1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
43 CONSTANT -> V_i has been found to hold a constant
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
123 #include "coretypes.h"
125 #include "hash-set.h"
126 #include "machmode.h"
128 #include "double-int.h"
132 #include "wide-int.h"
136 #include "fold-const.h"
137 #include "stor-layout.h"
141 #include "hard-reg-set.h"
143 #include "function.h"
144 #include "dominance.h"
146 #include "basic-block.h"
147 #include "gimple-pretty-print.h"
148 #include "hash-table.h"
149 #include "tree-ssa-alias.h"
150 #include "internal-fn.h"
151 #include "gimple-fold.h"
153 #include "gimple-expr.h"
156 #include "gimplify.h"
157 #include "gimple-iterator.h"
158 #include "gimple-ssa.h"
159 #include "tree-cfg.h"
160 #include "tree-phinodes.h"
161 #include "ssa-iterators.h"
162 #include "stringpool.h"
163 #include "tree-ssanames.h"
164 #include "tree-pass.h"
165 #include "tree-ssa-propagate.h"
166 #include "value-prof.h"
167 #include "langhooks.h"
169 #include "diagnostic-core.h"
172 #include "wide-int-print.h"
173 #include "builtins.h"
174 #include "tree-chkp.h"
177 /* Possible lattice values. */
186 struct ccp_prop_value_t
{
188 ccp_lattice_t lattice_val
;
190 /* Propagated value. */
193 /* Mask that applies to the propagated value during CCP. For X
194 with a CONSTANT lattice value X & ~mask == value & ~mask. The
195 zero bits in the mask cover constant values. The ones mean no
200 /* Array of propagated constant values. After propagation,
201 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
202 the constant is held in an SSA name representing a memory store
203 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
204 memory reference used to store (i.e., the LHS of the assignment
206 static ccp_prop_value_t
*const_val
;
207 static unsigned n_const_val
;
209 static void canonicalize_value (ccp_prop_value_t
*);
210 static bool ccp_fold_stmt (gimple_stmt_iterator
*);
212 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
215 dump_lattice_value (FILE *outf
, const char *prefix
, ccp_prop_value_t val
)
217 switch (val
.lattice_val
)
220 fprintf (outf
, "%sUNINITIALIZED", prefix
);
223 fprintf (outf
, "%sUNDEFINED", prefix
);
226 fprintf (outf
, "%sVARYING", prefix
);
229 if (TREE_CODE (val
.value
) != INTEGER_CST
232 fprintf (outf
, "%sCONSTANT ", prefix
);
233 print_generic_expr (outf
, val
.value
, dump_flags
);
237 widest_int cval
= wi::bit_and_not (wi::to_widest (val
.value
),
239 fprintf (outf
, "%sCONSTANT ", prefix
);
240 print_hex (cval
, outf
);
241 fprintf (outf
, " (");
242 print_hex (val
.mask
, outf
);
252 /* Print lattice value VAL to stderr. */
254 void debug_lattice_value (ccp_prop_value_t val
);
257 debug_lattice_value (ccp_prop_value_t val
)
259 dump_lattice_value (stderr
, "", val
);
260 fprintf (stderr
, "\n");
263 /* Extend NONZERO_BITS to a full mask, with the upper bits being set. */
266 extend_mask (const wide_int
&nonzero_bits
)
268 return (wi::mask
<widest_int
> (wi::get_precision (nonzero_bits
), true)
269 | widest_int::from (nonzero_bits
, UNSIGNED
));
272 /* Compute a default value for variable VAR and store it in the
273 CONST_VAL array. The following rules are used to get default
276 1- Global and static variables that are declared constant are
279 2- Any other value is considered UNDEFINED. This is useful when
280 considering PHI nodes. PHI arguments that are undefined do not
281 change the constant value of the PHI node, which allows for more
282 constants to be propagated.
284 3- Variables defined by statements other than assignments and PHI
285 nodes are considered VARYING.
287 4- Initial values of variables that are not GIMPLE registers are
288 considered VARYING. */
290 static ccp_prop_value_t
291 get_default_value (tree var
)
293 ccp_prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, 0 };
296 stmt
= SSA_NAME_DEF_STMT (var
);
298 if (gimple_nop_p (stmt
))
300 /* Variables defined by an empty statement are those used
301 before being initialized. If VAR is a local variable, we
302 can assume initially that it is UNDEFINED, otherwise we must
303 consider it VARYING. */
304 if (!virtual_operand_p (var
)
305 && TREE_CODE (SSA_NAME_VAR (var
)) == VAR_DECL
)
306 val
.lattice_val
= UNDEFINED
;
309 val
.lattice_val
= VARYING
;
311 if (flag_tree_bit_ccp
)
313 wide_int nonzero_bits
= get_nonzero_bits (var
);
314 if (nonzero_bits
!= -1)
316 val
.lattice_val
= CONSTANT
;
317 val
.value
= build_zero_cst (TREE_TYPE (var
));
318 val
.mask
= extend_mask (nonzero_bits
);
323 else if (is_gimple_assign (stmt
))
326 if (gimple_assign_single_p (stmt
)
327 && DECL_P (gimple_assign_rhs1 (stmt
))
328 && (cst
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
))))
330 val
.lattice_val
= CONSTANT
;
335 /* Any other variable defined by an assignment is considered
337 val
.lattice_val
= UNDEFINED
;
340 else if ((is_gimple_call (stmt
)
341 && gimple_call_lhs (stmt
) != NULL_TREE
)
342 || gimple_code (stmt
) == GIMPLE_PHI
)
344 /* A variable defined by a call or a PHI node is considered
346 val
.lattice_val
= UNDEFINED
;
350 /* Otherwise, VAR will never take on a constant value. */
351 val
.lattice_val
= VARYING
;
359 /* Get the constant value associated with variable VAR. */
361 static inline ccp_prop_value_t
*
364 ccp_prop_value_t
*val
;
366 if (const_val
== NULL
367 || SSA_NAME_VERSION (var
) >= n_const_val
)
370 val
= &const_val
[SSA_NAME_VERSION (var
)];
371 if (val
->lattice_val
== UNINITIALIZED
)
372 *val
= get_default_value (var
);
374 canonicalize_value (val
);
379 /* Return the constant tree value associated with VAR. */
382 get_constant_value (tree var
)
384 ccp_prop_value_t
*val
;
385 if (TREE_CODE (var
) != SSA_NAME
)
387 if (is_gimple_min_invariant (var
))
391 val
= get_value (var
);
393 && val
->lattice_val
== CONSTANT
394 && (TREE_CODE (val
->value
) != INTEGER_CST
400 /* Sets the value associated with VAR to VARYING. */
403 set_value_varying (tree var
)
405 ccp_prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
407 val
->lattice_val
= VARYING
;
408 val
->value
= NULL_TREE
;
412 /* For integer constants, make sure to drop TREE_OVERFLOW. */
415 canonicalize_value (ccp_prop_value_t
*val
)
417 if (val
->lattice_val
!= CONSTANT
)
420 if (TREE_OVERFLOW_P (val
->value
))
421 val
->value
= drop_tree_overflow (val
->value
);
424 /* Return whether the lattice transition is valid. */
427 valid_lattice_transition (ccp_prop_value_t old_val
, ccp_prop_value_t new_val
)
429 /* Lattice transitions must always be monotonically increasing in
431 if (old_val
.lattice_val
< new_val
.lattice_val
)
434 if (old_val
.lattice_val
!= new_val
.lattice_val
)
437 if (!old_val
.value
&& !new_val
.value
)
440 /* Now both lattice values are CONSTANT. */
442 /* Allow transitioning from PHI <&x, not executable> == &x
443 to PHI <&x, &y> == common alignment. */
444 if (TREE_CODE (old_val
.value
) != INTEGER_CST
445 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
448 /* Bit-lattices have to agree in the still valid bits. */
449 if (TREE_CODE (old_val
.value
) == INTEGER_CST
450 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
451 return (wi::bit_and_not (wi::to_widest (old_val
.value
), new_val
.mask
)
452 == wi::bit_and_not (wi::to_widest (new_val
.value
), new_val
.mask
));
454 /* Otherwise constant values have to agree. */
455 if (operand_equal_p (old_val
.value
, new_val
.value
, 0))
458 /* At least the kinds and types should agree now. */
459 if (TREE_CODE (old_val
.value
) != TREE_CODE (new_val
.value
)
460 || !types_compatible_p (TREE_TYPE (old_val
.value
),
461 TREE_TYPE (new_val
.value
)))
464 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
466 tree type
= TREE_TYPE (new_val
.value
);
467 if (SCALAR_FLOAT_TYPE_P (type
)
468 && !HONOR_NANS (type
))
470 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val
.value
)))
473 else if (VECTOR_FLOAT_TYPE_P (type
)
474 && !HONOR_NANS (type
))
476 for (unsigned i
= 0; i
< VECTOR_CST_NELTS (old_val
.value
); ++i
)
477 if (!REAL_VALUE_ISNAN
478 (TREE_REAL_CST (VECTOR_CST_ELT (old_val
.value
, i
)))
479 && !operand_equal_p (VECTOR_CST_ELT (old_val
.value
, i
),
480 VECTOR_CST_ELT (new_val
.value
, i
), 0))
484 else if (COMPLEX_FLOAT_TYPE_P (type
)
485 && !HONOR_NANS (type
))
487 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val
.value
)))
488 && !operand_equal_p (TREE_REALPART (old_val
.value
),
489 TREE_REALPART (new_val
.value
), 0))
491 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val
.value
)))
492 && !operand_equal_p (TREE_IMAGPART (old_val
.value
),
493 TREE_IMAGPART (new_val
.value
), 0))
500 /* Set the value for variable VAR to NEW_VAL. Return true if the new
501 value is different from VAR's previous value. */
504 set_lattice_value (tree var
, ccp_prop_value_t new_val
)
506 /* We can deal with old UNINITIALIZED values just fine here. */
507 ccp_prop_value_t
*old_val
= &const_val
[SSA_NAME_VERSION (var
)];
509 canonicalize_value (&new_val
);
511 /* We have to be careful to not go up the bitwise lattice
512 represented by the mask.
513 ??? This doesn't seem to be the best place to enforce this. */
514 if (new_val
.lattice_val
== CONSTANT
515 && old_val
->lattice_val
== CONSTANT
516 && TREE_CODE (new_val
.value
) == INTEGER_CST
517 && TREE_CODE (old_val
->value
) == INTEGER_CST
)
519 widest_int diff
= (wi::to_widest (new_val
.value
)
520 ^ wi::to_widest (old_val
->value
));
521 new_val
.mask
= new_val
.mask
| old_val
->mask
| diff
;
524 gcc_checking_assert (valid_lattice_transition (*old_val
, new_val
));
526 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
527 caller that this was a non-transition. */
528 if (old_val
->lattice_val
!= new_val
.lattice_val
529 || (new_val
.lattice_val
== CONSTANT
530 && TREE_CODE (new_val
.value
) == INTEGER_CST
531 && (TREE_CODE (old_val
->value
) != INTEGER_CST
532 || new_val
.mask
!= old_val
->mask
)))
534 /* ??? We would like to delay creation of INTEGER_CSTs from
535 partially constants here. */
537 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
539 dump_lattice_value (dump_file
, "Lattice value changed to ", new_val
);
540 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
545 gcc_assert (new_val
.lattice_val
!= UNINITIALIZED
);
552 static ccp_prop_value_t
get_value_for_expr (tree
, bool);
553 static ccp_prop_value_t
bit_value_binop (enum tree_code
, tree
, tree
, tree
);
554 static void bit_value_binop_1 (enum tree_code
, tree
, widest_int
*, widest_int
*,
555 tree
, const widest_int
&, const widest_int
&,
556 tree
, const widest_int
&, const widest_int
&);
558 /* Return a widest_int that can be used for bitwise simplifications
562 value_to_wide_int (ccp_prop_value_t val
)
565 && TREE_CODE (val
.value
) == INTEGER_CST
)
566 return wi::to_widest (val
.value
);
571 /* Return the value for the address expression EXPR based on alignment
574 static ccp_prop_value_t
575 get_value_from_alignment (tree expr
)
577 tree type
= TREE_TYPE (expr
);
578 ccp_prop_value_t val
;
579 unsigned HOST_WIDE_INT bitpos
;
582 gcc_assert (TREE_CODE (expr
) == ADDR_EXPR
);
584 get_pointer_alignment_1 (expr
, &align
, &bitpos
);
585 val
.mask
= (POINTER_TYPE_P (type
) || TYPE_UNSIGNED (type
)
586 ? wi::mask
<widest_int
> (TYPE_PRECISION (type
), false)
587 : -1).and_not (align
/ BITS_PER_UNIT
- 1);
588 val
.lattice_val
= val
.mask
== -1 ? VARYING
: CONSTANT
;
589 if (val
.lattice_val
== CONSTANT
)
590 val
.value
= build_int_cstu (type
, bitpos
/ BITS_PER_UNIT
);
592 val
.value
= NULL_TREE
;
597 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
598 return constant bits extracted from alignment information for
599 invariant addresses. */
601 static ccp_prop_value_t
602 get_value_for_expr (tree expr
, bool for_bits_p
)
604 ccp_prop_value_t val
;
606 if (TREE_CODE (expr
) == SSA_NAME
)
608 val
= *get_value (expr
);
610 && val
.lattice_val
== CONSTANT
611 && TREE_CODE (val
.value
) == ADDR_EXPR
)
612 val
= get_value_from_alignment (val
.value
);
614 else if (is_gimple_min_invariant (expr
)
615 && (!for_bits_p
|| TREE_CODE (expr
) != ADDR_EXPR
))
617 val
.lattice_val
= CONSTANT
;
620 canonicalize_value (&val
);
622 else if (TREE_CODE (expr
) == ADDR_EXPR
)
623 val
= get_value_from_alignment (expr
);
626 val
.lattice_val
= VARYING
;
628 val
.value
= NULL_TREE
;
633 /* Return the likely CCP lattice value for STMT.
635 If STMT has no operands, then return CONSTANT.
637 Else if undefinedness of operands of STMT cause its value to be
638 undefined, then return UNDEFINED.
640 Else if any operands of STMT are constants, then return CONSTANT.
642 Else return VARYING. */
645 likely_value (gimple stmt
)
647 bool has_constant_operand
, has_undefined_operand
, all_undefined_operands
;
652 enum gimple_code code
= gimple_code (stmt
);
654 /* This function appears to be called only for assignments, calls,
655 conditionals, and switches, due to the logic in visit_stmt. */
656 gcc_assert (code
== GIMPLE_ASSIGN
657 || code
== GIMPLE_CALL
658 || code
== GIMPLE_COND
659 || code
== GIMPLE_SWITCH
);
661 /* If the statement has volatile operands, it won't fold to a
663 if (gimple_has_volatile_ops (stmt
))
666 /* Arrive here for more complex cases. */
667 has_constant_operand
= false;
668 has_undefined_operand
= false;
669 all_undefined_operands
= true;
670 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
672 ccp_prop_value_t
*val
= get_value (use
);
674 if (val
->lattice_val
== UNDEFINED
)
675 has_undefined_operand
= true;
677 all_undefined_operands
= false;
679 if (val
->lattice_val
== CONSTANT
)
680 has_constant_operand
= true;
683 /* There may be constants in regular rhs operands. For calls we
684 have to ignore lhs, fndecl and static chain, otherwise only
686 for (i
= (is_gimple_call (stmt
) ? 2 : 0) + gimple_has_lhs (stmt
);
687 i
< gimple_num_ops (stmt
); ++i
)
689 tree op
= gimple_op (stmt
, i
);
690 if (!op
|| TREE_CODE (op
) == SSA_NAME
)
692 if (is_gimple_min_invariant (op
))
693 has_constant_operand
= true;
696 if (has_constant_operand
)
697 all_undefined_operands
= false;
699 if (has_undefined_operand
700 && code
== GIMPLE_CALL
701 && gimple_call_internal_p (stmt
))
702 switch (gimple_call_internal_fn (stmt
))
704 /* These 3 builtins use the first argument just as a magic
705 way how to find out a decl uid. */
706 case IFN_GOMP_SIMD_LANE
:
707 case IFN_GOMP_SIMD_VF
:
708 case IFN_GOMP_SIMD_LAST_LANE
:
709 has_undefined_operand
= false;
715 /* If the operation combines operands like COMPLEX_EXPR make sure to
716 not mark the result UNDEFINED if only one part of the result is
718 if (has_undefined_operand
&& all_undefined_operands
)
720 else if (code
== GIMPLE_ASSIGN
&& has_undefined_operand
)
722 switch (gimple_assign_rhs_code (stmt
))
724 /* Unary operators are handled with all_undefined_operands. */
727 case POINTER_PLUS_EXPR
:
728 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
729 Not bitwise operators, one VARYING operand may specify the
730 result completely. Not logical operators for the same reason.
731 Not COMPLEX_EXPR as one VARYING operand makes the result partly
732 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
733 the undefined operand may be promoted. */
737 /* If any part of an address is UNDEFINED, like the index
738 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
745 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
746 fall back to CONSTANT. During iteration UNDEFINED may still drop
748 if (has_undefined_operand
)
751 /* We do not consider virtual operands here -- load from read-only
752 memory may have only VARYING virtual operands, but still be
754 if (has_constant_operand
755 || gimple_references_memory_p (stmt
))
761 /* Returns true if STMT cannot be constant. */
764 surely_varying_stmt_p (gimple stmt
)
766 /* If the statement has operands that we cannot handle, it cannot be
768 if (gimple_has_volatile_ops (stmt
))
771 /* If it is a call and does not return a value or is not a
772 builtin and not an indirect call or a call to function with
773 assume_aligned/alloc_align attribute, it is varying. */
774 if (is_gimple_call (stmt
))
776 tree fndecl
, fntype
= gimple_call_fntype (stmt
);
777 if (!gimple_call_lhs (stmt
)
778 || ((fndecl
= gimple_call_fndecl (stmt
)) != NULL_TREE
779 && !DECL_BUILT_IN (fndecl
)
780 && !lookup_attribute ("assume_aligned",
781 TYPE_ATTRIBUTES (fntype
))
782 && !lookup_attribute ("alloc_align",
783 TYPE_ATTRIBUTES (fntype
))))
787 /* Any other store operation is not interesting. */
788 else if (gimple_vdef (stmt
))
791 /* Anything other than assignments and conditional jumps are not
792 interesting for CCP. */
793 if (gimple_code (stmt
) != GIMPLE_ASSIGN
794 && gimple_code (stmt
) != GIMPLE_COND
795 && gimple_code (stmt
) != GIMPLE_SWITCH
796 && gimple_code (stmt
) != GIMPLE_CALL
)
802 /* Initialize local data structures for CCP. */
805 ccp_initialize (void)
809 n_const_val
= num_ssa_names
;
810 const_val
= XCNEWVEC (ccp_prop_value_t
, n_const_val
);
812 /* Initialize simulation flags for PHI nodes and statements. */
813 FOR_EACH_BB_FN (bb
, cfun
)
815 gimple_stmt_iterator i
;
817 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
819 gimple stmt
= gsi_stmt (i
);
822 /* If the statement is a control insn, then we do not
823 want to avoid simulating the statement once. Failure
824 to do so means that those edges will never get added. */
825 if (stmt_ends_bb_p (stmt
))
828 is_varying
= surely_varying_stmt_p (stmt
);
835 /* If the statement will not produce a constant, mark
836 all its outputs VARYING. */
837 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
838 set_value_varying (def
);
840 prop_set_simulate_again (stmt
, !is_varying
);
844 /* Now process PHI nodes. We never clear the simulate_again flag on
845 phi nodes, since we do not know which edges are executable yet,
846 except for phi nodes for virtual operands when we do not do store ccp. */
847 FOR_EACH_BB_FN (bb
, cfun
)
851 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
853 gphi
*phi
= i
.phi ();
855 if (virtual_operand_p (gimple_phi_result (phi
)))
856 prop_set_simulate_again (phi
, false);
858 prop_set_simulate_again (phi
, true);
863 /* Debug count support. Reset the values of ssa names
864 VARYING when the total number ssa names analyzed is
865 beyond the debug count specified. */
871 for (i
= 0; i
< num_ssa_names
; i
++)
875 const_val
[i
].lattice_val
= VARYING
;
876 const_val
[i
].mask
= -1;
877 const_val
[i
].value
= NULL_TREE
;
883 /* Do final substitution of propagated values, cleanup the flowgraph and
884 free allocated storage.
886 Return TRUE when something was optimized. */
891 bool something_changed
;
896 /* Derive alignment and misalignment information from partially
897 constant pointers in the lattice or nonzero bits from partially
898 constant integers. */
899 for (i
= 1; i
< num_ssa_names
; ++i
)
901 tree name
= ssa_name (i
);
902 ccp_prop_value_t
*val
;
903 unsigned int tem
, align
;
906 || (!POINTER_TYPE_P (TREE_TYPE (name
))
907 && (!INTEGRAL_TYPE_P (TREE_TYPE (name
))
908 /* Don't record nonzero bits before IPA to avoid
909 using too much memory. */
910 || first_pass_instance
)))
913 val
= get_value (name
);
914 if (val
->lattice_val
!= CONSTANT
915 || TREE_CODE (val
->value
) != INTEGER_CST
)
918 if (POINTER_TYPE_P (TREE_TYPE (name
)))
920 /* Trailing mask bits specify the alignment, trailing value
921 bits the misalignment. */
922 tem
= val
->mask
.to_uhwi ();
923 align
= (tem
& -tem
);
925 set_ptr_info_alignment (get_ptr_info (name
), align
,
926 (TREE_INT_CST_LOW (val
->value
)
931 unsigned int precision
= TYPE_PRECISION (TREE_TYPE (val
->value
));
932 wide_int nonzero_bits
= wide_int::from (val
->mask
, precision
,
933 UNSIGNED
) | val
->value
;
934 nonzero_bits
&= get_nonzero_bits (name
);
935 set_nonzero_bits (name
, nonzero_bits
);
939 /* Perform substitutions based on the known constant values. */
940 something_changed
= substitute_and_fold (get_constant_value
,
941 ccp_fold_stmt
, true);
945 return something_changed
;;
949 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
952 any M UNDEFINED = any
953 any M VARYING = VARYING
954 Ci M Cj = Ci if (i == j)
955 Ci M Cj = VARYING if (i != j)
959 ccp_lattice_meet (ccp_prop_value_t
*val1
, ccp_prop_value_t
*val2
)
961 if (val1
->lattice_val
== UNDEFINED
)
963 /* UNDEFINED M any = any */
966 else if (val2
->lattice_val
== UNDEFINED
)
968 /* any M UNDEFINED = any
969 Nothing to do. VAL1 already contains the value we want. */
972 else if (val1
->lattice_val
== VARYING
973 || val2
->lattice_val
== VARYING
)
975 /* any M VARYING = VARYING. */
976 val1
->lattice_val
= VARYING
;
978 val1
->value
= NULL_TREE
;
980 else if (val1
->lattice_val
== CONSTANT
981 && val2
->lattice_val
== CONSTANT
982 && TREE_CODE (val1
->value
) == INTEGER_CST
983 && TREE_CODE (val2
->value
) == INTEGER_CST
)
985 /* Ci M Cj = Ci if (i == j)
986 Ci M Cj = VARYING if (i != j)
988 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
990 val1
->mask
= (val1
->mask
| val2
->mask
991 | (wi::to_widest (val1
->value
)
992 ^ wi::to_widest (val2
->value
)));
993 if (val1
->mask
== -1)
995 val1
->lattice_val
= VARYING
;
996 val1
->value
= NULL_TREE
;
999 else if (val1
->lattice_val
== CONSTANT
1000 && val2
->lattice_val
== CONSTANT
1001 && simple_cst_equal (val1
->value
, val2
->value
) == 1)
1003 /* Ci M Cj = Ci if (i == j)
1004 Ci M Cj = VARYING if (i != j)
1006 VAL1 already contains the value we want for equivalent values. */
1008 else if (val1
->lattice_val
== CONSTANT
1009 && val2
->lattice_val
== CONSTANT
1010 && (TREE_CODE (val1
->value
) == ADDR_EXPR
1011 || TREE_CODE (val2
->value
) == ADDR_EXPR
))
1013 /* When not equal addresses are involved try meeting for
1015 ccp_prop_value_t tem
= *val2
;
1016 if (TREE_CODE (val1
->value
) == ADDR_EXPR
)
1017 *val1
= get_value_for_expr (val1
->value
, true);
1018 if (TREE_CODE (val2
->value
) == ADDR_EXPR
)
1019 tem
= get_value_for_expr (val2
->value
, true);
1020 ccp_lattice_meet (val1
, &tem
);
1024 /* Any other combination is VARYING. */
1025 val1
->lattice_val
= VARYING
;
1027 val1
->value
= NULL_TREE
;
1032 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1033 lattice values to determine PHI_NODE's lattice value. The value of a
1034 PHI node is determined calling ccp_lattice_meet with all the arguments
1035 of the PHI node that are incoming via executable edges. */
1037 static enum ssa_prop_result
1038 ccp_visit_phi_node (gphi
*phi
)
1041 ccp_prop_value_t
*old_val
, new_val
;
1043 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1045 fprintf (dump_file
, "\nVisiting PHI node: ");
1046 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
1049 old_val
= get_value (gimple_phi_result (phi
));
1050 switch (old_val
->lattice_val
)
1053 return SSA_PROP_VARYING
;
1060 new_val
.lattice_val
= UNDEFINED
;
1061 new_val
.value
= NULL_TREE
;
1068 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1070 /* Compute the meet operator over all the PHI arguments flowing
1071 through executable edges. */
1072 edge e
= gimple_phi_arg_edge (phi
, i
);
1074 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1077 "\n Argument #%d (%d -> %d %sexecutable)\n",
1078 i
, e
->src
->index
, e
->dest
->index
,
1079 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
1082 /* If the incoming edge is executable, Compute the meet operator for
1083 the existing value of the PHI node and the current PHI argument. */
1084 if (e
->flags
& EDGE_EXECUTABLE
)
1086 tree arg
= gimple_phi_arg (phi
, i
)->def
;
1087 ccp_prop_value_t arg_val
= get_value_for_expr (arg
, false);
1089 ccp_lattice_meet (&new_val
, &arg_val
);
1091 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1093 fprintf (dump_file
, "\t");
1094 print_generic_expr (dump_file
, arg
, dump_flags
);
1095 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
1096 fprintf (dump_file
, "\n");
1099 if (new_val
.lattice_val
== VARYING
)
1104 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1106 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
1107 fprintf (dump_file
, "\n\n");
1110 /* Make the transition to the new value. */
1111 if (set_lattice_value (gimple_phi_result (phi
), new_val
))
1113 if (new_val
.lattice_val
== VARYING
)
1114 return SSA_PROP_VARYING
;
1116 return SSA_PROP_INTERESTING
;
1119 return SSA_PROP_NOT_INTERESTING
;
1122 /* Return the constant value for OP or OP otherwise. */
1125 valueize_op (tree op
)
1127 if (TREE_CODE (op
) == SSA_NAME
)
1129 tree tem
= get_constant_value (op
);
1136 /* Return the constant value for OP, but signal to not follow SSA
1137 edges if the definition may be simulated again. */
1140 valueize_op_1 (tree op
)
1142 if (TREE_CODE (op
) == SSA_NAME
)
1144 tree tem
= get_constant_value (op
);
1147 /* If the definition may be simulated again we cannot follow
1148 this SSA edge as the SSA propagator does not necessarily
1149 re-visit the use. */
1150 gimple def_stmt
= SSA_NAME_DEF_STMT (op
);
1151 if (prop_simulate_again_p (def_stmt
))
1157 /* CCP specific front-end to the non-destructive constant folding
1160 Attempt to simplify the RHS of STMT knowing that one or more
1161 operands are constants.
1163 If simplification is possible, return the simplified RHS,
1164 otherwise return the original RHS or NULL_TREE. */
1167 ccp_fold (gimple stmt
)
1169 location_t loc
= gimple_location (stmt
);
1170 switch (gimple_code (stmt
))
1174 /* Handle comparison operators that can appear in GIMPLE form. */
1175 tree op0
= valueize_op (gimple_cond_lhs (stmt
));
1176 tree op1
= valueize_op (gimple_cond_rhs (stmt
));
1177 enum tree_code code
= gimple_cond_code (stmt
);
1178 return fold_binary_loc (loc
, code
, boolean_type_node
, op0
, op1
);
1183 /* Return the constant switch index. */
1184 return valueize_op (gimple_switch_index (as_a
<gswitch
*> (stmt
)));
1189 return gimple_fold_stmt_to_constant_1 (stmt
,
1190 valueize_op
, valueize_op_1
);
1197 /* Apply the operation CODE in type TYPE to the value, mask pair
1198 RVAL and RMASK representing a value of type RTYPE and set
1199 the value, mask pair *VAL and *MASK to the result. */
1202 bit_value_unop_1 (enum tree_code code
, tree type
,
1203 widest_int
*val
, widest_int
*mask
,
1204 tree rtype
, const widest_int
&rval
, const widest_int
&rmask
)
1215 widest_int temv
, temm
;
1216 /* Return ~rval + 1. */
1217 bit_value_unop_1 (BIT_NOT_EXPR
, type
, &temv
, &temm
, type
, rval
, rmask
);
1218 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1219 type
, temv
, temm
, type
, 1, 0);
1227 /* First extend mask and value according to the original type. */
1228 sgn
= TYPE_SIGN (rtype
);
1229 *mask
= wi::ext (rmask
, TYPE_PRECISION (rtype
), sgn
);
1230 *val
= wi::ext (rval
, TYPE_PRECISION (rtype
), sgn
);
1232 /* Then extend mask and value according to the target type. */
1233 sgn
= TYPE_SIGN (type
);
1234 *mask
= wi::ext (*mask
, TYPE_PRECISION (type
), sgn
);
1235 *val
= wi::ext (*val
, TYPE_PRECISION (type
), sgn
);
1245 /* Apply the operation CODE in type TYPE to the value, mask pairs
1246 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1247 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1250 bit_value_binop_1 (enum tree_code code
, tree type
,
1251 widest_int
*val
, widest_int
*mask
,
1252 tree r1type
, const widest_int
&r1val
,
1253 const widest_int
&r1mask
, tree r2type
,
1254 const widest_int
&r2val
, const widest_int
&r2mask
)
1256 signop sgn
= TYPE_SIGN (type
);
1257 int width
= TYPE_PRECISION (type
);
1258 bool swap_p
= false;
1260 /* Assume we'll get a constant result. Use an initial non varying
1261 value, we fall back to varying in the end if necessary. */
1267 /* The mask is constant where there is a known not
1268 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1269 *mask
= (r1mask
| r2mask
) & (r1val
| r1mask
) & (r2val
| r2mask
);
1270 *val
= r1val
& r2val
;
1274 /* The mask is constant where there is a known
1275 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1276 *mask
= (r1mask
| r2mask
)
1277 .and_not (r1val
.and_not (r1mask
) | r2val
.and_not (r2mask
));
1278 *val
= r1val
| r2val
;
1283 *mask
= r1mask
| r2mask
;
1284 *val
= r1val
^ r2val
;
1291 widest_int shift
= r2val
;
1299 if (wi::neg_p (shift
))
1302 if (code
== RROTATE_EXPR
)
1303 code
= LROTATE_EXPR
;
1305 code
= RROTATE_EXPR
;
1307 if (code
== RROTATE_EXPR
)
1309 *mask
= wi::rrotate (r1mask
, shift
, width
);
1310 *val
= wi::rrotate (r1val
, shift
, width
);
1314 *mask
= wi::lrotate (r1mask
, shift
, width
);
1315 *val
= wi::lrotate (r1val
, shift
, width
);
1323 /* ??? We can handle partially known shift counts if we know
1324 its sign. That way we can tell that (x << (y | 8)) & 255
1328 widest_int shift
= r2val
;
1336 if (wi::neg_p (shift
))
1339 if (code
== RSHIFT_EXPR
)
1344 if (code
== RSHIFT_EXPR
)
1346 *mask
= wi::rshift (wi::ext (r1mask
, width
, sgn
), shift
, sgn
);
1347 *val
= wi::rshift (wi::ext (r1val
, width
, sgn
), shift
, sgn
);
1351 *mask
= wi::ext (wi::lshift (r1mask
, shift
), width
, sgn
);
1352 *val
= wi::ext (wi::lshift (r1val
, shift
), width
, sgn
);
1359 case POINTER_PLUS_EXPR
:
1361 /* Do the addition with unknown bits set to zero, to give carry-ins of
1362 zero wherever possible. */
1363 widest_int lo
= r1val
.and_not (r1mask
) + r2val
.and_not (r2mask
);
1364 lo
= wi::ext (lo
, width
, sgn
);
1365 /* Do the addition with unknown bits set to one, to give carry-ins of
1366 one wherever possible. */
1367 widest_int hi
= (r1val
| r1mask
) + (r2val
| r2mask
);
1368 hi
= wi::ext (hi
, width
, sgn
);
1369 /* Each bit in the result is known if (a) the corresponding bits in
1370 both inputs are known, and (b) the carry-in to that bit position
1371 is known. We can check condition (b) by seeing if we got the same
1372 result with minimised carries as with maximised carries. */
1373 *mask
= r1mask
| r2mask
| (lo
^ hi
);
1374 *mask
= wi::ext (*mask
, width
, sgn
);
1375 /* It shouldn't matter whether we choose lo or hi here. */
1382 widest_int temv
, temm
;
1383 bit_value_unop_1 (NEGATE_EXPR
, r2type
, &temv
, &temm
,
1384 r2type
, r2val
, r2mask
);
1385 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1386 r1type
, r1val
, r1mask
,
1387 r2type
, temv
, temm
);
1393 /* Just track trailing zeros in both operands and transfer
1394 them to the other. */
1395 int r1tz
= wi::ctz (r1val
| r1mask
);
1396 int r2tz
= wi::ctz (r2val
| r2mask
);
1397 if (r1tz
+ r2tz
>= width
)
1402 else if (r1tz
+ r2tz
> 0)
1404 *mask
= wi::ext (wi::mask
<widest_int
> (r1tz
+ r2tz
, true),
1414 widest_int m
= r1mask
| r2mask
;
1415 if (r1val
.and_not (m
) != r2val
.and_not (m
))
1418 *val
= ((code
== EQ_EXPR
) ? 0 : 1);
1422 /* We know the result of a comparison is always one or zero. */
1432 code
= swap_tree_comparison (code
);
1439 const widest_int
&o1val
= swap_p
? r2val
: r1val
;
1440 const widest_int
&o1mask
= swap_p
? r2mask
: r1mask
;
1441 const widest_int
&o2val
= swap_p
? r1val
: r2val
;
1442 const widest_int
&o2mask
= swap_p
? r1mask
: r2mask
;
1444 /* If the most significant bits are not known we know nothing. */
1445 if (wi::neg_p (o1mask
) || wi::neg_p (o2mask
))
1448 /* For comparisons the signedness is in the comparison operands. */
1449 sgn
= TYPE_SIGN (r1type
);
1451 /* If we know the most significant bits we know the values
1452 value ranges by means of treating varying bits as zero
1453 or one. Do a cross comparison of the max/min pairs. */
1454 maxmin
= wi::cmp (o1val
| o1mask
, o2val
.and_not (o2mask
), sgn
);
1455 minmax
= wi::cmp (o1val
.and_not (o1mask
), o2val
| o2mask
, sgn
);
1456 if (maxmin
< 0) /* o1 is less than o2. */
1461 else if (minmax
> 0) /* o1 is not less or equal to o2. */
1466 else if (maxmin
== minmax
) /* o1 and o2 are equal. */
1468 /* This probably should never happen as we'd have
1469 folded the thing during fully constant value folding. */
1471 *val
= (code
== LE_EXPR
? 1 : 0);
1475 /* We know the result of a comparison is always one or zero. */
1486 /* Return the propagation value when applying the operation CODE to
1487 the value RHS yielding type TYPE. */
1489 static ccp_prop_value_t
1490 bit_value_unop (enum tree_code code
, tree type
, tree rhs
)
1492 ccp_prop_value_t rval
= get_value_for_expr (rhs
, true);
1493 widest_int value
, mask
;
1494 ccp_prop_value_t val
;
1496 if (rval
.lattice_val
== UNDEFINED
)
1499 gcc_assert ((rval
.lattice_val
== CONSTANT
1500 && TREE_CODE (rval
.value
) == INTEGER_CST
)
1501 || rval
.mask
== -1);
1502 bit_value_unop_1 (code
, type
, &value
, &mask
,
1503 TREE_TYPE (rhs
), value_to_wide_int (rval
), rval
.mask
);
1506 val
.lattice_val
= CONSTANT
;
1508 /* ??? Delay building trees here. */
1509 val
.value
= wide_int_to_tree (type
, value
);
1513 val
.lattice_val
= VARYING
;
1514 val
.value
= NULL_TREE
;
1520 /* Return the propagation value when applying the operation CODE to
1521 the values RHS1 and RHS2 yielding type TYPE. */
1523 static ccp_prop_value_t
1524 bit_value_binop (enum tree_code code
, tree type
, tree rhs1
, tree rhs2
)
1526 ccp_prop_value_t r1val
= get_value_for_expr (rhs1
, true);
1527 ccp_prop_value_t r2val
= get_value_for_expr (rhs2
, true);
1528 widest_int value
, mask
;
1529 ccp_prop_value_t val
;
1531 if (r1val
.lattice_val
== UNDEFINED
1532 || r2val
.lattice_val
== UNDEFINED
)
1534 val
.lattice_val
= VARYING
;
1535 val
.value
= NULL_TREE
;
1540 gcc_assert ((r1val
.lattice_val
== CONSTANT
1541 && TREE_CODE (r1val
.value
) == INTEGER_CST
)
1542 || r1val
.mask
== -1);
1543 gcc_assert ((r2val
.lattice_val
== CONSTANT
1544 && TREE_CODE (r2val
.value
) == INTEGER_CST
)
1545 || r2val
.mask
== -1);
1546 bit_value_binop_1 (code
, type
, &value
, &mask
,
1547 TREE_TYPE (rhs1
), value_to_wide_int (r1val
), r1val
.mask
,
1548 TREE_TYPE (rhs2
), value_to_wide_int (r2val
), r2val
.mask
);
1551 val
.lattice_val
= CONSTANT
;
1553 /* ??? Delay building trees here. */
1554 val
.value
= wide_int_to_tree (type
, value
);
1558 val
.lattice_val
= VARYING
;
1559 val
.value
= NULL_TREE
;
1565 /* Return the propagation value for __builtin_assume_aligned
1566 and functions with assume_aligned or alloc_aligned attribute.
1567 For __builtin_assume_aligned, ATTR is NULL_TREE,
1568 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1569 is false, for alloc_aligned attribute ATTR is non-NULL and
1570 ALLOC_ALIGNED is true. */
1572 static ccp_prop_value_t
1573 bit_value_assume_aligned (gimple stmt
, tree attr
, ccp_prop_value_t ptrval
,
1576 tree align
, misalign
= NULL_TREE
, type
;
1577 unsigned HOST_WIDE_INT aligni
, misaligni
= 0;
1578 ccp_prop_value_t alignval
;
1579 widest_int value
, mask
;
1580 ccp_prop_value_t val
;
1582 if (attr
== NULL_TREE
)
1584 tree ptr
= gimple_call_arg (stmt
, 0);
1585 type
= TREE_TYPE (ptr
);
1586 ptrval
= get_value_for_expr (ptr
, true);
1590 tree lhs
= gimple_call_lhs (stmt
);
1591 type
= TREE_TYPE (lhs
);
1594 if (ptrval
.lattice_val
== UNDEFINED
)
1596 gcc_assert ((ptrval
.lattice_val
== CONSTANT
1597 && TREE_CODE (ptrval
.value
) == INTEGER_CST
)
1598 || ptrval
.mask
== -1);
1599 if (attr
== NULL_TREE
)
1601 /* Get aligni and misaligni from __builtin_assume_aligned. */
1602 align
= gimple_call_arg (stmt
, 1);
1603 if (!tree_fits_uhwi_p (align
))
1605 aligni
= tree_to_uhwi (align
);
1606 if (gimple_call_num_args (stmt
) > 2)
1608 misalign
= gimple_call_arg (stmt
, 2);
1609 if (!tree_fits_uhwi_p (misalign
))
1611 misaligni
= tree_to_uhwi (misalign
);
1616 /* Get aligni and misaligni from assume_aligned or
1617 alloc_align attributes. */
1618 if (TREE_VALUE (attr
) == NULL_TREE
)
1620 attr
= TREE_VALUE (attr
);
1621 align
= TREE_VALUE (attr
);
1622 if (!tree_fits_uhwi_p (align
))
1624 aligni
= tree_to_uhwi (align
);
1627 if (aligni
== 0 || aligni
> gimple_call_num_args (stmt
))
1629 align
= gimple_call_arg (stmt
, aligni
- 1);
1630 if (!tree_fits_uhwi_p (align
))
1632 aligni
= tree_to_uhwi (align
);
1634 else if (TREE_CHAIN (attr
) && TREE_VALUE (TREE_CHAIN (attr
)))
1636 misalign
= TREE_VALUE (TREE_CHAIN (attr
));
1637 if (!tree_fits_uhwi_p (misalign
))
1639 misaligni
= tree_to_uhwi (misalign
);
1642 if (aligni
<= 1 || (aligni
& (aligni
- 1)) != 0 || misaligni
>= aligni
)
1645 align
= build_int_cst_type (type
, -aligni
);
1646 alignval
= get_value_for_expr (align
, true);
1647 bit_value_binop_1 (BIT_AND_EXPR
, type
, &value
, &mask
,
1648 type
, value_to_wide_int (ptrval
), ptrval
.mask
,
1649 type
, value_to_wide_int (alignval
), alignval
.mask
);
1652 val
.lattice_val
= CONSTANT
;
1654 gcc_assert ((mask
.to_uhwi () & (aligni
- 1)) == 0);
1655 gcc_assert ((value
.to_uhwi () & (aligni
- 1)) == 0);
1657 /* ??? Delay building trees here. */
1658 val
.value
= wide_int_to_tree (type
, value
);
1662 val
.lattice_val
= VARYING
;
1663 val
.value
= NULL_TREE
;
1669 /* Evaluate statement STMT.
1670 Valid only for assignments, calls, conditionals, and switches. */
1672 static ccp_prop_value_t
1673 evaluate_stmt (gimple stmt
)
1675 ccp_prop_value_t val
;
1676 tree simplified
= NULL_TREE
;
1677 ccp_lattice_t likelyvalue
= likely_value (stmt
);
1678 bool is_constant
= false;
1681 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1683 fprintf (dump_file
, "which is likely ");
1684 switch (likelyvalue
)
1687 fprintf (dump_file
, "CONSTANT");
1690 fprintf (dump_file
, "UNDEFINED");
1693 fprintf (dump_file
, "VARYING");
1697 fprintf (dump_file
, "\n");
1700 /* If the statement is likely to have a CONSTANT result, then try
1701 to fold the statement to determine the constant value. */
1702 /* FIXME. This is the only place that we call ccp_fold.
1703 Since likely_value never returns CONSTANT for calls, we will
1704 not attempt to fold them, including builtins that may profit. */
1705 if (likelyvalue
== CONSTANT
)
1707 fold_defer_overflow_warnings ();
1708 simplified
= ccp_fold (stmt
);
1709 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1710 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
1713 /* The statement produced a constant value. */
1714 val
.lattice_val
= CONSTANT
;
1715 val
.value
= simplified
;
1719 /* If the statement is likely to have a VARYING result, then do not
1720 bother folding the statement. */
1721 else if (likelyvalue
== VARYING
)
1723 enum gimple_code code
= gimple_code (stmt
);
1724 if (code
== GIMPLE_ASSIGN
)
1726 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1728 /* Other cases cannot satisfy is_gimple_min_invariant
1730 if (get_gimple_rhs_class (subcode
) == GIMPLE_SINGLE_RHS
)
1731 simplified
= gimple_assign_rhs1 (stmt
);
1733 else if (code
== GIMPLE_SWITCH
)
1734 simplified
= gimple_switch_index (as_a
<gswitch
*> (stmt
));
1736 /* These cannot satisfy is_gimple_min_invariant without folding. */
1737 gcc_assert (code
== GIMPLE_CALL
|| code
== GIMPLE_COND
);
1738 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1741 /* The statement produced a constant value. */
1742 val
.lattice_val
= CONSTANT
;
1743 val
.value
= simplified
;
1748 /* Resort to simplification for bitwise tracking. */
1749 if (flag_tree_bit_ccp
1750 && (likelyvalue
== CONSTANT
|| is_gimple_call (stmt
))
1753 enum gimple_code code
= gimple_code (stmt
);
1754 val
.lattice_val
= VARYING
;
1755 val
.value
= NULL_TREE
;
1757 if (code
== GIMPLE_ASSIGN
)
1759 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1760 tree rhs1
= gimple_assign_rhs1 (stmt
);
1761 switch (get_gimple_rhs_class (subcode
))
1763 case GIMPLE_SINGLE_RHS
:
1764 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1765 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1766 val
= get_value_for_expr (rhs1
, true);
1769 case GIMPLE_UNARY_RHS
:
1770 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1771 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1772 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt
))
1773 || POINTER_TYPE_P (gimple_expr_type (stmt
))))
1774 val
= bit_value_unop (subcode
, gimple_expr_type (stmt
), rhs1
);
1777 case GIMPLE_BINARY_RHS
:
1778 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1779 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1781 tree lhs
= gimple_assign_lhs (stmt
);
1782 tree rhs2
= gimple_assign_rhs2 (stmt
);
1783 val
= bit_value_binop (subcode
,
1784 TREE_TYPE (lhs
), rhs1
, rhs2
);
1791 else if (code
== GIMPLE_COND
)
1793 enum tree_code code
= gimple_cond_code (stmt
);
1794 tree rhs1
= gimple_cond_lhs (stmt
);
1795 tree rhs2
= gimple_cond_rhs (stmt
);
1796 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1797 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1798 val
= bit_value_binop (code
, TREE_TYPE (rhs1
), rhs1
, rhs2
);
1800 else if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
1802 tree fndecl
= gimple_call_fndecl (stmt
);
1803 switch (DECL_FUNCTION_CODE (fndecl
))
1805 case BUILT_IN_MALLOC
:
1806 case BUILT_IN_REALLOC
:
1807 case BUILT_IN_CALLOC
:
1808 case BUILT_IN_STRDUP
:
1809 case BUILT_IN_STRNDUP
:
1810 val
.lattice_val
= CONSTANT
;
1811 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1812 val
.mask
= ~((HOST_WIDE_INT
) MALLOC_ABI_ALIGNMENT
1813 / BITS_PER_UNIT
- 1);
1816 case BUILT_IN_ALLOCA
:
1817 case BUILT_IN_ALLOCA_WITH_ALIGN
:
1818 align
= (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA_WITH_ALIGN
1819 ? TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1))
1820 : BIGGEST_ALIGNMENT
);
1821 val
.lattice_val
= CONSTANT
;
1822 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1823 val
.mask
= ~((HOST_WIDE_INT
) align
/ BITS_PER_UNIT
- 1);
1826 /* These builtins return their first argument, unmodified. */
1827 case BUILT_IN_MEMCPY
:
1828 case BUILT_IN_MEMMOVE
:
1829 case BUILT_IN_MEMSET
:
1830 case BUILT_IN_STRCPY
:
1831 case BUILT_IN_STRNCPY
:
1832 case BUILT_IN_MEMCPY_CHK
:
1833 case BUILT_IN_MEMMOVE_CHK
:
1834 case BUILT_IN_MEMSET_CHK
:
1835 case BUILT_IN_STRCPY_CHK
:
1836 case BUILT_IN_STRNCPY_CHK
:
1837 val
= get_value_for_expr (gimple_call_arg (stmt
, 0), true);
1840 case BUILT_IN_ASSUME_ALIGNED
:
1841 val
= bit_value_assume_aligned (stmt
, NULL_TREE
, val
, false);
1844 case BUILT_IN_ALIGNED_ALLOC
:
1846 tree align
= get_constant_value (gimple_call_arg (stmt
, 0));
1848 && tree_fits_uhwi_p (align
))
1850 unsigned HOST_WIDE_INT aligni
= tree_to_uhwi (align
);
1852 /* align must be power-of-two */
1853 && (aligni
& (aligni
- 1)) == 0)
1855 val
.lattice_val
= CONSTANT
;
1856 val
.value
= build_int_cst (ptr_type_node
, 0);
1866 if (is_gimple_call (stmt
) && gimple_call_lhs (stmt
))
1868 tree fntype
= gimple_call_fntype (stmt
);
1871 tree attrs
= lookup_attribute ("assume_aligned",
1872 TYPE_ATTRIBUTES (fntype
));
1874 val
= bit_value_assume_aligned (stmt
, attrs
, val
, false);
1875 attrs
= lookup_attribute ("alloc_align",
1876 TYPE_ATTRIBUTES (fntype
));
1878 val
= bit_value_assume_aligned (stmt
, attrs
, val
, true);
1881 is_constant
= (val
.lattice_val
== CONSTANT
);
1884 if (flag_tree_bit_ccp
1885 && ((is_constant
&& TREE_CODE (val
.value
) == INTEGER_CST
)
1886 || (!is_constant
&& likelyvalue
!= UNDEFINED
))
1887 && gimple_get_lhs (stmt
)
1888 && TREE_CODE (gimple_get_lhs (stmt
)) == SSA_NAME
)
1890 tree lhs
= gimple_get_lhs (stmt
);
1891 wide_int nonzero_bits
= get_nonzero_bits (lhs
);
1892 if (nonzero_bits
!= -1)
1896 val
.lattice_val
= CONSTANT
;
1897 val
.value
= build_zero_cst (TREE_TYPE (lhs
));
1898 val
.mask
= extend_mask (nonzero_bits
);
1903 if (wi::bit_and_not (val
.value
, nonzero_bits
) != 0)
1904 val
.value
= wide_int_to_tree (TREE_TYPE (lhs
),
1905 nonzero_bits
& val
.value
);
1906 if (nonzero_bits
== 0)
1909 val
.mask
= val
.mask
& extend_mask (nonzero_bits
);
1916 /* The statement produced a nonconstant value. If the statement
1917 had UNDEFINED operands, then the result of the statement
1918 should be UNDEFINED. Otherwise, the statement is VARYING. */
1919 if (likelyvalue
== UNDEFINED
)
1921 val
.lattice_val
= likelyvalue
;
1926 val
.lattice_val
= VARYING
;
1930 val
.value
= NULL_TREE
;
1936 typedef hash_table
<pointer_hash
<gimple_statement_base
> > gimple_htab
;
1938 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1939 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1942 insert_clobber_before_stack_restore (tree saved_val
, tree var
,
1943 gimple_htab
**visited
)
1946 gassign
*clobber_stmt
;
1948 imm_use_iterator iter
;
1949 gimple_stmt_iterator i
;
1952 FOR_EACH_IMM_USE_STMT (stmt
, iter
, saved_val
)
1953 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
1955 clobber
= build_constructor (TREE_TYPE (var
),
1957 TREE_THIS_VOLATILE (clobber
) = 1;
1958 clobber_stmt
= gimple_build_assign (var
, clobber
);
1960 i
= gsi_for_stmt (stmt
);
1961 gsi_insert_before (&i
, clobber_stmt
, GSI_SAME_STMT
);
1963 else if (gimple_code (stmt
) == GIMPLE_PHI
)
1966 *visited
= new gimple_htab (10);
1968 slot
= (*visited
)->find_slot (stmt
, INSERT
);
1973 insert_clobber_before_stack_restore (gimple_phi_result (stmt
), var
,
1976 else if (gimple_assign_ssa_name_copy_p (stmt
))
1977 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt
), var
,
1979 else if (chkp_gimple_call_builtin_p (stmt
, BUILT_IN_CHKP_BNDRET
))
1982 gcc_assert (is_gimple_debug (stmt
));
1985 /* Advance the iterator to the previous non-debug gimple statement in the same
1986 or dominating basic block. */
1989 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator
*i
)
1993 gsi_prev_nondebug (i
);
1994 while (gsi_end_p (*i
))
1996 dom
= get_immediate_dominator (CDI_DOMINATORS
, i
->bb
);
1997 if (dom
== NULL
|| dom
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2000 *i
= gsi_last_bb (dom
);
2004 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2005 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2007 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2008 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2009 that case the function gives up without inserting the clobbers. */
2012 insert_clobbers_for_var (gimple_stmt_iterator i
, tree var
)
2016 gimple_htab
*visited
= NULL
;
2018 for (; !gsi_end_p (i
); gsi_prev_dom_bb_nondebug (&i
))
2020 stmt
= gsi_stmt (i
);
2022 if (!gimple_call_builtin_p (stmt
, BUILT_IN_STACK_SAVE
))
2025 saved_val
= gimple_call_lhs (stmt
);
2026 if (saved_val
== NULL_TREE
)
2029 insert_clobber_before_stack_restore (saved_val
, var
, &visited
);
2036 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2037 fixed-size array and returns the address, if found, otherwise returns
2041 fold_builtin_alloca_with_align (gimple stmt
)
2043 unsigned HOST_WIDE_INT size
, threshold
, n_elem
;
2044 tree lhs
, arg
, block
, var
, elem_type
, array_type
;
2047 lhs
= gimple_call_lhs (stmt
);
2048 if (lhs
== NULL_TREE
)
2051 /* Detect constant argument. */
2052 arg
= get_constant_value (gimple_call_arg (stmt
, 0));
2053 if (arg
== NULL_TREE
2054 || TREE_CODE (arg
) != INTEGER_CST
2055 || !tree_fits_uhwi_p (arg
))
2058 size
= tree_to_uhwi (arg
);
2060 /* Heuristic: don't fold large allocas. */
2061 threshold
= (unsigned HOST_WIDE_INT
)PARAM_VALUE (PARAM_LARGE_STACK_FRAME
);
2062 /* In case the alloca is located at function entry, it has the same lifetime
2063 as a declared array, so we allow a larger size. */
2064 block
= gimple_block (stmt
);
2065 if (!(cfun
->after_inlining
2066 && TREE_CODE (BLOCK_SUPERCONTEXT (block
)) == FUNCTION_DECL
))
2068 if (size
> threshold
)
2071 /* Declare array. */
2072 elem_type
= build_nonstandard_integer_type (BITS_PER_UNIT
, 1);
2073 n_elem
= size
* 8 / BITS_PER_UNIT
;
2074 array_type
= build_array_type_nelts (elem_type
, n_elem
);
2075 var
= create_tmp_var (array_type
);
2076 DECL_ALIGN (var
) = TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1));
2078 struct ptr_info_def
*pi
= SSA_NAME_PTR_INFO (lhs
);
2079 if (pi
!= NULL
&& !pi
->pt
.anything
)
2083 singleton_p
= pt_solution_singleton_p (&pi
->pt
, &uid
);
2084 gcc_assert (singleton_p
);
2085 SET_DECL_PT_UID (var
, uid
);
2089 /* Fold alloca to the address of the array. */
2090 return fold_convert (TREE_TYPE (lhs
), build_fold_addr_expr (var
));
2093 /* Fold the stmt at *GSI with CCP specific information that propagating
2094 and regular folding does not catch. */
2097 ccp_fold_stmt (gimple_stmt_iterator
*gsi
)
2099 gimple stmt
= gsi_stmt (*gsi
);
2101 switch (gimple_code (stmt
))
2105 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
2106 ccp_prop_value_t val
;
2107 /* Statement evaluation will handle type mismatches in constants
2108 more gracefully than the final propagation. This allows us to
2109 fold more conditionals here. */
2110 val
= evaluate_stmt (stmt
);
2111 if (val
.lattice_val
!= CONSTANT
2117 fprintf (dump_file
, "Folding predicate ");
2118 print_gimple_expr (dump_file
, stmt
, 0, 0);
2119 fprintf (dump_file
, " to ");
2120 print_generic_expr (dump_file
, val
.value
, 0);
2121 fprintf (dump_file
, "\n");
2124 if (integer_zerop (val
.value
))
2125 gimple_cond_make_false (cond_stmt
);
2127 gimple_cond_make_true (cond_stmt
);
2134 tree lhs
= gimple_call_lhs (stmt
);
2135 int flags
= gimple_call_flags (stmt
);
2138 bool changed
= false;
2141 /* If the call was folded into a constant make sure it goes
2142 away even if we cannot propagate into all uses because of
2145 && TREE_CODE (lhs
) == SSA_NAME
2146 && (val
= get_constant_value (lhs
))
2147 /* Don't optimize away calls that have side-effects. */
2148 && (flags
& (ECF_CONST
|ECF_PURE
)) != 0
2149 && (flags
& ECF_LOOPING_CONST_OR_PURE
) == 0)
2151 tree new_rhs
= unshare_expr (val
);
2153 if (!useless_type_conversion_p (TREE_TYPE (lhs
),
2154 TREE_TYPE (new_rhs
)))
2155 new_rhs
= fold_convert (TREE_TYPE (lhs
), new_rhs
);
2156 res
= update_call_from_tree (gsi
, new_rhs
);
2161 /* Internal calls provide no argument types, so the extra laxity
2162 for normal calls does not apply. */
2163 if (gimple_call_internal_p (stmt
))
2166 /* The heuristic of fold_builtin_alloca_with_align differs before and
2167 after inlining, so we don't require the arg to be changed into a
2168 constant for folding, but just to be constant. */
2169 if (gimple_call_builtin_p (stmt
, BUILT_IN_ALLOCA_WITH_ALIGN
))
2171 tree new_rhs
= fold_builtin_alloca_with_align (stmt
);
2174 bool res
= update_call_from_tree (gsi
, new_rhs
);
2175 tree var
= TREE_OPERAND (TREE_OPERAND (new_rhs
, 0),0);
2177 insert_clobbers_for_var (*gsi
, var
);
2182 /* Propagate into the call arguments. Compared to replace_uses_in
2183 this can use the argument slot types for type verification
2184 instead of the current argument type. We also can safely
2185 drop qualifiers here as we are dealing with constants anyway. */
2186 argt
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
2187 for (i
= 0; i
< gimple_call_num_args (stmt
) && argt
;
2188 ++i
, argt
= TREE_CHAIN (argt
))
2190 tree arg
= gimple_call_arg (stmt
, i
);
2191 if (TREE_CODE (arg
) == SSA_NAME
2192 && (val
= get_constant_value (arg
))
2193 && useless_type_conversion_p
2194 (TYPE_MAIN_VARIANT (TREE_VALUE (argt
)),
2195 TYPE_MAIN_VARIANT (TREE_TYPE (val
))))
2197 gimple_call_set_arg (stmt
, i
, unshare_expr (val
));
2207 tree lhs
= gimple_assign_lhs (stmt
);
2210 /* If we have a load that turned out to be constant replace it
2211 as we cannot propagate into all uses in all cases. */
2212 if (gimple_assign_single_p (stmt
)
2213 && TREE_CODE (lhs
) == SSA_NAME
2214 && (val
= get_constant_value (lhs
)))
2216 tree rhs
= unshare_expr (val
);
2217 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
2218 rhs
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
), rhs
);
2219 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
2231 /* Visit the assignment statement STMT. Set the value of its LHS to the
2232 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2233 creates virtual definitions, set the value of each new name to that
2234 of the RHS (if we can derive a constant out of the RHS).
2235 Value-returning call statements also perform an assignment, and
2236 are handled here. */
2238 static enum ssa_prop_result
2239 visit_assignment (gimple stmt
, tree
*output_p
)
2241 ccp_prop_value_t val
;
2242 enum ssa_prop_result retval
;
2244 tree lhs
= gimple_get_lhs (stmt
);
2246 gcc_assert (gimple_code (stmt
) != GIMPLE_CALL
2247 || gimple_call_lhs (stmt
) != NULL_TREE
);
2249 if (gimple_assign_single_p (stmt
)
2250 && gimple_assign_rhs_code (stmt
) == SSA_NAME
)
2251 /* For a simple copy operation, we copy the lattice values. */
2252 val
= *get_value (gimple_assign_rhs1 (stmt
));
2254 /* Evaluate the statement, which could be
2255 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2256 val
= evaluate_stmt (stmt
);
2258 retval
= SSA_PROP_NOT_INTERESTING
;
2260 /* Set the lattice value of the statement's output. */
2261 if (TREE_CODE (lhs
) == SSA_NAME
)
2263 /* If STMT is an assignment to an SSA_NAME, we only have one
2265 if (set_lattice_value (lhs
, val
))
2268 if (val
.lattice_val
== VARYING
)
2269 retval
= SSA_PROP_VARYING
;
2271 retval
= SSA_PROP_INTERESTING
;
2279 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2280 if it can determine which edge will be taken. Otherwise, return
2281 SSA_PROP_VARYING. */
2283 static enum ssa_prop_result
2284 visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
2286 ccp_prop_value_t val
;
2289 block
= gimple_bb (stmt
);
2290 val
= evaluate_stmt (stmt
);
2291 if (val
.lattice_val
!= CONSTANT
2293 return SSA_PROP_VARYING
;
2295 /* Find which edge out of the conditional block will be taken and add it
2296 to the worklist. If no single edge can be determined statically,
2297 return SSA_PROP_VARYING to feed all the outgoing edges to the
2298 propagation engine. */
2299 *taken_edge_p
= find_taken_edge (block
, val
.value
);
2301 return SSA_PROP_INTERESTING
;
2303 return SSA_PROP_VARYING
;
2307 /* Evaluate statement STMT. If the statement produces an output value and
2308 its evaluation changes the lattice value of its output, return
2309 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2312 If STMT is a conditional branch and we can determine its truth
2313 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2314 value, return SSA_PROP_VARYING. */
2316 static enum ssa_prop_result
2317 ccp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
2322 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2324 fprintf (dump_file
, "\nVisiting statement:\n");
2325 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2328 switch (gimple_code (stmt
))
2331 /* If the statement is an assignment that produces a single
2332 output value, evaluate its RHS to see if the lattice value of
2333 its output has changed. */
2334 return visit_assignment (stmt
, output_p
);
2337 /* A value-returning call also performs an assignment. */
2338 if (gimple_call_lhs (stmt
) != NULL_TREE
)
2339 return visit_assignment (stmt
, output_p
);
2344 /* If STMT is a conditional branch, see if we can determine
2345 which branch will be taken. */
2346 /* FIXME. It appears that we should be able to optimize
2347 computed GOTOs here as well. */
2348 return visit_cond_stmt (stmt
, taken_edge_p
);
2354 /* Any other kind of statement is not interesting for constant
2355 propagation and, therefore, not worth simulating. */
2356 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2357 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
2359 /* Definitions made by statements other than assignments to
2360 SSA_NAMEs represent unknown modifications to their outputs.
2361 Mark them VARYING. */
2362 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
2364 ccp_prop_value_t v
= { VARYING
, NULL_TREE
, -1 };
2365 set_lattice_value (def
, v
);
2368 return SSA_PROP_VARYING
;
2372 /* Main entry point for SSA Conditional Constant Propagation. */
2377 unsigned int todo
= 0;
2378 calculate_dominance_info (CDI_DOMINATORS
);
2380 ssa_propagate (ccp_visit_stmt
, ccp_visit_phi_node
);
2381 if (ccp_finalize ())
2382 todo
= (TODO_cleanup_cfg
| TODO_update_ssa
);
2383 free_dominance_info (CDI_DOMINATORS
);
2390 const pass_data pass_data_ccp
=
2392 GIMPLE_PASS
, /* type */
2394 OPTGROUP_NONE
, /* optinfo_flags */
2395 TV_TREE_CCP
, /* tv_id */
2396 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2397 0, /* properties_provided */
2398 0, /* properties_destroyed */
2399 0, /* todo_flags_start */
2400 TODO_update_address_taken
, /* todo_flags_finish */
2403 class pass_ccp
: public gimple_opt_pass
2406 pass_ccp (gcc::context
*ctxt
)
2407 : gimple_opt_pass (pass_data_ccp
, ctxt
)
2410 /* opt_pass methods: */
2411 opt_pass
* clone () { return new pass_ccp (m_ctxt
); }
2412 virtual bool gate (function
*) { return flag_tree_ccp
!= 0; }
2413 virtual unsigned int execute (function
*) { return do_ssa_ccp (); }
2415 }; // class pass_ccp
2420 make_pass_ccp (gcc::context
*ctxt
)
2422 return new pass_ccp (ctxt
);
2427 /* Try to optimize out __builtin_stack_restore. Optimize it out
2428 if there is another __builtin_stack_restore in the same basic
2429 block and no calls or ASM_EXPRs are in between, or if this block's
2430 only outgoing edge is to EXIT_BLOCK and there are no calls or
2431 ASM_EXPRs after this __builtin_stack_restore. */
2434 optimize_stack_restore (gimple_stmt_iterator i
)
2439 basic_block bb
= gsi_bb (i
);
2440 gimple call
= gsi_stmt (i
);
2442 if (gimple_code (call
) != GIMPLE_CALL
2443 || gimple_call_num_args (call
) != 1
2444 || TREE_CODE (gimple_call_arg (call
, 0)) != SSA_NAME
2445 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, 0))))
2448 for (gsi_next (&i
); !gsi_end_p (i
); gsi_next (&i
))
2450 stmt
= gsi_stmt (i
);
2451 if (gimple_code (stmt
) == GIMPLE_ASM
)
2453 if (gimple_code (stmt
) != GIMPLE_CALL
)
2456 callee
= gimple_call_fndecl (stmt
);
2458 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2459 /* All regular builtins are ok, just obviously not alloca. */
2460 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
2461 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA_WITH_ALIGN
)
2464 if (DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_RESTORE
)
2465 goto second_stack_restore
;
2471 /* Allow one successor of the exit block, or zero successors. */
2472 switch (EDGE_COUNT (bb
->succs
))
2477 if (single_succ_edge (bb
)->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
2483 second_stack_restore
:
2485 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2486 If there are multiple uses, then the last one should remove the call.
2487 In any case, whether the call to __builtin_stack_save can be removed
2488 or not is irrelevant to removing the call to __builtin_stack_restore. */
2489 if (has_single_use (gimple_call_arg (call
, 0)))
2491 gimple stack_save
= SSA_NAME_DEF_STMT (gimple_call_arg (call
, 0));
2492 if (is_gimple_call (stack_save
))
2494 callee
= gimple_call_fndecl (stack_save
);
2496 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2497 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_SAVE
)
2499 gimple_stmt_iterator stack_save_gsi
;
2502 stack_save_gsi
= gsi_for_stmt (stack_save
);
2503 rhs
= build_int_cst (TREE_TYPE (gimple_call_arg (call
, 0)), 0);
2504 update_call_from_tree (&stack_save_gsi
, rhs
);
2509 /* No effect, so the statement will be deleted. */
2510 return integer_zero_node
;
2513 /* If va_list type is a simple pointer and nothing special is needed,
2514 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2515 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2516 pointer assignment. */
2519 optimize_stdarg_builtin (gimple call
)
2521 tree callee
, lhs
, rhs
, cfun_va_list
;
2522 bool va_list_simple_ptr
;
2523 location_t loc
= gimple_location (call
);
2525 if (gimple_code (call
) != GIMPLE_CALL
)
2528 callee
= gimple_call_fndecl (call
);
2530 cfun_va_list
= targetm
.fn_abi_va_list (callee
);
2531 va_list_simple_ptr
= POINTER_TYPE_P (cfun_va_list
)
2532 && (TREE_TYPE (cfun_va_list
) == void_type_node
2533 || TREE_TYPE (cfun_va_list
) == char_type_node
);
2535 switch (DECL_FUNCTION_CODE (callee
))
2537 case BUILT_IN_VA_START
:
2538 if (!va_list_simple_ptr
2539 || targetm
.expand_builtin_va_start
!= NULL
2540 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG
))
2543 if (gimple_call_num_args (call
) != 2)
2546 lhs
= gimple_call_arg (call
, 0);
2547 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2548 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2549 != TYPE_MAIN_VARIANT (cfun_va_list
))
2552 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2553 rhs
= build_call_expr_loc (loc
, builtin_decl_explicit (BUILT_IN_NEXT_ARG
),
2554 1, integer_zero_node
);
2555 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2556 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2558 case BUILT_IN_VA_COPY
:
2559 if (!va_list_simple_ptr
)
2562 if (gimple_call_num_args (call
) != 2)
2565 lhs
= gimple_call_arg (call
, 0);
2566 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2567 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2568 != TYPE_MAIN_VARIANT (cfun_va_list
))
2571 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2572 rhs
= gimple_call_arg (call
, 1);
2573 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs
))
2574 != TYPE_MAIN_VARIANT (cfun_va_list
))
2577 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2578 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2580 case BUILT_IN_VA_END
:
2581 /* No effect, so the statement will be deleted. */
2582 return integer_zero_node
;
2589 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2590 the incoming jumps. Return true if at least one jump was changed. */
2593 optimize_unreachable (gimple_stmt_iterator i
)
2595 basic_block bb
= gsi_bb (i
);
2596 gimple_stmt_iterator gsi
;
2602 if (flag_sanitize
& SANITIZE_UNREACHABLE
)
2605 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2607 stmt
= gsi_stmt (gsi
);
2609 if (is_gimple_debug (stmt
))
2612 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2614 /* Verify we do not need to preserve the label. */
2615 if (FORCED_LABEL (gimple_label_label (label_stmt
)))
2621 /* Only handle the case that __builtin_unreachable is the first statement
2622 in the block. We rely on DCE to remove stmts without side-effects
2623 before __builtin_unreachable. */
2624 if (gsi_stmt (gsi
) != gsi_stmt (i
))
2629 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2631 gsi
= gsi_last_bb (e
->src
);
2632 if (gsi_end_p (gsi
))
2635 stmt
= gsi_stmt (gsi
);
2636 if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
2638 if (e
->flags
& EDGE_TRUE_VALUE
)
2639 gimple_cond_make_false (cond_stmt
);
2640 else if (e
->flags
& EDGE_FALSE_VALUE
)
2641 gimple_cond_make_true (cond_stmt
);
2644 update_stmt (cond_stmt
);
2648 /* Todo: handle other cases, f.i. switch statement. */
2658 /* A simple pass that attempts to fold all builtin functions. This pass
2659 is run after we've propagated as many constants as we can. */
2663 const pass_data pass_data_fold_builtins
=
2665 GIMPLE_PASS
, /* type */
2667 OPTGROUP_NONE
, /* optinfo_flags */
2668 TV_NONE
, /* tv_id */
2669 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2670 0, /* properties_provided */
2671 0, /* properties_destroyed */
2672 0, /* todo_flags_start */
2673 TODO_update_ssa
, /* todo_flags_finish */
2676 class pass_fold_builtins
: public gimple_opt_pass
2679 pass_fold_builtins (gcc::context
*ctxt
)
2680 : gimple_opt_pass (pass_data_fold_builtins
, ctxt
)
2683 /* opt_pass methods: */
2684 opt_pass
* clone () { return new pass_fold_builtins (m_ctxt
); }
2685 virtual unsigned int execute (function
*);
2687 }; // class pass_fold_builtins
2690 pass_fold_builtins::execute (function
*fun
)
2692 bool cfg_changed
= false;
2694 unsigned int todoflags
= 0;
2696 FOR_EACH_BB_FN (bb
, fun
)
2698 gimple_stmt_iterator i
;
2699 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
2701 gimple stmt
, old_stmt
;
2703 enum built_in_function fcode
;
2705 stmt
= gsi_stmt (i
);
2707 if (gimple_code (stmt
) != GIMPLE_CALL
)
2709 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2710 after the last GIMPLE DSE they aren't needed and might
2711 unnecessarily keep the SSA_NAMEs live. */
2712 if (gimple_clobber_p (stmt
))
2714 tree lhs
= gimple_assign_lhs (stmt
);
2715 if (TREE_CODE (lhs
) == MEM_REF
2716 && TREE_CODE (TREE_OPERAND (lhs
, 0)) == SSA_NAME
)
2718 unlink_stmt_vdef (stmt
);
2719 gsi_remove (&i
, true);
2720 release_defs (stmt
);
2728 callee
= gimple_call_fndecl (stmt
);
2729 if (!callee
|| DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
)
2735 fcode
= DECL_FUNCTION_CODE (callee
);
2740 tree result
= NULL_TREE
;
2741 switch (DECL_FUNCTION_CODE (callee
))
2743 case BUILT_IN_CONSTANT_P
:
2744 /* Resolve __builtin_constant_p. If it hasn't been
2745 folded to integer_one_node by now, it's fairly
2746 certain that the value simply isn't constant. */
2747 result
= integer_zero_node
;
2750 case BUILT_IN_ASSUME_ALIGNED
:
2751 /* Remove __builtin_assume_aligned. */
2752 result
= gimple_call_arg (stmt
, 0);
2755 case BUILT_IN_STACK_RESTORE
:
2756 result
= optimize_stack_restore (i
);
2762 case BUILT_IN_UNREACHABLE
:
2763 if (optimize_unreachable (i
))
2767 case BUILT_IN_VA_START
:
2768 case BUILT_IN_VA_END
:
2769 case BUILT_IN_VA_COPY
:
2770 /* These shouldn't be folded before pass_stdarg. */
2771 result
= optimize_stdarg_builtin (stmt
);
2785 if (!update_call_from_tree (&i
, result
))
2786 gimplify_and_update_call_from_tree (&i
, result
);
2789 todoflags
|= TODO_update_address_taken
;
2791 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2793 fprintf (dump_file
, "Simplified\n ");
2794 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2798 stmt
= gsi_stmt (i
);
2801 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
)
2802 && gimple_purge_dead_eh_edges (bb
))
2805 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2807 fprintf (dump_file
, "to\n ");
2808 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2809 fprintf (dump_file
, "\n");
2812 /* Retry the same statement if it changed into another
2813 builtin, there might be new opportunities now. */
2814 if (gimple_code (stmt
) != GIMPLE_CALL
)
2819 callee
= gimple_call_fndecl (stmt
);
2821 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2822 || DECL_FUNCTION_CODE (callee
) == fcode
)
2827 /* Delete unreachable blocks. */
2829 todoflags
|= TODO_cleanup_cfg
;
2837 make_pass_fold_builtins (gcc::context
*ctxt
)
2839 return new pass_fold_builtins (ctxt
);