* config/ia64/ia64.c (ia64_expand_builtin): Use the
[official-gcc.git] / gcc / cfg.c
blob9f5da32bfe877bfb74e99436274f16e219594fdd
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
34 - Edge manipulation
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
42 - clear_bb_flags
43 - Consistency checking
44 verify_flow_info
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "timevar.h"
65 #include "tree-pass.h"
66 #include "ggc.h"
67 #include "hashtab.h"
68 #include "alloc-pool.h"
70 /* The obstack on which the flow graph components are allocated. */
72 struct bitmap_obstack reg_obstack;
74 void debug_flow_info (void);
75 static void free_edge (edge);
77 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
79 /* Called once at initialization time. */
81 void
82 init_flow (void)
84 if (!cfun->cfg)
85 cfun->cfg = ggc_alloc_cleared (sizeof (struct control_flow_graph));
86 n_edges = 0;
87 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
88 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
89 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
90 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
91 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
92 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
95 /* Helper function for remove_edge and clear_edges. Frees edge structure
96 without actually unlinking it from the pred/succ lists. */
98 static void
99 free_edge (edge e ATTRIBUTE_UNUSED)
101 n_edges--;
102 ggc_free (e);
105 /* Free the memory associated with the edge structures. */
107 void
108 clear_edges (void)
110 basic_block bb;
111 edge e;
112 edge_iterator ei;
114 FOR_EACH_BB (bb)
116 FOR_EACH_EDGE (e, ei, bb->succs)
117 free_edge (e);
118 VEC_truncate (edge, bb->succs, 0);
119 VEC_truncate (edge, bb->preds, 0);
122 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
123 free_edge (e);
124 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
125 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
127 gcc_assert (!n_edges);
130 /* Allocate memory for basic_block. */
132 basic_block
133 alloc_block (void)
135 basic_block bb;
136 bb = ggc_alloc_cleared (sizeof (*bb));
137 return bb;
140 /* Link block B to chain after AFTER. */
141 void
142 link_block (basic_block b, basic_block after)
144 b->next_bb = after->next_bb;
145 b->prev_bb = after;
146 after->next_bb = b;
147 b->next_bb->prev_bb = b;
150 /* Unlink block B from chain. */
151 void
152 unlink_block (basic_block b)
154 b->next_bb->prev_bb = b->prev_bb;
155 b->prev_bb->next_bb = b->next_bb;
156 b->prev_bb = NULL;
157 b->next_bb = NULL;
160 /* Sequentially order blocks and compact the arrays. */
161 void
162 compact_blocks (void)
164 int i;
165 basic_block bb;
167 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
168 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
170 i = NUM_FIXED_BLOCKS;
171 FOR_EACH_BB (bb)
173 SET_BASIC_BLOCK (i, bb);
174 bb->index = i;
175 i++;
178 gcc_assert (i == n_basic_blocks);
180 for (; i < last_basic_block; i++)
181 SET_BASIC_BLOCK (i, NULL);
183 last_basic_block = n_basic_blocks;
186 /* Remove block B from the basic block array. */
188 void
189 expunge_block (basic_block b)
191 unlink_block (b);
192 SET_BASIC_BLOCK (b->index, NULL);
193 n_basic_blocks--;
194 /* We should be able to ggc_free here, but we are not.
195 The dead SSA_NAMES are left pointing to dead statements that are pointing
196 to dead basic blocks making garbage collector to die.
197 We should be able to release all dead SSA_NAMES and at the same time we should
198 clear out BB pointer of dead statements consistently. */
201 /* Connect E to E->src. */
203 static inline void
204 connect_src (edge e)
206 VEC_safe_push (edge, gc, e->src->succs, e);
209 /* Connect E to E->dest. */
211 static inline void
212 connect_dest (edge e)
214 basic_block dest = e->dest;
215 VEC_safe_push (edge, gc, dest->preds, e);
216 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
219 /* Disconnect edge E from E->src. */
221 static inline void
222 disconnect_src (edge e)
224 basic_block src = e->src;
225 edge_iterator ei;
226 edge tmp;
228 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
230 if (tmp == e)
232 VEC_unordered_remove (edge, src->succs, ei.index);
233 return;
235 else
236 ei_next (&ei);
239 gcc_unreachable ();
242 /* Disconnect edge E from E->dest. */
244 static inline void
245 disconnect_dest (edge e)
247 basic_block dest = e->dest;
248 unsigned int dest_idx = e->dest_idx;
250 VEC_unordered_remove (edge, dest->preds, dest_idx);
252 /* If we removed an edge in the middle of the edge vector, we need
253 to update dest_idx of the edge that moved into the "hole". */
254 if (dest_idx < EDGE_COUNT (dest->preds))
255 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
258 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
259 created edge. Use this only if you are sure that this edge can't
260 possibly already exist. */
262 edge
263 unchecked_make_edge (basic_block src, basic_block dst, int flags)
265 edge e;
266 e = ggc_alloc_cleared (sizeof (*e));
267 n_edges++;
269 e->src = src;
270 e->dest = dst;
271 e->flags = flags;
273 connect_src (e);
274 connect_dest (e);
276 execute_on_growing_pred (e);
278 return e;
281 /* Create an edge connecting SRC and DST with FLAGS optionally using
282 edge cache CACHE. Return the new edge, NULL if already exist. */
284 edge
285 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
287 if (edge_cache == NULL
288 || src == ENTRY_BLOCK_PTR
289 || dst == EXIT_BLOCK_PTR)
290 return make_edge (src, dst, flags);
292 /* Does the requested edge already exist? */
293 if (! TEST_BIT (edge_cache, dst->index))
295 /* The edge does not exist. Create one and update the
296 cache. */
297 SET_BIT (edge_cache, dst->index);
298 return unchecked_make_edge (src, dst, flags);
301 /* At this point, we know that the requested edge exists. Adjust
302 flags if necessary. */
303 if (flags)
305 edge e = find_edge (src, dst);
306 e->flags |= flags;
309 return NULL;
312 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
313 created edge or NULL if already exist. */
315 edge
316 make_edge (basic_block src, basic_block dest, int flags)
318 edge e = find_edge (src, dest);
320 /* Make sure we don't add duplicate edges. */
321 if (e)
323 e->flags |= flags;
324 return NULL;
327 return unchecked_make_edge (src, dest, flags);
330 /* Create an edge connecting SRC to DEST and set probability by knowing
331 that it is the single edge leaving SRC. */
333 edge
334 make_single_succ_edge (basic_block src, basic_block dest, int flags)
336 edge e = make_edge (src, dest, flags);
338 e->probability = REG_BR_PROB_BASE;
339 e->count = src->count;
340 return e;
343 /* This function will remove an edge from the flow graph. */
345 void
346 remove_edge (edge e)
348 remove_predictions_associated_with_edge (e);
349 execute_on_shrinking_pred (e);
351 disconnect_src (e);
352 disconnect_dest (e);
354 free_edge (e);
357 /* Redirect an edge's successor from one block to another. */
359 void
360 redirect_edge_succ (edge e, basic_block new_succ)
362 execute_on_shrinking_pred (e);
364 disconnect_dest (e);
366 e->dest = new_succ;
368 /* Reconnect the edge to the new successor block. */
369 connect_dest (e);
371 execute_on_growing_pred (e);
374 /* Like previous but avoid possible duplicate edge. */
376 edge
377 redirect_edge_succ_nodup (edge e, basic_block new_succ)
379 edge s;
381 s = find_edge (e->src, new_succ);
382 if (s && s != e)
384 s->flags |= e->flags;
385 s->probability += e->probability;
386 if (s->probability > REG_BR_PROB_BASE)
387 s->probability = REG_BR_PROB_BASE;
388 s->count += e->count;
389 remove_edge (e);
390 e = s;
392 else
393 redirect_edge_succ (e, new_succ);
395 return e;
398 /* Redirect an edge's predecessor from one block to another. */
400 void
401 redirect_edge_pred (edge e, basic_block new_pred)
403 disconnect_src (e);
405 e->src = new_pred;
407 /* Reconnect the edge to the new predecessor block. */
408 connect_src (e);
411 /* Clear all basic block flags, with the exception of partitioning. */
412 void
413 clear_bb_flags (void)
415 basic_block bb;
417 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
418 bb->flags = (BB_PARTITION (bb) | (bb->flags & BB_DISABLE_SCHEDULE)
419 | (bb->flags & BB_RTL));
422 /* Check the consistency of profile information. We can't do that
423 in verify_flow_info, as the counts may get invalid for incompletely
424 solved graphs, later eliminating of conditionals or roundoff errors.
425 It is still practical to have them reported for debugging of simple
426 testcases. */
427 void
428 check_bb_profile (basic_block bb, FILE * file)
430 edge e;
431 int sum = 0;
432 gcov_type lsum;
433 edge_iterator ei;
435 if (profile_status == PROFILE_ABSENT)
436 return;
438 if (bb != EXIT_BLOCK_PTR)
440 FOR_EACH_EDGE (e, ei, bb->succs)
441 sum += e->probability;
442 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
443 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
444 sum * 100.0 / REG_BR_PROB_BASE);
445 lsum = 0;
446 FOR_EACH_EDGE (e, ei, bb->succs)
447 lsum += e->count;
448 if (EDGE_COUNT (bb->succs)
449 && (lsum - bb->count > 100 || lsum - bb->count < -100))
450 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
451 (int) lsum, (int) bb->count);
453 if (bb != ENTRY_BLOCK_PTR)
455 sum = 0;
456 FOR_EACH_EDGE (e, ei, bb->preds)
457 sum += EDGE_FREQUENCY (e);
458 if (abs (sum - bb->frequency) > 100)
459 fprintf (file,
460 "Invalid sum of incoming frequencies %i, should be %i\n",
461 sum, bb->frequency);
462 lsum = 0;
463 FOR_EACH_EDGE (e, ei, bb->preds)
464 lsum += e->count;
465 if (lsum - bb->count > 100 || lsum - bb->count < -100)
466 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
467 (int) lsum, (int) bb->count);
471 /* Emit basic block information for BB. HEADER is true if the user wants
472 the generic information and the predecessors, FOOTER is true if they want
473 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
474 global register liveness information. PREFIX is put in front of every
475 line. The output is emitted to FILE. */
476 void
477 dump_bb_info (basic_block bb, bool header, bool footer, int flags,
478 const char *prefix, FILE *file)
480 edge e;
481 edge_iterator ei;
483 if (header)
485 fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
486 if (bb->prev_bb)
487 fprintf (file, ", prev %d", bb->prev_bb->index);
488 if (bb->next_bb)
489 fprintf (file, ", next %d", bb->next_bb->index);
490 fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
491 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
492 fprintf (file, ", freq %i", bb->frequency);
493 if (maybe_hot_bb_p (bb))
494 fprintf (file, ", maybe hot");
495 if (probably_never_executed_bb_p (bb))
496 fprintf (file, ", probably never executed");
497 fprintf (file, ".\n");
499 fprintf (file, "%sPredecessors: ", prefix);
500 FOR_EACH_EDGE (e, ei, bb->preds)
501 dump_edge_info (file, e, 0);
504 if (footer)
506 fprintf (file, "\n%sSuccessors: ", prefix);
507 FOR_EACH_EDGE (e, ei, bb->succs)
508 dump_edge_info (file, e, 1);
511 if ((flags & TDF_DETAILS)
512 && (bb->flags & BB_RTL))
514 if (bb->il.rtl->global_live_at_start && header)
516 fprintf (file, "\n%sRegisters live at start:", prefix);
517 dump_regset (bb->il.rtl->global_live_at_start, file);
520 if (bb->il.rtl->global_live_at_end && footer)
522 fprintf (file, "\n%sRegisters live at end:", prefix);
523 dump_regset (bb->il.rtl->global_live_at_end, file);
527 putc ('\n', file);
530 void
531 dump_flow_info (FILE *file, int flags)
533 basic_block bb;
535 /* There are no pseudo registers after reload. Don't dump them. */
536 if (reg_n_info && !reload_completed
537 && (flags & TDF_DETAILS) != 0)
539 unsigned int i, max = max_reg_num ();
540 fprintf (file, "%d registers.\n", max);
541 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
542 if (REG_N_REFS (i))
544 enum reg_class class, altclass;
546 fprintf (file, "\nRegister %d used %d times across %d insns",
547 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
548 if (REG_BASIC_BLOCK (i) >= 0)
549 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
550 if (REG_N_SETS (i))
551 fprintf (file, "; set %d time%s", REG_N_SETS (i),
552 (REG_N_SETS (i) == 1) ? "" : "s");
553 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
554 fprintf (file, "; user var");
555 if (REG_N_DEATHS (i) != 1)
556 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
557 if (REG_N_CALLS_CROSSED (i) == 1)
558 fprintf (file, "; crosses 1 call");
559 else if (REG_N_CALLS_CROSSED (i))
560 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
561 if (regno_reg_rtx[i] != NULL
562 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
563 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
565 class = reg_preferred_class (i);
566 altclass = reg_alternate_class (i);
567 if (class != GENERAL_REGS || altclass != ALL_REGS)
569 if (altclass == ALL_REGS || class == ALL_REGS)
570 fprintf (file, "; pref %s", reg_class_names[(int) class]);
571 else if (altclass == NO_REGS)
572 fprintf (file, "; %s or none", reg_class_names[(int) class]);
573 else
574 fprintf (file, "; pref %s, else %s",
575 reg_class_names[(int) class],
576 reg_class_names[(int) altclass]);
579 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
580 fprintf (file, "; pointer");
581 fprintf (file, ".\n");
585 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
586 FOR_EACH_BB (bb)
588 dump_bb_info (bb, true, true, flags, "", file);
589 check_bb_profile (bb, file);
592 putc ('\n', file);
595 void
596 debug_flow_info (void)
598 dump_flow_info (stderr, TDF_DETAILS);
601 void
602 dump_edge_info (FILE *file, edge e, int do_succ)
604 basic_block side = (do_succ ? e->dest : e->src);
606 if (side == ENTRY_BLOCK_PTR)
607 fputs (" ENTRY", file);
608 else if (side == EXIT_BLOCK_PTR)
609 fputs (" EXIT", file);
610 else
611 fprintf (file, " %d", side->index);
613 if (e->probability)
614 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
616 if (e->count)
618 fprintf (file, " count:");
619 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
622 if (e->flags)
624 static const char * const bitnames[] = {
625 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
626 "can_fallthru", "irreducible", "sibcall", "loop_exit",
627 "true", "false", "exec"
629 int comma = 0;
630 int i, flags = e->flags;
632 fputs (" (", file);
633 for (i = 0; flags; i++)
634 if (flags & (1 << i))
636 flags &= ~(1 << i);
638 if (comma)
639 fputc (',', file);
640 if (i < (int) ARRAY_SIZE (bitnames))
641 fputs (bitnames[i], file);
642 else
643 fprintf (file, "%d", i);
644 comma = 1;
647 fputc (')', file);
651 /* Simple routines to easily allocate AUX fields of basic blocks. */
653 static struct obstack block_aux_obstack;
654 static void *first_block_aux_obj = 0;
655 static struct obstack edge_aux_obstack;
656 static void *first_edge_aux_obj = 0;
658 /* Allocate a memory block of SIZE as BB->aux. The obstack must
659 be first initialized by alloc_aux_for_blocks. */
661 inline void
662 alloc_aux_for_block (basic_block bb, int size)
664 /* Verify that aux field is clear. */
665 gcc_assert (!bb->aux && first_block_aux_obj);
666 bb->aux = obstack_alloc (&block_aux_obstack, size);
667 memset (bb->aux, 0, size);
670 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
671 alloc_aux_for_block for each basic block. */
673 void
674 alloc_aux_for_blocks (int size)
676 static int initialized;
678 if (!initialized)
680 gcc_obstack_init (&block_aux_obstack);
681 initialized = 1;
683 else
684 /* Check whether AUX data are still allocated. */
685 gcc_assert (!first_block_aux_obj);
687 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
688 if (size)
690 basic_block bb;
692 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
693 alloc_aux_for_block (bb, size);
697 /* Clear AUX pointers of all blocks. */
699 void
700 clear_aux_for_blocks (void)
702 basic_block bb;
704 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
705 bb->aux = NULL;
708 /* Free data allocated in block_aux_obstack and clear AUX pointers
709 of all blocks. */
711 void
712 free_aux_for_blocks (void)
714 gcc_assert (first_block_aux_obj);
715 obstack_free (&block_aux_obstack, first_block_aux_obj);
716 first_block_aux_obj = NULL;
718 clear_aux_for_blocks ();
721 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
722 be first initialized by alloc_aux_for_edges. */
724 inline void
725 alloc_aux_for_edge (edge e, int size)
727 /* Verify that aux field is clear. */
728 gcc_assert (!e->aux && first_edge_aux_obj);
729 e->aux = obstack_alloc (&edge_aux_obstack, size);
730 memset (e->aux, 0, size);
733 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
734 alloc_aux_for_edge for each basic edge. */
736 void
737 alloc_aux_for_edges (int size)
739 static int initialized;
741 if (!initialized)
743 gcc_obstack_init (&edge_aux_obstack);
744 initialized = 1;
746 else
747 /* Check whether AUX data are still allocated. */
748 gcc_assert (!first_edge_aux_obj);
750 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
751 if (size)
753 basic_block bb;
755 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
757 edge e;
758 edge_iterator ei;
760 FOR_EACH_EDGE (e, ei, bb->succs)
761 alloc_aux_for_edge (e, size);
766 /* Clear AUX pointers of all edges. */
768 void
769 clear_aux_for_edges (void)
771 basic_block bb;
772 edge e;
774 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
776 edge_iterator ei;
777 FOR_EACH_EDGE (e, ei, bb->succs)
778 e->aux = NULL;
782 /* Free data allocated in edge_aux_obstack and clear AUX pointers
783 of all edges. */
785 void
786 free_aux_for_edges (void)
788 gcc_assert (first_edge_aux_obj);
789 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
790 first_edge_aux_obj = NULL;
792 clear_aux_for_edges ();
795 void
796 debug_bb (basic_block bb)
798 dump_bb (bb, stderr, 0);
801 basic_block
802 debug_bb_n (int n)
804 basic_block bb = BASIC_BLOCK (n);
805 dump_bb (bb, stderr, 0);
806 return bb;
809 /* Dumps cfg related information about basic block BB to FILE. */
811 static void
812 dump_cfg_bb_info (FILE *file, basic_block bb)
814 unsigned i;
815 edge_iterator ei;
816 bool first = true;
817 static const char * const bb_bitnames[] =
819 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
821 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
822 edge e;
824 fprintf (file, "Basic block %d", bb->index);
825 for (i = 0; i < n_bitnames; i++)
826 if (bb->flags & (1 << i))
828 if (first)
829 fprintf (file, " (");
830 else
831 fprintf (file, ", ");
832 first = false;
833 fprintf (file, bb_bitnames[i]);
835 if (!first)
836 fprintf (file, ")");
837 fprintf (file, "\n");
839 fprintf (file, "Predecessors: ");
840 FOR_EACH_EDGE (e, ei, bb->preds)
841 dump_edge_info (file, e, 0);
843 fprintf (file, "\nSuccessors: ");
844 FOR_EACH_EDGE (e, ei, bb->succs)
845 dump_edge_info (file, e, 1);
846 fprintf (file, "\n\n");
849 /* Dumps a brief description of cfg to FILE. */
851 void
852 brief_dump_cfg (FILE *file)
854 basic_block bb;
856 FOR_EACH_BB (bb)
858 dump_cfg_bb_info (file, bb);
862 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
863 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
864 redirected to destination of TAKEN_EDGE.
866 This function may leave the profile inconsistent in the case TAKEN_EDGE
867 frequency or count is believed to be lower than FREQUENCY or COUNT
868 respectively. */
869 void
870 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
871 gcov_type count, edge taken_edge)
873 edge c;
874 int prob;
875 edge_iterator ei;
877 bb->count -= count;
878 if (bb->count < 0)
880 if (dump_file)
881 fprintf (dump_file, "bb %i count became negative after threading",
882 bb->index);
883 bb->count = 0;
886 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
887 Watch for overflows. */
888 if (bb->frequency)
889 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
890 else
891 prob = 0;
892 if (prob > taken_edge->probability)
894 if (dump_file)
895 fprintf (dump_file, "Jump threading proved probability of edge "
896 "%i->%i too small (it is %i, should be %i).\n",
897 taken_edge->src->index, taken_edge->dest->index,
898 taken_edge->probability, prob);
899 prob = taken_edge->probability;
902 /* Now rescale the probabilities. */
903 taken_edge->probability -= prob;
904 prob = REG_BR_PROB_BASE - prob;
905 bb->frequency -= edge_frequency;
906 if (bb->frequency < 0)
907 bb->frequency = 0;
908 if (prob <= 0)
910 if (dump_file)
911 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
912 "frequency of block should end up being 0, it is %i\n",
913 bb->index, bb->frequency);
914 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
915 ei = ei_start (bb->succs);
916 ei_next (&ei);
917 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
918 c->probability = 0;
920 else if (prob != REG_BR_PROB_BASE)
922 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
924 FOR_EACH_EDGE (c, ei, bb->succs)
926 c->probability = RDIV (c->probability * scale, 65536);
927 if (c->probability > REG_BR_PROB_BASE)
928 c->probability = REG_BR_PROB_BASE;
932 gcc_assert (bb == taken_edge->src);
933 taken_edge->count -= count;
934 if (taken_edge->count < 0)
936 if (dump_file)
937 fprintf (dump_file, "edge %i->%i count became negative after threading",
938 taken_edge->src->index, taken_edge->dest->index);
939 taken_edge->count = 0;
943 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
944 by NUM/DEN, in int arithmetic. May lose some accuracy. */
945 void
946 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
948 int i;
949 edge e;
950 if (num < 0)
951 num = 0;
953 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
954 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
955 and still safely fit in int during calculations. */
956 if (den > 1000)
958 if (num > 1000000)
959 return;
961 num = RDIV (1000 * num, den);
962 den = 1000;
964 if (num > 100 * den)
965 return;
967 for (i = 0; i < nbbs; i++)
969 edge_iterator ei;
970 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
971 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
972 if (bbs[i]->frequency > BB_FREQ_MAX)
973 bbs[i]->frequency = BB_FREQ_MAX;
974 bbs[i]->count = RDIV (bbs[i]->count * num, den);
975 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
976 e->count = RDIV (e->count * num, den);
980 /* numbers smaller than this value are safe to multiply without getting
981 64bit overflow. */
982 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
984 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
985 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
986 function but considerably slower. */
987 void
988 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
989 gcov_type den)
991 int i;
992 edge e;
993 gcov_type fraction = RDIV (num * 65536, den);
995 gcc_assert (fraction >= 0);
997 if (num < MAX_SAFE_MULTIPLIER)
998 for (i = 0; i < nbbs; i++)
1000 edge_iterator ei;
1001 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1002 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1003 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1004 else
1005 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1006 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1007 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1008 e->count = RDIV (e->count * num, den);
1009 else
1010 e->count = RDIV (e->count * fraction, 65536);
1012 else
1013 for (i = 0; i < nbbs; i++)
1015 edge_iterator ei;
1016 if (sizeof (gcov_type) > sizeof (int))
1017 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1018 else
1019 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
1020 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1021 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1022 e->count = RDIV (e->count * fraction, 65536);
1026 /* Data structures used to maintain mapping between basic blocks and
1027 copies. */
1028 static htab_t bb_original;
1029 static htab_t bb_copy;
1030 static alloc_pool original_copy_bb_pool;
1032 struct htab_bb_copy_original_entry
1034 /* Block we are attaching info to. */
1035 int index1;
1036 /* Index of original or copy (depending on the hashtable) */
1037 int index2;
1040 static hashval_t
1041 bb_copy_original_hash (const void *p)
1043 struct htab_bb_copy_original_entry *data
1044 = ((struct htab_bb_copy_original_entry *)p);
1046 return data->index1;
1048 static int
1049 bb_copy_original_eq (const void *p, const void *q)
1051 struct htab_bb_copy_original_entry *data
1052 = ((struct htab_bb_copy_original_entry *)p);
1053 struct htab_bb_copy_original_entry *data2
1054 = ((struct htab_bb_copy_original_entry *)q);
1056 return data->index1 == data2->index1;
1059 /* Initialize the data structures to maintain mapping between blocks
1060 and its copies. */
1061 void
1062 initialize_original_copy_tables (void)
1064 gcc_assert (!original_copy_bb_pool);
1065 original_copy_bb_pool
1066 = create_alloc_pool ("original_copy",
1067 sizeof (struct htab_bb_copy_original_entry), 10);
1068 bb_original = htab_create (10, bb_copy_original_hash,
1069 bb_copy_original_eq, NULL);
1070 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1073 /* Free the data structures to maintain mapping between blocks and
1074 its copies. */
1075 void
1076 free_original_copy_tables (void)
1078 gcc_assert (original_copy_bb_pool);
1079 htab_delete (bb_copy);
1080 htab_delete (bb_original);
1081 free_alloc_pool (original_copy_bb_pool);
1082 bb_copy = NULL;
1083 bb_original = NULL;
1084 original_copy_bb_pool = NULL;
1087 /* Set original for basic block. Do nothing when data structures are not
1088 initialized so passes not needing this don't need to care. */
1089 void
1090 set_bb_original (basic_block bb, basic_block original)
1092 if (original_copy_bb_pool)
1094 struct htab_bb_copy_original_entry **slot;
1095 struct htab_bb_copy_original_entry key;
1097 key.index1 = bb->index;
1098 slot =
1099 (struct htab_bb_copy_original_entry **) htab_find_slot (bb_original,
1100 &key, INSERT);
1101 if (*slot)
1102 (*slot)->index2 = original->index;
1103 else
1105 *slot = pool_alloc (original_copy_bb_pool);
1106 (*slot)->index1 = bb->index;
1107 (*slot)->index2 = original->index;
1112 /* Get the original basic block. */
1113 basic_block
1114 get_bb_original (basic_block bb)
1116 struct htab_bb_copy_original_entry *entry;
1117 struct htab_bb_copy_original_entry key;
1119 gcc_assert (original_copy_bb_pool);
1121 key.index1 = bb->index;
1122 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1123 if (entry)
1124 return BASIC_BLOCK (entry->index2);
1125 else
1126 return NULL;
1129 /* Set copy for basic block. Do nothing when data structures are not
1130 initialized so passes not needing this don't need to care. */
1131 void
1132 set_bb_copy (basic_block bb, basic_block copy)
1134 if (original_copy_bb_pool)
1136 struct htab_bb_copy_original_entry **slot;
1137 struct htab_bb_copy_original_entry key;
1139 key.index1 = bb->index;
1140 slot =
1141 (struct htab_bb_copy_original_entry **) htab_find_slot (bb_copy,
1142 &key, INSERT);
1143 if (*slot)
1144 (*slot)->index2 = copy->index;
1145 else
1147 *slot = pool_alloc (original_copy_bb_pool);
1148 (*slot)->index1 = bb->index;
1149 (*slot)->index2 = copy->index;
1154 /* Get the copy of basic block. */
1155 basic_block
1156 get_bb_copy (basic_block bb)
1158 struct htab_bb_copy_original_entry *entry;
1159 struct htab_bb_copy_original_entry key;
1161 gcc_assert (original_copy_bb_pool);
1163 key.index1 = bb->index;
1164 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1165 if (entry)
1166 return BASIC_BLOCK (entry->index2);
1167 else
1168 return NULL;