1 ------------------------------------------------------------------------------
3 -- GNAT LIBRARY COMPONENTS --
5 -- A D A . C O N T A I N E R S . M U L T I W A Y _ T R E E S --
9 -- Copyright (C) 2004-2014, Free Software Foundation, Inc. --
11 -- This specification is derived from the Ada Reference Manual for use with --
12 -- GNAT. The copyright notice above, and the license provisions that follow --
13 -- apply solely to the contents of the part following the private keyword. --
15 -- GNAT is free software; you can redistribute it and/or modify it under --
16 -- terms of the GNU General Public License as published by the Free Soft- --
17 -- ware Foundation; either version 3, or (at your option) any later ver- --
18 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20 -- or FITNESS FOR A PARTICULAR PURPOSE. --
22 -- As a special exception under Section 7 of GPL version 3, you are granted --
23 -- additional permissions described in the GCC Runtime Library Exception, --
24 -- version 3.1, as published by the Free Software Foundation. --
26 -- You should have received a copy of the GNU General Public License and --
27 -- a copy of the GCC Runtime Library Exception along with this program; --
28 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
29 -- <http://www.gnu.org/licenses/>. --
31 -- This unit was originally developed by Matthew J Heaney. --
32 ------------------------------------------------------------------------------
34 with Ada
.Iterator_Interfaces
;
35 private with Ada
.Finalization
;
36 private with Ada
.Streams
;
39 type Element_Type
is private;
41 with function "=" (Left
, Right
: Element_Type
) return Boolean is <>;
43 package Ada
.Containers
.Multiway_Trees
is
47 type Tree
is tagged private
48 with Constant_Indexing
=> Constant_Reference
,
49 Variable_Indexing
=> Reference
,
50 Default_Iterator
=> Iterate
,
51 Iterator_Element
=> Element_Type
;
52 pragma Preelaborable_Initialization
(Tree
);
54 type Cursor
is private;
55 pragma Preelaborable_Initialization
(Cursor
);
57 Empty_Tree
: constant Tree
;
59 No_Element
: constant Cursor
;
60 function Has_Element
(Position
: Cursor
) return Boolean;
62 package Tree_Iterator_Interfaces
is new
63 Ada
.Iterator_Interfaces
(Cursor
, Has_Element
);
65 function Equal_Subtree
66 (Left_Position
: Cursor
;
67 Right_Position
: Cursor
) return Boolean;
69 function "=" (Left
, Right
: Tree
) return Boolean;
71 function Is_Empty
(Container
: Tree
) return Boolean;
73 function Node_Count
(Container
: Tree
) return Count_Type
;
75 function Subtree_Node_Count
(Position
: Cursor
) return Count_Type
;
77 function Depth
(Position
: Cursor
) return Count_Type
;
79 function Is_Root
(Position
: Cursor
) return Boolean;
81 function Is_Leaf
(Position
: Cursor
) return Boolean;
83 function Root
(Container
: Tree
) return Cursor
;
85 procedure Clear
(Container
: in out Tree
);
87 function Element
(Position
: Cursor
) return Element_Type
;
89 procedure Replace_Element
90 (Container
: in out Tree
;
92 New_Item
: Element_Type
);
94 procedure Query_Element
96 Process
: not null access procedure (Element
: Element_Type
));
98 procedure Update_Element
99 (Container
: in out Tree
;
101 Process
: not null access procedure (Element
: in out Element_Type
));
103 type Constant_Reference_Type
104 (Element
: not null access constant Element_Type
) is private
105 with Implicit_Dereference
=> Element
;
108 (Element
: not null access Element_Type
) is private
109 with Implicit_Dereference
=> Element
;
111 function Constant_Reference
112 (Container
: aliased Tree
;
113 Position
: Cursor
) return Constant_Reference_Type
;
114 pragma Inline
(Constant_Reference
);
117 (Container
: aliased in out Tree
;
118 Position
: Cursor
) return Reference_Type
;
119 pragma Inline
(Reference
);
121 procedure Assign
(Target
: in out Tree
; Source
: Tree
);
123 function Copy
(Source
: Tree
) return Tree
;
125 procedure Move
(Target
: in out Tree
; Source
: in out Tree
);
127 procedure Delete_Leaf
128 (Container
: in out Tree
;
129 Position
: in out Cursor
);
131 procedure Delete_Subtree
132 (Container
: in out Tree
;
133 Position
: in out Cursor
);
136 (Container
: in out Tree
;
141 Item
: Element_Type
) return Cursor
;
143 -- This version of the AI:
144 -- 10-06-02 AI05-0136-1/07
145 -- declares Find_In_Subtree this way:
147 -- function Find_In_Subtree
148 -- (Container : Tree;
149 -- Item : Element_Type;
150 -- Position : Cursor) return Cursor;
152 -- It seems that the Container parameter is there by mistake, but we need
153 -- an official ruling from the ARG. ???
155 function Find_In_Subtree
157 Item
: Element_Type
) return Cursor
;
159 -- This version of the AI:
160 -- 10-06-02 AI05-0136-1/07
161 -- declares Ancestor_Find this way:
163 -- function Ancestor_Find
164 -- (Container : Tree;
165 -- Item : Element_Type;
166 -- Position : Cursor) return Cursor;
168 -- It seems that the Container parameter is there by mistake, but we need
169 -- an official ruling from the ARG. ???
171 function Ancestor_Find
173 Item
: Element_Type
) return Cursor
;
177 Item
: Element_Type
) return Boolean;
181 Process
: not null access procedure (Position
: Cursor
));
183 procedure Iterate_Subtree
185 Process
: not null access procedure (Position
: Cursor
));
187 function Iterate
(Container
: Tree
)
188 return Tree_Iterator_Interfaces
.Forward_Iterator
'Class;
190 function Iterate_Subtree
(Position
: Cursor
)
191 return Tree_Iterator_Interfaces
.Forward_Iterator
'Class;
193 function Iterate_Children
196 return Tree_Iterator_Interfaces
.Reversible_Iterator
'Class;
198 function Child_Count
(Parent
: Cursor
) return Count_Type
;
200 function Child_Depth
(Parent
, Child
: Cursor
) return Count_Type
;
202 procedure Insert_Child
203 (Container
: in out Tree
;
206 New_Item
: Element_Type
;
207 Count
: Count_Type
:= 1);
209 procedure Insert_Child
210 (Container
: in out Tree
;
213 New_Item
: Element_Type
;
214 Position
: out Cursor
;
215 Count
: Count_Type
:= 1);
217 procedure Insert_Child
218 (Container
: in out Tree
;
221 Position
: out Cursor
;
222 Count
: Count_Type
:= 1);
224 procedure Prepend_Child
225 (Container
: in out Tree
;
227 New_Item
: Element_Type
;
228 Count
: Count_Type
:= 1);
230 procedure Append_Child
231 (Container
: in out Tree
;
233 New_Item
: Element_Type
;
234 Count
: Count_Type
:= 1);
236 procedure Delete_Children
237 (Container
: in out Tree
;
240 procedure Copy_Subtree
241 (Target
: in out Tree
;
246 procedure Splice_Subtree
247 (Target
: in out Tree
;
250 Source
: in out Tree
;
251 Position
: in out Cursor
);
253 procedure Splice_Subtree
254 (Container
: in out Tree
;
259 procedure Splice_Children
260 (Target
: in out Tree
;
261 Target_Parent
: Cursor
;
263 Source
: in out Tree
;
264 Source_Parent
: Cursor
);
266 procedure Splice_Children
267 (Container
: in out Tree
;
268 Target_Parent
: Cursor
;
270 Source_Parent
: Cursor
);
272 function Parent
(Position
: Cursor
) return Cursor
;
274 function First_Child
(Parent
: Cursor
) return Cursor
;
276 function First_Child_Element
(Parent
: Cursor
) return Element_Type
;
278 function Last_Child
(Parent
: Cursor
) return Cursor
;
280 function Last_Child_Element
(Parent
: Cursor
) return Element_Type
;
282 function Next_Sibling
(Position
: Cursor
) return Cursor
;
284 function Previous_Sibling
(Position
: Cursor
) return Cursor
;
286 procedure Next_Sibling
(Position
: in out Cursor
);
288 procedure Previous_Sibling
(Position
: in out Cursor
);
290 -- This version of the AI:
291 -- 10-06-02 AI05-0136-1/07
292 -- declares Iterate_Children this way:
294 -- procedure Iterate_Children
295 -- (Container : Tree;
297 -- Process : not null access procedure (Position : Cursor));
299 -- It seems that the Container parameter is there by mistake, but we need
300 -- an official ruling from the ARG. ???
302 procedure Iterate_Children
304 Process
: not null access procedure (Position
: Cursor
));
306 procedure Reverse_Iterate_Children
308 Process
: not null access procedure (Position
: Cursor
));
311 -- A node of this multiway tree comprises an element and a list of children
312 -- (that are themselves trees). The root node is distinguished because it
313 -- contains only children: it does not have an element itself.
315 -- This design feature puts two design goals in tension with one another:
316 -- (1) treat the root node the same as any other node
317 -- (2) not declare any objects of type Element_Type unnecessarily
319 -- To satisfy (1), we could simply declare the Root node of the tree
320 -- using the normal Tree_Node_Type, but that would mean that (2) is not
321 -- satisfied. To resolve the tension (in favor of (2)), we declare the
322 -- component Root as having a different node type, without an Element
323 -- component (thus satisfying goal (2)) but otherwise identical to a normal
324 -- node, and then use Unchecked_Conversion to convert an access object
325 -- designating the Root node component to the access type designating a
326 -- normal, non-root node (thus satisfying goal (1)). We make an explicit
327 -- check for Root when there is any attempt to manipulate the Element
328 -- component of the node (a check required by the RM anyway).
330 -- In order to be explicit about node (and pointer) representation, we
331 -- specify that the respective node types have convention C, to ensure
332 -- that the layout of the components of the node records is the same,
333 -- thus guaranteeing that (unchecked) conversions between access types
334 -- designating each kind of node type is a meaningful conversion.
337 type Tree_Node_Access
is access all Tree_Node_Type
;
338 pragma Convention
(C
, Tree_Node_Access
);
340 type Children_Type
is record
341 First
: Tree_Node_Access
;
342 Last
: Tree_Node_Access
;
345 -- See the comment above. This declaration must exactly match the
346 -- declaration of Root_Node_Type (except for the Element component).
348 type Tree_Node_Type
is record
349 Parent
: Tree_Node_Access
;
350 Prev
: Tree_Node_Access
;
351 Next
: Tree_Node_Access
;
352 Children
: Children_Type
;
353 Element
: aliased Element_Type
;
355 pragma Convention
(C
, Tree_Node_Type
);
357 -- See the comment above. This declaration must match the declaration of
358 -- Tree_Node_Type (except for the Element component).
360 type Root_Node_Type
is record
361 Parent
: Tree_Node_Access
;
362 Prev
: Tree_Node_Access
;
363 Next
: Tree_Node_Access
;
364 Children
: Children_Type
;
366 pragma Convention
(C
, Root_Node_Type
);
368 for Root_Node_Type
'Alignment use Standard
'Maximum_Alignment;
369 -- The alignment has to be large enough to allow Root_Node to Tree_Node
370 -- access value conversions, and Tree_Node_Type's alignment may be bumped
371 -- up by the Element component.
373 use Ada
.Finalization
;
375 -- The Count component of type Tree represents the number of nodes that
376 -- have been (dynamically) allocated. It does not include the root node
377 -- itself. As implementors, we decide to cache this value, so that the
378 -- selector function Node_Count can execute in O(1) time, in order to be
379 -- consistent with the behavior of the Length selector function for other
380 -- standard container library units. This does mean, however, that the
381 -- two-container forms for Splice_XXX (that move subtrees across tree
382 -- containers) will execute in O(n) time, because we must count the number
383 -- of nodes in the subtree(s) that get moved. (We resolve the tension
384 -- between Node_Count and Splice_XXX in favor of Node_Count, under the
385 -- assumption that Node_Count is the more common operation).
387 type Tree
is new Controlled
with record
388 Root
: aliased Root_Node_Type
;
391 Count
: Count_Type
:= 0;
394 overriding
procedure Adjust
(Container
: in out Tree
);
396 overriding
procedure Finalize
(Container
: in out Tree
) renames Clear
;
401 (Stream
: not null access Root_Stream_Type
'Class;
404 for Tree
'Write use Write
;
407 (Stream
: not null access Root_Stream_Type
'Class;
408 Container
: out Tree
);
410 for Tree
'Read use Read
;
412 type Tree_Access
is access all Tree
;
413 for Tree_Access
'Storage_Size use 0;
415 type Cursor
is record
416 Container
: Tree_Access
;
417 Node
: Tree_Node_Access
;
421 (Stream
: not null access Root_Stream_Type
'Class;
424 for Cursor
'Write use Write
;
427 (Stream
: not null access Root_Stream_Type
'Class;
428 Position
: out Cursor
);
430 for Cursor
'Read use Read
;
432 type Reference_Control_Type
is
433 new Controlled
with record
434 Container
: Tree_Access
;
437 overriding
procedure Adjust
(Control
: in out Reference_Control_Type
);
438 pragma Inline
(Adjust
);
440 overriding
procedure Finalize
(Control
: in out Reference_Control_Type
);
441 pragma Inline
(Finalize
);
443 type Constant_Reference_Type
444 (Element
: not null access constant Element_Type
) is
446 Control
: Reference_Control_Type
;
450 (Stream
: not null access Root_Stream_Type
'Class;
451 Item
: out Constant_Reference_Type
);
453 for Constant_Reference_Type
'Read use Read
;
456 (Stream
: not null access Root_Stream_Type
'Class;
457 Item
: Constant_Reference_Type
);
459 for Constant_Reference_Type
'Write use Write
;
462 (Element
: not null access Element_Type
) is
464 Control
: Reference_Control_Type
;
468 (Stream
: not null access Root_Stream_Type
'Class;
469 Item
: out Reference_Type
);
471 for Reference_Type
'Read use Read
;
474 (Stream
: not null access Root_Stream_Type
'Class;
475 Item
: Reference_Type
);
477 for Reference_Type
'Write use Write
;
479 Empty_Tree
: constant Tree
:= (Controlled
with others => <>);
481 No_Element
: constant Cursor
:= (others => <>);
483 end Ada
.Containers
.Multiway_Trees
;