 || (!INTEGRAL_TYPE_P (rhs2_type)
3428 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3429 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3430 || !useless_type_conversion_p (lhs_type, rhs1_type))
3432 error ("type mismatch in vector shift expression");
3433 debug_generic_expr (lhs_type);
3434 debug_generic_expr (rhs1_type);
3435 debug_generic_expr (rhs2_type);
3436 return true;
3438 /* For shifting a vector of non-integral components we
3439 only allow shifting by a constant multiple of the element size. */
3440 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3441 && (TREE_CODE (rhs2) != INTEGER_CST
3442 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3443 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3445 error ("non-element sized vector shift of floating point vector");
3446 return true;
3449 return false;
3452 case PLUS_EXPR:
3453 case MINUS_EXPR:
3455 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3456 ??? This just makes the checker happy and may not be what is
3457 intended. */
3458 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3459 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3461 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3462 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3464 error ("invalid non-vector operands to vector valued plus");
3465 return true;
3467 lhs_type = TREE_TYPE (lhs_type);
3468 rhs1_type = TREE_TYPE (rhs1_type);
3469 rhs2_type = TREE_TYPE (rhs2_type);
3470 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3471 the pointer to 2nd place. */
3472 if (POINTER_TYPE_P (rhs2_type))
3474 tree tem = rhs1_type;
3475 rhs1_type = rhs2_type;
3476 rhs2_type = tem;
3478 goto do_pointer_plus_expr_check;
3480 if (POINTER_TYPE_P (lhs_type)
3481 || POINTER_TYPE_P (rhs1_type)
3482 || POINTER_TYPE_P (rhs2_type))
3484 error ("invalid (pointer) operands to plus/minus");
3485 return true;
3488 /* Continue with generic binary expression handling. */
3489 break;
3492 case POINTER_PLUS_EXPR:
3494 do_pointer_plus_expr_check:
3495 if (!POINTER_TYPE_P (rhs1_type)
3496 || !useless_type_conversion_p (lhs_type, rhs1_type)
3497 || !useless_type_conversion_p (sizetype, rhs2_type))
3499 error ("type mismatch in pointer plus expression");
3500 debug_generic_stmt (lhs_type);
3501 debug_generic_stmt (rhs1_type);
3502 debug_generic_stmt (rhs2_type);
3503 return true;
3506 return false;
3509 case TRUTH_ANDIF_EXPR:
3510 case TRUTH_ORIF_EXPR:
3511 gcc_unreachable ();
3513 case TRUTH_AND_EXPR:
3514 case TRUTH_OR_EXPR:
3515 case TRUTH_XOR_EXPR:
3517 /* We allow any kind of integral typed argument and result. */
3518 if (!INTEGRAL_TYPE_P (rhs1_type)
3519 || !INTEGRAL_TYPE_P (rhs2_type)
3520 || !INTEGRAL_TYPE_P (lhs_type))
3522 error ("type mismatch in binary truth expression");
3523 debug_generic_expr (lhs_type);
3524 debug_generic_expr (rhs1_type);
3525 debug_generic_expr (rhs2_type);
3526 return true;
3529 return false;
3532 case LT_EXPR:
3533 case LE_EXPR:
3534 case GT_EXPR:
3535 case GE_EXPR:
3536 case EQ_EXPR:
3537 case NE_EXPR:
3538 case UNORDERED_EXPR:
3539 case ORDERED_EXPR:
3540 case UNLT_EXPR:
3541 case UNLE_EXPR:
3542 case UNGT_EXPR:
3543 case UNGE_EXPR:
3544 case UNEQ_EXPR:
3545 case LTGT_EXPR:
3546 /* Comparisons are also binary, but the result type is not
3547 connected to the operand types. */
3548 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3550 case WIDEN_MULT_EXPR:
3551 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3552 return true;
3553 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3554 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3556 case WIDEN_SUM_EXPR:
3557 case VEC_WIDEN_MULT_HI_EXPR:
3558 case VEC_WIDEN_MULT_LO_EXPR:
3559 case VEC_PACK_TRUNC_EXPR:
3560 case VEC_PACK_SAT_EXPR:
3561 case VEC_PACK_FIX_TRUNC_EXPR:
3562 case VEC_EXTRACT_EVEN_EXPR:
3563 case VEC_EXTRACT_ODD_EXPR:
3564 case VEC_INTERLEAVE_HIGH_EXPR:
3565 case VEC_INTERLEAVE_LOW_EXPR:
3566 /* FIXME. */
3567 return false;
3569 case MULT_EXPR:
3570 case TRUNC_DIV_EXPR:
3571 case CEIL_DIV_EXPR:
3572 case FLOOR_DIV_EXPR:
3573 case ROUND_DIV_EXPR:
3574 case TRUNC_MOD_EXPR:
3575 case CEIL_MOD_EXPR:
3576 case FLOOR_MOD_EXPR:
3577 case ROUND_MOD_EXPR:
3578 case RDIV_EXPR:
3579 case EXACT_DIV_EXPR:
3580 case MIN_EXPR:
3581 case MAX_EXPR:
3582 case BIT_IOR_EXPR:
3583 case BIT_XOR_EXPR:
3584 case BIT_AND_EXPR:
3585 /* Continue with generic binary expression handling. */
3586 break;
3588 default:
3589 gcc_unreachable ();
3592 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3593 || !useless_type_conversion_p (lhs_type, rhs2_type))
3595 error ("type mismatch in binary expression");
3596 debug_generic_stmt (lhs_type);
3597 debug_generic_stmt (rhs1_type);
3598 debug_generic_stmt (rhs2_type);
3599 return true;
3602 return false;
3605 /* Verify a gimple assignment statement STMT with a ternary rhs.
3606 Returns true if anything is wrong. */
3608 static bool
3609 verify_gimple_assign_ternary (gimple stmt)
3611 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3612 tree lhs = gimple_assign_lhs (stmt);
3613 tree lhs_type = TREE_TYPE (lhs);
3614 tree rhs1 = gimple_assign_rhs1 (stmt);
3615 tree rhs1_type = TREE_TYPE (rhs1);
3616 tree rhs2 = gimple_assign_rhs2 (stmt);
3617 tree rhs2_type = TREE_TYPE (rhs2);
3618 tree rhs3 = gimple_assign_rhs3 (stmt);
3619 tree rhs3_type = TREE_TYPE (rhs3);
3621 if (!is_gimple_reg (lhs)
3622 && !(optimize == 0
3623 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3625 error ("non-register as LHS of ternary operation");
3626 return true;
3629 if (!is_gimple_val (rhs1)
3630 || !is_gimple_val (rhs2)
3631 || !is_gimple_val (rhs3))
3633 error ("invalid operands in ternary operation");
3634 return true;
3637 /* First handle operations that involve different types. */
3638 switch (rhs_code)
3640 case WIDEN_MULT_PLUS_EXPR:
3641 case WIDEN_MULT_MINUS_EXPR:
3642 if ((!INTEGRAL_TYPE_P (rhs1_type)
3643 && !FIXED_POINT_TYPE_P (rhs1_type))
3644 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3645 || !useless_type_conversion_p (lhs_type, rhs3_type)
3646 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3647 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3649 error ("type mismatch in widening multiply-accumulate expression");
3650 debug_generic_expr (lhs_type);
3651 debug_generic_expr (rhs1_type);
3652 debug_generic_expr (rhs2_type);
3653 debug_generic_expr (rhs3_type);
3654 return true;
3656 break;
3658 default:
3659 gcc_unreachable ();
3661 return false;
3664 /* Verify a gimple assignment statement STMT with a single rhs.
3665 Returns true if anything is wrong. */
3667 static bool
3668 verify_gimple_assign_single (gimple stmt)
3670 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3671 tree lhs = gimple_assign_lhs (stmt);
3672 tree lhs_type = TREE_TYPE (lhs);
3673 tree rhs1 = gimple_assign_rhs1 (stmt);
3674 tree rhs1_type = TREE_TYPE (rhs1);
3675 bool res = false;
3677 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3679 error ("non-trivial conversion at assignment");
3680 debug_generic_expr (lhs_type);
3681 debug_generic_expr (rhs1_type);
3682 return true;
3685 if (handled_component_p (lhs))
3686 res |= verify_types_in_gimple_reference (lhs, true);
3688 /* Special codes we cannot handle via their class. */
3689 switch (rhs_code)
3691 case ADDR_EXPR:
3693 tree op = TREE_OPERAND (rhs1, 0);
3694 if (!is_gimple_addressable (op))
3696 error ("invalid operand in unary expression");
3697 return true;
3700 /* Technically there is no longer a need for matching types, but
3701 gimple hygiene asks for this check. In LTO we can end up
3702 combining incompatible units and thus end up with addresses
3703 of globals that change their type to a common one. */
3704 if (!in_lto_p
3705 && !types_compatible_p (TREE_TYPE (op),
3706 TREE_TYPE (TREE_TYPE (rhs1)))
3707 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3708 TREE_TYPE (op)))
3710 error ("type mismatch in address expression");
3711 debug_generic_stmt (TREE_TYPE (rhs1));
3712 debug_generic_stmt (TREE_TYPE (op));
3713 return true;
3716 return verify_types_in_gimple_reference (op, true);
3719 /* tcc_reference */
3720 case INDIRECT_REF:
3721 error ("INDIRECT_REF in gimple IL");
3722 return true;
3724 case COMPONENT_REF:
3725 case BIT_FIELD_REF:
3726 case ARRAY_REF:
3727 case ARRAY_RANGE_REF:
3728 case VIEW_CONVERT_EXPR:
3729 case REALPART_EXPR:
3730 case IMAGPART_EXPR:
3731 case TARGET_MEM_REF:
3732 case MEM_REF:
3733 if (!is_gimple_reg (lhs)
3734 && is_gimple_reg_type (TREE_TYPE (lhs)))
3736 error ("invalid rhs for gimple memory store");
3737 debug_generic_stmt (lhs);
3738 debug_generic_stmt (rhs1);
3739 return true;
3741 return res || verify_types_in_gimple_reference (rhs1, false);
3743 /* tcc_constant */
3744 case SSA_NAME:
3745 case INTEGER_CST:
3746 case REAL_CST:
3747 case FIXED_CST:
3748 case COMPLEX_CST:
3749 case VECTOR_CST:
3750 case STRING_CST:
3751 return res;
3753 /* tcc_declaration */
3754 case CONST_DECL:
3755 return res;
3756 case VAR_DECL:
3757 case PARM_DECL:
3758 if (!is_gimple_reg (lhs)
3759 && !is_gimple_reg (rhs1)
3760 && is_gimple_reg_type (TREE_TYPE (lhs)))
3762 error ("invalid rhs for gimple memory store");
3763 debug_generic_stmt (lhs);
3764 debug_generic_stmt (rhs1);
3765 return true;
3767 return res;
3769 case COND_EXPR:
3770 if (!is_gimple_reg (lhs)
3771 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3772 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3773 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3774 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3775 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3776 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3778 error ("invalid COND_EXPR in gimple assignment");
3779 debug_generic_stmt (rhs1);
3780 return true;
3782 return res;
3784 case CONSTRUCTOR:
3785 case OBJ_TYPE_REF:
3786 case ASSERT_EXPR:
3787 case WITH_SIZE_EXPR:
3788 case POLYNOMIAL_CHREC:
3789 case DOT_PROD_EXPR:
3790 case VEC_COND_EXPR:
3791 case REALIGN_LOAD_EXPR:
3792 /* FIXME. */
3793 return res;
3795 default:;
3798 return res;
3801 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3802 is a problem, otherwise false. */
3804 static bool
3805 verify_gimple_assign (gimple stmt)
3807 switch (gimple_assign_rhs_class (stmt))
3809 case GIMPLE_SINGLE_RHS:
3810 return verify_gimple_assign_single (stmt);
3812 case GIMPLE_UNARY_RHS:
3813 return verify_gimple_assign_unary (stmt);
3815 case GIMPLE_BINARY_RHS:
3816 return verify_gimple_assign_binary (stmt);
3818 case GIMPLE_TERNARY_RHS:
3819 return verify_gimple_assign_ternary (stmt);
3821 default:
3822 gcc_unreachable ();
3826 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3827 is a problem, otherwise false. */
3829 static bool
3830 verify_gimple_return (gimple stmt)
3832 tree op = gimple_return_retval (stmt);
3833 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3835 /* We cannot test for present return values as we do not fix up missing
3836 return values from the original source. */
3837 if (op == NULL)
3838 return false;
3840 if (!is_gimple_val (op)
3841 && TREE_CODE (op) != RESULT_DECL)
3843 error ("invalid operand in return statement");
3844 debug_generic_stmt (op);
3845 return true;
3848 if ((TREE_CODE (op) == RESULT_DECL
3849 && DECL_BY_REFERENCE (op))
3850 || (TREE_CODE (op) == SSA_NAME
3851 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3852 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3853 op = TREE_TYPE (op);
3855 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3857 error ("invalid conversion in return statement");
3858 debug_generic_stmt (restype);
3859 debug_generic_stmt (TREE_TYPE (op));
3860 return true;
3863 return false;
3867 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3868 is a problem, otherwise false. */
3870 static bool
3871 verify_gimple_goto (gimple stmt)
3873 tree dest = gimple_goto_dest (stmt);
3875 /* ??? We have two canonical forms of direct goto destinations, a
3876 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3877 if (TREE_CODE (dest) != LABEL_DECL
3878 && (!is_gimple_val (dest)
3879 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3881 error ("goto destination is neither a label nor a pointer");
3882 return true;
3885 return false;
3888 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3889 is a problem, otherwise false. */
3891 static bool
3892 verify_gimple_switch (gimple stmt)
3894 if (!is_gimple_val (gimple_switch_index (stmt)))
3896 error ("invalid operand to switch statement");
3897 debug_generic_stmt (gimple_switch_index (stmt));
3898 return true;
3901 return false;
3905 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3906 and false otherwise. */
3908 static bool
3909 verify_gimple_phi (gimple stmt)
3911 tree type = TREE_TYPE (gimple_phi_result (stmt));
3912 unsigned i;
3914 if (TREE_CODE (gimple_phi_result (stmt)) != SSA_NAME)
3916 error ("Invalid PHI result");
3917 return true;
3920 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3922 tree arg = gimple_phi_arg_def (stmt, i);
3923 if ((is_gimple_reg (gimple_phi_result (stmt))
3924 && !is_gimple_val (arg))
3925 || (!is_gimple_reg (gimple_phi_result (stmt))
3926 && !is_gimple_addressable (arg)))
3928 error ("Invalid PHI argument");
3929 debug_generic_stmt (arg);
3930 return true;
3932 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3934 error ("Incompatible types in PHI argument %u", i);
3935 debug_generic_stmt (type);
3936 debug_generic_stmt (TREE_TYPE (arg));
3937 return true;
3941 return false;
3945 /* Verify a gimple debug statement STMT.
3946 Returns true if anything is wrong. */
3948 static bool
3949 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3951 /* There isn't much that could be wrong in a gimple debug stmt. A
3952 gimple debug bind stmt, for example, maps a tree, that's usually
3953 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3954 component or member of an aggregate type, to another tree, that
3955 can be an arbitrary expression. These stmts expand into debug
3956 insns, and are converted to debug notes by var-tracking.c. */
3957 return false;
3961 /* Verify the GIMPLE statement STMT. Returns true if there is an
3962 error, otherwise false. */
3964 static bool
3965 verify_types_in_gimple_stmt (gimple stmt)
3967 switch (gimple_code (stmt))
3969 case GIMPLE_ASSIGN:
3970 return verify_gimple_assign (stmt);
3972 case GIMPLE_LABEL:
3973 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3975 case GIMPLE_CALL:
3976 return verify_gimple_call (stmt);
3978 case GIMPLE_COND:
3979 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
3981 error ("invalid comparison code in gimple cond");
3982 return true;
3984 if (!(!gimple_cond_true_label (stmt)
3985 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
3986 || !(!gimple_cond_false_label (stmt)
3987 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
3989 error ("invalid labels in gimple cond");
3990 return true;
3993 return verify_gimple_comparison (boolean_type_node,
3994 gimple_cond_lhs (stmt),
3995 gimple_cond_rhs (stmt));
3997 case GIMPLE_GOTO:
3998 return verify_gimple_goto (stmt);
4000 case GIMPLE_SWITCH:
4001 return verify_gimple_switch (stmt);
4003 case GIMPLE_RETURN:
4004 return verify_gimple_return (stmt);
4006 case GIMPLE_ASM:
4007 return false;
4009 case GIMPLE_PHI:
4010 return verify_gimple_phi (stmt);
4012 /* Tuples that do not have tree operands. */
4013 case GIMPLE_NOP:
4014 case GIMPLE_PREDICT:
4015 case GIMPLE_RESX:
4016 case GIMPLE_EH_DISPATCH:
4017 case GIMPLE_EH_MUST_NOT_THROW:
4018 return false;
4020 CASE_GIMPLE_OMP:
4021 /* OpenMP directives are validated by the FE and never operated
4022 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4023 non-gimple expressions when the main index variable has had
4024 its address taken. This does not affect the loop itself
4025 because the header of an GIMPLE_OMP_FOR is merely used to determine
4026 how to setup the parallel iteration. */
4027 return false;
4029 case GIMPLE_DEBUG:
4030 return verify_gimple_debug (stmt);
4032 default:
4033 gcc_unreachable ();
4037 /* Verify the GIMPLE statements inside the sequence STMTS. */
4039 static bool
4040 verify_types_in_gimple_seq_2 (gimple_seq stmts)
4042 gimple_stmt_iterator ittr;
4043 bool err = false;
4045 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4047 gimple stmt = gsi_stmt (ittr);
4049 switch (gimple_code (stmt))
4051 case GIMPLE_BIND:
4052 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4053 break;
4055 case GIMPLE_TRY:
4056 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4057 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4058 break;
4060 case GIMPLE_EH_FILTER:
4061 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4062 break;
4064 case GIMPLE_CATCH:
4065 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4066 break;
4068 default:
4070 bool err2 = verify_types_in_gimple_stmt (stmt);
4071 if (err2)
4072 debug_gimple_stmt (stmt);
4073 err |= err2;
4078 return err;
4082 /* Verify the GIMPLE statements inside the statement list STMTS. */
4084 void
4085 verify_types_in_gimple_seq (gimple_seq stmts)
4087 if (verify_types_in_gimple_seq_2 (stmts))
4088 internal_error ("verify_gimple failed");
4092 /* Verify STMT, return true if STMT is not in GIMPLE form.
4093 TODO: Implement type checking. */
4095 static bool
4096 verify_stmt (gimple_stmt_iterator *gsi)
4098 tree addr;
4099 struct walk_stmt_info wi;
4100 bool last_in_block = gsi_one_before_end_p (*gsi);
4101 gimple stmt = gsi_stmt (*gsi);
4102 int lp_nr;
4104 if (is_gimple_omp (stmt))
4106 /* OpenMP directives are validated by the FE and never operated
4107 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4108 non-gimple expressions when the main index variable has had
4109 its address taken. This does not affect the loop itself
4110 because the header of an GIMPLE_OMP_FOR is merely used to determine
4111 how to setup the parallel iteration. */
4112 return false;
4115 /* FIXME. The C frontend passes unpromoted arguments in case it
4116 didn't see a function declaration before the call. */
4117 if (is_gimple_call (stmt))
4119 tree decl;
4121 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4123 error ("invalid function in call statement");
4124 return true;
4127 decl = gimple_call_fndecl (stmt);
4128 if (decl
4129 && TREE_CODE (decl) == FUNCTION_DECL
4130 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4131 && (!DECL_PURE_P (decl))
4132 && (!TREE_READONLY (decl)))
4134 error ("invalid pure const state for function");
4135 return true;
4139 if (is_gimple_debug (stmt))
4140 return false;
4142 memset (&wi, 0, sizeof (wi));
4143 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4144 if (addr)
4146 debug_generic_expr (addr);
4147 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
4148 debug_gimple_stmt (stmt);
4149 return true;
4152 /* If the statement is marked as part of an EH region, then it is
4153 expected that the statement could throw. Verify that when we
4154 have optimizations that simplify statements such that we prove
4155 that they cannot throw, that we update other data structures
4156 to match. */
4157 lp_nr = lookup_stmt_eh_lp (stmt);
4158 if (lp_nr != 0)
4160 if (!stmt_could_throw_p (stmt))
4162 error ("statement marked for throw, but doesn%'t");
4163 goto fail;
4165 else if (lp_nr > 0 && !last_in_block && stmt_can_throw_internal (stmt))
4167 error ("statement marked for throw in middle of block");
4168 goto fail;
4172 return false;
4174 fail:
4175 debug_gimple_stmt (stmt);
4176 return true;
4180 /* Return true when the T can be shared. */
4182 bool
4183 tree_node_can_be_shared (tree t)
4185 if (IS_TYPE_OR_DECL_P (t)
4186 || is_gimple_min_invariant (t)
4187 || TREE_CODE (t) == SSA_NAME
4188 || t == error_mark_node
4189 || TREE_CODE (t) == IDENTIFIER_NODE)
4190 return true;
4192 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4193 return true;
4195 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4196 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4197 || TREE_CODE (t) == COMPONENT_REF
4198 || TREE_CODE (t) == REALPART_EXPR
4199 || TREE_CODE (t) == IMAGPART_EXPR)
4200 t = TREE_OPERAND (t, 0);
4202 if (DECL_P (t))
4203 return true;
4205 return false;
4209 /* Called via walk_gimple_stmt. Verify tree sharing. */
4211 static tree
4212 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4214 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4215 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4217 if (tree_node_can_be_shared (*tp))
4219 *walk_subtrees = false;
4220 return NULL;
4223 if (pointer_set_insert (visited, *tp))
4224 return *tp;
4226 return NULL;
4230 static bool eh_error_found;
4231 static int
4232 verify_eh_throw_stmt_node (void **slot, void *data)
4234 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4235 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4237 if (!pointer_set_contains (visited, node->stmt))
4239 error ("Dead STMT in EH table");
4240 debug_gimple_stmt (node->stmt);
4241 eh_error_found = true;
4243 return 1;
4247 /* Verify the GIMPLE statements in every basic block. */
4249 DEBUG_FUNCTION void
4250 verify_stmts (void)
4252 basic_block bb;
4253 gimple_stmt_iterator gsi;
4254 bool err = false;
4255 struct pointer_set_t *visited, *visited_stmts;
4256 tree addr;
4257 struct walk_stmt_info wi;
4259 timevar_push (TV_TREE_STMT_VERIFY);
4260 visited = pointer_set_create ();
4261 visited_stmts = pointer_set_create ();
4263 memset (&wi, 0, sizeof (wi));
4264 wi.info = (void *) visited;
4266 FOR_EACH_BB (bb)
4268 gimple phi;
4269 size_t i;
4271 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4273 phi = gsi_stmt (gsi);
4274 pointer_set_insert (visited_stmts, phi);
4275 if (gimple_bb (phi) != bb)
4277 error ("gimple_bb (phi) is set to a wrong basic block");
4278 err |= true;
4281 for (i = 0; i < gimple_phi_num_args (phi); i++)
4283 tree t = gimple_phi_arg_def (phi, i);
4284 tree addr;
4286 if (!t)
4288 error ("missing PHI def");
4289 debug_gimple_stmt (phi);
4290 err |= true;
4291 continue;
4293 /* Addressable variables do have SSA_NAMEs but they
4294 are not considered gimple values. */
4295 else if (TREE_CODE (t) != SSA_NAME
4296 && TREE_CODE (t) != FUNCTION_DECL
4297 && !is_gimple_min_invariant (t))
4299 error ("PHI argument is not a GIMPLE value");
4300 debug_gimple_stmt (phi);
4301 debug_generic_expr (t);
4302 err |= true;
4305 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4306 if (addr)
4308 error ("incorrect sharing of tree nodes");
4309 debug_gimple_stmt (phi);
4310 debug_generic_expr (addr);
4311 err |= true;
4315 #ifdef ENABLE_TYPES_CHECKING
4316 if (verify_gimple_phi (phi))
4318 debug_gimple_stmt (phi);
4319 err |= true;
4321 #endif
4324 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4326 gimple stmt = gsi_stmt (gsi);
4328 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4329 || gimple_code (stmt) == GIMPLE_BIND)
4331 error ("invalid GIMPLE statement");
4332 debug_gimple_stmt (stmt);
4333 err |= true;
4336 pointer_set_insert (visited_stmts, stmt);
4338 if (gimple_bb (stmt) != bb)
4340 error ("gimple_bb (stmt) is set to a wrong basic block");
4341 debug_gimple_stmt (stmt);
4342 err |= true;
4345 if (gimple_code (stmt) == GIMPLE_LABEL)
4347 tree decl = gimple_label_label (stmt);
4348 int uid = LABEL_DECL_UID (decl);
4350 if (uid == -1
4351 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4353 error ("incorrect entry in label_to_block_map");
4354 err |= true;
4357 uid = EH_LANDING_PAD_NR (decl);
4358 if (uid)
4360 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4361 if (decl != lp->post_landing_pad)
4363 error ("incorrect setting of landing pad number");
4364 err |= true;
4369 err |= verify_stmt (&gsi);
4371 #ifdef ENABLE_TYPES_CHECKING
4372 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4374 debug_gimple_stmt (stmt);
4375 err |= true;
4377 #endif
4378 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4379 if (addr)
4381 error ("incorrect sharing of tree nodes");
4382 debug_gimple_stmt (stmt);
4383 debug_generic_expr (addr);
4384 err |= true;
4386 gsi_next (&gsi);
4390 eh_error_found = false;
4391 if (get_eh_throw_stmt_table (cfun))
4392 htab_traverse (get_eh_throw_stmt_table (cfun),
4393 verify_eh_throw_stmt_node,
4394 visited_stmts);
4396 if (err | eh_error_found)
4397 internal_error ("verify_stmts failed");
4399 pointer_set_destroy (visited);
4400 pointer_set_destroy (visited_stmts);
4401 verify_histograms ();
4402 timevar_pop (TV_TREE_STMT_VERIFY);
4406 /* Verifies that the flow information is OK. */
4408 static int
4409 gimple_verify_flow_info (void)
4411 int err = 0;
4412 basic_block bb;
4413 gimple_stmt_iterator gsi;
4414 gimple stmt;
4415 edge e;
4416 edge_iterator ei;
4418 if (ENTRY_BLOCK_PTR->il.gimple)
4420 error ("ENTRY_BLOCK has IL associated with it");
4421 err = 1;
4424 if (EXIT_BLOCK_PTR->il.gimple)
4426 error ("EXIT_BLOCK has IL associated with it");
4427 err = 1;
4430 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4431 if (e->flags & EDGE_FALLTHRU)
4433 error ("fallthru to exit from bb %d", e->src->index);
4434 err = 1;
4437 FOR_EACH_BB (bb)
4439 bool found_ctrl_stmt = false;
4441 stmt = NULL;
4443 /* Skip labels on the start of basic block. */
4444 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4446 tree label;
4447 gimple prev_stmt = stmt;
4449 stmt = gsi_stmt (gsi);
4451 if (gimple_code (stmt) != GIMPLE_LABEL)
4452 break;
4454 label = gimple_label_label (stmt);
4455 if (prev_stmt && DECL_NONLOCAL (label))
4457 error ("nonlocal label ");
4458 print_generic_expr (stderr, label, 0);
4459 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4460 bb->index);
4461 err = 1;
4464 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4466 error ("EH landing pad label ");
4467 print_generic_expr (stderr, label, 0);
4468 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4469 bb->index);
4470 err = 1;
4473 if (label_to_block (label) != bb)
4475 error ("label ");
4476 print_generic_expr (stderr, label, 0);
4477 fprintf (stderr, " to block does not match in bb %d",
4478 bb->index);
4479 err = 1;
4482 if (decl_function_context (label) != current_function_decl)
4484 error ("label ");
4485 print_generic_expr (stderr, label, 0);
4486 fprintf (stderr, " has incorrect context in bb %d",
4487 bb->index);
4488 err = 1;
4492 /* Verify that body of basic block BB is free of control flow. */
4493 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4495 gimple stmt = gsi_stmt (gsi);
4497 if (found_ctrl_stmt)
4499 error ("control flow in the middle of basic block %d",
4500 bb->index);
4501 err = 1;
4504 if (stmt_ends_bb_p (stmt))
4505 found_ctrl_stmt = true;
4507 if (gimple_code (stmt) == GIMPLE_LABEL)
4509 error ("label ");
4510 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4511 fprintf (stderr, " in the middle of basic block %d", bb->index);
4512 err = 1;
4516 gsi = gsi_last_bb (bb);
4517 if (gsi_end_p (gsi))
4518 continue;
4520 stmt = gsi_stmt (gsi);
4522 if (gimple_code (stmt) == GIMPLE_LABEL)
4523 continue;
4525 err |= verify_eh_edges (stmt);
4527 if (is_ctrl_stmt (stmt))
4529 FOR_EACH_EDGE (e, ei, bb->succs)
4530 if (e->flags & EDGE_FALLTHRU)
4532 error ("fallthru edge after a control statement in bb %d",
4533 bb->index);
4534 err = 1;
4538 if (gimple_code (stmt) != GIMPLE_COND)
4540 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4541 after anything else but if statement. */
4542 FOR_EACH_EDGE (e, ei, bb->succs)
4543 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4545 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4546 bb->index);
4547 err = 1;
4551 switch (gimple_code (stmt))
4553 case GIMPLE_COND:
4555 edge true_edge;
4556 edge false_edge;
4558 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4560 if (!true_edge
4561 || !false_edge
4562 || !(true_edge->flags & EDGE_TRUE_VALUE)
4563 || !(false_edge->flags & EDGE_FALSE_VALUE)
4564 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4565 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4566 || EDGE_COUNT (bb->succs) >= 3)
4568 error ("wrong outgoing edge flags at end of bb %d",
4569 bb->index);
4570 err = 1;
4573 break;
4575 case GIMPLE_GOTO:
4576 if (simple_goto_p (stmt))
4578 error ("explicit goto at end of bb %d", bb->index);
4579 err = 1;
4581 else
4583 /* FIXME. We should double check that the labels in the
4584 destination blocks have their address taken. */
4585 FOR_EACH_EDGE (e, ei, bb->succs)
4586 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4587 | EDGE_FALSE_VALUE))
4588 || !(e->flags & EDGE_ABNORMAL))
4590 error ("wrong outgoing edge flags at end of bb %d",
4591 bb->index);
4592 err = 1;
4595 break;
4597 case GIMPLE_CALL:
4598 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4599 break;
4600 /* ... fallthru ... */
4601 case GIMPLE_RETURN:
4602 if (!single_succ_p (bb)
4603 || (single_succ_edge (bb)->flags
4604 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4605 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4607 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4608 err = 1;
4610 if (single_succ (bb) != EXIT_BLOCK_PTR)
4612 error ("return edge does not point to exit in bb %d",
4613 bb->index);
4614 err = 1;
4616 break;
4618 case GIMPLE_SWITCH:
4620 tree prev;
4621 edge e;
4622 size_t i, n;
4624 n = gimple_switch_num_labels (stmt);
4626 /* Mark all the destination basic blocks. */
4627 for (i = 0; i < n; ++i)
4629 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4630 basic_block label_bb = label_to_block (lab);
4631 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4632 label_bb->aux = (void *)1;
4635 /* Verify that the case labels are sorted. */
4636 prev = gimple_switch_label (stmt, 0);
4637 for (i = 1; i < n; ++i)
4639 tree c = gimple_switch_label (stmt, i);
4640 if (!CASE_LOW (c))
4642 error ("found default case not at the start of "
4643 "case vector");
4644 err = 1;
4645 continue;
4647 if (CASE_LOW (prev)
4648 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4650 error ("case labels not sorted: ");
4651 print_generic_expr (stderr, prev, 0);
4652 fprintf (stderr," is greater than ");
4653 print_generic_expr (stderr, c, 0);
4654 fprintf (stderr," but comes before it.\n");
4655 err = 1;
4657 prev = c;
4659 /* VRP will remove the default case if it can prove it will
4660 never be executed. So do not verify there always exists
4661 a default case here. */
4663 FOR_EACH_EDGE (e, ei, bb->succs)
4665 if (!e->dest->aux)
4667 error ("extra outgoing edge %d->%d",
4668 bb->index, e->dest->index);
4669 err = 1;
4672 e->dest->aux = (void *)2;
4673 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4674 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4676 error ("wrong outgoing edge flags at end of bb %d",
4677 bb->index);
4678 err = 1;
4682 /* Check that we have all of them. */
4683 for (i = 0; i < n; ++i)
4685 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4686 basic_block label_bb = label_to_block (lab);
4688 if (label_bb->aux != (void *)2)
4690 error ("missing edge %i->%i", bb->index, label_bb->index);
4691 err = 1;
4695 FOR_EACH_EDGE (e, ei, bb->succs)
4696 e->dest->aux = (void *)0;
4698 break;
4700 case GIMPLE_EH_DISPATCH:
4701 err |= verify_eh_dispatch_edge (stmt);
4702 break;
4704 default:
4705 break;
4709 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4710 verify_dominators (CDI_DOMINATORS);
4712 return err;
4716 /* Updates phi nodes after creating a forwarder block joined
4717 by edge FALLTHRU. */
4719 static void
4720 gimple_make_forwarder_block (edge fallthru)
4722 edge e;
4723 edge_iterator ei;
4724 basic_block dummy, bb;
4725 tree var;
4726 gimple_stmt_iterator gsi;
4728 dummy = fallthru->src;
4729 bb = fallthru->dest;
4731 if (single_pred_p (bb))
4732 return;
4734 /* If we redirected a branch we must create new PHI nodes at the
4735 start of BB. */
4736 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4738 gimple phi, new_phi;
4740 phi = gsi_stmt (gsi);
4741 var = gimple_phi_result (phi);
4742 new_phi = create_phi_node (var, bb);
4743 SSA_NAME_DEF_STMT (var) = new_phi;
4744 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4745 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4746 UNKNOWN_LOCATION);
4749 /* Add the arguments we have stored on edges. */
4750 FOR_EACH_EDGE (e, ei, bb->preds)
4752 if (e == fallthru)
4753 continue;
4755 flush_pending_stmts (e);
4760 /* Return a non-special label in the head of basic block BLOCK.
4761 Create one if it doesn't exist. */
4763 tree
4764 gimple_block_label (basic_block bb)
4766 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4767 bool first = true;
4768 tree label;
4769 gimple stmt;
4771 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4773 stmt = gsi_stmt (i);
4774 if (gimple_code (stmt) != GIMPLE_LABEL)
4775 break;
4776 label = gimple_label_label (stmt);
4777 if (!DECL_NONLOCAL (label))
4779 if (!first)
4780 gsi_move_before (&i, &s);
4781 return label;
4785 label = create_artificial_label (UNKNOWN_LOCATION);
4786 stmt = gimple_build_label (label);
4787 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4788 return label;
4792 /* Attempt to perform edge redirection by replacing a possibly complex
4793 jump instruction by a goto or by removing the jump completely.
4794 This can apply only if all edges now point to the same block. The
4795 parameters and return values are equivalent to
4796 redirect_edge_and_branch. */
4798 static edge
4799 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4801 basic_block src = e->src;
4802 gimple_stmt_iterator i;
4803 gimple stmt;
4805 /* We can replace or remove a complex jump only when we have exactly
4806 two edges. */
4807 if (EDGE_COUNT (src->succs) != 2
4808 /* Verify that all targets will be TARGET. Specifically, the
4809 edge that is not E must also go to TARGET. */
4810 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4811 return NULL;
4813 i = gsi_last_bb (src);
4814 if (gsi_end_p (i))
4815 return NULL;
4817 stmt = gsi_stmt (i);
4819 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4821 gsi_remove (&i, true);
4822 e = ssa_redirect_edge (e, target);
4823 e->flags = EDGE_FALLTHRU;
4824 return e;
4827 return NULL;
4831 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4832 edge representing the redirected branch. */
4834 static edge
4835 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4837 basic_block bb = e->src;
4838 gimple_stmt_iterator gsi;
4839 edge ret;
4840 gimple stmt;
4842 if (e->flags & EDGE_ABNORMAL)
4843 return NULL;
4845 if (e->dest == dest)
4846 return NULL;
4848 if (e->flags & EDGE_EH)
4849 return redirect_eh_edge (e, dest);
4851 if (e->src != ENTRY_BLOCK_PTR)
4853 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4854 if (ret)
4855 return ret;
4858 gsi = gsi_last_bb (bb);
4859 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4861 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4863 case GIMPLE_COND:
4864 /* For COND_EXPR, we only need to redirect the edge. */
4865 break;
4867 case GIMPLE_GOTO:
4868 /* No non-abnormal edges should lead from a non-simple goto, and
4869 simple ones should be represented implicitly. */
4870 gcc_unreachable ();
4872 case GIMPLE_SWITCH:
4874 tree label = gimple_block_label (dest);
4875 tree cases = get_cases_for_edge (e, stmt);
4877 /* If we have a list of cases associated with E, then use it
4878 as it's a lot faster than walking the entire case vector. */
4879 if (cases)
4881 edge e2 = find_edge (e->src, dest);
4882 tree last, first;
4884 first = cases;
4885 while (cases)
4887 last = cases;
4888 CASE_LABEL (cases) = label;
4889 cases = TREE_CHAIN (cases);
4892 /* If there was already an edge in the CFG, then we need
4893 to move all the cases associated with E to E2. */
4894 if (e2)
4896 tree cases2 = get_cases_for_edge (e2, stmt);
4898 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4899 TREE_CHAIN (cases2) = first;
4901 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4903 else
4905 size_t i, n = gimple_switch_num_labels (stmt);
4907 for (i = 0; i < n; i++)
4909 tree elt = gimple_switch_label (stmt, i);
4910 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4911 CASE_LABEL (elt) = label;
4915 break;
4917 case GIMPLE_ASM:
4919 int i, n = gimple_asm_nlabels (stmt);
4920 tree label = NULL;
4922 for (i = 0; i < n; ++i)
4924 tree cons = gimple_asm_label_op (stmt, i);
4925 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4927 if (!label)
4928 label = gimple_block_label (dest);
4929 TREE_VALUE (cons) = label;
4933 /* If we didn't find any label matching the former edge in the
4934 asm labels, we must be redirecting the fallthrough
4935 edge. */
4936 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4938 break;
4940 case GIMPLE_RETURN:
4941 gsi_remove (&gsi, true);
4942 e->flags |= EDGE_FALLTHRU;
4943 break;
4945 case GIMPLE_OMP_RETURN:
4946 case GIMPLE_OMP_CONTINUE:
4947 case GIMPLE_OMP_SECTIONS_SWITCH:
4948 case GIMPLE_OMP_FOR:
4949 /* The edges from OMP constructs can be simply redirected. */
4950 break;
4952 case GIMPLE_EH_DISPATCH:
4953 if (!(e->flags & EDGE_FALLTHRU))
4954 redirect_eh_dispatch_edge (stmt, e, dest);
4955 break;
4957 default:
4958 /* Otherwise it must be a fallthru edge, and we don't need to
4959 do anything besides redirecting it. */
4960 gcc_assert (e->flags & EDGE_FALLTHRU);
4961 break;
4964 /* Update/insert PHI nodes as necessary. */
4966 /* Now update the edges in the CFG. */
4967 e = ssa_redirect_edge (e, dest);
4969 return e;
4972 /* Returns true if it is possible to remove edge E by redirecting
4973 it to the destination of the other edge from E->src. */
4975 static bool
4976 gimple_can_remove_branch_p (const_edge e)
4978 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4979 return false;
4981 return true;
4984 /* Simple wrapper, as we can always redirect fallthru edges. */
4986 static basic_block
4987 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4989 e = gimple_redirect_edge_and_branch (e, dest);
4990 gcc_assert (e);
4992 return NULL;
4996 /* Splits basic block BB after statement STMT (but at least after the
4997 labels). If STMT is NULL, BB is split just after the labels. */
4999 static basic_block
5000 gimple_split_block (basic_block bb, void *stmt)
5002 gimple_stmt_iterator gsi;
5003 gimple_stmt_iterator gsi_tgt;
5004 gimple act;
5005 gimple_seq list;
5006 basic_block new_bb;
5007 edge e;
5008 edge_iterator ei;
5010 new_bb = create_empty_bb (bb);
5012 /* Redirect the outgoing edges. */
5013 new_bb->succs = bb->succs;
5014 bb->succs = NULL;
5015 FOR_EACH_EDGE (e, ei, new_bb->succs)
5016 e->src = new_bb;
5018 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5019 stmt = NULL;
5021 /* Move everything from GSI to the new basic block. */
5022 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5024 act = gsi_stmt (gsi);
5025 if (gimple_code (act) == GIMPLE_LABEL)
5026 continue;
5028 if (!stmt)
5029 break;
5031 if (stmt == act)
5033 gsi_next (&gsi);
5034 break;
5038 if (gsi_end_p (gsi))
5039 return new_bb;
5041 /* Split the statement list - avoid re-creating new containers as this
5042 brings ugly quadratic memory consumption in the inliner.
5043 (We are still quadratic since we need to update stmt BB pointers,
5044 sadly.) */
5045 list = gsi_split_seq_before (&gsi);
5046 set_bb_seq (new_bb, list);
5047 for (gsi_tgt = gsi_start (list);
5048 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5049 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5051 return new_bb;
5055 /* Moves basic block BB after block AFTER. */
5057 static bool
5058 gimple_move_block_after (basic_block bb, basic_block after)
5060 if (bb->prev_bb == after)
5061 return true;
5063 unlink_block (bb);
5064 link_block (bb, after);
5066 return true;
5070 /* Return true if basic_block can be duplicated. */
5072 static bool
5073 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5075 return true;
5078 /* Create a duplicate of the basic block BB. NOTE: This does not
5079 preserve SSA form. */
5081 static basic_block
5082 gimple_duplicate_bb (basic_block bb)
5084 basic_block new_bb;
5085 gimple_stmt_iterator gsi, gsi_tgt;
5086 gimple_seq phis = phi_nodes (bb);
5087 gimple phi, stmt, copy;
5089 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5091 /* Copy the PHI nodes. We ignore PHI node arguments here because
5092 the incoming edges have not been setup yet. */
5093 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5095 phi = gsi_stmt (gsi);
5096 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5097 create_new_def_for (gimple_phi_result (copy), copy,
5098 gimple_phi_result_ptr (copy));
5101 gsi_tgt = gsi_start_bb (new_bb);
5102 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5104 def_operand_p def_p;
5105 ssa_op_iter op_iter;
5107 stmt = gsi_stmt (gsi);
5108 if (gimple_code (stmt) == GIMPLE_LABEL)
5109 continue;
5111 /* Create a new copy of STMT and duplicate STMT's virtual
5112 operands. */
5113 copy = gimple_copy (stmt);
5114 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5116 maybe_duplicate_eh_stmt (copy, stmt);
5117 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5119 /* Create new names for all the definitions created by COPY and
5120 add replacement mappings for each new name. */
5121 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5122 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5125 return new_bb;
5128 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5130 static void
5131 add_phi_args_after_copy_edge (edge e_copy)
5133 basic_block bb, bb_copy = e_copy->src, dest;
5134 edge e;
5135 edge_iterator ei;
5136 gimple phi, phi_copy;
5137 tree def;
5138 gimple_stmt_iterator psi, psi_copy;
5140 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5141 return;
5143 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5145 if (e_copy->dest->flags & BB_DUPLICATED)
5146 dest = get_bb_original (e_copy->dest);
5147 else
5148 dest = e_copy->dest;
5150 e = find_edge (bb, dest);
5151 if (!e)
5153 /* During loop unrolling the target of the latch edge is copied.
5154 In this case we are not looking for edge to dest, but to
5155 duplicated block whose original was dest. */
5156 FOR_EACH_EDGE (e, ei, bb->succs)
5158 if ((e->dest->flags & BB_DUPLICATED)
5159 && get_bb_original (e->dest) == dest)
5160 break;
5163 gcc_assert (e != NULL);
5166 for (psi = gsi_start_phis (e->dest),
5167 psi_copy = gsi_start_phis (e_copy->dest);
5168 !gsi_end_p (psi);
5169 gsi_next (&psi), gsi_next (&psi_copy))
5171 phi = gsi_stmt (psi);
5172 phi_copy = gsi_stmt (psi_copy);
5173 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5174 add_phi_arg (phi_copy, def, e_copy,
5175 gimple_phi_arg_location_from_edge (phi, e));
5180 /* Basic block BB_COPY was created by code duplication. Add phi node
5181 arguments for edges going out of BB_COPY. The blocks that were
5182 duplicated have BB_DUPLICATED set. */
5184 void
5185 add_phi_args_after_copy_bb (basic_block bb_copy)
5187 edge e_copy;
5188 edge_iterator ei;
5190 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5192 add_phi_args_after_copy_edge (e_copy);
5196 /* Blocks in REGION_COPY array of length N_REGION were created by
5197 duplication of basic blocks. Add phi node arguments for edges
5198 going from these blocks. If E_COPY is not NULL, also add
5199 phi node arguments for its destination.*/
5201 void
5202 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5203 edge e_copy)
5205 unsigned i;
5207 for (i = 0; i < n_region; i++)
5208 region_copy[i]->flags |= BB_DUPLICATED;
5210 for (i = 0; i < n_region; i++)
5211 add_phi_args_after_copy_bb (region_copy[i]);
5212 if (e_copy)
5213 add_phi_args_after_copy_edge (e_copy);
5215 for (i = 0; i < n_region; i++)
5216 region_copy[i]->flags &= ~BB_DUPLICATED;
5219 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5220 important exit edge EXIT. By important we mean that no SSA name defined
5221 inside region is live over the other exit edges of the region. All entry
5222 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5223 to the duplicate of the region. SSA form, dominance and loop information
5224 is updated. The new basic blocks are stored to REGION_COPY in the same
5225 order as they had in REGION, provided that REGION_COPY is not NULL.
5226 The function returns false if it is unable to copy the region,
5227 true otherwise. */
5229 bool
5230 gimple_duplicate_sese_region (edge entry, edge exit,
5231 basic_block *region, unsigned n_region,
5232 basic_block *region_copy)
5234 unsigned i;
5235 bool free_region_copy = false, copying_header = false;
5236 struct loop *loop = entry->dest->loop_father;
5237 edge exit_copy;
5238 VEC (basic_block, heap) *doms;
5239 edge redirected;
5240 int total_freq = 0, entry_freq = 0;
5241 gcov_type total_count = 0, entry_count = 0;
5243 if (!can_copy_bbs_p (region, n_region))
5244 return false;
5246 /* Some sanity checking. Note that we do not check for all possible
5247 missuses of the functions. I.e. if you ask to copy something weird,
5248 it will work, but the state of structures probably will not be
5249 correct. */
5250 for (i = 0; i < n_region; i++)
5252 /* We do not handle subloops, i.e. all the blocks must belong to the
5253 same loop. */
5254 if (region[i]->loop_father != loop)
5255 return false;
5257 if (region[i] != entry->dest
5258 && region[i] == loop->header)
5259 return false;
5262 set_loop_copy (loop, loop);
5264 /* In case the function is used for loop header copying (which is the primary
5265 use), ensure that EXIT and its copy will be new latch and entry edges. */
5266 if (loop->header == entry->dest)
5268 copying_header = true;
5269 set_loop_copy (loop, loop_outer (loop));
5271 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5272 return false;
5274 for (i = 0; i < n_region; i++)
5275 if (region[i] != exit->src
5276 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5277 return false;
5280 if (!region_copy)
5282 region_copy = XNEWVEC (basic_block, n_region);
5283 free_region_copy = true;
5286 gcc_assert (!need_ssa_update_p (cfun));
5288 /* Record blocks outside the region that are dominated by something
5289 inside. */
5290 doms = NULL;
5291 initialize_original_copy_tables ();
5293 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5295 if (entry->dest->count)
5297 total_count = entry->dest->count;
5298 entry_count = entry->count;
5299 /* Fix up corner cases, to avoid division by zero or creation of negative
5300 frequencies. */
5301 if (entry_count > total_count)
5302 entry_count = total_count;
5304 else
5306 total_freq = entry->dest->frequency;
5307 entry_freq = EDGE_FREQUENCY (entry);
5308 /* Fix up corner cases, to avoid division by zero or creation of negative
5309 frequencies. */
5310 if (total_freq == 0)
5311 total_freq = 1;
5312 else if (entry_freq > total_freq)
5313 entry_freq = total_freq;
5316 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5317 split_edge_bb_loc (entry));
5318 if (total_count)
5320 scale_bbs_frequencies_gcov_type (region, n_region,
5321 total_count - entry_count,
5322 total_count);
5323 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5324 total_count);
5326 else
5328 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5329 total_freq);
5330 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5333 if (copying_header)
5335 loop->header = exit->dest;
5336 loop->latch = exit->src;
5339 /* Redirect the entry and add the phi node arguments. */
5340 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5341 gcc_assert (redirected != NULL);
5342 flush_pending_stmts (entry);
5344 /* Concerning updating of dominators: We must recount dominators
5345 for entry block and its copy. Anything that is outside of the
5346 region, but was dominated by something inside needs recounting as
5347 well. */
5348 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5349 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5350 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5351 VEC_free (basic_block, heap, doms);
5353 /* Add the other PHI node arguments. */
5354 add_phi_args_after_copy (region_copy, n_region, NULL);
5356 /* Update the SSA web. */
5357 update_ssa (TODO_update_ssa);
5359 if (free_region_copy)
5360 free (region_copy);
5362 free_original_copy_tables ();
5363 return true;
5366 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5367 are stored to REGION_COPY in the same order in that they appear
5368 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5369 the region, EXIT an exit from it. The condition guarding EXIT
5370 is moved to ENTRY. Returns true if duplication succeeds, false
5371 otherwise.
5373 For example,
5375 some_code;
5376 if (cond)
5378 else
5381 is transformed to
5383 if (cond)
5385 some_code;
5388 else
5390 some_code;
5395 bool
5396 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5397 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5398 basic_block *region_copy ATTRIBUTE_UNUSED)
5400 unsigned i;
5401 bool free_region_copy = false;
5402 struct loop *loop = exit->dest->loop_father;
5403 struct loop *orig_loop = entry->dest->loop_father;
5404 basic_block switch_bb, entry_bb, nentry_bb;
5405 VEC (basic_block, heap) *doms;
5406 int total_freq = 0, exit_freq = 0;
5407 gcov_type total_count = 0, exit_count = 0;
5408 edge exits[2], nexits[2], e;
5409 gimple_stmt_iterator gsi,gsi1;
5410 gimple cond_stmt;
5411 edge sorig, snew;
5412 basic_block exit_bb;
5413 basic_block iters_bb;
5414 tree new_rhs;
5415 gimple_stmt_iterator psi;
5416 gimple phi;
5417 tree def;
5419 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5420 exits[0] = exit;
5421 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5423 if (!can_copy_bbs_p (region, n_region))
5424 return false;
5426 initialize_original_copy_tables ();
5427 set_loop_copy (orig_loop, loop);
5428 duplicate_subloops (orig_loop, loop);
5430 if (!region_copy)
5432 region_copy = XNEWVEC (basic_block, n_region);
5433 free_region_copy = true;
5436 gcc_assert (!need_ssa_update_p (cfun));
5438 /* Record blocks outside the region that are dominated by something
5439 inside. */
5440 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5442 if (exit->src->count)
5444 total_count = exit->src->count;
5445 exit_count = exit->count;
5446 /* Fix up corner cases, to avoid division by zero or creation of negative
5447 frequencies. */
5448 if (exit_count > total_count)
5449 exit_count = total_count;
5451 else
5453 total_freq = exit->src->frequency;
5454 exit_freq = EDGE_FREQUENCY (exit);
5455 /* Fix up corner cases, to avoid division by zero or creation of negative
5456 frequencies. */
5457 if (total_freq == 0)
5458 total_freq = 1;
5459 if (exit_freq > total_freq)
5460 exit_freq = total_freq;
5463 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5464 split_edge_bb_loc (exit));
5465 if (total_count)
5467 scale_bbs_frequencies_gcov_type (region, n_region,
5468 total_count - exit_count,
5469 total_count);
5470 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5471 total_count);
5473 else
5475 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5476 total_freq);
5477 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5480 /* Create the switch block, and put the exit condition to it. */
5481 entry_bb = entry->dest;
5482 nentry_bb = get_bb_copy (entry_bb);
5483 if (!last_stmt (entry->src)
5484 || !stmt_ends_bb_p (last_stmt (entry->src)))
5485 switch_bb = entry->src;
5486 else
5487 switch_bb = split_edge (entry);
5488 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5490 gsi = gsi_last_bb (switch_bb);
5491 cond_stmt = last_stmt (exit->src);
5492 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5493 cond_stmt = gimple_copy (cond_stmt);
5495 /* If the block consisting of the exit condition has the latch as
5496 successor, then the body of the loop is executed before
5497 the exit condition is tested. In such case, moving the
5498 condition to the entry, causes that the loop will iterate
5499 one less iteration (which is the wanted outcome, since we
5500 peel out the last iteration). If the body is executed after
5501 the condition, moving the condition to the entry requires
5502 decrementing one iteration. */
5503 if (exits[1]->dest == orig_loop->latch)
5504 new_rhs = gimple_cond_rhs (cond_stmt);
5505 else
5507 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5508 gimple_cond_rhs (cond_stmt),
5509 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5511 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5513 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5514 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5515 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5516 break;
5518 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5519 NULL_TREE,false,GSI_CONTINUE_LINKING);
5522 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5523 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5524 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5526 sorig = single_succ_edge (switch_bb);
5527 sorig->flags = exits[1]->flags;
5528 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5530 /* Register the new edge from SWITCH_BB in loop exit lists. */
5531 rescan_loop_exit (snew, true, false);
5533 /* Add the PHI node arguments. */
5534 add_phi_args_after_copy (region_copy, n_region, snew);
5536 /* Get rid of now superfluous conditions and associated edges (and phi node
5537 arguments). */
5538 exit_bb = exit->dest;
5540 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5541 PENDING_STMT (e) = NULL;
5543 /* The latch of ORIG_LOOP was copied, and so was the backedge
5544 to the original header. We redirect this backedge to EXIT_BB. */
5545 for (i = 0; i < n_region; i++)
5546 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5548 gcc_assert (single_succ_edge (region_copy[i]));
5549 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5550 PENDING_STMT (e) = NULL;
5551 for (psi = gsi_start_phis (exit_bb);
5552 !gsi_end_p (psi);
5553 gsi_next (&psi))
5555 phi = gsi_stmt (psi);
5556 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5557 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5560 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5561 PENDING_STMT (e) = NULL;
5563 /* Anything that is outside of the region, but was dominated by something
5564 inside needs to update dominance info. */
5565 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5566 VEC_free (basic_block, heap, doms);
5567 /* Update the SSA web. */
5568 update_ssa (TODO_update_ssa);
5570 if (free_region_copy)
5571 free (region_copy);
5573 free_original_copy_tables ();
5574 return true;
5577 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5578 adding blocks when the dominator traversal reaches EXIT. This
5579 function silently assumes that ENTRY strictly dominates EXIT. */
5581 void
5582 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5583 VEC(basic_block,heap) **bbs_p)
5585 basic_block son;
5587 for (son = first_dom_son (CDI_DOMINATORS, entry);
5588 son;
5589 son = next_dom_son (CDI_DOMINATORS, son))
5591 VEC_safe_push (basic_block, heap, *bbs_p, son);
5592 if (son != exit)
5593 gather_blocks_in_sese_region (son, exit, bbs_p);
5597 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5598 The duplicates are recorded in VARS_MAP. */
5600 static void
5601 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5602 tree to_context)
5604 tree t = *tp, new_t;
5605 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5606 void **loc;
5608 if (DECL_CONTEXT (t) == to_context)
5609 return;
5611 loc = pointer_map_contains (vars_map, t);
5613 if (!loc)
5615 loc = pointer_map_insert (vars_map, t);
5617 if (SSA_VAR_P (t))
5619 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5620 add_local_decl (f, new_t);
5622 else
5624 gcc_assert (TREE_CODE (t) == CONST_DECL);
5625 new_t = copy_node (t);
5627 DECL_CONTEXT (new_t) = to_context;
5629 *loc = new_t;
5631 else
5632 new_t = (tree) *loc;
5634 *tp = new_t;
5638 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5639 VARS_MAP maps old ssa names and var_decls to the new ones. */
5641 static tree
5642 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5643 tree to_context)
5645 void **loc;
5646 tree new_name, decl = SSA_NAME_VAR (name);
5648 gcc_assert (is_gimple_reg (name));
5650 loc = pointer_map_contains (vars_map, name);
5652 if (!loc)
5654 replace_by_duplicate_decl (&decl, vars_map, to_context);
5656 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5657 if (gimple_in_ssa_p (cfun))
5658 add_referenced_var (decl);
5660 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5661 if (SSA_NAME_IS_DEFAULT_DEF (name))
5662 set_default_def (decl, new_name);
5663 pop_cfun ();
5665 loc = pointer_map_insert (vars_map, name);
5666 *loc = new_name;
5668 else
5669 new_name = (tree) *loc;
5671 return new_name;
5674 struct move_stmt_d
5676 tree orig_block;
5677 tree new_block;
5678 tree from_context;
5679 tree to_context;
5680 struct pointer_map_t *vars_map;
5681 htab_t new_label_map;
5682 struct pointer_map_t *eh_map;
5683 bool remap_decls_p;
5686 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5687 contained in *TP if it has been ORIG_BLOCK previously and change the
5688 DECL_CONTEXT of every local variable referenced in *TP. */
5690 static tree
5691 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5693 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5694 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5695 tree t = *tp;
5697 if (EXPR_P (t))
5698 /* We should never have TREE_BLOCK set on non-statements. */
5699 gcc_assert (!TREE_BLOCK (t));
5701 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5703 if (TREE_CODE (t) == SSA_NAME)
5704 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5705 else if (TREE_CODE (t) == LABEL_DECL)
5707 if (p->new_label_map)
5709 struct tree_map in, *out;
5710 in.base.from = t;
5711 out = (struct tree_map *)
5712 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5713 if (out)
5714 *tp = t = out->to;
5717 DECL_CONTEXT (t) = p->to_context;
5719 else if (p->remap_decls_p)
5721 /* Replace T with its duplicate. T should no longer appear in the
5722 parent function, so this looks wasteful; however, it may appear
5723 in referenced_vars, and more importantly, as virtual operands of
5724 statements, and in alias lists of other variables. It would be
5725 quite difficult to expunge it from all those places. ??? It might
5726 suffice to do this for addressable variables. */
5727 if ((TREE_CODE (t) == VAR_DECL
5728 && !is_global_var (t))
5729 || TREE_CODE (t) == CONST_DECL)
5730 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5732 if (SSA_VAR_P (t)
5733 && gimple_in_ssa_p (cfun))
5735 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5736 add_referenced_var (*tp);
5737 pop_cfun ();
5740 *walk_subtrees = 0;
5742 else if (TYPE_P (t))
5743 *walk_subtrees = 0;
5745 return NULL_TREE;
5748 /* Helper for move_stmt_r. Given an EH region number for the source
5749 function, map that to the duplicate EH regio number in the dest. */
5751 static int
5752 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5754 eh_region old_r, new_r;
5755 void **slot;
5757 old_r = get_eh_region_from_number (old_nr);
5758 slot = pointer_map_contains (p->eh_map, old_r);
5759 new_r = (eh_region) *slot;
5761 return new_r->index;
5764 /* Similar, but operate on INTEGER_CSTs. */
5766 static tree
5767 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5769 int old_nr, new_nr;
5771 old_nr = tree_low_cst (old_t_nr, 0);
5772 new_nr = move_stmt_eh_region_nr (old_nr, p);
5774 return build_int_cst (NULL, new_nr);
5777 /* Like move_stmt_op, but for gimple statements.
5779 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5780 contained in the current statement in *GSI_P and change the
5781 DECL_CONTEXT of every local variable referenced in the current
5782 statement. */
5784 static tree
5785 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5786 struct walk_stmt_info *wi)
5788 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5789 gimple stmt = gsi_stmt (*gsi_p);
5790 tree block = gimple_block (stmt);
5792 if (p->orig_block == NULL_TREE
5793 || block == p->orig_block
5794 || block == NULL_TREE)
5795 gimple_set_block (stmt, p->new_block);
5796 #ifdef ENABLE_CHECKING
5797 else if (block != p->new_block)
5799 while (block && block != p->orig_block)
5800 block = BLOCK_SUPERCONTEXT (block);
5801 gcc_assert (block);
5803 #endif
5805 switch (gimple_code (stmt))
5807 case GIMPLE_CALL:
5808 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5810 tree r, fndecl = gimple_call_fndecl (stmt);
5811 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5812 switch (DECL_FUNCTION_CODE (fndecl))
5814 case BUILT_IN_EH_COPY_VALUES:
5815 r = gimple_call_arg (stmt, 1);
5816 r = move_stmt_eh_region_tree_nr (r, p);
5817 gimple_call_set_arg (stmt, 1, r);
5818 /* FALLTHRU */
5820 case BUILT_IN_EH_POINTER:
5821 case BUILT_IN_EH_FILTER:
5822 r = gimple_call_arg (stmt, 0);
5823 r = move_stmt_eh_region_tree_nr (r, p);
5824 gimple_call_set_arg (stmt, 0, r);
5825 break;
5827 default:
5828 break;
5831 break;
5833 case GIMPLE_RESX:
5835 int r = gimple_resx_region (stmt);
5836 r = move_stmt_eh_region_nr (r, p);
5837 gimple_resx_set_region (stmt, r);
5839 break;
5841 case GIMPLE_EH_DISPATCH:
5843 int r = gimple_eh_dispatch_region (stmt);
5844 r = move_stmt_eh_region_nr (r, p);
5845 gimple_eh_dispatch_set_region (stmt, r);
5847 break;
5849 case GIMPLE_OMP_RETURN:
5850 case GIMPLE_OMP_CONTINUE:
5851 break;
5852 default:
5853 if (is_gimple_omp (stmt))
5855 /* Do not remap variables inside OMP directives. Variables
5856 referenced in clauses and directive header belong to the
5857 parent function and should not be moved into the child
5858 function. */
5859 bool save_remap_decls_p = p->remap_decls_p;
5860 p->remap_decls_p = false;
5861 *handled_ops_p = true;
5863 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5864 move_stmt_op, wi);
5866 p->remap_decls_p = save_remap_decls_p;
5868 break;
5871 return NULL_TREE;
5874 /* Move basic block BB from function CFUN to function DEST_FN. The
5875 block is moved out of the original linked list and placed after
5876 block AFTER in the new list. Also, the block is removed from the
5877 original array of blocks and placed in DEST_FN's array of blocks.
5878 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5879 updated to reflect the moved edges.
5881 The local variables are remapped to new instances, VARS_MAP is used
5882 to record the mapping. */
5884 static void
5885 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5886 basic_block after, bool update_edge_count_p,
5887 struct move_stmt_d *d)
5889 struct control_flow_graph *cfg;
5890 edge_iterator ei;
5891 edge e;
5892 gimple_stmt_iterator si;
5893 unsigned old_len, new_len;
5895 /* Remove BB from dominance structures. */
5896 delete_from_dominance_info (CDI_DOMINATORS, bb);
5897 if (current_loops)
5898 remove_bb_from_loops (bb);
5900 /* Link BB to the new linked list. */
5901 move_block_after (bb, after);
5903 /* Update the edge count in the corresponding flowgraphs. */
5904 if (update_edge_count_p)
5905 FOR_EACH_EDGE (e, ei, bb->succs)
5907 cfun->cfg->x_n_edges--;
5908 dest_cfun->cfg->x_n_edges++;
5911 /* Remove BB from the original basic block array. */
5912 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5913 cfun->cfg->x_n_basic_blocks--;
5915 /* Grow DEST_CFUN's basic block array if needed. */
5916 cfg = dest_cfun->cfg;
5917 cfg->x_n_basic_blocks++;
5918 if (bb->index >= cfg->x_last_basic_block)
5919 cfg->x_last_basic_block = bb->index + 1;
5921 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5922 if ((unsigned) cfg->x_last_basic_block >= old_len)
5924 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5925 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5926 new_len);
5929 VEC_replace (basic_block, cfg->x_basic_block_info,
5930 bb->index, bb);
5932 /* Remap the variables in phi nodes. */
5933 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5935 gimple phi = gsi_stmt (si);
5936 use_operand_p use;
5937 tree op = PHI_RESULT (phi);
5938 ssa_op_iter oi;
5940 if (!is_gimple_reg (op))
5942 /* Remove the phi nodes for virtual operands (alias analysis will be
5943 run for the new function, anyway). */
5944 remove_phi_node (&si, true);
5945 continue;
5948 SET_PHI_RESULT (phi,
5949 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5950 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5952 op = USE_FROM_PTR (use);
5953 if (TREE_CODE (op) == SSA_NAME)
5954 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5957 gsi_next (&si);
5960 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5962 gimple stmt = gsi_stmt (si);
5963 struct walk_stmt_info wi;
5965 memset (&wi, 0, sizeof (wi));
5966 wi.info = d;
5967 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5969 if (gimple_code (stmt) == GIMPLE_LABEL)
5971 tree label = gimple_label_label (stmt);
5972 int uid = LABEL_DECL_UID (label);
5974 gcc_assert (uid > -1);
5976 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5977 if (old_len <= (unsigned) uid)
5979 new_len = 3 * uid / 2 + 1;
5980 VEC_safe_grow_cleared (basic_block, gc,
5981 cfg->x_label_to_block_map, new_len);
5984 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5985 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5987 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5989 if (uid >= dest_cfun->cfg->last_label_uid)
5990 dest_cfun->cfg->last_label_uid = uid + 1;
5993 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5994 remove_stmt_from_eh_lp_fn (cfun, stmt);
5996 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5997 gimple_remove_stmt_histograms (cfun, stmt);
5999 /* We cannot leave any operands allocated from the operand caches of
6000 the current function. */
6001 free_stmt_operands (stmt);
6002 push_cfun (dest_cfun);
6003 update_stmt (stmt);
6004 pop_cfun ();
6007 FOR_EACH_EDGE (e, ei, bb->succs)
6008 if (e->goto_locus)
6010 tree block = e->goto_block;
6011 if (d->orig_block == NULL_TREE
6012 || block == d->orig_block)
6013 e->goto_block = d->new_block;
6014 #ifdef ENABLE_CHECKING
6015 else if (block != d->new_block)
6017 while (block && block != d->orig_block)
6018 block = BLOCK_SUPERCONTEXT (block);
6019 gcc_assert (block);
6021 #endif
6025 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6026 the outermost EH region. Use REGION as the incoming base EH region. */
6028 static eh_region
6029 find_outermost_region_in_block (struct function *src_cfun,
6030 basic_block bb, eh_region region)
6032 gimple_stmt_iterator si;
6034 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6036 gimple stmt = gsi_stmt (si);
6037 eh_region stmt_region;
6038 int lp_nr;
6040 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6041 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6042 if (stmt_region)
6044 if (region == NULL)
6045 region = stmt_region;
6046 else if (stmt_region != region)
6048 region = eh_region_outermost (src_cfun, stmt_region, region);
6049 gcc_assert (region != NULL);
6054 return region;
6057 static tree
6058 new_label_mapper (tree decl, void *data)
6060 htab_t hash = (htab_t) data;
6061 struct tree_map *m;
6062 void **slot;
6064 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6066 m = XNEW (struct tree_map);
6067 m->hash = DECL_UID (decl);
6068 m->base.from = decl;
6069 m->to = create_artificial_label (UNKNOWN_LOCATION);
6070 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6071 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6072 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6074 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6075 gcc_assert (*slot == NULL);
6077 *slot = m;
6079 return m->to;
6082 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6083 subblocks. */
6085 static void
6086 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6087 tree to_context)
6089 tree *tp, t;
6091 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6093 t = *tp;
6094 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6095 continue;
6096 replace_by_duplicate_decl (&t, vars_map, to_context);
6097 if (t != *tp)
6099 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6101 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6102 DECL_HAS_VALUE_EXPR_P (t) = 1;
6104 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6105 *tp = t;
6109 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6110 replace_block_vars_by_duplicates (block, vars_map, to_context);
6113 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6114 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6115 single basic block in the original CFG and the new basic block is
6116 returned. DEST_CFUN must not have a CFG yet.
6118 Note that the region need not be a pure SESE region. Blocks inside
6119 the region may contain calls to abort/exit. The only restriction
6120 is that ENTRY_BB should be the only entry point and it must
6121 dominate EXIT_BB.
6123 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6124 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6125 to the new function.
6127 All local variables referenced in the region are assumed to be in
6128 the corresponding BLOCK_VARS and unexpanded variable lists
6129 associated with DEST_CFUN. */
6131 basic_block
6132 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6133 basic_block exit_bb, tree orig_block)
6135 VEC(basic_block,heap) *bbs, *dom_bbs;
6136 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6137 basic_block after, bb, *entry_pred, *exit_succ, abb;
6138 struct function *saved_cfun = cfun;
6139 int *entry_flag, *exit_flag;
6140 unsigned *entry_prob, *exit_prob;
6141 unsigned i, num_entry_edges, num_exit_edges;
6142 edge e;
6143 edge_iterator ei;
6144 htab_t new_label_map;
6145 struct pointer_map_t *vars_map, *eh_map;
6146 struct loop *loop = entry_bb->loop_father;
6147 struct move_stmt_d d;
6149 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6150 region. */
6151 gcc_assert (entry_bb != exit_bb
6152 && (!exit_bb
6153 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6155 /* Collect all the blocks in the region. Manually add ENTRY_BB
6156 because it won't be added by dfs_enumerate_from. */
6157 bbs = NULL;
6158 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6159 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6161 /* The blocks that used to be dominated by something in BBS will now be
6162 dominated by the new block. */
6163 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6164 VEC_address (basic_block, bbs),
6165 VEC_length (basic_block, bbs));
6167 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6168 the predecessor edges to ENTRY_BB and the successor edges to
6169 EXIT_BB so that we can re-attach them to the new basic block that
6170 will replace the region. */
6171 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6172 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6173 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6174 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6175 i = 0;
6176 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6178 entry_prob[i] = e->probability;
6179 entry_flag[i] = e->flags;
6180 entry_pred[i++] = e->src;
6181 remove_edge (e);
6184 if (exit_bb)
6186 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6187 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6188 sizeof (basic_block));
6189 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6190 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6191 i = 0;
6192 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6194 exit_prob[i] = e->probability;
6195 exit_flag[i] = e->flags;
6196 exit_succ[i++] = e->dest;
6197 remove_edge (e);
6200 else
6202 num_exit_edges = 0;
6203 exit_succ = NULL;
6204 exit_flag = NULL;
6205 exit_prob = NULL;
6208 /* Switch context to the child function to initialize DEST_FN's CFG. */
6209 gcc_assert (dest_cfun->cfg == NULL);
6210 push_cfun (dest_cfun);
6212 init_empty_tree_cfg ();
6214 /* Initialize EH information for the new function. */
6215 eh_map = NULL;
6216 new_label_map = NULL;
6217 if (saved_cfun->eh)
6219 eh_region region = NULL;
6221 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6222 region = find_outermost_region_in_block (saved_cfun, bb, region);
6224 init_eh_for_function ();
6225 if (region != NULL)
6227 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6228 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6229 new_label_mapper, new_label_map);
6233 pop_cfun ();
6235 /* Move blocks from BBS into DEST_CFUN. */
6236 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6237 after = dest_cfun->cfg->x_entry_block_ptr;
6238 vars_map = pointer_map_create ();
6240 memset (&d, 0, sizeof (d));
6241 d.orig_block = orig_block;
6242 d.new_block = DECL_INITIAL (dest_cfun->decl);
6243 d.from_context = cfun->decl;
6244 d.to_context = dest_cfun->decl;
6245 d.vars_map = vars_map;
6246 d.new_label_map = new_label_map;
6247 d.eh_map = eh_map;
6248 d.remap_decls_p = true;
6250 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6252 /* No need to update edge counts on the last block. It has
6253 already been updated earlier when we detached the region from
6254 the original CFG. */
6255 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6256 after = bb;
6259 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6260 if (orig_block)
6262 tree block;
6263 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6264 == NULL_TREE);
6265 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6266 = BLOCK_SUBBLOCKS (orig_block);
6267 for (block = BLOCK_SUBBLOCKS (orig_block);
6268 block; block = BLOCK_CHAIN (block))
6269 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6270 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6273 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6274 vars_map, dest_cfun->decl);
6276 if (new_label_map)
6277 htab_delete (new_label_map);
6278 if (eh_map)
6279 pointer_map_destroy (eh_map);
6280 pointer_map_destroy (vars_map);
6282 /* Rewire the entry and exit blocks. The successor to the entry
6283 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6284 the child function. Similarly, the predecessor of DEST_FN's
6285 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6286 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6287 various CFG manipulation function get to the right CFG.
6289 FIXME, this is silly. The CFG ought to become a parameter to
6290 these helpers. */
6291 push_cfun (dest_cfun);
6292 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6293 if (exit_bb)
6294 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6295 pop_cfun ();
6297 /* Back in the original function, the SESE region has disappeared,
6298 create a new basic block in its place. */
6299 bb = create_empty_bb (entry_pred[0]);
6300 if (current_loops)
6301 add_bb_to_loop (bb, loop);
6302 for (i = 0; i < num_entry_edges; i++)
6304 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6305 e->probability = entry_prob[i];
6308 for (i = 0; i < num_exit_edges; i++)
6310 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6311 e->probability = exit_prob[i];
6314 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6315 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6316 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6317 VEC_free (basic_block, heap, dom_bbs);
6319 if (exit_bb)
6321 free (exit_prob);
6322 free (exit_flag);
6323 free (exit_succ);
6325 free (entry_prob);
6326 free (entry_flag);
6327 free (entry_pred);
6328 VEC_free (basic_block, heap, bbs);
6330 return bb;
6334 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6337 void
6338 dump_function_to_file (tree fn, FILE *file, int flags)
6340 tree arg, var;
6341 struct function *dsf;
6342 bool ignore_topmost_bind = false, any_var = false;
6343 basic_block bb;
6344 tree chain;
6346 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6348 arg = DECL_ARGUMENTS (fn);
6349 while (arg)
6351 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6352 fprintf (file, " ");
6353 print_generic_expr (file, arg, dump_flags);
6354 if (flags & TDF_VERBOSE)
6355 print_node (file, "", arg, 4);
6356 if (DECL_CHAIN (arg))
6357 fprintf (file, ", ");
6358 arg = DECL_CHAIN (arg);
6360 fprintf (file, ")\n");
6362 if (flags & TDF_VERBOSE)
6363 print_node (file, "", fn, 2);
6365 dsf = DECL_STRUCT_FUNCTION (fn);
6366 if (dsf && (flags & TDF_EH))
6367 dump_eh_tree (file, dsf);
6369 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6371 dump_node (fn, TDF_SLIM | flags, file);
6372 return;
6375 /* Switch CFUN to point to FN. */
6376 push_cfun (DECL_STRUCT_FUNCTION (fn));
6378 /* When GIMPLE is lowered, the variables are no longer available in
6379 BIND_EXPRs, so display them separately. */
6380 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6382 unsigned ix;
6383 ignore_topmost_bind = true;
6385 fprintf (file, "{\n");
6386 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6388 print_generic_decl (file, var, flags);
6389 if (flags & TDF_VERBOSE)
6390 print_node (file, "", var, 4);
6391 fprintf (file, "\n");
6393 any_var = true;
6397 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6399 /* If the CFG has been built, emit a CFG-based dump. */
6400 check_bb_profile (ENTRY_BLOCK_PTR, file);
6401 if (!ignore_topmost_bind)
6402 fprintf (file, "{\n");
6404 if (any_var && n_basic_blocks)
6405 fprintf (file, "\n");
6407 FOR_EACH_BB (bb)
6408 gimple_dump_bb (bb, file, 2, flags);
6410 fprintf (file, "}\n");
6411 check_bb_profile (EXIT_BLOCK_PTR, file);
6413 else if (DECL_SAVED_TREE (fn) == NULL)
6415 /* The function is now in GIMPLE form but the CFG has not been
6416 built yet. Emit the single sequence of GIMPLE statements
6417 that make up its body. */
6418 gimple_seq body = gimple_body (fn);
6420 if (gimple_seq_first_stmt (body)
6421 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6422 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6423 print_gimple_seq (file, body, 0, flags);
6424 else
6426 if (!ignore_topmost_bind)
6427 fprintf (file, "{\n");
6429 if (any_var)
6430 fprintf (file, "\n");
6432 print_gimple_seq (file, body, 2, flags);
6433 fprintf (file, "}\n");
6436 else
6438 int indent;
6440 /* Make a tree based dump. */
6441 chain = DECL_SAVED_TREE (fn);
6443 if (chain && TREE_CODE (chain) == BIND_EXPR)
6445 if (ignore_topmost_bind)
6447 chain = BIND_EXPR_BODY (chain);
6448 indent = 2;
6450 else
6451 indent = 0;
6453 else
6455 if (!ignore_topmost_bind)
6456 fprintf (file, "{\n");
6457 indent = 2;
6460 if (any_var)
6461 fprintf (file, "\n");
6463 print_generic_stmt_indented (file, chain, flags, indent);
6464 if (ignore_topmost_bind)
6465 fprintf (file, "}\n");
6468 if (flags & TDF_ENUMERATE_LOCALS)
6469 dump_enumerated_decls (file, flags);
6470 fprintf (file, "\n\n");
6472 /* Restore CFUN. */
6473 pop_cfun ();
6477 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6479 DEBUG_FUNCTION void
6480 debug_function (tree fn, int flags)
6482 dump_function_to_file (fn, stderr, flags);
6486 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6488 static void
6489 print_pred_bbs (FILE *file, basic_block bb)
6491 edge e;
6492 edge_iterator ei;
6494 FOR_EACH_EDGE (e, ei, bb->preds)
6495 fprintf (file, "bb_%d ", e->src->index);
6499 /* Print on FILE the indexes for the successors of basic_block BB. */
6501 static void
6502 print_succ_bbs (FILE *file, basic_block bb)
6504 edge e;
6505 edge_iterator ei;
6507 FOR_EACH_EDGE (e, ei, bb->succs)
6508 fprintf (file, "bb_%d ", e->dest->index);
6511 /* Print to FILE the basic block BB following the VERBOSITY level. */
6513 void
6514 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6516 char *s_indent = (char *) alloca ((size_t) indent + 1);
6517 memset ((void *) s_indent, ' ', (size_t) indent);
6518 s_indent[indent] = '\0';
6520 /* Print basic_block's header. */
6521 if (verbosity >= 2)
6523 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6524 print_pred_bbs (file, bb);
6525 fprintf (file, "}, succs = {");
6526 print_succ_bbs (file, bb);
6527 fprintf (file, "})\n");
6530 /* Print basic_block's body. */
6531 if (verbosity >= 3)
6533 fprintf (file, "%s {\n", s_indent);
6534 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6535 fprintf (file, "%s }\n", s_indent);
6539 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6541 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6542 VERBOSITY level this outputs the contents of the loop, or just its
6543 structure. */
6545 static void
6546 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6548 char *s_indent;
6549 basic_block bb;
6551 if (loop == NULL)
6552 return;
6554 s_indent = (char *) alloca ((size_t) indent + 1);
6555 memset ((void *) s_indent, ' ', (size_t) indent);
6556 s_indent[indent] = '\0';
6558 /* Print loop's header. */
6559 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6560 loop->num, loop->header->index, loop->latch->index);
6561 fprintf (file, ", niter = ");
6562 print_generic_expr (file, loop->nb_iterations, 0);
6564 if (loop->any_upper_bound)
6566 fprintf (file, ", upper_bound = ");
6567 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6570 if (loop->any_estimate)
6572 fprintf (file, ", estimate = ");
6573 dump_double_int (file, loop->nb_iterations_estimate, true);
6575 fprintf (file, ")\n");
6577 /* Print loop's body. */
6578 if (verbosity >= 1)
6580 fprintf (file, "%s{\n", s_indent);
6581 FOR_EACH_BB (bb)
6582 if (bb->loop_father == loop)
6583 print_loops_bb (file, bb, indent, verbosity);
6585 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6586 fprintf (file, "%s}\n", s_indent);
6590 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6591 spaces. Following VERBOSITY level this outputs the contents of the
6592 loop, or just its structure. */
6594 static void
6595 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6597 if (loop == NULL)
6598 return;
6600 print_loop (file, loop, indent, verbosity);
6601 print_loop_and_siblings (file, loop->next, indent, verbosity);
6604 /* Follow a CFG edge from the entry point of the program, and on entry
6605 of a loop, pretty print the loop structure on FILE. */
6607 void
6608 print_loops (FILE *file, int verbosity)
6610 basic_block bb;
6612 bb = ENTRY_BLOCK_PTR;
6613 if (bb && bb->loop_father)
6614 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6618 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6620 DEBUG_FUNCTION void
6621 debug_loops (int verbosity)
6623 print_loops (stderr, verbosity);
6626 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6628 DEBUG_FUNCTION void
6629 debug_loop (struct loop *loop, int verbosity)
6631 print_loop (stderr, loop, 0, verbosity);
6634 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6635 level. */
6637 DEBUG_FUNCTION void
6638 debug_loop_num (unsigned num, int verbosity)
6640 debug_loop (get_loop (num), verbosity);
6643 /* Return true if BB ends with a call, possibly followed by some
6644 instructions that must stay with the call. Return false,
6645 otherwise. */
6647 static bool
6648 gimple_block_ends_with_call_p (basic_block bb)
6650 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6651 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6655 /* Return true if BB ends with a conditional branch. Return false,
6656 otherwise. */
6658 static bool
6659 gimple_block_ends_with_condjump_p (const_basic_block bb)
6661 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6662 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6666 /* Return true if we need to add fake edge to exit at statement T.
6667 Helper function for gimple_flow_call_edges_add. */
6669 static bool
6670 need_fake_edge_p (gimple t)
6672 tree fndecl = NULL_TREE;
6673 int call_flags = 0;
6675 /* NORETURN and LONGJMP calls already have an edge to exit.
6676 CONST and PURE calls do not need one.
6677 We don't currently check for CONST and PURE here, although
6678 it would be a good idea, because those attributes are
6679 figured out from the RTL in mark_constant_function, and
6680 the counter incrementation code from -fprofile-arcs
6681 leads to different results from -fbranch-probabilities. */
6682 if (is_gimple_call (t))
6684 fndecl = gimple_call_fndecl (t);
6685 call_flags = gimple_call_flags (t);
6688 if (is_gimple_call (t)
6689 && fndecl
6690 && DECL_BUILT_IN (fndecl)
6691 && (call_flags & ECF_NOTHROW)
6692 && !(call_flags & ECF_RETURNS_TWICE)
6693 /* fork() doesn't really return twice, but the effect of
6694 wrapping it in __gcov_fork() which calls __gcov_flush()
6695 and clears the counters before forking has the same
6696 effect as returning twice. Force a fake edge. */
6697 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6698 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6699 return false;
6701 if (is_gimple_call (t)
6702 && !(call_flags & ECF_NORETURN))
6703 return true;
6705 if (gimple_code (t) == GIMPLE_ASM
6706 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6707 return true;
6709 return false;
6713 /* Add fake edges to the function exit for any non constant and non
6714 noreturn calls, volatile inline assembly in the bitmap of blocks
6715 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6716 the number of blocks that were split.
6718 The goal is to expose cases in which entering a basic block does
6719 not imply that all subsequent instructions must be executed. */
6721 static int
6722 gimple_flow_call_edges_add (sbitmap blocks)
6724 int i;
6725 int blocks_split = 0;
6726 int last_bb = last_basic_block;
6727 bool check_last_block = false;
6729 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6730 return 0;
6732 if (! blocks)
6733 check_last_block = true;
6734 else
6735 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6737 /* In the last basic block, before epilogue generation, there will be
6738 a fallthru edge to EXIT. Special care is required if the last insn
6739 of the last basic block is a call because make_edge folds duplicate
6740 edges, which would result in the fallthru edge also being marked
6741 fake, which would result in the fallthru edge being removed by
6742 remove_fake_edges, which would result in an invalid CFG.
6744 Moreover, we can't elide the outgoing fake edge, since the block
6745 profiler needs to take this into account in order to solve the minimal
6746 spanning tree in the case that the call doesn't return.
6748 Handle this by adding a dummy instruction in a new last basic block. */
6749 if (check_last_block)
6751 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6752 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6753 gimple t = NULL;
6755 if (!gsi_end_p (gsi))
6756 t = gsi_stmt (gsi);
6758 if (t && need_fake_edge_p (t))
6760 edge e;
6762 e = find_edge (bb, EXIT_BLOCK_PTR);
6763 if (e)
6765 gsi_insert_on_edge (e, gimple_build_nop ());
6766 gsi_commit_edge_inserts ();
6771 /* Now add fake edges to the function exit for any non constant
6772 calls since there is no way that we can determine if they will
6773 return or not... */
6774 for (i = 0; i < last_bb; i++)
6776 basic_block bb = BASIC_BLOCK (i);
6777 gimple_stmt_iterator gsi;
6778 gimple stmt, last_stmt;
6780 if (!bb)
6781 continue;
6783 if (blocks && !TEST_BIT (blocks, i))
6784 continue;
6786 gsi = gsi_last_bb (bb);
6787 if (!gsi_end_p (gsi))
6789 last_stmt = gsi_stmt (gsi);
6792 stmt = gsi_stmt (gsi);
6793 if (need_fake_edge_p (stmt))
6795 edge e;
6797 /* The handling above of the final block before the
6798 epilogue should be enough to verify that there is
6799 no edge to the exit block in CFG already.
6800 Calling make_edge in such case would cause us to
6801 mark that edge as fake and remove it later. */
6802 #ifdef ENABLE_CHECKING
6803 if (stmt == last_stmt)
6805 e = find_edge (bb, EXIT_BLOCK_PTR);
6806 gcc_assert (e == NULL);
6808 #endif
6810 /* Note that the following may create a new basic block
6811 and renumber the existing basic blocks. */
6812 if (stmt != last_stmt)
6814 e = split_block (bb, stmt);
6815 if (e)
6816 blocks_split++;
6818 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6820 gsi_prev (&gsi);
6822 while (!gsi_end_p (gsi));
6826 if (blocks_split)
6827 verify_flow_info ();
6829 return blocks_split;
6832 /* Removes edge E and all the blocks dominated by it, and updates dominance
6833 information. The IL in E->src needs to be updated separately.
6834 If dominance info is not available, only the edge E is removed.*/
6836 void
6837 remove_edge_and_dominated_blocks (edge e)
6839 VEC (basic_block, heap) *bbs_to_remove = NULL;
6840 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6841 bitmap df, df_idom;
6842 edge f;
6843 edge_iterator ei;
6844 bool none_removed = false;
6845 unsigned i;
6846 basic_block bb, dbb;
6847 bitmap_iterator bi;
6849 if (!dom_info_available_p (CDI_DOMINATORS))
6851 remove_edge (e);
6852 return;
6855 /* No updating is needed for edges to exit. */
6856 if (e->dest == EXIT_BLOCK_PTR)
6858 if (cfgcleanup_altered_bbs)
6859 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6860 remove_edge (e);
6861 return;
6864 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6865 that is not dominated by E->dest, then this set is empty. Otherwise,
6866 all the basic blocks dominated by E->dest are removed.
6868 Also, to DF_IDOM we store the immediate dominators of the blocks in
6869 the dominance frontier of E (i.e., of the successors of the
6870 removed blocks, if there are any, and of E->dest otherwise). */
6871 FOR_EACH_EDGE (f, ei, e->dest->preds)
6873 if (f == e)
6874 continue;
6876 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6878 none_removed = true;
6879 break;
6883 df = BITMAP_ALLOC (NULL);
6884 df_idom = BITMAP_ALLOC (NULL);
6886 if (none_removed)
6887 bitmap_set_bit (df_idom,
6888 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6889 else
6891 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6892 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6894 FOR_EACH_EDGE (f, ei, bb->succs)
6896 if (f->dest != EXIT_BLOCK_PTR)
6897 bitmap_set_bit (df, f->dest->index);
6900 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6901 bitmap_clear_bit (df, bb->index);
6903 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6905 bb = BASIC_BLOCK (i);
6906 bitmap_set_bit (df_idom,
6907 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6911 if (cfgcleanup_altered_bbs)
6913 /* Record the set of the altered basic blocks. */
6914 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6915 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6918 /* Remove E and the cancelled blocks. */
6919 if (none_removed)
6920 remove_edge (e);
6921 else
6923 /* Walk backwards so as to get a chance to substitute all
6924 released DEFs into debug stmts. See
6925 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6926 details. */
6927 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6928 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6931 /* Update the dominance information. The immediate dominator may change only
6932 for blocks whose immediate dominator belongs to DF_IDOM:
6934 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6935 removal. Let Z the arbitrary block such that idom(Z) = Y and
6936 Z dominates X after the removal. Before removal, there exists a path P
6937 from Y to X that avoids Z. Let F be the last edge on P that is
6938 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6939 dominates W, and because of P, Z does not dominate W), and W belongs to
6940 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6941 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6943 bb = BASIC_BLOCK (i);
6944 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6945 dbb;
6946 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6947 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6950 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6952 BITMAP_FREE (df);
6953 BITMAP_FREE (df_idom);
6954 VEC_free (basic_block, heap, bbs_to_remove);
6955 VEC_free (basic_block, heap, bbs_to_fix_dom);
6958 /* Purge dead EH edges from basic block BB. */
6960 bool
6961 gimple_purge_dead_eh_edges (basic_block bb)
6963 bool changed = false;
6964 edge e;
6965 edge_iterator ei;
6966 gimple stmt = last_stmt (bb);
6968 if (stmt && stmt_can_throw_internal (stmt))
6969 return false;
6971 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6973 if (e->flags & EDGE_EH)
6975 remove_edge_and_dominated_blocks (e);
6976 changed = true;
6978 else
6979 ei_next (&ei);
6982 return changed;
6985 /* Purge dead EH edges from basic block listed in BLOCKS. */
6987 bool
6988 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6990 bool changed = false;
6991 unsigned i;
6992 bitmap_iterator bi;
6994 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6996 basic_block bb = BASIC_BLOCK (i);
6998 /* Earlier gimple_purge_dead_eh_edges could have removed
6999 this basic block already. */
7000 gcc_assert (bb || changed);
7001 if (bb != NULL)
7002 changed |= gimple_purge_dead_eh_edges (bb);
7005 return changed;
7008 /* Purge dead abnormal call edges from basic block BB. */
7010 bool
7011 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7013 bool changed = false;
7014 edge e;
7015 edge_iterator ei;
7016 gimple stmt = last_stmt (bb);
7018 if (!cfun->has_nonlocal_label)
7019 return false;
7021 if (stmt && stmt_can_make_abnormal_goto (stmt))
7022 return false;
7024 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7026 if (e->flags & EDGE_ABNORMAL)
7028 remove_edge_and_dominated_blocks (e);
7029 changed = true;
7031 else
7032 ei_next (&ei);
7035 return changed;
7038 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7040 bool
7041 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7043 bool changed = false;
7044 unsigned i;
7045 bitmap_iterator bi;
7047 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7049 basic_block bb = BASIC_BLOCK (i);
7051 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7052 this basic block already. */
7053 gcc_assert (bb || changed);
7054 if (bb != NULL)
7055 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7058 return changed;
7061 /* This function is called whenever a new edge is created or
7062 redirected. */
7064 static void
7065 gimple_execute_on_growing_pred (edge e)
7067 basic_block bb = e->dest;
7069 if (!gimple_seq_empty_p (phi_nodes (bb)))
7070 reserve_phi_args_for_new_edge (bb);
7073 /* This function is called immediately before edge E is removed from
7074 the edge vector E->dest->preds. */
7076 static void
7077 gimple_execute_on_shrinking_pred (edge e)
7079 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7080 remove_phi_args (e);
7083 /*---------------------------------------------------------------------------
7084 Helper functions for Loop versioning
7085 ---------------------------------------------------------------------------*/
7087 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7088 of 'first'. Both of them are dominated by 'new_head' basic block. When
7089 'new_head' was created by 'second's incoming edge it received phi arguments
7090 on the edge by split_edge(). Later, additional edge 'e' was created to
7091 connect 'new_head' and 'first'. Now this routine adds phi args on this
7092 additional edge 'e' that new_head to second edge received as part of edge
7093 splitting. */
7095 static void
7096 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7097 basic_block new_head, edge e)
7099 gimple phi1, phi2;
7100 gimple_stmt_iterator psi1, psi2;
7101 tree def;
7102 edge e2 = find_edge (new_head, second);
7104 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7105 edge, we should always have an edge from NEW_HEAD to SECOND. */
7106 gcc_assert (e2 != NULL);
7108 /* Browse all 'second' basic block phi nodes and add phi args to
7109 edge 'e' for 'first' head. PHI args are always in correct order. */
7111 for (psi2 = gsi_start_phis (second),
7112 psi1 = gsi_start_phis (first);
7113 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7114 gsi_next (&psi2), gsi_next (&psi1))
7116 phi1 = gsi_stmt (psi1);
7117 phi2 = gsi_stmt (psi2);
7118 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7119 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7124 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7125 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7126 the destination of the ELSE part. */
7128 static void
7129 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7130 basic_block second_head ATTRIBUTE_UNUSED,
7131 basic_block cond_bb, void *cond_e)
7133 gimple_stmt_iterator gsi;
7134 gimple new_cond_expr;
7135 tree cond_expr = (tree) cond_e;
7136 edge e0;
7138 /* Build new conditional expr */
7139 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7140 NULL_TREE, NULL_TREE);
7142 /* Add new cond in cond_bb. */
7143 gsi = gsi_last_bb (cond_bb);
7144 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7146 /* Adjust edges appropriately to connect new head with first head
7147 as well as second head. */
7148 e0 = single_succ_edge (cond_bb);
7149 e0->flags &= ~EDGE_FALLTHRU;
7150 e0->flags |= EDGE_FALSE_VALUE;
7153 struct cfg_hooks gimple_cfg_hooks = {
7154 "gimple",
7155 gimple_verify_flow_info,
7156 gimple_dump_bb, /* dump_bb */
7157 create_bb, /* create_basic_block */
7158 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7159 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7160 gimple_can_remove_branch_p, /* can_remove_branch_p */
7161 remove_bb, /* delete_basic_block */
7162 gimple_split_block, /* split_block */
7163 gimple_move_block_after, /* move_block_after */
7164 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7165 gimple_merge_blocks, /* merge_blocks */
7166 gimple_predict_edge, /* predict_edge */
7167 gimple_predicted_by_p, /* predicted_by_p */
7168 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7169 gimple_duplicate_bb, /* duplicate_block */
7170 gimple_split_edge, /* split_edge */
7171 gimple_make_forwarder_block, /* make_forward_block */
7172 NULL, /* tidy_fallthru_edge */
7173 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7174 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7175 gimple_flow_call_edges_add, /* flow_call_edges_add */
7176 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7177 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7178 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7179 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7180 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7181 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7182 flush_pending_stmts /* flush_pending_stmts */
7186 /* Split all critical edges. */
7188 static unsigned int
7189 split_critical_edges (void)
7191 basic_block bb;
7192 edge e;
7193 edge_iterator ei;
7195 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7196 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7197 mappings around the calls to split_edge. */
7198 start_recording_case_labels ();
7199 FOR_ALL_BB (bb)
7201 FOR_EACH_EDGE (e, ei, bb->succs)
7203 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7204 split_edge (e);
7205 /* PRE inserts statements to edges and expects that
7206 since split_critical_edges was done beforehand, committing edge
7207 insertions will not split more edges. In addition to critical
7208 edges we must split edges that have multiple successors and
7209 end by control flow statements, such as RESX.
7210 Go ahead and split them too. This matches the logic in
7211 gimple_find_edge_insert_loc. */
7212 else if ((!single_pred_p (e->dest)
7213 || !gimple_seq_empty_p (phi_nodes (e->dest))
7214 || e->dest == EXIT_BLOCK_PTR)
7215 && e->src != ENTRY_BLOCK_PTR
7216 && !(e->flags & EDGE_ABNORMAL))
7218 gimple_stmt_iterator gsi;
7220 gsi = gsi_last_bb (e->src);
7221 if (!gsi_end_p (gsi)
7222 && stmt_ends_bb_p (gsi_stmt (gsi))
7223 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7224 && !gimple_call_builtin_p (gsi_stmt (gsi),
7225 BUILT_IN_RETURN)))
7226 split_edge (e);
7230 end_recording_case_labels ();
7231 return 0;
7234 struct gimple_opt_pass pass_split_crit_edges =
7237 GIMPLE_PASS,
7238 "crited", /* name */
7239 NULL, /* gate */
7240 split_critical_edges, /* execute */
7241 NULL, /* sub */
7242 NULL, /* next */
7243 0, /* static_pass_number */
7244 TV_TREE_SPLIT_EDGES, /* tv_id */
7245 PROP_cfg, /* properties required */
7246 PROP_no_crit_edges, /* properties_provided */
7247 0, /* properties_destroyed */
7248 0, /* todo_flags_start */
7249 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7254 /* Build a ternary operation and gimplify it. Emit code before GSI.
7255 Return the gimple_val holding the result. */
7257 tree
7258 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7259 tree type, tree a, tree b, tree c)
7261 tree ret;
7262 location_t loc = gimple_location (gsi_stmt (*gsi));
7264 ret = fold_build3_loc (loc, code, type, a, b, c);
7265 STRIP_NOPS (ret);
7267 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7268 GSI_SAME_STMT);
7271 /* Build a binary operation and gimplify it. Emit code before GSI.
7272 Return the gimple_val holding the result. */
7274 tree
7275 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7276 tree type, tree a, tree b)
7278 tree ret;
7280 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7281 STRIP_NOPS (ret);
7283 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7284 GSI_SAME_STMT);
7287 /* Build a unary operation and gimplify it. Emit code before GSI.
7288 Return the gimple_val holding the result. */
7290 tree
7291 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7292 tree a)
7294 tree ret;
7296 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7297 STRIP_NOPS (ret);
7299 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7300 GSI_SAME_STMT);
7305 /* Emit return warnings. */
7307 static unsigned int
7308 execute_warn_function_return (void)
7310 source_location location;
7311 gimple last;
7312 edge e;
7313 edge_iterator ei;
7315 /* If we have a path to EXIT, then we do return. */
7316 if (TREE_THIS_VOLATILE (cfun->decl)
7317 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7319 location = UNKNOWN_LOCATION;
7320 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7322 last = last_stmt (e->src);
7323 if ((gimple_code (last) == GIMPLE_RETURN
7324 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7325 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7326 break;
7328 if (location == UNKNOWN_LOCATION)
7329 location = cfun->function_end_locus;
7330 warning_at (location, 0, "%<noreturn%> function does return");
7333 /* If we see "return;" in some basic block, then we do reach the end
7334 without returning a value. */
7335 else if (warn_return_type
7336 && !TREE_NO_WARNING (cfun->decl)
7337 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7338 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7340 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7342 gimple last = last_stmt (e->src);
7343 if (gimple_code (last) == GIMPLE_RETURN
7344 && gimple_return_retval (last) == NULL
7345 && !gimple_no_warning_p (last))
7347 location = gimple_location (last);
7348 if (location == UNKNOWN_LOCATION)
7349 location = cfun->function_end_locus;
7350 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7351 TREE_NO_WARNING (cfun->decl) = 1;
7352 break;
7356 return 0;
7360 /* Given a basic block B which ends with a conditional and has
7361 precisely two successors, determine which of the edges is taken if
7362 the conditional is true and which is taken if the conditional is
7363 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7365 void
7366 extract_true_false_edges_from_block (basic_block b,
7367 edge *true_edge,
7368 edge *false_edge)
7370 edge e = EDGE_SUCC (b, 0);
7372 if (e->flags & EDGE_TRUE_VALUE)
7374 *true_edge = e;
7375 *false_edge = EDGE_SUCC (b, 1);
7377 else
7379 *false_edge = e;
7380 *true_edge = EDGE_SUCC (b, 1);
7384 struct gimple_opt_pass pass_warn_function_return =
7387 GIMPLE_PASS,
7388 "*warn_function_return", /* name */
7389 NULL, /* gate */
7390 execute_warn_function_return, /* execute */
7391 NULL, /* sub */
7392 NULL, /* next */
7393 0, /* static_pass_number */
7394 TV_NONE, /* tv_id */
7395 PROP_cfg, /* properties_required */
7396 0, /* properties_provided */
7397 0, /* properties_destroyed */
7398 0, /* todo_flags_start */
7399 0 /* todo_flags_finish */
7403 /* Emit noreturn warnings. */
7405 static unsigned int
7406 execute_warn_function_noreturn (void)
7408 if (!TREE_THIS_VOLATILE (current_function_decl)
7409 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7410 warn_function_noreturn (current_function_decl);
7411 return 0;
7414 static bool
7415 gate_warn_function_noreturn (void)
7417 return warn_suggest_attribute_noreturn;
7420 struct gimple_opt_pass pass_warn_function_noreturn =
7423 GIMPLE_PASS,
7424 "*warn_function_noreturn", /* name */
7425 gate_warn_function_noreturn, /* gate */
7426 execute_warn_function_noreturn, /* execute */
7427 NULL, /* sub */
7428 NULL, /* next */
7429 0, /* static_pass_number */
7430 TV_NONE, /* tv_id */
7431 PROP_cfg, /* properties_required */
7432 0, /* properties_provided */
7433 0, /* properties_destroyed */
7434 0, /* todo_flags_start */
7435 0 /* todo_flags_finish */
7440 /* Walk a gimplified function and warn for functions whose return value is
7441 ignored and attribute((warn_unused_result)) is set. This is done before
7442 inlining, so we don't have to worry about that. */
7444 static void
7445 do_warn_unused_result (gimple_seq seq)
7447 tree fdecl, ftype;
7448 gimple_stmt_iterator i;
7450 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7452 gimple g = gsi_stmt (i);
7454 switch (gimple_code (g))
7456 case GIMPLE_BIND:
7457 do_warn_unused_result (gimple_bind_body (g));
7458 break;
7459 case GIMPLE_TRY:
7460 do_warn_unused_result (gimple_try_eval (g));
7461 do_warn_unused_result (gimple_try_cleanup (g));
7462 break;
7463 case GIMPLE_CATCH:
7464 do_warn_unused_result (gimple_catch_handler (g));
7465 break;
7466 case GIMPLE_EH_FILTER:
7467 do_warn_unused_result (gimple_eh_filter_failure (g));
7468 break;
7470 case GIMPLE_CALL:
7471 if (gimple_call_lhs (g))
7472 break;
7474 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7475 LHS. All calls whose value is ignored should be
7476 represented like this. Look for the attribute. */
7477 fdecl = gimple_call_fndecl (g);
7478 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7480 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7482 location_t loc = gimple_location (g);
7484 if (fdecl)
7485 warning_at (loc, OPT_Wunused_result,
7486 "ignoring return value of %qD, "
7487 "declared with attribute warn_unused_result",
7488 fdecl);
7489 else
7490 warning_at (loc, OPT_Wunused_result,
7491 "ignoring return value of function "
7492 "declared with attribute warn_unused_result");
7494 break;
7496 default:
7497 /* Not a container, not a call, or a call whose value is used. */
7498 break;
7503 static unsigned int
7504 run_warn_unused_result (void)
7506 do_warn_unused_result (gimple_body (current_function_decl));
7507 return 0;
7510 static bool
7511 gate_warn_unused_result (void)
7513 return flag_warn_unused_result;
7516 struct gimple_opt_pass pass_warn_unused_result =
7519 GIMPLE_PASS,
7520 "*warn_unused_result", /* name */
7521 gate_warn_unused_result, /* gate */
7522 run_warn_unused_result, /* execute */
7523 NULL, /* sub */
7524 NULL, /* next */
7525 0, /* static_pass_number */
7526 TV_NONE, /* tv_id */
7527 PROP_gimple_any, /* properties_required */
7528 0, /* properties_provided */
7529 0, /* properties_destroyed */
7530 0, /* todo_flags_start */
7531 0, /* todo_flags_finish */