Pass pointer to RTX when calling alter_subreg().
[official-gcc.git] / gcc / regclass.c
blob9ef8c8cdffbbc2567e8ca038334208440307456f
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "expr.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "basic-block.h"
35 #include "regs.h"
36 #include "function.h"
37 #include "insn-config.h"
38 #include "recog.h"
39 #include "reload.h"
40 #include "real.h"
41 #include "toplev.h"
42 #include "output.h"
43 #include "ggc.h"
45 #ifndef REGISTER_MOVE_COST
46 #define REGISTER_MOVE_COST(m, x, y) 2
47 #endif
49 static void init_reg_sets_1 PARAMS ((void));
50 static void init_reg_modes PARAMS ((void));
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static const char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
105 #endif
107 /* Indexed by hard register number, contains 1 for registers that are
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
112 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
114 /* The same info as a HARD_REG_SET. */
116 HARD_REG_SET call_fixed_reg_set;
118 /* Number of non-fixed registers. */
120 int n_non_fixed_regs;
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
127 char global_regs[FIRST_PSEUDO_REGISTER];
129 /* Contains 1 for registers that are set or clobbered by calls. */
130 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
136 HARD_REG_SET regs_invalidated_by_call;
138 /* Table of register numbers in the order in which to try to use them. */
139 #ifdef REG_ALLOC_ORDER
140 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
142 /* The inverse of reg_alloc_order. */
143 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
144 #endif
146 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
148 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
150 /* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
155 #define N_REG_INTS \
156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
158 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
159 = REG_CLASS_CONTENTS;
161 /* For each reg class, number of regs it contains. */
163 unsigned int reg_class_size[N_REG_CLASSES];
165 /* For each reg class, table listing all the containing classes. */
167 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
169 /* For each reg class, table listing all the classes contained in it. */
171 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
173 /* For each pair of reg classes,
174 a largest reg class contained in their union. */
176 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
178 /* For each pair of reg classes,
179 the smallest reg class containing their union. */
181 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
183 /* Array containing all of the register names. Unless
184 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
186 #ifdef DEBUG_REGISTER_NAMES
187 const char * reg_names[] = REGISTER_NAMES;
188 #endif
190 /* For each hard register, the widest mode object that it can contain.
191 This will be a MODE_INT mode if the register can hold integers. Otherwise
192 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
193 register. */
195 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
197 /* 1 if class does contain register of given mode. */
199 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
201 /* Maximum cost of moving from a register in one class to a register in
202 another class. Based on REGISTER_MOVE_COST. */
204 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
206 /* Similar, but here we don't have to move if the first index is a subset
207 of the second so in that case the cost is zero. */
209 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
211 /* Similar, but here we don't have to move if the first index is a superset
212 of the second so in that case the cost is zero. */
214 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
216 #ifdef FORBIDDEN_INC_DEC_CLASSES
218 /* These are the classes that regs which are auto-incremented or decremented
219 cannot be put in. */
221 static int forbidden_inc_dec_class[N_REG_CLASSES];
223 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
224 context. */
226 static char *in_inc_dec;
228 #endif /* FORBIDDEN_INC_DEC_CLASSES */
230 #ifdef CLASS_CANNOT_CHANGE_MODE
232 /* These are the classes containing only registers that can be used in
233 a SUBREG expression that changes the mode of the register in some
234 way that is illegal. */
236 static int class_can_change_mode[N_REG_CLASSES];
238 /* Registers, including pseudos, which change modes in some way that
239 is illegal. */
241 static regset reg_changes_mode;
243 #endif /* CLASS_CANNOT_CHANGE_MODE */
245 #ifdef HAVE_SECONDARY_RELOADS
247 /* Sample MEM values for use by memory_move_secondary_cost. */
249 static rtx top_of_stack[MAX_MACHINE_MODE];
251 #endif /* HAVE_SECONDARY_RELOADS */
253 /* Linked list of reg_info structures allocated for reg_n_info array.
254 Grouping all of the allocated structures together in one lump
255 means only one call to bzero to clear them, rather than n smaller
256 calls. */
257 struct reg_info_data {
258 struct reg_info_data *next; /* next set of reg_info structures */
259 size_t min_index; /* minimum index # */
260 size_t max_index; /* maximum index # */
261 char used_p; /* non-zero if this has been used previously */
262 reg_info data[1]; /* beginning of the reg_info data */
265 static struct reg_info_data *reg_info_head;
267 /* No more global register variables may be declared; true once
268 regclass has been initialized. */
270 static int no_global_reg_vars = 0;
273 /* Function called only once to initialize the above data on reg usage.
274 Once this is done, various switches may override. */
276 void
277 init_reg_sets ()
279 int i, j;
281 /* First copy the register information from the initial int form into
282 the regsets. */
284 for (i = 0; i < N_REG_CLASSES; i++)
286 CLEAR_HARD_REG_SET (reg_class_contents[i]);
288 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
289 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
290 if (int_reg_class_contents[i][j / 32]
291 & ((unsigned) 1 << (j % 32)))
292 SET_HARD_REG_BIT (reg_class_contents[i], j);
295 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
296 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
297 memset (global_regs, 0, sizeof global_regs);
299 /* Do any additional initialization regsets may need */
300 INIT_ONCE_REG_SET ();
302 #ifdef REG_ALLOC_ORDER
303 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
304 inv_reg_alloc_order[reg_alloc_order[i]] = i;
305 #endif
308 /* After switches have been processed, which perhaps alter
309 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
311 static void
312 init_reg_sets_1 ()
314 unsigned int i, j;
315 unsigned int /* enum machine_mode */ m;
316 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
318 /* This macro allows the fixed or call-used registers
319 and the register classes to depend on target flags. */
321 #ifdef CONDITIONAL_REGISTER_USAGE
322 CONDITIONAL_REGISTER_USAGE;
323 #endif
325 /* Compute number of hard regs in each class. */
327 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
328 for (i = 0; i < N_REG_CLASSES; i++)
329 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
330 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
331 reg_class_size[i]++;
333 /* Initialize the table of subunions.
334 reg_class_subunion[I][J] gets the largest-numbered reg-class
335 that is contained in the union of classes I and J. */
337 for (i = 0; i < N_REG_CLASSES; i++)
339 for (j = 0; j < N_REG_CLASSES; j++)
341 #ifdef HARD_REG_SET
342 register /* Declare it register if it's a scalar. */
343 #endif
344 HARD_REG_SET c;
345 int k;
347 COPY_HARD_REG_SET (c, reg_class_contents[i]);
348 IOR_HARD_REG_SET (c, reg_class_contents[j]);
349 for (k = 0; k < N_REG_CLASSES; k++)
351 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
352 subclass1);
353 continue;
355 subclass1:
356 /* keep the largest subclass */ /* SPEE 900308 */
357 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
358 reg_class_contents[(int) reg_class_subunion[i][j]],
359 subclass2);
360 reg_class_subunion[i][j] = (enum reg_class) k;
361 subclass2:
367 /* Initialize the table of superunions.
368 reg_class_superunion[I][J] gets the smallest-numbered reg-class
369 containing the union of classes I and J. */
371 for (i = 0; i < N_REG_CLASSES; i++)
373 for (j = 0; j < N_REG_CLASSES; j++)
375 #ifdef HARD_REG_SET
376 register /* Declare it register if it's a scalar. */
377 #endif
378 HARD_REG_SET c;
379 int k;
381 COPY_HARD_REG_SET (c, reg_class_contents[i]);
382 IOR_HARD_REG_SET (c, reg_class_contents[j]);
383 for (k = 0; k < N_REG_CLASSES; k++)
384 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
386 superclass:
387 reg_class_superunion[i][j] = (enum reg_class) k;
391 /* Initialize the tables of subclasses and superclasses of each reg class.
392 First clear the whole table, then add the elements as they are found. */
394 for (i = 0; i < N_REG_CLASSES; i++)
396 for (j = 0; j < N_REG_CLASSES; j++)
398 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
399 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
403 for (i = 0; i < N_REG_CLASSES; i++)
405 if (i == (int) NO_REGS)
406 continue;
408 for (j = i + 1; j < N_REG_CLASSES; j++)
410 enum reg_class *p;
412 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
413 subclass);
414 continue;
415 subclass:
416 /* Reg class I is a subclass of J.
417 Add J to the table of superclasses of I. */
418 p = &reg_class_superclasses[i][0];
419 while (*p != LIM_REG_CLASSES) p++;
420 *p = (enum reg_class) j;
421 /* Add I to the table of superclasses of J. */
422 p = &reg_class_subclasses[j][0];
423 while (*p != LIM_REG_CLASSES) p++;
424 *p = (enum reg_class) i;
428 /* Initialize "constant" tables. */
430 CLEAR_HARD_REG_SET (fixed_reg_set);
431 CLEAR_HARD_REG_SET (call_used_reg_set);
432 CLEAR_HARD_REG_SET (call_fixed_reg_set);
433 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
435 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
437 n_non_fixed_regs = 0;
439 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
441 if (fixed_regs[i])
442 SET_HARD_REG_BIT (fixed_reg_set, i);
443 else
444 n_non_fixed_regs++;
446 if (call_used_regs[i])
447 SET_HARD_REG_BIT (call_used_reg_set, i);
448 if (call_fixed_regs[i])
449 SET_HARD_REG_BIT (call_fixed_reg_set, i);
450 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
451 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
453 /* There are a couple of fixed registers that we know are safe to
454 exclude from being clobbered by calls:
456 The frame pointer is always preserved across calls. The arg pointer
457 is if it is fixed. The stack pointer usually is, unless
458 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
459 If we are generating PIC code, the PIC offset table register is
460 preserved across calls, though the target can override that. */
462 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
464 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 else if (i == HARD_FRAME_POINTER_REGNUM)
467 #endif
468 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
469 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
471 #endif
472 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
473 else if (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
475 #endif
476 else if (0
477 #ifdef CALL_REALLY_USED_REGISTERS
478 || call_really_used_regs[i]
479 #else
480 || call_used_regs[i]
481 #endif
482 || global_regs[i])
483 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
486 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
487 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
488 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
489 for (i = 0; i < N_REG_CLASSES; i++)
490 if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
491 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
492 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
493 && HARD_REGNO_MODE_OK (j, m))
495 contains_reg_of_mode [i][m] = 1;
496 allocatable_regs_of_mode [m] = 1;
497 break;
500 /* Initialize the move cost table. Find every subset of each class
501 and take the maximum cost of moving any subset to any other. */
503 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
504 if (allocatable_regs_of_mode [m])
506 for (i = 0; i < N_REG_CLASSES; i++)
507 if (contains_reg_of_mode [i][m])
508 for (j = 0; j < N_REG_CLASSES; j++)
510 int cost;
511 enum reg_class *p1, *p2;
513 if (!contains_reg_of_mode [j][m])
515 move_cost[m][i][j] = 65536;
516 may_move_in_cost[m][i][j] = 65536;
517 may_move_out_cost[m][i][j] = 65536;
519 else
521 cost = REGISTER_MOVE_COST (m, i, j);
523 for (p2 = &reg_class_subclasses[j][0];
524 *p2 != LIM_REG_CLASSES;
525 p2++)
526 if (*p2 != i && contains_reg_of_mode [*p2][m])
527 cost = MAX (cost, move_cost [m][i][*p2]);
529 for (p1 = &reg_class_subclasses[i][0];
530 *p1 != LIM_REG_CLASSES;
531 p1++)
532 if (*p1 != j && contains_reg_of_mode [*p1][m])
533 cost = MAX (cost, move_cost [m][*p1][j]);
535 move_cost[m][i][j] = cost;
537 if (reg_class_subset_p (i, j))
538 may_move_in_cost[m][i][j] = 0;
539 else
540 may_move_in_cost[m][i][j] = cost;
542 if (reg_class_subset_p (j, i))
543 may_move_out_cost[m][i][j] = 0;
544 else
545 may_move_out_cost[m][i][j] = cost;
548 else
549 for (j = 0; j < N_REG_CLASSES; j++)
551 move_cost[m][i][j] = 65536;
552 may_move_in_cost[m][i][j] = 65536;
553 may_move_out_cost[m][i][j] = 65536;
557 #ifdef CLASS_CANNOT_CHANGE_MODE
559 HARD_REG_SET c;
560 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
562 for (i = 0; i < N_REG_CLASSES; i++)
564 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
565 class_can_change_mode [i] = 0;
566 continue;
567 ok_class:
568 class_can_change_mode [i] = 1;
571 #endif /* CLASS_CANNOT_CHANGE_MODE */
574 /* Compute the table of register modes.
575 These values are used to record death information for individual registers
576 (as opposed to a multi-register mode). */
578 static void
579 init_reg_modes ()
581 int i;
583 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
585 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
587 /* If we couldn't find a valid mode, just use the previous mode.
588 ??? One situation in which we need to do this is on the mips where
589 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
590 to use DF mode for the even registers and VOIDmode for the odd
591 (for the cpu models where the odd ones are inaccessible). */
592 if (reg_raw_mode[i] == VOIDmode)
593 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
597 /* Finish initializing the register sets and
598 initialize the register modes. */
600 void
601 init_regs ()
603 /* This finishes what was started by init_reg_sets, but couldn't be done
604 until after register usage was specified. */
605 init_reg_sets_1 ();
607 init_reg_modes ();
609 #ifdef HAVE_SECONDARY_RELOADS
611 /* Make some fake stack-frame MEM references for use in
612 memory_move_secondary_cost. */
613 int i;
615 for (i = 0; i < MAX_MACHINE_MODE; i++)
616 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
617 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
619 #endif
622 #ifdef HAVE_SECONDARY_RELOADS
624 /* Compute extra cost of moving registers to/from memory due to reloads.
625 Only needed if secondary reloads are required for memory moves. */
628 memory_move_secondary_cost (mode, class, in)
629 enum machine_mode mode;
630 enum reg_class class;
631 int in;
633 enum reg_class altclass;
634 int partial_cost = 0;
635 /* We need a memory reference to feed to SECONDARY... macros. */
636 /* mem may be unused even if the SECONDARY_ macros are defined. */
637 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
640 if (in)
642 #ifdef SECONDARY_INPUT_RELOAD_CLASS
643 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
644 #else
645 altclass = NO_REGS;
646 #endif
648 else
650 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
651 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
652 #else
653 altclass = NO_REGS;
654 #endif
657 if (altclass == NO_REGS)
658 return 0;
660 if (in)
661 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
662 else
663 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
665 if (class == altclass)
666 /* This isn't simply a copy-to-temporary situation. Can't guess
667 what it is, so MEMORY_MOVE_COST really ought not to be calling
668 here in that case.
670 I'm tempted to put in an abort here, but returning this will
671 probably only give poor estimates, which is what we would've
672 had before this code anyways. */
673 return partial_cost;
675 /* Check if the secondary reload register will also need a
676 secondary reload. */
677 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
679 #endif
681 /* Return a machine mode that is legitimate for hard reg REGNO and large
682 enough to save nregs. If we can't find one, return VOIDmode. */
684 enum machine_mode
685 choose_hard_reg_mode (regno, nregs)
686 unsigned int regno ATTRIBUTE_UNUSED;
687 unsigned int nregs;
689 unsigned int /* enum machine_mode */ m;
690 enum machine_mode found_mode = VOIDmode, mode;
692 /* We first look for the largest integer mode that can be validly
693 held in REGNO. If none, we look for the largest floating-point mode.
694 If we still didn't find a valid mode, try CCmode. */
696 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
697 mode != VOIDmode;
698 mode = GET_MODE_WIDER_MODE (mode))
699 if (HARD_REGNO_NREGS (regno, mode) == nregs
700 && HARD_REGNO_MODE_OK (regno, mode))
701 found_mode = mode;
703 if (found_mode != VOIDmode)
704 return found_mode;
706 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
707 mode != VOIDmode;
708 mode = GET_MODE_WIDER_MODE (mode))
709 if (HARD_REGNO_NREGS (regno, mode) == nregs
710 && HARD_REGNO_MODE_OK (regno, mode))
711 found_mode = mode;
713 if (found_mode != VOIDmode)
714 return found_mode;
716 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
717 mode != VOIDmode;
718 mode = GET_MODE_WIDER_MODE (mode))
719 if (HARD_REGNO_NREGS (regno, mode) == nregs
720 && HARD_REGNO_MODE_OK (regno, mode))
721 found_mode = mode;
723 if (found_mode != VOIDmode)
724 return found_mode;
726 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
727 mode != VOIDmode;
728 mode = GET_MODE_WIDER_MODE (mode))
729 if (HARD_REGNO_NREGS (regno, mode) == nregs
730 && HARD_REGNO_MODE_OK (regno, mode))
731 found_mode = mode;
733 if (found_mode != VOIDmode)
734 return found_mode;
736 /* Iterate over all of the CCmodes. */
737 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
739 mode = (enum machine_mode) m;
740 if (HARD_REGNO_NREGS (regno, mode) == nregs
741 && HARD_REGNO_MODE_OK (regno, mode))
742 return mode;
745 /* We can't find a mode valid for this register. */
746 return VOIDmode;
749 /* Specify the usage characteristics of the register named NAME.
750 It should be a fixed register if FIXED and a
751 call-used register if CALL_USED. */
753 void
754 fix_register (name, fixed, call_used)
755 const char *name;
756 int fixed, call_used;
758 int i;
760 /* Decode the name and update the primary form of
761 the register info. */
763 if ((i = decode_reg_name (name)) >= 0)
765 if ((i == STACK_POINTER_REGNUM
766 #ifdef HARD_FRAME_POINTER_REGNUM
767 || i == HARD_FRAME_POINTER_REGNUM
768 #else
769 || i == FRAME_POINTER_REGNUM
770 #endif
772 && (fixed == 0 || call_used == 0))
774 static const char * const what_option[2][2] = {
775 { "call-saved", "call-used" },
776 { "no-such-option", "fixed" }};
778 error ("can't use '%s' as a %s register", name,
779 what_option[fixed][call_used]);
781 else
783 fixed_regs[i] = fixed;
784 call_used_regs[i] = call_used;
785 #ifdef CALL_REALLY_USED_REGISTERS
786 if (fixed == 0)
787 call_really_used_regs[i] = call_used;
788 #endif
791 else
793 warning ("unknown register name: %s", name);
797 /* Mark register number I as global. */
799 void
800 globalize_reg (i)
801 int i;
803 if (fixed_regs[i] == 0 && no_global_reg_vars)
804 error ("global register variable follows a function definition");
806 if (global_regs[i])
808 warning ("register used for two global register variables");
809 return;
812 if (call_used_regs[i] && ! fixed_regs[i])
813 warning ("call-clobbered register used for global register variable");
815 global_regs[i] = 1;
817 /* If already fixed, nothing else to do. */
818 if (fixed_regs[i])
819 return;
821 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
822 n_non_fixed_regs--;
824 SET_HARD_REG_BIT (fixed_reg_set, i);
825 SET_HARD_REG_BIT (call_used_reg_set, i);
826 SET_HARD_REG_BIT (call_fixed_reg_set, i);
829 /* Now the data and code for the `regclass' pass, which happens
830 just before local-alloc. */
832 /* The `costs' struct records the cost of using a hard register of each class
833 and of using memory for each pseudo. We use this data to set up
834 register class preferences. */
836 struct costs
838 int cost[N_REG_CLASSES];
839 int mem_cost;
842 /* Structure used to record preferrences of given pseudo. */
843 struct reg_pref
845 /* (enum reg_class) prefclass is the preferred class. */
846 char prefclass;
848 /* altclass is a register class that we should use for allocating
849 pseudo if no register in the preferred class is available.
850 If no register in this class is available, memory is preferred.
852 It might appear to be more general to have a bitmask of classes here,
853 but since it is recommended that there be a class corresponding to the
854 union of most major pair of classes, that generality is not required. */
855 char altclass;
858 /* Record the cost of each class for each pseudo. */
860 static struct costs *costs;
862 /* Initialized once, and used to initialize cost values for each insn. */
864 static struct costs init_cost;
866 /* Record preferrences of each pseudo.
867 This is available after `regclass' is run. */
869 static struct reg_pref *reg_pref;
871 /* Allocated buffers for reg_pref. */
873 static struct reg_pref *reg_pref_buffer;
875 /* Frequency of executions of current insn. */
877 static int frequency;
879 static rtx scan_one_insn PARAMS ((rtx, int));
880 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
881 static void dump_regclass PARAMS ((FILE *));
882 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
883 const char **, rtx,
884 struct costs *, struct reg_pref *));
885 static int copy_cost PARAMS ((rtx, enum machine_mode,
886 enum reg_class, int));
887 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
888 #ifdef FORBIDDEN_INC_DEC_CLASSES
889 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
890 #endif
891 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
893 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
894 This function is sometimes called before the info has been computed.
895 When that happens, just return GENERAL_REGS, which is innocuous. */
897 enum reg_class
898 reg_preferred_class (regno)
899 int regno;
901 if (reg_pref == 0)
902 return GENERAL_REGS;
903 return (enum reg_class) reg_pref[regno].prefclass;
906 enum reg_class
907 reg_alternate_class (regno)
908 int regno;
910 if (reg_pref == 0)
911 return ALL_REGS;
913 return (enum reg_class) reg_pref[regno].altclass;
916 /* Initialize some global data for this pass. */
918 void
919 regclass_init ()
921 int i;
923 init_cost.mem_cost = 10000;
924 for (i = 0; i < N_REG_CLASSES; i++)
925 init_cost.cost[i] = 10000;
927 /* This prevents dump_flow_info from losing if called
928 before regclass is run. */
929 reg_pref = NULL;
931 /* No more global register variables may be declared. */
932 no_global_reg_vars = 1;
935 /* Dump register costs. */
936 static void
937 dump_regclass (dump)
938 FILE *dump;
940 static const char *const reg_class_names[] = REG_CLASS_NAMES;
941 int i;
942 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
944 int /* enum reg_class */ class;
945 if (REG_N_REFS (i))
947 fprintf (dump, " Register %i costs:", i);
948 for (class = 0; class < (int) N_REG_CLASSES; class++)
949 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
950 #ifdef FORBIDDEN_INC_DEC_CLASSES
951 && (!in_inc_dec[i]
952 || !forbidden_inc_dec_class[(enum reg_class) class])
953 #endif
954 #ifdef CLASS_CANNOT_CHANGE_MODE
955 && (!REGNO_REG_SET_P (reg_changes_mode, i)
956 || class_can_change_mode [(enum reg_class) class])
957 #endif
959 fprintf (dump, " %s:%i", reg_class_names[class],
960 costs[i].cost[(enum reg_class) class]);
961 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
967 /* Calculate the costs of insn operands. */
969 static void
970 record_operand_costs (insn, op_costs, reg_pref)
971 rtx insn;
972 struct costs *op_costs;
973 struct reg_pref *reg_pref;
975 const char *constraints[MAX_RECOG_OPERANDS];
976 enum machine_mode modes[MAX_RECOG_OPERANDS];
977 int i;
979 for (i = 0; i < recog_data.n_operands; i++)
981 constraints[i] = recog_data.constraints[i];
982 modes[i] = recog_data.operand_mode[i];
985 /* If we get here, we are set up to record the costs of all the
986 operands for this insn. Start by initializing the costs.
987 Then handle any address registers. Finally record the desired
988 classes for any pseudos, doing it twice if some pair of
989 operands are commutative. */
991 for (i = 0; i < recog_data.n_operands; i++)
993 op_costs[i] = init_cost;
995 if (GET_CODE (recog_data.operand[i]) == SUBREG)
997 rtx inner = SUBREG_REG (recog_data.operand[i]);
998 #ifdef CLASS_CANNOT_CHANGE_MODE
999 if (GET_CODE (inner) == REG
1000 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
1001 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
1002 #endif
1003 recog_data.operand[i] = inner;
1006 if (GET_CODE (recog_data.operand[i]) == MEM)
1007 record_address_regs (XEXP (recog_data.operand[i], 0),
1008 BASE_REG_CLASS, frequency * 2);
1009 else if (constraints[i][0] == 'p')
1010 record_address_regs (recog_data.operand[i],
1011 BASE_REG_CLASS, frequency * 2);
1014 /* Check for commutative in a separate loop so everything will
1015 have been initialized. We must do this even if one operand
1016 is a constant--see addsi3 in m68k.md. */
1018 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1019 if (constraints[i][0] == '%')
1021 const char *xconstraints[MAX_RECOG_OPERANDS];
1022 int j;
1024 /* Handle commutative operands by swapping the constraints.
1025 We assume the modes are the same. */
1027 for (j = 0; j < recog_data.n_operands; j++)
1028 xconstraints[j] = constraints[j];
1030 xconstraints[i] = constraints[i+1];
1031 xconstraints[i+1] = constraints[i];
1032 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1033 recog_data.operand, modes,
1034 xconstraints, insn, op_costs, reg_pref);
1037 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1038 recog_data.operand, modes,
1039 constraints, insn, op_costs, reg_pref);
1042 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1043 time it would save code to put a certain register in a certain class.
1044 PASS, when nonzero, inhibits some optimizations which need only be done
1045 once.
1046 Return the last insn processed, so that the scan can be continued from
1047 there. */
1049 static rtx
1050 scan_one_insn (insn, pass)
1051 rtx insn;
1052 int pass;
1054 enum rtx_code code = GET_CODE (insn);
1055 enum rtx_code pat_code;
1056 rtx set, note;
1057 int i, j;
1058 struct costs op_costs[MAX_RECOG_OPERANDS];
1060 if (GET_RTX_CLASS (code) != 'i')
1061 return insn;
1063 pat_code = GET_CODE (PATTERN (insn));
1064 if (pat_code == USE
1065 || pat_code == CLOBBER
1066 || pat_code == ASM_INPUT
1067 || pat_code == ADDR_VEC
1068 || pat_code == ADDR_DIFF_VEC)
1069 return insn;
1071 set = single_set (insn);
1072 extract_insn (insn);
1074 /* If this insn loads a parameter from its stack slot, then
1075 it represents a savings, rather than a cost, if the
1076 parameter is stored in memory. Record this fact. */
1078 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1079 && GET_CODE (SET_SRC (set)) == MEM
1080 && (note = find_reg_note (insn, REG_EQUIV,
1081 NULL_RTX)) != 0
1082 && GET_CODE (XEXP (note, 0)) == MEM)
1084 costs[REGNO (SET_DEST (set))].mem_cost
1085 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1086 GENERAL_REGS, 1)
1087 * frequency);
1088 record_address_regs (XEXP (SET_SRC (set), 0),
1089 BASE_REG_CLASS, frequency * 2);
1090 return insn;
1093 /* Improve handling of two-address insns such as
1094 (set X (ashift CONST Y)) where CONST must be made to
1095 match X. Change it into two insns: (set X CONST)
1096 (set X (ashift X Y)). If we left this for reloading, it
1097 would probably get three insns because X and Y might go
1098 in the same place. This prevents X and Y from receiving
1099 the same hard reg.
1101 We can only do this if the modes of operands 0 and 1
1102 (which might not be the same) are tieable and we only need
1103 do this during our first pass. */
1105 if (pass == 0 && optimize
1106 && recog_data.n_operands >= 3
1107 && recog_data.constraints[1][0] == '0'
1108 && recog_data.constraints[1][1] == 0
1109 && CONSTANT_P (recog_data.operand[1])
1110 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1111 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1112 && GET_CODE (recog_data.operand[0]) == REG
1113 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1114 recog_data.operand_mode[1]))
1116 rtx previnsn = prev_real_insn (insn);
1117 rtx dest
1118 = gen_lowpart (recog_data.operand_mode[1],
1119 recog_data.operand[0]);
1120 rtx newinsn
1121 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1123 /* If this insn was the start of a basic block,
1124 include the new insn in that block.
1125 We need not check for code_label here;
1126 while a basic block can start with a code_label,
1127 INSN could not be at the beginning of that block. */
1128 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1130 int b;
1131 for (b = 0; b < n_basic_blocks; b++)
1132 if (insn == BLOCK_HEAD (b))
1133 BLOCK_HEAD (b) = newinsn;
1136 /* This makes one more setting of new insns's dest. */
1137 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1138 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1139 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1141 *recog_data.operand_loc[1] = recog_data.operand[0];
1142 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1143 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1144 for (i = recog_data.n_dups - 1; i >= 0; i--)
1145 if (recog_data.dup_num[i] == 1)
1147 *recog_data.dup_loc[i] = recog_data.operand[0];
1148 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1149 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1152 return PREV_INSN (newinsn);
1155 record_operand_costs (insn, op_costs, reg_pref);
1157 /* Now add the cost for each operand to the total costs for
1158 its register. */
1160 for (i = 0; i < recog_data.n_operands; i++)
1161 if (GET_CODE (recog_data.operand[i]) == REG
1162 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1164 int regno = REGNO (recog_data.operand[i]);
1165 struct costs *p = &costs[regno], *q = &op_costs[i];
1167 p->mem_cost += q->mem_cost * frequency;
1168 for (j = 0; j < N_REG_CLASSES; j++)
1169 p->cost[j] += q->cost[j] * frequency;
1172 return insn;
1175 /* This is a pass of the compiler that scans all instructions
1176 and calculates the preferred class for each pseudo-register.
1177 This information can be accessed later by calling `reg_preferred_class'.
1178 This pass comes just before local register allocation. */
1180 void
1181 regclass (f, nregs, dump)
1182 rtx f;
1183 int nregs;
1184 FILE *dump;
1186 rtx insn;
1187 int i;
1188 int pass;
1190 init_recog ();
1192 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1194 #ifdef CLASS_CANNOT_CHANGE_MODE
1195 reg_changes_mode = BITMAP_XMALLOC();
1196 #endif
1198 #ifdef FORBIDDEN_INC_DEC_CLASSES
1200 in_inc_dec = (char *) xmalloc (nregs);
1202 /* Initialize information about which register classes can be used for
1203 pseudos that are auto-incremented or auto-decremented. It would
1204 seem better to put this in init_reg_sets, but we need to be able
1205 to allocate rtx, which we can't do that early. */
1207 for (i = 0; i < N_REG_CLASSES; i++)
1209 rtx r = gen_rtx_REG (VOIDmode, 0);
1210 enum machine_mode m;
1211 int j;
1213 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1214 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1216 REGNO (r) = j;
1218 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1219 m = (enum machine_mode) ((int) m + 1))
1220 if (HARD_REGNO_MODE_OK (j, m))
1222 PUT_MODE (r, m);
1224 /* If a register is not directly suitable for an
1225 auto-increment or decrement addressing mode and
1226 requires secondary reloads, disallow its class from
1227 being used in such addresses. */
1229 if ((0
1230 #ifdef SECONDARY_RELOAD_CLASS
1231 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1232 != NO_REGS)
1233 #else
1234 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1235 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1236 != NO_REGS)
1237 #endif
1238 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1239 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1240 != NO_REGS)
1241 #endif
1242 #endif
1244 && ! auto_inc_dec_reg_p (r, m))
1245 forbidden_inc_dec_class[i] = 1;
1249 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1251 /* Normally we scan the insns once and determine the best class to use for
1252 each register. However, if -fexpensive_optimizations are on, we do so
1253 twice, the second time using the tentative best classes to guide the
1254 selection. */
1256 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1258 int index;
1260 if (dump)
1261 fprintf (dump, "\n\nPass %i\n\n",pass);
1262 /* Zero out our accumulation of the cost of each class for each reg. */
1264 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1266 #ifdef FORBIDDEN_INC_DEC_CLASSES
1267 memset (in_inc_dec, 0, nregs);
1268 #endif
1270 /* Scan the instructions and record each time it would
1271 save code to put a certain register in a certain class. */
1273 if (!optimize)
1275 frequency = REG_FREQ_MAX;
1276 for (insn = f; insn; insn = NEXT_INSN (insn))
1277 insn = scan_one_insn (insn, pass);
1279 else
1280 for (index = 0; index < n_basic_blocks; index++)
1282 basic_block bb = BASIC_BLOCK (index);
1284 /* Show that an insn inside a loop is likely to be executed three
1285 times more than insns outside a loop. This is much more
1286 aggressive than the assumptions made elsewhere and is being
1287 tried as an experiment. */
1288 frequency = REG_FREQ_FROM_BB (bb);
1289 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1291 insn = scan_one_insn (insn, pass);
1292 if (insn == bb->end)
1293 break;
1297 /* Now for each register look at how desirable each class is
1298 and find which class is preferred. Store that in
1299 `prefclass'. Record in `altclass' the largest register
1300 class any of whose registers is better than memory. */
1302 if (pass == 0)
1303 reg_pref = reg_pref_buffer;
1305 if (dump)
1307 dump_regclass (dump);
1308 fprintf (dump,"\n");
1310 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1312 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1313 enum reg_class best = ALL_REGS, alt = NO_REGS;
1314 /* This is an enum reg_class, but we call it an int
1315 to save lots of casts. */
1316 int class;
1317 struct costs *p = &costs[i];
1319 /* In non-optimizing compilation REG_N_REFS is not initialized
1320 yet. */
1321 if (optimize && !REG_N_REFS (i))
1322 continue;
1324 for (class = (int) ALL_REGS - 1; class > 0; class--)
1326 /* Ignore classes that are too small for this operand or
1327 invalid for an operand that was auto-incremented. */
1328 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1329 #ifdef FORBIDDEN_INC_DEC_CLASSES
1330 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1331 #endif
1332 #ifdef CLASS_CANNOT_CHANGE_MODE
1333 || (REGNO_REG_SET_P (reg_changes_mode, i)
1334 && ! class_can_change_mode [class])
1335 #endif
1338 else if (p->cost[class] < best_cost)
1340 best_cost = p->cost[class];
1341 best = (enum reg_class) class;
1343 else if (p->cost[class] == best_cost)
1344 best = reg_class_subunion[(int)best][class];
1347 /* Record the alternate register class; i.e., a class for which
1348 every register in it is better than using memory. If adding a
1349 class would make a smaller class (i.e., no union of just those
1350 classes exists), skip that class. The major unions of classes
1351 should be provided as a register class. Don't do this if we
1352 will be doing it again later. */
1354 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1355 for (class = 0; class < N_REG_CLASSES; class++)
1356 if (p->cost[class] < p->mem_cost
1357 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1358 > reg_class_size[(int) alt])
1359 #ifdef FORBIDDEN_INC_DEC_CLASSES
1360 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1361 #endif
1362 #ifdef CLASS_CANNOT_CHANGE_MODE
1363 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1364 && ! class_can_change_mode [class])
1365 #endif
1367 alt = reg_class_subunion[(int) alt][class];
1369 /* If we don't add any classes, nothing to try. */
1370 if (alt == best)
1371 alt = NO_REGS;
1373 if (dump
1374 && (reg_pref[i].prefclass != (int) best
1375 || reg_pref[i].altclass != (int) alt))
1377 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1378 fprintf (dump, " Register %i", i);
1379 if (alt == ALL_REGS || best == ALL_REGS)
1380 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1381 else if (alt == NO_REGS)
1382 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1383 else
1384 fprintf (dump, " pref %s, else %s\n",
1385 reg_class_names[(int) best],
1386 reg_class_names[(int) alt]);
1389 /* We cast to (int) because (char) hits bugs in some compilers. */
1390 reg_pref[i].prefclass = (int) best;
1391 reg_pref[i].altclass = (int) alt;
1395 #ifdef FORBIDDEN_INC_DEC_CLASSES
1396 free (in_inc_dec);
1397 #endif
1398 #ifdef CLASS_CANNOT_CHANGE_MODE
1399 BITMAP_XFREE (reg_changes_mode);
1400 #endif
1401 free (costs);
1404 /* Record the cost of using memory or registers of various classes for
1405 the operands in INSN.
1407 N_ALTS is the number of alternatives.
1409 N_OPS is the number of operands.
1411 OPS is an array of the operands.
1413 MODES are the modes of the operands, in case any are VOIDmode.
1415 CONSTRAINTS are the constraints to use for the operands. This array
1416 is modified by this procedure.
1418 This procedure works alternative by alternative. For each alternative
1419 we assume that we will be able to allocate all pseudos to their ideal
1420 register class and calculate the cost of using that alternative. Then
1421 we compute for each operand that is a pseudo-register, the cost of
1422 having the pseudo allocated to each register class and using it in that
1423 alternative. To this cost is added the cost of the alternative.
1425 The cost of each class for this insn is its lowest cost among all the
1426 alternatives. */
1428 static void
1429 record_reg_classes (n_alts, n_ops, ops, modes,
1430 constraints, insn, op_costs, reg_pref)
1431 int n_alts;
1432 int n_ops;
1433 rtx *ops;
1434 enum machine_mode *modes;
1435 const char **constraints;
1436 rtx insn;
1437 struct costs *op_costs;
1438 struct reg_pref *reg_pref;
1440 int alt;
1441 int i, j;
1442 rtx set;
1444 /* Process each alternative, each time minimizing an operand's cost with
1445 the cost for each operand in that alternative. */
1447 for (alt = 0; alt < n_alts; alt++)
1449 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1450 int alt_fail = 0;
1451 int alt_cost = 0;
1452 enum reg_class classes[MAX_RECOG_OPERANDS];
1453 int allows_mem[MAX_RECOG_OPERANDS];
1454 int class;
1456 for (i = 0; i < n_ops; i++)
1458 const char *p = constraints[i];
1459 rtx op = ops[i];
1460 enum machine_mode mode = modes[i];
1461 int allows_addr = 0;
1462 int win = 0;
1463 unsigned char c;
1465 /* Initially show we know nothing about the register class. */
1466 classes[i] = NO_REGS;
1467 allows_mem[i] = 0;
1469 /* If this operand has no constraints at all, we can conclude
1470 nothing about it since anything is valid. */
1472 if (*p == 0)
1474 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1475 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1477 continue;
1480 /* If this alternative is only relevant when this operand
1481 matches a previous operand, we do different things depending
1482 on whether this operand is a pseudo-reg or not. We must process
1483 any modifiers for the operand before we can make this test. */
1485 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1486 p++;
1488 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1490 /* Copy class and whether memory is allowed from the matching
1491 alternative. Then perform any needed cost computations
1492 and/or adjustments. */
1493 j = p[0] - '0';
1494 classes[i] = classes[j];
1495 allows_mem[i] = allows_mem[j];
1497 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1499 /* If this matches the other operand, we have no added
1500 cost and we win. */
1501 if (rtx_equal_p (ops[j], op))
1502 win = 1;
1504 /* If we can put the other operand into a register, add to
1505 the cost of this alternative the cost to copy this
1506 operand to the register used for the other operand. */
1508 else if (classes[j] != NO_REGS)
1509 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1511 else if (GET_CODE (ops[j]) != REG
1512 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1514 /* This op is a pseudo but the one it matches is not. */
1516 /* If we can't put the other operand into a register, this
1517 alternative can't be used. */
1519 if (classes[j] == NO_REGS)
1520 alt_fail = 1;
1522 /* Otherwise, add to the cost of this alternative the cost
1523 to copy the other operand to the register used for this
1524 operand. */
1526 else
1527 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1529 else
1531 /* The costs of this operand are not the same as the other
1532 operand since move costs are not symmetric. Moreover,
1533 if we cannot tie them, this alternative needs to do a
1534 copy, which is one instruction. */
1536 struct costs *pp = &this_op_costs[i];
1538 for (class = 0; class < N_REG_CLASSES; class++)
1539 pp->cost[class]
1540 = ((recog_data.operand_type[i] != OP_OUT
1541 ? may_move_in_cost[mode][class][(int) classes[i]]
1542 : 0)
1543 + (recog_data.operand_type[i] != OP_IN
1544 ? may_move_out_cost[mode][(int) classes[i]][class]
1545 : 0));
1547 /* If the alternative actually allows memory, make things
1548 a bit cheaper since we won't need an extra insn to
1549 load it. */
1551 pp->mem_cost
1552 = ((recog_data.operand_type[i] != OP_IN
1553 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1554 : 0)
1555 + (recog_data.operand_type[i] != OP_OUT
1556 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1557 : 0) - allows_mem[i]);
1559 /* If we have assigned a class to this register in our
1560 first pass, add a cost to this alternative corresponding
1561 to what we would add if this register were not in the
1562 appropriate class. */
1564 if (reg_pref)
1565 alt_cost
1566 += (may_move_in_cost[mode]
1567 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1568 [(int) classes[i]]);
1570 if (REGNO (ops[i]) != REGNO (ops[j])
1571 && ! find_reg_note (insn, REG_DEAD, op))
1572 alt_cost += 2;
1574 /* This is in place of ordinary cost computation
1575 for this operand, so skip to the end of the
1576 alternative (should be just one character). */
1577 while (*p && *p++ != ',')
1580 constraints[i] = p;
1581 continue;
1585 /* Scan all the constraint letters. See if the operand matches
1586 any of the constraints. Collect the valid register classes
1587 and see if this operand accepts memory. */
1589 while (*p && (c = *p++) != ',')
1590 switch (c)
1592 case '*':
1593 /* Ignore the next letter for this pass. */
1594 p++;
1595 break;
1597 case '?':
1598 alt_cost += 2;
1599 case '!': case '#': case '&':
1600 case '0': case '1': case '2': case '3': case '4':
1601 case '5': case '6': case '7': case '8': case '9':
1602 break;
1604 case 'p':
1605 allows_addr = 1;
1606 win = address_operand (op, GET_MODE (op));
1607 /* We know this operand is an address, so we want it to be
1608 allocated to a register that can be the base of an
1609 address, ie BASE_REG_CLASS. */
1610 classes[i]
1611 = reg_class_subunion[(int) classes[i]]
1612 [(int) BASE_REG_CLASS];
1613 break;
1615 case 'm': case 'o': case 'V':
1616 /* It doesn't seem worth distinguishing between offsettable
1617 and non-offsettable addresses here. */
1618 allows_mem[i] = 1;
1619 if (GET_CODE (op) == MEM)
1620 win = 1;
1621 break;
1623 case '<':
1624 if (GET_CODE (op) == MEM
1625 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1626 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1627 win = 1;
1628 break;
1630 case '>':
1631 if (GET_CODE (op) == MEM
1632 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1633 || GET_CODE (XEXP (op, 0)) == POST_INC))
1634 win = 1;
1635 break;
1637 case 'E':
1638 #ifndef REAL_ARITHMETIC
1639 /* Match any floating double constant, but only if
1640 we can examine the bits of it reliably. */
1641 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1642 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1643 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1644 break;
1645 #endif
1646 if (GET_CODE (op) == CONST_DOUBLE)
1647 win = 1;
1648 break;
1650 case 'F':
1651 if (GET_CODE (op) == CONST_DOUBLE)
1652 win = 1;
1653 break;
1655 case 'G':
1656 case 'H':
1657 if (GET_CODE (op) == CONST_DOUBLE
1658 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1659 win = 1;
1660 break;
1662 case 's':
1663 if (GET_CODE (op) == CONST_INT
1664 || (GET_CODE (op) == CONST_DOUBLE
1665 && GET_MODE (op) == VOIDmode))
1666 break;
1667 case 'i':
1668 if (CONSTANT_P (op)
1669 #ifdef LEGITIMATE_PIC_OPERAND_P
1670 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1671 #endif
1673 win = 1;
1674 break;
1676 case 'n':
1677 if (GET_CODE (op) == CONST_INT
1678 || (GET_CODE (op) == CONST_DOUBLE
1679 && GET_MODE (op) == VOIDmode))
1680 win = 1;
1681 break;
1683 case 'I':
1684 case 'J':
1685 case 'K':
1686 case 'L':
1687 case 'M':
1688 case 'N':
1689 case 'O':
1690 case 'P':
1691 if (GET_CODE (op) == CONST_INT
1692 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1693 win = 1;
1694 break;
1696 case 'X':
1697 win = 1;
1698 break;
1700 case 'g':
1701 if (GET_CODE (op) == MEM
1702 || (CONSTANT_P (op)
1703 #ifdef LEGITIMATE_PIC_OPERAND_P
1704 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1705 #endif
1707 win = 1;
1708 allows_mem[i] = 1;
1709 case 'r':
1710 classes[i]
1711 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1712 break;
1714 default:
1715 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1716 classes[i]
1717 = reg_class_subunion[(int) classes[i]]
1718 [(int) REG_CLASS_FROM_LETTER (c)];
1719 #ifdef EXTRA_CONSTRAINT
1720 else if (EXTRA_CONSTRAINT (op, c))
1721 win = 1;
1722 #endif
1723 break;
1726 constraints[i] = p;
1728 /* How we account for this operand now depends on whether it is a
1729 pseudo register or not. If it is, we first check if any
1730 register classes are valid. If not, we ignore this alternative,
1731 since we want to assume that all pseudos get allocated for
1732 register preferencing. If some register class is valid, compute
1733 the costs of moving the pseudo into that class. */
1735 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1737 if (classes[i] == NO_REGS)
1739 /* We must always fail if the operand is a REG, but
1740 we did not find a suitable class.
1742 Otherwise we may perform an uninitialized read
1743 from this_op_costs after the `continue' statement
1744 below. */
1745 alt_fail = 1;
1747 else
1749 struct costs *pp = &this_op_costs[i];
1751 for (class = 0; class < N_REG_CLASSES; class++)
1752 pp->cost[class]
1753 = ((recog_data.operand_type[i] != OP_OUT
1754 ? may_move_in_cost[mode][class][(int) classes[i]]
1755 : 0)
1756 + (recog_data.operand_type[i] != OP_IN
1757 ? may_move_out_cost[mode][(int) classes[i]][class]
1758 : 0));
1760 /* If the alternative actually allows memory, make things
1761 a bit cheaper since we won't need an extra insn to
1762 load it. */
1764 pp->mem_cost
1765 = ((recog_data.operand_type[i] != OP_IN
1766 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1767 : 0)
1768 + (recog_data.operand_type[i] != OP_OUT
1769 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1770 : 0) - allows_mem[i]);
1772 /* If we have assigned a class to this register in our
1773 first pass, add a cost to this alternative corresponding
1774 to what we would add if this register were not in the
1775 appropriate class. */
1777 if (reg_pref)
1778 alt_cost
1779 += (may_move_in_cost[mode]
1780 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1781 [(int) classes[i]]);
1785 /* Otherwise, if this alternative wins, either because we
1786 have already determined that or if we have a hard register of
1787 the proper class, there is no cost for this alternative. */
1789 else if (win
1790 || (GET_CODE (op) == REG
1791 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1794 /* If registers are valid, the cost of this alternative includes
1795 copying the object to and/or from a register. */
1797 else if (classes[i] != NO_REGS)
1799 if (recog_data.operand_type[i] != OP_OUT)
1800 alt_cost += copy_cost (op, mode, classes[i], 1);
1802 if (recog_data.operand_type[i] != OP_IN)
1803 alt_cost += copy_cost (op, mode, classes[i], 0);
1806 /* The only other way this alternative can be used is if this is a
1807 constant that could be placed into memory. */
1809 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1810 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1811 else
1812 alt_fail = 1;
1815 if (alt_fail)
1816 continue;
1818 /* Finally, update the costs with the information we've calculated
1819 about this alternative. */
1821 for (i = 0; i < n_ops; i++)
1822 if (GET_CODE (ops[i]) == REG
1823 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1825 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1826 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1828 pp->mem_cost = MIN (pp->mem_cost,
1829 (qq->mem_cost + alt_cost) * scale);
1831 for (class = 0; class < N_REG_CLASSES; class++)
1832 pp->cost[class] = MIN (pp->cost[class],
1833 (qq->cost[class] + alt_cost) * scale);
1837 /* If this insn is a single set copying operand 1 to operand 0
1838 and one operand is a pseudo with the other a hard reg or a pseudo
1839 that prefers a register that is in its own register class then
1840 we may want to adjust the cost of that register class to -1.
1842 Avoid the adjustment if the source does not die to avoid stressing of
1843 register allocator by preferrencing two coliding registers into single
1844 class.
1846 Also avoid the adjustment if a copy between registers of the class
1847 is expensive (ten times the cost of a default copy is considered
1848 arbitrarily expensive). This avoids losing when the preferred class
1849 is very expensive as the source of a copy instruction. */
1851 if ((set = single_set (insn)) != 0
1852 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1853 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1854 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1855 for (i = 0; i <= 1; i++)
1856 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1858 unsigned int regno = REGNO (ops[!i]);
1859 enum machine_mode mode = GET_MODE (ops[!i]);
1860 int class;
1861 unsigned int nr;
1863 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1865 enum reg_class pref = reg_pref[regno].prefclass;
1867 if ((reg_class_size[(unsigned char) pref]
1868 == CLASS_MAX_NREGS (pref, mode))
1869 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1870 op_costs[i].cost[(unsigned char) pref] = -1;
1872 else if (regno < FIRST_PSEUDO_REGISTER)
1873 for (class = 0; class < N_REG_CLASSES; class++)
1874 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1875 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1877 if (reg_class_size[class] == 1)
1878 op_costs[i].cost[class] = -1;
1879 else
1881 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1883 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1884 regno + nr))
1885 break;
1888 if (nr == HARD_REGNO_NREGS (regno,mode))
1889 op_costs[i].cost[class] = -1;
1895 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1896 TO_P is zero) a register of class CLASS in mode MODE.
1898 X must not be a pseudo. */
1900 static int
1901 copy_cost (x, mode, class, to_p)
1902 rtx x;
1903 enum machine_mode mode ATTRIBUTE_UNUSED;
1904 enum reg_class class;
1905 int to_p ATTRIBUTE_UNUSED;
1907 #ifdef HAVE_SECONDARY_RELOADS
1908 enum reg_class secondary_class = NO_REGS;
1909 #endif
1911 /* If X is a SCRATCH, there is actually nothing to move since we are
1912 assuming optimal allocation. */
1914 if (GET_CODE (x) == SCRATCH)
1915 return 0;
1917 /* Get the class we will actually use for a reload. */
1918 class = PREFERRED_RELOAD_CLASS (x, class);
1920 #ifdef HAVE_SECONDARY_RELOADS
1921 /* If we need a secondary reload (we assume here that we are using
1922 the secondary reload as an intermediate, not a scratch register), the
1923 cost is that to load the input into the intermediate register, then
1924 to copy them. We use a special value of TO_P to avoid recursion. */
1926 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1927 if (to_p == 1)
1928 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1929 #endif
1931 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1932 if (! to_p)
1933 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1934 #endif
1936 if (secondary_class != NO_REGS)
1937 return (move_cost[mode][(int) secondary_class][(int) class]
1938 + copy_cost (x, mode, secondary_class, 2));
1939 #endif /* HAVE_SECONDARY_RELOADS */
1941 /* For memory, use the memory move cost, for (hard) registers, use the
1942 cost to move between the register classes, and use 2 for everything
1943 else (constants). */
1945 if (GET_CODE (x) == MEM || class == NO_REGS)
1946 return MEMORY_MOVE_COST (mode, class, to_p);
1948 else if (GET_CODE (x) == REG)
1949 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1951 else
1952 /* If this is a constant, we may eventually want to call rtx_cost here. */
1953 return COSTS_N_INSNS (1);
1956 /* Record the pseudo registers we must reload into hard registers
1957 in a subexpression of a memory address, X.
1959 CLASS is the class that the register needs to be in and is either
1960 BASE_REG_CLASS or INDEX_REG_CLASS.
1962 SCALE is twice the amount to multiply the cost by (it is twice so we
1963 can represent half-cost adjustments). */
1965 static void
1966 record_address_regs (x, class, scale)
1967 rtx x;
1968 enum reg_class class;
1969 int scale;
1971 enum rtx_code code = GET_CODE (x);
1973 switch (code)
1975 case CONST_INT:
1976 case CONST:
1977 case CC0:
1978 case PC:
1979 case SYMBOL_REF:
1980 case LABEL_REF:
1981 return;
1983 case PLUS:
1984 /* When we have an address that is a sum,
1985 we must determine whether registers are "base" or "index" regs.
1986 If there is a sum of two registers, we must choose one to be
1987 the "base". Luckily, we can use the REG_POINTER to make a good
1988 choice most of the time. We only need to do this on machines
1989 that can have two registers in an address and where the base
1990 and index register classes are different.
1992 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1993 that seems bogus since it should only be set when we are sure
1994 the register is being used as a pointer. */
1997 rtx arg0 = XEXP (x, 0);
1998 rtx arg1 = XEXP (x, 1);
1999 enum rtx_code code0 = GET_CODE (arg0);
2000 enum rtx_code code1 = GET_CODE (arg1);
2002 /* Look inside subregs. */
2003 if (code0 == SUBREG)
2004 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
2005 if (code1 == SUBREG)
2006 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
2008 /* If this machine only allows one register per address, it must
2009 be in the first operand. */
2011 if (MAX_REGS_PER_ADDRESS == 1)
2012 record_address_regs (arg0, class, scale);
2014 /* If index and base registers are the same on this machine, just
2015 record registers in any non-constant operands. We assume here,
2016 as well as in the tests below, that all addresses are in
2017 canonical form. */
2019 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
2021 record_address_regs (arg0, class, scale);
2022 if (! CONSTANT_P (arg1))
2023 record_address_regs (arg1, class, scale);
2026 /* If the second operand is a constant integer, it doesn't change
2027 what class the first operand must be. */
2029 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2030 record_address_regs (arg0, class, scale);
2032 /* If the second operand is a symbolic constant, the first operand
2033 must be an index register. */
2035 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2036 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2038 /* If both operands are registers but one is already a hard register
2039 of index or base class, give the other the class that the hard
2040 register is not. */
2042 #ifdef REG_OK_FOR_BASE_P
2043 else if (code0 == REG && code1 == REG
2044 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2045 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2046 record_address_regs (arg1,
2047 REG_OK_FOR_BASE_P (arg0)
2048 ? INDEX_REG_CLASS : BASE_REG_CLASS,
2049 scale);
2050 else if (code0 == REG && code1 == REG
2051 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2052 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2053 record_address_regs (arg0,
2054 REG_OK_FOR_BASE_P (arg1)
2055 ? INDEX_REG_CLASS : BASE_REG_CLASS,
2056 scale);
2057 #endif
2059 /* If one operand is known to be a pointer, it must be the base
2060 with the other operand the index. Likewise if the other operand
2061 is a MULT. */
2063 else if ((code0 == REG && REG_POINTER (arg0))
2064 || code1 == MULT)
2066 record_address_regs (arg0, BASE_REG_CLASS, scale);
2067 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2069 else if ((code1 == REG && REG_POINTER (arg1))
2070 || code0 == MULT)
2072 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2073 record_address_regs (arg1, BASE_REG_CLASS, scale);
2076 /* Otherwise, count equal chances that each might be a base
2077 or index register. This case should be rare. */
2079 else
2081 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
2082 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2083 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
2084 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2087 break;
2089 /* Double the importance of a pseudo register that is incremented
2090 or decremented, since it would take two extra insns
2091 if it ends up in the wrong place. */
2092 case POST_MODIFY:
2093 case PRE_MODIFY:
2094 record_address_regs (XEXP (x, 0), BASE_REG_CLASS, 2 * scale);
2095 if (REG_P (XEXP (XEXP (x, 1), 1)))
2096 record_address_regs (XEXP (XEXP (x, 1), 1),
2097 INDEX_REG_CLASS, 2 * scale);
2098 break;
2100 case POST_INC:
2101 case PRE_INC:
2102 case POST_DEC:
2103 case PRE_DEC:
2104 /* Double the importance of a pseudo register that is incremented
2105 or decremented, since it would take two extra insns
2106 if it ends up in the wrong place. If the operand is a pseudo,
2107 show it is being used in an INC_DEC context. */
2109 #ifdef FORBIDDEN_INC_DEC_CLASSES
2110 if (GET_CODE (XEXP (x, 0)) == REG
2111 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2112 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2113 #endif
2115 record_address_regs (XEXP (x, 0), class, 2 * scale);
2116 break;
2118 case REG:
2120 struct costs *pp = &costs[REGNO (x)];
2121 int i;
2123 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2125 for (i = 0; i < N_REG_CLASSES; i++)
2126 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2128 break;
2130 default:
2132 const char *fmt = GET_RTX_FORMAT (code);
2133 int i;
2134 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2135 if (fmt[i] == 'e')
2136 record_address_regs (XEXP (x, i), class, scale);
2141 #ifdef FORBIDDEN_INC_DEC_CLASSES
2143 /* Return 1 if REG is valid as an auto-increment memory reference
2144 to an object of MODE. */
2146 static int
2147 auto_inc_dec_reg_p (reg, mode)
2148 rtx reg;
2149 enum machine_mode mode;
2151 if (HAVE_POST_INCREMENT
2152 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2153 return 1;
2155 if (HAVE_POST_DECREMENT
2156 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2157 return 1;
2159 if (HAVE_PRE_INCREMENT
2160 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2161 return 1;
2163 if (HAVE_PRE_DECREMENT
2164 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2165 return 1;
2167 return 0;
2169 #endif
2171 static short *renumber;
2172 static size_t regno_allocated;
2173 static unsigned int reg_n_max;
2175 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2176 reg_scan and flow_analysis that are indexed by the register number. If
2177 NEW_P is non zero, initialize all of the registers, otherwise only
2178 initialize the new registers allocated. The same table is kept from
2179 function to function, only reallocating it when we need more room. If
2180 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2182 void
2183 allocate_reg_info (num_regs, new_p, renumber_p)
2184 size_t num_regs;
2185 int new_p;
2186 int renumber_p;
2188 size_t size_info;
2189 size_t size_renumber;
2190 size_t min = (new_p) ? 0 : reg_n_max;
2191 struct reg_info_data *reg_data;
2193 if (num_regs > regno_allocated)
2195 size_t old_allocated = regno_allocated;
2197 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2198 size_renumber = regno_allocated * sizeof (short);
2200 if (!reg_n_info)
2202 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2203 renumber = (short *) xmalloc (size_renumber);
2204 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2205 * sizeof (struct reg_pref));
2208 else
2210 VARRAY_GROW (reg_n_info, regno_allocated);
2212 if (new_p) /* if we're zapping everything, no need to realloc */
2214 free ((char *)renumber);
2215 free ((char *)reg_pref);
2216 renumber = (short *) xmalloc (size_renumber);
2217 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2218 * sizeof (struct reg_pref));
2221 else
2223 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
2224 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2225 regno_allocated
2226 * sizeof (struct reg_pref));
2230 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2231 + sizeof (struct reg_info_data) - sizeof (reg_info);
2232 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2233 reg_data->min_index = old_allocated;
2234 reg_data->max_index = regno_allocated - 1;
2235 reg_data->next = reg_info_head;
2236 reg_info_head = reg_data;
2239 reg_n_max = num_regs;
2240 if (min < num_regs)
2242 /* Loop through each of the segments allocated for the actual
2243 reg_info pages, and set up the pointers, zero the pages, etc. */
2244 for (reg_data = reg_info_head;
2245 reg_data && reg_data->max_index >= min;
2246 reg_data = reg_data->next)
2248 size_t min_index = reg_data->min_index;
2249 size_t max_index = reg_data->max_index;
2250 size_t max = MIN (max_index, num_regs);
2251 size_t local_min = min - min_index;
2252 size_t i;
2254 if (reg_data->min_index > num_regs)
2255 continue;
2257 if (min < min_index)
2258 local_min = 0;
2259 if (!reg_data->used_p) /* page just allocated with calloc */
2260 reg_data->used_p = 1; /* no need to zero */
2261 else
2262 memset ((char *) &reg_data->data[local_min], 0,
2263 sizeof (reg_info) * (max - min_index - local_min + 1));
2265 for (i = min_index+local_min; i <= max; i++)
2267 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2268 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2269 renumber[i] = -1;
2270 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2271 reg_pref_buffer[i].altclass = (char) NO_REGS;
2276 /* If {pref,alt}class have already been allocated, update the pointers to
2277 the newly realloced ones. */
2278 if (reg_pref)
2279 reg_pref = reg_pref_buffer;
2281 if (renumber_p)
2282 reg_renumber = renumber;
2284 /* Tell the regset code about the new number of registers */
2285 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2288 /* Free up the space allocated by allocate_reg_info. */
2289 void
2290 free_reg_info ()
2292 if (reg_n_info)
2294 struct reg_info_data *reg_data;
2295 struct reg_info_data *reg_next;
2297 VARRAY_FREE (reg_n_info);
2298 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2300 reg_next = reg_data->next;
2301 free ((char *)reg_data);
2304 free (reg_pref_buffer);
2305 reg_pref_buffer = (struct reg_pref *)0;
2306 reg_info_head = (struct reg_info_data *)0;
2307 renumber = (short *)0;
2309 regno_allocated = 0;
2310 reg_n_max = 0;
2313 /* This is the `regscan' pass of the compiler, run just before cse
2314 and again just before loop.
2316 It finds the first and last use of each pseudo-register
2317 and records them in the vectors regno_first_uid, regno_last_uid
2318 and counts the number of sets in the vector reg_n_sets.
2320 REPEAT is nonzero the second time this is called. */
2322 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2323 Always at least 3, since the combiner could put that many together
2324 and we want this to remain correct for all the remaining passes.
2325 This corresponds to the maximum number of times note_stores will call
2326 a function for any insn. */
2328 int max_parallel;
2330 /* Used as a temporary to record the largest number of registers in
2331 PARALLEL in a SET_DEST. This is added to max_parallel. */
2333 static int max_set_parallel;
2335 void
2336 reg_scan (f, nregs, repeat)
2337 rtx f;
2338 unsigned int nregs;
2339 int repeat ATTRIBUTE_UNUSED;
2341 rtx insn;
2343 allocate_reg_info (nregs, TRUE, FALSE);
2344 max_parallel = 3;
2345 max_set_parallel = 0;
2347 for (insn = f; insn; insn = NEXT_INSN (insn))
2348 if (GET_CODE (insn) == INSN
2349 || GET_CODE (insn) == CALL_INSN
2350 || GET_CODE (insn) == JUMP_INSN)
2352 if (GET_CODE (PATTERN (insn)) == PARALLEL
2353 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2354 max_parallel = XVECLEN (PATTERN (insn), 0);
2355 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2357 if (REG_NOTES (insn))
2358 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2361 max_parallel += max_set_parallel;
2364 /* Update 'regscan' information by looking at the insns
2365 from FIRST to LAST. Some new REGs have been created,
2366 and any REG with number greater than OLD_MAX_REGNO is
2367 such a REG. We only update information for those. */
2369 void
2370 reg_scan_update (first, last, old_max_regno)
2371 rtx first;
2372 rtx last;
2373 unsigned int old_max_regno;
2375 rtx insn;
2377 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2379 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2380 if (GET_CODE (insn) == INSN
2381 || GET_CODE (insn) == CALL_INSN
2382 || GET_CODE (insn) == JUMP_INSN)
2384 if (GET_CODE (PATTERN (insn)) == PARALLEL
2385 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2386 max_parallel = XVECLEN (PATTERN (insn), 0);
2387 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2389 if (REG_NOTES (insn))
2390 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2394 /* X is the expression to scan. INSN is the insn it appears in.
2395 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2396 We should only record information for REGs with numbers
2397 greater than or equal to MIN_REGNO. */
2399 static void
2400 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2401 rtx x;
2402 rtx insn;
2403 int note_flag;
2404 unsigned int min_regno;
2406 enum rtx_code code;
2407 rtx dest;
2408 rtx note;
2410 code = GET_CODE (x);
2411 switch (code)
2413 case CONST:
2414 case CONST_INT:
2415 case CONST_DOUBLE:
2416 case CC0:
2417 case PC:
2418 case SYMBOL_REF:
2419 case LABEL_REF:
2420 case ADDR_VEC:
2421 case ADDR_DIFF_VEC:
2422 return;
2424 case REG:
2426 unsigned int regno = REGNO (x);
2428 if (regno >= min_regno)
2430 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2431 if (!note_flag)
2432 REGNO_LAST_UID (regno) = INSN_UID (insn);
2433 if (REGNO_FIRST_UID (regno) == 0)
2434 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2437 break;
2439 case EXPR_LIST:
2440 if (XEXP (x, 0))
2441 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2442 if (XEXP (x, 1))
2443 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2444 break;
2446 case INSN_LIST:
2447 if (XEXP (x, 1))
2448 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2449 break;
2451 case SET:
2452 /* Count a set of the destination if it is a register. */
2453 for (dest = SET_DEST (x);
2454 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2455 || GET_CODE (dest) == ZERO_EXTEND;
2456 dest = XEXP (dest, 0))
2459 /* For a PARALLEL, record the number of things (less the usual one for a
2460 SET) that are set. */
2461 if (GET_CODE (dest) == PARALLEL)
2462 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2464 if (GET_CODE (dest) == REG
2465 && REGNO (dest) >= min_regno)
2467 REG_N_SETS (REGNO (dest))++;
2468 REG_N_REFS (REGNO (dest))++;
2471 /* If this is setting a pseudo from another pseudo or the sum of a
2472 pseudo and a constant integer and the other pseudo is known to be
2473 a pointer, set the destination to be a pointer as well.
2475 Likewise if it is setting the destination from an address or from a
2476 value equivalent to an address or to the sum of an address and
2477 something else.
2479 But don't do any of this if the pseudo corresponds to a user
2480 variable since it should have already been set as a pointer based
2481 on the type. */
2483 if (GET_CODE (SET_DEST (x)) == REG
2484 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2485 && REGNO (SET_DEST (x)) >= min_regno
2486 /* If the destination pseudo is set more than once, then other
2487 sets might not be to a pointer value (consider access to a
2488 union in two threads of control in the presense of global
2489 optimizations). So only set REG_POINTER on the destination
2490 pseudo if this is the only set of that pseudo. */
2491 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2492 && ! REG_USERVAR_P (SET_DEST (x))
2493 && ! REG_POINTER (SET_DEST (x))
2494 && ((GET_CODE (SET_SRC (x)) == REG
2495 && REG_POINTER (SET_SRC (x)))
2496 || ((GET_CODE (SET_SRC (x)) == PLUS
2497 || GET_CODE (SET_SRC (x)) == LO_SUM)
2498 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2499 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2500 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2501 || GET_CODE (SET_SRC (x)) == CONST
2502 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2503 || GET_CODE (SET_SRC (x)) == LABEL_REF
2504 || (GET_CODE (SET_SRC (x)) == HIGH
2505 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2506 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2507 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2508 || ((GET_CODE (SET_SRC (x)) == PLUS
2509 || GET_CODE (SET_SRC (x)) == LO_SUM)
2510 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2511 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2512 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2513 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2514 && (GET_CODE (XEXP (note, 0)) == CONST
2515 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2516 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2517 REG_POINTER (SET_DEST (x)) = 1;
2519 /* If this is setting a register from a register or from a simple
2520 conversion of a register, propagate REG_DECL. */
2521 if (GET_CODE (dest) == REG)
2523 rtx src = SET_SRC (x);
2525 while (GET_CODE (src) == SIGN_EXTEND
2526 || GET_CODE (src) == ZERO_EXTEND
2527 || GET_CODE (src) == TRUNCATE
2528 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2529 src = XEXP (src, 0);
2531 if (GET_CODE (src) == REG && REGNO_DECL (REGNO (src)) == 0)
2532 REGNO_DECL (REGNO (src)) = REGNO_DECL (REGNO (dest));
2533 else if (GET_CODE (src) == REG && REGNO_DECL (REGNO (dest)) == 0)
2534 REGNO_DECL (REGNO (dest)) = REGNO_DECL (REGNO (src));
2537 /* ... fall through ... */
2539 default:
2541 const char *fmt = GET_RTX_FORMAT (code);
2542 int i;
2543 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2545 if (fmt[i] == 'e')
2546 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2547 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2549 int j;
2550 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2551 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2558 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2559 is also in C2. */
2562 reg_class_subset_p (c1, c2)
2563 enum reg_class c1;
2564 enum reg_class c2;
2566 if (c1 == c2) return 1;
2568 if (c2 == ALL_REGS)
2569 win:
2570 return 1;
2571 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2572 reg_class_contents[(int)c2],
2573 win);
2574 return 0;
2577 /* Return nonzero if there is a register that is in both C1 and C2. */
2580 reg_classes_intersect_p (c1, c2)
2581 enum reg_class c1;
2582 enum reg_class c2;
2584 #ifdef HARD_REG_SET
2585 register
2586 #endif
2587 HARD_REG_SET c;
2589 if (c1 == c2) return 1;
2591 if (c1 == ALL_REGS || c2 == ALL_REGS)
2592 return 1;
2594 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2595 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2597 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2598 return 1;
2600 lose:
2601 return 0;
2604 /* Release any memory allocated by register sets. */
2606 void
2607 regset_release_memory ()
2609 bitmap_release_memory ();