* tree-loop-distribution.c (params.h): Include header file.
[official-gcc.git] / gcc / asan.c
blob533a7ec7bebee39aade2afa166ddbb4a8865d115
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
33 #include "memmodel.h"
34 #include "tm_p.h"
35 #include "ssa.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "optabs.h"
39 #include "emit-rtl.h"
40 #include "cgraph.h"
41 #include "gimple-pretty-print.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "cfganal.h"
45 #include "gimplify.h"
46 #include "gimple-iterator.h"
47 #include "varasm.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "asan.h"
51 #include "dojump.h"
52 #include "explow.h"
53 #include "expr.h"
54 #include "output.h"
55 #include "langhooks.h"
56 #include "cfgloop.h"
57 #include "gimple-builder.h"
58 #include "ubsan.h"
59 #include "params.h"
60 #include "builtins.h"
61 #include "fnmatch.h"
62 #include "tree-inline.h"
64 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
65 with <2x slowdown on average.
67 The tool consists of two parts:
68 instrumentation module (this file) and a run-time library.
69 The instrumentation module adds a run-time check before every memory insn.
70 For a 8- or 16- byte load accessing address X:
71 ShadowAddr = (X >> 3) + Offset
72 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
73 if (ShadowValue)
74 __asan_report_load8(X);
75 For a load of N bytes (N=1, 2 or 4) from address X:
76 ShadowAddr = (X >> 3) + Offset
77 ShadowValue = *(char*)ShadowAddr;
78 if (ShadowValue)
79 if ((X & 7) + N - 1 > ShadowValue)
80 __asan_report_loadN(X);
81 Stores are instrumented similarly, but using __asan_report_storeN functions.
82 A call too __asan_init_vN() is inserted to the list of module CTORs.
83 N is the version number of the AddressSanitizer API. The changes between the
84 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
86 The run-time library redefines malloc (so that redzone are inserted around
87 the allocated memory) and free (so that reuse of free-ed memory is delayed),
88 provides __asan_report* and __asan_init_vN functions.
90 Read more:
91 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
93 The current implementation supports detection of out-of-bounds and
94 use-after-free in the heap, on the stack and for global variables.
96 [Protection of stack variables]
98 To understand how detection of out-of-bounds and use-after-free works
99 for stack variables, lets look at this example on x86_64 where the
100 stack grows downward:
103 foo ()
105 char a[23] = {0};
106 int b[2] = {0};
108 a[5] = 1;
109 b[1] = 2;
111 return a[5] + b[1];
114 For this function, the stack protected by asan will be organized as
115 follows, from the top of the stack to the bottom:
117 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
119 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
120 the next slot be 32 bytes aligned; this one is called Partial
121 Redzone; this 32 bytes alignment is an asan constraint]
123 Slot 3/ [24 bytes for variable 'a']
125 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
127 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
129 Slot 6/ [8 bytes for variable 'b']
131 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
132 'LEFT RedZone']
134 The 32 bytes of LEFT red zone at the bottom of the stack can be
135 decomposed as such:
137 1/ The first 8 bytes contain a magical asan number that is always
138 0x41B58AB3.
140 2/ The following 8 bytes contains a pointer to a string (to be
141 parsed at runtime by the runtime asan library), which format is
142 the following:
144 "<function-name> <space> <num-of-variables-on-the-stack>
145 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
146 <length-of-var-in-bytes> ){n} "
148 where '(...){n}' means the content inside the parenthesis occurs 'n'
149 times, with 'n' being the number of variables on the stack.
151 3/ The following 8 bytes contain the PC of the current function which
152 will be used by the run-time library to print an error message.
154 4/ The following 8 bytes are reserved for internal use by the run-time.
156 The shadow memory for that stack layout is going to look like this:
158 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
159 The F1 byte pattern is a magic number called
160 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
161 the memory for that shadow byte is part of a the LEFT red zone
162 intended to seat at the bottom of the variables on the stack.
164 - content of shadow memory 8 bytes for slots 6 and 5:
165 0xF4F4F400. The F4 byte pattern is a magic number
166 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
167 memory region for this shadow byte is a PARTIAL red zone
168 intended to pad a variable A, so that the slot following
169 {A,padding} is 32 bytes aligned.
171 Note that the fact that the least significant byte of this
172 shadow memory content is 00 means that 8 bytes of its
173 corresponding memory (which corresponds to the memory of
174 variable 'b') is addressable.
176 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
177 The F2 byte pattern is a magic number called
178 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
179 region for this shadow byte is a MIDDLE red zone intended to
180 seat between two 32 aligned slots of {variable,padding}.
182 - content of shadow memory 8 bytes for slot 3 and 2:
183 0xF4000000. This represents is the concatenation of
184 variable 'a' and the partial red zone following it, like what we
185 had for variable 'b'. The least significant 3 bytes being 00
186 means that the 3 bytes of variable 'a' are addressable.
188 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
189 The F3 byte pattern is a magic number called
190 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
191 region for this shadow byte is a RIGHT red zone intended to seat
192 at the top of the variables of the stack.
194 Note that the real variable layout is done in expand_used_vars in
195 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
196 stack variables as well as the different red zones, emits some
197 prologue code to populate the shadow memory as to poison (mark as
198 non-accessible) the regions of the red zones and mark the regions of
199 stack variables as accessible, and emit some epilogue code to
200 un-poison (mark as accessible) the regions of red zones right before
201 the function exits.
203 [Protection of global variables]
205 The basic idea is to insert a red zone between two global variables
206 and install a constructor function that calls the asan runtime to do
207 the populating of the relevant shadow memory regions at load time.
209 So the global variables are laid out as to insert a red zone between
210 them. The size of the red zones is so that each variable starts on a
211 32 bytes boundary.
213 Then a constructor function is installed so that, for each global
214 variable, it calls the runtime asan library function
215 __asan_register_globals_with an instance of this type:
217 struct __asan_global
219 // Address of the beginning of the global variable.
220 const void *__beg;
222 // Initial size of the global variable.
223 uptr __size;
225 // Size of the global variable + size of the red zone. This
226 // size is 32 bytes aligned.
227 uptr __size_with_redzone;
229 // Name of the global variable.
230 const void *__name;
232 // Name of the module where the global variable is declared.
233 const void *__module_name;
235 // 1 if it has dynamic initialization, 0 otherwise.
236 uptr __has_dynamic_init;
238 // A pointer to struct that contains source location, could be NULL.
239 __asan_global_source_location *__location;
242 A destructor function that calls the runtime asan library function
243 _asan_unregister_globals is also installed. */
245 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
246 static bool asan_shadow_offset_computed;
247 static vec<char *> sanitized_sections;
249 /* Set of variable declarations that are going to be guarded by
250 use-after-scope sanitizer. */
252 static hash_set<tree> *asan_handled_variables = NULL;
254 hash_set <tree> *asan_used_labels = NULL;
256 /* Sets shadow offset to value in string VAL. */
258 bool
259 set_asan_shadow_offset (const char *val)
261 char *endp;
263 errno = 0;
264 #ifdef HAVE_LONG_LONG
265 asan_shadow_offset_value = strtoull (val, &endp, 0);
266 #else
267 asan_shadow_offset_value = strtoul (val, &endp, 0);
268 #endif
269 if (!(*val != '\0' && *endp == '\0' && errno == 0))
270 return false;
272 asan_shadow_offset_computed = true;
274 return true;
277 /* Set list of user-defined sections that need to be sanitized. */
279 void
280 set_sanitized_sections (const char *sections)
282 char *pat;
283 unsigned i;
284 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
285 free (pat);
286 sanitized_sections.truncate (0);
288 for (const char *s = sections; *s; )
290 const char *end;
291 for (end = s; *end && *end != ','; ++end);
292 size_t len = end - s;
293 sanitized_sections.safe_push (xstrndup (s, len));
294 s = *end ? end + 1 : end;
298 bool
299 asan_mark_p (gimple *stmt, enum asan_mark_flags flag)
301 return (gimple_call_internal_p (stmt, IFN_ASAN_MARK)
302 && tree_to_uhwi (gimple_call_arg (stmt, 0)) == flag);
305 bool
306 asan_sanitize_stack_p (void)
308 return (sanitize_flags_p (SANITIZE_ADDRESS) && ASAN_STACK);
311 /* Checks whether section SEC should be sanitized. */
313 static bool
314 section_sanitized_p (const char *sec)
316 char *pat;
317 unsigned i;
318 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
319 if (fnmatch (pat, sec, FNM_PERIOD) == 0)
320 return true;
321 return false;
324 /* Returns Asan shadow offset. */
326 static unsigned HOST_WIDE_INT
327 asan_shadow_offset ()
329 if (!asan_shadow_offset_computed)
331 asan_shadow_offset_computed = true;
332 asan_shadow_offset_value = targetm.asan_shadow_offset ();
334 return asan_shadow_offset_value;
337 alias_set_type asan_shadow_set = -1;
339 /* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
340 alias set is used for all shadow memory accesses. */
341 static GTY(()) tree shadow_ptr_types[3];
343 /* Decl for __asan_option_detect_stack_use_after_return. */
344 static GTY(()) tree asan_detect_stack_use_after_return;
346 /* Hashtable support for memory references used by gimple
347 statements. */
349 /* This type represents a reference to a memory region. */
350 struct asan_mem_ref
352 /* The expression of the beginning of the memory region. */
353 tree start;
355 /* The size of the access. */
356 HOST_WIDE_INT access_size;
359 object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
361 /* Initializes an instance of asan_mem_ref. */
363 static void
364 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
366 ref->start = start;
367 ref->access_size = access_size;
370 /* Allocates memory for an instance of asan_mem_ref into the memory
371 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
372 START is the address of (or the expression pointing to) the
373 beginning of memory reference. ACCESS_SIZE is the size of the
374 access to the referenced memory. */
376 static asan_mem_ref*
377 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
379 asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
381 asan_mem_ref_init (ref, start, access_size);
382 return ref;
385 /* This builds and returns a pointer to the end of the memory region
386 that starts at START and of length LEN. */
388 tree
389 asan_mem_ref_get_end (tree start, tree len)
391 if (len == NULL_TREE || integer_zerop (len))
392 return start;
394 if (!ptrofftype_p (len))
395 len = convert_to_ptrofftype (len);
397 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
400 /* Return a tree expression that represents the end of the referenced
401 memory region. Beware that this function can actually build a new
402 tree expression. */
404 tree
405 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
407 return asan_mem_ref_get_end (ref->start, len);
410 struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
412 static inline hashval_t hash (const asan_mem_ref *);
413 static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
416 /* Hash a memory reference. */
418 inline hashval_t
419 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
421 return iterative_hash_expr (mem_ref->start, 0);
424 /* Compare two memory references. We accept the length of either
425 memory references to be NULL_TREE. */
427 inline bool
428 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
429 const asan_mem_ref *m2)
431 return operand_equal_p (m1->start, m2->start, 0);
434 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
436 /* Returns a reference to the hash table containing memory references.
437 This function ensures that the hash table is created. Note that
438 this hash table is updated by the function
439 update_mem_ref_hash_table. */
441 static hash_table<asan_mem_ref_hasher> *
442 get_mem_ref_hash_table ()
444 if (!asan_mem_ref_ht)
445 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
447 return asan_mem_ref_ht;
450 /* Clear all entries from the memory references hash table. */
452 static void
453 empty_mem_ref_hash_table ()
455 if (asan_mem_ref_ht)
456 asan_mem_ref_ht->empty ();
459 /* Free the memory references hash table. */
461 static void
462 free_mem_ref_resources ()
464 delete asan_mem_ref_ht;
465 asan_mem_ref_ht = NULL;
467 asan_mem_ref_pool.release ();
470 /* Return true iff the memory reference REF has been instrumented. */
472 static bool
473 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
475 asan_mem_ref r;
476 asan_mem_ref_init (&r, ref, access_size);
478 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
479 return saved_ref && saved_ref->access_size >= access_size;
482 /* Return true iff the memory reference REF has been instrumented. */
484 static bool
485 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
487 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
490 /* Return true iff access to memory region starting at REF and of
491 length LEN has been instrumented. */
493 static bool
494 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
496 HOST_WIDE_INT size_in_bytes
497 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
499 return size_in_bytes != -1
500 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
503 /* Set REF to the memory reference present in a gimple assignment
504 ASSIGNMENT. Return true upon successful completion, false
505 otherwise. */
507 static bool
508 get_mem_ref_of_assignment (const gassign *assignment,
509 asan_mem_ref *ref,
510 bool *ref_is_store)
512 gcc_assert (gimple_assign_single_p (assignment));
514 if (gimple_store_p (assignment)
515 && !gimple_clobber_p (assignment))
517 ref->start = gimple_assign_lhs (assignment);
518 *ref_is_store = true;
520 else if (gimple_assign_load_p (assignment))
522 ref->start = gimple_assign_rhs1 (assignment);
523 *ref_is_store = false;
525 else
526 return false;
528 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
529 return true;
532 /* Return the memory references contained in a gimple statement
533 representing a builtin call that has to do with memory access. */
535 static bool
536 get_mem_refs_of_builtin_call (const gcall *call,
537 asan_mem_ref *src0,
538 tree *src0_len,
539 bool *src0_is_store,
540 asan_mem_ref *src1,
541 tree *src1_len,
542 bool *src1_is_store,
543 asan_mem_ref *dst,
544 tree *dst_len,
545 bool *dst_is_store,
546 bool *dest_is_deref,
547 bool *intercepted_p)
549 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
551 tree callee = gimple_call_fndecl (call);
552 tree source0 = NULL_TREE, source1 = NULL_TREE,
553 dest = NULL_TREE, len = NULL_TREE;
554 bool is_store = true, got_reference_p = false;
555 HOST_WIDE_INT access_size = 1;
557 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
559 switch (DECL_FUNCTION_CODE (callee))
561 /* (s, s, n) style memops. */
562 case BUILT_IN_BCMP:
563 case BUILT_IN_MEMCMP:
564 source0 = gimple_call_arg (call, 0);
565 source1 = gimple_call_arg (call, 1);
566 len = gimple_call_arg (call, 2);
567 break;
569 /* (src, dest, n) style memops. */
570 case BUILT_IN_BCOPY:
571 source0 = gimple_call_arg (call, 0);
572 dest = gimple_call_arg (call, 1);
573 len = gimple_call_arg (call, 2);
574 break;
576 /* (dest, src, n) style memops. */
577 case BUILT_IN_MEMCPY:
578 case BUILT_IN_MEMCPY_CHK:
579 case BUILT_IN_MEMMOVE:
580 case BUILT_IN_MEMMOVE_CHK:
581 case BUILT_IN_MEMPCPY:
582 case BUILT_IN_MEMPCPY_CHK:
583 dest = gimple_call_arg (call, 0);
584 source0 = gimple_call_arg (call, 1);
585 len = gimple_call_arg (call, 2);
586 break;
588 /* (dest, n) style memops. */
589 case BUILT_IN_BZERO:
590 dest = gimple_call_arg (call, 0);
591 len = gimple_call_arg (call, 1);
592 break;
594 /* (dest, x, n) style memops*/
595 case BUILT_IN_MEMSET:
596 case BUILT_IN_MEMSET_CHK:
597 dest = gimple_call_arg (call, 0);
598 len = gimple_call_arg (call, 2);
599 break;
601 case BUILT_IN_STRLEN:
602 source0 = gimple_call_arg (call, 0);
603 len = gimple_call_lhs (call);
604 break;
606 /* And now the __atomic* and __sync builtins.
607 These are handled differently from the classical memory memory
608 access builtins above. */
610 case BUILT_IN_ATOMIC_LOAD_1:
611 is_store = false;
612 /* FALLTHRU */
613 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
614 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
615 case BUILT_IN_SYNC_FETCH_AND_OR_1:
616 case BUILT_IN_SYNC_FETCH_AND_AND_1:
617 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
618 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
619 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
620 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
621 case BUILT_IN_SYNC_OR_AND_FETCH_1:
622 case BUILT_IN_SYNC_AND_AND_FETCH_1:
623 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
624 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
625 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
626 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
627 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
628 case BUILT_IN_SYNC_LOCK_RELEASE_1:
629 case BUILT_IN_ATOMIC_EXCHANGE_1:
630 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
631 case BUILT_IN_ATOMIC_STORE_1:
632 case BUILT_IN_ATOMIC_ADD_FETCH_1:
633 case BUILT_IN_ATOMIC_SUB_FETCH_1:
634 case BUILT_IN_ATOMIC_AND_FETCH_1:
635 case BUILT_IN_ATOMIC_NAND_FETCH_1:
636 case BUILT_IN_ATOMIC_XOR_FETCH_1:
637 case BUILT_IN_ATOMIC_OR_FETCH_1:
638 case BUILT_IN_ATOMIC_FETCH_ADD_1:
639 case BUILT_IN_ATOMIC_FETCH_SUB_1:
640 case BUILT_IN_ATOMIC_FETCH_AND_1:
641 case BUILT_IN_ATOMIC_FETCH_NAND_1:
642 case BUILT_IN_ATOMIC_FETCH_XOR_1:
643 case BUILT_IN_ATOMIC_FETCH_OR_1:
644 access_size = 1;
645 goto do_atomic;
647 case BUILT_IN_ATOMIC_LOAD_2:
648 is_store = false;
649 /* FALLTHRU */
650 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
651 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
652 case BUILT_IN_SYNC_FETCH_AND_OR_2:
653 case BUILT_IN_SYNC_FETCH_AND_AND_2:
654 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
655 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
656 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
657 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
658 case BUILT_IN_SYNC_OR_AND_FETCH_2:
659 case BUILT_IN_SYNC_AND_AND_FETCH_2:
660 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
661 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
662 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
663 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
664 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
665 case BUILT_IN_SYNC_LOCK_RELEASE_2:
666 case BUILT_IN_ATOMIC_EXCHANGE_2:
667 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
668 case BUILT_IN_ATOMIC_STORE_2:
669 case BUILT_IN_ATOMIC_ADD_FETCH_2:
670 case BUILT_IN_ATOMIC_SUB_FETCH_2:
671 case BUILT_IN_ATOMIC_AND_FETCH_2:
672 case BUILT_IN_ATOMIC_NAND_FETCH_2:
673 case BUILT_IN_ATOMIC_XOR_FETCH_2:
674 case BUILT_IN_ATOMIC_OR_FETCH_2:
675 case BUILT_IN_ATOMIC_FETCH_ADD_2:
676 case BUILT_IN_ATOMIC_FETCH_SUB_2:
677 case BUILT_IN_ATOMIC_FETCH_AND_2:
678 case BUILT_IN_ATOMIC_FETCH_NAND_2:
679 case BUILT_IN_ATOMIC_FETCH_XOR_2:
680 case BUILT_IN_ATOMIC_FETCH_OR_2:
681 access_size = 2;
682 goto do_atomic;
684 case BUILT_IN_ATOMIC_LOAD_4:
685 is_store = false;
686 /* FALLTHRU */
687 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
688 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
689 case BUILT_IN_SYNC_FETCH_AND_OR_4:
690 case BUILT_IN_SYNC_FETCH_AND_AND_4:
691 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
692 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
693 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
694 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
695 case BUILT_IN_SYNC_OR_AND_FETCH_4:
696 case BUILT_IN_SYNC_AND_AND_FETCH_4:
697 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
698 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
699 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
700 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
701 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
702 case BUILT_IN_SYNC_LOCK_RELEASE_4:
703 case BUILT_IN_ATOMIC_EXCHANGE_4:
704 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
705 case BUILT_IN_ATOMIC_STORE_4:
706 case BUILT_IN_ATOMIC_ADD_FETCH_4:
707 case BUILT_IN_ATOMIC_SUB_FETCH_4:
708 case BUILT_IN_ATOMIC_AND_FETCH_4:
709 case BUILT_IN_ATOMIC_NAND_FETCH_4:
710 case BUILT_IN_ATOMIC_XOR_FETCH_4:
711 case BUILT_IN_ATOMIC_OR_FETCH_4:
712 case BUILT_IN_ATOMIC_FETCH_ADD_4:
713 case BUILT_IN_ATOMIC_FETCH_SUB_4:
714 case BUILT_IN_ATOMIC_FETCH_AND_4:
715 case BUILT_IN_ATOMIC_FETCH_NAND_4:
716 case BUILT_IN_ATOMIC_FETCH_XOR_4:
717 case BUILT_IN_ATOMIC_FETCH_OR_4:
718 access_size = 4;
719 goto do_atomic;
721 case BUILT_IN_ATOMIC_LOAD_8:
722 is_store = false;
723 /* FALLTHRU */
724 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
725 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
726 case BUILT_IN_SYNC_FETCH_AND_OR_8:
727 case BUILT_IN_SYNC_FETCH_AND_AND_8:
728 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
729 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
730 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
731 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
732 case BUILT_IN_SYNC_OR_AND_FETCH_8:
733 case BUILT_IN_SYNC_AND_AND_FETCH_8:
734 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
735 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
736 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
737 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
738 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
739 case BUILT_IN_SYNC_LOCK_RELEASE_8:
740 case BUILT_IN_ATOMIC_EXCHANGE_8:
741 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
742 case BUILT_IN_ATOMIC_STORE_8:
743 case BUILT_IN_ATOMIC_ADD_FETCH_8:
744 case BUILT_IN_ATOMIC_SUB_FETCH_8:
745 case BUILT_IN_ATOMIC_AND_FETCH_8:
746 case BUILT_IN_ATOMIC_NAND_FETCH_8:
747 case BUILT_IN_ATOMIC_XOR_FETCH_8:
748 case BUILT_IN_ATOMIC_OR_FETCH_8:
749 case BUILT_IN_ATOMIC_FETCH_ADD_8:
750 case BUILT_IN_ATOMIC_FETCH_SUB_8:
751 case BUILT_IN_ATOMIC_FETCH_AND_8:
752 case BUILT_IN_ATOMIC_FETCH_NAND_8:
753 case BUILT_IN_ATOMIC_FETCH_XOR_8:
754 case BUILT_IN_ATOMIC_FETCH_OR_8:
755 access_size = 8;
756 goto do_atomic;
758 case BUILT_IN_ATOMIC_LOAD_16:
759 is_store = false;
760 /* FALLTHRU */
761 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
762 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
763 case BUILT_IN_SYNC_FETCH_AND_OR_16:
764 case BUILT_IN_SYNC_FETCH_AND_AND_16:
765 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
766 case BUILT_IN_SYNC_FETCH_AND_NAND_16:
767 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
768 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
769 case BUILT_IN_SYNC_OR_AND_FETCH_16:
770 case BUILT_IN_SYNC_AND_AND_FETCH_16:
771 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
772 case BUILT_IN_SYNC_NAND_AND_FETCH_16:
773 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
774 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
775 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
776 case BUILT_IN_SYNC_LOCK_RELEASE_16:
777 case BUILT_IN_ATOMIC_EXCHANGE_16:
778 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
779 case BUILT_IN_ATOMIC_STORE_16:
780 case BUILT_IN_ATOMIC_ADD_FETCH_16:
781 case BUILT_IN_ATOMIC_SUB_FETCH_16:
782 case BUILT_IN_ATOMIC_AND_FETCH_16:
783 case BUILT_IN_ATOMIC_NAND_FETCH_16:
784 case BUILT_IN_ATOMIC_XOR_FETCH_16:
785 case BUILT_IN_ATOMIC_OR_FETCH_16:
786 case BUILT_IN_ATOMIC_FETCH_ADD_16:
787 case BUILT_IN_ATOMIC_FETCH_SUB_16:
788 case BUILT_IN_ATOMIC_FETCH_AND_16:
789 case BUILT_IN_ATOMIC_FETCH_NAND_16:
790 case BUILT_IN_ATOMIC_FETCH_XOR_16:
791 case BUILT_IN_ATOMIC_FETCH_OR_16:
792 access_size = 16;
793 /* FALLTHRU */
794 do_atomic:
796 dest = gimple_call_arg (call, 0);
797 /* DEST represents the address of a memory location.
798 instrument_derefs wants the memory location, so lets
799 dereference the address DEST before handing it to
800 instrument_derefs. */
801 tree type = build_nonstandard_integer_type (access_size
802 * BITS_PER_UNIT, 1);
803 dest = build2 (MEM_REF, type, dest,
804 build_int_cst (build_pointer_type (char_type_node), 0));
805 break;
808 default:
809 /* The other builtins memory access are not instrumented in this
810 function because they either don't have any length parameter,
811 or their length parameter is just a limit. */
812 break;
815 if (len != NULL_TREE)
817 if (source0 != NULL_TREE)
819 src0->start = source0;
820 src0->access_size = access_size;
821 *src0_len = len;
822 *src0_is_store = false;
825 if (source1 != NULL_TREE)
827 src1->start = source1;
828 src1->access_size = access_size;
829 *src1_len = len;
830 *src1_is_store = false;
833 if (dest != NULL_TREE)
835 dst->start = dest;
836 dst->access_size = access_size;
837 *dst_len = len;
838 *dst_is_store = true;
841 got_reference_p = true;
843 else if (dest)
845 dst->start = dest;
846 dst->access_size = access_size;
847 *dst_len = NULL_TREE;
848 *dst_is_store = is_store;
849 *dest_is_deref = true;
850 got_reference_p = true;
853 return got_reference_p;
856 /* Return true iff a given gimple statement has been instrumented.
857 Note that the statement is "defined" by the memory references it
858 contains. */
860 static bool
861 has_stmt_been_instrumented_p (gimple *stmt)
863 if (gimple_assign_single_p (stmt))
865 bool r_is_store;
866 asan_mem_ref r;
867 asan_mem_ref_init (&r, NULL, 1);
869 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
870 &r_is_store))
871 return has_mem_ref_been_instrumented (&r);
873 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
875 asan_mem_ref src0, src1, dest;
876 asan_mem_ref_init (&src0, NULL, 1);
877 asan_mem_ref_init (&src1, NULL, 1);
878 asan_mem_ref_init (&dest, NULL, 1);
880 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
881 bool src0_is_store = false, src1_is_store = false,
882 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
883 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
884 &src0, &src0_len, &src0_is_store,
885 &src1, &src1_len, &src1_is_store,
886 &dest, &dest_len, &dest_is_store,
887 &dest_is_deref, &intercepted_p))
889 if (src0.start != NULL_TREE
890 && !has_mem_ref_been_instrumented (&src0, src0_len))
891 return false;
893 if (src1.start != NULL_TREE
894 && !has_mem_ref_been_instrumented (&src1, src1_len))
895 return false;
897 if (dest.start != NULL_TREE
898 && !has_mem_ref_been_instrumented (&dest, dest_len))
899 return false;
901 return true;
904 else if (is_gimple_call (stmt) && gimple_store_p (stmt))
906 asan_mem_ref r;
907 asan_mem_ref_init (&r, NULL, 1);
909 r.start = gimple_call_lhs (stmt);
910 r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
911 return has_mem_ref_been_instrumented (&r);
914 return false;
917 /* Insert a memory reference into the hash table. */
919 static void
920 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
922 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
924 asan_mem_ref r;
925 asan_mem_ref_init (&r, ref, access_size);
927 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
928 if (*slot == NULL || (*slot)->access_size < access_size)
929 *slot = asan_mem_ref_new (ref, access_size);
932 /* Initialize shadow_ptr_types array. */
934 static void
935 asan_init_shadow_ptr_types (void)
937 asan_shadow_set = new_alias_set ();
938 tree types[3] = { signed_char_type_node, short_integer_type_node,
939 integer_type_node };
941 for (unsigned i = 0; i < 3; i++)
943 shadow_ptr_types[i] = build_distinct_type_copy (types[i]);
944 TYPE_ALIAS_SET (shadow_ptr_types[i]) = asan_shadow_set;
945 shadow_ptr_types[i] = build_pointer_type (shadow_ptr_types[i]);
948 initialize_sanitizer_builtins ();
951 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
953 static tree
954 asan_pp_string (pretty_printer *pp)
956 const char *buf = pp_formatted_text (pp);
957 size_t len = strlen (buf);
958 tree ret = build_string (len + 1, buf);
959 TREE_TYPE (ret)
960 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
961 build_index_type (size_int (len)));
962 TREE_READONLY (ret) = 1;
963 TREE_STATIC (ret) = 1;
964 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
967 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
969 static rtx
970 asan_shadow_cst (unsigned char shadow_bytes[4])
972 int i;
973 unsigned HOST_WIDE_INT val = 0;
974 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
975 for (i = 0; i < 4; i++)
976 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
977 << (BITS_PER_UNIT * i);
978 return gen_int_mode (val, SImode);
981 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
982 though. */
984 static void
985 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
987 rtx_insn *insn, *insns, *jump;
988 rtx_code_label *top_label;
989 rtx end, addr, tmp;
991 start_sequence ();
992 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
993 insns = get_insns ();
994 end_sequence ();
995 for (insn = insns; insn; insn = NEXT_INSN (insn))
996 if (CALL_P (insn))
997 break;
998 if (insn == NULL_RTX)
1000 emit_insn (insns);
1001 return;
1004 gcc_assert ((len & 3) == 0);
1005 top_label = gen_label_rtx ();
1006 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
1007 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
1008 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
1009 emit_label (top_label);
1011 emit_move_insn (shadow_mem, const0_rtx);
1012 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
1013 true, OPTAB_LIB_WIDEN);
1014 if (tmp != addr)
1015 emit_move_insn (addr, tmp);
1016 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1017 jump = get_last_insn ();
1018 gcc_assert (JUMP_P (jump));
1019 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
1022 void
1023 asan_function_start (void)
1025 section *fnsec = function_section (current_function_decl);
1026 switch_to_section (fnsec);
1027 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1028 current_function_funcdef_no);
1031 /* Return number of shadow bytes that are occupied by a local variable
1032 of SIZE bytes. */
1034 static unsigned HOST_WIDE_INT
1035 shadow_mem_size (unsigned HOST_WIDE_INT size)
1037 return ROUND_UP (size, ASAN_SHADOW_GRANULARITY) / ASAN_SHADOW_GRANULARITY;
1040 /* Insert code to protect stack vars. The prologue sequence should be emitted
1041 directly, epilogue sequence returned. BASE is the register holding the
1042 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1043 array contains pairs of offsets in reverse order, always the end offset
1044 of some gap that needs protection followed by starting offset,
1045 and DECLS is an array of representative decls for each var partition.
1046 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1047 elements long (OFFSETS include gap before the first variable as well
1048 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1049 register which stack vars DECL_RTLs are based on. Either BASE should be
1050 assigned to PBASE, when not doing use after return protection, or
1051 corresponding address based on __asan_stack_malloc* return value. */
1053 rtx_insn *
1054 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1055 HOST_WIDE_INT *offsets, tree *decls, int length)
1057 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1058 rtx_code_label *lab;
1059 rtx_insn *insns;
1060 char buf[32];
1061 unsigned char shadow_bytes[4];
1062 HOST_WIDE_INT base_offset = offsets[length - 1];
1063 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1064 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1065 HOST_WIDE_INT last_offset, last_size;
1066 int l;
1067 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1068 tree str_cst, decl, id;
1069 int use_after_return_class = -1;
1071 if (shadow_ptr_types[0] == NULL_TREE)
1072 asan_init_shadow_ptr_types ();
1074 /* First of all, prepare the description string. */
1075 pretty_printer asan_pp;
1077 pp_decimal_int (&asan_pp, length / 2 - 1);
1078 pp_space (&asan_pp);
1079 for (l = length - 2; l; l -= 2)
1081 tree decl = decls[l / 2 - 1];
1082 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1083 pp_space (&asan_pp);
1084 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1085 pp_space (&asan_pp);
1086 if (DECL_P (decl) && DECL_NAME (decl))
1088 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1089 pp_space (&asan_pp);
1090 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1092 else
1093 pp_string (&asan_pp, "9 <unknown>");
1094 pp_space (&asan_pp);
1096 str_cst = asan_pp_string (&asan_pp);
1098 /* Emit the prologue sequence. */
1099 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1100 && ASAN_USE_AFTER_RETURN)
1102 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1103 /* __asan_stack_malloc_N guarantees alignment
1104 N < 6 ? (64 << N) : 4096 bytes. */
1105 if (alignb > (use_after_return_class < 6
1106 ? (64U << use_after_return_class) : 4096U))
1107 use_after_return_class = -1;
1108 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1109 base_align_bias = ((asan_frame_size + alignb - 1)
1110 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1112 /* Align base if target is STRICT_ALIGNMENT. */
1113 if (STRICT_ALIGNMENT)
1114 base = expand_binop (Pmode, and_optab, base,
1115 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1116 << ASAN_SHADOW_SHIFT)
1117 / BITS_PER_UNIT), Pmode), NULL_RTX,
1118 1, OPTAB_DIRECT);
1120 if (use_after_return_class == -1 && pbase)
1121 emit_move_insn (pbase, base);
1123 base = expand_binop (Pmode, add_optab, base,
1124 gen_int_mode (base_offset - base_align_bias, Pmode),
1125 NULL_RTX, 1, OPTAB_DIRECT);
1126 orig_base = NULL_RTX;
1127 if (use_after_return_class != -1)
1129 if (asan_detect_stack_use_after_return == NULL_TREE)
1131 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1132 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1133 integer_type_node);
1134 SET_DECL_ASSEMBLER_NAME (decl, id);
1135 TREE_ADDRESSABLE (decl) = 1;
1136 DECL_ARTIFICIAL (decl) = 1;
1137 DECL_IGNORED_P (decl) = 1;
1138 DECL_EXTERNAL (decl) = 1;
1139 TREE_STATIC (decl) = 1;
1140 TREE_PUBLIC (decl) = 1;
1141 TREE_USED (decl) = 1;
1142 asan_detect_stack_use_after_return = decl;
1144 orig_base = gen_reg_rtx (Pmode);
1145 emit_move_insn (orig_base, base);
1146 ret = expand_normal (asan_detect_stack_use_after_return);
1147 lab = gen_label_rtx ();
1148 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1149 VOIDmode, 0, lab,
1150 profile_probability::very_likely ());
1151 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1152 use_after_return_class);
1153 ret = init_one_libfunc (buf);
1154 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 1,
1155 GEN_INT (asan_frame_size
1156 + base_align_bias),
1157 TYPE_MODE (pointer_sized_int_node));
1158 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1159 and NULL otherwise. Check RET value is NULL here and jump over the
1160 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1161 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1162 VOIDmode, 0, lab,
1163 profile_probability:: very_unlikely ());
1164 ret = convert_memory_address (Pmode, ret);
1165 emit_move_insn (base, ret);
1166 emit_label (lab);
1167 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1168 gen_int_mode (base_align_bias
1169 - base_offset, Pmode),
1170 NULL_RTX, 1, OPTAB_DIRECT));
1172 mem = gen_rtx_MEM (ptr_mode, base);
1173 mem = adjust_address (mem, VOIDmode, base_align_bias);
1174 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1175 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1176 emit_move_insn (mem, expand_normal (str_cst));
1177 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1178 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1179 id = get_identifier (buf);
1180 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1181 VAR_DECL, id, char_type_node);
1182 SET_DECL_ASSEMBLER_NAME (decl, id);
1183 TREE_ADDRESSABLE (decl) = 1;
1184 TREE_READONLY (decl) = 1;
1185 DECL_ARTIFICIAL (decl) = 1;
1186 DECL_IGNORED_P (decl) = 1;
1187 TREE_STATIC (decl) = 1;
1188 TREE_PUBLIC (decl) = 0;
1189 TREE_USED (decl) = 1;
1190 DECL_INITIAL (decl) = decl;
1191 TREE_ASM_WRITTEN (decl) = 1;
1192 TREE_ASM_WRITTEN (id) = 1;
1193 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1194 shadow_base = expand_binop (Pmode, lshr_optab, base,
1195 GEN_INT (ASAN_SHADOW_SHIFT),
1196 NULL_RTX, 1, OPTAB_DIRECT);
1197 shadow_base
1198 = plus_constant (Pmode, shadow_base,
1199 asan_shadow_offset ()
1200 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1201 gcc_assert (asan_shadow_set != -1
1202 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1203 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1204 set_mem_alias_set (shadow_mem, asan_shadow_set);
1205 if (STRICT_ALIGNMENT)
1206 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1207 prev_offset = base_offset;
1208 for (l = length; l; l -= 2)
1210 if (l == 2)
1211 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1212 offset = offsets[l - 1];
1213 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1215 int i;
1216 HOST_WIDE_INT aoff
1217 = base_offset + ((offset - base_offset)
1218 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1219 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1220 (aoff - prev_offset)
1221 >> ASAN_SHADOW_SHIFT);
1222 prev_offset = aoff;
1223 for (i = 0; i < 4; i++, aoff += ASAN_SHADOW_GRANULARITY)
1224 if (aoff < offset)
1226 if (aoff < offset - (HOST_WIDE_INT)ASAN_SHADOW_GRANULARITY + 1)
1227 shadow_bytes[i] = 0;
1228 else
1229 shadow_bytes[i] = offset - aoff;
1231 else
1232 shadow_bytes[i] = ASAN_STACK_MAGIC_MIDDLE;
1233 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1234 offset = aoff;
1236 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1238 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1239 (offset - prev_offset)
1240 >> ASAN_SHADOW_SHIFT);
1241 prev_offset = offset;
1242 memset (shadow_bytes, cur_shadow_byte, 4);
1243 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1244 offset += ASAN_RED_ZONE_SIZE;
1246 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1248 do_pending_stack_adjust ();
1250 /* Construct epilogue sequence. */
1251 start_sequence ();
1253 lab = NULL;
1254 if (use_after_return_class != -1)
1256 rtx_code_label *lab2 = gen_label_rtx ();
1257 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1258 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1259 VOIDmode, 0, lab2,
1260 profile_probability::very_likely ());
1261 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1262 set_mem_alias_set (shadow_mem, asan_shadow_set);
1263 mem = gen_rtx_MEM (ptr_mode, base);
1264 mem = adjust_address (mem, VOIDmode, base_align_bias);
1265 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1266 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1267 if (use_after_return_class < 5
1268 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1269 BITS_PER_UNIT, true))
1270 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1271 BITS_PER_UNIT, true, 0);
1272 else if (use_after_return_class >= 5
1273 || !set_storage_via_setmem (shadow_mem,
1274 GEN_INT (sz),
1275 gen_int_mode (c, QImode),
1276 BITS_PER_UNIT, BITS_PER_UNIT,
1277 -1, sz, sz, sz))
1279 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1280 use_after_return_class);
1281 ret = init_one_libfunc (buf);
1282 rtx addr = convert_memory_address (ptr_mode, base);
1283 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1284 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1285 GEN_INT (asan_frame_size + base_align_bias),
1286 TYPE_MODE (pointer_sized_int_node),
1287 orig_addr, ptr_mode);
1289 lab = gen_label_rtx ();
1290 emit_jump (lab);
1291 emit_label (lab2);
1294 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1295 set_mem_alias_set (shadow_mem, asan_shadow_set);
1297 if (STRICT_ALIGNMENT)
1298 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1300 prev_offset = base_offset;
1301 last_offset = base_offset;
1302 last_size = 0;
1303 for (l = length; l; l -= 2)
1305 offset = base_offset + ((offsets[l - 1] - base_offset)
1306 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1307 if (last_offset + last_size != offset)
1309 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1310 (last_offset - prev_offset)
1311 >> ASAN_SHADOW_SHIFT);
1312 prev_offset = last_offset;
1313 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1314 last_offset = offset;
1315 last_size = 0;
1317 last_size += base_offset + ((offsets[l - 2] - base_offset)
1318 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1319 - offset;
1321 /* Unpoison shadow memory that corresponds to a variable that is
1322 is subject of use-after-return sanitization. */
1323 if (l > 2)
1325 decl = decls[l / 2 - 2];
1326 if (asan_handled_variables != NULL
1327 && asan_handled_variables->contains (decl))
1329 HOST_WIDE_INT size = offsets[l - 3] - offsets[l - 2];
1330 if (dump_file && (dump_flags & TDF_DETAILS))
1332 const char *n = (DECL_NAME (decl)
1333 ? IDENTIFIER_POINTER (DECL_NAME (decl))
1334 : "<unknown>");
1335 fprintf (dump_file, "Unpoisoning shadow stack for variable: "
1336 "%s (%" PRId64 " B)\n", n, size);
1339 last_size += size & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1);
1343 if (last_size)
1345 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1346 (last_offset - prev_offset)
1347 >> ASAN_SHADOW_SHIFT);
1348 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1351 /* Clean-up set with instrumented stack variables. */
1352 delete asan_handled_variables;
1353 asan_handled_variables = NULL;
1354 delete asan_used_labels;
1355 asan_used_labels = NULL;
1357 do_pending_stack_adjust ();
1358 if (lab)
1359 emit_label (lab);
1361 insns = get_insns ();
1362 end_sequence ();
1363 return insns;
1366 /* Return true if DECL, a global var, might be overridden and needs
1367 therefore a local alias. */
1369 static bool
1370 asan_needs_local_alias (tree decl)
1372 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1375 /* Return true if DECL, a global var, is an artificial ODR indicator symbol
1376 therefore doesn't need protection. */
1378 static bool
1379 is_odr_indicator (tree decl)
1381 return (DECL_ARTIFICIAL (decl)
1382 && lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl)));
1385 /* Return true if DECL is a VAR_DECL that should be protected
1386 by Address Sanitizer, by appending a red zone with protected
1387 shadow memory after it and aligning it to at least
1388 ASAN_RED_ZONE_SIZE bytes. */
1390 bool
1391 asan_protect_global (tree decl)
1393 if (!ASAN_GLOBALS)
1394 return false;
1396 rtx rtl, symbol;
1398 if (TREE_CODE (decl) == STRING_CST)
1400 /* Instrument all STRING_CSTs except those created
1401 by asan_pp_string here. */
1402 if (shadow_ptr_types[0] != NULL_TREE
1403 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1404 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1405 return false;
1406 return true;
1408 if (!VAR_P (decl)
1409 /* TLS vars aren't statically protectable. */
1410 || DECL_THREAD_LOCAL_P (decl)
1411 /* Externs will be protected elsewhere. */
1412 || DECL_EXTERNAL (decl)
1413 || !DECL_RTL_SET_P (decl)
1414 /* Comdat vars pose an ABI problem, we can't know if
1415 the var that is selected by the linker will have
1416 padding or not. */
1417 || DECL_ONE_ONLY (decl)
1418 /* Similarly for common vars. People can use -fno-common.
1419 Note: Linux kernel is built with -fno-common, so we do instrument
1420 globals there even if it is C. */
1421 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1422 /* Don't protect if using user section, often vars placed
1423 into user section from multiple TUs are then assumed
1424 to be an array of such vars, putting padding in there
1425 breaks this assumption. */
1426 || (DECL_SECTION_NAME (decl) != NULL
1427 && !symtab_node::get (decl)->implicit_section
1428 && !section_sanitized_p (DECL_SECTION_NAME (decl)))
1429 || DECL_SIZE (decl) == 0
1430 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1431 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1432 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1433 || TREE_TYPE (decl) == ubsan_get_source_location_type ()
1434 || is_odr_indicator (decl))
1435 return false;
1437 rtl = DECL_RTL (decl);
1438 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1439 return false;
1440 symbol = XEXP (rtl, 0);
1442 if (CONSTANT_POOL_ADDRESS_P (symbol)
1443 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1444 return false;
1446 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1447 return false;
1449 #ifndef ASM_OUTPUT_DEF
1450 if (asan_needs_local_alias (decl))
1451 return false;
1452 #endif
1454 return true;
1457 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1458 IS_STORE is either 1 (for a store) or 0 (for a load). */
1460 static tree
1461 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1462 int *nargs)
1464 static enum built_in_function report[2][2][6]
1465 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1466 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1467 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1468 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1469 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1470 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1471 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1472 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1473 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1474 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1475 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1476 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1477 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1478 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1479 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1480 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1481 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1482 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1483 if (size_in_bytes == -1)
1485 *nargs = 2;
1486 return builtin_decl_implicit (report[recover_p][is_store][5]);
1488 *nargs = 1;
1489 int size_log2 = exact_log2 (size_in_bytes);
1490 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1493 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1494 IS_STORE is either 1 (for a store) or 0 (for a load). */
1496 static tree
1497 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1498 int *nargs)
1500 static enum built_in_function check[2][2][6]
1501 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1502 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1503 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1504 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1505 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1506 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1507 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1508 BUILT_IN_ASAN_LOAD2_NOABORT,
1509 BUILT_IN_ASAN_LOAD4_NOABORT,
1510 BUILT_IN_ASAN_LOAD8_NOABORT,
1511 BUILT_IN_ASAN_LOAD16_NOABORT,
1512 BUILT_IN_ASAN_LOADN_NOABORT },
1513 { BUILT_IN_ASAN_STORE1_NOABORT,
1514 BUILT_IN_ASAN_STORE2_NOABORT,
1515 BUILT_IN_ASAN_STORE4_NOABORT,
1516 BUILT_IN_ASAN_STORE8_NOABORT,
1517 BUILT_IN_ASAN_STORE16_NOABORT,
1518 BUILT_IN_ASAN_STOREN_NOABORT } } };
1519 if (size_in_bytes == -1)
1521 *nargs = 2;
1522 return builtin_decl_implicit (check[recover_p][is_store][5]);
1524 *nargs = 1;
1525 int size_log2 = exact_log2 (size_in_bytes);
1526 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1529 /* Split the current basic block and create a condition statement
1530 insertion point right before or after the statement pointed to by
1531 ITER. Return an iterator to the point at which the caller might
1532 safely insert the condition statement.
1534 THEN_BLOCK must be set to the address of an uninitialized instance
1535 of basic_block. The function will then set *THEN_BLOCK to the
1536 'then block' of the condition statement to be inserted by the
1537 caller.
1539 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1540 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1542 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1543 block' of the condition statement to be inserted by the caller.
1545 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1546 statements starting from *ITER, and *THEN_BLOCK is a new empty
1547 block.
1549 *ITER is adjusted to point to always point to the first statement
1550 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1551 same as what ITER was pointing to prior to calling this function,
1552 if BEFORE_P is true; otherwise, it is its following statement. */
1554 gimple_stmt_iterator
1555 create_cond_insert_point (gimple_stmt_iterator *iter,
1556 bool before_p,
1557 bool then_more_likely_p,
1558 bool create_then_fallthru_edge,
1559 basic_block *then_block,
1560 basic_block *fallthrough_block)
1562 gimple_stmt_iterator gsi = *iter;
1564 if (!gsi_end_p (gsi) && before_p)
1565 gsi_prev (&gsi);
1567 basic_block cur_bb = gsi_bb (*iter);
1569 edge e = split_block (cur_bb, gsi_stmt (gsi));
1571 /* Get a hold on the 'condition block', the 'then block' and the
1572 'else block'. */
1573 basic_block cond_bb = e->src;
1574 basic_block fallthru_bb = e->dest;
1575 basic_block then_bb = create_empty_bb (cond_bb);
1576 if (current_loops)
1578 add_bb_to_loop (then_bb, cond_bb->loop_father);
1579 loops_state_set (LOOPS_NEED_FIXUP);
1582 /* Set up the newly created 'then block'. */
1583 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1584 int fallthrough_probability
1585 = then_more_likely_p
1586 ? PROB_VERY_UNLIKELY
1587 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1588 e->probability = profile_probability::from_reg_br_prob_base
1589 (PROB_ALWAYS - fallthrough_probability);
1590 if (create_then_fallthru_edge)
1591 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1593 /* Set up the fallthrough basic block. */
1594 e = find_edge (cond_bb, fallthru_bb);
1595 e->flags = EDGE_FALSE_VALUE;
1596 e->count = cond_bb->count;
1597 e->probability
1598 = profile_probability::from_reg_br_prob_base (fallthrough_probability);
1600 /* Update dominance info for the newly created then_bb; note that
1601 fallthru_bb's dominance info has already been updated by
1602 split_bock. */
1603 if (dom_info_available_p (CDI_DOMINATORS))
1604 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1606 *then_block = then_bb;
1607 *fallthrough_block = fallthru_bb;
1608 *iter = gsi_start_bb (fallthru_bb);
1610 return gsi_last_bb (cond_bb);
1613 /* Insert an if condition followed by a 'then block' right before the
1614 statement pointed to by ITER. The fallthrough block -- which is the
1615 else block of the condition as well as the destination of the
1616 outcoming edge of the 'then block' -- starts with the statement
1617 pointed to by ITER.
1619 COND is the condition of the if.
1621 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1622 'then block' is higher than the probability of the edge to the
1623 fallthrough block.
1625 Upon completion of the function, *THEN_BB is set to the newly
1626 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1627 fallthrough block.
1629 *ITER is adjusted to still point to the same statement it was
1630 pointing to initially. */
1632 static void
1633 insert_if_then_before_iter (gcond *cond,
1634 gimple_stmt_iterator *iter,
1635 bool then_more_likely_p,
1636 basic_block *then_bb,
1637 basic_block *fallthrough_bb)
1639 gimple_stmt_iterator cond_insert_point =
1640 create_cond_insert_point (iter,
1641 /*before_p=*/true,
1642 then_more_likely_p,
1643 /*create_then_fallthru_edge=*/true,
1644 then_bb,
1645 fallthrough_bb);
1646 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1649 /* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
1650 If RETURN_ADDRESS is set to true, return memory location instread
1651 of a value in the shadow memory. */
1653 static tree
1654 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1655 tree base_addr, tree shadow_ptr_type,
1656 bool return_address = false)
1658 tree t, uintptr_type = TREE_TYPE (base_addr);
1659 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1660 gimple *g;
1662 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1663 g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
1664 base_addr, t);
1665 gimple_set_location (g, location);
1666 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1668 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1669 g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
1670 gimple_assign_lhs (g), t);
1671 gimple_set_location (g, location);
1672 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1674 g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
1675 gimple_assign_lhs (g));
1676 gimple_set_location (g, location);
1677 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1679 if (!return_address)
1681 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1682 build_int_cst (shadow_ptr_type, 0));
1683 g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
1684 gimple_set_location (g, location);
1685 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1688 return gimple_assign_lhs (g);
1691 /* BASE can already be an SSA_NAME; in that case, do not create a
1692 new SSA_NAME for it. */
1694 static tree
1695 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1696 bool before_p)
1698 if (TREE_CODE (base) == SSA_NAME)
1699 return base;
1700 gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)),
1701 TREE_CODE (base), base);
1702 gimple_set_location (g, loc);
1703 if (before_p)
1704 gsi_insert_before (iter, g, GSI_SAME_STMT);
1705 else
1706 gsi_insert_after (iter, g, GSI_NEW_STMT);
1707 return gimple_assign_lhs (g);
1710 /* LEN can already have necessary size and precision;
1711 in that case, do not create a new variable. */
1713 tree
1714 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1715 bool before_p)
1717 if (ptrofftype_p (len))
1718 return len;
1719 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
1720 NOP_EXPR, len);
1721 gimple_set_location (g, loc);
1722 if (before_p)
1723 gsi_insert_before (iter, g, GSI_SAME_STMT);
1724 else
1725 gsi_insert_after (iter, g, GSI_NEW_STMT);
1726 return gimple_assign_lhs (g);
1729 /* Instrument the memory access instruction BASE. Insert new
1730 statements before or after ITER.
1732 Note that the memory access represented by BASE can be either an
1733 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1734 location. IS_STORE is TRUE for a store, FALSE for a load.
1735 BEFORE_P is TRUE for inserting the instrumentation code before
1736 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1737 for a scalar memory access and FALSE for memory region access.
1738 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1739 length. ALIGN tells alignment of accessed memory object.
1741 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1742 memory region have already been instrumented.
1744 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1745 statement it was pointing to prior to calling this function,
1746 otherwise, it points to the statement logically following it. */
1748 static void
1749 build_check_stmt (location_t loc, tree base, tree len,
1750 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1751 bool is_non_zero_len, bool before_p, bool is_store,
1752 bool is_scalar_access, unsigned int align = 0)
1754 gimple_stmt_iterator gsi = *iter;
1755 gimple *g;
1757 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1759 gsi = *iter;
1761 base = unshare_expr (base);
1762 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1764 if (len)
1766 len = unshare_expr (len);
1767 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1769 else
1771 gcc_assert (size_in_bytes != -1);
1772 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1775 if (size_in_bytes > 1)
1777 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1778 || size_in_bytes > 16)
1779 is_scalar_access = false;
1780 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1782 /* On non-strict alignment targets, if
1783 16-byte access is just 8-byte aligned,
1784 this will result in misaligned shadow
1785 memory 2 byte load, but otherwise can
1786 be handled using one read. */
1787 if (size_in_bytes != 16
1788 || STRICT_ALIGNMENT
1789 || align < 8 * BITS_PER_UNIT)
1790 is_scalar_access = false;
1794 HOST_WIDE_INT flags = 0;
1795 if (is_store)
1796 flags |= ASAN_CHECK_STORE;
1797 if (is_non_zero_len)
1798 flags |= ASAN_CHECK_NON_ZERO_LEN;
1799 if (is_scalar_access)
1800 flags |= ASAN_CHECK_SCALAR_ACCESS;
1802 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1803 build_int_cst (integer_type_node, flags),
1804 base, len,
1805 build_int_cst (integer_type_node,
1806 align / BITS_PER_UNIT));
1807 gimple_set_location (g, loc);
1808 if (before_p)
1809 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1810 else
1812 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1813 gsi_next (&gsi);
1814 *iter = gsi;
1818 /* If T represents a memory access, add instrumentation code before ITER.
1819 LOCATION is source code location.
1820 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1822 static void
1823 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1824 location_t location, bool is_store)
1826 if (is_store && !ASAN_INSTRUMENT_WRITES)
1827 return;
1828 if (!is_store && !ASAN_INSTRUMENT_READS)
1829 return;
1831 tree type, base;
1832 HOST_WIDE_INT size_in_bytes;
1833 if (location == UNKNOWN_LOCATION)
1834 location = EXPR_LOCATION (t);
1836 type = TREE_TYPE (t);
1837 switch (TREE_CODE (t))
1839 case ARRAY_REF:
1840 case COMPONENT_REF:
1841 case INDIRECT_REF:
1842 case MEM_REF:
1843 case VAR_DECL:
1844 case BIT_FIELD_REF:
1845 break;
1846 /* FALLTHRU */
1847 default:
1848 return;
1851 size_in_bytes = int_size_in_bytes (type);
1852 if (size_in_bytes <= 0)
1853 return;
1855 HOST_WIDE_INT bitsize, bitpos;
1856 tree offset;
1857 machine_mode mode;
1858 int unsignedp, reversep, volatilep = 0;
1859 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
1860 &unsignedp, &reversep, &volatilep);
1862 if (TREE_CODE (t) == COMPONENT_REF
1863 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1865 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1866 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1867 TREE_OPERAND (t, 0), repr,
1868 TREE_OPERAND (t, 2)),
1869 location, is_store);
1870 return;
1873 if (bitpos % BITS_PER_UNIT
1874 || bitsize != size_in_bytes * BITS_PER_UNIT)
1875 return;
1877 if (VAR_P (inner) && DECL_HARD_REGISTER (inner))
1878 return;
1880 if (VAR_P (inner)
1881 && offset == NULL_TREE
1882 && bitpos >= 0
1883 && DECL_SIZE (inner)
1884 && tree_fits_shwi_p (DECL_SIZE (inner))
1885 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1887 if (DECL_THREAD_LOCAL_P (inner))
1888 return;
1889 if (!ASAN_GLOBALS && is_global_var (inner))
1890 return;
1891 if (!TREE_STATIC (inner))
1893 /* Automatic vars in the current function will be always
1894 accessible. */
1895 if (decl_function_context (inner) == current_function_decl
1896 && (!asan_sanitize_use_after_scope ()
1897 || !TREE_ADDRESSABLE (inner)))
1898 return;
1900 /* Always instrument external vars, they might be dynamically
1901 initialized. */
1902 else if (!DECL_EXTERNAL (inner))
1904 /* For static vars if they are known not to be dynamically
1905 initialized, they will be always accessible. */
1906 varpool_node *vnode = varpool_node::get (inner);
1907 if (vnode && !vnode->dynamically_initialized)
1908 return;
1912 base = build_fold_addr_expr (t);
1913 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1915 unsigned int align = get_object_alignment (t);
1916 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1917 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1918 is_store, /*is_scalar_access*/true, align);
1919 update_mem_ref_hash_table (base, size_in_bytes);
1920 update_mem_ref_hash_table (t, size_in_bytes);
1925 /* Insert a memory reference into the hash table if access length
1926 can be determined in compile time. */
1928 static void
1929 maybe_update_mem_ref_hash_table (tree base, tree len)
1931 if (!POINTER_TYPE_P (TREE_TYPE (base))
1932 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
1933 return;
1935 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1937 if (size_in_bytes != -1)
1938 update_mem_ref_hash_table (base, size_in_bytes);
1941 /* Instrument an access to a contiguous memory region that starts at
1942 the address pointed to by BASE, over a length of LEN (expressed in
1943 the sizeof (*BASE) bytes). ITER points to the instruction before
1944 which the instrumentation instructions must be inserted. LOCATION
1945 is the source location that the instrumentation instructions must
1946 have. If IS_STORE is true, then the memory access is a store;
1947 otherwise, it's a load. */
1949 static void
1950 instrument_mem_region_access (tree base, tree len,
1951 gimple_stmt_iterator *iter,
1952 location_t location, bool is_store)
1954 if (!POINTER_TYPE_P (TREE_TYPE (base))
1955 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1956 || integer_zerop (len))
1957 return;
1959 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1961 if ((size_in_bytes == -1)
1962 || !has_mem_ref_been_instrumented (base, size_in_bytes))
1964 build_check_stmt (location, base, len, size_in_bytes, iter,
1965 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1966 is_store, /*is_scalar_access*/false, /*align*/0);
1969 maybe_update_mem_ref_hash_table (base, len);
1970 *iter = gsi_for_stmt (gsi_stmt (*iter));
1973 /* Instrument the call to a built-in memory access function that is
1974 pointed to by the iterator ITER.
1976 Upon completion, return TRUE iff *ITER has been advanced to the
1977 statement following the one it was originally pointing to. */
1979 static bool
1980 instrument_builtin_call (gimple_stmt_iterator *iter)
1982 if (!ASAN_MEMINTRIN)
1983 return false;
1985 bool iter_advanced_p = false;
1986 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
1988 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1990 location_t loc = gimple_location (call);
1992 asan_mem_ref src0, src1, dest;
1993 asan_mem_ref_init (&src0, NULL, 1);
1994 asan_mem_ref_init (&src1, NULL, 1);
1995 asan_mem_ref_init (&dest, NULL, 1);
1997 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1998 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
1999 dest_is_deref = false, intercepted_p = true;
2001 if (get_mem_refs_of_builtin_call (call,
2002 &src0, &src0_len, &src0_is_store,
2003 &src1, &src1_len, &src1_is_store,
2004 &dest, &dest_len, &dest_is_store,
2005 &dest_is_deref, &intercepted_p))
2007 if (dest_is_deref)
2009 instrument_derefs (iter, dest.start, loc, dest_is_store);
2010 gsi_next (iter);
2011 iter_advanced_p = true;
2013 else if (!intercepted_p
2014 && (src0_len || src1_len || dest_len))
2016 if (src0.start != NULL_TREE)
2017 instrument_mem_region_access (src0.start, src0_len,
2018 iter, loc, /*is_store=*/false);
2019 if (src1.start != NULL_TREE)
2020 instrument_mem_region_access (src1.start, src1_len,
2021 iter, loc, /*is_store=*/false);
2022 if (dest.start != NULL_TREE)
2023 instrument_mem_region_access (dest.start, dest_len,
2024 iter, loc, /*is_store=*/true);
2026 *iter = gsi_for_stmt (call);
2027 gsi_next (iter);
2028 iter_advanced_p = true;
2030 else
2032 if (src0.start != NULL_TREE)
2033 maybe_update_mem_ref_hash_table (src0.start, src0_len);
2034 if (src1.start != NULL_TREE)
2035 maybe_update_mem_ref_hash_table (src1.start, src1_len);
2036 if (dest.start != NULL_TREE)
2037 maybe_update_mem_ref_hash_table (dest.start, dest_len);
2040 return iter_advanced_p;
2043 /* Instrument the assignment statement ITER if it is subject to
2044 instrumentation. Return TRUE iff instrumentation actually
2045 happened. In that case, the iterator ITER is advanced to the next
2046 logical expression following the one initially pointed to by ITER,
2047 and the relevant memory reference that which access has been
2048 instrumented is added to the memory references hash table. */
2050 static bool
2051 maybe_instrument_assignment (gimple_stmt_iterator *iter)
2053 gimple *s = gsi_stmt (*iter);
2055 gcc_assert (gimple_assign_single_p (s));
2057 tree ref_expr = NULL_TREE;
2058 bool is_store, is_instrumented = false;
2060 if (gimple_store_p (s))
2062 ref_expr = gimple_assign_lhs (s);
2063 is_store = true;
2064 instrument_derefs (iter, ref_expr,
2065 gimple_location (s),
2066 is_store);
2067 is_instrumented = true;
2070 if (gimple_assign_load_p (s))
2072 ref_expr = gimple_assign_rhs1 (s);
2073 is_store = false;
2074 instrument_derefs (iter, ref_expr,
2075 gimple_location (s),
2076 is_store);
2077 is_instrumented = true;
2080 if (is_instrumented)
2081 gsi_next (iter);
2083 return is_instrumented;
2086 /* Instrument the function call pointed to by the iterator ITER, if it
2087 is subject to instrumentation. At the moment, the only function
2088 calls that are instrumented are some built-in functions that access
2089 memory. Look at instrument_builtin_call to learn more.
2091 Upon completion return TRUE iff *ITER was advanced to the statement
2092 following the one it was originally pointing to. */
2094 static bool
2095 maybe_instrument_call (gimple_stmt_iterator *iter)
2097 gimple *stmt = gsi_stmt (*iter);
2098 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2100 if (is_builtin && instrument_builtin_call (iter))
2101 return true;
2103 if (gimple_call_noreturn_p (stmt))
2105 if (is_builtin)
2107 tree callee = gimple_call_fndecl (stmt);
2108 switch (DECL_FUNCTION_CODE (callee))
2110 case BUILT_IN_UNREACHABLE:
2111 case BUILT_IN_TRAP:
2112 /* Don't instrument these. */
2113 return false;
2114 default:
2115 break;
2118 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2119 gimple *g = gimple_build_call (decl, 0);
2120 gimple_set_location (g, gimple_location (stmt));
2121 gsi_insert_before (iter, g, GSI_SAME_STMT);
2124 bool instrumented = false;
2125 if (gimple_store_p (stmt))
2127 tree ref_expr = gimple_call_lhs (stmt);
2128 instrument_derefs (iter, ref_expr,
2129 gimple_location (stmt),
2130 /*is_store=*/true);
2132 instrumented = true;
2135 /* Walk through gimple_call arguments and check them id needed. */
2136 unsigned args_num = gimple_call_num_args (stmt);
2137 for (unsigned i = 0; i < args_num; ++i)
2139 tree arg = gimple_call_arg (stmt, i);
2140 /* If ARG is not a non-aggregate register variable, compiler in general
2141 creates temporary for it and pass it as argument to gimple call.
2142 But in some cases, e.g. when we pass by value a small structure that
2143 fits to register, compiler can avoid extra overhead by pulling out
2144 these temporaries. In this case, we should check the argument. */
2145 if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
2147 instrument_derefs (iter, arg,
2148 gimple_location (stmt),
2149 /*is_store=*/false);
2150 instrumented = true;
2153 if (instrumented)
2154 gsi_next (iter);
2155 return instrumented;
2158 /* Walk each instruction of all basic block and instrument those that
2159 represent memory references: loads, stores, or function calls.
2160 In a given basic block, this function avoids instrumenting memory
2161 references that have already been instrumented. */
2163 static void
2164 transform_statements (void)
2166 basic_block bb, last_bb = NULL;
2167 gimple_stmt_iterator i;
2168 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2170 FOR_EACH_BB_FN (bb, cfun)
2172 basic_block prev_bb = bb;
2174 if (bb->index >= saved_last_basic_block) continue;
2176 /* Flush the mem ref hash table, if current bb doesn't have
2177 exactly one predecessor, or if that predecessor (skipping
2178 over asan created basic blocks) isn't the last processed
2179 basic block. Thus we effectively flush on extended basic
2180 block boundaries. */
2181 while (single_pred_p (prev_bb))
2183 prev_bb = single_pred (prev_bb);
2184 if (prev_bb->index < saved_last_basic_block)
2185 break;
2187 if (prev_bb != last_bb)
2188 empty_mem_ref_hash_table ();
2189 last_bb = bb;
2191 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2193 gimple *s = gsi_stmt (i);
2195 if (has_stmt_been_instrumented_p (s))
2196 gsi_next (&i);
2197 else if (gimple_assign_single_p (s)
2198 && !gimple_clobber_p (s)
2199 && maybe_instrument_assignment (&i))
2200 /* Nothing to do as maybe_instrument_assignment advanced
2201 the iterator I. */;
2202 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2203 /* Nothing to do as maybe_instrument_call
2204 advanced the iterator I. */;
2205 else
2207 /* No instrumentation happened.
2209 If the current instruction is a function call that
2210 might free something, let's forget about the memory
2211 references that got instrumented. Otherwise we might
2212 miss some instrumentation opportunities. Do the same
2213 for a ASAN_MARK poisoning internal function. */
2214 if (is_gimple_call (s)
2215 && (!nonfreeing_call_p (s)
2216 || asan_mark_p (s, ASAN_MARK_POISON)))
2217 empty_mem_ref_hash_table ();
2219 gsi_next (&i);
2223 free_mem_ref_resources ();
2226 /* Build
2227 __asan_before_dynamic_init (module_name)
2229 __asan_after_dynamic_init ()
2230 call. */
2232 tree
2233 asan_dynamic_init_call (bool after_p)
2235 if (shadow_ptr_types[0] == NULL_TREE)
2236 asan_init_shadow_ptr_types ();
2238 tree fn = builtin_decl_implicit (after_p
2239 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2240 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2241 tree module_name_cst = NULL_TREE;
2242 if (!after_p)
2244 pretty_printer module_name_pp;
2245 pp_string (&module_name_pp, main_input_filename);
2247 module_name_cst = asan_pp_string (&module_name_pp);
2248 module_name_cst = fold_convert (const_ptr_type_node,
2249 module_name_cst);
2252 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2255 /* Build
2256 struct __asan_global
2258 const void *__beg;
2259 uptr __size;
2260 uptr __size_with_redzone;
2261 const void *__name;
2262 const void *__module_name;
2263 uptr __has_dynamic_init;
2264 __asan_global_source_location *__location;
2265 char *__odr_indicator;
2266 } type. */
2268 static tree
2269 asan_global_struct (void)
2271 static const char *field_names[]
2272 = { "__beg", "__size", "__size_with_redzone",
2273 "__name", "__module_name", "__has_dynamic_init", "__location",
2274 "__odr_indicator" };
2275 tree fields[ARRAY_SIZE (field_names)], ret;
2276 unsigned i;
2278 ret = make_node (RECORD_TYPE);
2279 for (i = 0; i < ARRAY_SIZE (field_names); i++)
2281 fields[i]
2282 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2283 get_identifier (field_names[i]),
2284 (i == 0 || i == 3) ? const_ptr_type_node
2285 : pointer_sized_int_node);
2286 DECL_CONTEXT (fields[i]) = ret;
2287 if (i)
2288 DECL_CHAIN (fields[i - 1]) = fields[i];
2290 tree type_decl = build_decl (input_location, TYPE_DECL,
2291 get_identifier ("__asan_global"), ret);
2292 DECL_IGNORED_P (type_decl) = 1;
2293 DECL_ARTIFICIAL (type_decl) = 1;
2294 TYPE_FIELDS (ret) = fields[0];
2295 TYPE_NAME (ret) = type_decl;
2296 TYPE_STUB_DECL (ret) = type_decl;
2297 layout_type (ret);
2298 return ret;
2301 /* Create and return odr indicator symbol for DECL.
2302 TYPE is __asan_global struct type as returned by asan_global_struct. */
2304 static tree
2305 create_odr_indicator (tree decl, tree type)
2307 char *name;
2308 tree uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2309 tree decl_name
2310 = (HAS_DECL_ASSEMBLER_NAME_P (decl) ? DECL_ASSEMBLER_NAME (decl)
2311 : DECL_NAME (decl));
2312 /* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
2313 if (decl_name == NULL_TREE)
2314 return build_int_cst (uptr, 0);
2315 size_t len = strlen (IDENTIFIER_POINTER (decl_name)) + sizeof ("__odr_asan_");
2316 name = XALLOCAVEC (char, len);
2317 snprintf (name, len, "__odr_asan_%s", IDENTIFIER_POINTER (decl_name));
2318 #ifndef NO_DOT_IN_LABEL
2319 name[sizeof ("__odr_asan") - 1] = '.';
2320 #elif !defined(NO_DOLLAR_IN_LABEL)
2321 name[sizeof ("__odr_asan") - 1] = '$';
2322 #endif
2323 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (name),
2324 char_type_node);
2325 TREE_ADDRESSABLE (var) = 1;
2326 TREE_READONLY (var) = 0;
2327 TREE_THIS_VOLATILE (var) = 1;
2328 DECL_GIMPLE_REG_P (var) = 0;
2329 DECL_ARTIFICIAL (var) = 1;
2330 DECL_IGNORED_P (var) = 1;
2331 TREE_STATIC (var) = 1;
2332 TREE_PUBLIC (var) = 1;
2333 DECL_VISIBILITY (var) = DECL_VISIBILITY (decl);
2334 DECL_VISIBILITY_SPECIFIED (var) = DECL_VISIBILITY_SPECIFIED (decl);
2336 TREE_USED (var) = 1;
2337 tree ctor = build_constructor_va (TREE_TYPE (var), 1, NULL_TREE,
2338 build_int_cst (unsigned_type_node, 0));
2339 TREE_CONSTANT (ctor) = 1;
2340 TREE_STATIC (ctor) = 1;
2341 DECL_INITIAL (var) = ctor;
2342 DECL_ATTRIBUTES (var) = tree_cons (get_identifier ("asan odr indicator"),
2343 NULL, DECL_ATTRIBUTES (var));
2344 make_decl_rtl (var);
2345 varpool_node::finalize_decl (var);
2346 return fold_convert (uptr, build_fold_addr_expr (var));
2349 /* Return true if DECL, a global var, might be overridden and needs
2350 an additional odr indicator symbol. */
2352 static bool
2353 asan_needs_odr_indicator_p (tree decl)
2355 /* Don't emit ODR indicators for kernel because:
2356 a) Kernel is written in C thus doesn't need ODR indicators.
2357 b) Some kernel code may have assumptions about symbols containing specific
2358 patterns in their names. Since ODR indicators contain original names
2359 of symbols they are emitted for, these assumptions would be broken for
2360 ODR indicator symbols. */
2361 return (!(flag_sanitize & SANITIZE_KERNEL_ADDRESS)
2362 && !DECL_ARTIFICIAL (decl)
2363 && !DECL_WEAK (decl)
2364 && TREE_PUBLIC (decl));
2367 /* Append description of a single global DECL into vector V.
2368 TYPE is __asan_global struct type as returned by asan_global_struct. */
2370 static void
2371 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2373 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2374 unsigned HOST_WIDE_INT size;
2375 tree str_cst, module_name_cst, refdecl = decl;
2376 vec<constructor_elt, va_gc> *vinner = NULL;
2378 pretty_printer asan_pp, module_name_pp;
2380 if (DECL_NAME (decl))
2381 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2382 else
2383 pp_string (&asan_pp, "<unknown>");
2384 str_cst = asan_pp_string (&asan_pp);
2386 pp_string (&module_name_pp, main_input_filename);
2387 module_name_cst = asan_pp_string (&module_name_pp);
2389 if (asan_needs_local_alias (decl))
2391 char buf[20];
2392 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2393 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2394 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2395 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2396 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2397 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2398 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2399 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2400 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2401 TREE_STATIC (refdecl) = 1;
2402 TREE_PUBLIC (refdecl) = 0;
2403 TREE_USED (refdecl) = 1;
2404 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2407 tree odr_indicator_ptr
2408 = (asan_needs_odr_indicator_p (decl) ? create_odr_indicator (decl, type)
2409 : build_int_cst (uptr, 0));
2410 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2411 fold_convert (const_ptr_type_node,
2412 build_fold_addr_expr (refdecl)));
2413 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2414 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2415 size += asan_red_zone_size (size);
2416 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2417 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2418 fold_convert (const_ptr_type_node, str_cst));
2419 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2420 fold_convert (const_ptr_type_node, module_name_cst));
2421 varpool_node *vnode = varpool_node::get (decl);
2422 int has_dynamic_init = 0;
2423 /* FIXME: Enable initialization order fiasco detection in LTO mode once
2424 proper fix for PR 79061 will be applied. */
2425 if (!in_lto_p)
2426 has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2427 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2428 build_int_cst (uptr, has_dynamic_init));
2429 tree locptr = NULL_TREE;
2430 location_t loc = DECL_SOURCE_LOCATION (decl);
2431 expanded_location xloc = expand_location (loc);
2432 if (xloc.file != NULL)
2434 static int lasanloccnt = 0;
2435 char buf[25];
2436 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2437 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2438 ubsan_get_source_location_type ());
2439 TREE_STATIC (var) = 1;
2440 TREE_PUBLIC (var) = 0;
2441 DECL_ARTIFICIAL (var) = 1;
2442 DECL_IGNORED_P (var) = 1;
2443 pretty_printer filename_pp;
2444 pp_string (&filename_pp, xloc.file);
2445 tree str = asan_pp_string (&filename_pp);
2446 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2447 NULL_TREE, str, NULL_TREE,
2448 build_int_cst (unsigned_type_node,
2449 xloc.line), NULL_TREE,
2450 build_int_cst (unsigned_type_node,
2451 xloc.column));
2452 TREE_CONSTANT (ctor) = 1;
2453 TREE_STATIC (ctor) = 1;
2454 DECL_INITIAL (var) = ctor;
2455 varpool_node::finalize_decl (var);
2456 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2458 else
2459 locptr = build_int_cst (uptr, 0);
2460 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2461 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, odr_indicator_ptr);
2462 init = build_constructor (type, vinner);
2463 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2466 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2467 void
2468 initialize_sanitizer_builtins (void)
2470 tree decl;
2472 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2473 return;
2475 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2476 tree BT_FN_VOID_PTR
2477 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2478 tree BT_FN_VOID_CONST_PTR
2479 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2480 tree BT_FN_VOID_PTR_PTR
2481 = build_function_type_list (void_type_node, ptr_type_node,
2482 ptr_type_node, NULL_TREE);
2483 tree BT_FN_VOID_PTR_PTR_PTR
2484 = build_function_type_list (void_type_node, ptr_type_node,
2485 ptr_type_node, ptr_type_node, NULL_TREE);
2486 tree BT_FN_VOID_PTR_PTRMODE
2487 = build_function_type_list (void_type_node, ptr_type_node,
2488 pointer_sized_int_node, NULL_TREE);
2489 tree BT_FN_VOID_INT
2490 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2491 tree BT_FN_SIZE_CONST_PTR_INT
2492 = build_function_type_list (size_type_node, const_ptr_type_node,
2493 integer_type_node, NULL_TREE);
2494 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2495 tree BT_FN_IX_CONST_VPTR_INT[5];
2496 tree BT_FN_IX_VPTR_IX_INT[5];
2497 tree BT_FN_VOID_VPTR_IX_INT[5];
2498 tree vptr
2499 = build_pointer_type (build_qualified_type (void_type_node,
2500 TYPE_QUAL_VOLATILE));
2501 tree cvptr
2502 = build_pointer_type (build_qualified_type (void_type_node,
2503 TYPE_QUAL_VOLATILE
2504 |TYPE_QUAL_CONST));
2505 tree boolt
2506 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2507 int i;
2508 for (i = 0; i < 5; i++)
2510 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2511 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2512 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2513 integer_type_node, integer_type_node,
2514 NULL_TREE);
2515 BT_FN_IX_CONST_VPTR_INT[i]
2516 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2517 BT_FN_IX_VPTR_IX_INT[i]
2518 = build_function_type_list (ix, vptr, ix, integer_type_node,
2519 NULL_TREE);
2520 BT_FN_VOID_VPTR_IX_INT[i]
2521 = build_function_type_list (void_type_node, vptr, ix,
2522 integer_type_node, NULL_TREE);
2524 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2525 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2526 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2527 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2528 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2529 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2530 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2531 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2532 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2533 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2534 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2535 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2536 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2537 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2538 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2539 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2540 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2541 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2542 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2543 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2544 #undef ATTR_NOTHROW_LEAF_LIST
2545 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2546 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2547 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2548 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2549 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2550 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2551 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2552 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2553 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2554 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2555 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2556 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2557 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2558 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2559 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2560 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2561 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2562 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2563 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2564 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2565 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2566 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2567 #undef DEF_BUILTIN_STUB
2568 #define DEF_BUILTIN_STUB(ENUM, NAME)
2569 #undef DEF_SANITIZER_BUILTIN
2570 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2571 do { \
2572 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2573 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2574 set_call_expr_flags (decl, ATTRS); \
2575 set_builtin_decl (ENUM, decl, true); \
2576 } while (0);
2578 #include "sanitizer.def"
2580 /* -fsanitize=object-size uses __builtin_object_size, but that might
2581 not be available for e.g. Fortran at this point. We use
2582 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2583 if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
2584 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
2585 DEF_SANITIZER_BUILTIN (BUILT_IN_OBJECT_SIZE, "object_size",
2586 BT_FN_SIZE_CONST_PTR_INT,
2587 ATTR_PURE_NOTHROW_LEAF_LIST)
2589 #undef DEF_SANITIZER_BUILTIN
2590 #undef DEF_BUILTIN_STUB
2593 /* Called via htab_traverse. Count number of emitted
2594 STRING_CSTs in the constant hash table. */
2597 count_string_csts (constant_descriptor_tree **slot,
2598 unsigned HOST_WIDE_INT *data)
2600 struct constant_descriptor_tree *desc = *slot;
2601 if (TREE_CODE (desc->value) == STRING_CST
2602 && TREE_ASM_WRITTEN (desc->value)
2603 && asan_protect_global (desc->value))
2604 ++*data;
2605 return 1;
2608 /* Helper structure to pass two parameters to
2609 add_string_csts. */
2611 struct asan_add_string_csts_data
2613 tree type;
2614 vec<constructor_elt, va_gc> *v;
2617 /* Called via hash_table::traverse. Call asan_add_global
2618 on emitted STRING_CSTs from the constant hash table. */
2621 add_string_csts (constant_descriptor_tree **slot,
2622 asan_add_string_csts_data *aascd)
2624 struct constant_descriptor_tree *desc = *slot;
2625 if (TREE_CODE (desc->value) == STRING_CST
2626 && TREE_ASM_WRITTEN (desc->value)
2627 && asan_protect_global (desc->value))
2629 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2630 aascd->type, aascd->v);
2632 return 1;
2635 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2636 invoke ggc_collect. */
2637 static GTY(()) tree asan_ctor_statements;
2639 /* Module-level instrumentation.
2640 - Insert __asan_init_vN() into the list of CTORs.
2641 - TODO: insert redzones around globals.
2644 void
2645 asan_finish_file (void)
2647 varpool_node *vnode;
2648 unsigned HOST_WIDE_INT gcount = 0;
2650 if (shadow_ptr_types[0] == NULL_TREE)
2651 asan_init_shadow_ptr_types ();
2652 /* Avoid instrumenting code in the asan ctors/dtors.
2653 We don't need to insert padding after the description strings,
2654 nor after .LASAN* array. */
2655 flag_sanitize &= ~SANITIZE_ADDRESS;
2657 /* For user-space we want asan constructors to run first.
2658 Linux kernel does not support priorities other than default, and the only
2659 other user of constructors is coverage. So we run with the default
2660 priority. */
2661 int priority = flag_sanitize & SANITIZE_USER_ADDRESS
2662 ? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
2664 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2666 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2667 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2668 fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
2669 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2671 FOR_EACH_DEFINED_VARIABLE (vnode)
2672 if (TREE_ASM_WRITTEN (vnode->decl)
2673 && asan_protect_global (vnode->decl))
2674 ++gcount;
2675 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2676 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2677 (&gcount);
2678 if (gcount)
2680 tree type = asan_global_struct (), var, ctor;
2681 tree dtor_statements = NULL_TREE;
2682 vec<constructor_elt, va_gc> *v;
2683 char buf[20];
2685 type = build_array_type_nelts (type, gcount);
2686 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2687 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2688 type);
2689 TREE_STATIC (var) = 1;
2690 TREE_PUBLIC (var) = 0;
2691 DECL_ARTIFICIAL (var) = 1;
2692 DECL_IGNORED_P (var) = 1;
2693 vec_alloc (v, gcount);
2694 FOR_EACH_DEFINED_VARIABLE (vnode)
2695 if (TREE_ASM_WRITTEN (vnode->decl)
2696 && asan_protect_global (vnode->decl))
2697 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2698 struct asan_add_string_csts_data aascd;
2699 aascd.type = TREE_TYPE (type);
2700 aascd.v = v;
2701 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2702 (&aascd);
2703 ctor = build_constructor (type, v);
2704 TREE_CONSTANT (ctor) = 1;
2705 TREE_STATIC (ctor) = 1;
2706 DECL_INITIAL (var) = ctor;
2707 varpool_node::finalize_decl (var);
2709 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2710 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2711 append_to_statement_list (build_call_expr (fn, 2,
2712 build_fold_addr_expr (var),
2713 gcount_tree),
2714 &asan_ctor_statements);
2716 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2717 append_to_statement_list (build_call_expr (fn, 2,
2718 build_fold_addr_expr (var),
2719 gcount_tree),
2720 &dtor_statements);
2721 cgraph_build_static_cdtor ('D', dtor_statements, priority);
2723 if (asan_ctor_statements)
2724 cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
2725 flag_sanitize |= SANITIZE_ADDRESS;
2728 /* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
2729 on SHADOW address. Newly added statements will be added to ITER with
2730 given location LOC. We mark SIZE bytes in shadow memory, where
2731 LAST_CHUNK_SIZE is greater than zero in situation where we are at the
2732 end of a variable. */
2734 static void
2735 asan_store_shadow_bytes (gimple_stmt_iterator *iter, location_t loc,
2736 tree shadow,
2737 unsigned HOST_WIDE_INT base_addr_offset,
2738 bool is_clobber, unsigned size,
2739 unsigned last_chunk_size)
2741 tree shadow_ptr_type;
2743 switch (size)
2745 case 1:
2746 shadow_ptr_type = shadow_ptr_types[0];
2747 break;
2748 case 2:
2749 shadow_ptr_type = shadow_ptr_types[1];
2750 break;
2751 case 4:
2752 shadow_ptr_type = shadow_ptr_types[2];
2753 break;
2754 default:
2755 gcc_unreachable ();
2758 unsigned char c = (char) is_clobber ? ASAN_STACK_MAGIC_USE_AFTER_SCOPE : 0;
2759 unsigned HOST_WIDE_INT val = 0;
2760 unsigned last_pos = size;
2761 if (last_chunk_size && !is_clobber)
2762 last_pos = BYTES_BIG_ENDIAN ? 0 : size - 1;
2763 for (unsigned i = 0; i < size; ++i)
2765 unsigned char shadow_c = c;
2766 if (i == last_pos)
2767 shadow_c = last_chunk_size;
2768 val |= (unsigned HOST_WIDE_INT) shadow_c << (BITS_PER_UNIT * i);
2771 /* Handle last chunk in unpoisoning. */
2772 tree magic = build_int_cst (TREE_TYPE (shadow_ptr_type), val);
2774 tree dest = build2 (MEM_REF, TREE_TYPE (shadow_ptr_type), shadow,
2775 build_int_cst (shadow_ptr_type, base_addr_offset));
2777 gimple *g = gimple_build_assign (dest, magic);
2778 gimple_set_location (g, loc);
2779 gsi_insert_after (iter, g, GSI_NEW_STMT);
2782 /* Expand the ASAN_MARK builtins. */
2784 bool
2785 asan_expand_mark_ifn (gimple_stmt_iterator *iter)
2787 gimple *g = gsi_stmt (*iter);
2788 location_t loc = gimple_location (g);
2789 HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (g, 0));
2790 bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;
2792 tree base = gimple_call_arg (g, 1);
2793 gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
2794 tree decl = TREE_OPERAND (base, 0);
2796 /* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
2797 if (TREE_CODE (decl) == COMPONENT_REF
2798 && DECL_NONLOCAL_FRAME (TREE_OPERAND (decl, 0)))
2799 decl = TREE_OPERAND (decl, 0);
2801 gcc_checking_assert (TREE_CODE (decl) == VAR_DECL);
2803 if (is_poison)
2805 if (asan_handled_variables == NULL)
2806 asan_handled_variables = new hash_set<tree> (16);
2807 asan_handled_variables->add (decl);
2809 tree len = gimple_call_arg (g, 2);
2811 gcc_assert (tree_fits_shwi_p (len));
2812 unsigned HOST_WIDE_INT size_in_bytes = tree_to_shwi (len);
2813 gcc_assert (size_in_bytes);
2815 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2816 NOP_EXPR, base);
2817 gimple_set_location (g, loc);
2818 gsi_replace (iter, g, false);
2819 tree base_addr = gimple_assign_lhs (g);
2821 /* Generate direct emission if size_in_bytes is small. */
2822 if (size_in_bytes <= ASAN_PARAM_USE_AFTER_SCOPE_DIRECT_EMISSION_THRESHOLD)
2824 unsigned HOST_WIDE_INT shadow_size = shadow_mem_size (size_in_bytes);
2826 tree shadow = build_shadow_mem_access (iter, loc, base_addr,
2827 shadow_ptr_types[0], true);
2829 for (unsigned HOST_WIDE_INT offset = 0; offset < shadow_size;)
2831 unsigned size = 1;
2832 if (shadow_size - offset >= 4)
2833 size = 4;
2834 else if (shadow_size - offset >= 2)
2835 size = 2;
2837 unsigned HOST_WIDE_INT last_chunk_size = 0;
2838 unsigned HOST_WIDE_INT s = (offset + size) * ASAN_SHADOW_GRANULARITY;
2839 if (s > size_in_bytes)
2840 last_chunk_size = ASAN_SHADOW_GRANULARITY - (s - size_in_bytes);
2842 asan_store_shadow_bytes (iter, loc, shadow, offset, is_poison,
2843 size, last_chunk_size);
2844 offset += size;
2847 else
2849 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2850 NOP_EXPR, len);
2851 gimple_set_location (g, loc);
2852 gsi_insert_before (iter, g, GSI_SAME_STMT);
2853 tree sz_arg = gimple_assign_lhs (g);
2855 tree fun
2856 = builtin_decl_implicit (is_poison ? BUILT_IN_ASAN_POISON_STACK_MEMORY
2857 : BUILT_IN_ASAN_UNPOISON_STACK_MEMORY);
2858 g = gimple_build_call (fun, 2, base_addr, sz_arg);
2859 gimple_set_location (g, loc);
2860 gsi_insert_after (iter, g, GSI_NEW_STMT);
2863 return false;
2866 /* Expand the ASAN_{LOAD,STORE} builtins. */
2868 bool
2869 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2871 gimple *g = gsi_stmt (*iter);
2872 location_t loc = gimple_location (g);
2873 bool recover_p;
2874 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2875 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
2876 else
2877 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
2879 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2880 gcc_assert (flags < ASAN_CHECK_LAST);
2881 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2882 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2883 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2885 tree base = gimple_call_arg (g, 1);
2886 tree len = gimple_call_arg (g, 2);
2887 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2889 HOST_WIDE_INT size_in_bytes
2890 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2892 if (use_calls)
2894 /* Instrument using callbacks. */
2895 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2896 NOP_EXPR, base);
2897 gimple_set_location (g, loc);
2898 gsi_insert_before (iter, g, GSI_SAME_STMT);
2899 tree base_addr = gimple_assign_lhs (g);
2901 int nargs;
2902 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
2903 if (nargs == 1)
2904 g = gimple_build_call (fun, 1, base_addr);
2905 else
2907 gcc_assert (nargs == 2);
2908 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2909 NOP_EXPR, len);
2910 gimple_set_location (g, loc);
2911 gsi_insert_before (iter, g, GSI_SAME_STMT);
2912 tree sz_arg = gimple_assign_lhs (g);
2913 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2915 gimple_set_location (g, loc);
2916 gsi_replace (iter, g, false);
2917 return false;
2920 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2922 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2923 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2925 gimple_stmt_iterator gsi = *iter;
2927 if (!is_non_zero_len)
2929 /* So, the length of the memory area to asan-protect is
2930 non-constant. Let's guard the generated instrumentation code
2931 like:
2933 if (len != 0)
2935 //asan instrumentation code goes here.
2937 // falltrough instructions, starting with *ITER. */
2939 g = gimple_build_cond (NE_EXPR,
2940 len,
2941 build_int_cst (TREE_TYPE (len), 0),
2942 NULL_TREE, NULL_TREE);
2943 gimple_set_location (g, loc);
2945 basic_block then_bb, fallthrough_bb;
2946 insert_if_then_before_iter (as_a <gcond *> (g), iter,
2947 /*then_more_likely_p=*/true,
2948 &then_bb, &fallthrough_bb);
2949 /* Note that fallthrough_bb starts with the statement that was
2950 pointed to by ITER. */
2952 /* The 'then block' of the 'if (len != 0) condition is where
2953 we'll generate the asan instrumentation code now. */
2954 gsi = gsi_last_bb (then_bb);
2957 /* Get an iterator on the point where we can add the condition
2958 statement for the instrumentation. */
2959 basic_block then_bb, else_bb;
2960 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2961 /*then_more_likely_p=*/false,
2962 /*create_then_fallthru_edge*/recover_p,
2963 &then_bb,
2964 &else_bb);
2966 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2967 NOP_EXPR, base);
2968 gimple_set_location (g, loc);
2969 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2970 tree base_addr = gimple_assign_lhs (g);
2972 tree t = NULL_TREE;
2973 if (real_size_in_bytes >= 8)
2975 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2976 shadow_ptr_type);
2977 t = shadow;
2979 else
2981 /* Slow path for 1, 2 and 4 byte accesses. */
2982 /* Test (shadow != 0)
2983 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2984 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2985 shadow_ptr_type);
2986 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
2987 gimple_seq seq = NULL;
2988 gimple_seq_add_stmt (&seq, shadow_test);
2989 /* Aligned (>= 8 bytes) can test just
2990 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
2991 to be 0. */
2992 if (align < 8)
2994 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2995 base_addr, 7));
2996 gimple_seq_add_stmt (&seq,
2997 build_type_cast (shadow_type,
2998 gimple_seq_last (seq)));
2999 if (real_size_in_bytes > 1)
3000 gimple_seq_add_stmt (&seq,
3001 build_assign (PLUS_EXPR,
3002 gimple_seq_last (seq),
3003 real_size_in_bytes - 1));
3004 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
3006 else
3007 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
3008 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
3009 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3010 gimple_seq_last (seq)));
3011 t = gimple_assign_lhs (gimple_seq_last (seq));
3012 gimple_seq_set_location (seq, loc);
3013 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3015 /* For non-constant, misaligned or otherwise weird access sizes,
3016 check first and last byte. */
3017 if (size_in_bytes == -1)
3019 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3020 MINUS_EXPR, len,
3021 build_int_cst (pointer_sized_int_node, 1));
3022 gimple_set_location (g, loc);
3023 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3024 tree last = gimple_assign_lhs (g);
3025 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3026 PLUS_EXPR, base_addr, last);
3027 gimple_set_location (g, loc);
3028 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3029 tree base_end_addr = gimple_assign_lhs (g);
3031 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
3032 shadow_ptr_type);
3033 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3034 gimple_seq seq = NULL;
3035 gimple_seq_add_stmt (&seq, shadow_test);
3036 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3037 base_end_addr, 7));
3038 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
3039 gimple_seq_last (seq)));
3040 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
3041 gimple_seq_last (seq),
3042 shadow));
3043 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3044 gimple_seq_last (seq)));
3045 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
3046 gimple_seq_last (seq)));
3047 t = gimple_assign_lhs (gimple_seq_last (seq));
3048 gimple_seq_set_location (seq, loc);
3049 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3053 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
3054 NULL_TREE, NULL_TREE);
3055 gimple_set_location (g, loc);
3056 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3058 /* Generate call to the run-time library (e.g. __asan_report_load8). */
3059 gsi = gsi_start_bb (then_bb);
3060 int nargs;
3061 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
3062 g = gimple_build_call (fun, nargs, base_addr, len);
3063 gimple_set_location (g, loc);
3064 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3066 gsi_remove (iter, true);
3067 *iter = gsi_start_bb (else_bb);
3069 return true;
3072 /* Create ASAN shadow variable for a VAR_DECL which has been rewritten
3073 into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
3075 static tree
3076 create_asan_shadow_var (tree var_decl,
3077 hash_map<tree, tree> &shadow_vars_mapping)
3079 tree *slot = shadow_vars_mapping.get (var_decl);
3080 if (slot == NULL)
3082 tree shadow_var = copy_node (var_decl);
3084 copy_body_data id;
3085 memset (&id, 0, sizeof (copy_body_data));
3086 id.src_fn = id.dst_fn = current_function_decl;
3087 copy_decl_for_dup_finish (&id, var_decl, shadow_var);
3089 DECL_ARTIFICIAL (shadow_var) = 1;
3090 DECL_IGNORED_P (shadow_var) = 1;
3091 DECL_SEEN_IN_BIND_EXPR_P (shadow_var) = 0;
3092 gimple_add_tmp_var (shadow_var);
3094 shadow_vars_mapping.put (var_decl, shadow_var);
3095 return shadow_var;
3097 else
3098 return *slot;
3101 /* Expand ASAN_POISON ifn. */
3103 bool
3104 asan_expand_poison_ifn (gimple_stmt_iterator *iter,
3105 bool *need_commit_edge_insert,
3106 hash_map<tree, tree> &shadow_vars_mapping)
3108 gimple *g = gsi_stmt (*iter);
3109 tree poisoned_var = gimple_call_lhs (g);
3110 if (!poisoned_var || has_zero_uses (poisoned_var))
3112 gsi_remove (iter, true);
3113 return true;
3116 if (SSA_NAME_VAR (poisoned_var) == NULL_TREE)
3117 SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var,
3118 create_tmp_var (TREE_TYPE (poisoned_var)));
3120 tree shadow_var = create_asan_shadow_var (SSA_NAME_VAR (poisoned_var),
3121 shadow_vars_mapping);
3123 bool recover_p;
3124 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3125 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3126 else
3127 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3128 tree size = DECL_SIZE_UNIT (shadow_var);
3129 gimple *poison_call
3130 = gimple_build_call_internal (IFN_ASAN_MARK, 3,
3131 build_int_cst (integer_type_node,
3132 ASAN_MARK_POISON),
3133 build_fold_addr_expr (shadow_var), size);
3135 gimple *use;
3136 imm_use_iterator imm_iter;
3137 FOR_EACH_IMM_USE_STMT (use, imm_iter, poisoned_var)
3139 if (is_gimple_debug (use))
3140 continue;
3142 int nargs;
3143 bool store_p = gimple_call_internal_p (use, IFN_ASAN_POISON_USE);
3144 tree fun = report_error_func (store_p, recover_p, tree_to_uhwi (size),
3145 &nargs);
3147 gcall *call = gimple_build_call (fun, 1,
3148 build_fold_addr_expr (shadow_var));
3149 gimple_set_location (call, gimple_location (use));
3150 gimple *call_to_insert = call;
3152 /* The USE can be a gimple PHI node. If so, insert the call on
3153 all edges leading to the PHI node. */
3154 if (is_a <gphi *> (use))
3156 gphi *phi = dyn_cast<gphi *> (use);
3157 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
3158 if (gimple_phi_arg_def (phi, i) == poisoned_var)
3160 edge e = gimple_phi_arg_edge (phi, i);
3162 if (call_to_insert == NULL)
3163 call_to_insert = gimple_copy (call);
3165 gsi_insert_seq_on_edge (e, call_to_insert);
3166 *need_commit_edge_insert = true;
3167 call_to_insert = NULL;
3170 else
3172 gimple_stmt_iterator gsi = gsi_for_stmt (use);
3173 if (store_p)
3174 gsi_replace (&gsi, call, true);
3175 else
3176 gsi_insert_before (&gsi, call, GSI_NEW_STMT);
3180 SSA_NAME_IS_DEFAULT_DEF (poisoned_var) = true;
3181 SSA_NAME_DEF_STMT (poisoned_var) = gimple_build_nop ();
3182 gsi_replace (iter, poison_call, false);
3184 return true;
3187 /* Instrument the current function. */
3189 static unsigned int
3190 asan_instrument (void)
3192 if (shadow_ptr_types[0] == NULL_TREE)
3193 asan_init_shadow_ptr_types ();
3194 transform_statements ();
3195 return 0;
3198 static bool
3199 gate_asan (void)
3201 return sanitize_flags_p (SANITIZE_ADDRESS);
3204 namespace {
3206 const pass_data pass_data_asan =
3208 GIMPLE_PASS, /* type */
3209 "asan", /* name */
3210 OPTGROUP_NONE, /* optinfo_flags */
3211 TV_NONE, /* tv_id */
3212 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3213 0, /* properties_provided */
3214 0, /* properties_destroyed */
3215 0, /* todo_flags_start */
3216 TODO_update_ssa, /* todo_flags_finish */
3219 class pass_asan : public gimple_opt_pass
3221 public:
3222 pass_asan (gcc::context *ctxt)
3223 : gimple_opt_pass (pass_data_asan, ctxt)
3226 /* opt_pass methods: */
3227 opt_pass * clone () { return new pass_asan (m_ctxt); }
3228 virtual bool gate (function *) { return gate_asan (); }
3229 virtual unsigned int execute (function *) { return asan_instrument (); }
3231 }; // class pass_asan
3233 } // anon namespace
3235 gimple_opt_pass *
3236 make_pass_asan (gcc::context *ctxt)
3238 return new pass_asan (ctxt);
3241 namespace {
3243 const pass_data pass_data_asan_O0 =
3245 GIMPLE_PASS, /* type */
3246 "asan0", /* name */
3247 OPTGROUP_NONE, /* optinfo_flags */
3248 TV_NONE, /* tv_id */
3249 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3250 0, /* properties_provided */
3251 0, /* properties_destroyed */
3252 0, /* todo_flags_start */
3253 TODO_update_ssa, /* todo_flags_finish */
3256 class pass_asan_O0 : public gimple_opt_pass
3258 public:
3259 pass_asan_O0 (gcc::context *ctxt)
3260 : gimple_opt_pass (pass_data_asan_O0, ctxt)
3263 /* opt_pass methods: */
3264 virtual bool gate (function *) { return !optimize && gate_asan (); }
3265 virtual unsigned int execute (function *) { return asan_instrument (); }
3267 }; // class pass_asan_O0
3269 } // anon namespace
3271 gimple_opt_pass *
3272 make_pass_asan_O0 (gcc::context *ctxt)
3274 return new pass_asan_O0 (ctxt);
3277 #include "gt-asan.h"