1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
43 - Consistency checking
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
51 #include "coretypes.h"
55 #include "hard-reg-set.h"
65 #include "tree-pass.h"
68 #include "alloc-pool.h"
70 /* The obstack on which the flow graph components are allocated. */
72 struct bitmap_obstack reg_obstack
;
74 void debug_flow_info (void);
75 static void free_edge (edge
);
77 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
79 /* Called once at initialization time. */
85 cfun
->cfg
= ggc_alloc_cleared (sizeof (struct control_flow_graph
));
87 ENTRY_BLOCK_PTR
= ggc_alloc_cleared (sizeof (struct basic_block_def
));
88 ENTRY_BLOCK_PTR
->index
= ENTRY_BLOCK
;
89 EXIT_BLOCK_PTR
= ggc_alloc_cleared (sizeof (struct basic_block_def
));
90 EXIT_BLOCK_PTR
->index
= EXIT_BLOCK
;
91 ENTRY_BLOCK_PTR
->next_bb
= EXIT_BLOCK_PTR
;
92 EXIT_BLOCK_PTR
->prev_bb
= ENTRY_BLOCK_PTR
;
95 /* Helper function for remove_edge and clear_edges. Frees edge structure
96 without actually unlinking it from the pred/succ lists. */
99 free_edge (edge e ATTRIBUTE_UNUSED
)
105 /* Free the memory associated with the edge structures. */
116 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
118 VEC_truncate (edge
, bb
->succs
, 0);
119 VEC_truncate (edge
, bb
->preds
, 0);
122 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
124 VEC_truncate (edge
, EXIT_BLOCK_PTR
->preds
, 0);
125 VEC_truncate (edge
, ENTRY_BLOCK_PTR
->succs
, 0);
127 gcc_assert (!n_edges
);
130 /* Allocate memory for basic_block. */
136 bb
= ggc_alloc_cleared (sizeof (*bb
));
140 /* Link block B to chain after AFTER. */
142 link_block (basic_block b
, basic_block after
)
144 b
->next_bb
= after
->next_bb
;
147 b
->next_bb
->prev_bb
= b
;
150 /* Unlink block B from chain. */
152 unlink_block (basic_block b
)
154 b
->next_bb
->prev_bb
= b
->prev_bb
;
155 b
->prev_bb
->next_bb
= b
->next_bb
;
160 /* Sequentially order blocks and compact the arrays. */
162 compact_blocks (void)
167 SET_BASIC_BLOCK (ENTRY_BLOCK
, ENTRY_BLOCK_PTR
);
168 SET_BASIC_BLOCK (EXIT_BLOCK
, EXIT_BLOCK_PTR
);
170 i
= NUM_FIXED_BLOCKS
;
173 SET_BASIC_BLOCK (i
, bb
);
178 gcc_assert (i
== n_basic_blocks
);
180 for (; i
< last_basic_block
; i
++)
181 SET_BASIC_BLOCK (i
, NULL
);
183 last_basic_block
= n_basic_blocks
;
186 /* Remove block B from the basic block array. */
189 expunge_block (basic_block b
)
192 SET_BASIC_BLOCK (b
->index
, NULL
);
194 /* We should be able to ggc_free here, but we are not.
195 The dead SSA_NAMES are left pointing to dead statements that are pointing
196 to dead basic blocks making garbage collector to die.
197 We should be able to release all dead SSA_NAMES and at the same time we should
198 clear out BB pointer of dead statements consistently. */
201 /* Connect E to E->src. */
206 VEC_safe_push (edge
, gc
, e
->src
->succs
, e
);
209 /* Connect E to E->dest. */
212 connect_dest (edge e
)
214 basic_block dest
= e
->dest
;
215 VEC_safe_push (edge
, gc
, dest
->preds
, e
);
216 e
->dest_idx
= EDGE_COUNT (dest
->preds
) - 1;
219 /* Disconnect edge E from E->src. */
222 disconnect_src (edge e
)
224 basic_block src
= e
->src
;
228 for (ei
= ei_start (src
->succs
); (tmp
= ei_safe_edge (ei
)); )
232 VEC_unordered_remove (edge
, src
->succs
, ei
.index
);
242 /* Disconnect edge E from E->dest. */
245 disconnect_dest (edge e
)
247 basic_block dest
= e
->dest
;
248 unsigned int dest_idx
= e
->dest_idx
;
250 VEC_unordered_remove (edge
, dest
->preds
, dest_idx
);
252 /* If we removed an edge in the middle of the edge vector, we need
253 to update dest_idx of the edge that moved into the "hole". */
254 if (dest_idx
< EDGE_COUNT (dest
->preds
))
255 EDGE_PRED (dest
, dest_idx
)->dest_idx
= dest_idx
;
258 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
259 created edge. Use this only if you are sure that this edge can't
260 possibly already exist. */
263 unchecked_make_edge (basic_block src
, basic_block dst
, int flags
)
266 e
= ggc_alloc_cleared (sizeof (*e
));
276 execute_on_growing_pred (e
);
281 /* Create an edge connecting SRC and DST with FLAGS optionally using
282 edge cache CACHE. Return the new edge, NULL if already exist. */
285 cached_make_edge (sbitmap edge_cache
, basic_block src
, basic_block dst
, int flags
)
287 if (edge_cache
== NULL
288 || src
== ENTRY_BLOCK_PTR
289 || dst
== EXIT_BLOCK_PTR
)
290 return make_edge (src
, dst
, flags
);
292 /* Does the requested edge already exist? */
293 if (! TEST_BIT (edge_cache
, dst
->index
))
295 /* The edge does not exist. Create one and update the
297 SET_BIT (edge_cache
, dst
->index
);
298 return unchecked_make_edge (src
, dst
, flags
);
301 /* At this point, we know that the requested edge exists. Adjust
302 flags if necessary. */
305 edge e
= find_edge (src
, dst
);
312 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
313 created edge or NULL if already exist. */
316 make_edge (basic_block src
, basic_block dest
, int flags
)
318 edge e
= find_edge (src
, dest
);
320 /* Make sure we don't add duplicate edges. */
327 return unchecked_make_edge (src
, dest
, flags
);
330 /* Create an edge connecting SRC to DEST and set probability by knowing
331 that it is the single edge leaving SRC. */
334 make_single_succ_edge (basic_block src
, basic_block dest
, int flags
)
336 edge e
= make_edge (src
, dest
, flags
);
338 e
->probability
= REG_BR_PROB_BASE
;
339 e
->count
= src
->count
;
343 /* This function will remove an edge from the flow graph. */
348 remove_predictions_associated_with_edge (e
);
349 execute_on_shrinking_pred (e
);
357 /* Redirect an edge's successor from one block to another. */
360 redirect_edge_succ (edge e
, basic_block new_succ
)
362 execute_on_shrinking_pred (e
);
368 /* Reconnect the edge to the new successor block. */
371 execute_on_growing_pred (e
);
374 /* Like previous but avoid possible duplicate edge. */
377 redirect_edge_succ_nodup (edge e
, basic_block new_succ
)
381 s
= find_edge (e
->src
, new_succ
);
384 s
->flags
|= e
->flags
;
385 s
->probability
+= e
->probability
;
386 if (s
->probability
> REG_BR_PROB_BASE
)
387 s
->probability
= REG_BR_PROB_BASE
;
388 s
->count
+= e
->count
;
393 redirect_edge_succ (e
, new_succ
);
398 /* Redirect an edge's predecessor from one block to another. */
401 redirect_edge_pred (edge e
, basic_block new_pred
)
407 /* Reconnect the edge to the new predecessor block. */
411 /* Clear all basic block flags, with the exception of partitioning. */
413 clear_bb_flags (void)
417 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
418 bb
->flags
= (BB_PARTITION (bb
) | (bb
->flags
& BB_DISABLE_SCHEDULE
)
419 | (bb
->flags
& BB_RTL
));
422 /* Check the consistency of profile information. We can't do that
423 in verify_flow_info, as the counts may get invalid for incompletely
424 solved graphs, later eliminating of conditionals or roundoff errors.
425 It is still practical to have them reported for debugging of simple
428 check_bb_profile (basic_block bb
, FILE * file
)
435 if (profile_status
== PROFILE_ABSENT
)
438 if (bb
!= EXIT_BLOCK_PTR
)
440 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
441 sum
+= e
->probability
;
442 if (EDGE_COUNT (bb
->succs
) && abs (sum
- REG_BR_PROB_BASE
) > 100)
443 fprintf (file
, "Invalid sum of outgoing probabilities %.1f%%\n",
444 sum
* 100.0 / REG_BR_PROB_BASE
);
446 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
448 if (EDGE_COUNT (bb
->succs
)
449 && (lsum
- bb
->count
> 100 || lsum
- bb
->count
< -100))
450 fprintf (file
, "Invalid sum of outgoing counts %i, should be %i\n",
451 (int) lsum
, (int) bb
->count
);
453 if (bb
!= ENTRY_BLOCK_PTR
)
456 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
457 sum
+= EDGE_FREQUENCY (e
);
458 if (abs (sum
- bb
->frequency
) > 100)
460 "Invalid sum of incoming frequencies %i, should be %i\n",
463 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
465 if (lsum
- bb
->count
> 100 || lsum
- bb
->count
< -100)
466 fprintf (file
, "Invalid sum of incoming counts %i, should be %i\n",
467 (int) lsum
, (int) bb
->count
);
471 /* Emit basic block information for BB. HEADER is true if the user wants
472 the generic information and the predecessors, FOOTER is true if they want
473 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
474 global register liveness information. PREFIX is put in front of every
475 line. The output is emitted to FILE. */
477 dump_bb_info (basic_block bb
, bool header
, bool footer
, int flags
,
478 const char *prefix
, FILE *file
)
485 fprintf (file
, "\n%sBasic block %d ", prefix
, bb
->index
);
487 fprintf (file
, ", prev %d", bb
->prev_bb
->index
);
489 fprintf (file
, ", next %d", bb
->next_bb
->index
);
490 fprintf (file
, ", loop_depth %d, count ", bb
->loop_depth
);
491 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, bb
->count
);
492 fprintf (file
, ", freq %i", bb
->frequency
);
493 if (maybe_hot_bb_p (bb
))
494 fprintf (file
, ", maybe hot");
495 if (probably_never_executed_bb_p (bb
))
496 fprintf (file
, ", probably never executed");
497 fprintf (file
, ".\n");
499 fprintf (file
, "%sPredecessors: ", prefix
);
500 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
501 dump_edge_info (file
, e
, 0);
506 fprintf (file
, "\n%sSuccessors: ", prefix
);
507 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
508 dump_edge_info (file
, e
, 1);
511 if ((flags
& TDF_DETAILS
)
512 && (bb
->flags
& BB_RTL
))
514 if (bb
->il
.rtl
->global_live_at_start
&& header
)
516 fprintf (file
, "\n%sRegisters live at start:", prefix
);
517 dump_regset (bb
->il
.rtl
->global_live_at_start
, file
);
520 if (bb
->il
.rtl
->global_live_at_end
&& footer
)
522 fprintf (file
, "\n%sRegisters live at end:", prefix
);
523 dump_regset (bb
->il
.rtl
->global_live_at_end
, file
);
531 dump_flow_info (FILE *file
, int flags
)
535 /* There are no pseudo registers after reload. Don't dump them. */
536 if (reg_n_info
&& !reload_completed
537 && (flags
& TDF_DETAILS
) != 0)
539 unsigned int i
, max
= max_reg_num ();
540 fprintf (file
, "%d registers.\n", max
);
541 for (i
= FIRST_PSEUDO_REGISTER
; i
< max
; i
++)
544 enum reg_class
class, altclass
;
546 fprintf (file
, "\nRegister %d used %d times across %d insns",
547 i
, REG_N_REFS (i
), REG_LIVE_LENGTH (i
));
548 if (REG_BASIC_BLOCK (i
) >= 0)
549 fprintf (file
, " in block %d", REG_BASIC_BLOCK (i
));
551 fprintf (file
, "; set %d time%s", REG_N_SETS (i
),
552 (REG_N_SETS (i
) == 1) ? "" : "s");
553 if (regno_reg_rtx
[i
] != NULL
&& REG_USERVAR_P (regno_reg_rtx
[i
]))
554 fprintf (file
, "; user var");
555 if (REG_N_DEATHS (i
) != 1)
556 fprintf (file
, "; dies in %d places", REG_N_DEATHS (i
));
557 if (REG_N_CALLS_CROSSED (i
) == 1)
558 fprintf (file
, "; crosses 1 call");
559 else if (REG_N_CALLS_CROSSED (i
))
560 fprintf (file
, "; crosses %d calls", REG_N_CALLS_CROSSED (i
));
561 if (regno_reg_rtx
[i
] != NULL
562 && PSEUDO_REGNO_BYTES (i
) != UNITS_PER_WORD
)
563 fprintf (file
, "; %d bytes", PSEUDO_REGNO_BYTES (i
));
565 class = reg_preferred_class (i
);
566 altclass
= reg_alternate_class (i
);
567 if (class != GENERAL_REGS
|| altclass
!= ALL_REGS
)
569 if (altclass
== ALL_REGS
|| class == ALL_REGS
)
570 fprintf (file
, "; pref %s", reg_class_names
[(int) class]);
571 else if (altclass
== NO_REGS
)
572 fprintf (file
, "; %s or none", reg_class_names
[(int) class]);
574 fprintf (file
, "; pref %s, else %s",
575 reg_class_names
[(int) class],
576 reg_class_names
[(int) altclass
]);
579 if (regno_reg_rtx
[i
] != NULL
&& REG_POINTER (regno_reg_rtx
[i
]))
580 fprintf (file
, "; pointer");
581 fprintf (file
, ".\n");
585 fprintf (file
, "\n%d basic blocks, %d edges.\n", n_basic_blocks
, n_edges
);
588 dump_bb_info (bb
, true, true, flags
, "", file
);
589 check_bb_profile (bb
, file
);
596 debug_flow_info (void)
598 dump_flow_info (stderr
, TDF_DETAILS
);
602 dump_edge_info (FILE *file
, edge e
, int do_succ
)
604 basic_block side
= (do_succ
? e
->dest
: e
->src
);
606 if (side
== ENTRY_BLOCK_PTR
)
607 fputs (" ENTRY", file
);
608 else if (side
== EXIT_BLOCK_PTR
)
609 fputs (" EXIT", file
);
611 fprintf (file
, " %d", side
->index
);
614 fprintf (file
, " [%.1f%%] ", e
->probability
* 100.0 / REG_BR_PROB_BASE
);
618 fprintf (file
, " count:");
619 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, e
->count
);
624 static const char * const bitnames
[] = {
625 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
626 "can_fallthru", "irreducible", "sibcall", "loop_exit",
627 "true", "false", "exec"
630 int i
, flags
= e
->flags
;
633 for (i
= 0; flags
; i
++)
634 if (flags
& (1 << i
))
640 if (i
< (int) ARRAY_SIZE (bitnames
))
641 fputs (bitnames
[i
], file
);
643 fprintf (file
, "%d", i
);
651 /* Simple routines to easily allocate AUX fields of basic blocks. */
653 static struct obstack block_aux_obstack
;
654 static void *first_block_aux_obj
= 0;
655 static struct obstack edge_aux_obstack
;
656 static void *first_edge_aux_obj
= 0;
658 /* Allocate a memory block of SIZE as BB->aux. The obstack must
659 be first initialized by alloc_aux_for_blocks. */
662 alloc_aux_for_block (basic_block bb
, int size
)
664 /* Verify that aux field is clear. */
665 gcc_assert (!bb
->aux
&& first_block_aux_obj
);
666 bb
->aux
= obstack_alloc (&block_aux_obstack
, size
);
667 memset (bb
->aux
, 0, size
);
670 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
671 alloc_aux_for_block for each basic block. */
674 alloc_aux_for_blocks (int size
)
676 static int initialized
;
680 gcc_obstack_init (&block_aux_obstack
);
684 /* Check whether AUX data are still allocated. */
685 gcc_assert (!first_block_aux_obj
);
687 first_block_aux_obj
= obstack_alloc (&block_aux_obstack
, 0);
692 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
693 alloc_aux_for_block (bb
, size
);
697 /* Clear AUX pointers of all blocks. */
700 clear_aux_for_blocks (void)
704 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
708 /* Free data allocated in block_aux_obstack and clear AUX pointers
712 free_aux_for_blocks (void)
714 gcc_assert (first_block_aux_obj
);
715 obstack_free (&block_aux_obstack
, first_block_aux_obj
);
716 first_block_aux_obj
= NULL
;
718 clear_aux_for_blocks ();
721 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
722 be first initialized by alloc_aux_for_edges. */
725 alloc_aux_for_edge (edge e
, int size
)
727 /* Verify that aux field is clear. */
728 gcc_assert (!e
->aux
&& first_edge_aux_obj
);
729 e
->aux
= obstack_alloc (&edge_aux_obstack
, size
);
730 memset (e
->aux
, 0, size
);
733 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
734 alloc_aux_for_edge for each basic edge. */
737 alloc_aux_for_edges (int size
)
739 static int initialized
;
743 gcc_obstack_init (&edge_aux_obstack
);
747 /* Check whether AUX data are still allocated. */
748 gcc_assert (!first_edge_aux_obj
);
750 first_edge_aux_obj
= obstack_alloc (&edge_aux_obstack
, 0);
755 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
760 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
761 alloc_aux_for_edge (e
, size
);
766 /* Clear AUX pointers of all edges. */
769 clear_aux_for_edges (void)
774 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
777 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
782 /* Free data allocated in edge_aux_obstack and clear AUX pointers
786 free_aux_for_edges (void)
788 gcc_assert (first_edge_aux_obj
);
789 obstack_free (&edge_aux_obstack
, first_edge_aux_obj
);
790 first_edge_aux_obj
= NULL
;
792 clear_aux_for_edges ();
796 debug_bb (basic_block bb
)
798 dump_bb (bb
, stderr
, 0);
804 basic_block bb
= BASIC_BLOCK (n
);
805 dump_bb (bb
, stderr
, 0);
809 /* Dumps cfg related information about basic block BB to FILE. */
812 dump_cfg_bb_info (FILE *file
, basic_block bb
)
817 static const char * const bb_bitnames
[] =
819 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
821 const unsigned n_bitnames
= sizeof (bb_bitnames
) / sizeof (char *);
824 fprintf (file
, "Basic block %d", bb
->index
);
825 for (i
= 0; i
< n_bitnames
; i
++)
826 if (bb
->flags
& (1 << i
))
829 fprintf (file
, " (");
831 fprintf (file
, ", ");
833 fprintf (file
, bb_bitnames
[i
]);
837 fprintf (file
, "\n");
839 fprintf (file
, "Predecessors: ");
840 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
841 dump_edge_info (file
, e
, 0);
843 fprintf (file
, "\nSuccessors: ");
844 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
845 dump_edge_info (file
, e
, 1);
846 fprintf (file
, "\n\n");
849 /* Dumps a brief description of cfg to FILE. */
852 brief_dump_cfg (FILE *file
)
858 dump_cfg_bb_info (file
, bb
);
862 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
863 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
864 redirected to destination of TAKEN_EDGE.
866 This function may leave the profile inconsistent in the case TAKEN_EDGE
867 frequency or count is believed to be lower than FREQUENCY or COUNT
870 update_bb_profile_for_threading (basic_block bb
, int edge_frequency
,
871 gcov_type count
, edge taken_edge
)
881 fprintf (dump_file
, "bb %i count became negative after threading",
886 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
887 Watch for overflows. */
889 prob
= edge_frequency
* REG_BR_PROB_BASE
/ bb
->frequency
;
892 if (prob
> taken_edge
->probability
)
895 fprintf (dump_file
, "Jump threading proved probability of edge "
896 "%i->%i too small (it is %i, should be %i).\n",
897 taken_edge
->src
->index
, taken_edge
->dest
->index
,
898 taken_edge
->probability
, prob
);
899 prob
= taken_edge
->probability
;
902 /* Now rescale the probabilities. */
903 taken_edge
->probability
-= prob
;
904 prob
= REG_BR_PROB_BASE
- prob
;
905 bb
->frequency
-= edge_frequency
;
906 if (bb
->frequency
< 0)
911 fprintf (dump_file
, "Edge frequencies of bb %i has been reset, "
912 "frequency of block should end up being 0, it is %i\n",
913 bb
->index
, bb
->frequency
);
914 EDGE_SUCC (bb
, 0)->probability
= REG_BR_PROB_BASE
;
915 ei
= ei_start (bb
->succs
);
917 for (; (c
= ei_safe_edge (ei
)); ei_next (&ei
))
920 else if (prob
!= REG_BR_PROB_BASE
)
922 int scale
= RDIV (65536 * REG_BR_PROB_BASE
, prob
);
924 FOR_EACH_EDGE (c
, ei
, bb
->succs
)
926 c
->probability
= RDIV (c
->probability
* scale
, 65536);
927 if (c
->probability
> REG_BR_PROB_BASE
)
928 c
->probability
= REG_BR_PROB_BASE
;
932 gcc_assert (bb
== taken_edge
->src
);
933 taken_edge
->count
-= count
;
934 if (taken_edge
->count
< 0)
937 fprintf (dump_file
, "edge %i->%i count became negative after threading",
938 taken_edge
->src
->index
, taken_edge
->dest
->index
);
939 taken_edge
->count
= 0;
943 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
944 by NUM/DEN, in int arithmetic. May lose some accuracy. */
946 scale_bbs_frequencies_int (basic_block
*bbs
, int nbbs
, int num
, int den
)
953 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
954 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
955 and still safely fit in int during calculations. */
961 num
= RDIV (1000 * num
, den
);
967 for (i
= 0; i
< nbbs
; i
++)
970 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* num
, den
);
971 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
972 if (bbs
[i
]->frequency
> BB_FREQ_MAX
)
973 bbs
[i
]->frequency
= BB_FREQ_MAX
;
974 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* num
, den
);
975 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
976 e
->count
= RDIV (e
->count
* num
, den
);
980 /* numbers smaller than this value are safe to multiply without getting
982 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
984 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
985 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
986 function but considerably slower. */
988 scale_bbs_frequencies_gcov_type (basic_block
*bbs
, int nbbs
, gcov_type num
,
993 gcov_type fraction
= RDIV (num
* 65536, den
);
995 gcc_assert (fraction
>= 0);
997 if (num
< MAX_SAFE_MULTIPLIER
)
998 for (i
= 0; i
< nbbs
; i
++)
1001 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* num
, den
);
1002 if (bbs
[i
]->count
<= MAX_SAFE_MULTIPLIER
)
1003 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* num
, den
);
1005 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* fraction
, 65536);
1006 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
1007 if (bbs
[i
]->count
<= MAX_SAFE_MULTIPLIER
)
1008 e
->count
= RDIV (e
->count
* num
, den
);
1010 e
->count
= RDIV (e
->count
* fraction
, 65536);
1013 for (i
= 0; i
< nbbs
; i
++)
1016 if (sizeof (gcov_type
) > sizeof (int))
1017 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* num
, den
);
1019 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* fraction
, 65536);
1020 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* fraction
, 65536);
1021 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
1022 e
->count
= RDIV (e
->count
* fraction
, 65536);
1026 /* Data structures used to maintain mapping between basic blocks and
1028 static htab_t bb_original
;
1029 static htab_t bb_copy
;
1030 static alloc_pool original_copy_bb_pool
;
1032 struct htab_bb_copy_original_entry
1034 /* Block we are attaching info to. */
1036 /* Index of original or copy (depending on the hashtable) */
1041 bb_copy_original_hash (const void *p
)
1043 struct htab_bb_copy_original_entry
*data
1044 = ((struct htab_bb_copy_original_entry
*)p
);
1046 return data
->index1
;
1049 bb_copy_original_eq (const void *p
, const void *q
)
1051 struct htab_bb_copy_original_entry
*data
1052 = ((struct htab_bb_copy_original_entry
*)p
);
1053 struct htab_bb_copy_original_entry
*data2
1054 = ((struct htab_bb_copy_original_entry
*)q
);
1056 return data
->index1
== data2
->index1
;
1059 /* Initialize the data structures to maintain mapping between blocks
1062 initialize_original_copy_tables (void)
1064 gcc_assert (!original_copy_bb_pool
);
1065 original_copy_bb_pool
1066 = create_alloc_pool ("original_copy",
1067 sizeof (struct htab_bb_copy_original_entry
), 10);
1068 bb_original
= htab_create (10, bb_copy_original_hash
,
1069 bb_copy_original_eq
, NULL
);
1070 bb_copy
= htab_create (10, bb_copy_original_hash
, bb_copy_original_eq
, NULL
);
1073 /* Free the data structures to maintain mapping between blocks and
1076 free_original_copy_tables (void)
1078 gcc_assert (original_copy_bb_pool
);
1079 htab_delete (bb_copy
);
1080 htab_delete (bb_original
);
1081 free_alloc_pool (original_copy_bb_pool
);
1084 original_copy_bb_pool
= NULL
;
1087 /* Set original for basic block. Do nothing when data structures are not
1088 initialized so passes not needing this don't need to care. */
1090 set_bb_original (basic_block bb
, basic_block original
)
1092 if (original_copy_bb_pool
)
1094 struct htab_bb_copy_original_entry
**slot
;
1095 struct htab_bb_copy_original_entry key
;
1097 key
.index1
= bb
->index
;
1099 (struct htab_bb_copy_original_entry
**) htab_find_slot (bb_original
,
1102 (*slot
)->index2
= original
->index
;
1105 *slot
= pool_alloc (original_copy_bb_pool
);
1106 (*slot
)->index1
= bb
->index
;
1107 (*slot
)->index2
= original
->index
;
1112 /* Get the original basic block. */
1114 get_bb_original (basic_block bb
)
1116 struct htab_bb_copy_original_entry
*entry
;
1117 struct htab_bb_copy_original_entry key
;
1119 gcc_assert (original_copy_bb_pool
);
1121 key
.index1
= bb
->index
;
1122 entry
= (struct htab_bb_copy_original_entry
*) htab_find (bb_original
, &key
);
1124 return BASIC_BLOCK (entry
->index2
);
1129 /* Set copy for basic block. Do nothing when data structures are not
1130 initialized so passes not needing this don't need to care. */
1132 set_bb_copy (basic_block bb
, basic_block copy
)
1134 if (original_copy_bb_pool
)
1136 struct htab_bb_copy_original_entry
**slot
;
1137 struct htab_bb_copy_original_entry key
;
1139 key
.index1
= bb
->index
;
1141 (struct htab_bb_copy_original_entry
**) htab_find_slot (bb_copy
,
1144 (*slot
)->index2
= copy
->index
;
1147 *slot
= pool_alloc (original_copy_bb_pool
);
1148 (*slot
)->index1
= bb
->index
;
1149 (*slot
)->index2
= copy
->index
;
1154 /* Get the copy of basic block. */
1156 get_bb_copy (basic_block bb
)
1158 struct htab_bb_copy_original_entry
*entry
;
1159 struct htab_bb_copy_original_entry key
;
1161 gcc_assert (original_copy_bb_pool
);
1163 key
.index1
= bb
->index
;
1164 entry
= (struct htab_bb_copy_original_entry
*) htab_find (bb_copy
, &key
);
1166 return BASIC_BLOCK (entry
->index2
);