vrp_prop: Use dom_walker for -Warray-bounds (PR tree-optimization/83312)
[official-gcc.git] / gcc / tree-cfg.c
blob3b16c101a6f7c0aa534559d1b3d01a3ba52ef1a5
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity = 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map<edge, tree> *edge_to_cases;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs;
95 /* CFG statistics. */
96 struct cfg_stats_d
98 long num_merged_labels;
101 static struct cfg_stats_d cfg_stats;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map<tree, tree> *vars_map;
107 tree to_context;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
113 location_t locus;
114 int discriminator;
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
121 static inline hashval_t hash (const locus_discrim_map *);
122 static inline bool equal (const locus_discrim_map *,
123 const locus_discrim_map *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const locus_discrim_map *item)
132 return LOCATION_LINE (item->locus);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const locus_discrim_map *a,
140 const locus_discrim_map *b)
142 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
145 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq);
150 /* Edges. */
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block);
154 static void make_gimple_switch_edges (gswitch *, basic_block);
155 static bool make_goto_expr_edges (basic_block);
156 static void make_gimple_asm_edges (basic_block);
157 static edge gimple_redirect_edge_and_branch (edge, basic_block);
158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple *, gimple *);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge);
164 static gimple *first_non_label_stmt (basic_block);
165 static bool verify_gimple_transaction (gtransaction *);
166 static bool call_can_make_abnormal_goto (gimple *);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (const gcond *, tree);
174 static edge find_taken_edge_switch_expr (const gswitch *, tree);
175 static tree find_case_label_for_value (const gswitch *, tree);
176 static void lower_phi_internal_fn ();
178 void
179 init_empty_tree_cfg_for_function (struct function *fn)
181 /* Initialize the basic block array. */
182 init_flow (fn);
183 profile_status_for_fn (fn) = PROFILE_ABSENT;
184 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
185 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
186 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 initial_cfg_capacity);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
193 initial_cfg_capacity);
195 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
196 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn);
200 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn);
204 void
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun);
210 /*---------------------------------------------------------------------------
211 Create basic blocks
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
217 static void
218 build_gimple_cfg (gimple_seq seq)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225 init_empty_tree_cfg ();
227 make_blocks (seq);
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
237 n_basic_blocks_for_fn (cfun));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
249 make_edges ();
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus;
254 discriminator_per_locus = NULL;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
261 static void
262 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
264 gimple_stmt_iterator gsi = gsi_last_bb (bb);
265 gimple *stmt = gsi_stmt (gsi);
267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268 return;
270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
272 stmt = gsi_stmt (gsi);
273 if (gimple_code (stmt) != GIMPLE_CALL)
274 break;
275 if (!gimple_call_internal_p (stmt)
276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 break;
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_unroll_kind:
285 loop->unroll
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 cfun->has_unroll = true;
288 break;
289 case annot_expr_no_vector_kind:
290 loop->dont_vectorize = true;
291 break;
292 case annot_expr_vector_kind:
293 loop->force_vectorize = true;
294 cfun->has_force_vectorize_loops = true;
295 break;
296 case annot_expr_parallel_kind:
297 loop->can_be_parallel = true;
298 loop->safelen = INT_MAX;
299 break;
300 default:
301 gcc_unreachable ();
304 stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 gimple_call_arg (stmt, 0));
306 gsi_replace (&gsi, stmt, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
314 static void
315 replace_loop_annotate (void)
317 struct loop *loop;
318 basic_block bb;
319 gimple_stmt_iterator gsi;
320 gimple *stmt;
322 FOR_EACH_LOOP (loop, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop->header, loop);
327 /* Then look into the latch, if any. */
328 if (loop->latch)
329 replace_loop_annotate_in_block (loop->latch, loop);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb, cfun)
335 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
337 stmt = gsi_stmt (gsi);
338 if (gimple_code (stmt) != GIMPLE_CALL)
339 continue;
340 if (!gimple_call_internal_p (stmt)
341 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
342 continue;
344 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
346 case annot_expr_ivdep_kind:
347 case annot_expr_unroll_kind:
348 case annot_expr_no_vector_kind:
349 case annot_expr_vector_kind:
350 break;
351 default:
352 gcc_unreachable ();
355 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
356 stmt = gimple_build_assign (gimple_call_lhs (stmt),
357 gimple_call_arg (stmt, 0));
358 gsi_replace (&gsi, stmt, true);
363 /* Lower internal PHI function from GIMPLE FE. */
365 static void
366 lower_phi_internal_fn ()
368 basic_block bb, pred = NULL;
369 gimple_stmt_iterator gsi;
370 tree lhs;
371 gphi *phi_node;
372 gimple *stmt;
374 /* After edge creation, handle __PHI function from GIMPLE FE. */
375 FOR_EACH_BB_FN (bb, cfun)
377 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
379 stmt = gsi_stmt (gsi);
380 if (! gimple_call_internal_p (stmt, IFN_PHI))
381 break;
383 lhs = gimple_call_lhs (stmt);
384 phi_node = create_phi_node (lhs, bb);
386 /* Add arguments to the PHI node. */
387 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
389 tree arg = gimple_call_arg (stmt, i);
390 if (TREE_CODE (arg) == LABEL_DECL)
391 pred = label_to_block (arg);
392 else
394 edge e = find_edge (pred, bb);
395 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
399 gsi_remove (&gsi, true);
404 static unsigned int
405 execute_build_cfg (void)
407 gimple_seq body = gimple_body (current_function_decl);
409 build_gimple_cfg (body);
410 gimple_set_body (current_function_decl, NULL);
411 if (dump_file && (dump_flags & TDF_DETAILS))
413 fprintf (dump_file, "Scope blocks:\n");
414 dump_scope_blocks (dump_file, dump_flags);
416 cleanup_tree_cfg ();
417 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
418 replace_loop_annotate ();
419 return 0;
422 namespace {
424 const pass_data pass_data_build_cfg =
426 GIMPLE_PASS, /* type */
427 "cfg", /* name */
428 OPTGROUP_NONE, /* optinfo_flags */
429 TV_TREE_CFG, /* tv_id */
430 PROP_gimple_leh, /* properties_required */
431 ( PROP_cfg | PROP_loops ), /* properties_provided */
432 0, /* properties_destroyed */
433 0, /* todo_flags_start */
434 0, /* todo_flags_finish */
437 class pass_build_cfg : public gimple_opt_pass
439 public:
440 pass_build_cfg (gcc::context *ctxt)
441 : gimple_opt_pass (pass_data_build_cfg, ctxt)
444 /* opt_pass methods: */
445 virtual unsigned int execute (function *) { return execute_build_cfg (); }
447 }; // class pass_build_cfg
449 } // anon namespace
451 gimple_opt_pass *
452 make_pass_build_cfg (gcc::context *ctxt)
454 return new pass_build_cfg (ctxt);
458 /* Return true if T is a computed goto. */
460 bool
461 computed_goto_p (gimple *t)
463 return (gimple_code (t) == GIMPLE_GOTO
464 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
467 /* Returns true if the sequence of statements STMTS only contains
468 a call to __builtin_unreachable (). */
470 bool
471 gimple_seq_unreachable_p (gimple_seq stmts)
473 if (stmts == NULL
474 /* Return false if -fsanitize=unreachable, we don't want to
475 optimize away those calls, but rather turn them into
476 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
477 later. */
478 || sanitize_flags_p (SANITIZE_UNREACHABLE))
479 return false;
481 gimple_stmt_iterator gsi = gsi_last (stmts);
483 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
484 return false;
486 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
488 gimple *stmt = gsi_stmt (gsi);
489 if (gimple_code (stmt) != GIMPLE_LABEL
490 && !is_gimple_debug (stmt)
491 && !gimple_clobber_p (stmt))
492 return false;
494 return true;
497 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
498 the other edge points to a bb with just __builtin_unreachable ().
499 I.e. return true for C->M edge in:
500 <bb C>:
502 if (something)
503 goto <bb N>;
504 else
505 goto <bb M>;
506 <bb N>:
507 __builtin_unreachable ();
508 <bb M>: */
510 bool
511 assert_unreachable_fallthru_edge_p (edge e)
513 basic_block pred_bb = e->src;
514 gimple *last = last_stmt (pred_bb);
515 if (last && gimple_code (last) == GIMPLE_COND)
517 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
518 if (other_bb == e->dest)
519 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
520 if (EDGE_COUNT (other_bb->succs) == 0)
521 return gimple_seq_unreachable_p (bb_seq (other_bb));
523 return false;
527 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
528 could alter control flow except via eh. We initialize the flag at
529 CFG build time and only ever clear it later. */
531 static void
532 gimple_call_initialize_ctrl_altering (gimple *stmt)
534 int flags = gimple_call_flags (stmt);
536 /* A call alters control flow if it can make an abnormal goto. */
537 if (call_can_make_abnormal_goto (stmt)
538 /* A call also alters control flow if it does not return. */
539 || flags & ECF_NORETURN
540 /* TM ending statements have backedges out of the transaction.
541 Return true so we split the basic block containing them.
542 Note that the TM_BUILTIN test is merely an optimization. */
543 || ((flags & ECF_TM_BUILTIN)
544 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
545 /* BUILT_IN_RETURN call is same as return statement. */
546 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
547 /* IFN_UNIQUE should be the last insn, to make checking for it
548 as cheap as possible. */
549 || (gimple_call_internal_p (stmt)
550 && gimple_call_internal_unique_p (stmt)))
551 gimple_call_set_ctrl_altering (stmt, true);
552 else
553 gimple_call_set_ctrl_altering (stmt, false);
557 /* Insert SEQ after BB and build a flowgraph. */
559 static basic_block
560 make_blocks_1 (gimple_seq seq, basic_block bb)
562 gimple_stmt_iterator i = gsi_start (seq);
563 gimple *stmt = NULL;
564 gimple *prev_stmt = NULL;
565 bool start_new_block = true;
566 bool first_stmt_of_seq = true;
568 while (!gsi_end_p (i))
570 /* PREV_STMT should only be set to a debug stmt if the debug
571 stmt is before nondebug stmts. Once stmt reaches a nondebug
572 nonlabel, prev_stmt will be set to it, so that
573 stmt_starts_bb_p will know to start a new block if a label is
574 found. However, if stmt was a label after debug stmts only,
575 keep the label in prev_stmt even if we find further debug
576 stmts, for there may be other labels after them, and they
577 should land in the same block. */
578 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
579 prev_stmt = stmt;
580 stmt = gsi_stmt (i);
582 if (stmt && is_gimple_call (stmt))
583 gimple_call_initialize_ctrl_altering (stmt);
585 /* If the statement starts a new basic block or if we have determined
586 in a previous pass that we need to create a new block for STMT, do
587 so now. */
588 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
590 if (!first_stmt_of_seq)
591 gsi_split_seq_before (&i, &seq);
592 bb = create_basic_block (seq, bb);
593 start_new_block = false;
594 prev_stmt = NULL;
597 /* Now add STMT to BB and create the subgraphs for special statement
598 codes. */
599 gimple_set_bb (stmt, bb);
601 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
602 next iteration. */
603 if (stmt_ends_bb_p (stmt))
605 /* If the stmt can make abnormal goto use a new temporary
606 for the assignment to the LHS. This makes sure the old value
607 of the LHS is available on the abnormal edge. Otherwise
608 we will end up with overlapping life-ranges for abnormal
609 SSA names. */
610 if (gimple_has_lhs (stmt)
611 && stmt_can_make_abnormal_goto (stmt)
612 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
614 tree lhs = gimple_get_lhs (stmt);
615 tree tmp = create_tmp_var (TREE_TYPE (lhs));
616 gimple *s = gimple_build_assign (lhs, tmp);
617 gimple_set_location (s, gimple_location (stmt));
618 gimple_set_block (s, gimple_block (stmt));
619 gimple_set_lhs (stmt, tmp);
620 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
621 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
622 DECL_GIMPLE_REG_P (tmp) = 1;
623 gsi_insert_after (&i, s, GSI_SAME_STMT);
625 start_new_block = true;
628 gsi_next (&i);
629 first_stmt_of_seq = false;
631 return bb;
634 /* Build a flowgraph for the sequence of stmts SEQ. */
636 static void
637 make_blocks (gimple_seq seq)
639 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
642 /* Create and return a new empty basic block after bb AFTER. */
644 static basic_block
645 create_bb (void *h, void *e, basic_block after)
647 basic_block bb;
649 gcc_assert (!e);
651 /* Create and initialize a new basic block. Since alloc_block uses
652 GC allocation that clears memory to allocate a basic block, we do
653 not have to clear the newly allocated basic block here. */
654 bb = alloc_block ();
656 bb->index = last_basic_block_for_fn (cfun);
657 bb->flags = BB_NEW;
658 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
660 /* Add the new block to the linked list of blocks. */
661 link_block (bb, after);
663 /* Grow the basic block array if needed. */
664 if ((size_t) last_basic_block_for_fn (cfun)
665 == basic_block_info_for_fn (cfun)->length ())
667 size_t new_size =
668 (last_basic_block_for_fn (cfun)
669 + (last_basic_block_for_fn (cfun) + 3) / 4);
670 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
673 /* Add the newly created block to the array. */
674 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
676 n_basic_blocks_for_fn (cfun)++;
677 last_basic_block_for_fn (cfun)++;
679 return bb;
683 /*---------------------------------------------------------------------------
684 Edge creation
685 ---------------------------------------------------------------------------*/
687 /* If basic block BB has an abnormal edge to a basic block
688 containing IFN_ABNORMAL_DISPATCHER internal call, return
689 that the dispatcher's basic block, otherwise return NULL. */
691 basic_block
692 get_abnormal_succ_dispatcher (basic_block bb)
694 edge e;
695 edge_iterator ei;
697 FOR_EACH_EDGE (e, ei, bb->succs)
698 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
700 gimple_stmt_iterator gsi
701 = gsi_start_nondebug_after_labels_bb (e->dest);
702 gimple *g = gsi_stmt (gsi);
703 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
704 return e->dest;
706 return NULL;
709 /* Helper function for make_edges. Create a basic block with
710 with ABNORMAL_DISPATCHER internal call in it if needed, and
711 create abnormal edges from BBS to it and from it to FOR_BB
712 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
714 static void
715 handle_abnormal_edges (basic_block *dispatcher_bbs,
716 basic_block for_bb, int *bb_to_omp_idx,
717 auto_vec<basic_block> *bbs, bool computed_goto)
719 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
720 unsigned int idx = 0;
721 basic_block bb;
722 bool inner = false;
724 if (bb_to_omp_idx)
726 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
727 if (bb_to_omp_idx[for_bb->index] != 0)
728 inner = true;
731 /* If the dispatcher has been created already, then there are basic
732 blocks with abnormal edges to it, so just make a new edge to
733 for_bb. */
734 if (*dispatcher == NULL)
736 /* Check if there are any basic blocks that need to have
737 abnormal edges to this dispatcher. If there are none, return
738 early. */
739 if (bb_to_omp_idx == NULL)
741 if (bbs->is_empty ())
742 return;
744 else
746 FOR_EACH_VEC_ELT (*bbs, idx, bb)
747 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
748 break;
749 if (bb == NULL)
750 return;
753 /* Create the dispatcher bb. */
754 *dispatcher = create_basic_block (NULL, for_bb);
755 if (computed_goto)
757 /* Factor computed gotos into a common computed goto site. Also
758 record the location of that site so that we can un-factor the
759 gotos after we have converted back to normal form. */
760 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
762 /* Create the destination of the factored goto. Each original
763 computed goto will put its desired destination into this
764 variable and jump to the label we create immediately below. */
765 tree var = create_tmp_var (ptr_type_node, "gotovar");
767 /* Build a label for the new block which will contain the
768 factored computed goto. */
769 tree factored_label_decl
770 = create_artificial_label (UNKNOWN_LOCATION);
771 gimple *factored_computed_goto_label
772 = gimple_build_label (factored_label_decl);
773 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
775 /* Build our new computed goto. */
776 gimple *factored_computed_goto = gimple_build_goto (var);
777 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
779 FOR_EACH_VEC_ELT (*bbs, idx, bb)
781 if (bb_to_omp_idx
782 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
783 continue;
785 gsi = gsi_last_bb (bb);
786 gimple *last = gsi_stmt (gsi);
788 gcc_assert (computed_goto_p (last));
790 /* Copy the original computed goto's destination into VAR. */
791 gimple *assignment
792 = gimple_build_assign (var, gimple_goto_dest (last));
793 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
795 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
796 e->goto_locus = gimple_location (last);
797 gsi_remove (&gsi, true);
800 else
802 tree arg = inner ? boolean_true_node : boolean_false_node;
803 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
804 1, arg);
805 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
806 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
808 /* Create predecessor edges of the dispatcher. */
809 FOR_EACH_VEC_ELT (*bbs, idx, bb)
811 if (bb_to_omp_idx
812 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
813 continue;
814 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
819 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
822 /* Creates outgoing edges for BB. Returns 1 when it ends with an
823 computed goto, returns 2 when it ends with a statement that
824 might return to this function via an nonlocal goto, otherwise
825 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
827 static int
828 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
830 gimple *last = last_stmt (bb);
831 bool fallthru = false;
832 int ret = 0;
834 if (!last)
835 return ret;
837 switch (gimple_code (last))
839 case GIMPLE_GOTO:
840 if (make_goto_expr_edges (bb))
841 ret = 1;
842 fallthru = false;
843 break;
844 case GIMPLE_RETURN:
846 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
847 e->goto_locus = gimple_location (last);
848 fallthru = false;
850 break;
851 case GIMPLE_COND:
852 make_cond_expr_edges (bb);
853 fallthru = false;
854 break;
855 case GIMPLE_SWITCH:
856 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
857 fallthru = false;
858 break;
859 case GIMPLE_RESX:
860 make_eh_edges (last);
861 fallthru = false;
862 break;
863 case GIMPLE_EH_DISPATCH:
864 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
865 break;
867 case GIMPLE_CALL:
868 /* If this function receives a nonlocal goto, then we need to
869 make edges from this call site to all the nonlocal goto
870 handlers. */
871 if (stmt_can_make_abnormal_goto (last))
872 ret = 2;
874 /* If this statement has reachable exception handlers, then
875 create abnormal edges to them. */
876 make_eh_edges (last);
878 /* BUILTIN_RETURN is really a return statement. */
879 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
881 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
882 fallthru = false;
884 /* Some calls are known not to return. */
885 else
886 fallthru = !gimple_call_noreturn_p (last);
887 break;
889 case GIMPLE_ASSIGN:
890 /* A GIMPLE_ASSIGN may throw internally and thus be considered
891 control-altering. */
892 if (is_ctrl_altering_stmt (last))
893 make_eh_edges (last);
894 fallthru = true;
895 break;
897 case GIMPLE_ASM:
898 make_gimple_asm_edges (bb);
899 fallthru = true;
900 break;
902 CASE_GIMPLE_OMP:
903 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
904 break;
906 case GIMPLE_TRANSACTION:
908 gtransaction *txn = as_a <gtransaction *> (last);
909 tree label1 = gimple_transaction_label_norm (txn);
910 tree label2 = gimple_transaction_label_uninst (txn);
912 if (label1)
913 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
914 if (label2)
915 make_edge (bb, label_to_block (label2),
916 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
918 tree label3 = gimple_transaction_label_over (txn);
919 if (gimple_transaction_subcode (txn)
920 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
921 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
923 fallthru = false;
925 break;
927 default:
928 gcc_assert (!stmt_ends_bb_p (last));
929 fallthru = true;
930 break;
933 if (fallthru)
934 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
936 return ret;
939 /* Join all the blocks in the flowgraph. */
941 static void
942 make_edges (void)
944 basic_block bb;
945 struct omp_region *cur_region = NULL;
946 auto_vec<basic_block> ab_edge_goto;
947 auto_vec<basic_block> ab_edge_call;
948 int *bb_to_omp_idx = NULL;
949 int cur_omp_region_idx = 0;
951 /* Create an edge from entry to the first block with executable
952 statements in it. */
953 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
954 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
955 EDGE_FALLTHRU);
957 /* Traverse the basic block array placing edges. */
958 FOR_EACH_BB_FN (bb, cfun)
960 int mer;
962 if (bb_to_omp_idx)
963 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
965 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
966 if (mer == 1)
967 ab_edge_goto.safe_push (bb);
968 else if (mer == 2)
969 ab_edge_call.safe_push (bb);
971 if (cur_region && bb_to_omp_idx == NULL)
972 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
975 /* Computed gotos are hell to deal with, especially if there are
976 lots of them with a large number of destinations. So we factor
977 them to a common computed goto location before we build the
978 edge list. After we convert back to normal form, we will un-factor
979 the computed gotos since factoring introduces an unwanted jump.
980 For non-local gotos and abnormal edges from calls to calls that return
981 twice or forced labels, factor the abnormal edges too, by having all
982 abnormal edges from the calls go to a common artificial basic block
983 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
984 basic block to all forced labels and calls returning twice.
985 We do this per-OpenMP structured block, because those regions
986 are guaranteed to be single entry single exit by the standard,
987 so it is not allowed to enter or exit such regions abnormally this way,
988 thus all computed gotos, non-local gotos and setjmp/longjmp calls
989 must not transfer control across SESE region boundaries. */
990 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
992 gimple_stmt_iterator gsi;
993 basic_block dispatcher_bb_array[2] = { NULL, NULL };
994 basic_block *dispatcher_bbs = dispatcher_bb_array;
995 int count = n_basic_blocks_for_fn (cfun);
997 if (bb_to_omp_idx)
998 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1000 FOR_EACH_BB_FN (bb, cfun)
1002 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1004 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1005 tree target;
1007 if (!label_stmt)
1009 if (is_gimple_debug (gsi_stmt (gsi)))
1010 continue;
1011 break;
1014 target = gimple_label_label (label_stmt);
1016 /* Make an edge to every label block that has been marked as a
1017 potential target for a computed goto or a non-local goto. */
1018 if (FORCED_LABEL (target))
1019 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1020 &ab_edge_goto, true);
1021 if (DECL_NONLOCAL (target))
1023 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1024 &ab_edge_call, false);
1025 break;
1029 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1030 gsi_next_nondebug (&gsi);
1031 if (!gsi_end_p (gsi))
1033 /* Make an edge to every setjmp-like call. */
1034 gimple *call_stmt = gsi_stmt (gsi);
1035 if (is_gimple_call (call_stmt)
1036 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1037 || gimple_call_builtin_p (call_stmt,
1038 BUILT_IN_SETJMP_RECEIVER)))
1039 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1040 &ab_edge_call, false);
1044 if (bb_to_omp_idx)
1045 XDELETE (dispatcher_bbs);
1048 XDELETE (bb_to_omp_idx);
1050 omp_free_regions ();
1053 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1054 needed. Returns true if new bbs were created.
1055 Note: This is transitional code, and should not be used for new code. We
1056 should be able to get rid of this by rewriting all target va-arg
1057 gimplification hooks to use an interface gimple_build_cond_value as described
1058 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1060 bool
1061 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1063 gimple *stmt = gsi_stmt (*gsi);
1064 basic_block bb = gimple_bb (stmt);
1065 basic_block lastbb, afterbb;
1066 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1067 edge e;
1068 lastbb = make_blocks_1 (seq, bb);
1069 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1070 return false;
1071 e = split_block (bb, stmt);
1072 /* Move e->dest to come after the new basic blocks. */
1073 afterbb = e->dest;
1074 unlink_block (afterbb);
1075 link_block (afterbb, lastbb);
1076 redirect_edge_succ (e, bb->next_bb);
1077 bb = bb->next_bb;
1078 while (bb != afterbb)
1080 struct omp_region *cur_region = NULL;
1081 profile_count cnt = profile_count::zero ();
1082 bool all = true;
1084 int cur_omp_region_idx = 0;
1085 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1086 gcc_assert (!mer && !cur_region);
1087 add_bb_to_loop (bb, afterbb->loop_father);
1089 edge e;
1090 edge_iterator ei;
1091 FOR_EACH_EDGE (e, ei, bb->preds)
1093 if (e->count ().initialized_p ())
1094 cnt += e->count ();
1095 else
1096 all = false;
1098 tree_guess_outgoing_edge_probabilities (bb);
1099 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1100 bb->count = cnt;
1102 bb = bb->next_bb;
1104 return true;
1107 /* Find the next available discriminator value for LOCUS. The
1108 discriminator distinguishes among several basic blocks that
1109 share a common locus, allowing for more accurate sample-based
1110 profiling. */
1112 static int
1113 next_discriminator_for_locus (location_t locus)
1115 struct locus_discrim_map item;
1116 struct locus_discrim_map **slot;
1118 item.locus = locus;
1119 item.discriminator = 0;
1120 slot = discriminator_per_locus->find_slot_with_hash (
1121 &item, LOCATION_LINE (locus), INSERT);
1122 gcc_assert (slot);
1123 if (*slot == HTAB_EMPTY_ENTRY)
1125 *slot = XNEW (struct locus_discrim_map);
1126 gcc_assert (*slot);
1127 (*slot)->locus = locus;
1128 (*slot)->discriminator = 0;
1130 (*slot)->discriminator++;
1131 return (*slot)->discriminator;
1134 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1136 static bool
1137 same_line_p (location_t locus1, location_t locus2)
1139 expanded_location from, to;
1141 if (locus1 == locus2)
1142 return true;
1144 from = expand_location (locus1);
1145 to = expand_location (locus2);
1147 if (from.line != to.line)
1148 return false;
1149 if (from.file == to.file)
1150 return true;
1151 return (from.file != NULL
1152 && to.file != NULL
1153 && filename_cmp (from.file, to.file) == 0);
1156 /* Assign discriminators to each basic block. */
1158 static void
1159 assign_discriminators (void)
1161 basic_block bb;
1163 FOR_EACH_BB_FN (bb, cfun)
1165 edge e;
1166 edge_iterator ei;
1167 gimple *last = last_stmt (bb);
1168 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1170 if (locus == UNKNOWN_LOCATION)
1171 continue;
1173 FOR_EACH_EDGE (e, ei, bb->succs)
1175 gimple *first = first_non_label_stmt (e->dest);
1176 gimple *last = last_stmt (e->dest);
1177 if ((first && same_line_p (locus, gimple_location (first)))
1178 || (last && same_line_p (locus, gimple_location (last))))
1180 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1181 bb->discriminator = next_discriminator_for_locus (locus);
1182 else
1183 e->dest->discriminator = next_discriminator_for_locus (locus);
1189 /* Create the edges for a GIMPLE_COND starting at block BB. */
1191 static void
1192 make_cond_expr_edges (basic_block bb)
1194 gcond *entry = as_a <gcond *> (last_stmt (bb));
1195 gimple *then_stmt, *else_stmt;
1196 basic_block then_bb, else_bb;
1197 tree then_label, else_label;
1198 edge e;
1200 gcc_assert (entry);
1201 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1203 /* Entry basic blocks for each component. */
1204 then_label = gimple_cond_true_label (entry);
1205 else_label = gimple_cond_false_label (entry);
1206 then_bb = label_to_block (then_label);
1207 else_bb = label_to_block (else_label);
1208 then_stmt = first_stmt (then_bb);
1209 else_stmt = first_stmt (else_bb);
1211 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1212 e->goto_locus = gimple_location (then_stmt);
1213 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1214 if (e)
1215 e->goto_locus = gimple_location (else_stmt);
1217 /* We do not need the labels anymore. */
1218 gimple_cond_set_true_label (entry, NULL_TREE);
1219 gimple_cond_set_false_label (entry, NULL_TREE);
1223 /* Called for each element in the hash table (P) as we delete the
1224 edge to cases hash table.
1226 Clear all the CASE_CHAINs to prevent problems with copying of
1227 SWITCH_EXPRs and structure sharing rules, then free the hash table
1228 element. */
1230 bool
1231 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1233 tree t, next;
1235 for (t = value; t; t = next)
1237 next = CASE_CHAIN (t);
1238 CASE_CHAIN (t) = NULL;
1241 return true;
1244 /* Start recording information mapping edges to case labels. */
1246 void
1247 start_recording_case_labels (void)
1249 gcc_assert (edge_to_cases == NULL);
1250 edge_to_cases = new hash_map<edge, tree>;
1251 touched_switch_bbs = BITMAP_ALLOC (NULL);
1254 /* Return nonzero if we are recording information for case labels. */
1256 static bool
1257 recording_case_labels_p (void)
1259 return (edge_to_cases != NULL);
1262 /* Stop recording information mapping edges to case labels and
1263 remove any information we have recorded. */
1264 void
1265 end_recording_case_labels (void)
1267 bitmap_iterator bi;
1268 unsigned i;
1269 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1270 delete edge_to_cases;
1271 edge_to_cases = NULL;
1272 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1274 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1275 if (bb)
1277 gimple *stmt = last_stmt (bb);
1278 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1279 group_case_labels_stmt (as_a <gswitch *> (stmt));
1282 BITMAP_FREE (touched_switch_bbs);
1285 /* If we are inside a {start,end}_recording_cases block, then return
1286 a chain of CASE_LABEL_EXPRs from T which reference E.
1288 Otherwise return NULL. */
1290 static tree
1291 get_cases_for_edge (edge e, gswitch *t)
1293 tree *slot;
1294 size_t i, n;
1296 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1297 chains available. Return NULL so the caller can detect this case. */
1298 if (!recording_case_labels_p ())
1299 return NULL;
1301 slot = edge_to_cases->get (e);
1302 if (slot)
1303 return *slot;
1305 /* If we did not find E in the hash table, then this must be the first
1306 time we have been queried for information about E & T. Add all the
1307 elements from T to the hash table then perform the query again. */
1309 n = gimple_switch_num_labels (t);
1310 for (i = 0; i < n; i++)
1312 tree elt = gimple_switch_label (t, i);
1313 tree lab = CASE_LABEL (elt);
1314 basic_block label_bb = label_to_block (lab);
1315 edge this_edge = find_edge (e->src, label_bb);
1317 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1318 a new chain. */
1319 tree &s = edge_to_cases->get_or_insert (this_edge);
1320 CASE_CHAIN (elt) = s;
1321 s = elt;
1324 return *edge_to_cases->get (e);
1327 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1329 static void
1330 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1332 size_t i, n;
1334 n = gimple_switch_num_labels (entry);
1336 for (i = 0; i < n; ++i)
1338 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1339 basic_block label_bb = label_to_block (lab);
1340 make_edge (bb, label_bb, 0);
1345 /* Return the basic block holding label DEST. */
1347 basic_block
1348 label_to_block_fn (struct function *ifun, tree dest)
1350 int uid = LABEL_DECL_UID (dest);
1352 /* We would die hard when faced by an undefined label. Emit a label to
1353 the very first basic block. This will hopefully make even the dataflow
1354 and undefined variable warnings quite right. */
1355 if (seen_error () && uid < 0)
1357 gimple_stmt_iterator gsi =
1358 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1359 gimple *stmt;
1361 stmt = gimple_build_label (dest);
1362 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1363 uid = LABEL_DECL_UID (dest);
1365 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1366 return NULL;
1367 return (*ifun->cfg->x_label_to_block_map)[uid];
1370 /* Create edges for a goto statement at block BB. Returns true
1371 if abnormal edges should be created. */
1373 static bool
1374 make_goto_expr_edges (basic_block bb)
1376 gimple_stmt_iterator last = gsi_last_bb (bb);
1377 gimple *goto_t = gsi_stmt (last);
1379 /* A simple GOTO creates normal edges. */
1380 if (simple_goto_p (goto_t))
1382 tree dest = gimple_goto_dest (goto_t);
1383 basic_block label_bb = label_to_block (dest);
1384 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1385 e->goto_locus = gimple_location (goto_t);
1386 gsi_remove (&last, true);
1387 return false;
1390 /* A computed GOTO creates abnormal edges. */
1391 return true;
1394 /* Create edges for an asm statement with labels at block BB. */
1396 static void
1397 make_gimple_asm_edges (basic_block bb)
1399 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1400 int i, n = gimple_asm_nlabels (stmt);
1402 for (i = 0; i < n; ++i)
1404 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1405 basic_block label_bb = label_to_block (label);
1406 make_edge (bb, label_bb, 0);
1410 /*---------------------------------------------------------------------------
1411 Flowgraph analysis
1412 ---------------------------------------------------------------------------*/
1414 /* Cleanup useless labels in basic blocks. This is something we wish
1415 to do early because it allows us to group case labels before creating
1416 the edges for the CFG, and it speeds up block statement iterators in
1417 all passes later on.
1418 We rerun this pass after CFG is created, to get rid of the labels that
1419 are no longer referenced. After then we do not run it any more, since
1420 (almost) no new labels should be created. */
1422 /* A map from basic block index to the leading label of that block. */
1423 static struct label_record
1425 /* The label. */
1426 tree label;
1428 /* True if the label is referenced from somewhere. */
1429 bool used;
1430 } *label_for_bb;
1432 /* Given LABEL return the first label in the same basic block. */
1434 static tree
1435 main_block_label (tree label)
1437 basic_block bb = label_to_block (label);
1438 tree main_label = label_for_bb[bb->index].label;
1440 /* label_to_block possibly inserted undefined label into the chain. */
1441 if (!main_label)
1443 label_for_bb[bb->index].label = label;
1444 main_label = label;
1447 label_for_bb[bb->index].used = true;
1448 return main_label;
1451 /* Clean up redundant labels within the exception tree. */
1453 static void
1454 cleanup_dead_labels_eh (void)
1456 eh_landing_pad lp;
1457 eh_region r;
1458 tree lab;
1459 int i;
1461 if (cfun->eh == NULL)
1462 return;
1464 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1465 if (lp && lp->post_landing_pad)
1467 lab = main_block_label (lp->post_landing_pad);
1468 if (lab != lp->post_landing_pad)
1470 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1471 EH_LANDING_PAD_NR (lab) = lp->index;
1475 FOR_ALL_EH_REGION (r)
1476 switch (r->type)
1478 case ERT_CLEANUP:
1479 case ERT_MUST_NOT_THROW:
1480 break;
1482 case ERT_TRY:
1484 eh_catch c;
1485 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1487 lab = c->label;
1488 if (lab)
1489 c->label = main_block_label (lab);
1492 break;
1494 case ERT_ALLOWED_EXCEPTIONS:
1495 lab = r->u.allowed.label;
1496 if (lab)
1497 r->u.allowed.label = main_block_label (lab);
1498 break;
1503 /* Cleanup redundant labels. This is a three-step process:
1504 1) Find the leading label for each block.
1505 2) Redirect all references to labels to the leading labels.
1506 3) Cleanup all useless labels. */
1508 void
1509 cleanup_dead_labels (void)
1511 basic_block bb;
1512 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1514 /* Find a suitable label for each block. We use the first user-defined
1515 label if there is one, or otherwise just the first label we see. */
1516 FOR_EACH_BB_FN (bb, cfun)
1518 gimple_stmt_iterator i;
1520 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1522 if (is_gimple_debug (gsi_stmt (i)))
1523 continue;
1525 tree label;
1526 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1528 if (!label_stmt)
1529 break;
1531 label = gimple_label_label (label_stmt);
1533 /* If we have not yet seen a label for the current block,
1534 remember this one and see if there are more labels. */
1535 if (!label_for_bb[bb->index].label)
1537 label_for_bb[bb->index].label = label;
1538 continue;
1541 /* If we did see a label for the current block already, but it
1542 is an artificially created label, replace it if the current
1543 label is a user defined label. */
1544 if (!DECL_ARTIFICIAL (label)
1545 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1547 label_for_bb[bb->index].label = label;
1548 break;
1553 /* Now redirect all jumps/branches to the selected label.
1554 First do so for each block ending in a control statement. */
1555 FOR_EACH_BB_FN (bb, cfun)
1557 gimple *stmt = last_stmt (bb);
1558 tree label, new_label;
1560 if (!stmt)
1561 continue;
1563 switch (gimple_code (stmt))
1565 case GIMPLE_COND:
1567 gcond *cond_stmt = as_a <gcond *> (stmt);
1568 label = gimple_cond_true_label (cond_stmt);
1569 if (label)
1571 new_label = main_block_label (label);
1572 if (new_label != label)
1573 gimple_cond_set_true_label (cond_stmt, new_label);
1576 label = gimple_cond_false_label (cond_stmt);
1577 if (label)
1579 new_label = main_block_label (label);
1580 if (new_label != label)
1581 gimple_cond_set_false_label (cond_stmt, new_label);
1584 break;
1586 case GIMPLE_SWITCH:
1588 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1589 size_t i, n = gimple_switch_num_labels (switch_stmt);
1591 /* Replace all destination labels. */
1592 for (i = 0; i < n; ++i)
1594 tree case_label = gimple_switch_label (switch_stmt, i);
1595 label = CASE_LABEL (case_label);
1596 new_label = main_block_label (label);
1597 if (new_label != label)
1598 CASE_LABEL (case_label) = new_label;
1600 break;
1603 case GIMPLE_ASM:
1605 gasm *asm_stmt = as_a <gasm *> (stmt);
1606 int i, n = gimple_asm_nlabels (asm_stmt);
1608 for (i = 0; i < n; ++i)
1610 tree cons = gimple_asm_label_op (asm_stmt, i);
1611 tree label = main_block_label (TREE_VALUE (cons));
1612 TREE_VALUE (cons) = label;
1614 break;
1617 /* We have to handle gotos until they're removed, and we don't
1618 remove them until after we've created the CFG edges. */
1619 case GIMPLE_GOTO:
1620 if (!computed_goto_p (stmt))
1622 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1623 label = gimple_goto_dest (goto_stmt);
1624 new_label = main_block_label (label);
1625 if (new_label != label)
1626 gimple_goto_set_dest (goto_stmt, new_label);
1628 break;
1630 case GIMPLE_TRANSACTION:
1632 gtransaction *txn = as_a <gtransaction *> (stmt);
1634 label = gimple_transaction_label_norm (txn);
1635 if (label)
1637 new_label = main_block_label (label);
1638 if (new_label != label)
1639 gimple_transaction_set_label_norm (txn, new_label);
1642 label = gimple_transaction_label_uninst (txn);
1643 if (label)
1645 new_label = main_block_label (label);
1646 if (new_label != label)
1647 gimple_transaction_set_label_uninst (txn, new_label);
1650 label = gimple_transaction_label_over (txn);
1651 if (label)
1653 new_label = main_block_label (label);
1654 if (new_label != label)
1655 gimple_transaction_set_label_over (txn, new_label);
1658 break;
1660 default:
1661 break;
1665 /* Do the same for the exception region tree labels. */
1666 cleanup_dead_labels_eh ();
1668 /* Finally, purge dead labels. All user-defined labels and labels that
1669 can be the target of non-local gotos and labels which have their
1670 address taken are preserved. */
1671 FOR_EACH_BB_FN (bb, cfun)
1673 gimple_stmt_iterator i;
1674 tree label_for_this_bb = label_for_bb[bb->index].label;
1676 if (!label_for_this_bb)
1677 continue;
1679 /* If the main label of the block is unused, we may still remove it. */
1680 if (!label_for_bb[bb->index].used)
1681 label_for_this_bb = NULL;
1683 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1685 if (is_gimple_debug (gsi_stmt (i)))
1687 gsi_next (&i);
1688 continue;
1691 tree label;
1692 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1694 if (!label_stmt)
1695 break;
1697 label = gimple_label_label (label_stmt);
1699 if (label == label_for_this_bb
1700 || !DECL_ARTIFICIAL (label)
1701 || DECL_NONLOCAL (label)
1702 || FORCED_LABEL (label))
1703 gsi_next (&i);
1704 else
1705 gsi_remove (&i, true);
1709 free (label_for_bb);
1712 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1713 the ones jumping to the same label.
1714 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1716 bool
1717 group_case_labels_stmt (gswitch *stmt)
1719 int old_size = gimple_switch_num_labels (stmt);
1720 int i, next_index, new_size;
1721 basic_block default_bb = NULL;
1723 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1725 /* Look for possible opportunities to merge cases. */
1726 new_size = i = 1;
1727 while (i < old_size)
1729 tree base_case, base_high;
1730 basic_block base_bb;
1732 base_case = gimple_switch_label (stmt, i);
1734 gcc_assert (base_case);
1735 base_bb = label_to_block (CASE_LABEL (base_case));
1737 /* Discard cases that have the same destination as the default case or
1738 whose destiniation blocks have already been removed as unreachable. */
1739 if (base_bb == NULL || base_bb == default_bb)
1741 i++;
1742 continue;
1745 base_high = CASE_HIGH (base_case)
1746 ? CASE_HIGH (base_case)
1747 : CASE_LOW (base_case);
1748 next_index = i + 1;
1750 /* Try to merge case labels. Break out when we reach the end
1751 of the label vector or when we cannot merge the next case
1752 label with the current one. */
1753 while (next_index < old_size)
1755 tree merge_case = gimple_switch_label (stmt, next_index);
1756 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1757 wide_int bhp1 = wi::to_wide (base_high) + 1;
1759 /* Merge the cases if they jump to the same place,
1760 and their ranges are consecutive. */
1761 if (merge_bb == base_bb
1762 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1764 base_high = CASE_HIGH (merge_case) ?
1765 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1766 CASE_HIGH (base_case) = base_high;
1767 next_index++;
1769 else
1770 break;
1773 /* Discard cases that have an unreachable destination block. */
1774 if (EDGE_COUNT (base_bb->succs) == 0
1775 && gimple_seq_unreachable_p (bb_seq (base_bb))
1776 /* Don't optimize this if __builtin_unreachable () is the
1777 implicitly added one by the C++ FE too early, before
1778 -Wreturn-type can be diagnosed. We'll optimize it later
1779 during switchconv pass or any other cfg cleanup. */
1780 && (gimple_in_ssa_p (cfun)
1781 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1782 != BUILTINS_LOCATION)))
1784 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1785 if (base_edge != NULL)
1786 remove_edge_and_dominated_blocks (base_edge);
1787 i = next_index;
1788 continue;
1791 if (new_size < i)
1792 gimple_switch_set_label (stmt, new_size,
1793 gimple_switch_label (stmt, i));
1794 i = next_index;
1795 new_size++;
1798 gcc_assert (new_size <= old_size);
1800 if (new_size < old_size)
1801 gimple_switch_set_num_labels (stmt, new_size);
1803 return new_size < old_size;
1806 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1807 and scan the sorted vector of cases. Combine the ones jumping to the
1808 same label. */
1810 bool
1811 group_case_labels (void)
1813 basic_block bb;
1814 bool changed = false;
1816 FOR_EACH_BB_FN (bb, cfun)
1818 gimple *stmt = last_stmt (bb);
1819 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1820 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1823 return changed;
1826 /* Checks whether we can merge block B into block A. */
1828 static bool
1829 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1831 gimple *stmt;
1833 if (!single_succ_p (a))
1834 return false;
1836 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1837 return false;
1839 if (single_succ (a) != b)
1840 return false;
1842 if (!single_pred_p (b))
1843 return false;
1845 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1846 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1847 return false;
1849 /* If A ends by a statement causing exceptions or something similar, we
1850 cannot merge the blocks. */
1851 stmt = last_stmt (a);
1852 if (stmt && stmt_ends_bb_p (stmt))
1853 return false;
1855 /* Do not allow a block with only a non-local label to be merged. */
1856 if (stmt)
1857 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1858 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1859 return false;
1861 /* Examine the labels at the beginning of B. */
1862 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1863 gsi_next (&gsi))
1865 tree lab;
1866 if (is_gimple_debug (gsi_stmt (gsi)))
1867 continue;
1868 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1869 if (!label_stmt)
1870 break;
1871 lab = gimple_label_label (label_stmt);
1873 /* Do not remove user forced labels or for -O0 any user labels. */
1874 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1875 return false;
1878 /* Protect simple loop latches. We only want to avoid merging
1879 the latch with the loop header or with a block in another
1880 loop in this case. */
1881 if (current_loops
1882 && b->loop_father->latch == b
1883 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1884 && (b->loop_father->header == a
1885 || b->loop_father != a->loop_father))
1886 return false;
1888 /* It must be possible to eliminate all phi nodes in B. If ssa form
1889 is not up-to-date and a name-mapping is registered, we cannot eliminate
1890 any phis. Symbols marked for renaming are never a problem though. */
1891 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1892 gsi_next (&gsi))
1894 gphi *phi = gsi.phi ();
1895 /* Technically only new names matter. */
1896 if (name_registered_for_update_p (PHI_RESULT (phi)))
1897 return false;
1900 /* When not optimizing, don't merge if we'd lose goto_locus. */
1901 if (!optimize
1902 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1904 location_t goto_locus = single_succ_edge (a)->goto_locus;
1905 gimple_stmt_iterator prev, next;
1906 prev = gsi_last_nondebug_bb (a);
1907 next = gsi_after_labels (b);
1908 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1909 gsi_next_nondebug (&next);
1910 if ((gsi_end_p (prev)
1911 || gimple_location (gsi_stmt (prev)) != goto_locus)
1912 && (gsi_end_p (next)
1913 || gimple_location (gsi_stmt (next)) != goto_locus))
1914 return false;
1917 return true;
1920 /* Replaces all uses of NAME by VAL. */
1922 void
1923 replace_uses_by (tree name, tree val)
1925 imm_use_iterator imm_iter;
1926 use_operand_p use;
1927 gimple *stmt;
1928 edge e;
1930 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1932 /* Mark the block if we change the last stmt in it. */
1933 if (cfgcleanup_altered_bbs
1934 && stmt_ends_bb_p (stmt))
1935 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1937 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1939 replace_exp (use, val);
1941 if (gimple_code (stmt) == GIMPLE_PHI)
1943 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1944 PHI_ARG_INDEX_FROM_USE (use));
1945 if (e->flags & EDGE_ABNORMAL
1946 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1948 /* This can only occur for virtual operands, since
1949 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1950 would prevent replacement. */
1951 gcc_checking_assert (virtual_operand_p (name));
1952 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1957 if (gimple_code (stmt) != GIMPLE_PHI)
1959 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1960 gimple *orig_stmt = stmt;
1961 size_t i;
1963 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1964 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1965 only change sth from non-invariant to invariant, and only
1966 when propagating constants. */
1967 if (is_gimple_min_invariant (val))
1968 for (i = 0; i < gimple_num_ops (stmt); i++)
1970 tree op = gimple_op (stmt, i);
1971 /* Operands may be empty here. For example, the labels
1972 of a GIMPLE_COND are nulled out following the creation
1973 of the corresponding CFG edges. */
1974 if (op && TREE_CODE (op) == ADDR_EXPR)
1975 recompute_tree_invariant_for_addr_expr (op);
1978 if (fold_stmt (&gsi))
1979 stmt = gsi_stmt (gsi);
1981 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1982 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1984 update_stmt (stmt);
1988 gcc_checking_assert (has_zero_uses (name));
1990 /* Also update the trees stored in loop structures. */
1991 if (current_loops)
1993 struct loop *loop;
1995 FOR_EACH_LOOP (loop, 0)
1997 substitute_in_loop_info (loop, name, val);
2002 /* Merge block B into block A. */
2004 static void
2005 gimple_merge_blocks (basic_block a, basic_block b)
2007 gimple_stmt_iterator last, gsi;
2008 gphi_iterator psi;
2010 if (dump_file)
2011 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2013 /* Remove all single-valued PHI nodes from block B of the form
2014 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2015 gsi = gsi_last_bb (a);
2016 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2018 gimple *phi = gsi_stmt (psi);
2019 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2020 gimple *copy;
2021 bool may_replace_uses = (virtual_operand_p (def)
2022 || may_propagate_copy (def, use));
2024 /* In case we maintain loop closed ssa form, do not propagate arguments
2025 of loop exit phi nodes. */
2026 if (current_loops
2027 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2028 && !virtual_operand_p (def)
2029 && TREE_CODE (use) == SSA_NAME
2030 && a->loop_father != b->loop_father)
2031 may_replace_uses = false;
2033 if (!may_replace_uses)
2035 gcc_assert (!virtual_operand_p (def));
2037 /* Note that just emitting the copies is fine -- there is no problem
2038 with ordering of phi nodes. This is because A is the single
2039 predecessor of B, therefore results of the phi nodes cannot
2040 appear as arguments of the phi nodes. */
2041 copy = gimple_build_assign (def, use);
2042 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2043 remove_phi_node (&psi, false);
2045 else
2047 /* If we deal with a PHI for virtual operands, we can simply
2048 propagate these without fussing with folding or updating
2049 the stmt. */
2050 if (virtual_operand_p (def))
2052 imm_use_iterator iter;
2053 use_operand_p use_p;
2054 gimple *stmt;
2056 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2057 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2058 SET_USE (use_p, use);
2060 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2061 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2063 else
2064 replace_uses_by (def, use);
2066 remove_phi_node (&psi, true);
2070 /* Ensure that B follows A. */
2071 move_block_after (b, a);
2073 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2074 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2076 /* Remove labels from B and set gimple_bb to A for other statements. */
2077 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2079 gimple *stmt = gsi_stmt (gsi);
2080 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2082 tree label = gimple_label_label (label_stmt);
2083 int lp_nr;
2085 gsi_remove (&gsi, false);
2087 /* Now that we can thread computed gotos, we might have
2088 a situation where we have a forced label in block B
2089 However, the label at the start of block B might still be
2090 used in other ways (think about the runtime checking for
2091 Fortran assigned gotos). So we can not just delete the
2092 label. Instead we move the label to the start of block A. */
2093 if (FORCED_LABEL (label))
2095 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2096 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2098 /* Other user labels keep around in a form of a debug stmt. */
2099 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2101 gimple *dbg = gimple_build_debug_bind (label,
2102 integer_zero_node,
2103 stmt);
2104 gimple_debug_bind_reset_value (dbg);
2105 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2108 lp_nr = EH_LANDING_PAD_NR (label);
2109 if (lp_nr)
2111 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2112 lp->post_landing_pad = NULL;
2115 else
2117 gimple_set_bb (stmt, a);
2118 gsi_next (&gsi);
2122 /* When merging two BBs, if their counts are different, the larger count
2123 is selected as the new bb count. This is to handle inconsistent
2124 profiles. */
2125 if (a->loop_father == b->loop_father)
2127 a->count = a->count.merge (b->count);
2130 /* Merge the sequences. */
2131 last = gsi_last_bb (a);
2132 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2133 set_bb_seq (b, NULL);
2135 if (cfgcleanup_altered_bbs)
2136 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2140 /* Return the one of two successors of BB that is not reachable by a
2141 complex edge, if there is one. Else, return BB. We use
2142 this in optimizations that use post-dominators for their heuristics,
2143 to catch the cases in C++ where function calls are involved. */
2145 basic_block
2146 single_noncomplex_succ (basic_block bb)
2148 edge e0, e1;
2149 if (EDGE_COUNT (bb->succs) != 2)
2150 return bb;
2152 e0 = EDGE_SUCC (bb, 0);
2153 e1 = EDGE_SUCC (bb, 1);
2154 if (e0->flags & EDGE_COMPLEX)
2155 return e1->dest;
2156 if (e1->flags & EDGE_COMPLEX)
2157 return e0->dest;
2159 return bb;
2162 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2164 void
2165 notice_special_calls (gcall *call)
2167 int flags = gimple_call_flags (call);
2169 if (flags & ECF_MAY_BE_ALLOCA)
2170 cfun->calls_alloca = true;
2171 if (flags & ECF_RETURNS_TWICE)
2172 cfun->calls_setjmp = true;
2176 /* Clear flags set by notice_special_calls. Used by dead code removal
2177 to update the flags. */
2179 void
2180 clear_special_calls (void)
2182 cfun->calls_alloca = false;
2183 cfun->calls_setjmp = false;
2186 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2188 static void
2189 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2191 /* Since this block is no longer reachable, we can just delete all
2192 of its PHI nodes. */
2193 remove_phi_nodes (bb);
2195 /* Remove edges to BB's successors. */
2196 while (EDGE_COUNT (bb->succs) > 0)
2197 remove_edge (EDGE_SUCC (bb, 0));
2201 /* Remove statements of basic block BB. */
2203 static void
2204 remove_bb (basic_block bb)
2206 gimple_stmt_iterator i;
2208 if (dump_file)
2210 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2211 if (dump_flags & TDF_DETAILS)
2213 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2214 fprintf (dump_file, "\n");
2218 if (current_loops)
2220 struct loop *loop = bb->loop_father;
2222 /* If a loop gets removed, clean up the information associated
2223 with it. */
2224 if (loop->latch == bb
2225 || loop->header == bb)
2226 free_numbers_of_iterations_estimates (loop);
2229 /* Remove all the instructions in the block. */
2230 if (bb_seq (bb) != NULL)
2232 /* Walk backwards so as to get a chance to substitute all
2233 released DEFs into debug stmts. See
2234 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2235 details. */
2236 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2238 gimple *stmt = gsi_stmt (i);
2239 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2240 if (label_stmt
2241 && (FORCED_LABEL (gimple_label_label (label_stmt))
2242 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2244 basic_block new_bb;
2245 gimple_stmt_iterator new_gsi;
2247 /* A non-reachable non-local label may still be referenced.
2248 But it no longer needs to carry the extra semantics of
2249 non-locality. */
2250 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2252 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2253 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2256 new_bb = bb->prev_bb;
2257 new_gsi = gsi_start_bb (new_bb);
2258 gsi_remove (&i, false);
2259 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2261 else
2263 /* Release SSA definitions. */
2264 release_defs (stmt);
2265 gsi_remove (&i, true);
2268 if (gsi_end_p (i))
2269 i = gsi_last_bb (bb);
2270 else
2271 gsi_prev (&i);
2275 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2276 bb->il.gimple.seq = NULL;
2277 bb->il.gimple.phi_nodes = NULL;
2281 /* Given a basic block BB and a value VAL for use in the final statement
2282 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2283 the edge that will be taken out of the block.
2284 If VAL is NULL_TREE, then the current value of the final statement's
2285 predicate or index is used.
2286 If the value does not match a unique edge, NULL is returned. */
2288 edge
2289 find_taken_edge (basic_block bb, tree val)
2291 gimple *stmt;
2293 stmt = last_stmt (bb);
2295 /* Handle ENTRY and EXIT. */
2296 if (!stmt)
2297 return NULL;
2299 if (gimple_code (stmt) == GIMPLE_COND)
2300 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2302 if (gimple_code (stmt) == GIMPLE_SWITCH)
2303 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2305 if (computed_goto_p (stmt))
2307 /* Only optimize if the argument is a label, if the argument is
2308 not a label then we can not construct a proper CFG.
2310 It may be the case that we only need to allow the LABEL_REF to
2311 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2312 appear inside a LABEL_EXPR just to be safe. */
2313 if (val
2314 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2315 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2316 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2319 /* Otherwise we only know the taken successor edge if it's unique. */
2320 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2323 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2324 statement, determine which of the outgoing edges will be taken out of the
2325 block. Return NULL if either edge may be taken. */
2327 static edge
2328 find_taken_edge_computed_goto (basic_block bb, tree val)
2330 basic_block dest;
2331 edge e = NULL;
2333 dest = label_to_block (val);
2334 if (dest)
2336 e = find_edge (bb, dest);
2337 gcc_assert (e != NULL);
2340 return e;
2343 /* Given COND_STMT and a constant value VAL for use as the predicate,
2344 determine which of the two edges will be taken out of
2345 the statement's block. Return NULL if either edge may be taken.
2346 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2347 is used. */
2349 static edge
2350 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2352 edge true_edge, false_edge;
2354 if (val == NULL_TREE)
2356 /* Use the current value of the predicate. */
2357 if (gimple_cond_true_p (cond_stmt))
2358 val = integer_one_node;
2359 else if (gimple_cond_false_p (cond_stmt))
2360 val = integer_zero_node;
2361 else
2362 return NULL;
2364 else if (TREE_CODE (val) != INTEGER_CST)
2365 return NULL;
2367 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2368 &true_edge, &false_edge);
2370 return (integer_zerop (val) ? false_edge : true_edge);
2373 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2374 which edge will be taken out of the statement's block. Return NULL if any
2375 edge may be taken.
2376 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2377 is used. */
2379 static edge
2380 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2382 basic_block dest_bb;
2383 edge e;
2384 tree taken_case;
2386 if (gimple_switch_num_labels (switch_stmt) == 1)
2387 taken_case = gimple_switch_default_label (switch_stmt);
2388 else
2390 if (val == NULL_TREE)
2391 val = gimple_switch_index (switch_stmt);
2392 if (TREE_CODE (val) != INTEGER_CST)
2393 return NULL;
2394 else
2395 taken_case = find_case_label_for_value (switch_stmt, val);
2397 dest_bb = label_to_block (CASE_LABEL (taken_case));
2399 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2400 gcc_assert (e);
2401 return e;
2405 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2406 We can make optimal use here of the fact that the case labels are
2407 sorted: We can do a binary search for a case matching VAL. */
2409 static tree
2410 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2412 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2413 tree default_case = gimple_switch_default_label (switch_stmt);
2415 for (low = 0, high = n; high - low > 1; )
2417 size_t i = (high + low) / 2;
2418 tree t = gimple_switch_label (switch_stmt, i);
2419 int cmp;
2421 /* Cache the result of comparing CASE_LOW and val. */
2422 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2424 if (cmp > 0)
2425 high = i;
2426 else
2427 low = i;
2429 if (CASE_HIGH (t) == NULL)
2431 /* A singe-valued case label. */
2432 if (cmp == 0)
2433 return t;
2435 else
2437 /* A case range. We can only handle integer ranges. */
2438 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2439 return t;
2443 return default_case;
2447 /* Dump a basic block on stderr. */
2449 void
2450 gimple_debug_bb (basic_block bb)
2452 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2456 /* Dump basic block with index N on stderr. */
2458 basic_block
2459 gimple_debug_bb_n (int n)
2461 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2462 return BASIC_BLOCK_FOR_FN (cfun, n);
2466 /* Dump the CFG on stderr.
2468 FLAGS are the same used by the tree dumping functions
2469 (see TDF_* in dumpfile.h). */
2471 void
2472 gimple_debug_cfg (dump_flags_t flags)
2474 gimple_dump_cfg (stderr, flags);
2478 /* Dump the program showing basic block boundaries on the given FILE.
2480 FLAGS are the same used by the tree dumping functions (see TDF_* in
2481 tree.h). */
2483 void
2484 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2486 if (flags & TDF_DETAILS)
2488 dump_function_header (file, current_function_decl, flags);
2489 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2490 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2491 last_basic_block_for_fn (cfun));
2493 brief_dump_cfg (file, flags);
2494 fprintf (file, "\n");
2497 if (flags & TDF_STATS)
2498 dump_cfg_stats (file);
2500 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2504 /* Dump CFG statistics on FILE. */
2506 void
2507 dump_cfg_stats (FILE *file)
2509 static long max_num_merged_labels = 0;
2510 unsigned long size, total = 0;
2511 long num_edges;
2512 basic_block bb;
2513 const char * const fmt_str = "%-30s%-13s%12s\n";
2514 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2515 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2516 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2517 const char *funcname = current_function_name ();
2519 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2521 fprintf (file, "---------------------------------------------------------\n");
2522 fprintf (file, fmt_str, "", " Number of ", "Memory");
2523 fprintf (file, fmt_str, "", " instances ", "used ");
2524 fprintf (file, "---------------------------------------------------------\n");
2526 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2527 total += size;
2528 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2529 SCALE (size), LABEL (size));
2531 num_edges = 0;
2532 FOR_EACH_BB_FN (bb, cfun)
2533 num_edges += EDGE_COUNT (bb->succs);
2534 size = num_edges * sizeof (struct edge_def);
2535 total += size;
2536 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2538 fprintf (file, "---------------------------------------------------------\n");
2539 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2540 LABEL (total));
2541 fprintf (file, "---------------------------------------------------------\n");
2542 fprintf (file, "\n");
2544 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2545 max_num_merged_labels = cfg_stats.num_merged_labels;
2547 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2548 cfg_stats.num_merged_labels, max_num_merged_labels);
2550 fprintf (file, "\n");
2554 /* Dump CFG statistics on stderr. Keep extern so that it's always
2555 linked in the final executable. */
2557 DEBUG_FUNCTION void
2558 debug_cfg_stats (void)
2560 dump_cfg_stats (stderr);
2563 /*---------------------------------------------------------------------------
2564 Miscellaneous helpers
2565 ---------------------------------------------------------------------------*/
2567 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2568 flow. Transfers of control flow associated with EH are excluded. */
2570 static bool
2571 call_can_make_abnormal_goto (gimple *t)
2573 /* If the function has no non-local labels, then a call cannot make an
2574 abnormal transfer of control. */
2575 if (!cfun->has_nonlocal_label
2576 && !cfun->calls_setjmp)
2577 return false;
2579 /* Likewise if the call has no side effects. */
2580 if (!gimple_has_side_effects (t))
2581 return false;
2583 /* Likewise if the called function is leaf. */
2584 if (gimple_call_flags (t) & ECF_LEAF)
2585 return false;
2587 return true;
2591 /* Return true if T can make an abnormal transfer of control flow.
2592 Transfers of control flow associated with EH are excluded. */
2594 bool
2595 stmt_can_make_abnormal_goto (gimple *t)
2597 if (computed_goto_p (t))
2598 return true;
2599 if (is_gimple_call (t))
2600 return call_can_make_abnormal_goto (t);
2601 return false;
2605 /* Return true if T represents a stmt that always transfers control. */
2607 bool
2608 is_ctrl_stmt (gimple *t)
2610 switch (gimple_code (t))
2612 case GIMPLE_COND:
2613 case GIMPLE_SWITCH:
2614 case GIMPLE_GOTO:
2615 case GIMPLE_RETURN:
2616 case GIMPLE_RESX:
2617 return true;
2618 default:
2619 return false;
2624 /* Return true if T is a statement that may alter the flow of control
2625 (e.g., a call to a non-returning function). */
2627 bool
2628 is_ctrl_altering_stmt (gimple *t)
2630 gcc_assert (t);
2632 switch (gimple_code (t))
2634 case GIMPLE_CALL:
2635 /* Per stmt call flag indicates whether the call could alter
2636 controlflow. */
2637 if (gimple_call_ctrl_altering_p (t))
2638 return true;
2639 break;
2641 case GIMPLE_EH_DISPATCH:
2642 /* EH_DISPATCH branches to the individual catch handlers at
2643 this level of a try or allowed-exceptions region. It can
2644 fallthru to the next statement as well. */
2645 return true;
2647 case GIMPLE_ASM:
2648 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2649 return true;
2650 break;
2652 CASE_GIMPLE_OMP:
2653 /* OpenMP directives alter control flow. */
2654 return true;
2656 case GIMPLE_TRANSACTION:
2657 /* A transaction start alters control flow. */
2658 return true;
2660 default:
2661 break;
2664 /* If a statement can throw, it alters control flow. */
2665 return stmt_can_throw_internal (t);
2669 /* Return true if T is a simple local goto. */
2671 bool
2672 simple_goto_p (gimple *t)
2674 return (gimple_code (t) == GIMPLE_GOTO
2675 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2679 /* Return true if STMT should start a new basic block. PREV_STMT is
2680 the statement preceding STMT. It is used when STMT is a label or a
2681 case label. Labels should only start a new basic block if their
2682 previous statement wasn't a label. Otherwise, sequence of labels
2683 would generate unnecessary basic blocks that only contain a single
2684 label. */
2686 static inline bool
2687 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2689 if (stmt == NULL)
2690 return false;
2692 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2693 any nondebug stmts in the block. We don't want to start another
2694 block in this case: the debug stmt will already have started the
2695 one STMT would start if we weren't outputting debug stmts. */
2696 if (prev_stmt && is_gimple_debug (prev_stmt))
2697 return false;
2699 /* Labels start a new basic block only if the preceding statement
2700 wasn't a label of the same type. This prevents the creation of
2701 consecutive blocks that have nothing but a single label. */
2702 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2704 /* Nonlocal and computed GOTO targets always start a new block. */
2705 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2706 || FORCED_LABEL (gimple_label_label (label_stmt)))
2707 return true;
2709 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2711 if (DECL_NONLOCAL (gimple_label_label (
2712 as_a <glabel *> (prev_stmt))))
2713 return true;
2715 cfg_stats.num_merged_labels++;
2716 return false;
2718 else
2719 return true;
2721 else if (gimple_code (stmt) == GIMPLE_CALL)
2723 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2724 /* setjmp acts similar to a nonlocal GOTO target and thus should
2725 start a new block. */
2726 return true;
2727 if (gimple_call_internal_p (stmt, IFN_PHI)
2728 && prev_stmt
2729 && gimple_code (prev_stmt) != GIMPLE_LABEL
2730 && (gimple_code (prev_stmt) != GIMPLE_CALL
2731 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2732 /* PHI nodes start a new block unless preceeded by a label
2733 or another PHI. */
2734 return true;
2737 return false;
2741 /* Return true if T should end a basic block. */
2743 bool
2744 stmt_ends_bb_p (gimple *t)
2746 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2749 /* Remove block annotations and other data structures. */
2751 void
2752 delete_tree_cfg_annotations (struct function *fn)
2754 vec_free (label_to_block_map_for_fn (fn));
2757 /* Return the virtual phi in BB. */
2759 gphi *
2760 get_virtual_phi (basic_block bb)
2762 for (gphi_iterator gsi = gsi_start_phis (bb);
2763 !gsi_end_p (gsi);
2764 gsi_next (&gsi))
2766 gphi *phi = gsi.phi ();
2768 if (virtual_operand_p (PHI_RESULT (phi)))
2769 return phi;
2772 return NULL;
2775 /* Return the first statement in basic block BB. */
2777 gimple *
2778 first_stmt (basic_block bb)
2780 gimple_stmt_iterator i = gsi_start_bb (bb);
2781 gimple *stmt = NULL;
2783 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2785 gsi_next (&i);
2786 stmt = NULL;
2788 return stmt;
2791 /* Return the first non-label statement in basic block BB. */
2793 static gimple *
2794 first_non_label_stmt (basic_block bb)
2796 gimple_stmt_iterator i = gsi_start_bb (bb);
2797 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2798 gsi_next (&i);
2799 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2802 /* Return the last statement in basic block BB. */
2804 gimple *
2805 last_stmt (basic_block bb)
2807 gimple_stmt_iterator i = gsi_last_bb (bb);
2808 gimple *stmt = NULL;
2810 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2812 gsi_prev (&i);
2813 stmt = NULL;
2815 return stmt;
2818 /* Return the last statement of an otherwise empty block. Return NULL
2819 if the block is totally empty, or if it contains more than one
2820 statement. */
2822 gimple *
2823 last_and_only_stmt (basic_block bb)
2825 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2826 gimple *last, *prev;
2828 if (gsi_end_p (i))
2829 return NULL;
2831 last = gsi_stmt (i);
2832 gsi_prev_nondebug (&i);
2833 if (gsi_end_p (i))
2834 return last;
2836 /* Empty statements should no longer appear in the instruction stream.
2837 Everything that might have appeared before should be deleted by
2838 remove_useless_stmts, and the optimizers should just gsi_remove
2839 instead of smashing with build_empty_stmt.
2841 Thus the only thing that should appear here in a block containing
2842 one executable statement is a label. */
2843 prev = gsi_stmt (i);
2844 if (gimple_code (prev) == GIMPLE_LABEL)
2845 return last;
2846 else
2847 return NULL;
2850 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2852 static void
2853 reinstall_phi_args (edge new_edge, edge old_edge)
2855 edge_var_map *vm;
2856 int i;
2857 gphi_iterator phis;
2859 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2860 if (!v)
2861 return;
2863 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2864 v->iterate (i, &vm) && !gsi_end_p (phis);
2865 i++, gsi_next (&phis))
2867 gphi *phi = phis.phi ();
2868 tree result = redirect_edge_var_map_result (vm);
2869 tree arg = redirect_edge_var_map_def (vm);
2871 gcc_assert (result == gimple_phi_result (phi));
2873 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2876 redirect_edge_var_map_clear (old_edge);
2879 /* Returns the basic block after which the new basic block created
2880 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2881 near its "logical" location. This is of most help to humans looking
2882 at debugging dumps. */
2884 basic_block
2885 split_edge_bb_loc (edge edge_in)
2887 basic_block dest = edge_in->dest;
2888 basic_block dest_prev = dest->prev_bb;
2890 if (dest_prev)
2892 edge e = find_edge (dest_prev, dest);
2893 if (e && !(e->flags & EDGE_COMPLEX))
2894 return edge_in->src;
2896 return dest_prev;
2899 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2900 Abort on abnormal edges. */
2902 static basic_block
2903 gimple_split_edge (edge edge_in)
2905 basic_block new_bb, after_bb, dest;
2906 edge new_edge, e;
2908 /* Abnormal edges cannot be split. */
2909 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2911 dest = edge_in->dest;
2913 after_bb = split_edge_bb_loc (edge_in);
2915 new_bb = create_empty_bb (after_bb);
2916 new_bb->count = edge_in->count ();
2918 e = redirect_edge_and_branch (edge_in, new_bb);
2919 gcc_assert (e == edge_in);
2921 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2922 reinstall_phi_args (new_edge, e);
2924 return new_bb;
2928 /* Verify properties of the address expression T with base object BASE. */
2930 static tree
2931 verify_address (tree t, tree base)
2933 bool old_constant;
2934 bool old_side_effects;
2935 bool new_constant;
2936 bool new_side_effects;
2938 old_constant = TREE_CONSTANT (t);
2939 old_side_effects = TREE_SIDE_EFFECTS (t);
2941 recompute_tree_invariant_for_addr_expr (t);
2942 new_side_effects = TREE_SIDE_EFFECTS (t);
2943 new_constant = TREE_CONSTANT (t);
2945 if (old_constant != new_constant)
2947 error ("constant not recomputed when ADDR_EXPR changed");
2948 return t;
2950 if (old_side_effects != new_side_effects)
2952 error ("side effects not recomputed when ADDR_EXPR changed");
2953 return t;
2956 if (!(VAR_P (base)
2957 || TREE_CODE (base) == PARM_DECL
2958 || TREE_CODE (base) == RESULT_DECL))
2959 return NULL_TREE;
2961 if (DECL_GIMPLE_REG_P (base))
2963 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2964 return base;
2967 return NULL_TREE;
2970 /* Callback for walk_tree, check that all elements with address taken are
2971 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2972 inside a PHI node. */
2974 static tree
2975 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2977 tree t = *tp, x;
2979 if (TYPE_P (t))
2980 *walk_subtrees = 0;
2982 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2983 #define CHECK_OP(N, MSG) \
2984 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2985 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2987 switch (TREE_CODE (t))
2989 case SSA_NAME:
2990 if (SSA_NAME_IN_FREE_LIST (t))
2992 error ("SSA name in freelist but still referenced");
2993 return *tp;
2995 break;
2997 case PARM_DECL:
2998 case VAR_DECL:
2999 case RESULT_DECL:
3001 tree context = decl_function_context (t);
3002 if (context != cfun->decl
3003 && !SCOPE_FILE_SCOPE_P (context)
3004 && !TREE_STATIC (t)
3005 && !DECL_EXTERNAL (t))
3007 error ("Local declaration from a different function");
3008 return t;
3011 break;
3013 case INDIRECT_REF:
3014 error ("INDIRECT_REF in gimple IL");
3015 return t;
3017 case MEM_REF:
3018 x = TREE_OPERAND (t, 0);
3019 if (!POINTER_TYPE_P (TREE_TYPE (x))
3020 || !is_gimple_mem_ref_addr (x))
3022 error ("invalid first operand of MEM_REF");
3023 return x;
3025 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
3026 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3028 error ("invalid offset operand of MEM_REF");
3029 return TREE_OPERAND (t, 1);
3031 if (TREE_CODE (x) == ADDR_EXPR)
3033 tree va = verify_address (x, TREE_OPERAND (x, 0));
3034 if (va)
3035 return va;
3036 x = TREE_OPERAND (x, 0);
3038 walk_tree (&x, verify_expr, data, NULL);
3039 *walk_subtrees = 0;
3040 break;
3042 case ASSERT_EXPR:
3043 x = fold (ASSERT_EXPR_COND (t));
3044 if (x == boolean_false_node)
3046 error ("ASSERT_EXPR with an always-false condition");
3047 return *tp;
3049 break;
3051 case MODIFY_EXPR:
3052 error ("MODIFY_EXPR not expected while having tuples");
3053 return *tp;
3055 case ADDR_EXPR:
3057 tree tem;
3059 gcc_assert (is_gimple_address (t));
3061 /* Skip any references (they will be checked when we recurse down the
3062 tree) and ensure that any variable used as a prefix is marked
3063 addressable. */
3064 for (x = TREE_OPERAND (t, 0);
3065 handled_component_p (x);
3066 x = TREE_OPERAND (x, 0))
3069 if ((tem = verify_address (t, x)))
3070 return tem;
3072 if (!(VAR_P (x)
3073 || TREE_CODE (x) == PARM_DECL
3074 || TREE_CODE (x) == RESULT_DECL))
3075 return NULL;
3077 if (!TREE_ADDRESSABLE (x))
3079 error ("address taken, but ADDRESSABLE bit not set");
3080 return x;
3083 break;
3086 case COND_EXPR:
3087 x = COND_EXPR_COND (t);
3088 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
3090 error ("non-integral used in condition");
3091 return x;
3093 if (!is_gimple_condexpr (x))
3095 error ("invalid conditional operand");
3096 return x;
3098 break;
3100 case NON_LVALUE_EXPR:
3101 case TRUTH_NOT_EXPR:
3102 gcc_unreachable ();
3104 CASE_CONVERT:
3105 case FIX_TRUNC_EXPR:
3106 case FLOAT_EXPR:
3107 case NEGATE_EXPR:
3108 case ABS_EXPR:
3109 case BIT_NOT_EXPR:
3110 CHECK_OP (0, "invalid operand to unary operator");
3111 break;
3113 case REALPART_EXPR:
3114 case IMAGPART_EXPR:
3115 case BIT_FIELD_REF:
3116 if (!is_gimple_reg_type (TREE_TYPE (t)))
3118 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3119 return t;
3122 if (TREE_CODE (t) == BIT_FIELD_REF)
3124 tree t0 = TREE_OPERAND (t, 0);
3125 tree t1 = TREE_OPERAND (t, 1);
3126 tree t2 = TREE_OPERAND (t, 2);
3127 if (!tree_fits_uhwi_p (t1)
3128 || !tree_fits_uhwi_p (t2)
3129 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3130 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3132 error ("invalid position or size operand to BIT_FIELD_REF");
3133 return t;
3135 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
3136 && (TYPE_PRECISION (TREE_TYPE (t))
3137 != tree_to_uhwi (t1)))
3139 error ("integral result type precision does not match "
3140 "field size of BIT_FIELD_REF");
3141 return t;
3143 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
3144 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
3145 && (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t)))
3146 != tree_to_uhwi (t1)))
3148 error ("mode size of non-integral result does not "
3149 "match field size of BIT_FIELD_REF");
3150 return t;
3152 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
3153 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
3154 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
3156 error ("position plus size exceeds size of referenced object in "
3157 "BIT_FIELD_REF");
3158 return t;
3161 t = TREE_OPERAND (t, 0);
3163 /* Fall-through. */
3164 case COMPONENT_REF:
3165 case ARRAY_REF:
3166 case ARRAY_RANGE_REF:
3167 case VIEW_CONVERT_EXPR:
3168 /* We have a nest of references. Verify that each of the operands
3169 that determine where to reference is either a constant or a variable,
3170 verify that the base is valid, and then show we've already checked
3171 the subtrees. */
3172 while (handled_component_p (t))
3174 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3175 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3176 else if (TREE_CODE (t) == ARRAY_REF
3177 || TREE_CODE (t) == ARRAY_RANGE_REF)
3179 CHECK_OP (1, "invalid array index");
3180 if (TREE_OPERAND (t, 2))
3181 CHECK_OP (2, "invalid array lower bound");
3182 if (TREE_OPERAND (t, 3))
3183 CHECK_OP (3, "invalid array stride");
3185 else if (TREE_CODE (t) == BIT_FIELD_REF
3186 || TREE_CODE (t) == REALPART_EXPR
3187 || TREE_CODE (t) == IMAGPART_EXPR)
3189 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3190 "REALPART_EXPR");
3191 return t;
3194 t = TREE_OPERAND (t, 0);
3197 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3199 error ("invalid reference prefix");
3200 return t;
3202 walk_tree (&t, verify_expr, data, NULL);
3203 *walk_subtrees = 0;
3204 break;
3205 case PLUS_EXPR:
3206 case MINUS_EXPR:
3207 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3208 POINTER_PLUS_EXPR. */
3209 if (POINTER_TYPE_P (TREE_TYPE (t)))
3211 error ("invalid operand to plus/minus, type is a pointer");
3212 return t;
3214 CHECK_OP (0, "invalid operand to binary operator");
3215 CHECK_OP (1, "invalid operand to binary operator");
3216 break;
3218 case POINTER_DIFF_EXPR:
3219 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0)))
3220 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3222 error ("invalid operand to pointer diff, operand is not a pointer");
3223 return t;
3225 if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE
3226 || TYPE_UNSIGNED (TREE_TYPE (t))
3227 || (TYPE_PRECISION (TREE_TYPE (t))
3228 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (t, 0)))))
3230 error ("invalid type for pointer diff");
3231 return t;
3233 CHECK_OP (0, "invalid operand to pointer diff");
3234 CHECK_OP (1, "invalid operand to pointer diff");
3235 break;
3237 case POINTER_PLUS_EXPR:
3238 /* Check to make sure the first operand is a pointer or reference type. */
3239 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3241 error ("invalid operand to pointer plus, first operand is not a pointer");
3242 return t;
3244 /* Check to make sure the second operand is a ptrofftype. */
3245 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
3247 error ("invalid operand to pointer plus, second operand is not an "
3248 "integer type of appropriate width");
3249 return t;
3251 /* FALLTHROUGH */
3252 case LT_EXPR:
3253 case LE_EXPR:
3254 case GT_EXPR:
3255 case GE_EXPR:
3256 case EQ_EXPR:
3257 case NE_EXPR:
3258 case UNORDERED_EXPR:
3259 case ORDERED_EXPR:
3260 case UNLT_EXPR:
3261 case UNLE_EXPR:
3262 case UNGT_EXPR:
3263 case UNGE_EXPR:
3264 case UNEQ_EXPR:
3265 case LTGT_EXPR:
3266 case MULT_EXPR:
3267 case TRUNC_DIV_EXPR:
3268 case CEIL_DIV_EXPR:
3269 case FLOOR_DIV_EXPR:
3270 case ROUND_DIV_EXPR:
3271 case TRUNC_MOD_EXPR:
3272 case CEIL_MOD_EXPR:
3273 case FLOOR_MOD_EXPR:
3274 case ROUND_MOD_EXPR:
3275 case RDIV_EXPR:
3276 case EXACT_DIV_EXPR:
3277 case MIN_EXPR:
3278 case MAX_EXPR:
3279 case LSHIFT_EXPR:
3280 case RSHIFT_EXPR:
3281 case LROTATE_EXPR:
3282 case RROTATE_EXPR:
3283 case BIT_IOR_EXPR:
3284 case BIT_XOR_EXPR:
3285 case BIT_AND_EXPR:
3286 CHECK_OP (0, "invalid operand to binary operator");
3287 CHECK_OP (1, "invalid operand to binary operator");
3288 break;
3290 case CONSTRUCTOR:
3291 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3292 *walk_subtrees = 0;
3293 break;
3295 case CASE_LABEL_EXPR:
3296 if (CASE_CHAIN (t))
3298 error ("invalid CASE_CHAIN");
3299 return t;
3301 break;
3303 default:
3304 break;
3306 return NULL;
3308 #undef CHECK_OP
3312 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3313 Returns true if there is an error, otherwise false. */
3315 static bool
3316 verify_types_in_gimple_min_lval (tree expr)
3318 tree op;
3320 if (is_gimple_id (expr))
3321 return false;
3323 if (TREE_CODE (expr) != TARGET_MEM_REF
3324 && TREE_CODE (expr) != MEM_REF)
3326 error ("invalid expression for min lvalue");
3327 return true;
3330 /* TARGET_MEM_REFs are strange beasts. */
3331 if (TREE_CODE (expr) == TARGET_MEM_REF)
3332 return false;
3334 op = TREE_OPERAND (expr, 0);
3335 if (!is_gimple_val (op))
3337 error ("invalid operand in indirect reference");
3338 debug_generic_stmt (op);
3339 return true;
3341 /* Memory references now generally can involve a value conversion. */
3343 return false;
3346 /* Verify if EXPR is a valid GIMPLE reference expression. If
3347 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3348 if there is an error, otherwise false. */
3350 static bool
3351 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3353 while (handled_component_p (expr))
3355 tree op = TREE_OPERAND (expr, 0);
3357 if (TREE_CODE (expr) == ARRAY_REF
3358 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3360 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3361 || (TREE_OPERAND (expr, 2)
3362 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3363 || (TREE_OPERAND (expr, 3)
3364 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3366 error ("invalid operands to array reference");
3367 debug_generic_stmt (expr);
3368 return true;
3372 /* Verify if the reference array element types are compatible. */
3373 if (TREE_CODE (expr) == ARRAY_REF
3374 && !useless_type_conversion_p (TREE_TYPE (expr),
3375 TREE_TYPE (TREE_TYPE (op))))
3377 error ("type mismatch in array reference");
3378 debug_generic_stmt (TREE_TYPE (expr));
3379 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3380 return true;
3382 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3383 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3384 TREE_TYPE (TREE_TYPE (op))))
3386 error ("type mismatch in array range reference");
3387 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3388 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3389 return true;
3392 if ((TREE_CODE (expr) == REALPART_EXPR
3393 || TREE_CODE (expr) == IMAGPART_EXPR)
3394 && !useless_type_conversion_p (TREE_TYPE (expr),
3395 TREE_TYPE (TREE_TYPE (op))))
3397 error ("type mismatch in real/imagpart reference");
3398 debug_generic_stmt (TREE_TYPE (expr));
3399 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3400 return true;
3403 if (TREE_CODE (expr) == COMPONENT_REF
3404 && !useless_type_conversion_p (TREE_TYPE (expr),
3405 TREE_TYPE (TREE_OPERAND (expr, 1))))
3407 error ("type mismatch in component reference");
3408 debug_generic_stmt (TREE_TYPE (expr));
3409 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3410 return true;
3413 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3415 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3416 that their operand is not an SSA name or an invariant when
3417 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3418 bug). Otherwise there is nothing to verify, gross mismatches at
3419 most invoke undefined behavior. */
3420 if (require_lvalue
3421 && (TREE_CODE (op) == SSA_NAME
3422 || is_gimple_min_invariant (op)))
3424 error ("conversion of an SSA_NAME on the left hand side");
3425 debug_generic_stmt (expr);
3426 return true;
3428 else if (TREE_CODE (op) == SSA_NAME
3429 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3431 error ("conversion of register to a different size");
3432 debug_generic_stmt (expr);
3433 return true;
3435 else if (!handled_component_p (op))
3436 return false;
3439 expr = op;
3442 if (TREE_CODE (expr) == MEM_REF)
3444 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3446 error ("invalid address operand in MEM_REF");
3447 debug_generic_stmt (expr);
3448 return true;
3450 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3451 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3453 error ("invalid offset operand in MEM_REF");
3454 debug_generic_stmt (expr);
3455 return true;
3458 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3460 if (!TMR_BASE (expr)
3461 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3463 error ("invalid address operand in TARGET_MEM_REF");
3464 return true;
3466 if (!TMR_OFFSET (expr)
3467 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3468 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3470 error ("invalid offset operand in TARGET_MEM_REF");
3471 debug_generic_stmt (expr);
3472 return true;
3476 return ((require_lvalue || !is_gimple_min_invariant (expr))
3477 && verify_types_in_gimple_min_lval (expr));
3480 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3481 list of pointer-to types that is trivially convertible to DEST. */
3483 static bool
3484 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3486 tree src;
3488 if (!TYPE_POINTER_TO (src_obj))
3489 return true;
3491 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3492 if (useless_type_conversion_p (dest, src))
3493 return true;
3495 return false;
3498 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3499 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3501 static bool
3502 valid_fixed_convert_types_p (tree type1, tree type2)
3504 return (FIXED_POINT_TYPE_P (type1)
3505 && (INTEGRAL_TYPE_P (type2)
3506 || SCALAR_FLOAT_TYPE_P (type2)
3507 || FIXED_POINT_TYPE_P (type2)));
3510 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3511 is a problem, otherwise false. */
3513 static bool
3514 verify_gimple_call (gcall *stmt)
3516 tree fn = gimple_call_fn (stmt);
3517 tree fntype, fndecl;
3518 unsigned i;
3520 if (gimple_call_internal_p (stmt))
3522 if (fn)
3524 error ("gimple call has two targets");
3525 debug_generic_stmt (fn);
3526 return true;
3528 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3529 else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3531 return false;
3534 else
3536 if (!fn)
3538 error ("gimple call has no target");
3539 return true;
3543 if (fn && !is_gimple_call_addr (fn))
3545 error ("invalid function in gimple call");
3546 debug_generic_stmt (fn);
3547 return true;
3550 if (fn
3551 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3552 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3553 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3555 error ("non-function in gimple call");
3556 return true;
3559 fndecl = gimple_call_fndecl (stmt);
3560 if (fndecl
3561 && TREE_CODE (fndecl) == FUNCTION_DECL
3562 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3563 && !DECL_PURE_P (fndecl)
3564 && !TREE_READONLY (fndecl))
3566 error ("invalid pure const state for function");
3567 return true;
3570 tree lhs = gimple_call_lhs (stmt);
3571 if (lhs
3572 && (!is_gimple_lvalue (lhs)
3573 || verify_types_in_gimple_reference (lhs, true)))
3575 error ("invalid LHS in gimple call");
3576 return true;
3579 if (gimple_call_ctrl_altering_p (stmt)
3580 && gimple_call_noreturn_p (stmt)
3581 && should_remove_lhs_p (lhs))
3583 error ("LHS in noreturn call");
3584 return true;
3587 fntype = gimple_call_fntype (stmt);
3588 if (fntype
3589 && lhs
3590 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3591 /* ??? At least C++ misses conversions at assignments from
3592 void * call results.
3593 For now simply allow arbitrary pointer type conversions. */
3594 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3595 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3597 error ("invalid conversion in gimple call");
3598 debug_generic_stmt (TREE_TYPE (lhs));
3599 debug_generic_stmt (TREE_TYPE (fntype));
3600 return true;
3603 if (gimple_call_chain (stmt)
3604 && !is_gimple_val (gimple_call_chain (stmt)))
3606 error ("invalid static chain in gimple call");
3607 debug_generic_stmt (gimple_call_chain (stmt));
3608 return true;
3611 /* If there is a static chain argument, the call should either be
3612 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3613 if (gimple_call_chain (stmt)
3614 && fndecl
3615 && !DECL_STATIC_CHAIN (fndecl))
3617 error ("static chain with function that doesn%'t use one");
3618 return true;
3621 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3623 switch (DECL_FUNCTION_CODE (fndecl))
3625 case BUILT_IN_UNREACHABLE:
3626 case BUILT_IN_TRAP:
3627 if (gimple_call_num_args (stmt) > 0)
3629 /* Built-in unreachable with parameters might not be caught by
3630 undefined behavior sanitizer. Front-ends do check users do not
3631 call them that way but we also produce calls to
3632 __builtin_unreachable internally, for example when IPA figures
3633 out a call cannot happen in a legal program. In such cases,
3634 we must make sure arguments are stripped off. */
3635 error ("__builtin_unreachable or __builtin_trap call with "
3636 "arguments");
3637 return true;
3639 break;
3640 default:
3641 break;
3645 /* ??? The C frontend passes unpromoted arguments in case it
3646 didn't see a function declaration before the call. So for now
3647 leave the call arguments mostly unverified. Once we gimplify
3648 unit-at-a-time we have a chance to fix this. */
3650 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3652 tree arg = gimple_call_arg (stmt, i);
3653 if ((is_gimple_reg_type (TREE_TYPE (arg))
3654 && !is_gimple_val (arg))
3655 || (!is_gimple_reg_type (TREE_TYPE (arg))
3656 && !is_gimple_lvalue (arg)))
3658 error ("invalid argument to gimple call");
3659 debug_generic_expr (arg);
3660 return true;
3664 return false;
3667 /* Verifies the gimple comparison with the result type TYPE and
3668 the operands OP0 and OP1, comparison code is CODE. */
3670 static bool
3671 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3673 tree op0_type = TREE_TYPE (op0);
3674 tree op1_type = TREE_TYPE (op1);
3676 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3678 error ("invalid operands in gimple comparison");
3679 return true;
3682 /* For comparisons we do not have the operations type as the
3683 effective type the comparison is carried out in. Instead
3684 we require that either the first operand is trivially
3685 convertible into the second, or the other way around.
3686 Because we special-case pointers to void we allow
3687 comparisons of pointers with the same mode as well. */
3688 if (!useless_type_conversion_p (op0_type, op1_type)
3689 && !useless_type_conversion_p (op1_type, op0_type)
3690 && (!POINTER_TYPE_P (op0_type)
3691 || !POINTER_TYPE_P (op1_type)
3692 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3694 error ("mismatching comparison operand types");
3695 debug_generic_expr (op0_type);
3696 debug_generic_expr (op1_type);
3697 return true;
3700 /* The resulting type of a comparison may be an effective boolean type. */
3701 if (INTEGRAL_TYPE_P (type)
3702 && (TREE_CODE (type) == BOOLEAN_TYPE
3703 || TYPE_PRECISION (type) == 1))
3705 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3706 || TREE_CODE (op1_type) == VECTOR_TYPE)
3707 && code != EQ_EXPR && code != NE_EXPR
3708 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3709 && !VECTOR_INTEGER_TYPE_P (op0_type))
3711 error ("unsupported operation or type for vector comparison"
3712 " returning a boolean");
3713 debug_generic_expr (op0_type);
3714 debug_generic_expr (op1_type);
3715 return true;
3718 /* Or a boolean vector type with the same element count
3719 as the comparison operand types. */
3720 else if (TREE_CODE (type) == VECTOR_TYPE
3721 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3723 if (TREE_CODE (op0_type) != VECTOR_TYPE
3724 || TREE_CODE (op1_type) != VECTOR_TYPE)
3726 error ("non-vector operands in vector comparison");
3727 debug_generic_expr (op0_type);
3728 debug_generic_expr (op1_type);
3729 return true;
3732 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type))
3734 error ("invalid vector comparison resulting type");
3735 debug_generic_expr (type);
3736 return true;
3739 else
3741 error ("bogus comparison result type");
3742 debug_generic_expr (type);
3743 return true;
3746 return false;
3749 /* Verify a gimple assignment statement STMT with an unary rhs.
3750 Returns true if anything is wrong. */
3752 static bool
3753 verify_gimple_assign_unary (gassign *stmt)
3755 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3756 tree lhs = gimple_assign_lhs (stmt);
3757 tree lhs_type = TREE_TYPE (lhs);
3758 tree rhs1 = gimple_assign_rhs1 (stmt);
3759 tree rhs1_type = TREE_TYPE (rhs1);
3761 if (!is_gimple_reg (lhs))
3763 error ("non-register as LHS of unary operation");
3764 return true;
3767 if (!is_gimple_val (rhs1))
3769 error ("invalid operand in unary operation");
3770 return true;
3773 /* First handle conversions. */
3774 switch (rhs_code)
3776 CASE_CONVERT:
3778 /* Allow conversions from pointer type to integral type only if
3779 there is no sign or zero extension involved.
3780 For targets were the precision of ptrofftype doesn't match that
3781 of pointers we need to allow arbitrary conversions to ptrofftype. */
3782 if ((POINTER_TYPE_P (lhs_type)
3783 && INTEGRAL_TYPE_P (rhs1_type))
3784 || (POINTER_TYPE_P (rhs1_type)
3785 && INTEGRAL_TYPE_P (lhs_type)
3786 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3787 || ptrofftype_p (sizetype))))
3788 return false;
3790 /* Allow conversion from integral to offset type and vice versa. */
3791 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3792 && INTEGRAL_TYPE_P (rhs1_type))
3793 || (INTEGRAL_TYPE_P (lhs_type)
3794 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3795 return false;
3797 /* Otherwise assert we are converting between types of the
3798 same kind. */
3799 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3801 error ("invalid types in nop conversion");
3802 debug_generic_expr (lhs_type);
3803 debug_generic_expr (rhs1_type);
3804 return true;
3807 return false;
3810 case ADDR_SPACE_CONVERT_EXPR:
3812 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3813 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3814 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3816 error ("invalid types in address space conversion");
3817 debug_generic_expr (lhs_type);
3818 debug_generic_expr (rhs1_type);
3819 return true;
3822 return false;
3825 case FIXED_CONVERT_EXPR:
3827 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3828 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3830 error ("invalid types in fixed-point conversion");
3831 debug_generic_expr (lhs_type);
3832 debug_generic_expr (rhs1_type);
3833 return true;
3836 return false;
3839 case FLOAT_EXPR:
3841 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3842 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3843 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3845 error ("invalid types in conversion to floating point");
3846 debug_generic_expr (lhs_type);
3847 debug_generic_expr (rhs1_type);
3848 return true;
3851 return false;
3854 case FIX_TRUNC_EXPR:
3856 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3857 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3858 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3860 error ("invalid types in conversion to integer");
3861 debug_generic_expr (lhs_type);
3862 debug_generic_expr (rhs1_type);
3863 return true;
3866 return false;
3869 case VEC_UNPACK_HI_EXPR:
3870 case VEC_UNPACK_LO_EXPR:
3871 case VEC_UNPACK_FLOAT_HI_EXPR:
3872 case VEC_UNPACK_FLOAT_LO_EXPR:
3873 /* FIXME. */
3874 return false;
3876 case NEGATE_EXPR:
3877 case ABS_EXPR:
3878 case BIT_NOT_EXPR:
3879 case PAREN_EXPR:
3880 case CONJ_EXPR:
3881 break;
3883 default:
3884 gcc_unreachable ();
3887 /* For the remaining codes assert there is no conversion involved. */
3888 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3890 error ("non-trivial conversion in unary operation");
3891 debug_generic_expr (lhs_type);
3892 debug_generic_expr (rhs1_type);
3893 return true;
3896 return false;
3899 /* Verify a gimple assignment statement STMT with a binary rhs.
3900 Returns true if anything is wrong. */
3902 static bool
3903 verify_gimple_assign_binary (gassign *stmt)
3905 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3906 tree lhs = gimple_assign_lhs (stmt);
3907 tree lhs_type = TREE_TYPE (lhs);
3908 tree rhs1 = gimple_assign_rhs1 (stmt);
3909 tree rhs1_type = TREE_TYPE (rhs1);
3910 tree rhs2 = gimple_assign_rhs2 (stmt);
3911 tree rhs2_type = TREE_TYPE (rhs2);
3913 if (!is_gimple_reg (lhs))
3915 error ("non-register as LHS of binary operation");
3916 return true;
3919 if (!is_gimple_val (rhs1)
3920 || !is_gimple_val (rhs2))
3922 error ("invalid operands in binary operation");
3923 return true;
3926 /* First handle operations that involve different types. */
3927 switch (rhs_code)
3929 case COMPLEX_EXPR:
3931 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3932 || !(INTEGRAL_TYPE_P (rhs1_type)
3933 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3934 || !(INTEGRAL_TYPE_P (rhs2_type)
3935 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3937 error ("type mismatch in complex expression");
3938 debug_generic_expr (lhs_type);
3939 debug_generic_expr (rhs1_type);
3940 debug_generic_expr (rhs2_type);
3941 return true;
3944 return false;
3947 case LSHIFT_EXPR:
3948 case RSHIFT_EXPR:
3949 case LROTATE_EXPR:
3950 case RROTATE_EXPR:
3952 /* Shifts and rotates are ok on integral types, fixed point
3953 types and integer vector types. */
3954 if ((!INTEGRAL_TYPE_P (rhs1_type)
3955 && !FIXED_POINT_TYPE_P (rhs1_type)
3956 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3957 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3958 || (!INTEGRAL_TYPE_P (rhs2_type)
3959 /* Vector shifts of vectors are also ok. */
3960 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3961 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3962 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3963 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3964 || !useless_type_conversion_p (lhs_type, rhs1_type))
3966 error ("type mismatch in shift expression");
3967 debug_generic_expr (lhs_type);
3968 debug_generic_expr (rhs1_type);
3969 debug_generic_expr (rhs2_type);
3970 return true;
3973 return false;
3976 case WIDEN_LSHIFT_EXPR:
3978 if (!INTEGRAL_TYPE_P (lhs_type)
3979 || !INTEGRAL_TYPE_P (rhs1_type)
3980 || TREE_CODE (rhs2) != INTEGER_CST
3981 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3983 error ("type mismatch in widening vector shift expression");
3984 debug_generic_expr (lhs_type);
3985 debug_generic_expr (rhs1_type);
3986 debug_generic_expr (rhs2_type);
3987 return true;
3990 return false;
3993 case VEC_WIDEN_LSHIFT_HI_EXPR:
3994 case VEC_WIDEN_LSHIFT_LO_EXPR:
3996 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3997 || TREE_CODE (lhs_type) != VECTOR_TYPE
3998 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3999 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
4000 || TREE_CODE (rhs2) != INTEGER_CST
4001 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
4002 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
4004 error ("type mismatch in widening vector shift expression");
4005 debug_generic_expr (lhs_type);
4006 debug_generic_expr (rhs1_type);
4007 debug_generic_expr (rhs2_type);
4008 return true;
4011 return false;
4014 case PLUS_EXPR:
4015 case MINUS_EXPR:
4017 tree lhs_etype = lhs_type;
4018 tree rhs1_etype = rhs1_type;
4019 tree rhs2_etype = rhs2_type;
4020 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
4022 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4023 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
4025 error ("invalid non-vector operands to vector valued plus");
4026 return true;
4028 lhs_etype = TREE_TYPE (lhs_type);
4029 rhs1_etype = TREE_TYPE (rhs1_type);
4030 rhs2_etype = TREE_TYPE (rhs2_type);
4032 if (POINTER_TYPE_P (lhs_etype)
4033 || POINTER_TYPE_P (rhs1_etype)
4034 || POINTER_TYPE_P (rhs2_etype))
4036 error ("invalid (pointer) operands to plus/minus");
4037 return true;
4040 /* Continue with generic binary expression handling. */
4041 break;
4044 case POINTER_PLUS_EXPR:
4046 if (!POINTER_TYPE_P (rhs1_type)
4047 || !useless_type_conversion_p (lhs_type, rhs1_type)
4048 || !ptrofftype_p (rhs2_type))
4050 error ("type mismatch in pointer plus expression");
4051 debug_generic_stmt (lhs_type);
4052 debug_generic_stmt (rhs1_type);
4053 debug_generic_stmt (rhs2_type);
4054 return true;
4057 return false;
4060 case POINTER_DIFF_EXPR:
4062 if (!POINTER_TYPE_P (rhs1_type)
4063 || !POINTER_TYPE_P (rhs2_type)
4064 /* Because we special-case pointers to void we allow difference
4065 of arbitrary pointers with the same mode. */
4066 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
4067 || TREE_CODE (lhs_type) != INTEGER_TYPE
4068 || TYPE_UNSIGNED (lhs_type)
4069 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
4071 error ("type mismatch in pointer diff expression");
4072 debug_generic_stmt (lhs_type);
4073 debug_generic_stmt (rhs1_type);
4074 debug_generic_stmt (rhs2_type);
4075 return true;
4078 return false;
4081 case TRUTH_ANDIF_EXPR:
4082 case TRUTH_ORIF_EXPR:
4083 case TRUTH_AND_EXPR:
4084 case TRUTH_OR_EXPR:
4085 case TRUTH_XOR_EXPR:
4087 gcc_unreachable ();
4089 case LT_EXPR:
4090 case LE_EXPR:
4091 case GT_EXPR:
4092 case GE_EXPR:
4093 case EQ_EXPR:
4094 case NE_EXPR:
4095 case UNORDERED_EXPR:
4096 case ORDERED_EXPR:
4097 case UNLT_EXPR:
4098 case UNLE_EXPR:
4099 case UNGT_EXPR:
4100 case UNGE_EXPR:
4101 case UNEQ_EXPR:
4102 case LTGT_EXPR:
4103 /* Comparisons are also binary, but the result type is not
4104 connected to the operand types. */
4105 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
4107 case WIDEN_MULT_EXPR:
4108 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
4109 return true;
4110 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
4111 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
4113 case WIDEN_SUM_EXPR:
4115 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4116 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4117 && ((!INTEGRAL_TYPE_P (rhs1_type)
4118 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4119 || (!INTEGRAL_TYPE_P (lhs_type)
4120 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4121 || !useless_type_conversion_p (lhs_type, rhs2_type)
4122 || (GET_MODE_SIZE (element_mode (rhs2_type))
4123 < 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4125 error ("type mismatch in widening sum reduction");
4126 debug_generic_expr (lhs_type);
4127 debug_generic_expr (rhs1_type);
4128 debug_generic_expr (rhs2_type);
4129 return true;
4131 return false;
4134 case VEC_WIDEN_MULT_HI_EXPR:
4135 case VEC_WIDEN_MULT_LO_EXPR:
4136 case VEC_WIDEN_MULT_EVEN_EXPR:
4137 case VEC_WIDEN_MULT_ODD_EXPR:
4139 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4140 || TREE_CODE (lhs_type) != VECTOR_TYPE
4141 || !types_compatible_p (rhs1_type, rhs2_type)
4142 || (GET_MODE_SIZE (element_mode (lhs_type))
4143 != 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4145 error ("type mismatch in vector widening multiplication");
4146 debug_generic_expr (lhs_type);
4147 debug_generic_expr (rhs1_type);
4148 debug_generic_expr (rhs2_type);
4149 return true;
4151 return false;
4154 case VEC_PACK_TRUNC_EXPR:
4155 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4156 vector boolean types. */
4157 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4158 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4159 && types_compatible_p (rhs1_type, rhs2_type)
4160 && (TYPE_VECTOR_SUBPARTS (lhs_type)
4161 == 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4162 return false;
4164 /* Fallthru. */
4165 case VEC_PACK_SAT_EXPR:
4166 case VEC_PACK_FIX_TRUNC_EXPR:
4168 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4169 || TREE_CODE (lhs_type) != VECTOR_TYPE
4170 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4171 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4172 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4173 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4174 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4175 || !types_compatible_p (rhs1_type, rhs2_type)
4176 || (GET_MODE_SIZE (element_mode (rhs1_type))
4177 != 2 * GET_MODE_SIZE (element_mode (lhs_type))))
4179 error ("type mismatch in vector pack expression");
4180 debug_generic_expr (lhs_type);
4181 debug_generic_expr (rhs1_type);
4182 debug_generic_expr (rhs2_type);
4183 return true;
4186 return false;
4189 case MULT_EXPR:
4190 case MULT_HIGHPART_EXPR:
4191 case TRUNC_DIV_EXPR:
4192 case CEIL_DIV_EXPR:
4193 case FLOOR_DIV_EXPR:
4194 case ROUND_DIV_EXPR:
4195 case TRUNC_MOD_EXPR:
4196 case CEIL_MOD_EXPR:
4197 case FLOOR_MOD_EXPR:
4198 case ROUND_MOD_EXPR:
4199 case RDIV_EXPR:
4200 case EXACT_DIV_EXPR:
4201 case MIN_EXPR:
4202 case MAX_EXPR:
4203 case BIT_IOR_EXPR:
4204 case BIT_XOR_EXPR:
4205 case BIT_AND_EXPR:
4206 /* Continue with generic binary expression handling. */
4207 break;
4209 default:
4210 gcc_unreachable ();
4213 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4214 || !useless_type_conversion_p (lhs_type, rhs2_type))
4216 error ("type mismatch in binary expression");
4217 debug_generic_stmt (lhs_type);
4218 debug_generic_stmt (rhs1_type);
4219 debug_generic_stmt (rhs2_type);
4220 return true;
4223 return false;
4226 /* Verify a gimple assignment statement STMT with a ternary rhs.
4227 Returns true if anything is wrong. */
4229 static bool
4230 verify_gimple_assign_ternary (gassign *stmt)
4232 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4233 tree lhs = gimple_assign_lhs (stmt);
4234 tree lhs_type = TREE_TYPE (lhs);
4235 tree rhs1 = gimple_assign_rhs1 (stmt);
4236 tree rhs1_type = TREE_TYPE (rhs1);
4237 tree rhs2 = gimple_assign_rhs2 (stmt);
4238 tree rhs2_type = TREE_TYPE (rhs2);
4239 tree rhs3 = gimple_assign_rhs3 (stmt);
4240 tree rhs3_type = TREE_TYPE (rhs3);
4242 if (!is_gimple_reg (lhs))
4244 error ("non-register as LHS of ternary operation");
4245 return true;
4248 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4249 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4250 || !is_gimple_val (rhs2)
4251 || !is_gimple_val (rhs3))
4253 error ("invalid operands in ternary operation");
4254 return true;
4257 /* First handle operations that involve different types. */
4258 switch (rhs_code)
4260 case WIDEN_MULT_PLUS_EXPR:
4261 case WIDEN_MULT_MINUS_EXPR:
4262 if ((!INTEGRAL_TYPE_P (rhs1_type)
4263 && !FIXED_POINT_TYPE_P (rhs1_type))
4264 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4265 || !useless_type_conversion_p (lhs_type, rhs3_type)
4266 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4267 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4269 error ("type mismatch in widening multiply-accumulate expression");
4270 debug_generic_expr (lhs_type);
4271 debug_generic_expr (rhs1_type);
4272 debug_generic_expr (rhs2_type);
4273 debug_generic_expr (rhs3_type);
4274 return true;
4276 break;
4278 case FMA_EXPR:
4279 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4280 || !useless_type_conversion_p (lhs_type, rhs2_type)
4281 || !useless_type_conversion_p (lhs_type, rhs3_type))
4283 error ("type mismatch in fused multiply-add expression");
4284 debug_generic_expr (lhs_type);
4285 debug_generic_expr (rhs1_type);
4286 debug_generic_expr (rhs2_type);
4287 debug_generic_expr (rhs3_type);
4288 return true;
4290 break;
4292 case VEC_COND_EXPR:
4293 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4294 || TYPE_VECTOR_SUBPARTS (rhs1_type)
4295 != TYPE_VECTOR_SUBPARTS (lhs_type))
4297 error ("the first argument of a VEC_COND_EXPR must be of a "
4298 "boolean vector type of the same number of elements "
4299 "as the result");
4300 debug_generic_expr (lhs_type);
4301 debug_generic_expr (rhs1_type);
4302 return true;
4304 /* Fallthrough. */
4305 case COND_EXPR:
4306 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4307 || !useless_type_conversion_p (lhs_type, rhs3_type))
4309 error ("type mismatch in conditional expression");
4310 debug_generic_expr (lhs_type);
4311 debug_generic_expr (rhs2_type);
4312 debug_generic_expr (rhs3_type);
4313 return true;
4315 break;
4317 case VEC_PERM_EXPR:
4318 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4319 || !useless_type_conversion_p (lhs_type, rhs2_type))
4321 error ("type mismatch in vector permute expression");
4322 debug_generic_expr (lhs_type);
4323 debug_generic_expr (rhs1_type);
4324 debug_generic_expr (rhs2_type);
4325 debug_generic_expr (rhs3_type);
4326 return true;
4329 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4330 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4331 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4333 error ("vector types expected in vector permute expression");
4334 debug_generic_expr (lhs_type);
4335 debug_generic_expr (rhs1_type);
4336 debug_generic_expr (rhs2_type);
4337 debug_generic_expr (rhs3_type);
4338 return true;
4341 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
4342 || TYPE_VECTOR_SUBPARTS (rhs2_type)
4343 != TYPE_VECTOR_SUBPARTS (rhs3_type)
4344 || TYPE_VECTOR_SUBPARTS (rhs3_type)
4345 != TYPE_VECTOR_SUBPARTS (lhs_type))
4347 error ("vectors with different element number found "
4348 "in vector permute expression");
4349 debug_generic_expr (lhs_type);
4350 debug_generic_expr (rhs1_type);
4351 debug_generic_expr (rhs2_type);
4352 debug_generic_expr (rhs3_type);
4353 return true;
4356 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4357 || GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs3_type)))
4358 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (rhs1_type))))
4360 error ("invalid mask type in vector permute expression");
4361 debug_generic_expr (lhs_type);
4362 debug_generic_expr (rhs1_type);
4363 debug_generic_expr (rhs2_type);
4364 debug_generic_expr (rhs3_type);
4365 return true;
4368 return false;
4370 case SAD_EXPR:
4371 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4372 || !useless_type_conversion_p (lhs_type, rhs3_type)
4373 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4374 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4376 error ("type mismatch in sad expression");
4377 debug_generic_expr (lhs_type);
4378 debug_generic_expr (rhs1_type);
4379 debug_generic_expr (rhs2_type);
4380 debug_generic_expr (rhs3_type);
4381 return true;
4384 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4385 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4386 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4388 error ("vector types expected in sad expression");
4389 debug_generic_expr (lhs_type);
4390 debug_generic_expr (rhs1_type);
4391 debug_generic_expr (rhs2_type);
4392 debug_generic_expr (rhs3_type);
4393 return true;
4396 return false;
4398 case BIT_INSERT_EXPR:
4399 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4401 error ("type mismatch in BIT_INSERT_EXPR");
4402 debug_generic_expr (lhs_type);
4403 debug_generic_expr (rhs1_type);
4404 return true;
4406 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4407 && INTEGRAL_TYPE_P (rhs2_type))
4408 || (VECTOR_TYPE_P (rhs1_type)
4409 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4411 error ("not allowed type combination in BIT_INSERT_EXPR");
4412 debug_generic_expr (rhs1_type);
4413 debug_generic_expr (rhs2_type);
4414 return true;
4416 if (! tree_fits_uhwi_p (rhs3)
4417 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4418 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4420 error ("invalid position or size in BIT_INSERT_EXPR");
4421 return true;
4423 if (INTEGRAL_TYPE_P (rhs1_type))
4425 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4426 if (bitpos >= TYPE_PRECISION (rhs1_type)
4427 || (bitpos + TYPE_PRECISION (rhs2_type)
4428 > TYPE_PRECISION (rhs1_type)))
4430 error ("insertion out of range in BIT_INSERT_EXPR");
4431 return true;
4434 else if (VECTOR_TYPE_P (rhs1_type))
4436 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4437 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4438 if (bitpos % bitsize != 0)
4440 error ("vector insertion not at element boundary");
4441 return true;
4444 return false;
4446 case DOT_PROD_EXPR:
4448 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4449 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4450 && ((!INTEGRAL_TYPE_P (rhs1_type)
4451 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4452 || (!INTEGRAL_TYPE_P (lhs_type)
4453 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4454 || !types_compatible_p (rhs1_type, rhs2_type)
4455 || !useless_type_conversion_p (lhs_type, rhs3_type)
4456 || (GET_MODE_SIZE (element_mode (rhs3_type))
4457 < 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4459 error ("type mismatch in dot product reduction");
4460 debug_generic_expr (lhs_type);
4461 debug_generic_expr (rhs1_type);
4462 debug_generic_expr (rhs2_type);
4463 return true;
4465 return false;
4468 case REALIGN_LOAD_EXPR:
4469 /* FIXME. */
4470 return false;
4472 default:
4473 gcc_unreachable ();
4475 return false;
4478 /* Verify a gimple assignment statement STMT with a single rhs.
4479 Returns true if anything is wrong. */
4481 static bool
4482 verify_gimple_assign_single (gassign *stmt)
4484 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4485 tree lhs = gimple_assign_lhs (stmt);
4486 tree lhs_type = TREE_TYPE (lhs);
4487 tree rhs1 = gimple_assign_rhs1 (stmt);
4488 tree rhs1_type = TREE_TYPE (rhs1);
4489 bool res = false;
4491 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4493 error ("non-trivial conversion at assignment");
4494 debug_generic_expr (lhs_type);
4495 debug_generic_expr (rhs1_type);
4496 return true;
4499 if (gimple_clobber_p (stmt)
4500 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4502 error ("non-decl/MEM_REF LHS in clobber statement");
4503 debug_generic_expr (lhs);
4504 return true;
4507 if (handled_component_p (lhs)
4508 || TREE_CODE (lhs) == MEM_REF
4509 || TREE_CODE (lhs) == TARGET_MEM_REF)
4510 res |= verify_types_in_gimple_reference (lhs, true);
4512 /* Special codes we cannot handle via their class. */
4513 switch (rhs_code)
4515 case ADDR_EXPR:
4517 tree op = TREE_OPERAND (rhs1, 0);
4518 if (!is_gimple_addressable (op))
4520 error ("invalid operand in unary expression");
4521 return true;
4524 /* Technically there is no longer a need for matching types, but
4525 gimple hygiene asks for this check. In LTO we can end up
4526 combining incompatible units and thus end up with addresses
4527 of globals that change their type to a common one. */
4528 if (!in_lto_p
4529 && !types_compatible_p (TREE_TYPE (op),
4530 TREE_TYPE (TREE_TYPE (rhs1)))
4531 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4532 TREE_TYPE (op)))
4534 error ("type mismatch in address expression");
4535 debug_generic_stmt (TREE_TYPE (rhs1));
4536 debug_generic_stmt (TREE_TYPE (op));
4537 return true;
4540 return verify_types_in_gimple_reference (op, true);
4543 /* tcc_reference */
4544 case INDIRECT_REF:
4545 error ("INDIRECT_REF in gimple IL");
4546 return true;
4548 case COMPONENT_REF:
4549 case BIT_FIELD_REF:
4550 case ARRAY_REF:
4551 case ARRAY_RANGE_REF:
4552 case VIEW_CONVERT_EXPR:
4553 case REALPART_EXPR:
4554 case IMAGPART_EXPR:
4555 case TARGET_MEM_REF:
4556 case MEM_REF:
4557 if (!is_gimple_reg (lhs)
4558 && is_gimple_reg_type (TREE_TYPE (lhs)))
4560 error ("invalid rhs for gimple memory store");
4561 debug_generic_stmt (lhs);
4562 debug_generic_stmt (rhs1);
4563 return true;
4565 return res || verify_types_in_gimple_reference (rhs1, false);
4567 /* tcc_constant */
4568 case SSA_NAME:
4569 case INTEGER_CST:
4570 case REAL_CST:
4571 case FIXED_CST:
4572 case COMPLEX_CST:
4573 case VECTOR_CST:
4574 case STRING_CST:
4575 return res;
4577 /* tcc_declaration */
4578 case CONST_DECL:
4579 return res;
4580 case VAR_DECL:
4581 case PARM_DECL:
4582 if (!is_gimple_reg (lhs)
4583 && !is_gimple_reg (rhs1)
4584 && is_gimple_reg_type (TREE_TYPE (lhs)))
4586 error ("invalid rhs for gimple memory store");
4587 debug_generic_stmt (lhs);
4588 debug_generic_stmt (rhs1);
4589 return true;
4591 return res;
4593 case CONSTRUCTOR:
4594 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4596 unsigned int i;
4597 tree elt_i, elt_v, elt_t = NULL_TREE;
4599 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4600 return res;
4601 /* For vector CONSTRUCTORs we require that either it is empty
4602 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4603 (then the element count must be correct to cover the whole
4604 outer vector and index must be NULL on all elements, or it is
4605 a CONSTRUCTOR of scalar elements, where we as an exception allow
4606 smaller number of elements (assuming zero filling) and
4607 consecutive indexes as compared to NULL indexes (such
4608 CONSTRUCTORs can appear in the IL from FEs). */
4609 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4611 if (elt_t == NULL_TREE)
4613 elt_t = TREE_TYPE (elt_v);
4614 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4616 tree elt_t = TREE_TYPE (elt_v);
4617 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4618 TREE_TYPE (elt_t)))
4620 error ("incorrect type of vector CONSTRUCTOR"
4621 " elements");
4622 debug_generic_stmt (rhs1);
4623 return true;
4625 else if (CONSTRUCTOR_NELTS (rhs1)
4626 * TYPE_VECTOR_SUBPARTS (elt_t)
4627 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4629 error ("incorrect number of vector CONSTRUCTOR"
4630 " elements");
4631 debug_generic_stmt (rhs1);
4632 return true;
4635 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4636 elt_t))
4638 error ("incorrect type of vector CONSTRUCTOR elements");
4639 debug_generic_stmt (rhs1);
4640 return true;
4642 else if (CONSTRUCTOR_NELTS (rhs1)
4643 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4645 error ("incorrect number of vector CONSTRUCTOR elements");
4646 debug_generic_stmt (rhs1);
4647 return true;
4650 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4652 error ("incorrect type of vector CONSTRUCTOR elements");
4653 debug_generic_stmt (rhs1);
4654 return true;
4656 if (elt_i != NULL_TREE
4657 && (TREE_CODE (elt_t) == VECTOR_TYPE
4658 || TREE_CODE (elt_i) != INTEGER_CST
4659 || compare_tree_int (elt_i, i) != 0))
4661 error ("vector CONSTRUCTOR with non-NULL element index");
4662 debug_generic_stmt (rhs1);
4663 return true;
4665 if (!is_gimple_val (elt_v))
4667 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4668 debug_generic_stmt (rhs1);
4669 return true;
4673 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4675 error ("non-vector CONSTRUCTOR with elements");
4676 debug_generic_stmt (rhs1);
4677 return true;
4679 return res;
4680 case OBJ_TYPE_REF:
4681 case ASSERT_EXPR:
4682 case WITH_SIZE_EXPR:
4683 /* FIXME. */
4684 return res;
4686 default:;
4689 return res;
4692 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4693 is a problem, otherwise false. */
4695 static bool
4696 verify_gimple_assign (gassign *stmt)
4698 switch (gimple_assign_rhs_class (stmt))
4700 case GIMPLE_SINGLE_RHS:
4701 return verify_gimple_assign_single (stmt);
4703 case GIMPLE_UNARY_RHS:
4704 return verify_gimple_assign_unary (stmt);
4706 case GIMPLE_BINARY_RHS:
4707 return verify_gimple_assign_binary (stmt);
4709 case GIMPLE_TERNARY_RHS:
4710 return verify_gimple_assign_ternary (stmt);
4712 default:
4713 gcc_unreachable ();
4717 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4718 is a problem, otherwise false. */
4720 static bool
4721 verify_gimple_return (greturn *stmt)
4723 tree op = gimple_return_retval (stmt);
4724 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4726 /* We cannot test for present return values as we do not fix up missing
4727 return values from the original source. */
4728 if (op == NULL)
4729 return false;
4731 if (!is_gimple_val (op)
4732 && TREE_CODE (op) != RESULT_DECL)
4734 error ("invalid operand in return statement");
4735 debug_generic_stmt (op);
4736 return true;
4739 if ((TREE_CODE (op) == RESULT_DECL
4740 && DECL_BY_REFERENCE (op))
4741 || (TREE_CODE (op) == SSA_NAME
4742 && SSA_NAME_VAR (op)
4743 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4744 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4745 op = TREE_TYPE (op);
4747 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4749 error ("invalid conversion in return statement");
4750 debug_generic_stmt (restype);
4751 debug_generic_stmt (TREE_TYPE (op));
4752 return true;
4755 return false;
4759 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4760 is a problem, otherwise false. */
4762 static bool
4763 verify_gimple_goto (ggoto *stmt)
4765 tree dest = gimple_goto_dest (stmt);
4767 /* ??? We have two canonical forms of direct goto destinations, a
4768 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4769 if (TREE_CODE (dest) != LABEL_DECL
4770 && (!is_gimple_val (dest)
4771 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4773 error ("goto destination is neither a label nor a pointer");
4774 return true;
4777 return false;
4780 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4781 is a problem, otherwise false. */
4783 static bool
4784 verify_gimple_switch (gswitch *stmt)
4786 unsigned int i, n;
4787 tree elt, prev_upper_bound = NULL_TREE;
4788 tree index_type, elt_type = NULL_TREE;
4790 if (!is_gimple_val (gimple_switch_index (stmt)))
4792 error ("invalid operand to switch statement");
4793 debug_generic_stmt (gimple_switch_index (stmt));
4794 return true;
4797 index_type = TREE_TYPE (gimple_switch_index (stmt));
4798 if (! INTEGRAL_TYPE_P (index_type))
4800 error ("non-integral type switch statement");
4801 debug_generic_expr (index_type);
4802 return true;
4805 elt = gimple_switch_label (stmt, 0);
4806 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4808 error ("invalid default case label in switch statement");
4809 debug_generic_expr (elt);
4810 return true;
4813 n = gimple_switch_num_labels (stmt);
4814 for (i = 1; i < n; i++)
4816 elt = gimple_switch_label (stmt, i);
4818 if (! CASE_LOW (elt))
4820 error ("invalid case label in switch statement");
4821 debug_generic_expr (elt);
4822 return true;
4824 if (CASE_HIGH (elt)
4825 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4827 error ("invalid case range in switch statement");
4828 debug_generic_expr (elt);
4829 return true;
4832 if (elt_type)
4834 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4835 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4837 error ("type mismatch for case label in switch statement");
4838 debug_generic_expr (elt);
4839 return true;
4842 else
4844 elt_type = TREE_TYPE (CASE_LOW (elt));
4845 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4847 error ("type precision mismatch in switch statement");
4848 return true;
4852 if (prev_upper_bound)
4854 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4856 error ("case labels not sorted in switch statement");
4857 return true;
4861 prev_upper_bound = CASE_HIGH (elt);
4862 if (! prev_upper_bound)
4863 prev_upper_bound = CASE_LOW (elt);
4866 return false;
4869 /* Verify a gimple debug statement STMT.
4870 Returns true if anything is wrong. */
4872 static bool
4873 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4875 /* There isn't much that could be wrong in a gimple debug stmt. A
4876 gimple debug bind stmt, for example, maps a tree, that's usually
4877 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4878 component or member of an aggregate type, to another tree, that
4879 can be an arbitrary expression. These stmts expand into debug
4880 insns, and are converted to debug notes by var-tracking.c. */
4881 return false;
4884 /* Verify a gimple label statement STMT.
4885 Returns true if anything is wrong. */
4887 static bool
4888 verify_gimple_label (glabel *stmt)
4890 tree decl = gimple_label_label (stmt);
4891 int uid;
4892 bool err = false;
4894 if (TREE_CODE (decl) != LABEL_DECL)
4895 return true;
4896 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4897 && DECL_CONTEXT (decl) != current_function_decl)
4899 error ("label's context is not the current function decl");
4900 err |= true;
4903 uid = LABEL_DECL_UID (decl);
4904 if (cfun->cfg
4905 && (uid == -1
4906 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4908 error ("incorrect entry in label_to_block_map");
4909 err |= true;
4912 uid = EH_LANDING_PAD_NR (decl);
4913 if (uid)
4915 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4916 if (decl != lp->post_landing_pad)
4918 error ("incorrect setting of landing pad number");
4919 err |= true;
4923 return err;
4926 /* Verify a gimple cond statement STMT.
4927 Returns true if anything is wrong. */
4929 static bool
4930 verify_gimple_cond (gcond *stmt)
4932 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4934 error ("invalid comparison code in gimple cond");
4935 return true;
4937 if (!(!gimple_cond_true_label (stmt)
4938 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4939 || !(!gimple_cond_false_label (stmt)
4940 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4942 error ("invalid labels in gimple cond");
4943 return true;
4946 return verify_gimple_comparison (boolean_type_node,
4947 gimple_cond_lhs (stmt),
4948 gimple_cond_rhs (stmt),
4949 gimple_cond_code (stmt));
4952 /* Verify the GIMPLE statement STMT. Returns true if there is an
4953 error, otherwise false. */
4955 static bool
4956 verify_gimple_stmt (gimple *stmt)
4958 switch (gimple_code (stmt))
4960 case GIMPLE_ASSIGN:
4961 return verify_gimple_assign (as_a <gassign *> (stmt));
4963 case GIMPLE_LABEL:
4964 return verify_gimple_label (as_a <glabel *> (stmt));
4966 case GIMPLE_CALL:
4967 return verify_gimple_call (as_a <gcall *> (stmt));
4969 case GIMPLE_COND:
4970 return verify_gimple_cond (as_a <gcond *> (stmt));
4972 case GIMPLE_GOTO:
4973 return verify_gimple_goto (as_a <ggoto *> (stmt));
4975 case GIMPLE_SWITCH:
4976 return verify_gimple_switch (as_a <gswitch *> (stmt));
4978 case GIMPLE_RETURN:
4979 return verify_gimple_return (as_a <greturn *> (stmt));
4981 case GIMPLE_ASM:
4982 return false;
4984 case GIMPLE_TRANSACTION:
4985 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4987 /* Tuples that do not have tree operands. */
4988 case GIMPLE_NOP:
4989 case GIMPLE_PREDICT:
4990 case GIMPLE_RESX:
4991 case GIMPLE_EH_DISPATCH:
4992 case GIMPLE_EH_MUST_NOT_THROW:
4993 return false;
4995 CASE_GIMPLE_OMP:
4996 /* OpenMP directives are validated by the FE and never operated
4997 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4998 non-gimple expressions when the main index variable has had
4999 its address taken. This does not affect the loop itself
5000 because the header of an GIMPLE_OMP_FOR is merely used to determine
5001 how to setup the parallel iteration. */
5002 return false;
5004 case GIMPLE_DEBUG:
5005 return verify_gimple_debug (stmt);
5007 default:
5008 gcc_unreachable ();
5012 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
5013 and false otherwise. */
5015 static bool
5016 verify_gimple_phi (gimple *phi)
5018 bool err = false;
5019 unsigned i;
5020 tree phi_result = gimple_phi_result (phi);
5021 bool virtual_p;
5023 if (!phi_result)
5025 error ("invalid PHI result");
5026 return true;
5029 virtual_p = virtual_operand_p (phi_result);
5030 if (TREE_CODE (phi_result) != SSA_NAME
5031 || (virtual_p
5032 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
5034 error ("invalid PHI result");
5035 err = true;
5038 for (i = 0; i < gimple_phi_num_args (phi); i++)
5040 tree t = gimple_phi_arg_def (phi, i);
5042 if (!t)
5044 error ("missing PHI def");
5045 err |= true;
5046 continue;
5048 /* Addressable variables do have SSA_NAMEs but they
5049 are not considered gimple values. */
5050 else if ((TREE_CODE (t) == SSA_NAME
5051 && virtual_p != virtual_operand_p (t))
5052 || (virtual_p
5053 && (TREE_CODE (t) != SSA_NAME
5054 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
5055 || (!virtual_p
5056 && !is_gimple_val (t)))
5058 error ("invalid PHI argument");
5059 debug_generic_expr (t);
5060 err |= true;
5062 #ifdef ENABLE_TYPES_CHECKING
5063 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
5065 error ("incompatible types in PHI argument %u", i);
5066 debug_generic_stmt (TREE_TYPE (phi_result));
5067 debug_generic_stmt (TREE_TYPE (t));
5068 err |= true;
5070 #endif
5073 return err;
5076 /* Verify the GIMPLE statements inside the sequence STMTS. */
5078 static bool
5079 verify_gimple_in_seq_2 (gimple_seq stmts)
5081 gimple_stmt_iterator ittr;
5082 bool err = false;
5084 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
5086 gimple *stmt = gsi_stmt (ittr);
5088 switch (gimple_code (stmt))
5090 case GIMPLE_BIND:
5091 err |= verify_gimple_in_seq_2 (
5092 gimple_bind_body (as_a <gbind *> (stmt)));
5093 break;
5095 case GIMPLE_TRY:
5096 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5097 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5098 break;
5100 case GIMPLE_EH_FILTER:
5101 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5102 break;
5104 case GIMPLE_EH_ELSE:
5106 geh_else *eh_else = as_a <geh_else *> (stmt);
5107 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5108 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5110 break;
5112 case GIMPLE_CATCH:
5113 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5114 as_a <gcatch *> (stmt)));
5115 break;
5117 case GIMPLE_TRANSACTION:
5118 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5119 break;
5121 default:
5123 bool err2 = verify_gimple_stmt (stmt);
5124 if (err2)
5125 debug_gimple_stmt (stmt);
5126 err |= err2;
5131 return err;
5134 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5135 is a problem, otherwise false. */
5137 static bool
5138 verify_gimple_transaction (gtransaction *stmt)
5140 tree lab;
5142 lab = gimple_transaction_label_norm (stmt);
5143 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5144 return true;
5145 lab = gimple_transaction_label_uninst (stmt);
5146 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5147 return true;
5148 lab = gimple_transaction_label_over (stmt);
5149 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5150 return true;
5152 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5156 /* Verify the GIMPLE statements inside the statement list STMTS. */
5158 DEBUG_FUNCTION void
5159 verify_gimple_in_seq (gimple_seq stmts)
5161 timevar_push (TV_TREE_STMT_VERIFY);
5162 if (verify_gimple_in_seq_2 (stmts))
5163 internal_error ("verify_gimple failed");
5164 timevar_pop (TV_TREE_STMT_VERIFY);
5167 /* Return true when the T can be shared. */
5169 static bool
5170 tree_node_can_be_shared (tree t)
5172 if (IS_TYPE_OR_DECL_P (t)
5173 || is_gimple_min_invariant (t)
5174 || TREE_CODE (t) == SSA_NAME
5175 || t == error_mark_node
5176 || TREE_CODE (t) == IDENTIFIER_NODE)
5177 return true;
5179 if (TREE_CODE (t) == CASE_LABEL_EXPR)
5180 return true;
5182 if (DECL_P (t))
5183 return true;
5185 return false;
5188 /* Called via walk_tree. Verify tree sharing. */
5190 static tree
5191 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5193 hash_set<void *> *visited = (hash_set<void *> *) data;
5195 if (tree_node_can_be_shared (*tp))
5197 *walk_subtrees = false;
5198 return NULL;
5201 if (visited->add (*tp))
5202 return *tp;
5204 return NULL;
5207 /* Called via walk_gimple_stmt. Verify tree sharing. */
5209 static tree
5210 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5212 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5213 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5216 static bool eh_error_found;
5217 bool
5218 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5219 hash_set<gimple *> *visited)
5221 if (!visited->contains (stmt))
5223 error ("dead STMT in EH table");
5224 debug_gimple_stmt (stmt);
5225 eh_error_found = true;
5227 return true;
5230 /* Verify if the location LOCs block is in BLOCKS. */
5232 static bool
5233 verify_location (hash_set<tree> *blocks, location_t loc)
5235 tree block = LOCATION_BLOCK (loc);
5236 if (block != NULL_TREE
5237 && !blocks->contains (block))
5239 error ("location references block not in block tree");
5240 return true;
5242 if (block != NULL_TREE)
5243 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5244 return false;
5247 /* Called via walk_tree. Verify that expressions have no blocks. */
5249 static tree
5250 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5252 if (!EXPR_P (*tp))
5254 *walk_subtrees = false;
5255 return NULL;
5258 location_t loc = EXPR_LOCATION (*tp);
5259 if (LOCATION_BLOCK (loc) != NULL)
5260 return *tp;
5262 return NULL;
5265 /* Called via walk_tree. Verify locations of expressions. */
5267 static tree
5268 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5270 hash_set<tree> *blocks = (hash_set<tree> *) data;
5272 if (VAR_P (*tp) && DECL_HAS_DEBUG_EXPR_P (*tp))
5274 tree t = DECL_DEBUG_EXPR (*tp);
5275 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5276 if (addr)
5277 return addr;
5279 if ((VAR_P (*tp)
5280 || TREE_CODE (*tp) == PARM_DECL
5281 || TREE_CODE (*tp) == RESULT_DECL)
5282 && DECL_HAS_VALUE_EXPR_P (*tp))
5284 tree t = DECL_VALUE_EXPR (*tp);
5285 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5286 if (addr)
5287 return addr;
5290 if (!EXPR_P (*tp))
5292 *walk_subtrees = false;
5293 return NULL;
5296 location_t loc = EXPR_LOCATION (*tp);
5297 if (verify_location (blocks, loc))
5298 return *tp;
5300 return NULL;
5303 /* Called via walk_gimple_op. Verify locations of expressions. */
5305 static tree
5306 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5308 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5309 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5312 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5314 static void
5315 collect_subblocks (hash_set<tree> *blocks, tree block)
5317 tree t;
5318 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5320 blocks->add (t);
5321 collect_subblocks (blocks, t);
5325 /* Verify the GIMPLE statements in the CFG of FN. */
5327 DEBUG_FUNCTION void
5328 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5330 basic_block bb;
5331 bool err = false;
5333 timevar_push (TV_TREE_STMT_VERIFY);
5334 hash_set<void *> visited;
5335 hash_set<gimple *> visited_stmts;
5337 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5338 hash_set<tree> blocks;
5339 if (DECL_INITIAL (fn->decl))
5341 blocks.add (DECL_INITIAL (fn->decl));
5342 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5345 FOR_EACH_BB_FN (bb, fn)
5347 gimple_stmt_iterator gsi;
5349 for (gphi_iterator gpi = gsi_start_phis (bb);
5350 !gsi_end_p (gpi);
5351 gsi_next (&gpi))
5353 gphi *phi = gpi.phi ();
5354 bool err2 = false;
5355 unsigned i;
5357 visited_stmts.add (phi);
5359 if (gimple_bb (phi) != bb)
5361 error ("gimple_bb (phi) is set to a wrong basic block");
5362 err2 = true;
5365 err2 |= verify_gimple_phi (phi);
5367 /* Only PHI arguments have locations. */
5368 if (gimple_location (phi) != UNKNOWN_LOCATION)
5370 error ("PHI node with location");
5371 err2 = true;
5374 for (i = 0; i < gimple_phi_num_args (phi); i++)
5376 tree arg = gimple_phi_arg_def (phi, i);
5377 tree addr = walk_tree (&arg, verify_node_sharing_1,
5378 &visited, NULL);
5379 if (addr)
5381 error ("incorrect sharing of tree nodes");
5382 debug_generic_expr (addr);
5383 err2 |= true;
5385 location_t loc = gimple_phi_arg_location (phi, i);
5386 if (virtual_operand_p (gimple_phi_result (phi))
5387 && loc != UNKNOWN_LOCATION)
5389 error ("virtual PHI with argument locations");
5390 err2 = true;
5392 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5393 if (addr)
5395 debug_generic_expr (addr);
5396 err2 = true;
5398 err2 |= verify_location (&blocks, loc);
5401 if (err2)
5402 debug_gimple_stmt (phi);
5403 err |= err2;
5406 bool label_allowed = true;
5407 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5409 gimple *stmt = gsi_stmt (gsi);
5410 bool err2 = false;
5411 struct walk_stmt_info wi;
5412 tree addr;
5413 int lp_nr;
5415 visited_stmts.add (stmt);
5417 if (gimple_bb (stmt) != bb)
5419 error ("gimple_bb (stmt) is set to a wrong basic block");
5420 err2 = true;
5423 /* Labels may be preceded only by debug markers, not debug bind
5424 or source bind or any other statements. */
5425 if (gimple_code (stmt) == GIMPLE_LABEL)
5427 if (!label_allowed)
5429 error ("gimple label in the middle of a basic block");
5430 err2 = true;
5433 else if (!gimple_debug_begin_stmt_p (stmt))
5434 label_allowed = false;
5436 err2 |= verify_gimple_stmt (stmt);
5437 err2 |= verify_location (&blocks, gimple_location (stmt));
5439 memset (&wi, 0, sizeof (wi));
5440 wi.info = (void *) &visited;
5441 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5442 if (addr)
5444 error ("incorrect sharing of tree nodes");
5445 debug_generic_expr (addr);
5446 err2 |= true;
5449 memset (&wi, 0, sizeof (wi));
5450 wi.info = (void *) &blocks;
5451 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5452 if (addr)
5454 debug_generic_expr (addr);
5455 err2 |= true;
5458 /* ??? Instead of not checking these stmts at all the walker
5459 should know its context via wi. */
5460 if (!is_gimple_debug (stmt)
5461 && !is_gimple_omp (stmt))
5463 memset (&wi, 0, sizeof (wi));
5464 addr = walk_gimple_op (stmt, verify_expr, &wi);
5465 if (addr)
5467 debug_generic_expr (addr);
5468 inform (gimple_location (stmt), "in statement");
5469 err2 |= true;
5473 /* If the statement is marked as part of an EH region, then it is
5474 expected that the statement could throw. Verify that when we
5475 have optimizations that simplify statements such that we prove
5476 that they cannot throw, that we update other data structures
5477 to match. */
5478 lp_nr = lookup_stmt_eh_lp (stmt);
5479 if (lp_nr > 0)
5481 if (!stmt_could_throw_p (stmt))
5483 if (verify_nothrow)
5485 error ("statement marked for throw, but doesn%'t");
5486 err2 |= true;
5489 else if (!gsi_one_before_end_p (gsi))
5491 error ("statement marked for throw in middle of block");
5492 err2 |= true;
5496 if (err2)
5497 debug_gimple_stmt (stmt);
5498 err |= err2;
5502 eh_error_found = false;
5503 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5504 if (eh_table)
5505 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5506 (&visited_stmts);
5508 if (err || eh_error_found)
5509 internal_error ("verify_gimple failed");
5511 verify_histograms ();
5512 timevar_pop (TV_TREE_STMT_VERIFY);
5516 /* Verifies that the flow information is OK. */
5518 static int
5519 gimple_verify_flow_info (void)
5521 int err = 0;
5522 basic_block bb;
5523 gimple_stmt_iterator gsi;
5524 gimple *stmt;
5525 edge e;
5526 edge_iterator ei;
5528 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5529 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5531 error ("ENTRY_BLOCK has IL associated with it");
5532 err = 1;
5535 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5536 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5538 error ("EXIT_BLOCK has IL associated with it");
5539 err = 1;
5542 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5543 if (e->flags & EDGE_FALLTHRU)
5545 error ("fallthru to exit from bb %d", e->src->index);
5546 err = 1;
5549 FOR_EACH_BB_FN (bb, cfun)
5551 bool found_ctrl_stmt = false;
5553 stmt = NULL;
5555 /* Skip labels on the start of basic block. */
5556 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5558 tree label;
5560 if (is_gimple_debug (gsi_stmt (gsi)))
5561 continue;
5563 gimple *prev_stmt = stmt;
5565 stmt = gsi_stmt (gsi);
5567 if (gimple_code (stmt) != GIMPLE_LABEL)
5568 break;
5570 label = gimple_label_label (as_a <glabel *> (stmt));
5571 if (prev_stmt && DECL_NONLOCAL (label))
5573 error ("nonlocal label ");
5574 print_generic_expr (stderr, label);
5575 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5576 bb->index);
5577 err = 1;
5580 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5582 error ("EH landing pad label ");
5583 print_generic_expr (stderr, label);
5584 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5585 bb->index);
5586 err = 1;
5589 if (label_to_block (label) != bb)
5591 error ("label ");
5592 print_generic_expr (stderr, label);
5593 fprintf (stderr, " to block does not match in bb %d",
5594 bb->index);
5595 err = 1;
5598 if (decl_function_context (label) != current_function_decl)
5600 error ("label ");
5601 print_generic_expr (stderr, label);
5602 fprintf (stderr, " has incorrect context in bb %d",
5603 bb->index);
5604 err = 1;
5608 /* Verify that body of basic block BB is free of control flow. */
5609 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5611 gimple *stmt = gsi_stmt (gsi);
5613 if (found_ctrl_stmt)
5615 error ("control flow in the middle of basic block %d",
5616 bb->index);
5617 err = 1;
5620 if (stmt_ends_bb_p (stmt))
5621 found_ctrl_stmt = true;
5623 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5625 error ("label ");
5626 print_generic_expr (stderr, gimple_label_label (label_stmt));
5627 fprintf (stderr, " in the middle of basic block %d", bb->index);
5628 err = 1;
5632 gsi = gsi_last_nondebug_bb (bb);
5633 if (gsi_end_p (gsi))
5634 continue;
5636 stmt = gsi_stmt (gsi);
5638 if (gimple_code (stmt) == GIMPLE_LABEL)
5639 continue;
5641 err |= verify_eh_edges (stmt);
5643 if (is_ctrl_stmt (stmt))
5645 FOR_EACH_EDGE (e, ei, bb->succs)
5646 if (e->flags & EDGE_FALLTHRU)
5648 error ("fallthru edge after a control statement in bb %d",
5649 bb->index);
5650 err = 1;
5654 if (gimple_code (stmt) != GIMPLE_COND)
5656 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5657 after anything else but if statement. */
5658 FOR_EACH_EDGE (e, ei, bb->succs)
5659 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5661 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5662 bb->index);
5663 err = 1;
5667 switch (gimple_code (stmt))
5669 case GIMPLE_COND:
5671 edge true_edge;
5672 edge false_edge;
5674 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5676 if (!true_edge
5677 || !false_edge
5678 || !(true_edge->flags & EDGE_TRUE_VALUE)
5679 || !(false_edge->flags & EDGE_FALSE_VALUE)
5680 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5681 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5682 || EDGE_COUNT (bb->succs) >= 3)
5684 error ("wrong outgoing edge flags at end of bb %d",
5685 bb->index);
5686 err = 1;
5689 break;
5691 case GIMPLE_GOTO:
5692 if (simple_goto_p (stmt))
5694 error ("explicit goto at end of bb %d", bb->index);
5695 err = 1;
5697 else
5699 /* FIXME. We should double check that the labels in the
5700 destination blocks have their address taken. */
5701 FOR_EACH_EDGE (e, ei, bb->succs)
5702 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5703 | EDGE_FALSE_VALUE))
5704 || !(e->flags & EDGE_ABNORMAL))
5706 error ("wrong outgoing edge flags at end of bb %d",
5707 bb->index);
5708 err = 1;
5711 break;
5713 case GIMPLE_CALL:
5714 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5715 break;
5716 /* fallthru */
5717 case GIMPLE_RETURN:
5718 if (!single_succ_p (bb)
5719 || (single_succ_edge (bb)->flags
5720 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5721 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5723 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5724 err = 1;
5726 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5728 error ("return edge does not point to exit in bb %d",
5729 bb->index);
5730 err = 1;
5732 break;
5734 case GIMPLE_SWITCH:
5736 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5737 tree prev;
5738 edge e;
5739 size_t i, n;
5741 n = gimple_switch_num_labels (switch_stmt);
5743 /* Mark all the destination basic blocks. */
5744 for (i = 0; i < n; ++i)
5746 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5747 basic_block label_bb = label_to_block (lab);
5748 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5749 label_bb->aux = (void *)1;
5752 /* Verify that the case labels are sorted. */
5753 prev = gimple_switch_label (switch_stmt, 0);
5754 for (i = 1; i < n; ++i)
5756 tree c = gimple_switch_label (switch_stmt, i);
5757 if (!CASE_LOW (c))
5759 error ("found default case not at the start of "
5760 "case vector");
5761 err = 1;
5762 continue;
5764 if (CASE_LOW (prev)
5765 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5767 error ("case labels not sorted: ");
5768 print_generic_expr (stderr, prev);
5769 fprintf (stderr," is greater than ");
5770 print_generic_expr (stderr, c);
5771 fprintf (stderr," but comes before it.\n");
5772 err = 1;
5774 prev = c;
5776 /* VRP will remove the default case if it can prove it will
5777 never be executed. So do not verify there always exists
5778 a default case here. */
5780 FOR_EACH_EDGE (e, ei, bb->succs)
5782 if (!e->dest->aux)
5784 error ("extra outgoing edge %d->%d",
5785 bb->index, e->dest->index);
5786 err = 1;
5789 e->dest->aux = (void *)2;
5790 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5791 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5793 error ("wrong outgoing edge flags at end of bb %d",
5794 bb->index);
5795 err = 1;
5799 /* Check that we have all of them. */
5800 for (i = 0; i < n; ++i)
5802 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5803 basic_block label_bb = label_to_block (lab);
5805 if (label_bb->aux != (void *)2)
5807 error ("missing edge %i->%i", bb->index, label_bb->index);
5808 err = 1;
5812 FOR_EACH_EDGE (e, ei, bb->succs)
5813 e->dest->aux = (void *)0;
5815 break;
5817 case GIMPLE_EH_DISPATCH:
5818 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5819 break;
5821 default:
5822 break;
5826 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5827 verify_dominators (CDI_DOMINATORS);
5829 return err;
5833 /* Updates phi nodes after creating a forwarder block joined
5834 by edge FALLTHRU. */
5836 static void
5837 gimple_make_forwarder_block (edge fallthru)
5839 edge e;
5840 edge_iterator ei;
5841 basic_block dummy, bb;
5842 tree var;
5843 gphi_iterator gsi;
5845 dummy = fallthru->src;
5846 bb = fallthru->dest;
5848 if (single_pred_p (bb))
5849 return;
5851 /* If we redirected a branch we must create new PHI nodes at the
5852 start of BB. */
5853 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5855 gphi *phi, *new_phi;
5857 phi = gsi.phi ();
5858 var = gimple_phi_result (phi);
5859 new_phi = create_phi_node (var, bb);
5860 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5861 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5862 UNKNOWN_LOCATION);
5865 /* Add the arguments we have stored on edges. */
5866 FOR_EACH_EDGE (e, ei, bb->preds)
5868 if (e == fallthru)
5869 continue;
5871 flush_pending_stmts (e);
5876 /* Return a non-special label in the head of basic block BLOCK.
5877 Create one if it doesn't exist. */
5879 tree
5880 gimple_block_label (basic_block bb)
5882 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5883 bool first = true;
5884 tree label;
5885 glabel *stmt;
5887 for (i = s; !gsi_end_p (i); gsi_next (&i))
5889 if (is_gimple_debug (gsi_stmt (i)))
5890 continue;
5891 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5892 if (!stmt)
5893 break;
5894 label = gimple_label_label (stmt);
5895 if (!DECL_NONLOCAL (label))
5897 if (!first)
5898 gsi_move_before (&i, &s);
5899 return label;
5901 first = false;
5904 label = create_artificial_label (UNKNOWN_LOCATION);
5905 stmt = gimple_build_label (label);
5906 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5907 return label;
5911 /* Attempt to perform edge redirection by replacing a possibly complex
5912 jump instruction by a goto or by removing the jump completely.
5913 This can apply only if all edges now point to the same block. The
5914 parameters and return values are equivalent to
5915 redirect_edge_and_branch. */
5917 static edge
5918 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5920 basic_block src = e->src;
5921 gimple_stmt_iterator i;
5922 gimple *stmt;
5924 /* We can replace or remove a complex jump only when we have exactly
5925 two edges. */
5926 if (EDGE_COUNT (src->succs) != 2
5927 /* Verify that all targets will be TARGET. Specifically, the
5928 edge that is not E must also go to TARGET. */
5929 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5930 return NULL;
5932 i = gsi_last_bb (src);
5933 if (gsi_end_p (i))
5934 return NULL;
5936 stmt = gsi_stmt (i);
5938 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5940 gsi_remove (&i, true);
5941 e = ssa_redirect_edge (e, target);
5942 e->flags = EDGE_FALLTHRU;
5943 return e;
5946 return NULL;
5950 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5951 edge representing the redirected branch. */
5953 static edge
5954 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5956 basic_block bb = e->src;
5957 gimple_stmt_iterator gsi;
5958 edge ret;
5959 gimple *stmt;
5961 if (e->flags & EDGE_ABNORMAL)
5962 return NULL;
5964 if (e->dest == dest)
5965 return NULL;
5967 if (e->flags & EDGE_EH)
5968 return redirect_eh_edge (e, dest);
5970 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5972 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5973 if (ret)
5974 return ret;
5977 gsi = gsi_last_nondebug_bb (bb);
5978 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5980 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5982 case GIMPLE_COND:
5983 /* For COND_EXPR, we only need to redirect the edge. */
5984 break;
5986 case GIMPLE_GOTO:
5987 /* No non-abnormal edges should lead from a non-simple goto, and
5988 simple ones should be represented implicitly. */
5989 gcc_unreachable ();
5991 case GIMPLE_SWITCH:
5993 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5994 tree label = gimple_block_label (dest);
5995 tree cases = get_cases_for_edge (e, switch_stmt);
5997 /* If we have a list of cases associated with E, then use it
5998 as it's a lot faster than walking the entire case vector. */
5999 if (cases)
6001 edge e2 = find_edge (e->src, dest);
6002 tree last, first;
6004 first = cases;
6005 while (cases)
6007 last = cases;
6008 CASE_LABEL (cases) = label;
6009 cases = CASE_CHAIN (cases);
6012 /* If there was already an edge in the CFG, then we need
6013 to move all the cases associated with E to E2. */
6014 if (e2)
6016 tree cases2 = get_cases_for_edge (e2, switch_stmt);
6018 CASE_CHAIN (last) = CASE_CHAIN (cases2);
6019 CASE_CHAIN (cases2) = first;
6021 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
6023 else
6025 size_t i, n = gimple_switch_num_labels (switch_stmt);
6027 for (i = 0; i < n; i++)
6029 tree elt = gimple_switch_label (switch_stmt, i);
6030 if (label_to_block (CASE_LABEL (elt)) == e->dest)
6031 CASE_LABEL (elt) = label;
6035 break;
6037 case GIMPLE_ASM:
6039 gasm *asm_stmt = as_a <gasm *> (stmt);
6040 int i, n = gimple_asm_nlabels (asm_stmt);
6041 tree label = NULL;
6043 for (i = 0; i < n; ++i)
6045 tree cons = gimple_asm_label_op (asm_stmt, i);
6046 if (label_to_block (TREE_VALUE (cons)) == e->dest)
6048 if (!label)
6049 label = gimple_block_label (dest);
6050 TREE_VALUE (cons) = label;
6054 /* If we didn't find any label matching the former edge in the
6055 asm labels, we must be redirecting the fallthrough
6056 edge. */
6057 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
6059 break;
6061 case GIMPLE_RETURN:
6062 gsi_remove (&gsi, true);
6063 e->flags |= EDGE_FALLTHRU;
6064 break;
6066 case GIMPLE_OMP_RETURN:
6067 case GIMPLE_OMP_CONTINUE:
6068 case GIMPLE_OMP_SECTIONS_SWITCH:
6069 case GIMPLE_OMP_FOR:
6070 /* The edges from OMP constructs can be simply redirected. */
6071 break;
6073 case GIMPLE_EH_DISPATCH:
6074 if (!(e->flags & EDGE_FALLTHRU))
6075 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
6076 break;
6078 case GIMPLE_TRANSACTION:
6079 if (e->flags & EDGE_TM_ABORT)
6080 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
6081 gimple_block_label (dest));
6082 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
6083 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
6084 gimple_block_label (dest));
6085 else
6086 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
6087 gimple_block_label (dest));
6088 break;
6090 default:
6091 /* Otherwise it must be a fallthru edge, and we don't need to
6092 do anything besides redirecting it. */
6093 gcc_assert (e->flags & EDGE_FALLTHRU);
6094 break;
6097 /* Update/insert PHI nodes as necessary. */
6099 /* Now update the edges in the CFG. */
6100 e = ssa_redirect_edge (e, dest);
6102 return e;
6105 /* Returns true if it is possible to remove edge E by redirecting
6106 it to the destination of the other edge from E->src. */
6108 static bool
6109 gimple_can_remove_branch_p (const_edge e)
6111 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6112 return false;
6114 return true;
6117 /* Simple wrapper, as we can always redirect fallthru edges. */
6119 static basic_block
6120 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6122 e = gimple_redirect_edge_and_branch (e, dest);
6123 gcc_assert (e);
6125 return NULL;
6129 /* Splits basic block BB after statement STMT (but at least after the
6130 labels). If STMT is NULL, BB is split just after the labels. */
6132 static basic_block
6133 gimple_split_block (basic_block bb, void *stmt)
6135 gimple_stmt_iterator gsi;
6136 gimple_stmt_iterator gsi_tgt;
6137 gimple_seq list;
6138 basic_block new_bb;
6139 edge e;
6140 edge_iterator ei;
6142 new_bb = create_empty_bb (bb);
6144 /* Redirect the outgoing edges. */
6145 new_bb->succs = bb->succs;
6146 bb->succs = NULL;
6147 FOR_EACH_EDGE (e, ei, new_bb->succs)
6148 e->src = new_bb;
6150 /* Get a stmt iterator pointing to the first stmt to move. */
6151 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6152 gsi = gsi_after_labels (bb);
6153 else
6155 gsi = gsi_for_stmt ((gimple *) stmt);
6156 gsi_next (&gsi);
6159 /* Move everything from GSI to the new basic block. */
6160 if (gsi_end_p (gsi))
6161 return new_bb;
6163 /* Split the statement list - avoid re-creating new containers as this
6164 brings ugly quadratic memory consumption in the inliner.
6165 (We are still quadratic since we need to update stmt BB pointers,
6166 sadly.) */
6167 gsi_split_seq_before (&gsi, &list);
6168 set_bb_seq (new_bb, list);
6169 for (gsi_tgt = gsi_start (list);
6170 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6171 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6173 return new_bb;
6177 /* Moves basic block BB after block AFTER. */
6179 static bool
6180 gimple_move_block_after (basic_block bb, basic_block after)
6182 if (bb->prev_bb == after)
6183 return true;
6185 unlink_block (bb);
6186 link_block (bb, after);
6188 return true;
6192 /* Return TRUE if block BB has no executable statements, otherwise return
6193 FALSE. */
6195 static bool
6196 gimple_empty_block_p (basic_block bb)
6198 /* BB must have no executable statements. */
6199 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6200 if (phi_nodes (bb))
6201 return false;
6202 if (gsi_end_p (gsi))
6203 return true;
6204 if (is_gimple_debug (gsi_stmt (gsi)))
6205 gsi_next_nondebug (&gsi);
6206 return gsi_end_p (gsi);
6210 /* Split a basic block if it ends with a conditional branch and if the
6211 other part of the block is not empty. */
6213 static basic_block
6214 gimple_split_block_before_cond_jump (basic_block bb)
6216 gimple *last, *split_point;
6217 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6218 if (gsi_end_p (gsi))
6219 return NULL;
6220 last = gsi_stmt (gsi);
6221 if (gimple_code (last) != GIMPLE_COND
6222 && gimple_code (last) != GIMPLE_SWITCH)
6223 return NULL;
6224 gsi_prev (&gsi);
6225 split_point = gsi_stmt (gsi);
6226 return split_block (bb, split_point)->dest;
6230 /* Return true if basic_block can be duplicated. */
6232 static bool
6233 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6235 return true;
6238 /* Create a duplicate of the basic block BB. NOTE: This does not
6239 preserve SSA form. */
6241 static basic_block
6242 gimple_duplicate_bb (basic_block bb)
6244 basic_block new_bb;
6245 gimple_stmt_iterator gsi_tgt;
6247 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6249 /* Copy the PHI nodes. We ignore PHI node arguments here because
6250 the incoming edges have not been setup yet. */
6251 for (gphi_iterator gpi = gsi_start_phis (bb);
6252 !gsi_end_p (gpi);
6253 gsi_next (&gpi))
6255 gphi *phi, *copy;
6256 phi = gpi.phi ();
6257 copy = create_phi_node (NULL_TREE, new_bb);
6258 create_new_def_for (gimple_phi_result (phi), copy,
6259 gimple_phi_result_ptr (copy));
6260 gimple_set_uid (copy, gimple_uid (phi));
6263 gsi_tgt = gsi_start_bb (new_bb);
6264 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6265 !gsi_end_p (gsi);
6266 gsi_next (&gsi))
6268 def_operand_p def_p;
6269 ssa_op_iter op_iter;
6270 tree lhs;
6271 gimple *stmt, *copy;
6273 stmt = gsi_stmt (gsi);
6274 if (gimple_code (stmt) == GIMPLE_LABEL)
6275 continue;
6277 /* Don't duplicate label debug stmts. */
6278 if (gimple_debug_bind_p (stmt)
6279 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6280 == LABEL_DECL)
6281 continue;
6283 /* Create a new copy of STMT and duplicate STMT's virtual
6284 operands. */
6285 copy = gimple_copy (stmt);
6286 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6288 maybe_duplicate_eh_stmt (copy, stmt);
6289 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6291 /* When copying around a stmt writing into a local non-user
6292 aggregate, make sure it won't share stack slot with other
6293 vars. */
6294 lhs = gimple_get_lhs (stmt);
6295 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6297 tree base = get_base_address (lhs);
6298 if (base
6299 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6300 && DECL_IGNORED_P (base)
6301 && !TREE_STATIC (base)
6302 && !DECL_EXTERNAL (base)
6303 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6304 DECL_NONSHAREABLE (base) = 1;
6307 /* Create new names for all the definitions created by COPY and
6308 add replacement mappings for each new name. */
6309 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6310 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6313 return new_bb;
6316 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6318 static void
6319 add_phi_args_after_copy_edge (edge e_copy)
6321 basic_block bb, bb_copy = e_copy->src, dest;
6322 edge e;
6323 edge_iterator ei;
6324 gphi *phi, *phi_copy;
6325 tree def;
6326 gphi_iterator psi, psi_copy;
6328 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6329 return;
6331 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6333 if (e_copy->dest->flags & BB_DUPLICATED)
6334 dest = get_bb_original (e_copy->dest);
6335 else
6336 dest = e_copy->dest;
6338 e = find_edge (bb, dest);
6339 if (!e)
6341 /* During loop unrolling the target of the latch edge is copied.
6342 In this case we are not looking for edge to dest, but to
6343 duplicated block whose original was dest. */
6344 FOR_EACH_EDGE (e, ei, bb->succs)
6346 if ((e->dest->flags & BB_DUPLICATED)
6347 && get_bb_original (e->dest) == dest)
6348 break;
6351 gcc_assert (e != NULL);
6354 for (psi = gsi_start_phis (e->dest),
6355 psi_copy = gsi_start_phis (e_copy->dest);
6356 !gsi_end_p (psi);
6357 gsi_next (&psi), gsi_next (&psi_copy))
6359 phi = psi.phi ();
6360 phi_copy = psi_copy.phi ();
6361 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6362 add_phi_arg (phi_copy, def, e_copy,
6363 gimple_phi_arg_location_from_edge (phi, e));
6368 /* Basic block BB_COPY was created by code duplication. Add phi node
6369 arguments for edges going out of BB_COPY. The blocks that were
6370 duplicated have BB_DUPLICATED set. */
6372 void
6373 add_phi_args_after_copy_bb (basic_block bb_copy)
6375 edge e_copy;
6376 edge_iterator ei;
6378 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6380 add_phi_args_after_copy_edge (e_copy);
6384 /* Blocks in REGION_COPY array of length N_REGION were created by
6385 duplication of basic blocks. Add phi node arguments for edges
6386 going from these blocks. If E_COPY is not NULL, also add
6387 phi node arguments for its destination.*/
6389 void
6390 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6391 edge e_copy)
6393 unsigned i;
6395 for (i = 0; i < n_region; i++)
6396 region_copy[i]->flags |= BB_DUPLICATED;
6398 for (i = 0; i < n_region; i++)
6399 add_phi_args_after_copy_bb (region_copy[i]);
6400 if (e_copy)
6401 add_phi_args_after_copy_edge (e_copy);
6403 for (i = 0; i < n_region; i++)
6404 region_copy[i]->flags &= ~BB_DUPLICATED;
6407 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6408 important exit edge EXIT. By important we mean that no SSA name defined
6409 inside region is live over the other exit edges of the region. All entry
6410 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6411 to the duplicate of the region. Dominance and loop information is
6412 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6413 UPDATE_DOMINANCE is false then we assume that the caller will update the
6414 dominance information after calling this function. The new basic
6415 blocks are stored to REGION_COPY in the same order as they had in REGION,
6416 provided that REGION_COPY is not NULL.
6417 The function returns false if it is unable to copy the region,
6418 true otherwise. */
6420 bool
6421 gimple_duplicate_sese_region (edge entry, edge exit,
6422 basic_block *region, unsigned n_region,
6423 basic_block *region_copy,
6424 bool update_dominance)
6426 unsigned i;
6427 bool free_region_copy = false, copying_header = false;
6428 struct loop *loop = entry->dest->loop_father;
6429 edge exit_copy;
6430 vec<basic_block> doms = vNULL;
6431 edge redirected;
6432 profile_count total_count = profile_count::uninitialized ();
6433 profile_count entry_count = profile_count::uninitialized ();
6435 if (!can_copy_bbs_p (region, n_region))
6436 return false;
6438 /* Some sanity checking. Note that we do not check for all possible
6439 missuses of the functions. I.e. if you ask to copy something weird,
6440 it will work, but the state of structures probably will not be
6441 correct. */
6442 for (i = 0; i < n_region; i++)
6444 /* We do not handle subloops, i.e. all the blocks must belong to the
6445 same loop. */
6446 if (region[i]->loop_father != loop)
6447 return false;
6449 if (region[i] != entry->dest
6450 && region[i] == loop->header)
6451 return false;
6454 /* In case the function is used for loop header copying (which is the primary
6455 use), ensure that EXIT and its copy will be new latch and entry edges. */
6456 if (loop->header == entry->dest)
6458 copying_header = true;
6460 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6461 return false;
6463 for (i = 0; i < n_region; i++)
6464 if (region[i] != exit->src
6465 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6466 return false;
6469 initialize_original_copy_tables ();
6471 if (copying_header)
6472 set_loop_copy (loop, loop_outer (loop));
6473 else
6474 set_loop_copy (loop, loop);
6476 if (!region_copy)
6478 region_copy = XNEWVEC (basic_block, n_region);
6479 free_region_copy = true;
6482 /* Record blocks outside the region that are dominated by something
6483 inside. */
6484 if (update_dominance)
6486 doms.create (0);
6487 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6490 if (entry->dest->count.initialized_p ())
6492 total_count = entry->dest->count;
6493 entry_count = entry->count ();
6494 /* Fix up corner cases, to avoid division by zero or creation of negative
6495 frequencies. */
6496 if (entry_count > total_count)
6497 entry_count = total_count;
6500 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6501 split_edge_bb_loc (entry), update_dominance);
6502 if (total_count.initialized_p () && entry_count.initialized_p ())
6504 scale_bbs_frequencies_profile_count (region, n_region,
6505 total_count - entry_count,
6506 total_count);
6507 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6508 total_count);
6511 if (copying_header)
6513 loop->header = exit->dest;
6514 loop->latch = exit->src;
6517 /* Redirect the entry and add the phi node arguments. */
6518 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6519 gcc_assert (redirected != NULL);
6520 flush_pending_stmts (entry);
6522 /* Concerning updating of dominators: We must recount dominators
6523 for entry block and its copy. Anything that is outside of the
6524 region, but was dominated by something inside needs recounting as
6525 well. */
6526 if (update_dominance)
6528 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6529 doms.safe_push (get_bb_original (entry->dest));
6530 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6531 doms.release ();
6534 /* Add the other PHI node arguments. */
6535 add_phi_args_after_copy (region_copy, n_region, NULL);
6537 if (free_region_copy)
6538 free (region_copy);
6540 free_original_copy_tables ();
6541 return true;
6544 /* Checks if BB is part of the region defined by N_REGION BBS. */
6545 static bool
6546 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6548 unsigned int n;
6550 for (n = 0; n < n_region; n++)
6552 if (bb == bbs[n])
6553 return true;
6555 return false;
6558 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6559 are stored to REGION_COPY in the same order in that they appear
6560 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6561 the region, EXIT an exit from it. The condition guarding EXIT
6562 is moved to ENTRY. Returns true if duplication succeeds, false
6563 otherwise.
6565 For example,
6567 some_code;
6568 if (cond)
6570 else
6573 is transformed to
6575 if (cond)
6577 some_code;
6580 else
6582 some_code;
6587 bool
6588 gimple_duplicate_sese_tail (edge entry, edge exit,
6589 basic_block *region, unsigned n_region,
6590 basic_block *region_copy)
6592 unsigned i;
6593 bool free_region_copy = false;
6594 struct loop *loop = exit->dest->loop_father;
6595 struct loop *orig_loop = entry->dest->loop_father;
6596 basic_block switch_bb, entry_bb, nentry_bb;
6597 vec<basic_block> doms;
6598 profile_count total_count = profile_count::uninitialized (),
6599 exit_count = profile_count::uninitialized ();
6600 edge exits[2], nexits[2], e;
6601 gimple_stmt_iterator gsi;
6602 gimple *cond_stmt;
6603 edge sorig, snew;
6604 basic_block exit_bb;
6605 gphi_iterator psi;
6606 gphi *phi;
6607 tree def;
6608 struct loop *target, *aloop, *cloop;
6610 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6611 exits[0] = exit;
6612 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6614 if (!can_copy_bbs_p (region, n_region))
6615 return false;
6617 initialize_original_copy_tables ();
6618 set_loop_copy (orig_loop, loop);
6620 target= loop;
6621 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6623 if (bb_part_of_region_p (aloop->header, region, n_region))
6625 cloop = duplicate_loop (aloop, target);
6626 duplicate_subloops (aloop, cloop);
6630 if (!region_copy)
6632 region_copy = XNEWVEC (basic_block, n_region);
6633 free_region_copy = true;
6636 gcc_assert (!need_ssa_update_p (cfun));
6638 /* Record blocks outside the region that are dominated by something
6639 inside. */
6640 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6642 total_count = exit->src->count;
6643 exit_count = exit->count ();
6644 /* Fix up corner cases, to avoid division by zero or creation of negative
6645 frequencies. */
6646 if (exit_count > total_count)
6647 exit_count = total_count;
6649 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6650 split_edge_bb_loc (exit), true);
6651 if (total_count.initialized_p () && exit_count.initialized_p ())
6653 scale_bbs_frequencies_profile_count (region, n_region,
6654 total_count - exit_count,
6655 total_count);
6656 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6657 total_count);
6660 /* Create the switch block, and put the exit condition to it. */
6661 entry_bb = entry->dest;
6662 nentry_bb = get_bb_copy (entry_bb);
6663 if (!last_stmt (entry->src)
6664 || !stmt_ends_bb_p (last_stmt (entry->src)))
6665 switch_bb = entry->src;
6666 else
6667 switch_bb = split_edge (entry);
6668 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6670 gsi = gsi_last_bb (switch_bb);
6671 cond_stmt = last_stmt (exit->src);
6672 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6673 cond_stmt = gimple_copy (cond_stmt);
6675 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6677 sorig = single_succ_edge (switch_bb);
6678 sorig->flags = exits[1]->flags;
6679 sorig->probability = exits[1]->probability;
6680 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6681 snew->probability = exits[0]->probability;
6684 /* Register the new edge from SWITCH_BB in loop exit lists. */
6685 rescan_loop_exit (snew, true, false);
6687 /* Add the PHI node arguments. */
6688 add_phi_args_after_copy (region_copy, n_region, snew);
6690 /* Get rid of now superfluous conditions and associated edges (and phi node
6691 arguments). */
6692 exit_bb = exit->dest;
6694 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6695 PENDING_STMT (e) = NULL;
6697 /* The latch of ORIG_LOOP was copied, and so was the backedge
6698 to the original header. We redirect this backedge to EXIT_BB. */
6699 for (i = 0; i < n_region; i++)
6700 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6702 gcc_assert (single_succ_edge (region_copy[i]));
6703 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6704 PENDING_STMT (e) = NULL;
6705 for (psi = gsi_start_phis (exit_bb);
6706 !gsi_end_p (psi);
6707 gsi_next (&psi))
6709 phi = psi.phi ();
6710 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6711 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6714 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6715 PENDING_STMT (e) = NULL;
6717 /* Anything that is outside of the region, but was dominated by something
6718 inside needs to update dominance info. */
6719 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6720 doms.release ();
6721 /* Update the SSA web. */
6722 update_ssa (TODO_update_ssa);
6724 if (free_region_copy)
6725 free (region_copy);
6727 free_original_copy_tables ();
6728 return true;
6731 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6732 adding blocks when the dominator traversal reaches EXIT. This
6733 function silently assumes that ENTRY strictly dominates EXIT. */
6735 void
6736 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6737 vec<basic_block> *bbs_p)
6739 basic_block son;
6741 for (son = first_dom_son (CDI_DOMINATORS, entry);
6742 son;
6743 son = next_dom_son (CDI_DOMINATORS, son))
6745 bbs_p->safe_push (son);
6746 if (son != exit)
6747 gather_blocks_in_sese_region (son, exit, bbs_p);
6751 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6752 The duplicates are recorded in VARS_MAP. */
6754 static void
6755 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6756 tree to_context)
6758 tree t = *tp, new_t;
6759 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6761 if (DECL_CONTEXT (t) == to_context)
6762 return;
6764 bool existed;
6765 tree &loc = vars_map->get_or_insert (t, &existed);
6767 if (!existed)
6769 if (SSA_VAR_P (t))
6771 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6772 add_local_decl (f, new_t);
6774 else
6776 gcc_assert (TREE_CODE (t) == CONST_DECL);
6777 new_t = copy_node (t);
6779 DECL_CONTEXT (new_t) = to_context;
6781 loc = new_t;
6783 else
6784 new_t = loc;
6786 *tp = new_t;
6790 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6791 VARS_MAP maps old ssa names and var_decls to the new ones. */
6793 static tree
6794 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6795 tree to_context)
6797 tree new_name;
6799 gcc_assert (!virtual_operand_p (name));
6801 tree *loc = vars_map->get (name);
6803 if (!loc)
6805 tree decl = SSA_NAME_VAR (name);
6806 if (decl)
6808 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6809 replace_by_duplicate_decl (&decl, vars_map, to_context);
6810 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6811 decl, SSA_NAME_DEF_STMT (name));
6813 else
6814 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6815 name, SSA_NAME_DEF_STMT (name));
6817 /* Now that we've used the def stmt to define new_name, make sure it
6818 doesn't define name anymore. */
6819 SSA_NAME_DEF_STMT (name) = NULL;
6821 vars_map->put (name, new_name);
6823 else
6824 new_name = *loc;
6826 return new_name;
6829 struct move_stmt_d
6831 tree orig_block;
6832 tree new_block;
6833 tree from_context;
6834 tree to_context;
6835 hash_map<tree, tree> *vars_map;
6836 htab_t new_label_map;
6837 hash_map<void *, void *> *eh_map;
6838 bool remap_decls_p;
6841 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6842 contained in *TP if it has been ORIG_BLOCK previously and change the
6843 DECL_CONTEXT of every local variable referenced in *TP. */
6845 static tree
6846 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6848 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6849 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6850 tree t = *tp;
6852 if (EXPR_P (t))
6854 tree block = TREE_BLOCK (t);
6855 if (block == NULL_TREE)
6857 else if (block == p->orig_block
6858 || p->orig_block == NULL_TREE)
6859 TREE_SET_BLOCK (t, p->new_block);
6860 else if (flag_checking)
6862 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6863 block = BLOCK_SUPERCONTEXT (block);
6864 gcc_assert (block == p->orig_block);
6867 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6869 if (TREE_CODE (t) == SSA_NAME)
6870 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6871 else if (TREE_CODE (t) == PARM_DECL
6872 && gimple_in_ssa_p (cfun))
6873 *tp = *(p->vars_map->get (t));
6874 else if (TREE_CODE (t) == LABEL_DECL)
6876 if (p->new_label_map)
6878 struct tree_map in, *out;
6879 in.base.from = t;
6880 out = (struct tree_map *)
6881 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6882 if (out)
6883 *tp = t = out->to;
6886 /* For FORCED_LABELs we can end up with references from other
6887 functions if some SESE regions are outlined. It is UB to
6888 jump in between them, but they could be used just for printing
6889 addresses etc. In that case, DECL_CONTEXT on the label should
6890 be the function containing the glabel stmt with that LABEL_DECL,
6891 rather than whatever function a reference to the label was seen
6892 last time. */
6893 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
6894 DECL_CONTEXT (t) = p->to_context;
6896 else if (p->remap_decls_p)
6898 /* Replace T with its duplicate. T should no longer appear in the
6899 parent function, so this looks wasteful; however, it may appear
6900 in referenced_vars, and more importantly, as virtual operands of
6901 statements, and in alias lists of other variables. It would be
6902 quite difficult to expunge it from all those places. ??? It might
6903 suffice to do this for addressable variables. */
6904 if ((VAR_P (t) && !is_global_var (t))
6905 || TREE_CODE (t) == CONST_DECL)
6906 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6908 *walk_subtrees = 0;
6910 else if (TYPE_P (t))
6911 *walk_subtrees = 0;
6913 return NULL_TREE;
6916 /* Helper for move_stmt_r. Given an EH region number for the source
6917 function, map that to the duplicate EH regio number in the dest. */
6919 static int
6920 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6922 eh_region old_r, new_r;
6924 old_r = get_eh_region_from_number (old_nr);
6925 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6927 return new_r->index;
6930 /* Similar, but operate on INTEGER_CSTs. */
6932 static tree
6933 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6935 int old_nr, new_nr;
6937 old_nr = tree_to_shwi (old_t_nr);
6938 new_nr = move_stmt_eh_region_nr (old_nr, p);
6940 return build_int_cst (integer_type_node, new_nr);
6943 /* Like move_stmt_op, but for gimple statements.
6945 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6946 contained in the current statement in *GSI_P and change the
6947 DECL_CONTEXT of every local variable referenced in the current
6948 statement. */
6950 static tree
6951 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6952 struct walk_stmt_info *wi)
6954 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6955 gimple *stmt = gsi_stmt (*gsi_p);
6956 tree block = gimple_block (stmt);
6958 if (block == p->orig_block
6959 || (p->orig_block == NULL_TREE
6960 && block != NULL_TREE))
6961 gimple_set_block (stmt, p->new_block);
6963 switch (gimple_code (stmt))
6965 case GIMPLE_CALL:
6966 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6968 tree r, fndecl = gimple_call_fndecl (stmt);
6969 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6970 switch (DECL_FUNCTION_CODE (fndecl))
6972 case BUILT_IN_EH_COPY_VALUES:
6973 r = gimple_call_arg (stmt, 1);
6974 r = move_stmt_eh_region_tree_nr (r, p);
6975 gimple_call_set_arg (stmt, 1, r);
6976 /* FALLTHRU */
6978 case BUILT_IN_EH_POINTER:
6979 case BUILT_IN_EH_FILTER:
6980 r = gimple_call_arg (stmt, 0);
6981 r = move_stmt_eh_region_tree_nr (r, p);
6982 gimple_call_set_arg (stmt, 0, r);
6983 break;
6985 default:
6986 break;
6989 break;
6991 case GIMPLE_RESX:
6993 gresx *resx_stmt = as_a <gresx *> (stmt);
6994 int r = gimple_resx_region (resx_stmt);
6995 r = move_stmt_eh_region_nr (r, p);
6996 gimple_resx_set_region (resx_stmt, r);
6998 break;
7000 case GIMPLE_EH_DISPATCH:
7002 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
7003 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
7004 r = move_stmt_eh_region_nr (r, p);
7005 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
7007 break;
7009 case GIMPLE_OMP_RETURN:
7010 case GIMPLE_OMP_CONTINUE:
7011 break;
7013 case GIMPLE_LABEL:
7015 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7016 so that such labels can be referenced from other regions.
7017 Make sure to update it when seeing a GIMPLE_LABEL though,
7018 that is the owner of the label. */
7019 walk_gimple_op (stmt, move_stmt_op, wi);
7020 *handled_ops_p = true;
7021 tree label = gimple_label_label (as_a <glabel *> (stmt));
7022 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
7023 DECL_CONTEXT (label) = p->to_context;
7025 break;
7027 default:
7028 if (is_gimple_omp (stmt))
7030 /* Do not remap variables inside OMP directives. Variables
7031 referenced in clauses and directive header belong to the
7032 parent function and should not be moved into the child
7033 function. */
7034 bool save_remap_decls_p = p->remap_decls_p;
7035 p->remap_decls_p = false;
7036 *handled_ops_p = true;
7038 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
7039 move_stmt_op, wi);
7041 p->remap_decls_p = save_remap_decls_p;
7043 break;
7046 return NULL_TREE;
7049 /* Move basic block BB from function CFUN to function DEST_FN. The
7050 block is moved out of the original linked list and placed after
7051 block AFTER in the new list. Also, the block is removed from the
7052 original array of blocks and placed in DEST_FN's array of blocks.
7053 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7054 updated to reflect the moved edges.
7056 The local variables are remapped to new instances, VARS_MAP is used
7057 to record the mapping. */
7059 static void
7060 move_block_to_fn (struct function *dest_cfun, basic_block bb,
7061 basic_block after, bool update_edge_count_p,
7062 struct move_stmt_d *d)
7064 struct control_flow_graph *cfg;
7065 edge_iterator ei;
7066 edge e;
7067 gimple_stmt_iterator si;
7068 unsigned old_len, new_len;
7070 /* Remove BB from dominance structures. */
7071 delete_from_dominance_info (CDI_DOMINATORS, bb);
7073 /* Move BB from its current loop to the copy in the new function. */
7074 if (current_loops)
7076 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
7077 if (new_loop)
7078 bb->loop_father = new_loop;
7081 /* Link BB to the new linked list. */
7082 move_block_after (bb, after);
7084 /* Update the edge count in the corresponding flowgraphs. */
7085 if (update_edge_count_p)
7086 FOR_EACH_EDGE (e, ei, bb->succs)
7088 cfun->cfg->x_n_edges--;
7089 dest_cfun->cfg->x_n_edges++;
7092 /* Remove BB from the original basic block array. */
7093 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
7094 cfun->cfg->x_n_basic_blocks--;
7096 /* Grow DEST_CFUN's basic block array if needed. */
7097 cfg = dest_cfun->cfg;
7098 cfg->x_n_basic_blocks++;
7099 if (bb->index >= cfg->x_last_basic_block)
7100 cfg->x_last_basic_block = bb->index + 1;
7102 old_len = vec_safe_length (cfg->x_basic_block_info);
7103 if ((unsigned) cfg->x_last_basic_block >= old_len)
7105 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
7106 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
7109 (*cfg->x_basic_block_info)[bb->index] = bb;
7111 /* Remap the variables in phi nodes. */
7112 for (gphi_iterator psi = gsi_start_phis (bb);
7113 !gsi_end_p (psi); )
7115 gphi *phi = psi.phi ();
7116 use_operand_p use;
7117 tree op = PHI_RESULT (phi);
7118 ssa_op_iter oi;
7119 unsigned i;
7121 if (virtual_operand_p (op))
7123 /* Remove the phi nodes for virtual operands (alias analysis will be
7124 run for the new function, anyway). */
7125 remove_phi_node (&psi, true);
7126 continue;
7129 SET_PHI_RESULT (phi,
7130 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7131 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7133 op = USE_FROM_PTR (use);
7134 if (TREE_CODE (op) == SSA_NAME)
7135 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7138 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7140 location_t locus = gimple_phi_arg_location (phi, i);
7141 tree block = LOCATION_BLOCK (locus);
7143 if (locus == UNKNOWN_LOCATION)
7144 continue;
7145 if (d->orig_block == NULL_TREE || block == d->orig_block)
7147 locus = set_block (locus, d->new_block);
7148 gimple_phi_arg_set_location (phi, i, locus);
7152 gsi_next (&psi);
7155 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7157 gimple *stmt = gsi_stmt (si);
7158 struct walk_stmt_info wi;
7160 memset (&wi, 0, sizeof (wi));
7161 wi.info = d;
7162 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7164 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7166 tree label = gimple_label_label (label_stmt);
7167 int uid = LABEL_DECL_UID (label);
7169 gcc_assert (uid > -1);
7171 old_len = vec_safe_length (cfg->x_label_to_block_map);
7172 if (old_len <= (unsigned) uid)
7174 new_len = 3 * uid / 2 + 1;
7175 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
7178 (*cfg->x_label_to_block_map)[uid] = bb;
7179 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7181 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7183 if (uid >= dest_cfun->cfg->last_label_uid)
7184 dest_cfun->cfg->last_label_uid = uid + 1;
7187 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7188 remove_stmt_from_eh_lp_fn (cfun, stmt);
7190 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7191 gimple_remove_stmt_histograms (cfun, stmt);
7193 /* We cannot leave any operands allocated from the operand caches of
7194 the current function. */
7195 free_stmt_operands (cfun, stmt);
7196 push_cfun (dest_cfun);
7197 update_stmt (stmt);
7198 pop_cfun ();
7201 FOR_EACH_EDGE (e, ei, bb->succs)
7202 if (e->goto_locus != UNKNOWN_LOCATION)
7204 tree block = LOCATION_BLOCK (e->goto_locus);
7205 if (d->orig_block == NULL_TREE
7206 || block == d->orig_block)
7207 e->goto_locus = set_block (e->goto_locus, d->new_block);
7211 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7212 the outermost EH region. Use REGION as the incoming base EH region. */
7214 static eh_region
7215 find_outermost_region_in_block (struct function *src_cfun,
7216 basic_block bb, eh_region region)
7218 gimple_stmt_iterator si;
7220 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7222 gimple *stmt = gsi_stmt (si);
7223 eh_region stmt_region;
7224 int lp_nr;
7226 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7227 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7228 if (stmt_region)
7230 if (region == NULL)
7231 region = stmt_region;
7232 else if (stmt_region != region)
7234 region = eh_region_outermost (src_cfun, stmt_region, region);
7235 gcc_assert (region != NULL);
7240 return region;
7243 static tree
7244 new_label_mapper (tree decl, void *data)
7246 htab_t hash = (htab_t) data;
7247 struct tree_map *m;
7248 void **slot;
7250 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7252 m = XNEW (struct tree_map);
7253 m->hash = DECL_UID (decl);
7254 m->base.from = decl;
7255 m->to = create_artificial_label (UNKNOWN_LOCATION);
7256 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7257 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7258 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7260 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7261 gcc_assert (*slot == NULL);
7263 *slot = m;
7265 return m->to;
7268 /* Tree walker to replace the decls used inside value expressions by
7269 duplicates. */
7271 static tree
7272 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7274 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7276 switch (TREE_CODE (*tp))
7278 case VAR_DECL:
7279 case PARM_DECL:
7280 case RESULT_DECL:
7281 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7282 break;
7283 default:
7284 break;
7287 if (IS_TYPE_OR_DECL_P (*tp))
7288 *walk_subtrees = false;
7290 return NULL;
7293 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7294 subblocks. */
7296 static void
7297 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7298 tree to_context)
7300 tree *tp, t;
7302 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7304 t = *tp;
7305 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7306 continue;
7307 replace_by_duplicate_decl (&t, vars_map, to_context);
7308 if (t != *tp)
7310 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7312 tree x = DECL_VALUE_EXPR (*tp);
7313 struct replace_decls_d rd = { vars_map, to_context };
7314 unshare_expr (x);
7315 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7316 SET_DECL_VALUE_EXPR (t, x);
7317 DECL_HAS_VALUE_EXPR_P (t) = 1;
7319 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7320 *tp = t;
7324 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7325 replace_block_vars_by_duplicates (block, vars_map, to_context);
7328 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7329 from FN1 to FN2. */
7331 static void
7332 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7333 struct loop *loop)
7335 /* Discard it from the old loop array. */
7336 (*get_loops (fn1))[loop->num] = NULL;
7338 /* Place it in the new loop array, assigning it a new number. */
7339 loop->num = number_of_loops (fn2);
7340 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7342 /* Recurse to children. */
7343 for (loop = loop->inner; loop; loop = loop->next)
7344 fixup_loop_arrays_after_move (fn1, fn2, loop);
7347 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7348 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7350 DEBUG_FUNCTION void
7351 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7353 basic_block bb;
7354 edge_iterator ei;
7355 edge e;
7356 bitmap bbs = BITMAP_ALLOC (NULL);
7357 int i;
7359 gcc_assert (entry != NULL);
7360 gcc_assert (entry != exit);
7361 gcc_assert (bbs_p != NULL);
7363 gcc_assert (bbs_p->length () > 0);
7365 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7366 bitmap_set_bit (bbs, bb->index);
7368 gcc_assert (bitmap_bit_p (bbs, entry->index));
7369 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7371 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7373 if (bb == entry)
7375 gcc_assert (single_pred_p (entry));
7376 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7378 else
7379 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7381 e = ei_edge (ei);
7382 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7385 if (bb == exit)
7387 gcc_assert (single_succ_p (exit));
7388 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7390 else
7391 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7393 e = ei_edge (ei);
7394 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7398 BITMAP_FREE (bbs);
7401 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7403 bool
7404 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7406 bitmap release_names = (bitmap)data;
7408 if (TREE_CODE (from) != SSA_NAME)
7409 return true;
7411 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7412 return true;
7415 /* Return LOOP_DIST_ALIAS call if present in BB. */
7417 static gimple *
7418 find_loop_dist_alias (basic_block bb)
7420 gimple *g = last_stmt (bb);
7421 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7422 return NULL;
7424 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7425 gsi_prev (&gsi);
7426 if (gsi_end_p (gsi))
7427 return NULL;
7429 g = gsi_stmt (gsi);
7430 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7431 return g;
7432 return NULL;
7435 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7436 to VALUE and update any immediate uses of it's LHS. */
7438 void
7439 fold_loop_internal_call (gimple *g, tree value)
7441 tree lhs = gimple_call_lhs (g);
7442 use_operand_p use_p;
7443 imm_use_iterator iter;
7444 gimple *use_stmt;
7445 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7447 update_call_from_tree (&gsi, value);
7448 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7450 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7451 SET_USE (use_p, value);
7452 update_stmt (use_stmt);
7456 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7457 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7458 single basic block in the original CFG and the new basic block is
7459 returned. DEST_CFUN must not have a CFG yet.
7461 Note that the region need not be a pure SESE region. Blocks inside
7462 the region may contain calls to abort/exit. The only restriction
7463 is that ENTRY_BB should be the only entry point and it must
7464 dominate EXIT_BB.
7466 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7467 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7468 to the new function.
7470 All local variables referenced in the region are assumed to be in
7471 the corresponding BLOCK_VARS and unexpanded variable lists
7472 associated with DEST_CFUN.
7474 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7475 reimplement move_sese_region_to_fn by duplicating the region rather than
7476 moving it. */
7478 basic_block
7479 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7480 basic_block exit_bb, tree orig_block)
7482 vec<basic_block> bbs, dom_bbs;
7483 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7484 basic_block after, bb, *entry_pred, *exit_succ, abb;
7485 struct function *saved_cfun = cfun;
7486 int *entry_flag, *exit_flag;
7487 profile_probability *entry_prob, *exit_prob;
7488 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7489 edge e;
7490 edge_iterator ei;
7491 htab_t new_label_map;
7492 hash_map<void *, void *> *eh_map;
7493 struct loop *loop = entry_bb->loop_father;
7494 struct loop *loop0 = get_loop (saved_cfun, 0);
7495 struct move_stmt_d d;
7497 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7498 region. */
7499 gcc_assert (entry_bb != exit_bb
7500 && (!exit_bb
7501 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7503 /* Collect all the blocks in the region. Manually add ENTRY_BB
7504 because it won't be added by dfs_enumerate_from. */
7505 bbs.create (0);
7506 bbs.safe_push (entry_bb);
7507 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7509 if (flag_checking)
7510 verify_sese (entry_bb, exit_bb, &bbs);
7512 /* The blocks that used to be dominated by something in BBS will now be
7513 dominated by the new block. */
7514 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7515 bbs.address (),
7516 bbs.length ());
7518 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7519 the predecessor edges to ENTRY_BB and the successor edges to
7520 EXIT_BB so that we can re-attach them to the new basic block that
7521 will replace the region. */
7522 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7523 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7524 entry_flag = XNEWVEC (int, num_entry_edges);
7525 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7526 i = 0;
7527 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7529 entry_prob[i] = e->probability;
7530 entry_flag[i] = e->flags;
7531 entry_pred[i++] = e->src;
7532 remove_edge (e);
7535 if (exit_bb)
7537 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7538 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7539 exit_flag = XNEWVEC (int, num_exit_edges);
7540 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7541 i = 0;
7542 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7544 exit_prob[i] = e->probability;
7545 exit_flag[i] = e->flags;
7546 exit_succ[i++] = e->dest;
7547 remove_edge (e);
7550 else
7552 num_exit_edges = 0;
7553 exit_succ = NULL;
7554 exit_flag = NULL;
7555 exit_prob = NULL;
7558 /* Switch context to the child function to initialize DEST_FN's CFG. */
7559 gcc_assert (dest_cfun->cfg == NULL);
7560 push_cfun (dest_cfun);
7562 init_empty_tree_cfg ();
7564 /* Initialize EH information for the new function. */
7565 eh_map = NULL;
7566 new_label_map = NULL;
7567 if (saved_cfun->eh)
7569 eh_region region = NULL;
7571 FOR_EACH_VEC_ELT (bbs, i, bb)
7572 region = find_outermost_region_in_block (saved_cfun, bb, region);
7574 init_eh_for_function ();
7575 if (region != NULL)
7577 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7578 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7579 new_label_mapper, new_label_map);
7583 /* Initialize an empty loop tree. */
7584 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7585 init_loops_structure (dest_cfun, loops, 1);
7586 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7587 set_loops_for_fn (dest_cfun, loops);
7589 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7591 /* Move the outlined loop tree part. */
7592 num_nodes = bbs.length ();
7593 FOR_EACH_VEC_ELT (bbs, i, bb)
7595 if (bb->loop_father->header == bb)
7597 struct loop *this_loop = bb->loop_father;
7598 struct loop *outer = loop_outer (this_loop);
7599 if (outer == loop
7600 /* If the SESE region contains some bbs ending with
7601 a noreturn call, those are considered to belong
7602 to the outermost loop in saved_cfun, rather than
7603 the entry_bb's loop_father. */
7604 || outer == loop0)
7606 if (outer != loop)
7607 num_nodes -= this_loop->num_nodes;
7608 flow_loop_tree_node_remove (bb->loop_father);
7609 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7610 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7613 else if (bb->loop_father == loop0 && loop0 != loop)
7614 num_nodes--;
7616 /* Remove loop exits from the outlined region. */
7617 if (loops_for_fn (saved_cfun)->exits)
7618 FOR_EACH_EDGE (e, ei, bb->succs)
7620 struct loops *l = loops_for_fn (saved_cfun);
7621 loop_exit **slot
7622 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7623 NO_INSERT);
7624 if (slot)
7625 l->exits->clear_slot (slot);
7629 /* Adjust the number of blocks in the tree root of the outlined part. */
7630 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7632 /* Setup a mapping to be used by move_block_to_fn. */
7633 loop->aux = current_loops->tree_root;
7634 loop0->aux = current_loops->tree_root;
7636 /* Fix up orig_loop_num. If the block referenced in it has been moved
7637 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7638 struct loop *dloop;
7639 signed char *moved_orig_loop_num = NULL;
7640 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7641 if (dloop->orig_loop_num)
7643 if (moved_orig_loop_num == NULL)
7644 moved_orig_loop_num
7645 = XCNEWVEC (signed char, vec_safe_length (larray));
7646 if ((*larray)[dloop->orig_loop_num] != NULL
7647 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7649 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7650 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7651 moved_orig_loop_num[dloop->orig_loop_num]++;
7652 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7654 else
7656 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7657 dloop->orig_loop_num = 0;
7660 pop_cfun ();
7662 if (moved_orig_loop_num)
7664 FOR_EACH_VEC_ELT (bbs, i, bb)
7666 gimple *g = find_loop_dist_alias (bb);
7667 if (g == NULL)
7668 continue;
7670 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7671 gcc_assert (orig_loop_num
7672 && (unsigned) orig_loop_num < vec_safe_length (larray));
7673 if (moved_orig_loop_num[orig_loop_num] == 2)
7675 /* If we have moved both loops with this orig_loop_num into
7676 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7677 too, update the first argument. */
7678 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7679 && (get_loop (saved_cfun, dloop->orig_loop_num)
7680 == NULL));
7681 tree t = build_int_cst (integer_type_node,
7682 (*larray)[dloop->orig_loop_num]->num);
7683 gimple_call_set_arg (g, 0, t);
7684 update_stmt (g);
7685 /* Make sure the following loop will not update it. */
7686 moved_orig_loop_num[orig_loop_num] = 0;
7688 else
7689 /* Otherwise at least one of the loops stayed in saved_cfun.
7690 Remove the LOOP_DIST_ALIAS call. */
7691 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7693 FOR_EACH_BB_FN (bb, saved_cfun)
7695 gimple *g = find_loop_dist_alias (bb);
7696 if (g == NULL)
7697 continue;
7698 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7699 gcc_assert (orig_loop_num
7700 && (unsigned) orig_loop_num < vec_safe_length (larray));
7701 if (moved_orig_loop_num[orig_loop_num])
7702 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7703 of the corresponding loops was moved, remove it. */
7704 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7706 XDELETEVEC (moved_orig_loop_num);
7708 ggc_free (larray);
7710 /* Move blocks from BBS into DEST_CFUN. */
7711 gcc_assert (bbs.length () >= 2);
7712 after = dest_cfun->cfg->x_entry_block_ptr;
7713 hash_map<tree, tree> vars_map;
7715 memset (&d, 0, sizeof (d));
7716 d.orig_block = orig_block;
7717 d.new_block = DECL_INITIAL (dest_cfun->decl);
7718 d.from_context = cfun->decl;
7719 d.to_context = dest_cfun->decl;
7720 d.vars_map = &vars_map;
7721 d.new_label_map = new_label_map;
7722 d.eh_map = eh_map;
7723 d.remap_decls_p = true;
7725 if (gimple_in_ssa_p (cfun))
7726 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7728 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7729 set_ssa_default_def (dest_cfun, arg, narg);
7730 vars_map.put (arg, narg);
7733 FOR_EACH_VEC_ELT (bbs, i, bb)
7735 /* No need to update edge counts on the last block. It has
7736 already been updated earlier when we detached the region from
7737 the original CFG. */
7738 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7739 after = bb;
7742 loop->aux = NULL;
7743 loop0->aux = NULL;
7744 /* Loop sizes are no longer correct, fix them up. */
7745 loop->num_nodes -= num_nodes;
7746 for (struct loop *outer = loop_outer (loop);
7747 outer; outer = loop_outer (outer))
7748 outer->num_nodes -= num_nodes;
7749 loop0->num_nodes -= bbs.length () - num_nodes;
7751 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7753 struct loop *aloop;
7754 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7755 if (aloop != NULL)
7757 if (aloop->simduid)
7759 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7760 d.to_context);
7761 dest_cfun->has_simduid_loops = true;
7763 if (aloop->force_vectorize)
7764 dest_cfun->has_force_vectorize_loops = true;
7768 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7769 if (orig_block)
7771 tree block;
7772 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7773 == NULL_TREE);
7774 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7775 = BLOCK_SUBBLOCKS (orig_block);
7776 for (block = BLOCK_SUBBLOCKS (orig_block);
7777 block; block = BLOCK_CHAIN (block))
7778 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7779 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7782 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7783 &vars_map, dest_cfun->decl);
7785 if (new_label_map)
7786 htab_delete (new_label_map);
7787 if (eh_map)
7788 delete eh_map;
7790 if (gimple_in_ssa_p (cfun))
7792 /* We need to release ssa-names in a defined order, so first find them,
7793 and then iterate in ascending version order. */
7794 bitmap release_names = BITMAP_ALLOC (NULL);
7795 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7796 bitmap_iterator bi;
7797 unsigned i;
7798 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7799 release_ssa_name (ssa_name (i));
7800 BITMAP_FREE (release_names);
7803 /* Rewire the entry and exit blocks. The successor to the entry
7804 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7805 the child function. Similarly, the predecessor of DEST_FN's
7806 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7807 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7808 various CFG manipulation function get to the right CFG.
7810 FIXME, this is silly. The CFG ought to become a parameter to
7811 these helpers. */
7812 push_cfun (dest_cfun);
7813 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7814 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7815 if (exit_bb)
7817 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7818 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7820 else
7821 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7822 pop_cfun ();
7824 /* Back in the original function, the SESE region has disappeared,
7825 create a new basic block in its place. */
7826 bb = create_empty_bb (entry_pred[0]);
7827 if (current_loops)
7828 add_bb_to_loop (bb, loop);
7829 for (i = 0; i < num_entry_edges; i++)
7831 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7832 e->probability = entry_prob[i];
7835 for (i = 0; i < num_exit_edges; i++)
7837 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7838 e->probability = exit_prob[i];
7841 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7842 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7843 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7844 dom_bbs.release ();
7846 if (exit_bb)
7848 free (exit_prob);
7849 free (exit_flag);
7850 free (exit_succ);
7852 free (entry_prob);
7853 free (entry_flag);
7854 free (entry_pred);
7855 bbs.release ();
7857 return bb;
7860 /* Dump default def DEF to file FILE using FLAGS and indentation
7861 SPC. */
7863 static void
7864 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7866 for (int i = 0; i < spc; ++i)
7867 fprintf (file, " ");
7868 dump_ssaname_info_to_file (file, def, spc);
7870 print_generic_expr (file, TREE_TYPE (def), flags);
7871 fprintf (file, " ");
7872 print_generic_expr (file, def, flags);
7873 fprintf (file, " = ");
7874 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7875 fprintf (file, ";\n");
7878 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7880 static void
7881 print_no_sanitize_attr_value (FILE *file, tree value)
7883 unsigned int flags = tree_to_uhwi (value);
7884 bool first = true;
7885 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7887 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7889 if (!first)
7890 fprintf (file, " | ");
7891 fprintf (file, "%s", sanitizer_opts[i].name);
7892 first = false;
7897 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7900 void
7901 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7903 tree arg, var, old_current_fndecl = current_function_decl;
7904 struct function *dsf;
7905 bool ignore_topmost_bind = false, any_var = false;
7906 basic_block bb;
7907 tree chain;
7908 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7909 && decl_is_tm_clone (fndecl));
7910 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7912 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7914 fprintf (file, "__attribute__((");
7916 bool first = true;
7917 tree chain;
7918 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7919 first = false, chain = TREE_CHAIN (chain))
7921 if (!first)
7922 fprintf (file, ", ");
7924 tree name = get_attribute_name (chain);
7925 print_generic_expr (file, name, dump_flags);
7926 if (TREE_VALUE (chain) != NULL_TREE)
7928 fprintf (file, " (");
7930 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
7931 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
7932 else
7933 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7934 fprintf (file, ")");
7938 fprintf (file, "))\n");
7941 current_function_decl = fndecl;
7942 if (flags & TDF_GIMPLE)
7944 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
7945 dump_flags | TDF_SLIM);
7946 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
7948 else
7949 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7951 arg = DECL_ARGUMENTS (fndecl);
7952 while (arg)
7954 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7955 fprintf (file, " ");
7956 print_generic_expr (file, arg, dump_flags);
7957 if (DECL_CHAIN (arg))
7958 fprintf (file, ", ");
7959 arg = DECL_CHAIN (arg);
7961 fprintf (file, ")\n");
7963 dsf = DECL_STRUCT_FUNCTION (fndecl);
7964 if (dsf && (flags & TDF_EH))
7965 dump_eh_tree (file, dsf);
7967 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7969 dump_node (fndecl, TDF_SLIM | flags, file);
7970 current_function_decl = old_current_fndecl;
7971 return;
7974 /* When GIMPLE is lowered, the variables are no longer available in
7975 BIND_EXPRs, so display them separately. */
7976 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7978 unsigned ix;
7979 ignore_topmost_bind = true;
7981 fprintf (file, "{\n");
7982 if (gimple_in_ssa_p (fun)
7983 && (flags & TDF_ALIAS))
7985 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7986 arg = DECL_CHAIN (arg))
7988 tree def = ssa_default_def (fun, arg);
7989 if (def)
7990 dump_default_def (file, def, 2, flags);
7993 tree res = DECL_RESULT (fun->decl);
7994 if (res != NULL_TREE
7995 && DECL_BY_REFERENCE (res))
7997 tree def = ssa_default_def (fun, res);
7998 if (def)
7999 dump_default_def (file, def, 2, flags);
8002 tree static_chain = fun->static_chain_decl;
8003 if (static_chain != NULL_TREE)
8005 tree def = ssa_default_def (fun, static_chain);
8006 if (def)
8007 dump_default_def (file, def, 2, flags);
8011 if (!vec_safe_is_empty (fun->local_decls))
8012 FOR_EACH_LOCAL_DECL (fun, ix, var)
8014 print_generic_decl (file, var, flags);
8015 fprintf (file, "\n");
8017 any_var = true;
8020 tree name;
8022 if (gimple_in_ssa_p (cfun))
8023 FOR_EACH_SSA_NAME (ix, name, cfun)
8025 if (!SSA_NAME_VAR (name))
8027 fprintf (file, " ");
8028 print_generic_expr (file, TREE_TYPE (name), flags);
8029 fprintf (file, " ");
8030 print_generic_expr (file, name, flags);
8031 fprintf (file, ";\n");
8033 any_var = true;
8038 if (fun && fun->decl == fndecl
8039 && fun->cfg
8040 && basic_block_info_for_fn (fun))
8042 /* If the CFG has been built, emit a CFG-based dump. */
8043 if (!ignore_topmost_bind)
8044 fprintf (file, "{\n");
8046 if (any_var && n_basic_blocks_for_fn (fun))
8047 fprintf (file, "\n");
8049 FOR_EACH_BB_FN (bb, fun)
8050 dump_bb (file, bb, 2, flags);
8052 fprintf (file, "}\n");
8054 else if (fun->curr_properties & PROP_gimple_any)
8056 /* The function is now in GIMPLE form but the CFG has not been
8057 built yet. Emit the single sequence of GIMPLE statements
8058 that make up its body. */
8059 gimple_seq body = gimple_body (fndecl);
8061 if (gimple_seq_first_stmt (body)
8062 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
8063 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
8064 print_gimple_seq (file, body, 0, flags);
8065 else
8067 if (!ignore_topmost_bind)
8068 fprintf (file, "{\n");
8070 if (any_var)
8071 fprintf (file, "\n");
8073 print_gimple_seq (file, body, 2, flags);
8074 fprintf (file, "}\n");
8077 else
8079 int indent;
8081 /* Make a tree based dump. */
8082 chain = DECL_SAVED_TREE (fndecl);
8083 if (chain && TREE_CODE (chain) == BIND_EXPR)
8085 if (ignore_topmost_bind)
8087 chain = BIND_EXPR_BODY (chain);
8088 indent = 2;
8090 else
8091 indent = 0;
8093 else
8095 if (!ignore_topmost_bind)
8097 fprintf (file, "{\n");
8098 /* No topmost bind, pretend it's ignored for later. */
8099 ignore_topmost_bind = true;
8101 indent = 2;
8104 if (any_var)
8105 fprintf (file, "\n");
8107 print_generic_stmt_indented (file, chain, flags, indent);
8108 if (ignore_topmost_bind)
8109 fprintf (file, "}\n");
8112 if (flags & TDF_ENUMERATE_LOCALS)
8113 dump_enumerated_decls (file, flags);
8114 fprintf (file, "\n\n");
8116 current_function_decl = old_current_fndecl;
8119 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8121 DEBUG_FUNCTION void
8122 debug_function (tree fn, dump_flags_t flags)
8124 dump_function_to_file (fn, stderr, flags);
8128 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8130 static void
8131 print_pred_bbs (FILE *file, basic_block bb)
8133 edge e;
8134 edge_iterator ei;
8136 FOR_EACH_EDGE (e, ei, bb->preds)
8137 fprintf (file, "bb_%d ", e->src->index);
8141 /* Print on FILE the indexes for the successors of basic_block BB. */
8143 static void
8144 print_succ_bbs (FILE *file, basic_block bb)
8146 edge e;
8147 edge_iterator ei;
8149 FOR_EACH_EDGE (e, ei, bb->succs)
8150 fprintf (file, "bb_%d ", e->dest->index);
8153 /* Print to FILE the basic block BB following the VERBOSITY level. */
8155 void
8156 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8158 char *s_indent = (char *) alloca ((size_t) indent + 1);
8159 memset ((void *) s_indent, ' ', (size_t) indent);
8160 s_indent[indent] = '\0';
8162 /* Print basic_block's header. */
8163 if (verbosity >= 2)
8165 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8166 print_pred_bbs (file, bb);
8167 fprintf (file, "}, succs = {");
8168 print_succ_bbs (file, bb);
8169 fprintf (file, "})\n");
8172 /* Print basic_block's body. */
8173 if (verbosity >= 3)
8175 fprintf (file, "%s {\n", s_indent);
8176 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8177 fprintf (file, "%s }\n", s_indent);
8181 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
8183 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8184 VERBOSITY level this outputs the contents of the loop, or just its
8185 structure. */
8187 static void
8188 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
8190 char *s_indent;
8191 basic_block bb;
8193 if (loop == NULL)
8194 return;
8196 s_indent = (char *) alloca ((size_t) indent + 1);
8197 memset ((void *) s_indent, ' ', (size_t) indent);
8198 s_indent[indent] = '\0';
8200 /* Print loop's header. */
8201 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8202 if (loop->header)
8203 fprintf (file, "header = %d", loop->header->index);
8204 else
8206 fprintf (file, "deleted)\n");
8207 return;
8209 if (loop->latch)
8210 fprintf (file, ", latch = %d", loop->latch->index);
8211 else
8212 fprintf (file, ", multiple latches");
8213 fprintf (file, ", niter = ");
8214 print_generic_expr (file, loop->nb_iterations);
8216 if (loop->any_upper_bound)
8218 fprintf (file, ", upper_bound = ");
8219 print_decu (loop->nb_iterations_upper_bound, file);
8221 if (loop->any_likely_upper_bound)
8223 fprintf (file, ", likely_upper_bound = ");
8224 print_decu (loop->nb_iterations_likely_upper_bound, file);
8227 if (loop->any_estimate)
8229 fprintf (file, ", estimate = ");
8230 print_decu (loop->nb_iterations_estimate, file);
8232 if (loop->unroll)
8233 fprintf (file, ", unroll = %d", loop->unroll);
8234 fprintf (file, ")\n");
8236 /* Print loop's body. */
8237 if (verbosity >= 1)
8239 fprintf (file, "%s{\n", s_indent);
8240 FOR_EACH_BB_FN (bb, cfun)
8241 if (bb->loop_father == loop)
8242 print_loops_bb (file, bb, indent, verbosity);
8244 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8245 fprintf (file, "%s}\n", s_indent);
8249 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8250 spaces. Following VERBOSITY level this outputs the contents of the
8251 loop, or just its structure. */
8253 static void
8254 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
8255 int verbosity)
8257 if (loop == NULL)
8258 return;
8260 print_loop (file, loop, indent, verbosity);
8261 print_loop_and_siblings (file, loop->next, indent, verbosity);
8264 /* Follow a CFG edge from the entry point of the program, and on entry
8265 of a loop, pretty print the loop structure on FILE. */
8267 void
8268 print_loops (FILE *file, int verbosity)
8270 basic_block bb;
8272 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8273 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8274 if (bb && bb->loop_father)
8275 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8278 /* Dump a loop. */
8280 DEBUG_FUNCTION void
8281 debug (struct loop &ref)
8283 print_loop (stderr, &ref, 0, /*verbosity*/0);
8286 DEBUG_FUNCTION void
8287 debug (struct loop *ptr)
8289 if (ptr)
8290 debug (*ptr);
8291 else
8292 fprintf (stderr, "<nil>\n");
8295 /* Dump a loop verbosely. */
8297 DEBUG_FUNCTION void
8298 debug_verbose (struct loop &ref)
8300 print_loop (stderr, &ref, 0, /*verbosity*/3);
8303 DEBUG_FUNCTION void
8304 debug_verbose (struct loop *ptr)
8306 if (ptr)
8307 debug (*ptr);
8308 else
8309 fprintf (stderr, "<nil>\n");
8313 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8315 DEBUG_FUNCTION void
8316 debug_loops (int verbosity)
8318 print_loops (stderr, verbosity);
8321 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8323 DEBUG_FUNCTION void
8324 debug_loop (struct loop *loop, int verbosity)
8326 print_loop (stderr, loop, 0, verbosity);
8329 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8330 level. */
8332 DEBUG_FUNCTION void
8333 debug_loop_num (unsigned num, int verbosity)
8335 debug_loop (get_loop (cfun, num), verbosity);
8338 /* Return true if BB ends with a call, possibly followed by some
8339 instructions that must stay with the call. Return false,
8340 otherwise. */
8342 static bool
8343 gimple_block_ends_with_call_p (basic_block bb)
8345 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8346 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8350 /* Return true if BB ends with a conditional branch. Return false,
8351 otherwise. */
8353 static bool
8354 gimple_block_ends_with_condjump_p (const_basic_block bb)
8356 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8357 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8361 /* Return true if statement T may terminate execution of BB in ways not
8362 explicitly represtented in the CFG. */
8364 bool
8365 stmt_can_terminate_bb_p (gimple *t)
8367 tree fndecl = NULL_TREE;
8368 int call_flags = 0;
8370 /* Eh exception not handled internally terminates execution of the whole
8371 function. */
8372 if (stmt_can_throw_external (t))
8373 return true;
8375 /* NORETURN and LONGJMP calls already have an edge to exit.
8376 CONST and PURE calls do not need one.
8377 We don't currently check for CONST and PURE here, although
8378 it would be a good idea, because those attributes are
8379 figured out from the RTL in mark_constant_function, and
8380 the counter incrementation code from -fprofile-arcs
8381 leads to different results from -fbranch-probabilities. */
8382 if (is_gimple_call (t))
8384 fndecl = gimple_call_fndecl (t);
8385 call_flags = gimple_call_flags (t);
8388 if (is_gimple_call (t)
8389 && fndecl
8390 && DECL_BUILT_IN (fndecl)
8391 && (call_flags & ECF_NOTHROW)
8392 && !(call_flags & ECF_RETURNS_TWICE)
8393 /* fork() doesn't really return twice, but the effect of
8394 wrapping it in __gcov_fork() which calls __gcov_flush()
8395 and clears the counters before forking has the same
8396 effect as returning twice. Force a fake edge. */
8397 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
8398 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
8399 return false;
8401 if (is_gimple_call (t))
8403 edge_iterator ei;
8404 edge e;
8405 basic_block bb;
8407 if (call_flags & (ECF_PURE | ECF_CONST)
8408 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8409 return false;
8411 /* Function call may do longjmp, terminate program or do other things.
8412 Special case noreturn that have non-abnormal edges out as in this case
8413 the fact is sufficiently represented by lack of edges out of T. */
8414 if (!(call_flags & ECF_NORETURN))
8415 return true;
8417 bb = gimple_bb (t);
8418 FOR_EACH_EDGE (e, ei, bb->succs)
8419 if ((e->flags & EDGE_FAKE) == 0)
8420 return true;
8423 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8424 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8425 return true;
8427 return false;
8431 /* Add fake edges to the function exit for any non constant and non
8432 noreturn calls (or noreturn calls with EH/abnormal edges),
8433 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8434 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8435 that were split.
8437 The goal is to expose cases in which entering a basic block does
8438 not imply that all subsequent instructions must be executed. */
8440 static int
8441 gimple_flow_call_edges_add (sbitmap blocks)
8443 int i;
8444 int blocks_split = 0;
8445 int last_bb = last_basic_block_for_fn (cfun);
8446 bool check_last_block = false;
8448 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8449 return 0;
8451 if (! blocks)
8452 check_last_block = true;
8453 else
8454 check_last_block = bitmap_bit_p (blocks,
8455 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8457 /* In the last basic block, before epilogue generation, there will be
8458 a fallthru edge to EXIT. Special care is required if the last insn
8459 of the last basic block is a call because make_edge folds duplicate
8460 edges, which would result in the fallthru edge also being marked
8461 fake, which would result in the fallthru edge being removed by
8462 remove_fake_edges, which would result in an invalid CFG.
8464 Moreover, we can't elide the outgoing fake edge, since the block
8465 profiler needs to take this into account in order to solve the minimal
8466 spanning tree in the case that the call doesn't return.
8468 Handle this by adding a dummy instruction in a new last basic block. */
8469 if (check_last_block)
8471 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8472 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8473 gimple *t = NULL;
8475 if (!gsi_end_p (gsi))
8476 t = gsi_stmt (gsi);
8478 if (t && stmt_can_terminate_bb_p (t))
8480 edge e;
8482 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8483 if (e)
8485 gsi_insert_on_edge (e, gimple_build_nop ());
8486 gsi_commit_edge_inserts ();
8491 /* Now add fake edges to the function exit for any non constant
8492 calls since there is no way that we can determine if they will
8493 return or not... */
8494 for (i = 0; i < last_bb; i++)
8496 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8497 gimple_stmt_iterator gsi;
8498 gimple *stmt, *last_stmt;
8500 if (!bb)
8501 continue;
8503 if (blocks && !bitmap_bit_p (blocks, i))
8504 continue;
8506 gsi = gsi_last_nondebug_bb (bb);
8507 if (!gsi_end_p (gsi))
8509 last_stmt = gsi_stmt (gsi);
8512 stmt = gsi_stmt (gsi);
8513 if (stmt_can_terminate_bb_p (stmt))
8515 edge e;
8517 /* The handling above of the final block before the
8518 epilogue should be enough to verify that there is
8519 no edge to the exit block in CFG already.
8520 Calling make_edge in such case would cause us to
8521 mark that edge as fake and remove it later. */
8522 if (flag_checking && stmt == last_stmt)
8524 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8525 gcc_assert (e == NULL);
8528 /* Note that the following may create a new basic block
8529 and renumber the existing basic blocks. */
8530 if (stmt != last_stmt)
8532 e = split_block (bb, stmt);
8533 if (e)
8534 blocks_split++;
8536 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8537 e->probability = profile_probability::guessed_never ();
8539 gsi_prev (&gsi);
8541 while (!gsi_end_p (gsi));
8545 if (blocks_split)
8546 checking_verify_flow_info ();
8548 return blocks_split;
8551 /* Removes edge E and all the blocks dominated by it, and updates dominance
8552 information. The IL in E->src needs to be updated separately.
8553 If dominance info is not available, only the edge E is removed.*/
8555 void
8556 remove_edge_and_dominated_blocks (edge e)
8558 vec<basic_block> bbs_to_remove = vNULL;
8559 vec<basic_block> bbs_to_fix_dom = vNULL;
8560 edge f;
8561 edge_iterator ei;
8562 bool none_removed = false;
8563 unsigned i;
8564 basic_block bb, dbb;
8565 bitmap_iterator bi;
8567 /* If we are removing a path inside a non-root loop that may change
8568 loop ownership of blocks or remove loops. Mark loops for fixup. */
8569 if (current_loops
8570 && loop_outer (e->src->loop_father) != NULL
8571 && e->src->loop_father == e->dest->loop_father)
8572 loops_state_set (LOOPS_NEED_FIXUP);
8574 if (!dom_info_available_p (CDI_DOMINATORS))
8576 remove_edge (e);
8577 return;
8580 /* No updating is needed for edges to exit. */
8581 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8583 if (cfgcleanup_altered_bbs)
8584 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8585 remove_edge (e);
8586 return;
8589 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8590 that is not dominated by E->dest, then this set is empty. Otherwise,
8591 all the basic blocks dominated by E->dest are removed.
8593 Also, to DF_IDOM we store the immediate dominators of the blocks in
8594 the dominance frontier of E (i.e., of the successors of the
8595 removed blocks, if there are any, and of E->dest otherwise). */
8596 FOR_EACH_EDGE (f, ei, e->dest->preds)
8598 if (f == e)
8599 continue;
8601 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8603 none_removed = true;
8604 break;
8608 auto_bitmap df, df_idom;
8609 if (none_removed)
8610 bitmap_set_bit (df_idom,
8611 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8612 else
8614 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8615 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8617 FOR_EACH_EDGE (f, ei, bb->succs)
8619 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8620 bitmap_set_bit (df, f->dest->index);
8623 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8624 bitmap_clear_bit (df, bb->index);
8626 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8628 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8629 bitmap_set_bit (df_idom,
8630 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8634 if (cfgcleanup_altered_bbs)
8636 /* Record the set of the altered basic blocks. */
8637 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8638 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8641 /* Remove E and the cancelled blocks. */
8642 if (none_removed)
8643 remove_edge (e);
8644 else
8646 /* Walk backwards so as to get a chance to substitute all
8647 released DEFs into debug stmts. See
8648 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8649 details. */
8650 for (i = bbs_to_remove.length (); i-- > 0; )
8651 delete_basic_block (bbs_to_remove[i]);
8654 /* Update the dominance information. The immediate dominator may change only
8655 for blocks whose immediate dominator belongs to DF_IDOM:
8657 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8658 removal. Let Z the arbitrary block such that idom(Z) = Y and
8659 Z dominates X after the removal. Before removal, there exists a path P
8660 from Y to X that avoids Z. Let F be the last edge on P that is
8661 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8662 dominates W, and because of P, Z does not dominate W), and W belongs to
8663 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8664 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8666 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8667 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8668 dbb;
8669 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8670 bbs_to_fix_dom.safe_push (dbb);
8673 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8675 bbs_to_remove.release ();
8676 bbs_to_fix_dom.release ();
8679 /* Purge dead EH edges from basic block BB. */
8681 bool
8682 gimple_purge_dead_eh_edges (basic_block bb)
8684 bool changed = false;
8685 edge e;
8686 edge_iterator ei;
8687 gimple *stmt = last_stmt (bb);
8689 if (stmt && stmt_can_throw_internal (stmt))
8690 return false;
8692 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8694 if (e->flags & EDGE_EH)
8696 remove_edge_and_dominated_blocks (e);
8697 changed = true;
8699 else
8700 ei_next (&ei);
8703 return changed;
8706 /* Purge dead EH edges from basic block listed in BLOCKS. */
8708 bool
8709 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8711 bool changed = false;
8712 unsigned i;
8713 bitmap_iterator bi;
8715 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8717 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8719 /* Earlier gimple_purge_dead_eh_edges could have removed
8720 this basic block already. */
8721 gcc_assert (bb || changed);
8722 if (bb != NULL)
8723 changed |= gimple_purge_dead_eh_edges (bb);
8726 return changed;
8729 /* Purge dead abnormal call edges from basic block BB. */
8731 bool
8732 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8734 bool changed = false;
8735 edge e;
8736 edge_iterator ei;
8737 gimple *stmt = last_stmt (bb);
8739 if (!cfun->has_nonlocal_label
8740 && !cfun->calls_setjmp)
8741 return false;
8743 if (stmt && stmt_can_make_abnormal_goto (stmt))
8744 return false;
8746 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8748 if (e->flags & EDGE_ABNORMAL)
8750 if (e->flags & EDGE_FALLTHRU)
8751 e->flags &= ~EDGE_ABNORMAL;
8752 else
8753 remove_edge_and_dominated_blocks (e);
8754 changed = true;
8756 else
8757 ei_next (&ei);
8760 return changed;
8763 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8765 bool
8766 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8768 bool changed = false;
8769 unsigned i;
8770 bitmap_iterator bi;
8772 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8774 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8776 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8777 this basic block already. */
8778 gcc_assert (bb || changed);
8779 if (bb != NULL)
8780 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8783 return changed;
8786 /* This function is called whenever a new edge is created or
8787 redirected. */
8789 static void
8790 gimple_execute_on_growing_pred (edge e)
8792 basic_block bb = e->dest;
8794 if (!gimple_seq_empty_p (phi_nodes (bb)))
8795 reserve_phi_args_for_new_edge (bb);
8798 /* This function is called immediately before edge E is removed from
8799 the edge vector E->dest->preds. */
8801 static void
8802 gimple_execute_on_shrinking_pred (edge e)
8804 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8805 remove_phi_args (e);
8808 /*---------------------------------------------------------------------------
8809 Helper functions for Loop versioning
8810 ---------------------------------------------------------------------------*/
8812 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8813 of 'first'. Both of them are dominated by 'new_head' basic block. When
8814 'new_head' was created by 'second's incoming edge it received phi arguments
8815 on the edge by split_edge(). Later, additional edge 'e' was created to
8816 connect 'new_head' and 'first'. Now this routine adds phi args on this
8817 additional edge 'e' that new_head to second edge received as part of edge
8818 splitting. */
8820 static void
8821 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8822 basic_block new_head, edge e)
8824 gphi *phi1, *phi2;
8825 gphi_iterator psi1, psi2;
8826 tree def;
8827 edge e2 = find_edge (new_head, second);
8829 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8830 edge, we should always have an edge from NEW_HEAD to SECOND. */
8831 gcc_assert (e2 != NULL);
8833 /* Browse all 'second' basic block phi nodes and add phi args to
8834 edge 'e' for 'first' head. PHI args are always in correct order. */
8836 for (psi2 = gsi_start_phis (second),
8837 psi1 = gsi_start_phis (first);
8838 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8839 gsi_next (&psi2), gsi_next (&psi1))
8841 phi1 = psi1.phi ();
8842 phi2 = psi2.phi ();
8843 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8844 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8849 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8850 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8851 the destination of the ELSE part. */
8853 static void
8854 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8855 basic_block second_head ATTRIBUTE_UNUSED,
8856 basic_block cond_bb, void *cond_e)
8858 gimple_stmt_iterator gsi;
8859 gimple *new_cond_expr;
8860 tree cond_expr = (tree) cond_e;
8861 edge e0;
8863 /* Build new conditional expr */
8864 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8865 NULL_TREE, NULL_TREE);
8867 /* Add new cond in cond_bb. */
8868 gsi = gsi_last_bb (cond_bb);
8869 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8871 /* Adjust edges appropriately to connect new head with first head
8872 as well as second head. */
8873 e0 = single_succ_edge (cond_bb);
8874 e0->flags &= ~EDGE_FALLTHRU;
8875 e0->flags |= EDGE_FALSE_VALUE;
8879 /* Do book-keeping of basic block BB for the profile consistency checker.
8880 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8881 then do post-pass accounting. Store the counting in RECORD. */
8882 static void
8883 gimple_account_profile_record (basic_block bb, int after_pass,
8884 struct profile_record *record)
8886 gimple_stmt_iterator i;
8887 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8889 record->size[after_pass]
8890 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8891 if (bb->count.initialized_p ())
8892 record->time[after_pass]
8893 += estimate_num_insns (gsi_stmt (i),
8894 &eni_time_weights) * bb->count.to_gcov_type ();
8895 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8896 record->time[after_pass]
8897 += estimate_num_insns (gsi_stmt (i),
8898 &eni_time_weights) * bb->count.to_frequency (cfun);
8902 struct cfg_hooks gimple_cfg_hooks = {
8903 "gimple",
8904 gimple_verify_flow_info,
8905 gimple_dump_bb, /* dump_bb */
8906 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8907 create_bb, /* create_basic_block */
8908 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8909 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8910 gimple_can_remove_branch_p, /* can_remove_branch_p */
8911 remove_bb, /* delete_basic_block */
8912 gimple_split_block, /* split_block */
8913 gimple_move_block_after, /* move_block_after */
8914 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8915 gimple_merge_blocks, /* merge_blocks */
8916 gimple_predict_edge, /* predict_edge */
8917 gimple_predicted_by_p, /* predicted_by_p */
8918 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8919 gimple_duplicate_bb, /* duplicate_block */
8920 gimple_split_edge, /* split_edge */
8921 gimple_make_forwarder_block, /* make_forward_block */
8922 NULL, /* tidy_fallthru_edge */
8923 NULL, /* force_nonfallthru */
8924 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8925 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8926 gimple_flow_call_edges_add, /* flow_call_edges_add */
8927 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8928 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8929 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8930 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8931 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8932 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8933 flush_pending_stmts, /* flush_pending_stmts */
8934 gimple_empty_block_p, /* block_empty_p */
8935 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8936 gimple_account_profile_record,
8940 /* Split all critical edges. */
8942 unsigned int
8943 split_critical_edges (void)
8945 basic_block bb;
8946 edge e;
8947 edge_iterator ei;
8949 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8950 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8951 mappings around the calls to split_edge. */
8952 start_recording_case_labels ();
8953 FOR_ALL_BB_FN (bb, cfun)
8955 FOR_EACH_EDGE (e, ei, bb->succs)
8957 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8958 split_edge (e);
8959 /* PRE inserts statements to edges and expects that
8960 since split_critical_edges was done beforehand, committing edge
8961 insertions will not split more edges. In addition to critical
8962 edges we must split edges that have multiple successors and
8963 end by control flow statements, such as RESX.
8964 Go ahead and split them too. This matches the logic in
8965 gimple_find_edge_insert_loc. */
8966 else if ((!single_pred_p (e->dest)
8967 || !gimple_seq_empty_p (phi_nodes (e->dest))
8968 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8969 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8970 && !(e->flags & EDGE_ABNORMAL))
8972 gimple_stmt_iterator gsi;
8974 gsi = gsi_last_bb (e->src);
8975 if (!gsi_end_p (gsi)
8976 && stmt_ends_bb_p (gsi_stmt (gsi))
8977 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8978 && !gimple_call_builtin_p (gsi_stmt (gsi),
8979 BUILT_IN_RETURN)))
8980 split_edge (e);
8984 end_recording_case_labels ();
8985 return 0;
8988 namespace {
8990 const pass_data pass_data_split_crit_edges =
8992 GIMPLE_PASS, /* type */
8993 "crited", /* name */
8994 OPTGROUP_NONE, /* optinfo_flags */
8995 TV_TREE_SPLIT_EDGES, /* tv_id */
8996 PROP_cfg, /* properties_required */
8997 PROP_no_crit_edges, /* properties_provided */
8998 0, /* properties_destroyed */
8999 0, /* todo_flags_start */
9000 0, /* todo_flags_finish */
9003 class pass_split_crit_edges : public gimple_opt_pass
9005 public:
9006 pass_split_crit_edges (gcc::context *ctxt)
9007 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
9010 /* opt_pass methods: */
9011 virtual unsigned int execute (function *) { return split_critical_edges (); }
9013 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
9014 }; // class pass_split_crit_edges
9016 } // anon namespace
9018 gimple_opt_pass *
9019 make_pass_split_crit_edges (gcc::context *ctxt)
9021 return new pass_split_crit_edges (ctxt);
9025 /* Insert COND expression which is GIMPLE_COND after STMT
9026 in basic block BB with appropriate basic block split
9027 and creation of a new conditionally executed basic block.
9028 Update profile so the new bb is visited with probability PROB.
9029 Return created basic block. */
9030 basic_block
9031 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
9032 profile_probability prob)
9034 edge fall = split_block (bb, stmt);
9035 gimple_stmt_iterator iter = gsi_last_bb (bb);
9036 basic_block new_bb;
9038 /* Insert cond statement. */
9039 gcc_assert (gimple_code (cond) == GIMPLE_COND);
9040 if (gsi_end_p (iter))
9041 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
9042 else
9043 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
9045 /* Create conditionally executed block. */
9046 new_bb = create_empty_bb (bb);
9047 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
9048 e->probability = prob;
9049 new_bb->count = e->count ();
9050 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
9052 /* Fix edge for split bb. */
9053 fall->flags = EDGE_FALSE_VALUE;
9054 fall->probability -= e->probability;
9056 /* Update dominance info. */
9057 if (dom_info_available_p (CDI_DOMINATORS))
9059 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
9060 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
9063 /* Update loop info. */
9064 if (current_loops)
9065 add_bb_to_loop (new_bb, bb->loop_father);
9067 return new_bb;
9070 /* Build a ternary operation and gimplify it. Emit code before GSI.
9071 Return the gimple_val holding the result. */
9073 tree
9074 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
9075 tree type, tree a, tree b, tree c)
9077 tree ret;
9078 location_t loc = gimple_location (gsi_stmt (*gsi));
9080 ret = fold_build3_loc (loc, code, type, a, b, c);
9081 STRIP_NOPS (ret);
9083 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9084 GSI_SAME_STMT);
9087 /* Build a binary operation and gimplify it. Emit code before GSI.
9088 Return the gimple_val holding the result. */
9090 tree
9091 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
9092 tree type, tree a, tree b)
9094 tree ret;
9096 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
9097 STRIP_NOPS (ret);
9099 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9100 GSI_SAME_STMT);
9103 /* Build a unary operation and gimplify it. Emit code before GSI.
9104 Return the gimple_val holding the result. */
9106 tree
9107 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
9108 tree a)
9110 tree ret;
9112 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
9113 STRIP_NOPS (ret);
9115 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9116 GSI_SAME_STMT);
9121 /* Given a basic block B which ends with a conditional and has
9122 precisely two successors, determine which of the edges is taken if
9123 the conditional is true and which is taken if the conditional is
9124 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9126 void
9127 extract_true_false_edges_from_block (basic_block b,
9128 edge *true_edge,
9129 edge *false_edge)
9131 edge e = EDGE_SUCC (b, 0);
9133 if (e->flags & EDGE_TRUE_VALUE)
9135 *true_edge = e;
9136 *false_edge = EDGE_SUCC (b, 1);
9138 else
9140 *false_edge = e;
9141 *true_edge = EDGE_SUCC (b, 1);
9146 /* From a controlling predicate in the immediate dominator DOM of
9147 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9148 predicate evaluates to true and false and store them to
9149 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9150 they are non-NULL. Returns true if the edges can be determined,
9151 else return false. */
9153 bool
9154 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9155 edge *true_controlled_edge,
9156 edge *false_controlled_edge)
9158 basic_block bb = phiblock;
9159 edge true_edge, false_edge, tem;
9160 edge e0 = NULL, e1 = NULL;
9162 /* We have to verify that one edge into the PHI node is dominated
9163 by the true edge of the predicate block and the other edge
9164 dominated by the false edge. This ensures that the PHI argument
9165 we are going to take is completely determined by the path we
9166 take from the predicate block.
9167 We can only use BB dominance checks below if the destination of
9168 the true/false edges are dominated by their edge, thus only
9169 have a single predecessor. */
9170 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9171 tem = EDGE_PRED (bb, 0);
9172 if (tem == true_edge
9173 || (single_pred_p (true_edge->dest)
9174 && (tem->src == true_edge->dest
9175 || dominated_by_p (CDI_DOMINATORS,
9176 tem->src, true_edge->dest))))
9177 e0 = tem;
9178 else if (tem == false_edge
9179 || (single_pred_p (false_edge->dest)
9180 && (tem->src == false_edge->dest
9181 || dominated_by_p (CDI_DOMINATORS,
9182 tem->src, false_edge->dest))))
9183 e1 = tem;
9184 else
9185 return false;
9186 tem = EDGE_PRED (bb, 1);
9187 if (tem == true_edge
9188 || (single_pred_p (true_edge->dest)
9189 && (tem->src == true_edge->dest
9190 || dominated_by_p (CDI_DOMINATORS,
9191 tem->src, true_edge->dest))))
9192 e0 = tem;
9193 else if (tem == false_edge
9194 || (single_pred_p (false_edge->dest)
9195 && (tem->src == false_edge->dest
9196 || dominated_by_p (CDI_DOMINATORS,
9197 tem->src, false_edge->dest))))
9198 e1 = tem;
9199 else
9200 return false;
9201 if (!e0 || !e1)
9202 return false;
9204 if (true_controlled_edge)
9205 *true_controlled_edge = e0;
9206 if (false_controlled_edge)
9207 *false_controlled_edge = e1;
9209 return true;
9212 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9213 range [low, high]. Place associated stmts before *GSI. */
9215 void
9216 generate_range_test (basic_block bb, tree index, tree low, tree high,
9217 tree *lhs, tree *rhs)
9219 tree type = TREE_TYPE (index);
9220 tree utype = unsigned_type_for (type);
9222 low = fold_convert (type, low);
9223 high = fold_convert (type, high);
9225 tree tmp = make_ssa_name (type);
9226 gassign *sub1
9227 = gimple_build_assign (tmp, MINUS_EXPR, index, low);
9229 *lhs = make_ssa_name (utype);
9230 gassign *a = gimple_build_assign (*lhs, NOP_EXPR, tmp);
9232 *rhs = fold_build2 (MINUS_EXPR, utype, high, low);
9233 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9234 gsi_insert_before (&gsi, sub1, GSI_SAME_STMT);
9235 gsi_insert_before (&gsi, a, GSI_SAME_STMT);
9238 /* Emit return warnings. */
9240 namespace {
9242 const pass_data pass_data_warn_function_return =
9244 GIMPLE_PASS, /* type */
9245 "*warn_function_return", /* name */
9246 OPTGROUP_NONE, /* optinfo_flags */
9247 TV_NONE, /* tv_id */
9248 PROP_cfg, /* properties_required */
9249 0, /* properties_provided */
9250 0, /* properties_destroyed */
9251 0, /* todo_flags_start */
9252 0, /* todo_flags_finish */
9255 class pass_warn_function_return : public gimple_opt_pass
9257 public:
9258 pass_warn_function_return (gcc::context *ctxt)
9259 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9262 /* opt_pass methods: */
9263 virtual unsigned int execute (function *);
9265 }; // class pass_warn_function_return
9267 unsigned int
9268 pass_warn_function_return::execute (function *fun)
9270 source_location location;
9271 gimple *last;
9272 edge e;
9273 edge_iterator ei;
9275 if (!targetm.warn_func_return (fun->decl))
9276 return 0;
9278 /* If we have a path to EXIT, then we do return. */
9279 if (TREE_THIS_VOLATILE (fun->decl)
9280 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9282 location = UNKNOWN_LOCATION;
9283 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9284 (e = ei_safe_edge (ei)); )
9286 last = last_stmt (e->src);
9287 if ((gimple_code (last) == GIMPLE_RETURN
9288 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9289 && location == UNKNOWN_LOCATION
9290 && ((location = LOCATION_LOCUS (gimple_location (last)))
9291 != UNKNOWN_LOCATION)
9292 && !optimize)
9293 break;
9294 /* When optimizing, replace return stmts in noreturn functions
9295 with __builtin_unreachable () call. */
9296 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9298 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9299 gimple *new_stmt = gimple_build_call (fndecl, 0);
9300 gimple_set_location (new_stmt, gimple_location (last));
9301 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9302 gsi_replace (&gsi, new_stmt, true);
9303 remove_edge (e);
9305 else
9306 ei_next (&ei);
9308 if (location == UNKNOWN_LOCATION)
9309 location = cfun->function_end_locus;
9310 warning_at (location, 0, "%<noreturn%> function does return");
9313 /* If we see "return;" in some basic block, then we do reach the end
9314 without returning a value. */
9315 else if (warn_return_type > 0
9316 && !TREE_NO_WARNING (fun->decl)
9317 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9319 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9321 gimple *last = last_stmt (e->src);
9322 greturn *return_stmt = dyn_cast <greturn *> (last);
9323 if (return_stmt
9324 && gimple_return_retval (return_stmt) == NULL
9325 && !gimple_no_warning_p (last))
9327 location = gimple_location (last);
9328 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9329 location = fun->function_end_locus;
9330 warning_at (location, OPT_Wreturn_type,
9331 "control reaches end of non-void function");
9332 TREE_NO_WARNING (fun->decl) = 1;
9333 break;
9336 /* The C++ FE turns fallthrough from the end of non-void function
9337 into __builtin_unreachable () call with BUILTINS_LOCATION.
9338 Recognize those too. */
9339 basic_block bb;
9340 if (!TREE_NO_WARNING (fun->decl))
9341 FOR_EACH_BB_FN (bb, fun)
9342 if (EDGE_COUNT (bb->succs) == 0)
9344 gimple *last = last_stmt (bb);
9345 const enum built_in_function ubsan_missing_ret
9346 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9347 if (last
9348 && ((LOCATION_LOCUS (gimple_location (last))
9349 == BUILTINS_LOCATION
9350 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9351 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9353 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9354 gsi_prev_nondebug (&gsi);
9355 gimple *prev = gsi_stmt (gsi);
9356 if (prev == NULL)
9357 location = UNKNOWN_LOCATION;
9358 else
9359 location = gimple_location (prev);
9360 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9361 location = fun->function_end_locus;
9362 warning_at (location, OPT_Wreturn_type,
9363 "control reaches end of non-void function");
9364 TREE_NO_WARNING (fun->decl) = 1;
9365 break;
9369 return 0;
9372 } // anon namespace
9374 gimple_opt_pass *
9375 make_pass_warn_function_return (gcc::context *ctxt)
9377 return new pass_warn_function_return (ctxt);
9380 /* Walk a gimplified function and warn for functions whose return value is
9381 ignored and attribute((warn_unused_result)) is set. This is done before
9382 inlining, so we don't have to worry about that. */
9384 static void
9385 do_warn_unused_result (gimple_seq seq)
9387 tree fdecl, ftype;
9388 gimple_stmt_iterator i;
9390 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9392 gimple *g = gsi_stmt (i);
9394 switch (gimple_code (g))
9396 case GIMPLE_BIND:
9397 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9398 break;
9399 case GIMPLE_TRY:
9400 do_warn_unused_result (gimple_try_eval (g));
9401 do_warn_unused_result (gimple_try_cleanup (g));
9402 break;
9403 case GIMPLE_CATCH:
9404 do_warn_unused_result (gimple_catch_handler (
9405 as_a <gcatch *> (g)));
9406 break;
9407 case GIMPLE_EH_FILTER:
9408 do_warn_unused_result (gimple_eh_filter_failure (g));
9409 break;
9411 case GIMPLE_CALL:
9412 if (gimple_call_lhs (g))
9413 break;
9414 if (gimple_call_internal_p (g))
9415 break;
9417 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9418 LHS. All calls whose value is ignored should be
9419 represented like this. Look for the attribute. */
9420 fdecl = gimple_call_fndecl (g);
9421 ftype = gimple_call_fntype (g);
9423 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9425 location_t loc = gimple_location (g);
9427 if (fdecl)
9428 warning_at (loc, OPT_Wunused_result,
9429 "ignoring return value of %qD, "
9430 "declared with attribute warn_unused_result",
9431 fdecl);
9432 else
9433 warning_at (loc, OPT_Wunused_result,
9434 "ignoring return value of function "
9435 "declared with attribute warn_unused_result");
9437 break;
9439 default:
9440 /* Not a container, not a call, or a call whose value is used. */
9441 break;
9446 namespace {
9448 const pass_data pass_data_warn_unused_result =
9450 GIMPLE_PASS, /* type */
9451 "*warn_unused_result", /* name */
9452 OPTGROUP_NONE, /* optinfo_flags */
9453 TV_NONE, /* tv_id */
9454 PROP_gimple_any, /* properties_required */
9455 0, /* properties_provided */
9456 0, /* properties_destroyed */
9457 0, /* todo_flags_start */
9458 0, /* todo_flags_finish */
9461 class pass_warn_unused_result : public gimple_opt_pass
9463 public:
9464 pass_warn_unused_result (gcc::context *ctxt)
9465 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9468 /* opt_pass methods: */
9469 virtual bool gate (function *) { return flag_warn_unused_result; }
9470 virtual unsigned int execute (function *)
9472 do_warn_unused_result (gimple_body (current_function_decl));
9473 return 0;
9476 }; // class pass_warn_unused_result
9478 } // anon namespace
9480 gimple_opt_pass *
9481 make_pass_warn_unused_result (gcc::context *ctxt)
9483 return new pass_warn_unused_result (ctxt);
9486 /* IPA passes, compilation of earlier functions or inlining
9487 might have changed some properties, such as marked functions nothrow,
9488 pure, const or noreturn.
9489 Remove redundant edges and basic blocks, and create new ones if necessary.
9491 This pass can't be executed as stand alone pass from pass manager, because
9492 in between inlining and this fixup the verify_flow_info would fail. */
9494 unsigned int
9495 execute_fixup_cfg (void)
9497 basic_block bb;
9498 gimple_stmt_iterator gsi;
9499 int todo = 0;
9500 cgraph_node *node = cgraph_node::get (current_function_decl);
9501 profile_count num = node->count;
9502 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9503 bool scale = num.initialized_p () && !(num == den);
9505 if (scale)
9507 profile_count::adjust_for_ipa_scaling (&num, &den);
9508 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9509 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9510 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9513 FOR_EACH_BB_FN (bb, cfun)
9515 if (scale)
9516 bb->count = bb->count.apply_scale (num, den);
9517 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9519 gimple *stmt = gsi_stmt (gsi);
9520 tree decl = is_gimple_call (stmt)
9521 ? gimple_call_fndecl (stmt)
9522 : NULL;
9523 if (decl)
9525 int flags = gimple_call_flags (stmt);
9526 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9528 if (gimple_purge_dead_abnormal_call_edges (bb))
9529 todo |= TODO_cleanup_cfg;
9531 if (gimple_in_ssa_p (cfun))
9533 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9534 update_stmt (stmt);
9538 if (flags & ECF_NORETURN
9539 && fixup_noreturn_call (stmt))
9540 todo |= TODO_cleanup_cfg;
9543 /* Remove stores to variables we marked write-only.
9544 Keep access when store has side effect, i.e. in case when source
9545 is volatile. */
9546 if (gimple_store_p (stmt)
9547 && !gimple_has_side_effects (stmt))
9549 tree lhs = get_base_address (gimple_get_lhs (stmt));
9551 if (VAR_P (lhs)
9552 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9553 && varpool_node::get (lhs)->writeonly)
9555 unlink_stmt_vdef (stmt);
9556 gsi_remove (&gsi, true);
9557 release_defs (stmt);
9558 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9559 continue;
9562 /* For calls we can simply remove LHS when it is known
9563 to be write-only. */
9564 if (is_gimple_call (stmt)
9565 && gimple_get_lhs (stmt))
9567 tree lhs = get_base_address (gimple_get_lhs (stmt));
9569 if (VAR_P (lhs)
9570 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9571 && varpool_node::get (lhs)->writeonly)
9573 gimple_call_set_lhs (stmt, NULL);
9574 update_stmt (stmt);
9575 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9579 if (maybe_clean_eh_stmt (stmt)
9580 && gimple_purge_dead_eh_edges (bb))
9581 todo |= TODO_cleanup_cfg;
9582 gsi_next (&gsi);
9585 /* If we have a basic block with no successors that does not
9586 end with a control statement or a noreturn call end it with
9587 a call to __builtin_unreachable. This situation can occur
9588 when inlining a noreturn call that does in fact return. */
9589 if (EDGE_COUNT (bb->succs) == 0)
9591 gimple *stmt = last_stmt (bb);
9592 if (!stmt
9593 || (!is_ctrl_stmt (stmt)
9594 && (!is_gimple_call (stmt)
9595 || !gimple_call_noreturn_p (stmt))))
9597 if (stmt && is_gimple_call (stmt))
9598 gimple_call_set_ctrl_altering (stmt, false);
9599 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9600 stmt = gimple_build_call (fndecl, 0);
9601 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9602 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9603 if (!cfun->after_inlining)
9605 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9606 node->create_edge (cgraph_node::get_create (fndecl),
9607 call_stmt, bb->count);
9612 if (scale)
9613 compute_function_frequency ();
9615 if (current_loops
9616 && (todo & TODO_cleanup_cfg))
9617 loops_state_set (LOOPS_NEED_FIXUP);
9619 return todo;
9622 namespace {
9624 const pass_data pass_data_fixup_cfg =
9626 GIMPLE_PASS, /* type */
9627 "fixup_cfg", /* name */
9628 OPTGROUP_NONE, /* optinfo_flags */
9629 TV_NONE, /* tv_id */
9630 PROP_cfg, /* properties_required */
9631 0, /* properties_provided */
9632 0, /* properties_destroyed */
9633 0, /* todo_flags_start */
9634 0, /* todo_flags_finish */
9637 class pass_fixup_cfg : public gimple_opt_pass
9639 public:
9640 pass_fixup_cfg (gcc::context *ctxt)
9641 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9644 /* opt_pass methods: */
9645 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9646 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9648 }; // class pass_fixup_cfg
9650 } // anon namespace
9652 gimple_opt_pass *
9653 make_pass_fixup_cfg (gcc::context *ctxt)
9655 return new pass_fixup_cfg (ctxt);
9658 /* Garbage collection support for edge_def. */
9660 extern void gt_ggc_mx (tree&);
9661 extern void gt_ggc_mx (gimple *&);
9662 extern void gt_ggc_mx (rtx&);
9663 extern void gt_ggc_mx (basic_block&);
9665 static void
9666 gt_ggc_mx (rtx_insn *& x)
9668 if (x)
9669 gt_ggc_mx_rtx_def ((void *) x);
9672 void
9673 gt_ggc_mx (edge_def *e)
9675 tree block = LOCATION_BLOCK (e->goto_locus);
9676 gt_ggc_mx (e->src);
9677 gt_ggc_mx (e->dest);
9678 if (current_ir_type () == IR_GIMPLE)
9679 gt_ggc_mx (e->insns.g);
9680 else
9681 gt_ggc_mx (e->insns.r);
9682 gt_ggc_mx (block);
9685 /* PCH support for edge_def. */
9687 extern void gt_pch_nx (tree&);
9688 extern void gt_pch_nx (gimple *&);
9689 extern void gt_pch_nx (rtx&);
9690 extern void gt_pch_nx (basic_block&);
9692 static void
9693 gt_pch_nx (rtx_insn *& x)
9695 if (x)
9696 gt_pch_nx_rtx_def ((void *) x);
9699 void
9700 gt_pch_nx (edge_def *e)
9702 tree block = LOCATION_BLOCK (e->goto_locus);
9703 gt_pch_nx (e->src);
9704 gt_pch_nx (e->dest);
9705 if (current_ir_type () == IR_GIMPLE)
9706 gt_pch_nx (e->insns.g);
9707 else
9708 gt_pch_nx (e->insns.r);
9709 gt_pch_nx (block);
9712 void
9713 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9715 tree block = LOCATION_BLOCK (e->goto_locus);
9716 op (&(e->src), cookie);
9717 op (&(e->dest), cookie);
9718 if (current_ir_type () == IR_GIMPLE)
9719 op (&(e->insns.g), cookie);
9720 else
9721 op (&(e->insns.r), cookie);
9722 op (&(block), cookie);
9725 #if CHECKING_P
9727 namespace selftest {
9729 /* Helper function for CFG selftests: create a dummy function decl
9730 and push it as cfun. */
9732 static tree
9733 push_fndecl (const char *name)
9735 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9736 /* FIXME: this uses input_location: */
9737 tree fndecl = build_fn_decl (name, fn_type);
9738 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9739 NULL_TREE, integer_type_node);
9740 DECL_RESULT (fndecl) = retval;
9741 push_struct_function (fndecl);
9742 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9743 ASSERT_TRUE (fun != NULL);
9744 init_empty_tree_cfg_for_function (fun);
9745 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9746 ASSERT_EQ (0, n_edges_for_fn (fun));
9747 return fndecl;
9750 /* These tests directly create CFGs.
9751 Compare with the static fns within tree-cfg.c:
9752 - build_gimple_cfg
9753 - make_blocks: calls create_basic_block (seq, bb);
9754 - make_edges. */
9756 /* Verify a simple cfg of the form:
9757 ENTRY -> A -> B -> C -> EXIT. */
9759 static void
9760 test_linear_chain ()
9762 gimple_register_cfg_hooks ();
9764 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9765 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9767 /* Create some empty blocks. */
9768 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9769 basic_block bb_b = create_empty_bb (bb_a);
9770 basic_block bb_c = create_empty_bb (bb_b);
9772 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9773 ASSERT_EQ (0, n_edges_for_fn (fun));
9775 /* Create some edges: a simple linear chain of BBs. */
9776 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9777 make_edge (bb_a, bb_b, 0);
9778 make_edge (bb_b, bb_c, 0);
9779 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9781 /* Verify the edges. */
9782 ASSERT_EQ (4, n_edges_for_fn (fun));
9783 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9784 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9785 ASSERT_EQ (1, bb_a->preds->length ());
9786 ASSERT_EQ (1, bb_a->succs->length ());
9787 ASSERT_EQ (1, bb_b->preds->length ());
9788 ASSERT_EQ (1, bb_b->succs->length ());
9789 ASSERT_EQ (1, bb_c->preds->length ());
9790 ASSERT_EQ (1, bb_c->succs->length ());
9791 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9792 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9794 /* Verify the dominance information
9795 Each BB in our simple chain should be dominated by the one before
9796 it. */
9797 calculate_dominance_info (CDI_DOMINATORS);
9798 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9799 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9800 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9801 ASSERT_EQ (1, dom_by_b.length ());
9802 ASSERT_EQ (bb_c, dom_by_b[0]);
9803 free_dominance_info (CDI_DOMINATORS);
9804 dom_by_b.release ();
9806 /* Similarly for post-dominance: each BB in our chain is post-dominated
9807 by the one after it. */
9808 calculate_dominance_info (CDI_POST_DOMINATORS);
9809 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9810 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9811 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9812 ASSERT_EQ (1, postdom_by_b.length ());
9813 ASSERT_EQ (bb_a, postdom_by_b[0]);
9814 free_dominance_info (CDI_POST_DOMINATORS);
9815 postdom_by_b.release ();
9817 pop_cfun ();
9820 /* Verify a simple CFG of the form:
9821 ENTRY
9825 /t \f
9831 EXIT. */
9833 static void
9834 test_diamond ()
9836 gimple_register_cfg_hooks ();
9838 tree fndecl = push_fndecl ("cfg_test_diamond");
9839 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9841 /* Create some empty blocks. */
9842 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9843 basic_block bb_b = create_empty_bb (bb_a);
9844 basic_block bb_c = create_empty_bb (bb_a);
9845 basic_block bb_d = create_empty_bb (bb_b);
9847 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9848 ASSERT_EQ (0, n_edges_for_fn (fun));
9850 /* Create the edges. */
9851 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9852 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9853 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9854 make_edge (bb_b, bb_d, 0);
9855 make_edge (bb_c, bb_d, 0);
9856 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9858 /* Verify the edges. */
9859 ASSERT_EQ (6, n_edges_for_fn (fun));
9860 ASSERT_EQ (1, bb_a->preds->length ());
9861 ASSERT_EQ (2, bb_a->succs->length ());
9862 ASSERT_EQ (1, bb_b->preds->length ());
9863 ASSERT_EQ (1, bb_b->succs->length ());
9864 ASSERT_EQ (1, bb_c->preds->length ());
9865 ASSERT_EQ (1, bb_c->succs->length ());
9866 ASSERT_EQ (2, bb_d->preds->length ());
9867 ASSERT_EQ (1, bb_d->succs->length ());
9869 /* Verify the dominance information. */
9870 calculate_dominance_info (CDI_DOMINATORS);
9871 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9872 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9873 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9874 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9875 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9876 dom_by_a.release ();
9877 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9878 ASSERT_EQ (0, dom_by_b.length ());
9879 dom_by_b.release ();
9880 free_dominance_info (CDI_DOMINATORS);
9882 /* Similarly for post-dominance. */
9883 calculate_dominance_info (CDI_POST_DOMINATORS);
9884 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9885 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9886 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
9887 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
9888 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
9889 postdom_by_d.release ();
9890 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9891 ASSERT_EQ (0, postdom_by_b.length ());
9892 postdom_by_b.release ();
9893 free_dominance_info (CDI_POST_DOMINATORS);
9895 pop_cfun ();
9898 /* Verify that we can handle a CFG containing a "complete" aka
9899 fully-connected subgraph (where A B C D below all have edges
9900 pointing to each other node, also to themselves).
9901 e.g.:
9902 ENTRY EXIT
9908 A<--->B
9909 ^^ ^^
9910 | \ / |
9911 | X |
9912 | / \ |
9913 VV VV
9914 C<--->D
9917 static void
9918 test_fully_connected ()
9920 gimple_register_cfg_hooks ();
9922 tree fndecl = push_fndecl ("cfg_fully_connected");
9923 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9925 const int n = 4;
9927 /* Create some empty blocks. */
9928 auto_vec <basic_block> subgraph_nodes;
9929 for (int i = 0; i < n; i++)
9930 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
9932 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
9933 ASSERT_EQ (0, n_edges_for_fn (fun));
9935 /* Create the edges. */
9936 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
9937 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9938 for (int i = 0; i < n; i++)
9939 for (int j = 0; j < n; j++)
9940 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
9942 /* Verify the edges. */
9943 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
9944 /* The first one is linked to ENTRY/EXIT as well as itself and
9945 everything else. */
9946 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
9947 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
9948 /* The other ones in the subgraph are linked to everything in
9949 the subgraph (including themselves). */
9950 for (int i = 1; i < n; i++)
9952 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
9953 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
9956 /* Verify the dominance information. */
9957 calculate_dominance_info (CDI_DOMINATORS);
9958 /* The initial block in the subgraph should be dominated by ENTRY. */
9959 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
9960 get_immediate_dominator (CDI_DOMINATORS,
9961 subgraph_nodes[0]));
9962 /* Every other block in the subgraph should be dominated by the
9963 initial block. */
9964 for (int i = 1; i < n; i++)
9965 ASSERT_EQ (subgraph_nodes[0],
9966 get_immediate_dominator (CDI_DOMINATORS,
9967 subgraph_nodes[i]));
9968 free_dominance_info (CDI_DOMINATORS);
9970 /* Similarly for post-dominance. */
9971 calculate_dominance_info (CDI_POST_DOMINATORS);
9972 /* The initial block in the subgraph should be postdominated by EXIT. */
9973 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
9974 get_immediate_dominator (CDI_POST_DOMINATORS,
9975 subgraph_nodes[0]));
9976 /* Every other block in the subgraph should be postdominated by the
9977 initial block, since that leads to EXIT. */
9978 for (int i = 1; i < n; i++)
9979 ASSERT_EQ (subgraph_nodes[0],
9980 get_immediate_dominator (CDI_POST_DOMINATORS,
9981 subgraph_nodes[i]));
9982 free_dominance_info (CDI_POST_DOMINATORS);
9984 pop_cfun ();
9987 /* Run all of the selftests within this file. */
9989 void
9990 tree_cfg_c_tests ()
9992 test_linear_chain ();
9993 test_diamond ();
9994 test_fully_connected ();
9997 } // namespace selftest
9999 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10000 - loop
10001 - nested loops
10002 - switch statement (a block with many out-edges)
10003 - something that jumps to itself
10004 - etc */
10006 #endif /* CHECKING_P */