testsuite: 32 bit AIX 2 byte wchar
[official-gcc.git] / gcc / ada / sem_ch8.adb
blob2e6b1b6d78557d0be7c1beef0e59a7da80bd41ac
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Einfo.Utils; use Einfo.Utils;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Disp; use Exp_Disp;
33 with Exp_Tss; use Exp_Tss;
34 with Exp_Util; use Exp_Util;
35 with Freeze; use Freeze;
36 with Ghost; use Ghost;
37 with Impunit; use Impunit;
38 with Lib; use Lib;
39 with Lib.Load; use Lib.Load;
40 with Lib.Xref; use Lib.Xref;
41 with Local_Restrict;
42 with Namet; use Namet;
43 with Namet.Sp; use Namet.Sp;
44 with Nlists; use Nlists;
45 with Nmake; use Nmake;
46 with Opt; use Opt;
47 with Output; use Output;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Cat; use Sem_Cat;
54 with Sem_Ch3; use Sem_Ch3;
55 with Sem_Ch4; use Sem_Ch4;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch10; use Sem_Ch10;
58 with Sem_Ch12; use Sem_Ch12;
59 with Sem_Ch13; use Sem_Ch13;
60 with Sem_Dim; use Sem_Dim;
61 with Sem_Disp; use Sem_Disp;
62 with Sem_Dist; use Sem_Dist;
63 with Sem_Elab; use Sem_Elab;
64 with Sem_Eval; use Sem_Eval;
65 with Sem_Prag; use Sem_Prag;
66 with Sem_Res; use Sem_Res;
67 with Sem_Util; use Sem_Util;
68 with Sem_Type; use Sem_Type;
69 with Stand; use Stand;
70 with Sinfo; use Sinfo;
71 with Sinfo.Nodes; use Sinfo.Nodes;
72 with Sinfo.Utils; use Sinfo.Utils;
73 with Sinfo.CN; use Sinfo.CN;
74 with Snames; use Snames;
75 with Style;
76 with Table;
77 with Tbuild; use Tbuild;
78 with Uintp; use Uintp;
79 with Warnsw; use Warnsw;
81 package body Sem_Ch8 is
83 ------------------------------------
84 -- Visibility and Name Resolution --
85 ------------------------------------
87 -- This package handles name resolution and the collection of possible
88 -- interpretations for overloaded names, prior to overload resolution.
90 -- Name resolution is the process that establishes a mapping between source
91 -- identifiers and the entities they denote at each point in the program.
92 -- Each entity is represented by a defining occurrence. Each identifier
93 -- that denotes an entity points to the corresponding defining occurrence.
94 -- This is the entity of the applied occurrence. Each occurrence holds
95 -- an index into the names table, where source identifiers are stored.
97 -- Each entry in the names table for an identifier or designator uses the
98 -- Info pointer to hold a link to the currently visible entity that has
99 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
100 -- in package Sem_Util). The visibility is initialized at the beginning of
101 -- semantic processing to make entities in package Standard immediately
102 -- visible. The visibility table is used in a more subtle way when
103 -- compiling subunits (see below).
105 -- Entities that have the same name (i.e. homonyms) are chained. In the
106 -- case of overloaded entities, this chain holds all the possible meanings
107 -- of a given identifier. The process of overload resolution uses type
108 -- information to select from this chain the unique meaning of a given
109 -- identifier.
111 -- Entities are also chained in their scope, through the Next_Entity link.
112 -- As a consequence, the name space is organized as a sparse matrix, where
113 -- each row corresponds to a scope, and each column to a source identifier.
114 -- Open scopes, that is to say scopes currently being compiled, have their
115 -- corresponding rows of entities in order, innermost scope first.
117 -- The scopes of packages that are mentioned in context clauses appear in
118 -- no particular order, interspersed among open scopes. This is because
119 -- in the course of analyzing the context of a compilation, a package
120 -- declaration is first an open scope, and subsequently an element of the
121 -- context. If subunits or child units are present, a parent unit may
122 -- appear under various guises at various times in the compilation.
124 -- When the compilation of the innermost scope is complete, the entities
125 -- defined therein are no longer visible. If the scope is not a package
126 -- declaration, these entities are never visible subsequently, and can be
127 -- removed from visibility chains. If the scope is a package declaration,
128 -- its visible declarations may still be accessible. Therefore the entities
129 -- defined in such a scope are left on the visibility chains, and only
130 -- their visibility (immediately visibility or potential use-visibility)
131 -- is affected.
133 -- The ordering of homonyms on their chain does not necessarily follow
134 -- the order of their corresponding scopes on the scope stack. For
135 -- example, if package P and the enclosing scope both contain entities
136 -- named E, then when compiling the package body the chain for E will
137 -- hold the global entity first, and the local one (corresponding to
138 -- the current inner scope) next. As a result, name resolution routines
139 -- do not assume any relative ordering of the homonym chains, either
140 -- for scope nesting or to order of appearance of context clauses.
142 -- When compiling a child unit, entities in the parent scope are always
143 -- immediately visible. When compiling the body of a child unit, private
144 -- entities in the parent must also be made immediately visible. There
145 -- are separate routines to make the visible and private declarations
146 -- visible at various times (see package Sem_Ch7).
148 -- +--------+ +-----+
149 -- | In use |-------->| EU1 |-------------------------->
150 -- +--------+ +-----+
151 -- | |
152 -- +--------+ +-----+ +-----+
153 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
154 -- +--------+ +-----+ +-----+
155 -- | |
156 -- +---------+ | +-----+
157 -- | with'ed |------------------------------>| EW2 |--->
158 -- +---------+ | +-----+
159 -- | |
160 -- +--------+ +-----+ +-----+
161 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
162 -- +--------+ +-----+ +-----+
163 -- | |
164 -- +--------+ +-----+ +-----+
165 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
166 -- +--------+ +-----+ +-----+
167 -- ^ | |
168 -- | | |
169 -- | +---------+ | |
170 -- | | with'ed |----------------------------------------->
171 -- | +---------+ | |
172 -- | | |
173 -- Scope stack | |
174 -- (innermost first) | |
175 -- +----------------------------+
176 -- Names table => | Id1 | | | | Id2 |
177 -- +----------------------------+
179 -- Name resolution must deal with several syntactic forms: simple names,
180 -- qualified names, indexed names, and various forms of calls.
182 -- Each identifier points to an entry in the names table. The resolution
183 -- of a simple name consists in traversing the homonym chain, starting
184 -- from the names table. If an entry is immediately visible, it is the one
185 -- designated by the identifier. If only potentially use-visible entities
186 -- are on the chain, we must verify that they do not hide each other. If
187 -- the entity we find is overloadable, we collect all other overloadable
188 -- entities on the chain as long as they are not hidden.
190 -- To resolve expanded names, we must find the entity at the intersection
191 -- of the entity chain for the scope (the prefix) and the homonym chain
192 -- for the selector. In general, homonym chains will be much shorter than
193 -- entity chains, so it is preferable to start from the names table as
194 -- well. If the entity found is overloadable, we must collect all other
195 -- interpretations that are defined in the scope denoted by the prefix.
197 -- For records, protected types, and tasks, their local entities are
198 -- removed from visibility chains on exit from the corresponding scope.
199 -- From the outside, these entities are always accessed by selected
200 -- notation, and the entity chain for the record type, protected type,
201 -- etc. is traversed sequentially in order to find the designated entity.
203 -- The discriminants of a type and the operations of a protected type or
204 -- task are unchained on exit from the first view of the type, (such as
205 -- a private or incomplete type declaration, or a protected type speci-
206 -- fication) and re-chained when compiling the second view.
208 -- In the case of operators, we do not make operators on derived types
209 -- explicit. As a result, the notation P."+" may denote either a user-
210 -- defined function with name "+", or else an implicit declaration of the
211 -- operator "+" in package P. The resolution of expanded names always
212 -- tries to resolve an operator name as such an implicitly defined entity,
213 -- in addition to looking for explicit declarations.
215 -- All forms of names that denote entities (simple names, expanded names,
216 -- character literals in some cases) have a Entity attribute, which
217 -- identifies the entity denoted by the name.
219 ---------------------
220 -- The Scope Stack --
221 ---------------------
223 -- The Scope stack keeps track of the scopes currently been compiled.
224 -- Every entity that contains declarations (including records) is placed
225 -- on the scope stack while it is being processed, and removed at the end.
226 -- Whenever a non-package scope is exited, the entities defined therein
227 -- are removed from the visibility table, so that entities in outer scopes
228 -- become visible (see previous description). On entry to Sem, the scope
229 -- stack only contains the package Standard. As usual, subunits complicate
230 -- this picture ever so slightly.
232 -- The Rtsfind mechanism can force a call to Semantics while another
233 -- compilation is in progress. The unit retrieved by Rtsfind must be
234 -- compiled in its own context, and has no access to the visibility of
235 -- the unit currently being compiled. The procedures Save_Scope_Stack and
236 -- Restore_Scope_Stack make entities in current open scopes invisible
237 -- before compiling the retrieved unit, and restore the compilation
238 -- environment afterwards.
240 ------------------------
241 -- Compiling subunits --
242 ------------------------
244 -- Subunits must be compiled in the environment of the corresponding stub,
245 -- that is to say with the same visibility into the parent (and its
246 -- context) that is available at the point of the stub declaration, but
247 -- with the additional visibility provided by the context clause of the
248 -- subunit itself. As a result, compilation of a subunit forces compilation
249 -- of the parent (see description in lib-). At the point of the stub
250 -- declaration, Analyze is called recursively to compile the proper body of
251 -- the subunit, but without reinitializing the names table, nor the scope
252 -- stack (i.e. standard is not pushed on the stack). In this fashion the
253 -- context of the subunit is added to the context of the parent, and the
254 -- subunit is compiled in the correct environment. Note that in the course
255 -- of processing the context of a subunit, Standard will appear twice on
256 -- the scope stack: once for the parent of the subunit, and once for the
257 -- unit in the context clause being compiled. However, the two sets of
258 -- entities are not linked by homonym chains, so that the compilation of
259 -- any context unit happens in a fresh visibility environment.
261 -------------------------------
262 -- Processing of USE Clauses --
263 -------------------------------
265 -- Every defining occurrence has a flag indicating if it is potentially use
266 -- visible. Resolution of simple names examines this flag. The processing
267 -- of use clauses consists in setting this flag on all visible entities
268 -- defined in the corresponding package. On exit from the scope of the use
269 -- clause, the corresponding flag must be reset. However, a package may
270 -- appear in several nested use clauses (pathological but legal, alas)
271 -- which forces us to use a slightly more involved scheme:
273 -- a) The defining occurrence for a package holds a flag -In_Use- to
274 -- indicate that it is currently in the scope of a use clause. If a
275 -- redundant use clause is encountered, then the corresponding occurrence
276 -- of the package name is flagged -Redundant_Use-.
278 -- b) On exit from a scope, the use clauses in its declarative part are
279 -- scanned. The visibility flag is reset in all entities declared in
280 -- package named in a use clause, as long as the package is not flagged
281 -- as being in a redundant use clause (in which case the outer use
282 -- clause is still in effect, and the direct visibility of its entities
283 -- must be retained).
285 -- Note that entities are not removed from their homonym chains on exit
286 -- from the package specification. A subsequent use clause does not need
287 -- to rechain the visible entities, but only to establish their direct
288 -- visibility.
290 -----------------------------------
291 -- Handling private declarations --
292 -----------------------------------
294 -- The principle that each entity has a single defining occurrence clashes
295 -- with the presence of two separate definitions for private types: the
296 -- first is the private type declaration, and second is the full type
297 -- declaration. It is important that all references to the type point to
298 -- the same defining occurrence, namely the first one. To enforce the two
299 -- separate views of the entity, the corresponding information is swapped
300 -- between the two declarations. Outside of the package, the defining
301 -- occurrence only contains the private declaration information, while in
302 -- the private part and the body of the package the defining occurrence
303 -- contains the full declaration. To simplify the swap, the defining
304 -- occurrence that currently holds the private declaration points to the
305 -- full declaration. During semantic processing the defining occurrence
306 -- also points to a list of private dependents, that is to say access types
307 -- or composite types whose designated types or component types are
308 -- subtypes or derived types of the private type in question. After the
309 -- full declaration has been seen, the private dependents are updated to
310 -- indicate that they have full definitions.
312 ------------------------------------
313 -- Handling of Undefined Messages --
314 ------------------------------------
316 -- In normal mode, only the first use of an undefined identifier generates
317 -- a message. The table Urefs is used to record error messages that have
318 -- been issued so that second and subsequent ones do not generate further
319 -- messages. However, the second reference causes text to be added to the
320 -- original undefined message noting "(more references follow)". The
321 -- full error list option (-gnatf) forces messages to be generated for
322 -- every reference and disconnects the use of this table.
324 type Uref_Entry is record
325 Node : Node_Id;
326 -- Node for identifier for which original message was posted. The
327 -- Chars field of this identifier is used to detect later references
328 -- to the same identifier.
330 Err : Error_Msg_Id;
331 -- Records error message Id of original undefined message. Reset to
332 -- No_Error_Msg after the second occurrence, where it is used to add
333 -- text to the original message as described above.
335 Nvis : Boolean;
336 -- Set if the message is not visible rather than undefined
338 Loc : Source_Ptr;
339 -- Records location of error message. Used to make sure that we do
340 -- not consider a, b : undefined as two separate instances, which
341 -- would otherwise happen, since the parser converts this sequence
342 -- to a : undefined; b : undefined.
344 end record;
346 package Urefs is new Table.Table (
347 Table_Component_Type => Uref_Entry,
348 Table_Index_Type => Nat,
349 Table_Low_Bound => 1,
350 Table_Initial => 10,
351 Table_Increment => 100,
352 Table_Name => "Urefs");
354 Candidate_Renaming : Entity_Id;
355 -- Holds a candidate interpretation that appears in a subprogram renaming
356 -- declaration and does not match the given specification, but matches at
357 -- least on the first formal. Allows better error message when given
358 -- specification omits defaulted parameters, a common error.
360 -----------------------
361 -- Local Subprograms --
362 -----------------------
364 procedure Analyze_Generic_Renaming
365 (N : Node_Id;
366 K : Entity_Kind);
367 -- Common processing for all three kinds of generic renaming declarations.
368 -- Enter new name and indicate that it renames the generic unit.
370 procedure Analyze_Renamed_Character
371 (N : Node_Id;
372 New_S : Entity_Id;
373 Is_Body : Boolean);
374 -- Renamed entity is given by a character literal, which must belong
375 -- to the return type of the new entity. Is_Body indicates whether the
376 -- declaration is a renaming_as_body. If the original declaration has
377 -- already been frozen (because of an intervening body, e.g.) the body of
378 -- the function must be built now. The same applies to the following
379 -- various renaming procedures.
381 procedure Analyze_Renamed_Dereference
382 (N : Node_Id;
383 New_S : Entity_Id;
384 Is_Body : Boolean);
385 -- Renamed entity is given by an explicit dereference. Prefix must be a
386 -- conformant access_to_subprogram type.
388 procedure Analyze_Renamed_Entry
389 (N : Node_Id;
390 New_S : Entity_Id;
391 Is_Body : Boolean);
392 -- If the renamed entity in a subprogram renaming is an entry or protected
393 -- subprogram, build a body for the new entity whose only statement is a
394 -- call to the renamed entity.
396 procedure Analyze_Renamed_Family_Member
397 (N : Node_Id;
398 New_S : Entity_Id;
399 Is_Body : Boolean);
400 -- Used when the renamed entity is an indexed component. The prefix must
401 -- denote an entry family.
403 procedure Analyze_Renamed_Primitive_Operation
404 (N : Node_Id;
405 New_S : Entity_Id;
406 Is_Body : Boolean);
407 -- If the renamed entity in a subprogram renaming is a primitive operation
408 -- or a class-wide operation in prefix form, save the target object,
409 -- which must be added to the list of actuals in any subsequent call.
410 -- The renaming operation is intrinsic because the compiler must in
411 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
413 procedure Attribute_Renaming (N : Node_Id);
414 -- Analyze renaming of attribute as subprogram. The renaming declaration N
415 -- is rewritten as a subprogram body that returns the attribute reference
416 -- applied to the formals of the function.
418 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
419 -- Set Entity, with style check if need be. For a discriminant reference,
420 -- replace by the corresponding discriminal, i.e. the parameter of the
421 -- initialization procedure that corresponds to the discriminant.
423 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
424 -- A renaming_as_body may occur after the entity of the original decla-
425 -- ration has been frozen. In that case, the body of the new entity must
426 -- be built now, because the usual mechanism of building the renamed
427 -- body at the point of freezing will not work. Subp is the subprogram
428 -- for which N provides the Renaming_As_Body.
430 procedure Check_In_Previous_With_Clause (N, Nam : Node_Id);
431 -- N is a use_package clause and Nam the package name, or N is a use_type
432 -- clause and Nam is the prefix of the type name. In either case, verify
433 -- that the package is visible at that point in the context: either it
434 -- appears in a previous with_clause, or because it is a fully qualified
435 -- name and the root ancestor appears in a previous with_clause.
437 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
438 -- Verify that the entity in a renaming declaration that is a library unit
439 -- is itself a library unit and not a nested unit or subunit. Also check
440 -- that if the renaming is a child unit of a generic parent, then the
441 -- renamed unit must also be a child unit of that parent. Finally, verify
442 -- that a renamed generic unit is not an implicit child declared within
443 -- an instance of the parent.
445 procedure Chain_Use_Clause (N : Node_Id);
446 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
447 -- the proper scope table entry. This is usually the current scope, but it
448 -- will be an inner scope when installing the use clauses of the private
449 -- declarations of a parent unit prior to compiling the private part of a
450 -- child unit. This chain is traversed when installing/removing use clauses
451 -- when compiling a subunit or instantiating a generic body on the fly,
452 -- when it is necessary to save and restore full environments.
454 function Enclosing_Instance return Entity_Id;
455 -- In an instance nested within another one, several semantic checks are
456 -- unnecessary because the legality of the nested instance has been checked
457 -- in the enclosing generic unit. This applies in particular to legality
458 -- checks on actuals for formal subprograms of the inner instance, which
459 -- are checked as subprogram renamings, and may be complicated by confusion
460 -- in private/full views. This function returns the instance enclosing the
461 -- current one if there is such, else it returns Empty.
463 -- If the renaming determines the entity for the default of a formal
464 -- subprogram nested within another instance, choose the innermost
465 -- candidate. This is because if the formal has a box, and we are within
466 -- an enclosing instance where some candidate interpretations are local
467 -- to this enclosing instance, we know that the default was properly
468 -- resolved when analyzing the generic, so we prefer the local
469 -- candidates to those that are external. This is not always the case
470 -- but is a reasonable heuristic on the use of nested generics. The
471 -- proper solution requires a full renaming model.
473 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
474 -- Return the appropriate entity for determining which unit has a deeper
475 -- scope: the defining entity for U, unless U is a package instance, in
476 -- which case we retrieve the entity of the instance spec.
478 procedure Error_Missing_With_Of_Known_Unit (Pkg : Node_Id);
479 -- Display an error message denoting a "with" is missing for a given known
480 -- package Pkg with its full path name.
482 procedure Find_Expanded_Name (N : Node_Id);
483 -- The input is a selected component known to be an expanded name. Verify
484 -- legality of selector given the scope denoted by prefix, and change node
485 -- N into a expanded name with a properly set Entity field.
487 function Find_First_Use (Use_Clause : Node_Id) return Node_Id;
488 -- Find the most previous use clause (that is, the first one to appear in
489 -- the source) by traversing the previous clause chain that exists in both
490 -- N_Use_Package_Clause nodes and N_Use_Type_Clause nodes.
492 function Find_Renamed_Entity
493 (N : Node_Id;
494 Nam : Node_Id;
495 New_S : Entity_Id;
496 Is_Actual : Boolean := False) return Entity_Id;
497 -- Find the renamed entity that corresponds to the given parameter profile
498 -- in a subprogram renaming declaration. The renamed entity may be an
499 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
500 -- indicates that the renaming is the one generated for an actual subpro-
501 -- gram in an instance, for which special visibility checks apply.
503 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
504 -- Find a type derived from Character or Wide_Character in the prefix of N.
505 -- Used to resolved qualified names whose selector is a character literal.
507 function Has_Private_With (E : Entity_Id) return Boolean;
508 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
509 -- private with on E.
511 function Has_Components (Typ : Entity_Id) return Boolean;
512 -- Determine if given type has components, i.e. is either a record type or
513 -- type or a type that has discriminants.
515 function Has_Implicit_Operator (N : Node_Id) return Boolean;
516 -- N is an expanded name whose selector is an operator name (e.g. P."+").
517 -- Determine if N denotes an operator implicitly declared in prefix P: P's
518 -- declarative part contains an implicit declaration of an operator if it
519 -- has a declaration of a type to which one of the predefined operators
520 -- apply. The existence of this routine is an implementation artifact. A
521 -- more straightforward but more space-consuming choice would be to make
522 -- all inherited operators explicit in the symbol table.
524 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
525 -- A subprogram defined by a renaming declaration inherits the parameter
526 -- profile of the renamed entity. The subtypes given in the subprogram
527 -- specification are discarded and replaced with those of the renamed
528 -- subprogram, which are then used to recheck the default values.
530 function Most_Descendant_Use_Clause
531 (Clause1 : Entity_Id;
532 Clause2 : Entity_Id) return Entity_Id;
533 -- Determine which use clause parameter is the most descendant in terms of
534 -- scope.
536 procedure Premature_Usage (N : Node_Id);
537 -- Diagnose usage of an entity before it is visible
539 function Is_Self_Hidden (E : Entity_Id) return Boolean;
540 -- True within a declaration if it is hidden from all visibility by itself
541 -- (see RM-8.3(16-18)). This is mostly just "not Is_Not_Self_Hidden", but
542 -- we need to check for E_Void in case of errors.
544 procedure Use_One_Package
545 (N : Node_Id;
546 Pack_Name : Entity_Id := Empty;
547 Force : Boolean := False);
548 -- Make visible entities declared in package P potentially use-visible
549 -- in the current context. Also used in the analysis of subunits, when
550 -- re-installing use clauses of parent units. N is the use_clause that
551 -- names P (and possibly other packages).
553 procedure Use_One_Type
554 (Id : Node_Id;
555 Installed : Boolean := False;
556 Force : Boolean := False);
557 -- Id is the subtype mark from a use_type_clause. This procedure makes
558 -- the primitive operators of the type potentially use-visible. The
559 -- boolean flag Installed indicates that the clause is being reinstalled
560 -- after previous analysis, and primitive operations are already chained
561 -- on the Used_Operations list of the clause.
563 procedure Write_Info;
564 -- Write debugging information on entities declared in current scope
566 --------------------------------
567 -- Analyze_Exception_Renaming --
568 --------------------------------
570 -- The language only allows a single identifier, but the tree holds an
571 -- identifier list. The parser has already issued an error message if
572 -- there is more than one element in the list.
574 procedure Analyze_Exception_Renaming (N : Node_Id) is
575 Id : constant Entity_Id := Defining_Entity (N);
576 Nam : constant Node_Id := Name (N);
578 begin
579 Enter_Name (Id);
580 Analyze (Nam);
582 Mutate_Ekind (Id, E_Exception);
583 Set_Etype (Id, Standard_Exception_Type);
584 Set_Is_Pure (Id, Is_Pure (Current_Scope));
586 if Is_Entity_Name (Nam)
587 and then Present (Entity (Nam))
588 and then Ekind (Entity (Nam)) = E_Exception
589 then
590 if Present (Renamed_Entity (Entity (Nam))) then
591 Set_Renamed_Entity (Id, Renamed_Entity (Entity (Nam)));
592 else
593 Set_Renamed_Entity (Id, Entity (Nam));
594 end if;
596 -- The exception renaming declaration may become Ghost if it renames
597 -- a Ghost entity.
599 Mark_Ghost_Renaming (N, Entity (Nam));
600 else
601 Error_Msg_N ("invalid exception name in renaming", Nam);
602 end if;
604 -- Implementation-defined aspect specifications can appear in a renaming
605 -- declaration, but not language-defined ones. The call to procedure
606 -- Analyze_Aspect_Specifications will take care of this error check.
608 Analyze_Aspect_Specifications (N, Id);
609 end Analyze_Exception_Renaming;
611 ---------------------------
612 -- Analyze_Expanded_Name --
613 ---------------------------
615 procedure Analyze_Expanded_Name (N : Node_Id) is
616 begin
617 -- If the entity pointer is already set, this is an internal node, or a
618 -- node that is analyzed more than once, after a tree modification. In
619 -- such a case there is no resolution to perform, just set the type. In
620 -- either case, start by analyzing the prefix.
622 Analyze (Prefix (N));
624 if Present (Entity (N)) then
625 if Is_Type (Entity (N)) then
626 Set_Etype (N, Entity (N));
627 else
628 Set_Etype (N, Etype (Entity (N)));
629 end if;
631 else
632 Find_Expanded_Name (N);
633 end if;
635 -- In either case, propagate dimension of entity to expanded name
637 Analyze_Dimension (N);
638 end Analyze_Expanded_Name;
640 ---------------------------------------
641 -- Analyze_Generic_Function_Renaming --
642 ---------------------------------------
644 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
645 begin
646 Analyze_Generic_Renaming (N, E_Generic_Function);
647 end Analyze_Generic_Function_Renaming;
649 --------------------------------------
650 -- Analyze_Generic_Package_Renaming --
651 --------------------------------------
653 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
654 begin
655 -- Test for the Text_IO special unit case here, since we may be renaming
656 -- one of the subpackages of Text_IO, then join common routine.
658 Check_Text_IO_Special_Unit (Name (N));
660 Analyze_Generic_Renaming (N, E_Generic_Package);
661 end Analyze_Generic_Package_Renaming;
663 ----------------------------------------
664 -- Analyze_Generic_Procedure_Renaming --
665 ----------------------------------------
667 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
668 begin
669 Analyze_Generic_Renaming (N, E_Generic_Procedure);
670 end Analyze_Generic_Procedure_Renaming;
672 ------------------------------
673 -- Analyze_Generic_Renaming --
674 ------------------------------
676 procedure Analyze_Generic_Renaming
677 (N : Node_Id;
678 K : Entity_Kind)
680 New_P : constant Entity_Id := Defining_Entity (N);
681 Inst : Boolean := False;
682 Old_P : Entity_Id;
684 begin
685 if Name (N) = Error then
686 return;
687 end if;
689 Generate_Definition (New_P);
691 if Current_Scope /= Standard_Standard then
692 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
693 end if;
695 if Nkind (Name (N)) = N_Selected_Component then
696 Check_Generic_Child_Unit (Name (N), Inst);
697 else
698 Analyze (Name (N));
699 end if;
701 if not Is_Entity_Name (Name (N)) then
702 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
703 Old_P := Any_Id;
704 else
705 Old_P := Entity (Name (N));
706 end if;
708 Enter_Name (New_P);
709 Mutate_Ekind (New_P, K);
711 if Etype (Old_P) = Any_Type then
712 null;
714 elsif Ekind (Old_P) /= K then
715 Error_Msg_N ("invalid generic unit name", Name (N));
717 else
718 if Present (Renamed_Entity (Old_P)) then
719 Set_Renamed_Entity (New_P, Renamed_Entity (Old_P));
720 else
721 Set_Renamed_Entity (New_P, Old_P);
722 end if;
724 -- The generic renaming declaration may become Ghost if it renames a
725 -- Ghost entity.
727 Mark_Ghost_Renaming (N, Old_P);
729 Set_Is_Pure (New_P, Is_Pure (Old_P));
730 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
732 Set_Etype (New_P, Etype (Old_P));
733 Set_Has_Completion (New_P);
735 if In_Open_Scopes (Old_P) then
736 Error_Msg_N ("within its scope, generic denotes its instance", N);
737 end if;
739 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
740 -- renamings and subsequent instantiations of Unchecked_Conversion.
742 if Is_Generic_Subprogram (Old_P) then
743 Set_Is_Intrinsic_Subprogram
744 (New_P, Is_Intrinsic_Subprogram (Old_P));
745 end if;
747 Check_Library_Unit_Renaming (N, Old_P);
748 end if;
750 -- Implementation-defined aspect specifications can appear in a renaming
751 -- declaration, but not language-defined ones. The call to procedure
752 -- Analyze_Aspect_Specifications will take care of this error check.
754 Analyze_Aspect_Specifications (N, New_P);
755 end Analyze_Generic_Renaming;
757 -----------------------------
758 -- Analyze_Object_Renaming --
759 -----------------------------
761 procedure Analyze_Object_Renaming (N : Node_Id) is
762 Id : constant Entity_Id := Defining_Identifier (N);
763 Loc : constant Source_Ptr := Sloc (N);
764 Nam : constant Node_Id := Name (N);
765 Is_Object_Ref : Boolean;
766 Dec : Node_Id;
767 T : Entity_Id;
768 T2 : Entity_Id;
769 Q : Node_Id;
771 procedure Check_Constrained_Object;
772 -- If the nominal type is unconstrained but the renamed object is
773 -- constrained, as can happen with renaming an explicit dereference or
774 -- a function return, build a constrained subtype from the object. If
775 -- the renaming is for a formal in an accept statement, the analysis
776 -- has already established its actual subtype. This is only relevant
777 -- if the renamed object is an explicit dereference.
779 function Get_Object_Name (Nod : Node_Id) return Node_Id;
780 -- Obtain the name of the object from node Nod which is being renamed by
781 -- the object renaming declaration N.
783 function Find_Raise_Node (N : Node_Id) return Traverse_Result;
784 -- Process one node in search for N_Raise_xxx_Error nodes.
785 -- Return Abandon if found, OK otherwise.
787 ---------------------
788 -- Find_Raise_Node --
789 ---------------------
791 function Find_Raise_Node (N : Node_Id) return Traverse_Result is
792 begin
793 if Nkind (N) in N_Raise_xxx_Error then
794 return Abandon;
795 else
796 return OK;
797 end if;
798 end Find_Raise_Node;
800 ------------------------
801 -- No_Raise_xxx_Error --
802 ------------------------
804 function No_Raise_xxx_Error is new Traverse_Func (Find_Raise_Node);
805 -- Traverse tree to look for a N_Raise_xxx_Error node and returns
806 -- Abandon if so and OK if none found.
808 ------------------------------
809 -- Check_Constrained_Object --
810 ------------------------------
812 procedure Check_Constrained_Object is
813 Typ : constant Entity_Id := Etype (Nam);
814 Subt : Entity_Id;
815 Loop_Scheme : Node_Id;
817 begin
818 if Nkind (Nam) in N_Function_Call | N_Explicit_Dereference
819 and then Is_Composite_Type (Typ)
820 and then not Is_Constrained (Typ)
821 and then not Has_Unknown_Discriminants (Typ)
822 and then Expander_Active
823 then
824 -- If Actual_Subtype is already set, nothing to do
826 if Ekind (Id) in E_Variable | E_Constant
827 and then Present (Actual_Subtype (Id))
828 then
829 null;
831 -- A renaming of an unchecked union has no actual subtype
833 elsif Is_Unchecked_Union (Typ) then
834 null;
836 -- If a record is limited its size is invariant. This is the case
837 -- in particular with record types with an access discriminant
838 -- that are used in iterators. This is an optimization, but it
839 -- also prevents typing anomalies when the prefix is further
840 -- expanded.
842 -- Note that we cannot just use the Is_Limited_Record flag because
843 -- it does not apply to records with limited components, for which
844 -- this syntactic flag is not set, but whose size is also fixed.
846 -- Note also that we need to build the constrained subtype for an
847 -- array in order to make the bounds explicit in most cases, but
848 -- not if the object comes from an extended return statement, as
849 -- this would create dangling references to them later on.
851 elsif Is_Limited_Type (Typ)
852 and then (not Is_Array_Type (Typ) or else Is_Return_Object (Id))
853 then
854 null;
856 else
857 Subt := Make_Temporary (Loc, 'T');
858 Remove_Side_Effects (Nam);
859 Insert_Action (N,
860 Make_Subtype_Declaration (Loc,
861 Defining_Identifier => Subt,
862 Subtype_Indication =>
863 Make_Subtype_From_Expr (Nam, Typ)));
864 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
865 Set_Etype (Nam, Subt);
867 -- Suppress discriminant checks on this subtype if the original
868 -- type has defaulted discriminants and Id is a "for of" loop
869 -- iterator.
871 if Has_Defaulted_Discriminants (Typ)
872 and then Nkind (Original_Node (Parent (N))) = N_Loop_Statement
873 then
874 Loop_Scheme := Iteration_Scheme (Original_Node (Parent (N)));
876 if Present (Loop_Scheme)
877 and then Present (Iterator_Specification (Loop_Scheme))
878 and then
879 Defining_Identifier
880 (Iterator_Specification (Loop_Scheme)) = Id
881 then
882 Set_Checks_May_Be_Suppressed (Subt);
883 Push_Local_Suppress_Stack_Entry
884 (Entity => Subt,
885 Check => Discriminant_Check,
886 Suppress => True);
887 end if;
888 end if;
890 -- Freeze subtype at once, to prevent order of elaboration
891 -- issues in the backend. The renamed object exists, so its
892 -- type is already frozen in any case.
894 Freeze_Before (N, Subt);
895 end if;
896 end if;
897 end Check_Constrained_Object;
899 ---------------------
900 -- Get_Object_Name --
901 ---------------------
903 function Get_Object_Name (Nod : Node_Id) return Node_Id is
904 Obj_Nam : Node_Id;
906 begin
907 Obj_Nam := Nod;
908 while Present (Obj_Nam) loop
909 case Nkind (Obj_Nam) is
910 when N_Attribute_Reference
911 | N_Explicit_Dereference
912 | N_Indexed_Component
913 | N_Slice
915 Obj_Nam := Prefix (Obj_Nam);
917 when N_Selected_Component =>
918 Obj_Nam := Selector_Name (Obj_Nam);
920 when N_Qualified_Expression | N_Type_Conversion =>
921 Obj_Nam := Expression (Obj_Nam);
923 when others =>
924 exit;
925 end case;
926 end loop;
928 return Obj_Nam;
929 end Get_Object_Name;
931 -- Start of processing for Analyze_Object_Renaming
933 begin
934 if Nam = Error then
935 return;
936 end if;
938 Set_Is_Pure (Id, Is_Pure (Current_Scope));
939 Enter_Name (Id);
941 -- The renaming of a component that depends on a discriminant requires
942 -- an actual subtype, because in subsequent use of the object Gigi will
943 -- be unable to locate the actual bounds. This explicit step is required
944 -- when the renaming is generated in removing side effects of an
945 -- already-analyzed expression.
947 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
949 -- The object renaming declaration may become Ghost if it renames a
950 -- Ghost entity.
952 if Is_Entity_Name (Nam) then
953 Mark_Ghost_Renaming (N, Entity (Nam));
954 end if;
956 T := Etype (Nam);
957 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
959 if Present (Dec) then
960 Insert_Action (N, Dec);
961 T := Defining_Identifier (Dec);
962 Set_Etype (Nam, T);
963 end if;
964 elsif Present (Subtype_Mark (N))
965 or else No (Access_Definition (N))
966 then
967 if Present (Subtype_Mark (N)) then
968 Find_Type (Subtype_Mark (N));
969 T := Entity (Subtype_Mark (N));
970 Analyze (Nam);
972 -- AI12-0275: Case of object renaming without a subtype_mark
974 else
975 Analyze (Nam);
977 -- Normal case of no overloading in object name
979 if not Is_Overloaded (Nam) then
981 -- Catch error cases (such as attempting to rename a procedure
982 -- or package) using the shorthand form.
984 if No (Etype (Nam))
985 or else Etype (Nam) = Standard_Void_Type
986 then
987 Error_Msg_N
988 ("object name or value expected in renaming", Nam);
990 Mutate_Ekind (Id, E_Variable);
991 Set_Etype (Id, Any_Type);
993 return;
995 else
996 T := Etype (Nam);
997 end if;
999 -- Case of overloaded name, which will be illegal if there's more
1000 -- than one acceptable interpretation (such as overloaded function
1001 -- calls).
1003 else
1004 declare
1005 I : Interp_Index;
1006 I1 : Interp_Index;
1007 It : Interp;
1008 It1 : Interp;
1009 Nam1 : Entity_Id;
1011 begin
1012 -- More than one candidate interpretation is available
1014 -- Remove procedure calls, which syntactically cannot appear
1015 -- in this context, but which cannot be removed by type
1016 -- checking, because the context does not impose a type.
1018 Get_First_Interp (Nam, I, It);
1019 while Present (It.Typ) loop
1020 if It.Typ = Standard_Void_Type then
1021 Remove_Interp (I);
1022 end if;
1024 Get_Next_Interp (I, It);
1025 end loop;
1027 Get_First_Interp (Nam, I, It);
1028 I1 := I;
1029 It1 := It;
1031 -- If there's no type present, we have an error case (such
1032 -- as overloaded procedures named in the object renaming).
1034 if No (It.Typ) then
1035 Error_Msg_N
1036 ("object name or value expected in renaming", Nam);
1038 Mutate_Ekind (Id, E_Variable);
1039 Set_Etype (Id, Any_Type);
1041 return;
1042 end if;
1044 Get_Next_Interp (I, It);
1046 if Present (It.Typ) then
1047 Nam1 := It1.Nam;
1048 It1 := Disambiguate (Nam, I1, I, Any_Type);
1050 if It1 = No_Interp then
1051 Error_Msg_N ("ambiguous name in object renaming", Nam);
1053 Error_Msg_Sloc := Sloc (It.Nam);
1054 Error_Msg_N ("\\possible interpretation#!", Nam);
1056 Error_Msg_Sloc := Sloc (Nam1);
1057 Error_Msg_N ("\\possible interpretation#!", Nam);
1059 return;
1060 end if;
1061 end if;
1063 Set_Etype (Nam, It1.Typ);
1064 T := It1.Typ;
1065 end;
1066 end if;
1068 if Etype (Nam) = Standard_Exception_Type then
1069 Error_Msg_N
1070 ("exception requires a subtype mark in renaming", Nam);
1071 return;
1072 end if;
1073 end if;
1075 -- The object renaming declaration may become Ghost if it renames a
1076 -- Ghost entity.
1078 if Is_Entity_Name (Nam) then
1079 Mark_Ghost_Renaming (N, Entity (Nam));
1080 end if;
1082 -- Check against AI12-0401 here before Resolve may rewrite Nam and
1083 -- potentially generate spurious warnings.
1085 -- In the case where the object_name is a qualified_expression with
1086 -- a nominal subtype T and whose expression is a name that denotes
1087 -- an object Q:
1088 -- * if T is an elementary subtype, then:
1089 -- * Q shall be a constant other than a dereference of an access
1090 -- type; or
1091 -- * the nominal subtype of Q shall be statically compatible with
1092 -- T; or
1093 -- * T shall statically match the base subtype of its type if
1094 -- scalar, or the first subtype of its type if an access type.
1095 -- * if T is a composite subtype, then Q shall be known to be
1096 -- constrained or T shall statically match the first subtype of
1097 -- its type.
1099 if Nkind (Nam) = N_Qualified_Expression
1100 and then Is_Object_Reference (Expression (Nam))
1101 then
1102 Q := Expression (Nam);
1104 if (Is_Elementary_Type (T)
1105 and then
1106 not ((not Is_Variable (Q)
1107 and then Nkind (Q) /= N_Explicit_Dereference)
1108 or else Subtypes_Statically_Compatible (Etype (Q), T)
1109 or else (Is_Scalar_Type (T)
1110 and then Subtypes_Statically_Match
1111 (T, Base_Type (T)))
1112 or else (Is_Access_Type (T)
1113 and then Subtypes_Statically_Match
1114 (T, First_Subtype (T)))))
1115 or else (Is_Composite_Type (T)
1116 and then
1118 -- If Q is an aggregate, Is_Constrained may not be set
1119 -- yet and its type may not be resolved yet.
1120 -- This doesn't quite correspond to the complex notion
1121 -- of "known to be constrained" but this is good enough
1122 -- for a rule which is in any case too complex.
1124 not (Is_Constrained (Etype (Q))
1125 or else Nkind (Q) = N_Aggregate
1126 or else Subtypes_Statically_Match
1127 (T, First_Subtype (T))))
1128 then
1129 Error_Msg_N
1130 ("subtype of renamed qualified expression does not " &
1131 "statically match", N);
1132 return;
1133 end if;
1134 end if;
1136 Resolve (Nam, T);
1138 -- If the renamed object is a function call of a limited type,
1139 -- the expansion of the renaming is complicated by the presence
1140 -- of various temporaries and subtypes that capture constraints
1141 -- of the renamed object. Rewrite node as an object declaration,
1142 -- whose expansion is simpler. Given that the object is limited
1143 -- there is no copy involved and no performance hit.
1145 if Nkind (Nam) = N_Function_Call
1146 and then Is_Inherently_Limited_Type (Etype (Nam))
1147 and then not Is_Constrained (Etype (Nam))
1148 and then Comes_From_Source (N)
1149 then
1150 Set_Etype (Id, T);
1151 Mutate_Ekind (Id, E_Constant);
1152 Rewrite (N,
1153 Make_Object_Declaration (Loc,
1154 Defining_Identifier => Id,
1155 Constant_Present => True,
1156 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
1157 Expression => Relocate_Node (Nam)));
1158 return;
1159 end if;
1161 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
1162 -- when renaming declaration has a named access type. The Ada 2012
1163 -- coverage rules allow an anonymous access type in the context of
1164 -- an expected named general access type, but the renaming rules
1165 -- require the types to be the same. (An exception is when the type
1166 -- of the renaming is also an anonymous access type, which can only
1167 -- happen due to a renaming created by the expander.)
1169 if Nkind (Nam) = N_Type_Conversion
1170 and then not Comes_From_Source (Nam)
1171 and then Is_Anonymous_Access_Type (Etype (Expression (Nam)))
1172 and then not Is_Anonymous_Access_Type (T)
1173 then
1174 Error_Msg_NE
1175 ("cannot rename anonymous access object "
1176 & "as a named access type", Expression (Nam), T);
1177 end if;
1179 -- Check that a class-wide object is not being renamed as an object
1180 -- of a specific type. The test for access types is needed to exclude
1181 -- cases where the renamed object is a dynamically tagged access
1182 -- result, such as occurs in certain expansions.
1184 if Is_Tagged_Type (T) then
1185 Check_Dynamically_Tagged_Expression
1186 (Expr => Nam,
1187 Typ => T,
1188 Related_Nod => N);
1189 end if;
1191 -- Ada 2005 (AI-230/AI-254): Access renaming
1193 else pragma Assert (Present (Access_Definition (N)));
1194 T :=
1195 Access_Definition
1196 (Related_Nod => N,
1197 N => Access_Definition (N));
1199 Analyze (Nam);
1201 -- The object renaming declaration may become Ghost if it renames a
1202 -- Ghost entity.
1204 if Is_Entity_Name (Nam) then
1205 Mark_Ghost_Renaming (N, Entity (Nam));
1206 end if;
1208 -- Ada 2005 AI05-105: if the declaration has an anonymous access
1209 -- type, the renamed object must also have an anonymous type, and
1210 -- this is a name resolution rule. This was implicit in the last part
1211 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
1212 -- recent AI.
1214 if not Is_Overloaded (Nam) then
1215 if Ekind (Etype (Nam)) /= Ekind (T) then
1216 Error_Msg_N
1217 ("expect anonymous access type in object renaming", N);
1218 end if;
1220 else
1221 declare
1222 I : Interp_Index;
1223 It : Interp;
1224 Typ : Entity_Id := Empty;
1225 Seen : Boolean := False;
1227 begin
1228 Get_First_Interp (Nam, I, It);
1229 while Present (It.Typ) loop
1231 -- Renaming is ambiguous if more than one candidate
1232 -- interpretation is type-conformant with the context.
1234 if Ekind (It.Typ) = Ekind (T) then
1235 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
1236 and then
1237 Type_Conformant
1238 (Designated_Type (T), Designated_Type (It.Typ))
1239 then
1240 if not Seen then
1241 Seen := True;
1242 else
1243 Error_Msg_N
1244 ("ambiguous expression in renaming", Nam);
1245 end if;
1247 elsif Ekind (T) = E_Anonymous_Access_Type
1248 and then
1249 Covers (Designated_Type (T), Designated_Type (It.Typ))
1250 then
1251 if not Seen then
1252 Seen := True;
1253 else
1254 Error_Msg_N
1255 ("ambiguous expression in renaming", Nam);
1256 end if;
1257 end if;
1259 if Covers (T, It.Typ) then
1260 Typ := It.Typ;
1261 Set_Etype (Nam, Typ);
1262 Set_Is_Overloaded (Nam, False);
1263 end if;
1264 end if;
1266 Get_Next_Interp (I, It);
1267 end loop;
1268 end;
1269 end if;
1271 Resolve (Nam, T);
1273 -- Do not perform the legality checks below when the resolution of
1274 -- the renaming name failed because the associated type is Any_Type.
1276 if Etype (Nam) = Any_Type then
1277 null;
1279 -- Ada 2005 (AI-231): In the case where the type is defined by an
1280 -- access_definition, the renamed entity shall be of an access-to-
1281 -- constant type if and only if the access_definition defines an
1282 -- access-to-constant type. ARM 8.5.1(4)
1284 elsif Constant_Present (Access_Definition (N))
1285 and then not Is_Access_Constant (Etype (Nam))
1286 then
1287 Error_Msg_N
1288 ("(Ada 2005): the renamed object is not access-to-constant "
1289 & "(RM 8.5.1(6))", N);
1291 elsif not Constant_Present (Access_Definition (N))
1292 and then Is_Access_Constant (Etype (Nam))
1293 then
1294 Error_Msg_N
1295 ("(Ada 2005): the renamed object is not access-to-variable "
1296 & "(RM 8.5.1(6))", N);
1297 end if;
1299 if Is_Access_Subprogram_Type (Etype (Nam)) then
1300 Check_Subtype_Conformant
1301 (Designated_Type (T), Designated_Type (Etype (Nam)));
1303 elsif not Subtypes_Statically_Match
1304 (Designated_Type (T),
1305 Available_View (Designated_Type (Etype (Nam))))
1306 then
1307 Error_Msg_N
1308 ("subtype of renamed object does not statically match", N);
1309 end if;
1310 end if;
1312 -- Special processing for renaming function return object. Some errors
1313 -- and warnings are produced only for calls that come from source.
1315 if Nkind (Nam) = N_Function_Call then
1316 case Ada_Version is
1318 -- Usage is illegal in Ada 83, but renamings are also introduced
1319 -- during expansion, and error does not apply to those.
1321 when Ada_83 =>
1322 if Comes_From_Source (N) then
1323 Error_Msg_N
1324 ("(Ada 83) cannot rename function return object", Nam);
1325 end if;
1327 -- In Ada 95, warn for odd case of renaming parameterless function
1328 -- call if this is not a limited type (where this is useful).
1330 when others =>
1331 if Warn_On_Object_Renames_Function
1332 and then No (Parameter_Associations (Nam))
1333 and then not Is_Limited_Type (Etype (Nam))
1334 and then Comes_From_Source (Nam)
1335 then
1336 Error_Msg_N
1337 ("renaming function result object is suspicious?.r?", Nam);
1338 Error_Msg_NE
1339 ("\function & will be called only once?.r?", Nam,
1340 Entity (Name (Nam)));
1341 Error_Msg_N -- CODEFIX
1342 ("\suggest using an initialized constant object "
1343 & "instead?.r?", Nam);
1344 end if;
1345 end case;
1346 end if;
1348 Check_Constrained_Object;
1350 -- An object renaming requires an exact match of the type. Class-wide
1351 -- matching is not allowed.
1353 if Is_Class_Wide_Type (T)
1354 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1355 then
1356 Wrong_Type (Nam, T);
1357 end if;
1359 -- We must search for an actual subtype here so that the bounds of
1360 -- objects of unconstrained types don't get dropped on the floor - such
1361 -- as with renamings of formal parameters.
1363 T2 := Get_Actual_Subtype_If_Available (Nam);
1365 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1367 if Nkind (Nam) = N_Explicit_Dereference
1368 and then Ekind (Etype (T2)) = E_Incomplete_Type
1369 then
1370 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1371 return;
1373 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1374 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1375 return;
1376 end if;
1378 if Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1379 declare
1380 Nam_Ent : constant Entity_Id := Entity (Get_Object_Name (Nam));
1381 Nam_Decl : constant Node_Id := Declaration_Node (Nam_Ent);
1383 begin
1384 if Has_Null_Exclusion (N)
1385 and then not Has_Null_Exclusion (Nam_Decl)
1386 then
1387 -- Ada 2005 (AI-423): If the object name denotes a generic
1388 -- formal object of a generic unit G, and the object renaming
1389 -- declaration occurs within the body of G or within the body
1390 -- of a generic unit declared within the declarative region
1391 -- of G, then the declaration of the formal object of G must
1392 -- have a null exclusion or a null-excluding subtype.
1394 if Is_Formal_Object (Nam_Ent)
1395 and then In_Generic_Scope (Id)
1396 then
1397 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1398 Error_Msg_N
1399 ("object does not exclude `NULL` "
1400 & "(RM 8.5.1(4.6/2))", N);
1402 elsif In_Package_Body (Scope (Id)) then
1403 Error_Msg_N
1404 ("formal object does not have a null exclusion"
1405 & "(RM 8.5.1(4.6/2))", N);
1406 end if;
1408 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1409 -- shall exclude null.
1411 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1412 Error_Msg_N
1413 ("object does not exclude `NULL` "
1414 & "(RM 8.5.1(4.6/2))", N);
1416 -- An instance is illegal if it contains a renaming that
1417 -- excludes null, and the actual does not. The renaming
1418 -- declaration has already indicated that the declaration
1419 -- of the renamed actual in the instance will raise
1420 -- constraint_error.
1422 elsif Nkind (Nam_Decl) = N_Object_Declaration
1423 and then In_Instance
1424 and then
1425 Present (Corresponding_Generic_Association (Nam_Decl))
1426 and then Nkind (Expression (Nam_Decl)) =
1427 N_Raise_Constraint_Error
1428 then
1429 Error_Msg_N
1430 ("actual does not exclude `NULL` (RM 8.5.1(4.6/2))", N);
1432 -- Finally, if there is a null exclusion, the subtype mark
1433 -- must not be null-excluding.
1435 elsif No (Access_Definition (N))
1436 and then Can_Never_Be_Null (T)
1437 then
1438 Error_Msg_NE
1439 ("`NOT NULL` not allowed (& already excludes null)",
1440 N, T);
1442 end if;
1444 elsif Can_Never_Be_Null (T)
1445 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1446 then
1447 Error_Msg_N
1448 ("object does not exclude `NULL` (RM 8.5.1(4.6/2))", N);
1450 elsif Has_Null_Exclusion (N)
1451 and then No (Access_Definition (N))
1452 and then Can_Never_Be_Null (T)
1453 then
1454 Error_Msg_NE
1455 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1456 end if;
1457 end;
1458 end if;
1460 -- Set the Ekind of the entity, unless it has been set already, as is
1461 -- the case for the iteration object over a container with no variable
1462 -- indexing. In that case it's been marked as a constant, and we do not
1463 -- want to change it to a variable.
1465 if Ekind (Id) /= E_Constant then
1466 Mutate_Ekind (Id, E_Variable);
1467 end if;
1469 Reinit_Object_Size_Align (Id);
1471 -- If N comes from source then check that the original node is an
1472 -- object reference since there may have been several rewritting and
1473 -- folding. Do not do this for N_Function_Call or N_Explicit_Dereference
1474 -- which might correspond to rewrites of e.g. N_Selected_Component
1475 -- (for example Object.Method rewriting).
1476 -- If N does not come from source then assume the tree is properly
1477 -- formed and accept any object reference. In such cases we do support
1478 -- more cases of renamings anyway, so the actual check on which renaming
1479 -- is valid is better left to the code generator as a last sanity
1480 -- check.
1482 if Comes_From_Source (N) then
1483 if Nkind (Nam) in N_Function_Call | N_Explicit_Dereference then
1484 Is_Object_Ref := Is_Object_Reference (Nam);
1485 else
1486 Is_Object_Ref := Is_Object_Reference (Original_Node (Nam));
1487 end if;
1488 else
1489 Is_Object_Ref := True;
1490 end if;
1492 if T = Any_Type or else Etype (Nam) = Any_Type then
1493 return;
1495 -- Verify that the renamed entity is an object or function call
1497 elsif Is_Object_Ref then
1498 if Comes_From_Source (N) then
1499 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1500 Error_Msg_N
1501 ("illegal renaming of discriminant-dependent component", Nam);
1502 end if;
1504 -- If the renaming comes from source and the renamed object is a
1505 -- dereference, then mark the prefix as needing debug information,
1506 -- since it might have been rewritten hence internally generated
1507 -- and Debug_Renaming_Declaration will link the renaming to it.
1509 if Nkind (Nam) = N_Explicit_Dereference
1510 and then Is_Entity_Name (Prefix (Nam))
1511 then
1512 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1513 end if;
1514 end if;
1516 -- Weird but legal, equivalent to renaming a function call. Illegal
1517 -- if the literal is the result of constant-folding an attribute
1518 -- reference that is not a function.
1520 elsif Is_Entity_Name (Nam)
1521 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1522 and then Nkind (Original_Node (Nam)) /= N_Attribute_Reference
1523 then
1524 null;
1526 -- A named number can only be renamed without a subtype mark
1528 elsif Nkind (Nam) in N_Real_Literal | N_Integer_Literal
1529 and then Present (Subtype_Mark (N))
1530 and then Present (Original_Entity (Nam))
1531 then
1532 Error_Msg_N ("incompatible types in renaming", Nam);
1534 -- AI12-0383: Names that denote values can be renamed.
1535 -- Ignore (accept) N_Raise_xxx_Error nodes in this context.
1537 elsif No_Raise_xxx_Error (Nam) = OK then
1538 Error_Msg_Ada_2022_Feature ("value in renaming", Sloc (Nam));
1539 end if;
1541 Set_Etype (Id, T2);
1543 if not Is_Variable (Nam) then
1544 Mutate_Ekind (Id, E_Constant);
1545 Set_Never_Set_In_Source (Id, True);
1546 Set_Is_True_Constant (Id, True);
1547 end if;
1549 -- The entity of the renaming declaration needs to reflect whether the
1550 -- renamed object is atomic, independent, volatile or VFA. These flags
1551 -- are set on the renamed object in the RM legality sense.
1553 Set_Is_Atomic (Id, Is_Atomic_Object (Nam));
1554 Set_Is_Independent (Id, Is_Independent_Object (Nam));
1555 Set_Is_Volatile (Id, Is_Volatile_Object_Ref (Nam));
1556 Set_Is_Volatile_Full_Access
1557 (Id, Is_Volatile_Full_Access_Object_Ref (Nam));
1559 -- Treat as volatile if we just set the Volatile flag
1561 if Is_Volatile (Id)
1563 -- Or if we are renaming an entity which was marked this way
1565 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1567 or else (Is_Entity_Name (Nam)
1568 and then Treat_As_Volatile (Entity (Nam)))
1569 then
1570 Set_Treat_As_Volatile (Id, True);
1571 end if;
1573 -- Now make the link to the renamed object
1575 Set_Renamed_Object (Id, Nam);
1577 -- Implementation-defined aspect specifications can appear in a renaming
1578 -- declaration, but not language-defined ones. The call to procedure
1579 -- Analyze_Aspect_Specifications will take care of this error check.
1581 Analyze_Aspect_Specifications (N, Id);
1583 -- Deal with dimensions
1585 Analyze_Dimension (N);
1586 end Analyze_Object_Renaming;
1588 ------------------------------
1589 -- Analyze_Package_Renaming --
1590 ------------------------------
1592 procedure Analyze_Package_Renaming (N : Node_Id) is
1593 New_P : constant Entity_Id := Defining_Entity (N);
1594 Old_P : Entity_Id;
1595 Spec : Node_Id;
1597 begin
1598 if Name (N) = Error then
1599 return;
1600 end if;
1602 -- Check for Text_IO special units (we may be renaming a Text_IO child),
1603 -- but make sure not to catch renamings generated for package instances
1604 -- that have nothing to do with them but are nevertheless homonyms.
1606 if Is_Entity_Name (Name (N))
1607 and then Present (Entity (Name (N)))
1608 and then Is_Generic_Instance (Entity (Name (N)))
1609 then
1610 null;
1611 else
1612 Check_Text_IO_Special_Unit (Name (N));
1613 end if;
1615 if Current_Scope /= Standard_Standard then
1616 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1617 end if;
1619 Enter_Name (New_P);
1620 Analyze (Name (N));
1622 if Is_Entity_Name (Name (N)) then
1623 Old_P := Entity (Name (N));
1624 else
1625 Old_P := Any_Id;
1626 end if;
1628 if Etype (Old_P) = Any_Type then
1629 Error_Msg_N ("expect package name in renaming", Name (N));
1631 elsif Ekind (Old_P) /= E_Package
1632 and then not (Ekind (Old_P) = E_Generic_Package
1633 and then In_Open_Scopes (Old_P))
1634 then
1635 if Ekind (Old_P) = E_Generic_Package then
1636 Error_Msg_N
1637 ("generic package cannot be renamed as a package", Name (N));
1638 else
1639 Error_Msg_Sloc := Sloc (Old_P);
1640 Error_Msg_NE
1641 ("expect package name in renaming, found& declared#",
1642 Name (N), Old_P);
1643 end if;
1645 -- Set basic attributes to minimize cascaded errors
1647 Mutate_Ekind (New_P, E_Package);
1648 Set_Etype (New_P, Standard_Void_Type);
1650 elsif Present (Renamed_Entity (Old_P))
1651 and then (From_Limited_With (Renamed_Entity (Old_P))
1652 or else Has_Limited_View (Renamed_Entity (Old_P)))
1653 and then not
1654 Unit_Is_Visible (Cunit (Get_Source_Unit (Renamed_Entity (Old_P))))
1655 then
1656 Error_Msg_NE
1657 ("renaming of limited view of package & not usable in this context"
1658 & " (RM 8.5.3(3.1/2))", Name (N), Renamed_Entity (Old_P));
1660 -- Set basic attributes to minimize cascaded errors
1662 Mutate_Ekind (New_P, E_Package);
1663 Set_Etype (New_P, Standard_Void_Type);
1665 -- Here for OK package renaming
1667 else
1668 -- Entities in the old package are accessible through the renaming
1669 -- entity. The simplest implementation is to have both packages share
1670 -- the entity list.
1672 Mutate_Ekind (New_P, E_Package);
1673 Set_Etype (New_P, Standard_Void_Type);
1675 if Present (Renamed_Entity (Old_P)) then
1676 Set_Renamed_Entity (New_P, Renamed_Entity (Old_P));
1677 else
1678 Set_Renamed_Entity (New_P, Old_P);
1679 end if;
1681 -- The package renaming declaration may become Ghost if it renames a
1682 -- Ghost entity.
1684 Mark_Ghost_Renaming (N, Old_P);
1686 Set_Has_Completion (New_P);
1687 Set_First_Entity (New_P, First_Entity (Old_P));
1688 Set_Last_Entity (New_P, Last_Entity (Old_P));
1689 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1690 Check_Library_Unit_Renaming (N, Old_P);
1691 Generate_Reference (Old_P, Name (N));
1693 -- If the renaming is in the visible part of a package, then we set
1694 -- Renamed_In_Spec for the renamed package, to prevent giving
1695 -- warnings about no entities referenced. Such a warning would be
1696 -- overenthusiastic, since clients can see entities in the renamed
1697 -- package via the visible package renaming.
1699 declare
1700 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1701 begin
1702 if Ekind (Ent) = E_Package
1703 and then not In_Private_Part (Ent)
1704 and then In_Extended_Main_Source_Unit (N)
1705 and then Ekind (Old_P) = E_Package
1706 then
1707 Set_Renamed_In_Spec (Old_P);
1708 end if;
1709 end;
1711 -- If this is the renaming declaration of a package instantiation
1712 -- within itself, it is the declaration that ends the list of actuals
1713 -- for the instantiation. At this point, the subtypes that rename
1714 -- the actuals are flagged as generic, to avoid spurious ambiguities
1715 -- if the actuals for two distinct formals happen to coincide. If
1716 -- the actual is a private type, the subtype has a private completion
1717 -- that is flagged in the same fashion.
1719 -- Resolution is identical to what is was in the original generic.
1720 -- On exit from the generic instance, these are turned into regular
1721 -- subtypes again, so they are compatible with types in their class.
1723 if not Is_Generic_Instance (Old_P) then
1724 return;
1725 else
1726 Spec := Specification (Unit_Declaration_Node (Old_P));
1727 end if;
1729 if Nkind (Spec) = N_Package_Specification
1730 and then Present (Generic_Parent (Spec))
1731 and then Old_P = Current_Scope
1732 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1733 then
1734 declare
1735 E : Entity_Id;
1737 begin
1738 E := First_Entity (Old_P);
1739 while Present (E) and then E /= New_P loop
1740 if Is_Type (E)
1741 and then Nkind (Parent (E)) = N_Subtype_Declaration
1742 then
1743 Set_Is_Generic_Actual_Type (E);
1745 if Is_Private_Type (E)
1746 and then Present (Full_View (E))
1747 then
1748 Set_Is_Generic_Actual_Type (Full_View (E));
1749 end if;
1750 end if;
1752 Next_Entity (E);
1753 end loop;
1754 end;
1755 end if;
1756 end if;
1758 -- Implementation-defined aspect specifications can appear in a renaming
1759 -- declaration, but not language-defined ones. The call to procedure
1760 -- Analyze_Aspect_Specifications will take care of this error check.
1762 Analyze_Aspect_Specifications (N, New_P);
1763 end Analyze_Package_Renaming;
1765 -------------------------------
1766 -- Analyze_Renamed_Character --
1767 -------------------------------
1769 procedure Analyze_Renamed_Character
1770 (N : Node_Id;
1771 New_S : Entity_Id;
1772 Is_Body : Boolean)
1774 C : constant Node_Id := Name (N);
1776 begin
1777 if Ekind (New_S) = E_Function then
1778 Resolve (C, Etype (New_S));
1780 if Is_Body then
1781 Check_Frozen_Renaming (N, New_S);
1782 end if;
1784 else
1785 Error_Msg_N ("character literal can only be renamed as function", N);
1786 end if;
1787 end Analyze_Renamed_Character;
1789 ---------------------------------
1790 -- Analyze_Renamed_Dereference --
1791 ---------------------------------
1793 procedure Analyze_Renamed_Dereference
1794 (N : Node_Id;
1795 New_S : Entity_Id;
1796 Is_Body : Boolean)
1798 Nam : constant Node_Id := Name (N);
1799 P : constant Node_Id := Prefix (Nam);
1800 Typ : Entity_Id;
1801 Ind : Interp_Index;
1802 It : Interp;
1804 begin
1805 if not Is_Overloaded (P) then
1806 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1807 or else not Type_Conformant (Etype (Nam), New_S)
1808 then
1809 Error_Msg_N ("designated type does not match specification", P);
1810 else
1811 Resolve (P);
1812 end if;
1814 return;
1816 else
1817 Typ := Any_Type;
1818 Get_First_Interp (Nam, Ind, It);
1820 while Present (It.Nam) loop
1822 if Ekind (It.Nam) = E_Subprogram_Type
1823 and then Type_Conformant (It.Nam, New_S)
1824 then
1825 if Typ /= Any_Id then
1826 Error_Msg_N ("ambiguous renaming", P);
1827 return;
1828 else
1829 Typ := It.Nam;
1830 end if;
1831 end if;
1833 Get_Next_Interp (Ind, It);
1834 end loop;
1836 if Typ = Any_Type then
1837 Error_Msg_N ("designated type does not match specification", P);
1838 else
1839 Resolve (N, Typ);
1841 if Is_Body then
1842 Check_Frozen_Renaming (N, New_S);
1843 end if;
1844 end if;
1845 end if;
1846 end Analyze_Renamed_Dereference;
1848 ---------------------------
1849 -- Analyze_Renamed_Entry --
1850 ---------------------------
1852 procedure Analyze_Renamed_Entry
1853 (N : Node_Id;
1854 New_S : Entity_Id;
1855 Is_Body : Boolean)
1857 Nam : constant Node_Id := Name (N);
1858 Sel : constant Node_Id := Selector_Name (Nam);
1859 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1860 Old_S : Entity_Id;
1862 begin
1863 if Entity (Sel) = Any_Id then
1865 -- Selector is undefined on prefix. Error emitted already
1867 Set_Has_Completion (New_S);
1868 return;
1869 end if;
1871 -- Otherwise find renamed entity and build body of New_S as a call to it
1873 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1875 if Old_S = Any_Id then
1876 Error_Msg_N ("no subprogram or entry matches specification", N);
1877 else
1878 if Is_Body then
1879 Check_Subtype_Conformant (New_S, Old_S, N);
1880 Generate_Reference (New_S, Defining_Entity (N), 'b');
1881 Style.Check_Identifier (Defining_Entity (N), New_S);
1883 else
1884 -- Only mode conformance required for a renaming_as_declaration
1886 Check_Mode_Conformant (New_S, Old_S, N);
1887 end if;
1889 Inherit_Renamed_Profile (New_S, Old_S);
1891 -- The prefix can be an arbitrary expression that yields a task or
1892 -- protected object, so it must be resolved.
1894 if Is_Access_Type (Etype (Prefix (Nam))) then
1895 Insert_Explicit_Dereference (Prefix (Nam));
1896 end if;
1897 Resolve (Prefix (Nam), Scope (Old_S));
1898 end if;
1900 Set_Convention (New_S, Convention (Old_S));
1901 Set_Has_Completion (New_S, Inside_A_Generic);
1903 -- AI05-0225: If the renamed entity is a procedure or entry of a
1904 -- protected object, the target object must be a variable.
1906 if Is_Protected_Type (Scope (Old_S))
1907 and then Ekind (New_S) = E_Procedure
1908 and then not Is_Variable (Prefix (Nam))
1909 then
1910 if Is_Actual then
1911 Error_Msg_N
1912 ("target object of protected operation used as actual for "
1913 & "formal procedure must be a variable", Nam);
1914 else
1915 Error_Msg_N
1916 ("target object of protected operation renamed as procedure, "
1917 & "must be a variable", Nam);
1918 end if;
1919 end if;
1921 if Is_Body then
1922 Check_Frozen_Renaming (N, New_S);
1923 end if;
1924 end Analyze_Renamed_Entry;
1926 -----------------------------------
1927 -- Analyze_Renamed_Family_Member --
1928 -----------------------------------
1930 procedure Analyze_Renamed_Family_Member
1931 (N : Node_Id;
1932 New_S : Entity_Id;
1933 Is_Body : Boolean)
1935 Nam : constant Node_Id := Name (N);
1936 P : constant Node_Id := Prefix (Nam);
1937 Old_S : Entity_Id;
1939 begin
1940 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1941 or else (Nkind (P) = N_Selected_Component
1942 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1943 then
1944 if Is_Entity_Name (P) then
1945 Old_S := Entity (P);
1946 else
1947 Old_S := Entity (Selector_Name (P));
1948 end if;
1950 if not Entity_Matches_Spec (Old_S, New_S) then
1951 Error_Msg_N ("entry family does not match specification", N);
1953 elsif Is_Body then
1954 Check_Subtype_Conformant (New_S, Old_S, N);
1955 Generate_Reference (New_S, Defining_Entity (N), 'b');
1956 Style.Check_Identifier (Defining_Entity (N), New_S);
1957 end if;
1959 else
1960 Error_Msg_N ("no entry family matches specification", N);
1961 end if;
1963 Set_Has_Completion (New_S, Inside_A_Generic);
1965 if Is_Body then
1966 Check_Frozen_Renaming (N, New_S);
1967 end if;
1968 end Analyze_Renamed_Family_Member;
1970 -----------------------------------------
1971 -- Analyze_Renamed_Primitive_Operation --
1972 -----------------------------------------
1974 procedure Analyze_Renamed_Primitive_Operation
1975 (N : Node_Id;
1976 New_S : Entity_Id;
1977 Is_Body : Boolean)
1979 Old_S : Entity_Id;
1980 Nam : Entity_Id;
1982 function Conforms
1983 (Subp : Entity_Id;
1984 Ctyp : Conformance_Type) return Boolean;
1985 -- Verify that the signatures of the renamed entity and the new entity
1986 -- match. The first formal of the renamed entity is skipped because it
1987 -- is the target object in any subsequent call.
1989 --------------
1990 -- Conforms --
1991 --------------
1993 function Conforms
1994 (Subp : Entity_Id;
1995 Ctyp : Conformance_Type) return Boolean
1997 Old_F : Entity_Id;
1998 New_F : Entity_Id;
2000 begin
2001 if Ekind (Subp) /= Ekind (New_S) then
2002 return False;
2003 end if;
2005 Old_F := Next_Formal (First_Formal (Subp));
2006 New_F := First_Formal (New_S);
2007 while Present (Old_F) and then Present (New_F) loop
2008 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
2009 return False;
2010 end if;
2012 if Ctyp >= Mode_Conformant
2013 and then Ekind (Old_F) /= Ekind (New_F)
2014 then
2015 return False;
2016 end if;
2018 Next_Formal (New_F);
2019 Next_Formal (Old_F);
2020 end loop;
2022 return True;
2023 end Conforms;
2025 -- Start of processing for Analyze_Renamed_Primitive_Operation
2027 begin
2028 if not Is_Overloaded (Selector_Name (Name (N))) then
2029 Old_S := Entity (Selector_Name (Name (N)));
2031 if not Conforms (Old_S, Type_Conformant) then
2032 Old_S := Any_Id;
2033 end if;
2035 else
2036 -- Find the operation that matches the given signature
2038 declare
2039 It : Interp;
2040 Ind : Interp_Index;
2042 begin
2043 Old_S := Any_Id;
2044 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
2046 while Present (It.Nam) loop
2047 if Conforms (It.Nam, Type_Conformant) then
2048 Old_S := It.Nam;
2049 end if;
2051 Get_Next_Interp (Ind, It);
2052 end loop;
2053 end;
2054 end if;
2056 if Old_S = Any_Id then
2057 Error_Msg_N ("no subprogram or entry matches specification", N);
2059 else
2060 if Is_Body then
2061 if not Conforms (Old_S, Subtype_Conformant) then
2062 Error_Msg_N ("subtype conformance error in renaming", N);
2063 end if;
2065 Generate_Reference (New_S, Defining_Entity (N), 'b');
2066 Style.Check_Identifier (Defining_Entity (N), New_S);
2068 else
2069 -- Only mode conformance required for a renaming_as_declaration
2071 if not Conforms (Old_S, Mode_Conformant) then
2072 Error_Msg_N ("mode conformance error in renaming", N);
2073 end if;
2075 -- AI12-0204: The prefix of a prefixed view that is renamed or
2076 -- passed as a formal subprogram must be renamable as an object.
2078 Nam := Prefix (Name (N));
2080 if Is_Object_Reference (Nam) then
2081 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
2082 Error_Msg_N
2083 ("illegal renaming of discriminant-dependent component",
2084 Nam);
2085 end if;
2086 else
2087 Error_Msg_N ("expect object name in renaming", Nam);
2088 end if;
2090 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
2091 -- view of a subprogram is intrinsic, because the compiler has
2092 -- to generate a wrapper for any call to it. If the name in a
2093 -- subprogram renaming is a prefixed view, the entity is thus
2094 -- intrinsic, and 'Access cannot be applied to it.
2096 Set_Convention (New_S, Convention_Intrinsic);
2097 end if;
2099 -- Inherit_Renamed_Profile (New_S, Old_S);
2101 -- The prefix can be an arbitrary expression that yields an
2102 -- object, so it must be resolved.
2104 Resolve (Prefix (Name (N)));
2105 end if;
2106 end Analyze_Renamed_Primitive_Operation;
2108 ---------------------------------
2109 -- Analyze_Subprogram_Renaming --
2110 ---------------------------------
2112 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
2113 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
2114 Is_Actual : constant Boolean := Present (Formal_Spec);
2115 Nam : constant Node_Id := Name (N);
2116 Save_AV : constant Ada_Version_Type := Ada_Version;
2117 Save_AVP : constant Node_Id := Ada_Version_Pragma;
2118 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
2119 Spec : constant Node_Id := Specification (N);
2121 Old_S : Entity_Id := Empty;
2122 Rename_Spec : Entity_Id;
2124 procedure Check_Null_Exclusion
2125 (Ren : Entity_Id;
2126 Sub : Entity_Id);
2127 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
2128 -- following AI rules:
2130 -- If Ren denotes a generic formal object of a generic unit G, and the
2131 -- renaming (or instantiation containing the actual) occurs within the
2132 -- body of G or within the body of a generic unit declared within the
2133 -- declarative region of G, then the corresponding parameter of G
2134 -- shall have a null_exclusion; Otherwise the subtype of the Sub's
2135 -- formal parameter shall exclude null.
2137 -- Similarly for its return profile.
2139 procedure Check_SPARK_Primitive_Operation (Subp_Id : Entity_Id);
2140 -- Ensure that a SPARK renaming denoted by its entity Subp_Id does not
2141 -- declare a primitive operation of a tagged type (SPARK RM 6.1.1(3)).
2143 procedure Freeze_Actual_Profile;
2144 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
2145 -- types: a callable entity freezes its profile, unless it has an
2146 -- incomplete untagged formal (RM 13.14(10.2/3)).
2148 function Has_Class_Wide_Actual return Boolean;
2149 -- Ada 2012 (AI05-071, AI05-0131) and Ada 2022 (AI12-0165): True if N is
2150 -- the renaming for a defaulted formal subprogram where the actual for
2151 -- the controlling formal type is class-wide.
2153 procedure Handle_Instance_With_Class_Wide_Type
2154 (Inst_Node : Node_Id;
2155 Ren_Id : Entity_Id;
2156 Wrapped_Prim : out Entity_Id;
2157 Wrap_Id : out Entity_Id);
2158 -- Ada 2012 (AI05-0071), Ada 2022 (AI12-0165): when the actual type
2159 -- of an instantiation is a class-wide type T'Class we may need to
2160 -- wrap a primitive operation of T; this routine looks for a suitable
2161 -- primitive to be wrapped and (if the wrapper is required) returns the
2162 -- Id of the wrapped primitive and the Id of the built wrapper. Ren_Id
2163 -- is the defining entity for the renamed subprogram specification.
2165 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
2166 -- Find renamed entity when the declaration is a renaming_as_body and
2167 -- the renamed entity may itself be a renaming_as_body. Used to enforce
2168 -- rule that a renaming_as_body is illegal if the declaration occurs
2169 -- before the subprogram it completes is frozen, and renaming indirectly
2170 -- renames the subprogram itself.(Defect Report 8652/0027).
2172 --------------------------
2173 -- Check_Null_Exclusion --
2174 --------------------------
2176 procedure Check_Null_Exclusion
2177 (Ren : Entity_Id;
2178 Sub : Entity_Id)
2180 Ren_Formal : Entity_Id;
2181 Sub_Formal : Entity_Id;
2183 function Null_Exclusion_Mismatch
2184 (Renaming : Entity_Id; Renamed : Entity_Id) return Boolean;
2185 -- Return True if there is a null exclusion mismatch between
2186 -- Renaming and Renamed, False otherwise.
2188 -----------------------------
2189 -- Null_Exclusion_Mismatch --
2190 -----------------------------
2192 function Null_Exclusion_Mismatch
2193 (Renaming : Entity_Id; Renamed : Entity_Id) return Boolean is
2194 begin
2195 return Has_Null_Exclusion (Parent (Renaming))
2196 and then
2197 not (Has_Null_Exclusion (Parent (Renamed))
2198 or else (Can_Never_Be_Null (Etype (Renamed))
2199 and then not
2200 (Is_Formal_Subprogram (Sub)
2201 and then In_Generic_Body (Current_Scope))));
2202 end Null_Exclusion_Mismatch;
2204 begin
2205 -- Parameter check
2207 Ren_Formal := First_Formal (Ren);
2208 Sub_Formal := First_Formal (Sub);
2209 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2210 if Null_Exclusion_Mismatch (Ren_Formal, Sub_Formal) then
2211 Error_Msg_Sloc := Sloc (Sub_Formal);
2212 Error_Msg_NE
2213 ("`NOT NULL` required for parameter &#",
2214 Ren_Formal, Sub_Formal);
2215 end if;
2217 Next_Formal (Ren_Formal);
2218 Next_Formal (Sub_Formal);
2219 end loop;
2221 -- Return profile check
2223 if Nkind (Parent (Ren)) = N_Function_Specification
2224 and then Nkind (Parent (Sub)) = N_Function_Specification
2225 and then Null_Exclusion_Mismatch (Ren, Sub)
2226 then
2227 Error_Msg_Sloc := Sloc (Sub);
2228 Error_Msg_N ("return must specify `NOT NULL`#", Ren);
2229 end if;
2230 end Check_Null_Exclusion;
2232 -------------------------------------
2233 -- Check_SPARK_Primitive_Operation --
2234 -------------------------------------
2236 procedure Check_SPARK_Primitive_Operation (Subp_Id : Entity_Id) is
2237 Prag : constant Node_Id := SPARK_Pragma (Subp_Id);
2238 Typ : Entity_Id;
2240 begin
2241 -- Nothing to do when the subprogram is not subject to SPARK_Mode On
2242 -- because this check applies to SPARK code only.
2244 if not (Present (Prag)
2245 and then Get_SPARK_Mode_From_Annotation (Prag) = On)
2246 then
2247 return;
2249 -- Nothing to do when the subprogram is not a primitive operation
2251 elsif not Is_Primitive (Subp_Id) then
2252 return;
2253 end if;
2255 Typ := Find_Dispatching_Type (Subp_Id);
2257 -- Nothing to do when the subprogram is a primitive operation of an
2258 -- untagged type.
2260 if No (Typ) then
2261 return;
2262 end if;
2264 -- At this point a renaming declaration introduces a new primitive
2265 -- operation for a tagged type.
2267 Error_Msg_Node_2 := Typ;
2268 Error_Msg_NE
2269 ("subprogram renaming & cannot declare primitive for type & "
2270 & "(SPARK RM 6.1.1(3))", N, Subp_Id);
2271 end Check_SPARK_Primitive_Operation;
2273 ---------------------------
2274 -- Freeze_Actual_Profile --
2275 ---------------------------
2277 procedure Freeze_Actual_Profile is
2278 F : Entity_Id;
2279 Has_Untagged_Inc : Boolean;
2280 Instantiation_Node : constant Node_Id := Parent (N);
2282 begin
2283 if Ada_Version >= Ada_2012 then
2284 F := First_Formal (Formal_Spec);
2285 Has_Untagged_Inc := False;
2286 while Present (F) loop
2287 if Ekind (Etype (F)) = E_Incomplete_Type
2288 and then not Is_Tagged_Type (Etype (F))
2289 then
2290 Has_Untagged_Inc := True;
2291 exit;
2292 end if;
2294 Next_Formal (F);
2295 end loop;
2297 if Ekind (Formal_Spec) = E_Function
2298 and then not Is_Tagged_Type (Etype (Formal_Spec))
2299 then
2300 Has_Untagged_Inc := True;
2301 end if;
2303 if not Has_Untagged_Inc then
2304 F := First_Formal (Old_S);
2305 while Present (F) loop
2306 Freeze_Before (Instantiation_Node, Etype (F));
2308 if Is_Incomplete_Or_Private_Type (Etype (F))
2309 and then No (Underlying_Type (Etype (F)))
2310 then
2311 -- Exclude generic types, or types derived from them.
2312 -- They will be frozen in the enclosing instance.
2314 if Is_Generic_Type (Etype (F))
2315 or else Is_Generic_Type (Root_Type (Etype (F)))
2316 then
2317 null;
2319 -- A limited view of a type declared elsewhere needs no
2320 -- freezing actions.
2322 elsif From_Limited_With (Etype (F)) then
2323 null;
2325 else
2326 Error_Msg_NE
2327 ("type& must be frozen before this point",
2328 Instantiation_Node, Etype (F));
2329 end if;
2330 end if;
2332 Next_Formal (F);
2333 end loop;
2334 end if;
2335 end if;
2336 end Freeze_Actual_Profile;
2338 ---------------------------
2339 -- Has_Class_Wide_Actual --
2340 ---------------------------
2342 function Has_Class_Wide_Actual return Boolean is
2343 Formal : Entity_Id;
2344 Formal_Typ : Entity_Id;
2346 begin
2347 if Is_Actual then
2348 Formal := First_Formal (Formal_Spec);
2349 while Present (Formal) loop
2350 Formal_Typ := Etype (Formal);
2352 if Has_Unknown_Discriminants (Formal_Typ)
2353 and then not Is_Class_Wide_Type (Formal_Typ)
2354 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2355 then
2356 return True;
2357 end if;
2359 Next_Formal (Formal);
2360 end loop;
2361 end if;
2363 return False;
2364 end Has_Class_Wide_Actual;
2366 ------------------------------------------
2367 -- Handle_Instance_With_Class_Wide_Type --
2368 ------------------------------------------
2370 procedure Handle_Instance_With_Class_Wide_Type
2371 (Inst_Node : Node_Id;
2372 Ren_Id : Entity_Id;
2373 Wrapped_Prim : out Entity_Id;
2374 Wrap_Id : out Entity_Id)
2376 procedure Build_Class_Wide_Wrapper
2377 (Ren_Id : Entity_Id;
2378 Prim_Op : Entity_Id;
2379 Wrap_Id : out Entity_Id);
2380 -- Build a wrapper for the renaming Ren_Id of subprogram Prim_Op.
2382 procedure Find_Suitable_Candidate
2383 (Prim_Op : out Entity_Id;
2384 Is_CW_Prim : out Boolean);
2385 -- Look for a suitable primitive to be wrapped (Prim_Op); Is_CW_Prim
2386 -- indicates that the found candidate is a class-wide primitive (to
2387 -- help the caller decide if the wrapper is required).
2389 ------------------------------
2390 -- Build_Class_Wide_Wrapper --
2391 ------------------------------
2393 procedure Build_Class_Wide_Wrapper
2394 (Ren_Id : Entity_Id;
2395 Prim_Op : Entity_Id;
2396 Wrap_Id : out Entity_Id)
2398 Loc : constant Source_Ptr := Sloc (N);
2400 function Build_Call
2401 (Subp_Id : Entity_Id;
2402 Params : List_Id) return Node_Id;
2403 -- Create a dispatching call to invoke routine Subp_Id with
2404 -- actuals built from the parameter specifications of list Params.
2406 function Build_Expr_Fun_Call
2407 (Subp_Id : Entity_Id;
2408 Params : List_Id) return Node_Id;
2409 -- Create a dispatching call to invoke function Subp_Id with
2410 -- actuals built from the parameter specifications of list Params.
2411 -- Directly return the call, so that it can be used inside an
2412 -- expression function. This is a requirement of GNATprove mode.
2414 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
2415 -- Create a subprogram specification based on the subprogram
2416 -- profile of Subp_Id.
2418 ----------------
2419 -- Build_Call --
2420 ----------------
2422 function Build_Call
2423 (Subp_Id : Entity_Id;
2424 Params : List_Id) return Node_Id
2426 Actuals : constant List_Id := New_List;
2427 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2428 Formal : Node_Id;
2430 begin
2431 -- Build the actual parameters of the call
2433 Formal := First (Params);
2434 while Present (Formal) loop
2435 Append_To (Actuals,
2436 Make_Identifier (Loc,
2437 Chars (Defining_Identifier (Formal))));
2438 Next (Formal);
2439 end loop;
2441 -- Generate:
2442 -- return Subp_Id (Actuals);
2444 if Ekind (Subp_Id) in E_Function | E_Operator then
2445 return
2446 Make_Simple_Return_Statement (Loc,
2447 Expression =>
2448 Make_Function_Call (Loc,
2449 Name => Call_Ref,
2450 Parameter_Associations => Actuals));
2452 -- Generate:
2453 -- Subp_Id (Actuals);
2455 else
2456 return
2457 Make_Procedure_Call_Statement (Loc,
2458 Name => Call_Ref,
2459 Parameter_Associations => Actuals);
2460 end if;
2461 end Build_Call;
2463 -------------------------
2464 -- Build_Expr_Fun_Call --
2465 -------------------------
2467 function Build_Expr_Fun_Call
2468 (Subp_Id : Entity_Id;
2469 Params : List_Id) return Node_Id
2471 Actuals : constant List_Id := New_List;
2472 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2473 Formal : Node_Id;
2475 begin
2476 pragma Assert (Ekind (Subp_Id) in E_Function | E_Operator);
2478 -- Build the actual parameters of the call
2480 Formal := First (Params);
2481 while Present (Formal) loop
2482 Append_To (Actuals,
2483 Make_Identifier (Loc,
2484 Chars (Defining_Identifier (Formal))));
2485 Next (Formal);
2486 end loop;
2488 -- Generate:
2489 -- Subp_Id (Actuals);
2491 return
2492 Make_Function_Call (Loc,
2493 Name => Call_Ref,
2494 Parameter_Associations => Actuals);
2495 end Build_Expr_Fun_Call;
2497 ----------------
2498 -- Build_Spec --
2499 ----------------
2501 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2502 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2503 Spec_Id : constant Entity_Id :=
2504 Make_Defining_Identifier (Loc,
2505 New_External_Name (Chars (Subp_Id), 'R'));
2507 begin
2508 if Ekind (Formal_Spec) = E_Procedure then
2509 return
2510 Make_Procedure_Specification (Loc,
2511 Defining_Unit_Name => Spec_Id,
2512 Parameter_Specifications => Params);
2513 else
2514 return
2515 Make_Function_Specification (Loc,
2516 Defining_Unit_Name => Spec_Id,
2517 Parameter_Specifications => Params,
2518 Result_Definition =>
2519 New_Copy_Tree (Result_Definition (Spec)));
2520 end if;
2521 end Build_Spec;
2523 -- Local variables
2525 Body_Decl : Node_Id;
2526 Spec_Decl : Node_Id;
2527 New_Spec : Node_Id;
2529 -- Start of processing for Build_Class_Wide_Wrapper
2531 begin
2532 pragma Assert (not Error_Posted (Nam));
2534 -- Step 1: Create the declaration and the body of the wrapper,
2535 -- insert all the pieces into the tree.
2537 -- In GNATprove mode, create a function wrapper in the form of an
2538 -- expression function, so that an implicit postcondition relating
2539 -- the result of calling the wrapper function and the result of
2540 -- the dispatching call to the wrapped function is known during
2541 -- proof.
2543 if GNATprove_Mode
2544 and then Ekind (Ren_Id) in E_Function | E_Operator
2545 then
2546 New_Spec := Build_Spec (Ren_Id);
2547 Body_Decl :=
2548 Make_Expression_Function (Loc,
2549 Specification => New_Spec,
2550 Expression =>
2551 Build_Expr_Fun_Call
2552 (Subp_Id => Prim_Op,
2553 Params => Parameter_Specifications (New_Spec)));
2555 Wrap_Id := Defining_Entity (Body_Decl);
2557 -- Otherwise, create separate spec and body for the subprogram
2559 else
2560 Spec_Decl :=
2561 Make_Subprogram_Declaration (Loc,
2562 Specification => Build_Spec (Ren_Id));
2563 Insert_Before_And_Analyze (N, Spec_Decl);
2565 Wrap_Id := Defining_Entity (Spec_Decl);
2567 Body_Decl :=
2568 Make_Subprogram_Body (Loc,
2569 Specification => Build_Spec (Ren_Id),
2570 Declarations => New_List,
2571 Handled_Statement_Sequence =>
2572 Make_Handled_Sequence_Of_Statements (Loc,
2573 Statements => New_List (
2574 Build_Call
2575 (Subp_Id => Prim_Op,
2576 Params =>
2577 Parameter_Specifications
2578 (Specification (Spec_Decl))))));
2580 Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
2581 end if;
2583 Set_Is_Class_Wide_Wrapper (Wrap_Id);
2585 -- If the operator carries an Eliminated pragma, indicate that
2586 -- the wrapper is also to be eliminated, to prevent spurious
2587 -- errors when using gnatelim on programs that include box-
2588 -- defaulted initialization of equality operators.
2590 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2592 -- In GNATprove mode, insert the body in the tree for analysis
2594 if GNATprove_Mode then
2595 Insert_Before_And_Analyze (N, Body_Decl);
2596 end if;
2598 -- The generated body does not freeze and must be analyzed when
2599 -- the class-wide wrapper is frozen. The body is only needed if
2600 -- expansion is enabled.
2602 if Expander_Active then
2603 Append_Freeze_Action (Wrap_Id, Body_Decl);
2604 end if;
2606 -- Step 2: The subprogram renaming aliases the wrapper
2608 Rewrite (Name (N), New_Occurrence_Of (Wrap_Id, Loc));
2609 end Build_Class_Wide_Wrapper;
2611 -----------------------------
2612 -- Find_Suitable_Candidate --
2613 -----------------------------
2615 procedure Find_Suitable_Candidate
2616 (Prim_Op : out Entity_Id;
2617 Is_CW_Prim : out Boolean)
2619 Loc : constant Source_Ptr := Sloc (N);
2621 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
2622 -- Find a primitive subprogram of type Typ which matches the
2623 -- profile of the renaming declaration.
2625 procedure Interpretation_Error (Subp_Id : Entity_Id);
2626 -- Emit a continuation error message suggesting subprogram Subp_Id
2627 -- as a possible interpretation.
2629 function Is_Intrinsic_Equality
2630 (Subp_Id : Entity_Id) return Boolean;
2631 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
2632 -- operator.
2634 function Is_Suitable_Candidate
2635 (Subp_Id : Entity_Id) return Boolean;
2636 -- Determine whether subprogram Subp_Id is a suitable candidate
2637 -- for the role of a wrapped subprogram.
2639 --------------------
2640 -- Find_Primitive --
2641 --------------------
2643 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2644 procedure Replace_Parameter_Types (Spec : Node_Id);
2645 -- Given a specification Spec, replace all class-wide parameter
2646 -- types with reference to type Typ.
2648 -----------------------------
2649 -- Replace_Parameter_Types --
2650 -----------------------------
2652 procedure Replace_Parameter_Types (Spec : Node_Id) is
2653 Formal : Node_Id;
2654 Formal_Id : Entity_Id;
2655 Formal_Typ : Node_Id;
2657 begin
2658 Formal := First (Parameter_Specifications (Spec));
2659 while Present (Formal) loop
2660 Formal_Id := Defining_Identifier (Formal);
2661 Formal_Typ := Parameter_Type (Formal);
2663 -- Create a new entity for each class-wide formal to
2664 -- prevent aliasing with the original renaming. Replace
2665 -- the type of such a parameter with the candidate type.
2667 if Nkind (Formal_Typ) = N_Identifier
2668 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2669 then
2670 Set_Defining_Identifier (Formal,
2671 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2673 Set_Parameter_Type (Formal,
2674 New_Occurrence_Of (Typ, Loc));
2675 end if;
2677 Next (Formal);
2678 end loop;
2679 end Replace_Parameter_Types;
2681 -- Local variables
2683 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2684 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2685 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2686 Subp_Id : Entity_Id;
2688 -- Start of processing for Find_Primitive
2690 begin
2691 -- Each attempt to find a suitable primitive of a particular
2692 -- type operates on its own copy of the original renaming.
2693 -- As a result the original renaming is kept decoration and
2694 -- side-effect free.
2696 -- Inherit the overloaded status of the renamed subprogram name
2698 if Is_Overloaded (Nam) then
2699 Set_Is_Overloaded (Alt_Nam);
2700 Save_Interps (Nam, Alt_Nam);
2701 end if;
2703 -- The copied renaming is hidden from visibility to prevent the
2704 -- pollution of the enclosing context.
2706 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2708 -- The types of all class-wide parameters must be changed to
2709 -- the candidate type.
2711 Replace_Parameter_Types (Alt_Spec);
2713 -- Try to find a suitable primitive that matches the altered
2714 -- profile of the renaming specification.
2716 Subp_Id :=
2717 Find_Renamed_Entity
2718 (N => Alt_Ren,
2719 Nam => Name (Alt_Ren),
2720 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2721 Is_Actual => Is_Actual);
2723 -- Do not return Any_Id if the resolution of the altered
2724 -- profile failed as this complicates further checks on
2725 -- the caller side; return Empty instead.
2727 if Subp_Id = Any_Id then
2728 return Empty;
2729 else
2730 return Subp_Id;
2731 end if;
2732 end Find_Primitive;
2734 --------------------------
2735 -- Interpretation_Error --
2736 --------------------------
2738 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2739 begin
2740 Error_Msg_Sloc := Sloc (Subp_Id);
2742 if Is_Internal (Subp_Id) then
2743 Error_Msg_NE
2744 ("\\possible interpretation: predefined & #",
2745 Spec, Formal_Spec);
2746 else
2747 Error_Msg_NE
2748 ("\\possible interpretation: & defined #",
2749 Spec, Formal_Spec);
2750 end if;
2751 end Interpretation_Error;
2753 ---------------------------
2754 -- Is_Intrinsic_Equality --
2755 ---------------------------
2757 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean
2759 begin
2760 return
2761 Ekind (Subp_Id) = E_Operator
2762 and then Chars (Subp_Id) = Name_Op_Eq
2763 and then Is_Intrinsic_Subprogram (Subp_Id);
2764 end Is_Intrinsic_Equality;
2766 ---------------------------
2767 -- Is_Suitable_Candidate --
2768 ---------------------------
2770 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean
2772 begin
2773 if No (Subp_Id) then
2774 return False;
2776 -- An intrinsic subprogram is never a good candidate. This
2777 -- is an indication of a missing primitive, either defined
2778 -- directly or inherited from a parent tagged type.
2780 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2781 return False;
2783 else
2784 return True;
2785 end if;
2786 end Is_Suitable_Candidate;
2788 -- Local variables
2790 Actual_Typ : Entity_Id := Empty;
2791 -- The actual class-wide type for Formal_Typ
2793 CW_Prim_OK : Boolean;
2794 CW_Prim_Op : Entity_Id;
2795 -- The class-wide subprogram (if available) that corresponds to
2796 -- the renamed generic formal subprogram.
2798 Formal_Typ : Entity_Id := Empty;
2799 -- The generic formal type with unknown discriminants
2801 Root_Prim_OK : Boolean;
2802 Root_Prim_Op : Entity_Id;
2803 -- The root type primitive (if available) that corresponds to the
2804 -- renamed generic formal subprogram.
2806 Root_Typ : Entity_Id := Empty;
2807 -- The root type of Actual_Typ
2809 Formal : Node_Id;
2811 -- Start of processing for Find_Suitable_Candidate
2813 begin
2814 pragma Assert (not Error_Posted (Nam));
2816 Prim_Op := Empty;
2817 Is_CW_Prim := False;
2819 -- Analyze the renamed name, but do not resolve it. The resolution
2820 -- is completed once a suitable subprogram is found.
2822 Analyze (Nam);
2824 -- When the renamed name denotes the intrinsic operator equals,
2825 -- the name must be treated as overloaded. This allows for a
2826 -- potential match against the root type's predefined equality
2827 -- function.
2829 if Is_Intrinsic_Equality (Entity (Nam)) then
2830 Set_Is_Overloaded (Nam);
2831 Collect_Interps (Nam);
2832 end if;
2834 -- Step 1: Find the generic formal type and its corresponding
2835 -- class-wide actual type from the renamed generic formal
2836 -- subprogram.
2838 Formal := First_Formal (Formal_Spec);
2839 while Present (Formal) loop
2840 if Has_Unknown_Discriminants (Etype (Formal))
2841 and then not Is_Class_Wide_Type (Etype (Formal))
2842 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2843 then
2844 Formal_Typ := Etype (Formal);
2845 Actual_Typ := Base_Type (Get_Instance_Of (Formal_Typ));
2846 Root_Typ := Root_Type (Actual_Typ);
2847 exit;
2848 end if;
2850 Next_Formal (Formal);
2851 end loop;
2853 -- The specification of the generic formal subprogram should
2854 -- always contain a formal type with unknown discriminants whose
2855 -- actual is a class-wide type; otherwise this indicates a failure
2856 -- in function Has_Class_Wide_Actual.
2858 pragma Assert (Present (Formal_Typ));
2860 -- Step 2: Find the proper class-wide subprogram or primitive
2861 -- that corresponds to the renamed generic formal subprogram.
2863 CW_Prim_Op := Find_Primitive (Actual_Typ);
2864 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2865 Root_Prim_Op := Find_Primitive (Root_Typ);
2866 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2868 -- The class-wide actual type has two subprograms that correspond
2869 -- to the renamed generic formal subprogram:
2871 -- with procedure Prim_Op (Param : Formal_Typ);
2873 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2874 -- procedure Prim_Op (Param : Actual_Typ'Class);
2876 -- Even though the declaration of the two subprograms is legal, a
2877 -- call to either one is ambiguous and therefore illegal.
2879 if CW_Prim_OK and Root_Prim_OK then
2881 -- A user-defined primitive has precedence over a predefined
2882 -- one.
2884 if Is_Internal (CW_Prim_Op)
2885 and then not Is_Internal (Root_Prim_Op)
2886 then
2887 Prim_Op := Root_Prim_Op;
2889 elsif Is_Internal (Root_Prim_Op)
2890 and then not Is_Internal (CW_Prim_Op)
2891 then
2892 Prim_Op := CW_Prim_Op;
2893 Is_CW_Prim := True;
2895 elsif CW_Prim_Op = Root_Prim_Op then
2896 Prim_Op := Root_Prim_Op;
2898 -- The two subprograms are legal but the class-wide subprogram
2899 -- is a class-wide wrapper built for a previous instantiation;
2900 -- the wrapper has precedence.
2902 elsif Present (Alias (CW_Prim_Op))
2903 and then Is_Class_Wide_Wrapper (Ultimate_Alias (CW_Prim_Op))
2904 then
2905 Prim_Op := CW_Prim_Op;
2906 Is_CW_Prim := True;
2908 -- Otherwise both candidate subprograms are user-defined and
2909 -- ambiguous.
2911 else
2912 Error_Msg_NE
2913 ("ambiguous actual for generic subprogram &",
2914 Spec, Formal_Spec);
2915 Interpretation_Error (Root_Prim_Op);
2916 Interpretation_Error (CW_Prim_Op);
2917 return;
2918 end if;
2920 elsif CW_Prim_OK and not Root_Prim_OK then
2921 Prim_Op := CW_Prim_Op;
2922 Is_CW_Prim := True;
2924 elsif not CW_Prim_OK and Root_Prim_OK then
2925 Prim_Op := Root_Prim_Op;
2927 -- An intrinsic equality may act as a suitable candidate in the
2928 -- case of a null type extension where the parent's equality
2929 -- is hidden. A call to an intrinsic equality is expanded as
2930 -- dispatching.
2932 elsif Present (Root_Prim_Op)
2933 and then Is_Intrinsic_Equality (Root_Prim_Op)
2934 then
2935 Prim_Op := Root_Prim_Op;
2937 -- Otherwise there are no candidate subprograms. Let the caller
2938 -- diagnose the error.
2940 else
2941 return;
2942 end if;
2944 -- At this point resolution has taken place and the name is no
2945 -- longer overloaded. Mark the primitive as referenced.
2947 Set_Is_Overloaded (Name (N), False);
2948 Set_Referenced (Prim_Op);
2949 end Find_Suitable_Candidate;
2951 -- Local variables
2953 Is_CW_Prim : Boolean;
2955 -- Start of processing for Handle_Instance_With_Class_Wide_Type
2957 begin
2958 Wrapped_Prim := Empty;
2959 Wrap_Id := Empty;
2961 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a
2962 -- formal type with unknown discriminants and a generic primitive
2963 -- operation of the said type with a box require special processing
2964 -- when the actual is a class-wide type:
2966 -- generic
2967 -- type Formal_Typ (<>) is private;
2968 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
2969 -- package Gen is ...
2971 -- package Inst is new Gen (Actual_Typ'Class);
2973 -- In this case the general renaming mechanism used in the prologue
2974 -- of an instance no longer applies:
2976 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
2978 -- The above is replaced the following wrapper/renaming combination:
2980 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
2981 -- begin
2982 -- Prim_Op (Param); -- primitive
2983 -- end Wrapper;
2985 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
2987 -- This transformation applies only if there is no explicit visible
2988 -- class-wide operation at the point of the instantiation. Ren_Id is
2989 -- the entity of the renaming declaration. When the transformation
2990 -- applies, Wrapped_Prim is the entity of the wrapped primitive.
2992 if Box_Present (Inst_Node) then
2993 Find_Suitable_Candidate
2994 (Prim_Op => Wrapped_Prim,
2995 Is_CW_Prim => Is_CW_Prim);
2997 if Present (Wrapped_Prim) then
2998 if not Is_CW_Prim then
2999 Build_Class_Wide_Wrapper (Ren_Id, Wrapped_Prim, Wrap_Id);
3001 -- Small optimization: When the candidate is a class-wide
3002 -- subprogram we don't build the wrapper; we modify the
3003 -- renaming declaration to directly map the actual to the
3004 -- generic formal and discard the candidate.
3006 else
3007 Rewrite (Nam, New_Occurrence_Of (Wrapped_Prim, Sloc (N)));
3008 Wrapped_Prim := Empty;
3009 end if;
3010 end if;
3012 -- Ada 2022 (AI12-0165, RM 12.6(8.5/3)): The actual subprogram for a
3013 -- formal_abstract_subprogram_declaration shall be:
3014 -- a) a dispatching operation of the controlling type; or
3015 -- b) if the controlling type is a formal type, and the actual
3016 -- type corresponding to that formal type is a specific type T,
3017 -- a dispatching operation of type T; or
3018 -- c) if the controlling type is a formal type, and the actual
3019 -- type is a class-wide type T'Class, an implicitly declared
3020 -- subprogram corresponding to a primitive operation of type T.
3022 elsif Nkind (Inst_Node) = N_Formal_Abstract_Subprogram_Declaration
3023 and then Is_Entity_Name (Nam)
3024 then
3025 Find_Suitable_Candidate
3026 (Prim_Op => Wrapped_Prim,
3027 Is_CW_Prim => Is_CW_Prim);
3029 if Present (Wrapped_Prim) then
3031 -- Cases (a) and (b); see previous description.
3033 if not Is_CW_Prim then
3034 Build_Class_Wide_Wrapper (Ren_Id, Wrapped_Prim, Wrap_Id);
3036 -- Case (c); see previous description.
3038 -- Implicit operations of T'Class for subtype declarations
3039 -- are built by Derive_Subprogram, and their Alias attribute
3040 -- references the primitive operation of T.
3042 elsif not Comes_From_Source (Wrapped_Prim)
3043 and then Nkind (Parent (Wrapped_Prim)) = N_Subtype_Declaration
3044 and then Present (Alias (Wrapped_Prim))
3045 then
3046 -- We don't need to build the wrapper; we modify the
3047 -- renaming declaration to directly map the actual to
3048 -- the generic formal and discard the candidate.
3050 Rewrite (Nam,
3051 New_Occurrence_Of (Alias (Wrapped_Prim), Sloc (N)));
3052 Wrapped_Prim := Empty;
3054 -- Legality rules do not apply; discard the candidate.
3056 else
3057 Wrapped_Prim := Empty;
3058 end if;
3059 end if;
3060 end if;
3061 end Handle_Instance_With_Class_Wide_Type;
3063 -------------------------
3064 -- Original_Subprogram --
3065 -------------------------
3067 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
3068 Orig_Decl : Node_Id;
3069 Orig_Subp : Entity_Id;
3071 begin
3072 -- First case: renamed entity is itself a renaming
3074 if Present (Alias (Subp)) then
3075 return Alias (Subp);
3077 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
3078 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
3079 then
3080 -- Check if renamed entity is a renaming_as_body
3082 Orig_Decl :=
3083 Unit_Declaration_Node
3084 (Corresponding_Body (Unit_Declaration_Node (Subp)));
3086 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
3087 Orig_Subp := Entity (Name (Orig_Decl));
3089 if Orig_Subp = Rename_Spec then
3091 -- Circularity detected
3093 return Orig_Subp;
3095 else
3096 return (Original_Subprogram (Orig_Subp));
3097 end if;
3098 else
3099 return Subp;
3100 end if;
3101 else
3102 return Subp;
3103 end if;
3104 end Original_Subprogram;
3106 -- Local variables
3108 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
3109 -- Ada 2012 (AI05-071, AI05-0131) and Ada 2022 (AI12-0165): True if the
3110 -- renaming is for a defaulted formal subprogram when the actual for a
3111 -- related formal type is class-wide.
3113 Inst_Node : Node_Id := Empty;
3114 New_S : Entity_Id := Empty;
3115 Wrapped_Prim : Entity_Id := Empty;
3117 -- Start of processing for Analyze_Subprogram_Renaming
3119 begin
3120 -- We must test for the attribute renaming case before the Analyze
3121 -- call because otherwise Sem_Attr will complain that the attribute
3122 -- is missing an argument when it is analyzed.
3124 if Nkind (Nam) = N_Attribute_Reference then
3126 -- In the case of an abstract formal subprogram association, rewrite
3127 -- an actual given by a stream or Put_Image attribute as the name of
3128 -- the corresponding stream or Put_Image primitive of the type.
3130 -- In a generic context the stream and Put_Image operations are not
3131 -- generated, and this must be treated as a normal attribute
3132 -- reference, to be expanded in subsequent instantiations.
3134 if Is_Actual
3135 and then Is_Abstract_Subprogram (Formal_Spec)
3136 and then Expander_Active
3137 then
3138 declare
3139 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
3140 Prim : Entity_Id;
3142 begin
3143 -- The class-wide forms of the stream and Put_Image attributes
3144 -- are not primitive dispatching operations (even though they
3145 -- internally dispatch).
3147 if Is_Class_Wide_Type (Prefix_Type) then
3148 Error_Msg_N
3149 ("attribute must be a primitive dispatching operation",
3150 Nam);
3151 return;
3152 end if;
3154 -- Retrieve the primitive subprogram associated with the
3155 -- attribute. This can only be a stream attribute, since those
3156 -- are the only ones that are dispatching (and the actual for
3157 -- an abstract formal subprogram must be dispatching
3158 -- operation).
3160 case Attribute_Name (Nam) is
3161 when Name_Input =>
3162 Prim :=
3163 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Input);
3165 when Name_Output =>
3166 Prim :=
3167 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Output);
3169 when Name_Read =>
3170 Prim :=
3171 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Read);
3173 when Name_Write =>
3174 Prim :=
3175 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Write);
3177 when Name_Put_Image =>
3178 Prim :=
3179 Find_Optional_Prim_Op (Prefix_Type, TSS_Put_Image);
3181 when others =>
3182 Error_Msg_N
3183 ("attribute must be a primitive dispatching operation",
3184 Nam);
3185 return;
3186 end case;
3188 -- If no stream operation was found, and the type is limited,
3189 -- the user should have defined one. This rule does not apply
3190 -- to Put_Image.
3192 if No (Prim)
3193 and then Attribute_Name (Nam) /= Name_Put_Image
3194 then
3195 if Is_Limited_Type (Prefix_Type) then
3196 Error_Msg_NE
3197 ("stream operation not defined for type&",
3198 N, Prefix_Type);
3199 return;
3201 -- Otherwise, compiler should have generated default
3203 else
3204 raise Program_Error;
3205 end if;
3206 end if;
3208 -- Rewrite the attribute into the name of its corresponding
3209 -- primitive dispatching subprogram. We can then proceed with
3210 -- the usual processing for subprogram renamings.
3212 declare
3213 Prim_Name : constant Node_Id :=
3214 Make_Identifier (Sloc (Nam),
3215 Chars => Chars (Prim));
3216 begin
3217 Set_Entity (Prim_Name, Prim);
3218 Rewrite (Nam, Prim_Name);
3219 Analyze (Nam);
3220 end;
3221 end;
3223 -- Normal processing for a renaming of an attribute
3225 else
3226 Attribute_Renaming (N);
3227 return;
3228 end if;
3229 end if;
3231 -- Check whether this declaration corresponds to the instantiation of a
3232 -- formal subprogram.
3234 -- If this is an instantiation, the corresponding actual is frozen and
3235 -- error messages can be made more precise. If this is a default
3236 -- subprogram, the entity is already established in the generic, and is
3237 -- not retrieved by visibility. If it is a default with a box, the
3238 -- candidate interpretations, if any, have been collected when building
3239 -- the renaming declaration. If overloaded, the proper interpretation is
3240 -- determined in Find_Renamed_Entity. If the entity is an operator,
3241 -- Find_Renamed_Entity applies additional visibility checks.
3243 if Is_Actual then
3244 Inst_Node := Unit_Declaration_Node (Formal_Spec);
3246 -- Ada 2012 (AI05-0071) and Ada 2022 (AI12-0165): when the actual
3247 -- type is a class-wide type T'Class we may need to wrap a primitive
3248 -- operation of T. Search for the wrapped primitive and (if required)
3249 -- build a wrapper whose body consists of a dispatching call to the
3250 -- wrapped primitive of T, with its formal parameters as the actual
3251 -- parameters.
3253 if CW_Actual and then
3255 -- Ada 2012 (AI05-0071): Check whether the renaming is for a
3256 -- defaulted actual subprogram with a class-wide actual.
3258 (Box_Present (Inst_Node)
3260 or else
3262 -- Ada 2022 (AI12-0165): Check whether the renaming is for a formal
3263 -- abstract subprogram declaration with a class-wide actual.
3265 (Nkind (Inst_Node) = N_Formal_Abstract_Subprogram_Declaration
3266 and then Is_Entity_Name (Nam)))
3267 then
3268 New_S := Analyze_Subprogram_Specification (Spec);
3270 -- Do not attempt to build the wrapper if the renaming is in error
3272 if not Error_Posted (Nam) then
3273 Handle_Instance_With_Class_Wide_Type
3274 (Inst_Node => Inst_Node,
3275 Ren_Id => New_S,
3276 Wrapped_Prim => Wrapped_Prim,
3277 Wrap_Id => Old_S);
3279 -- If several candidates were found, then we reported the
3280 -- ambiguity; stop processing the renaming declaration to
3281 -- avoid reporting further (spurious) errors.
3283 if Error_Posted (Spec) then
3284 return;
3285 end if;
3287 end if;
3288 end if;
3290 if Present (Wrapped_Prim) then
3292 -- When the wrapper is built, the subprogram renaming aliases
3293 -- the wrapper.
3295 Analyze (Nam);
3297 pragma Assert (Old_S = Entity (Nam)
3298 and then Is_Class_Wide_Wrapper (Old_S));
3300 -- The subprogram renaming declaration may become Ghost if it
3301 -- renames a wrapper of a Ghost entity.
3303 Mark_Ghost_Renaming (N, Wrapped_Prim);
3305 elsif Is_Entity_Name (Nam)
3306 and then Present (Entity (Nam))
3307 and then not Comes_From_Source (Nam)
3308 and then not Is_Overloaded (Nam)
3309 then
3310 Old_S := Entity (Nam);
3312 -- The subprogram renaming declaration may become Ghost if it
3313 -- renames a Ghost entity.
3315 Mark_Ghost_Renaming (N, Old_S);
3317 New_S := Analyze_Subprogram_Specification (Spec);
3319 -- Operator case
3321 if Ekind (Old_S) = E_Operator then
3323 -- Box present
3325 if Box_Present (Inst_Node) then
3326 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3328 -- If there is an immediately visible homonym of the operator
3329 -- and the declaration has a default, this is worth a warning
3330 -- because the user probably did not intend to get the pre-
3331 -- defined operator, visible in the generic declaration. To
3332 -- find if there is an intended candidate, analyze the renaming
3333 -- again in the current context.
3335 elsif Scope (Old_S) = Standard_Standard
3336 and then Present (Default_Name (Inst_Node))
3337 then
3338 declare
3339 Decl : constant Node_Id := New_Copy_Tree (N);
3340 Hidden : Entity_Id;
3342 begin
3343 Set_Entity (Name (Decl), Empty);
3344 Analyze (Name (Decl));
3345 Hidden :=
3346 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
3348 if Present (Hidden)
3349 and then In_Open_Scopes (Scope (Hidden))
3350 and then Is_Immediately_Visible (Hidden)
3351 and then Comes_From_Source (Hidden)
3352 and then Hidden /= Old_S
3353 then
3354 Error_Msg_Sloc := Sloc (Hidden);
3355 Error_Msg_N
3356 ("default subprogram is resolved in the generic "
3357 & "declaration (RM 12.6(17))??", N);
3358 Error_Msg_NE ("\and will not use & #??", N, Hidden);
3359 end if;
3360 end;
3361 end if;
3362 end if;
3364 else
3365 Analyze (Nam);
3367 -- The subprogram renaming declaration may become Ghost if it
3368 -- renames a Ghost entity.
3370 if Is_Entity_Name (Nam) then
3371 Mark_Ghost_Renaming (N, Entity (Nam));
3372 end if;
3374 New_S := Analyze_Subprogram_Specification (Spec);
3375 end if;
3377 else
3378 -- Renamed entity must be analyzed first, to avoid being hidden by
3379 -- new name (which might be the same in a generic instance).
3381 Analyze (Nam);
3383 -- The subprogram renaming declaration may become Ghost if it renames
3384 -- a Ghost entity.
3386 if Is_Entity_Name (Nam) then
3387 Mark_Ghost_Renaming (N, Entity (Nam));
3388 end if;
3390 -- The renaming defines a new overloaded entity, which is analyzed
3391 -- like a subprogram declaration.
3393 New_S := Analyze_Subprogram_Specification (Spec);
3394 end if;
3396 if Current_Scope /= Standard_Standard then
3397 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
3398 end if;
3400 -- Set SPARK mode from current context
3402 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
3403 Set_SPARK_Pragma_Inherited (New_S);
3405 Rename_Spec := Find_Corresponding_Spec (N);
3407 -- Case of Renaming_As_Body
3409 if Present (Rename_Spec) then
3410 Check_Previous_Null_Procedure (N, Rename_Spec);
3412 -- Renaming declaration is the completion of the declaration of
3413 -- Rename_Spec. We build an actual body for it at the freezing point.
3415 Set_Corresponding_Spec (N, Rename_Spec);
3417 -- Deal with special case of stream functions of abstract types
3418 -- and interfaces.
3420 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
3421 N_Abstract_Subprogram_Declaration
3422 then
3423 -- Input stream functions are abstract if the object type is
3424 -- abstract. Similarly, all default stream functions for an
3425 -- interface type are abstract. However, these subprograms may
3426 -- receive explicit declarations in representation clauses, making
3427 -- the attribute subprograms usable as defaults in subsequent
3428 -- type extensions.
3429 -- In this case we rewrite the declaration to make the subprogram
3430 -- non-abstract. We remove the previous declaration, and insert
3431 -- the new one at the point of the renaming, to prevent premature
3432 -- access to unfrozen types. The new declaration reuses the
3433 -- specification of the previous one, and must not be analyzed.
3435 pragma Assert
3436 (Is_Primitive (Entity (Nam))
3437 and then
3438 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
3439 declare
3440 Old_Decl : constant Node_Id :=
3441 Unit_Declaration_Node (Rename_Spec);
3442 New_Decl : constant Node_Id :=
3443 Make_Subprogram_Declaration (Sloc (N),
3444 Specification =>
3445 Relocate_Node (Specification (Old_Decl)));
3446 begin
3447 Remove (Old_Decl);
3448 Insert_After (N, New_Decl);
3449 Set_Is_Abstract_Subprogram (Rename_Spec, False);
3450 Set_Analyzed (New_Decl);
3451 end;
3452 end if;
3454 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
3456 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3457 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
3458 end if;
3460 Set_Convention (New_S, Convention (Rename_Spec));
3461 Check_Fully_Conformant (New_S, Rename_Spec);
3462 Set_Public_Status (New_S);
3464 if No_Return (Rename_Spec)
3465 and then not No_Return (Entity (Nam))
3466 then
3467 Error_Msg_NE
3468 ("renamed subprogram & must be No_Return", N, Entity (Nam));
3469 Error_Msg_N
3470 ("\since renaming subprogram is No_Return (RM 6.5.1(7/2))", N);
3471 end if;
3473 -- The specification does not introduce new formals, but only
3474 -- repeats the formals of the original subprogram declaration.
3475 -- For cross-reference purposes, and for refactoring tools, we
3476 -- treat the formals of the renaming declaration as body formals.
3478 Reference_Body_Formals (Rename_Spec, New_S);
3480 -- Indicate that the entity in the declaration functions like the
3481 -- corresponding body, and is not a new entity. The body will be
3482 -- constructed later at the freeze point, so indicate that the
3483 -- completion has not been seen yet.
3485 Reinit_Field_To_Zero (New_S, F_Has_Out_Or_In_Out_Parameter,
3486 Old_Ekind => (E_Function | E_Procedure => True, others => False));
3487 Reinit_Field_To_Zero (New_S, F_Needs_No_Actuals);
3488 Reinit_Field_To_Zero (New_S, F_Is_Predicate_Function);
3489 Reinit_Field_To_Zero (New_S, F_Protected_Subprogram);
3490 Reinit_Field_To_Zero (New_S, F_Is_Inlined_Always);
3491 Reinit_Field_To_Zero (New_S, F_Is_Generic_Actual_Subprogram);
3492 Mutate_Ekind (New_S, E_Subprogram_Body);
3493 New_S := Rename_Spec;
3494 Set_Has_Completion (Rename_Spec, False);
3496 -- Ada 2005: check overriding indicator
3498 if Present (Overridden_Operation (Rename_Spec)) then
3499 if Must_Not_Override (Specification (N)) then
3500 Error_Msg_NE
3501 ("subprogram& overrides inherited operation",
3502 N, Rename_Spec);
3504 elsif Style_Check
3505 and then not Must_Override (Specification (N))
3506 then
3507 Style.Missing_Overriding (N, Rename_Spec);
3508 end if;
3510 elsif Must_Override (Specification (N))
3511 and then not Can_Override_Operator (Rename_Spec)
3512 then
3513 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
3514 end if;
3516 -- AI12-0132: a renames-as-body freezes the expression of any
3517 -- expression function that it renames.
3519 if Is_Entity_Name (Nam)
3520 and then Is_Expression_Function (Entity (Nam))
3521 and then not Inside_A_Generic
3522 then
3523 Freeze_Expr_Types
3524 (Def_Id => Entity (Nam),
3525 Typ => Etype (Entity (Nam)),
3526 Expr =>
3527 Expression
3528 (Original_Node (Unit_Declaration_Node (Entity (Nam)))),
3529 N => N);
3530 end if;
3532 -- Normal subprogram renaming (not renaming as body)
3534 else
3535 Generate_Definition (New_S);
3536 New_Overloaded_Entity (New_S);
3538 if not (Is_Entity_Name (Nam)
3539 and then Is_Intrinsic_Subprogram (Entity (Nam)))
3540 then
3541 Check_Delayed_Subprogram (New_S);
3542 end if;
3544 -- Verify that a SPARK renaming does not declare a primitive
3545 -- operation of a tagged type.
3547 Check_SPARK_Primitive_Operation (New_S);
3548 end if;
3550 -- There is no need for elaboration checks on the new entity, which may
3551 -- be called before the next freezing point where the body will appear.
3552 -- Elaboration checks refer to the real entity, not the one created by
3553 -- the renaming declaration.
3555 Set_Kill_Elaboration_Checks (New_S, True);
3557 -- If we had a previous error, indicate a completion is present to stop
3558 -- junk cascaded messages, but don't take any further action.
3560 if Etype (Nam) = Any_Type then
3561 Set_Has_Completion (New_S);
3562 return;
3564 -- Case where name has the form of a selected component
3566 elsif Nkind (Nam) = N_Selected_Component then
3568 -- A name which has the form A.B can designate an entry of task A, a
3569 -- protected operation of protected object A, or finally a primitive
3570 -- operation of object A. In the later case, A is an object of some
3571 -- tagged type, or an access type that denotes one such. To further
3572 -- distinguish these cases, note that the scope of a task entry or
3573 -- protected operation is type of the prefix.
3575 -- The prefix could be an overloaded function call that returns both
3576 -- kinds of operations. This overloading pathology is left to the
3577 -- dedicated reader ???
3579 declare
3580 T : constant Entity_Id := Etype (Prefix (Nam));
3582 begin
3583 if Present (T)
3584 and then
3585 (Is_Tagged_Type (T)
3586 or else
3587 (Is_Access_Type (T)
3588 and then Is_Tagged_Type (Designated_Type (T))))
3589 and then Scope (Entity (Selector_Name (Nam))) /= T
3590 then
3591 Analyze_Renamed_Primitive_Operation
3592 (N, New_S, Present (Rename_Spec));
3593 return;
3595 else
3596 -- Renamed entity is an entry or protected operation. For those
3597 -- cases an explicit body is built (at the point of freezing of
3598 -- this entity) that contains a call to the renamed entity.
3600 -- This is not allowed for renaming as body if the renamed
3601 -- spec is already frozen (see RM 8.5.4(5) for details).
3603 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
3604 Error_Msg_N
3605 ("renaming-as-body cannot rename entry as subprogram", N);
3606 Error_Msg_NE
3607 ("\since & is already frozen (RM 8.5.4(5))",
3608 N, Rename_Spec);
3609 else
3610 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
3611 end if;
3613 return;
3614 end if;
3615 end;
3617 -- Case where name is an explicit dereference X.all
3619 elsif Nkind (Nam) = N_Explicit_Dereference then
3621 -- Renamed entity is designated by access_to_subprogram expression.
3622 -- Must build body to encapsulate call, as in the entry case.
3624 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
3625 return;
3627 -- Indexed component
3629 elsif Nkind (Nam) = N_Indexed_Component then
3630 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
3631 return;
3633 -- Character literal
3635 elsif Nkind (Nam) = N_Character_Literal then
3636 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
3637 return;
3639 -- Only remaining case is where we have a non-entity name, or a renaming
3640 -- of some other non-overloadable entity.
3642 elsif not Is_Entity_Name (Nam)
3643 or else not Is_Overloadable (Entity (Nam))
3644 then
3645 -- Do not mention the renaming if it comes from an instance
3647 if not Is_Actual then
3648 Error_Msg_N ("expect valid subprogram name in renaming", N);
3649 else
3650 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3651 end if;
3653 return;
3654 end if;
3656 -- Find the renamed entity that matches the given specification. Disable
3657 -- Ada_83 because there is no requirement of full conformance between
3658 -- renamed entity and new entity, even though the same circuit is used.
3660 -- This is a bit of an odd case, which introduces a really irregular use
3661 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3662 -- this. ???
3664 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3665 Ada_Version_Pragma := Empty;
3666 Ada_Version_Explicit := Ada_Version;
3668 if No (Old_S) then
3669 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3671 -- The visible operation may be an inherited abstract operation that
3672 -- was overridden in the private part, in which case a call will
3673 -- dispatch to the overriding operation. Use the overriding one in
3674 -- the renaming declaration, to prevent spurious errors below.
3676 if Is_Overloadable (Old_S)
3677 and then Is_Abstract_Subprogram (Old_S)
3678 and then No (DTC_Entity (Old_S))
3679 and then Present (Alias (Old_S))
3680 and then not Is_Abstract_Subprogram (Alias (Old_S))
3681 and then Present (Overridden_Operation (Alias (Old_S)))
3682 then
3683 Old_S := Alias (Old_S);
3684 end if;
3686 -- When the renamed subprogram is overloaded and used as an actual
3687 -- of a generic, its entity is set to the first available homonym.
3688 -- We must first disambiguate the name, then set the proper entity.
3690 if Is_Actual and then Is_Overloaded (Nam) then
3691 Set_Entity (Nam, Old_S);
3692 end if;
3693 end if;
3695 -- Most common case: subprogram renames subprogram. No body is generated
3696 -- in this case, so we must indicate the declaration is complete as is.
3697 -- and inherit various attributes of the renamed subprogram.
3699 if No (Rename_Spec) then
3700 Set_Has_Completion (New_S);
3701 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3702 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3703 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3705 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3706 -- between a subprogram and its correct renaming.
3708 -- Note: the Any_Id check is a guard that prevents compiler crashes
3709 -- when performing a null exclusion check between a renaming and a
3710 -- renamed subprogram that has been found to be illegal.
3712 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3713 Check_Null_Exclusion
3714 (Ren => New_S,
3715 Sub => Entity (Nam));
3716 end if;
3718 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3719 -- overriding. The flag Requires_Overriding is set very selectively
3720 -- and misses some other illegal cases. The additional conditions
3721 -- checked below are sufficient but not necessary ???
3723 -- The rule does not apply to the renaming generated for an actual
3724 -- subprogram in an instance.
3726 if Is_Actual then
3727 null;
3729 -- Guard against previous errors, and omit renamings of predefined
3730 -- operators.
3732 elsif Ekind (Old_S) not in E_Function | E_Procedure then
3733 null;
3735 elsif Requires_Overriding (Old_S)
3736 or else
3737 (Is_Abstract_Subprogram (Old_S)
3738 and then Present (Find_Dispatching_Type (Old_S))
3739 and then not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3740 then
3741 Error_Msg_N
3742 ("renamed entity cannot be subprogram that requires overriding "
3743 & "(RM 8.5.4 (5.1))", N);
3744 end if;
3746 declare
3747 Prev : constant Entity_Id := Overridden_Operation (New_S);
3748 begin
3749 if Present (Prev)
3750 and then
3751 (Has_Non_Trivial_Precondition (Prev)
3752 or else Has_Non_Trivial_Precondition (Old_S))
3753 then
3754 Error_Msg_NE
3755 ("conflicting inherited classwide preconditions in renaming "
3756 & "of& (RM 6.1.1 (17)", N, Old_S);
3757 end if;
3758 end;
3759 end if;
3761 if Old_S /= Any_Id then
3762 if Is_Actual and then From_Default (N) then
3764 -- This is an implicit reference to the default actual
3766 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3768 else
3769 Generate_Reference (Old_S, Nam);
3770 end if;
3772 Check_Internal_Protected_Use (N, Old_S);
3774 -- For a renaming-as-body, require subtype conformance, but if the
3775 -- declaration being completed has not been frozen, then inherit the
3776 -- convention of the renamed subprogram prior to checking conformance
3777 -- (unless the renaming has an explicit convention established; the
3778 -- rule stated in the RM doesn't seem to address this ???).
3780 if Present (Rename_Spec) then
3781 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3782 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3784 if not Is_Frozen (Rename_Spec) then
3785 if not Has_Convention_Pragma (Rename_Spec) then
3786 Set_Convention (New_S, Convention (Old_S));
3787 end if;
3789 if Ekind (Old_S) /= E_Operator then
3790 Check_Mode_Conformant (New_S, Old_S, Spec);
3791 end if;
3793 if Original_Subprogram (Old_S) = Rename_Spec then
3794 Error_Msg_N ("unfrozen subprogram cannot rename itself", N);
3795 else
3796 Check_Formal_Subprogram_Conformance (New_S, Old_S, Spec);
3797 end if;
3798 else
3799 Check_Subtype_Conformant (New_S, Old_S, Spec);
3800 end if;
3802 Check_Frozen_Renaming (N, Rename_Spec);
3804 -- Check explicitly that renamed entity is not intrinsic, because
3805 -- in a generic the renamed body is not built. In this case,
3806 -- the renaming_as_body is a completion.
3808 if Inside_A_Generic then
3809 if Is_Frozen (Rename_Spec)
3810 and then Is_Intrinsic_Subprogram (Old_S)
3811 then
3812 Error_Msg_N
3813 ("subprogram in renaming_as_body cannot be intrinsic",
3814 Name (N));
3815 end if;
3817 Set_Has_Completion (Rename_Spec);
3818 end if;
3820 elsif Ekind (Old_S) /= E_Operator then
3822 -- If this a defaulted subprogram for a class-wide actual there is
3823 -- no check for mode conformance, given that the signatures don't
3824 -- match (the source mentions T but the actual mentions T'Class).
3826 if CW_Actual then
3827 null;
3829 -- No need for a redundant error message if this is a nested
3830 -- instance, unless the current instantiation (of a child unit)
3831 -- is a compilation unit, which is not analyzed when the parent
3832 -- generic is analyzed.
3834 elsif not Is_Actual
3835 or else No (Enclosing_Instance)
3836 or else Is_Compilation_Unit (Current_Scope)
3837 then
3838 Check_Mode_Conformant (New_S, Old_S);
3839 end if;
3840 end if;
3842 if No (Rename_Spec) then
3844 -- The parameter profile of the new entity is that of the renamed
3845 -- entity: the subtypes given in the specification are irrelevant.
3847 Inherit_Renamed_Profile (New_S, Old_S);
3849 -- A call to the subprogram is transformed into a call to the
3850 -- renamed entity. This is transitive if the renamed entity is
3851 -- itself a renaming.
3853 if Present (Alias (Old_S)) then
3854 Set_Alias (New_S, Alias (Old_S));
3855 else
3856 Set_Alias (New_S, Old_S);
3857 end if;
3859 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3860 -- renaming as body, since the entity in this case is not an
3861 -- intrinsic (it calls an intrinsic, but we have a real body for
3862 -- this call, and it is in this body that the required intrinsic
3863 -- processing will take place).
3865 -- Also, if this is a renaming of inequality, the renamed operator
3866 -- is intrinsic, but what matters is the corresponding equality
3867 -- operator, which may be user-defined.
3869 Set_Is_Intrinsic_Subprogram
3870 (New_S,
3871 Is_Intrinsic_Subprogram (Old_S)
3872 and then
3873 (Chars (Old_S) /= Name_Op_Ne
3874 or else Ekind (Old_S) = E_Operator
3875 or else Is_Intrinsic_Subprogram
3876 (Corresponding_Equality (Old_S))));
3878 if Ekind (Alias (New_S)) = E_Operator then
3879 Set_Has_Delayed_Freeze (New_S, False);
3880 end if;
3882 -- If the renaming corresponds to an association for an abstract
3883 -- formal subprogram, then various attributes must be set to
3884 -- indicate that the renaming is an abstract dispatching operation
3885 -- with a controlling type.
3887 -- Skip this decoration when the renaming corresponds to an
3888 -- association with class-wide wrapper (see above) because such
3889 -- wrapper is neither abstract nor a dispatching operation (its
3890 -- body has the dispatching call to the wrapped primitive).
3892 if Is_Actual
3893 and then Is_Abstract_Subprogram (Formal_Spec)
3894 and then No (Wrapped_Prim)
3895 then
3897 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3898 -- see it as corresponding to a generic association for a
3899 -- formal abstract subprogram
3901 Set_Is_Abstract_Subprogram (New_S);
3903 declare
3904 New_S_Ctrl_Type : constant Entity_Id :=
3905 Find_Dispatching_Type (New_S);
3906 Old_S_Ctrl_Type : constant Entity_Id :=
3907 Find_Dispatching_Type (Old_S);
3909 begin
3911 -- The actual must match the (instance of the) formal,
3912 -- and must be a controlling type.
3914 if Old_S_Ctrl_Type /= New_S_Ctrl_Type
3915 or else No (New_S_Ctrl_Type)
3916 then
3917 if No (New_S_Ctrl_Type) then
3918 Error_Msg_N
3919 ("actual must be dispatching subprogram", Nam);
3920 else
3921 Error_Msg_NE
3922 ("actual must be dispatching subprogram for type&",
3923 Nam, New_S_Ctrl_Type);
3924 end if;
3926 else
3927 Set_Is_Dispatching_Operation (New_S);
3928 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3930 -- If the actual in the formal subprogram is itself a
3931 -- formal abstract subprogram association, there's no
3932 -- dispatch table component or position to inherit.
3934 if Present (DTC_Entity (Old_S)) then
3935 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3936 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3937 end if;
3938 end if;
3939 end;
3940 end if;
3941 end if;
3943 if Is_Actual then
3944 null;
3946 -- The following is illegal, because F hides whatever other F may
3947 -- be around:
3948 -- function F (...) renames F;
3950 elsif Old_S = New_S
3951 or else (Nkind (Nam) /= N_Expanded_Name
3952 and then Chars (Old_S) = Chars (New_S))
3953 then
3954 Error_Msg_N ("subprogram cannot rename itself", N);
3956 -- This is illegal even if we use a selector:
3957 -- function F (...) renames Pkg.F;
3958 -- because F is still hidden.
3960 elsif Nkind (Nam) = N_Expanded_Name
3961 and then Entity (Prefix (Nam)) = Current_Scope
3962 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3963 then
3964 -- This is an error, but we overlook the error and accept the
3965 -- renaming if the special Overriding_Renamings mode is in effect.
3967 if not Overriding_Renamings then
3968 Error_Msg_NE
3969 ("implicit operation& is not visible (RM 8.3 (15))",
3970 Nam, Old_S);
3971 end if;
3973 -- Check whether an expanded name used for the renamed subprogram
3974 -- begins with the same name as the renaming itself, and if so,
3975 -- issue an error about the prefix being hidden by the renaming.
3976 -- We exclude generic instances from this checking, since such
3977 -- normally illegal renamings can be constructed when expanding
3978 -- instantiations.
3980 elsif Nkind (Nam) = N_Expanded_Name and then not In_Instance then
3981 declare
3982 function Ult_Expanded_Prefix (N : Node_Id) return Node_Id is
3983 (if Nkind (N) /= N_Expanded_Name
3984 then N
3985 else Ult_Expanded_Prefix (Prefix (N)));
3986 -- Returns the ultimate prefix of an expanded name
3988 begin
3989 if Chars (Entity (Ult_Expanded_Prefix (Nam))) = Chars (New_S)
3990 then
3991 Error_Msg_Sloc := Sloc (N);
3992 Error_Msg_NE
3993 ("& is hidden by declaration#", Nam, New_S);
3994 end if;
3995 end;
3996 end if;
3998 Set_Convention (New_S, Convention (Old_S));
4000 if Is_Abstract_Subprogram (Old_S) then
4001 if Present (Rename_Spec) then
4002 Error_Msg_N
4003 ("a renaming-as-body cannot rename an abstract subprogram",
4005 Set_Has_Completion (Rename_Spec);
4006 else
4007 Set_Is_Abstract_Subprogram (New_S);
4008 end if;
4009 end if;
4011 Check_Library_Unit_Renaming (N, Old_S);
4013 -- Pathological case: procedure renames entry in the scope of its
4014 -- task. Entry is given by simple name, but body must be built for
4015 -- procedure. Of course if called it will deadlock.
4017 if Ekind (Old_S) = E_Entry then
4018 Set_Has_Completion (New_S, False);
4019 Set_Alias (New_S, Empty);
4020 end if;
4022 -- Do not freeze the renaming nor the renamed entity when the context
4023 -- is an enclosing generic. Freezing is an expansion activity, and in
4024 -- addition the renamed entity may depend on the generic formals of
4025 -- the enclosing generic.
4027 if Is_Actual and not Inside_A_Generic then
4028 Freeze_Before (N, Old_S);
4029 Freeze_Actual_Profile;
4030 Set_Has_Delayed_Freeze (New_S, False);
4031 Freeze_Before (N, New_S);
4033 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
4034 and then not Is_Abstract_Subprogram (Formal_Spec)
4035 then
4036 -- An abstract subprogram is only allowed as an actual in the
4037 -- case where the formal subprogram is also abstract.
4039 if Is_Abstract_Subprogram (Old_S) then
4040 Error_Msg_N
4041 ("abstract subprogram not allowed as generic actual", Nam);
4042 end if;
4044 -- AI12-0412: A primitive of an abstract type with Pre'Class
4045 -- or Post'Class aspects specified with nonstatic expressions
4046 -- is not allowed as actual for a nonabstract formal subprogram
4047 -- (see RM 6.1.1(18.2/5).
4049 if Is_Dispatching_Operation (Old_S)
4050 and then
4051 Is_Prim_Of_Abst_Type_With_Nonstatic_CW_Pre_Post (Old_S)
4052 then
4053 Error_Msg_N
4054 ("primitive of abstract type with nonstatic class-wide "
4055 & "pre/postconditions not allowed as actual",
4056 Nam);
4057 end if;
4058 end if;
4059 end if;
4061 else
4062 -- A common error is to assume that implicit operators for types are
4063 -- defined in Standard, or in the scope of a subtype. In those cases
4064 -- where the renamed entity is given with an expanded name, it is
4065 -- worth mentioning that operators for the type are not declared in
4066 -- the scope given by the prefix.
4068 if Nkind (Nam) = N_Expanded_Name
4069 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
4070 and then Scope (Entity (Nam)) = Standard_Standard
4071 then
4072 declare
4073 T : constant Entity_Id :=
4074 Base_Type (Etype (First_Formal (New_S)));
4075 begin
4076 Error_Msg_Node_2 := Prefix (Nam);
4077 Error_Msg_NE
4078 ("operator for type& is not declared in&", Prefix (Nam), T);
4079 end;
4081 else
4082 Error_Msg_NE
4083 ("no visible subprogram matches the specification for&",
4084 Spec, New_S);
4085 end if;
4087 if Present (Candidate_Renaming) then
4088 declare
4089 F1 : Entity_Id;
4090 F2 : Entity_Id;
4091 T1 : Entity_Id;
4093 begin
4094 F1 := First_Formal (Candidate_Renaming);
4095 F2 := First_Formal (New_S);
4096 T1 := First_Subtype (Etype (F1));
4097 while Present (F1) and then Present (F2) loop
4098 Next_Formal (F1);
4099 Next_Formal (F2);
4100 end loop;
4102 if Present (F1) and then Present (Default_Value (F1)) then
4103 if Present (Next_Formal (F1)) then
4104 Error_Msg_NE
4105 ("\missing specification for & and other formals with "
4106 & "defaults", Spec, F1);
4107 else
4108 Error_Msg_NE ("\missing specification for &", Spec, F1);
4109 end if;
4110 end if;
4112 if Nkind (Nam) = N_Operator_Symbol
4113 and then From_Default (N)
4114 then
4115 Error_Msg_Node_2 := T1;
4116 Error_Msg_NE
4117 ("default & on & is not directly visible", Nam, Nam);
4118 end if;
4119 end;
4120 end if;
4121 end if;
4123 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
4124 -- controlling access parameters are known non-null for the renamed
4125 -- subprogram. Test also applies to a subprogram instantiation that
4126 -- is dispatching. Test is skipped if some previous error was detected
4127 -- that set Old_S to Any_Id.
4129 if Ada_Version >= Ada_2005
4130 and then Old_S /= Any_Id
4131 and then not Is_Dispatching_Operation (Old_S)
4132 and then Is_Dispatching_Operation (New_S)
4133 then
4134 declare
4135 Old_F : Entity_Id;
4136 New_F : Entity_Id;
4138 begin
4139 Old_F := First_Formal (Old_S);
4140 New_F := First_Formal (New_S);
4141 while Present (Old_F) loop
4142 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
4143 and then Is_Controlling_Formal (New_F)
4144 and then not Can_Never_Be_Null (Old_F)
4145 then
4146 Error_Msg_N ("access parameter is controlling,", New_F);
4147 Error_Msg_NE
4148 ("\corresponding parameter of& must be explicitly null "
4149 & "excluding", New_F, Old_S);
4150 end if;
4152 Next_Formal (Old_F);
4153 Next_Formal (New_F);
4154 end loop;
4155 end;
4156 end if;
4158 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
4159 -- is to warn if an operator is being renamed as a different operator.
4160 -- If the operator is predefined, examine the kind of the entity, not
4161 -- the abbreviated declaration in Standard.
4163 if Comes_From_Source (N)
4164 and then Present (Old_S)
4165 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
4166 or else Ekind (Old_S) = E_Operator)
4167 and then Nkind (New_S) = N_Defining_Operator_Symbol
4168 and then Chars (Old_S) /= Chars (New_S)
4169 then
4170 Error_Msg_NE
4171 ("& is being renamed as a different operator??", N, Old_S);
4172 end if;
4174 -- Check for renaming of obsolescent subprogram
4176 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
4178 -- Another warning or some utility: if the new subprogram as the same
4179 -- name as the old one, the old one is not hidden by an outer homograph,
4180 -- the new one is not a public symbol, and the old one is otherwise
4181 -- directly visible, the renaming is superfluous.
4183 if Chars (Old_S) = Chars (New_S)
4184 and then Comes_From_Source (N)
4185 and then Scope (Old_S) /= Standard_Standard
4186 and then Warn_On_Redundant_Constructs
4187 and then (Is_Immediately_Visible (Old_S)
4188 or else Is_Potentially_Use_Visible (Old_S))
4189 and then Is_Overloadable (Current_Scope)
4190 and then Chars (Current_Scope) /= Chars (Old_S)
4191 then
4192 Error_Msg_N
4193 ("redundant renaming, entity is directly visible?r?", Name (N));
4194 end if;
4196 -- Implementation-defined aspect specifications can appear in a renaming
4197 -- declaration, but not language-defined ones. The call to procedure
4198 -- Analyze_Aspect_Specifications will take care of this error check.
4200 Analyze_Aspect_Specifications (N, New_S);
4202 -- AI12-0279
4204 if Is_Actual
4205 and then Has_Yield_Aspect (Formal_Spec)
4206 and then not Has_Yield_Aspect (Old_S)
4207 then
4208 Error_Msg_Name_1 := Name_Yield;
4209 Error_Msg_N
4210 ("actual subprogram& must have aspect% to match formal", Name (N));
4211 end if;
4213 Ada_Version := Save_AV;
4214 Ada_Version_Pragma := Save_AVP;
4215 Ada_Version_Explicit := Save_AV_Exp;
4217 -- Check if we are looking at an Ada 2012 defaulted formal subprogram
4218 -- and mark any use_package_clauses that affect the visibility of the
4219 -- implicit generic actual.
4221 -- Also, we may be looking at an internal renaming of a user-defined
4222 -- subprogram created for a generic formal subprogram association,
4223 -- which will also have to be marked here. This can occur when the
4224 -- corresponding formal subprogram contains references to other generic
4225 -- formals.
4227 if Is_Generic_Actual_Subprogram (New_S)
4228 and then (Is_Intrinsic_Subprogram (New_S)
4229 or else From_Default (N)
4230 or else Nkind (N) = N_Subprogram_Renaming_Declaration)
4231 then
4232 Mark_Use_Clauses (New_S);
4234 -- Handle overloaded subprograms
4236 if Present (Alias (New_S)) then
4237 Mark_Use_Clauses (Alias (New_S));
4238 end if;
4239 end if;
4241 if Is_Actual then
4242 Local_Restrict.Check_Actual_Subprogram_For_Instance
4243 (Actual_Subp_Name => Nam, Formal_Subp => Formal_Spec);
4244 end if;
4245 end Analyze_Subprogram_Renaming;
4247 -------------------------
4248 -- Analyze_Use_Package --
4249 -------------------------
4251 -- Resolve the package names in the use clause, and make all the visible
4252 -- entities defined in the package potentially use-visible. If the package
4253 -- is already in use from a previous use clause, its visible entities are
4254 -- already use-visible. In that case, mark the occurrence as a redundant
4255 -- use. If the package is an open scope, i.e. if the use clause occurs
4256 -- within the package itself, ignore it.
4258 procedure Analyze_Use_Package (N : Node_Id; Chain : Boolean := True) is
4259 procedure Analyze_Package_Name (Clause : Node_Id);
4260 -- Perform analysis on a package name from a use_package_clause
4262 procedure Analyze_Package_Name_List (Head_Clause : Node_Id);
4263 -- Similar to Analyze_Package_Name but iterates over all the names
4264 -- in a use clause.
4266 --------------------------
4267 -- Analyze_Package_Name --
4268 --------------------------
4270 procedure Analyze_Package_Name (Clause : Node_Id) is
4271 Pack : constant Node_Id := Name (Clause);
4272 Pref : Node_Id;
4274 begin
4275 pragma Assert (Nkind (Clause) = N_Use_Package_Clause);
4276 Analyze (Pack);
4278 -- Verify that the package standard is not directly named in a
4279 -- use_package_clause.
4281 if Nkind (Parent (Clause)) = N_Compilation_Unit
4282 and then Nkind (Pack) = N_Expanded_Name
4283 then
4284 Pref := Prefix (Pack);
4286 while Nkind (Pref) = N_Expanded_Name loop
4287 Pref := Prefix (Pref);
4288 end loop;
4290 if Entity (Pref) = Standard_Standard then
4291 Error_Msg_N
4292 ("predefined package Standard cannot appear in a context "
4293 & "clause", Pref);
4294 end if;
4295 end if;
4296 end Analyze_Package_Name;
4298 -------------------------------
4299 -- Analyze_Package_Name_List --
4300 -------------------------------
4302 procedure Analyze_Package_Name_List (Head_Clause : Node_Id) is
4303 Curr : Node_Id;
4305 begin
4306 -- Due to the way source use clauses are split during parsing we are
4307 -- forced to simply iterate through all entities in scope until the
4308 -- clause representing the last name in the list is found.
4310 Curr := Head_Clause;
4311 while Present (Curr) loop
4312 Analyze_Package_Name (Curr);
4314 -- Stop iterating over the names in the use clause when we are at
4315 -- the last one.
4317 exit when not More_Ids (Curr) and then Prev_Ids (Curr);
4318 Next (Curr);
4319 end loop;
4320 end Analyze_Package_Name_List;
4322 -- Local variables
4324 Pack : Entity_Id;
4326 -- Start of processing for Analyze_Use_Package
4328 begin
4329 Set_Hidden_By_Use_Clause (N, No_Elist);
4331 -- Use clause not allowed in a spec of a predefined package declaration
4332 -- except that packages whose file name starts a-n are OK (these are
4333 -- children of Ada.Numerics, which are never loaded by Rtsfind).
4335 if Is_Predefined_Unit (Current_Sem_Unit)
4336 and then Get_Name_String
4337 (Unit_File_Name (Current_Sem_Unit)) (1 .. 3) /= "a-n"
4338 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
4339 N_Package_Declaration
4340 then
4341 Error_Msg_N ("use clause not allowed in predefined spec", N);
4342 end if;
4344 -- Loop through all package names from the original use clause in
4345 -- order to analyze referenced packages. A use_package_clause with only
4346 -- one name does not have More_Ids or Prev_Ids set, while a clause with
4347 -- More_Ids only starts the chain produced by the parser.
4349 if not More_Ids (N) and then not Prev_Ids (N) then
4350 Analyze_Package_Name (N);
4352 elsif More_Ids (N) and then not Prev_Ids (N) then
4353 Analyze_Package_Name_List (N);
4354 end if;
4356 if not Is_Entity_Name (Name (N)) then
4357 Error_Msg_N ("& is not a package", Name (N));
4359 return;
4360 end if;
4362 if Chain then
4363 Chain_Use_Clause (N);
4364 end if;
4366 Pack := Entity (Name (N));
4368 -- There are many cases where scopes are manipulated during analysis, so
4369 -- check that Pack's current use clause has not already been chained
4370 -- before setting its previous use clause.
4372 if Ekind (Pack) = E_Package
4373 and then Present (Current_Use_Clause (Pack))
4374 and then Current_Use_Clause (Pack) /= N
4375 and then No (Prev_Use_Clause (N))
4376 and then Prev_Use_Clause (Current_Use_Clause (Pack)) /= N
4377 then
4378 Set_Prev_Use_Clause (N, Current_Use_Clause (Pack));
4379 end if;
4381 -- Mark all entities as potentially use visible
4383 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
4384 if Ekind (Pack) = E_Generic_Package then
4385 Error_Msg_N -- CODEFIX
4386 ("a generic package is not allowed in a use clause", Name (N));
4388 elsif Is_Generic_Subprogram (Pack) then
4389 Error_Msg_N -- CODEFIX
4390 ("a generic subprogram is not allowed in a use clause",
4391 Name (N));
4393 elsif Is_Subprogram (Pack) then
4394 Error_Msg_N -- CODEFIX
4395 ("a subprogram is not allowed in a use clause", Name (N));
4397 else
4398 Error_Msg_N ("& is not allowed in a use clause", Name (N));
4399 end if;
4401 else
4402 if Nkind (Parent (N)) = N_Compilation_Unit then
4403 Check_In_Previous_With_Clause (N, Name (N));
4404 end if;
4406 Use_One_Package (N, Name (N));
4407 end if;
4409 Mark_Ghost_Clause (N);
4410 end Analyze_Use_Package;
4412 ----------------------
4413 -- Analyze_Use_Type --
4414 ----------------------
4416 procedure Analyze_Use_Type (N : Node_Id; Chain : Boolean := True) is
4417 E : Entity_Id;
4418 Id : Node_Id;
4420 begin
4421 Set_Hidden_By_Use_Clause (N, No_Elist);
4423 -- Chain clause to list of use clauses in current scope when flagged
4425 if Chain then
4426 Chain_Use_Clause (N);
4427 end if;
4429 -- Obtain the base type of the type denoted within the use_type_clause's
4430 -- subtype mark.
4432 Id := Subtype_Mark (N);
4433 Find_Type (Id);
4434 E := Base_Type (Entity (Id));
4436 -- There are many cases where a use_type_clause may be reanalyzed due to
4437 -- manipulation of the scope stack so we much guard against those cases
4438 -- here, otherwise, we must add the new use_type_clause to the previous
4439 -- use_type_clause chain in order to mark redundant use_type_clauses as
4440 -- used. When the redundant use-type clauses appear in a parent unit and
4441 -- a child unit we must prevent a circularity in the chain that would
4442 -- otherwise result from the separate steps of analysis and installation
4443 -- of the parent context.
4445 if Present (Current_Use_Clause (E))
4446 and then Current_Use_Clause (E) /= N
4447 and then Prev_Use_Clause (Current_Use_Clause (E)) /= N
4448 and then No (Prev_Use_Clause (N))
4449 then
4450 Set_Prev_Use_Clause (N, Current_Use_Clause (E));
4451 end if;
4453 -- If the Used_Operations list is already initialized, the clause has
4454 -- been analyzed previously, and it is being reinstalled, for example
4455 -- when the clause appears in a package spec and we are compiling the
4456 -- corresponding package body. In that case, make the entities on the
4457 -- existing list use_visible, and mark the corresponding types In_Use.
4459 if Present (Used_Operations (N)) then
4460 declare
4461 Elmt : Elmt_Id;
4463 begin
4464 Use_One_Type (Subtype_Mark (N), Installed => True);
4466 Elmt := First_Elmt (Used_Operations (N));
4467 while Present (Elmt) loop
4468 Set_Is_Potentially_Use_Visible (Node (Elmt));
4469 Next_Elmt (Elmt);
4470 end loop;
4471 end;
4473 return;
4474 end if;
4476 -- Otherwise, create new list and attach to it the operations that are
4477 -- made use-visible by the clause.
4479 Set_Used_Operations (N, New_Elmt_List);
4480 E := Entity (Id);
4482 if E /= Any_Type then
4483 Use_One_Type (Id);
4485 if Nkind (Parent (N)) = N_Compilation_Unit then
4486 if Nkind (Id) = N_Identifier then
4487 Error_Msg_N ("type is not directly visible", Id);
4489 elsif Is_Child_Unit (Scope (E))
4490 and then Scope (E) /= System_Aux_Id
4491 then
4492 Check_In_Previous_With_Clause (N, Prefix (Id));
4493 end if;
4494 end if;
4496 else
4497 -- If the use_type_clause appears in a compilation unit context,
4498 -- check whether it comes from a unit that may appear in a
4499 -- limited_with_clause, for a better error message.
4501 if Nkind (Parent (N)) = N_Compilation_Unit
4502 and then Nkind (Id) /= N_Identifier
4503 then
4504 declare
4505 Item : Node_Id;
4506 Pref : Node_Id;
4508 function Mentioned (Nam : Node_Id) return Boolean;
4509 -- Check whether the prefix of expanded name for the type
4510 -- appears in the prefix of some limited_with_clause.
4512 ---------------
4513 -- Mentioned --
4514 ---------------
4516 function Mentioned (Nam : Node_Id) return Boolean is
4517 begin
4518 return Nkind (Name (Item)) = N_Selected_Component
4519 and then Chars (Prefix (Name (Item))) = Chars (Nam);
4520 end Mentioned;
4522 begin
4523 Pref := Prefix (Id);
4524 Item := First (Context_Items (Parent (N)));
4525 while Present (Item) and then Item /= N loop
4526 if Nkind (Item) = N_With_Clause
4527 and then Limited_Present (Item)
4528 and then Mentioned (Pref)
4529 then
4530 Change_Error_Text
4531 (Get_Msg_Id, "premature usage of incomplete type");
4532 end if;
4534 Next (Item);
4535 end loop;
4536 end;
4537 end if;
4538 end if;
4540 Mark_Ghost_Clause (N);
4541 end Analyze_Use_Type;
4543 ------------------------
4544 -- Attribute_Renaming --
4545 ------------------------
4547 procedure Attribute_Renaming (N : Node_Id) is
4548 Loc : constant Source_Ptr := Sloc (N);
4549 Nam : constant Node_Id := Name (N);
4550 Spec : constant Node_Id := Specification (N);
4551 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
4552 Aname : constant Name_Id := Attribute_Name (Nam);
4554 Form_Num : Nat := 0;
4555 Expr_List : List_Id := No_List;
4557 Attr_Node : Node_Id;
4558 Body_Node : Node_Id;
4559 Param_Spec : Node_Id;
4561 begin
4562 Generate_Definition (New_S);
4564 -- This procedure is called in the context of subprogram renaming, and
4565 -- thus the attribute must be one that is a subprogram. All of those
4566 -- have at least one formal parameter, with the exceptions of the GNAT
4567 -- attribute 'Img, which GNAT treats as renameable.
4569 if Is_Empty_List (Parameter_Specifications (Spec)) then
4570 if Aname /= Name_Img then
4571 Error_Msg_N
4572 ("subprogram renaming an attribute must have formals", N);
4573 return;
4574 end if;
4576 else
4577 Param_Spec := First (Parameter_Specifications (Spec));
4578 while Present (Param_Spec) loop
4579 Form_Num := Form_Num + 1;
4581 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
4582 Find_Type (Parameter_Type (Param_Spec));
4584 -- The profile of the new entity denotes the base type (s) of
4585 -- the types given in the specification. For access parameters
4586 -- there are no subtypes involved.
4588 Rewrite (Parameter_Type (Param_Spec),
4589 New_Occurrence_Of
4590 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
4591 end if;
4593 if No (Expr_List) then
4594 Expr_List := New_List;
4595 end if;
4597 Append_To (Expr_List,
4598 Make_Identifier (Loc,
4599 Chars => Chars (Defining_Identifier (Param_Spec))));
4601 -- The expressions in the attribute reference are not freeze
4602 -- points. Neither is the attribute as a whole, see below.
4604 Set_Must_Not_Freeze (Last (Expr_List));
4605 Next (Param_Spec);
4606 end loop;
4607 end if;
4609 -- Immediate error if too many formals. Other mismatches in number or
4610 -- types of parameters are detected when we analyze the body of the
4611 -- subprogram that we construct.
4613 if Form_Num > 2 then
4614 Error_Msg_N ("too many formals for attribute", N);
4616 -- Error if the attribute reference has expressions that look like
4617 -- formal parameters.
4619 elsif Present (Expressions (Nam)) then
4620 Error_Msg_N ("illegal expressions in attribute reference", Nam);
4622 elsif Aname in Name_Compose | Name_Exponent | Name_Leading_Part |
4623 Name_Pos | Name_Round | Name_Scaling |
4624 Name_Val
4625 then
4626 if Nkind (N) = N_Subprogram_Renaming_Declaration
4627 and then Present (Corresponding_Formal_Spec (N))
4628 then
4629 Error_Msg_N
4630 ("generic actual cannot be attribute involving universal type",
4631 Nam);
4632 else
4633 Error_Msg_N
4634 ("attribute involving a universal type cannot be renamed",
4635 Nam);
4636 end if;
4637 end if;
4639 -- Rewrite attribute node to have a list of expressions corresponding to
4640 -- the subprogram formals. A renaming declaration is not a freeze point,
4641 -- and the analysis of the attribute reference should not freeze the
4642 -- type of the prefix. We use the original node in the renaming so that
4643 -- its source location is preserved, and checks on stream attributes are
4644 -- properly applied.
4646 Attr_Node := Relocate_Node (Nam);
4647 Set_Expressions (Attr_Node, Expr_List);
4649 Set_Must_Not_Freeze (Attr_Node);
4650 Set_Must_Not_Freeze (Prefix (Nam));
4652 -- Case of renaming a function
4654 if Nkind (Spec) = N_Function_Specification then
4655 if Is_Procedure_Attribute_Name (Aname) then
4656 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
4657 return;
4658 end if;
4660 Find_Type (Result_Definition (Spec));
4661 Rewrite (Result_Definition (Spec),
4662 New_Occurrence_Of
4663 (Base_Type (Entity (Result_Definition (Spec))), Loc));
4665 Body_Node :=
4666 Make_Subprogram_Body (Loc,
4667 Specification => Spec,
4668 Declarations => New_List,
4669 Handled_Statement_Sequence =>
4670 Make_Handled_Sequence_Of_Statements (Loc,
4671 Statements => New_List (
4672 Make_Simple_Return_Statement (Loc,
4673 Expression => Attr_Node))));
4675 -- Case of renaming a procedure
4677 else
4678 if not Is_Procedure_Attribute_Name (Aname) then
4679 Error_Msg_N ("attribute can only be renamed as function", Nam);
4680 return;
4681 end if;
4683 Body_Node :=
4684 Make_Subprogram_Body (Loc,
4685 Specification => Spec,
4686 Declarations => New_List,
4687 Handled_Statement_Sequence =>
4688 Make_Handled_Sequence_Of_Statements (Loc,
4689 Statements => New_List (Attr_Node)));
4690 end if;
4692 -- Signal the ABE mechanism that the generated subprogram body has not
4693 -- ABE ramifications.
4695 Set_Was_Attribute_Reference (Body_Node);
4697 -- In case of tagged types we add the body of the generated function to
4698 -- the freezing actions of the type (because in the general case such
4699 -- type is still not frozen). We exclude from this processing generic
4700 -- formal subprograms found in instantiations.
4702 -- We must exclude restricted run-time libraries because
4703 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4704 -- available in those platforms. Note that we cannot use the function
4705 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4706 -- the ZFP run-time library is not defined as a profile, and we do not
4707 -- want to deal with AST_Handler in ZFP mode.
4709 if not Configurable_Run_Time_Mode
4710 and then No (Corresponding_Formal_Spec (N))
4711 and then not Is_RTE (Etype (Nam), RE_AST_Handler)
4712 then
4713 declare
4714 P : constant Node_Id := Prefix (Nam);
4716 begin
4717 -- The prefix of 'Img is an object that is evaluated for each call
4718 -- of the function that renames it.
4720 if Aname = Name_Img then
4721 Preanalyze_And_Resolve (P);
4723 -- For all other attribute renamings, the prefix is a subtype
4725 else
4726 Find_Type (P);
4727 end if;
4729 -- If the target type is not yet frozen, add the body to the
4730 -- actions to be elaborated at freeze time.
4732 if Is_Tagged_Type (Etype (P))
4733 and then In_Open_Scopes (Scope (Etype (P)))
4734 then
4735 Append_Freeze_Action (Etype (P), Body_Node);
4736 else
4737 Rewrite (N, Body_Node);
4738 Analyze (N);
4739 Set_Etype (New_S, Base_Type (Etype (New_S)));
4740 end if;
4741 end;
4743 -- Generic formal subprograms or AST_Handler renaming
4745 else
4746 Rewrite (N, Body_Node);
4747 Analyze (N);
4748 Set_Etype (New_S, Base_Type (Etype (New_S)));
4749 end if;
4751 if Is_Compilation_Unit (New_S) then
4752 Error_Msg_N
4753 ("a library unit can only rename another library unit", N);
4754 end if;
4756 -- We suppress elaboration warnings for the resulting entity, since
4757 -- clearly they are not needed, and more particularly, in the case
4758 -- of a generic formal subprogram, the resulting entity can appear
4759 -- after the instantiation itself, and thus look like a bogus case
4760 -- of access before elaboration.
4762 if Legacy_Elaboration_Checks then
4763 Set_Suppress_Elaboration_Warnings (New_S);
4764 end if;
4765 end Attribute_Renaming;
4767 ----------------------
4768 -- Chain_Use_Clause --
4769 ----------------------
4771 procedure Chain_Use_Clause (N : Node_Id) is
4772 Level : Int := Scope_Stack.Last;
4773 Pack : Entity_Id;
4775 begin
4776 -- Common case
4778 if not Is_Compilation_Unit (Current_Scope)
4779 or else not Is_Child_Unit (Current_Scope)
4780 then
4781 null;
4783 -- Common case for compilation unit
4785 elsif Defining_Entity (Parent (N)) = Current_Scope then
4786 null;
4788 else
4789 -- If declaration appears in some other scope, it must be in some
4790 -- parent unit when compiling a child.
4792 Pack := Defining_Entity (Parent (N));
4794 if not In_Open_Scopes (Pack) then
4795 null;
4797 -- If the use clause appears in an ancestor and we are in the
4798 -- private part of the immediate parent, the use clauses are
4799 -- already installed.
4801 elsif Pack /= Scope (Current_Scope)
4802 and then In_Private_Part (Scope (Current_Scope))
4803 then
4804 null;
4806 else
4807 -- Find entry for parent unit in scope stack
4809 while Scope_Stack.Table (Level).Entity /= Pack loop
4810 Level := Level - 1;
4811 end loop;
4812 end if;
4813 end if;
4815 Set_Next_Use_Clause (N,
4816 Scope_Stack.Table (Level).First_Use_Clause);
4817 Scope_Stack.Table (Level).First_Use_Clause := N;
4818 end Chain_Use_Clause;
4820 ---------------------------
4821 -- Check_Frozen_Renaming --
4822 ---------------------------
4824 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4825 B_Node : Node_Id;
4826 Old_S : Entity_Id;
4828 begin
4829 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4830 B_Node :=
4831 Build_Renamed_Body
4832 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4834 if Is_Entity_Name (Name (N)) then
4835 Old_S := Entity (Name (N));
4837 if not Is_Frozen (Old_S)
4838 and then Operating_Mode /= Check_Semantics
4839 then
4840 Append_Freeze_Action (Old_S, B_Node);
4841 else
4842 Insert_After (N, B_Node);
4843 Analyze (B_Node);
4844 end if;
4846 if Is_Intrinsic_Subprogram (Old_S)
4847 and then not In_Instance
4848 and then not Relaxed_RM_Semantics
4849 then
4850 Error_Msg_N
4851 ("subprogram used in renaming_as_body cannot be intrinsic",
4852 Name (N));
4853 end if;
4855 else
4856 Insert_After (N, B_Node);
4857 Analyze (B_Node);
4858 end if;
4859 end if;
4860 end Check_Frozen_Renaming;
4862 -------------------------------
4863 -- Set_Entity_Or_Discriminal --
4864 -------------------------------
4866 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4867 P : Node_Id;
4869 begin
4870 -- If the entity is not a discriminant, or else expansion is disabled,
4871 -- simply set the entity.
4873 if not In_Spec_Expression
4874 or else Ekind (E) /= E_Discriminant
4875 or else Inside_A_Generic
4876 then
4877 Set_Entity_With_Checks (N, E);
4879 -- The replacement of a discriminant by the corresponding discriminal
4880 -- is not done for a task discriminant that appears in a default
4881 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4882 -- for details on their handling.
4884 elsif Is_Concurrent_Type (Scope (E)) then
4885 P := Parent (N);
4886 while Present (P)
4887 and then Nkind (P) not in
4888 N_Parameter_Specification | N_Component_Declaration
4889 loop
4890 P := Parent (P);
4891 end loop;
4893 if Present (P)
4894 and then Nkind (P) = N_Parameter_Specification
4895 then
4896 null;
4898 -- Don't replace a non-qualified discriminant in strict preanalysis
4899 -- mode since it can lead to errors during full analysis when the
4900 -- discriminant gets referenced later.
4902 -- This can occur in situations where a protected type contains
4903 -- an expression function which references a non-prefixed
4904 -- discriminant.
4906 elsif No (P)
4907 and then Preanalysis_Active
4908 and then Inside_Preanalysis_Without_Freezing = 0
4909 then
4910 null;
4912 else
4913 Set_Entity (N, Discriminal (E));
4914 end if;
4916 -- Otherwise, this is a discriminant in a context in which
4917 -- it is a reference to the corresponding parameter of the
4918 -- init proc for the enclosing type.
4920 else
4921 Set_Entity (N, Discriminal (E));
4922 end if;
4923 end Set_Entity_Or_Discriminal;
4925 -----------------------------------
4926 -- Check_In_Previous_With_Clause --
4927 -----------------------------------
4929 procedure Check_In_Previous_With_Clause (N, Nam : Node_Id) is
4930 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4931 Item : Node_Id;
4932 Par : Node_Id;
4934 begin
4935 Item := First (Context_Items (Parent (N)));
4936 while Present (Item) and then Item /= N loop
4937 if Nkind (Item) = N_With_Clause
4939 -- Protect the frontend against previous critical errors
4941 and then Nkind (Name (Item)) /= N_Selected_Component
4942 and then Entity (Name (Item)) = Pack
4943 then
4944 Par := Nam;
4946 -- Find root library unit in with_clause
4948 while Nkind (Par) = N_Expanded_Name loop
4949 Par := Prefix (Par);
4950 end loop;
4952 if Is_Child_Unit (Entity (Original_Node (Par))) then
4953 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4954 else
4955 return;
4956 end if;
4957 end if;
4959 Next (Item);
4960 end loop;
4962 -- On exit, package is not mentioned in a previous with_clause.
4963 -- Check if its prefix is.
4965 if Nkind (Nam) = N_Expanded_Name then
4966 Check_In_Previous_With_Clause (N, Prefix (Nam));
4968 elsif Pack /= Any_Id then
4969 Error_Msg_NE ("& is not visible", Nam, Pack);
4970 end if;
4971 end Check_In_Previous_With_Clause;
4973 ---------------------------------
4974 -- Check_Library_Unit_Renaming --
4975 ---------------------------------
4977 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4978 New_E : Entity_Id;
4980 begin
4981 if Nkind (Parent (N)) /= N_Compilation_Unit then
4982 return;
4984 -- Check for library unit. Note that we used to check for the scope
4985 -- being Standard here, but that was wrong for Standard itself.
4987 elsif not Is_Compilation_Unit (Old_E)
4988 and then not Is_Child_Unit (Old_E)
4989 then
4990 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4992 -- Entities defined in Standard (operators and boolean literals) cannot
4993 -- be renamed as library units.
4995 elsif Scope (Old_E) = Standard_Standard
4996 and then Sloc (Old_E) = Standard_Location
4997 then
4998 Error_Msg_N ("renamed unit must be a library unit", Name (N));
5000 elsif Present (Parent_Spec (N))
5001 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
5002 and then not Is_Child_Unit (Old_E)
5003 then
5004 Error_Msg_N
5005 ("renamed unit must be a child unit of generic parent", Name (N));
5007 elsif Nkind (N) in N_Generic_Renaming_Declaration
5008 and then Nkind (Name (N)) = N_Expanded_Name
5009 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
5010 and then Is_Generic_Unit (Old_E)
5011 then
5012 Error_Msg_N
5013 ("renamed generic unit must be a library unit", Name (N));
5015 elsif Is_Package_Or_Generic_Package (Old_E) then
5017 -- Inherit categorization flags
5019 New_E := Defining_Entity (N);
5020 Set_Is_Pure (New_E, Is_Pure (Old_E));
5021 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
5022 Set_Is_Remote_Call_Interface (New_E,
5023 Is_Remote_Call_Interface (Old_E));
5024 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
5025 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
5026 end if;
5027 end Check_Library_Unit_Renaming;
5029 ------------------------
5030 -- Enclosing_Instance --
5031 ------------------------
5033 function Enclosing_Instance return Entity_Id is
5034 S : Entity_Id;
5036 begin
5037 if not Is_Generic_Instance (Current_Scope) then
5038 return Empty;
5039 end if;
5041 S := Scope (Current_Scope);
5042 while S /= Standard_Standard loop
5043 if Is_Generic_Instance (S) then
5044 return S;
5045 end if;
5047 S := Scope (S);
5048 end loop;
5050 return Empty;
5051 end Enclosing_Instance;
5053 ---------------
5054 -- End_Scope --
5055 ---------------
5057 procedure End_Scope is
5058 Id : Entity_Id;
5059 Prev : Entity_Id;
5060 Outer : Entity_Id;
5062 begin
5063 Id := First_Entity (Current_Scope);
5064 while Present (Id) loop
5065 -- An entity in the current scope is not necessarily the first one
5066 -- on its homonym chain. Find its predecessor if any,
5067 -- If it is an internal entity, it will not be in the visibility
5068 -- chain altogether, and there is nothing to unchain.
5070 if Id /= Current_Entity (Id) then
5071 Prev := Current_Entity (Id);
5072 while Present (Prev)
5073 and then Homonym (Prev) /= Id
5074 loop
5075 Prev := Homonym (Prev);
5076 end loop;
5078 -- Skip to end of loop if Id is not in the visibility chain
5080 if No (Prev) then
5081 goto Next_Ent;
5082 end if;
5084 else
5085 Prev := Empty;
5086 end if;
5088 Set_Is_Immediately_Visible (Id, False);
5090 Outer := Homonym (Id);
5091 while Present (Outer) and then Scope (Outer) = Current_Scope loop
5092 Outer := Homonym (Outer);
5093 end loop;
5095 -- Reset homonym link of other entities, but do not modify link
5096 -- between entities in current scope, so that the back-end can have
5097 -- a proper count of local overloadings.
5099 if No (Prev) then
5100 Set_Name_Entity_Id (Chars (Id), Outer);
5102 elsif Scope (Prev) /= Scope (Id) then
5103 Set_Homonym (Prev, Outer);
5104 end if;
5106 <<Next_Ent>>
5107 Next_Entity (Id);
5108 end loop;
5110 -- If the scope generated freeze actions, place them before the
5111 -- current declaration and analyze them. Type declarations and
5112 -- the bodies of initialization procedures can generate such nodes.
5113 -- We follow the parent chain until we reach a list node, which is
5114 -- the enclosing list of declarations. If the list appears within
5115 -- a protected definition, move freeze nodes outside the protected
5116 -- type altogether.
5118 if Present
5119 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
5120 then
5121 declare
5122 Decl : Node_Id;
5123 L : constant List_Id := Scope_Stack.Table
5124 (Scope_Stack.Last).Pending_Freeze_Actions;
5126 begin
5127 if Is_Itype (Current_Scope) then
5128 Decl := Associated_Node_For_Itype (Current_Scope);
5129 else
5130 Decl := Parent (Current_Scope);
5131 end if;
5133 Pop_Scope;
5135 while not Is_List_Member (Decl)
5136 or else Nkind (Parent (Decl)) in N_Protected_Definition
5137 | N_Task_Definition
5138 loop
5139 Decl := Parent (Decl);
5140 end loop;
5142 Insert_List_Before_And_Analyze (Decl, L);
5143 end;
5145 else
5146 Pop_Scope;
5147 end if;
5148 end End_Scope;
5150 ---------------------
5151 -- End_Use_Clauses --
5152 ---------------------
5154 procedure End_Use_Clauses (Clause : Node_Id) is
5155 U : Node_Id;
5157 begin
5158 -- Remove use_type_clauses first, because they affect the visibility of
5159 -- operators in subsequent used packages.
5161 U := Clause;
5162 while Present (U) loop
5163 if Nkind (U) = N_Use_Type_Clause then
5164 End_Use_Type (U);
5165 end if;
5167 Next_Use_Clause (U);
5168 end loop;
5170 U := Clause;
5171 while Present (U) loop
5172 if Nkind (U) = N_Use_Package_Clause then
5173 End_Use_Package (U);
5174 end if;
5176 Next_Use_Clause (U);
5177 end loop;
5178 end End_Use_Clauses;
5180 ---------------------
5181 -- End_Use_Package --
5182 ---------------------
5184 procedure End_Use_Package (N : Node_Id) is
5185 Pack : Entity_Id;
5186 Pack_Name : Node_Id;
5187 Id : Entity_Id;
5188 Elmt : Elmt_Id;
5190 function Is_Primitive_Operator_In_Use
5191 (Op : Entity_Id;
5192 F : Entity_Id) return Boolean;
5193 -- Check whether Op is a primitive operator of a use-visible type
5195 ----------------------------------
5196 -- Is_Primitive_Operator_In_Use --
5197 ----------------------------------
5199 function Is_Primitive_Operator_In_Use
5200 (Op : Entity_Id;
5201 F : Entity_Id) return Boolean
5203 T : constant Entity_Id := Base_Type (Etype (F));
5204 begin
5205 return In_Use (T) and then Scope (T) = Scope (Op);
5206 end Is_Primitive_Operator_In_Use;
5208 -- Start of processing for End_Use_Package
5210 begin
5211 Pack_Name := Name (N);
5213 -- Test that Pack_Name actually denotes a package before processing
5215 if Is_Entity_Name (Pack_Name)
5216 and then Ekind (Entity (Pack_Name)) = E_Package
5217 then
5218 Pack := Entity (Pack_Name);
5220 if In_Open_Scopes (Pack) then
5221 null;
5223 elsif not Redundant_Use (Pack_Name) then
5224 Set_In_Use (Pack, False);
5225 Set_Current_Use_Clause (Pack, Empty);
5227 Id := First_Entity (Pack);
5228 while Present (Id) loop
5230 -- Preserve use-visibility of operators that are primitive
5231 -- operators of a type that is use-visible through an active
5232 -- use_type_clause.
5234 if Nkind (Id) = N_Defining_Operator_Symbol
5235 and then
5236 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
5237 or else
5238 (Present (Next_Formal (First_Formal (Id)))
5239 and then
5240 Is_Primitive_Operator_In_Use
5241 (Id, Next_Formal (First_Formal (Id)))))
5242 then
5243 null;
5244 else
5245 Set_Is_Potentially_Use_Visible (Id, False);
5246 end if;
5248 if Is_Private_Type (Id)
5249 and then Present (Full_View (Id))
5250 then
5251 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
5252 end if;
5254 Next_Entity (Id);
5255 end loop;
5257 if Present (Renamed_Entity (Pack)) then
5258 Set_In_Use (Renamed_Entity (Pack), False);
5259 Set_Current_Use_Clause (Renamed_Entity (Pack), Empty);
5260 end if;
5262 if Chars (Pack) = Name_System
5263 and then Scope (Pack) = Standard_Standard
5264 and then Present_System_Aux
5265 then
5266 Id := First_Entity (System_Aux_Id);
5267 while Present (Id) loop
5268 Set_Is_Potentially_Use_Visible (Id, False);
5270 if Is_Private_Type (Id)
5271 and then Present (Full_View (Id))
5272 then
5273 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
5274 end if;
5276 Next_Entity (Id);
5277 end loop;
5279 Set_In_Use (System_Aux_Id, False);
5280 end if;
5281 else
5282 Set_Redundant_Use (Pack_Name, False);
5283 end if;
5284 end if;
5286 if Present (Hidden_By_Use_Clause (N)) then
5287 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
5288 while Present (Elmt) loop
5289 declare
5290 E : constant Entity_Id := Node (Elmt);
5292 begin
5293 -- Reset either Use_Visibility or Direct_Visibility, depending
5294 -- on how the entity was hidden by the use clause.
5296 if In_Use (Scope (E))
5297 and then Used_As_Generic_Actual (Scope (E))
5298 then
5299 Set_Is_Potentially_Use_Visible (Node (Elmt));
5300 else
5301 Set_Is_Immediately_Visible (Node (Elmt));
5302 end if;
5304 Next_Elmt (Elmt);
5305 end;
5306 end loop;
5308 Set_Hidden_By_Use_Clause (N, No_Elist);
5309 end if;
5310 end End_Use_Package;
5312 ------------------
5313 -- End_Use_Type --
5314 ------------------
5316 procedure End_Use_Type (N : Node_Id) is
5317 Elmt : Elmt_Id;
5318 Id : Entity_Id;
5319 T : Entity_Id;
5321 -- Start of processing for End_Use_Type
5323 begin
5324 Id := Subtype_Mark (N);
5326 -- A call to Rtsfind may occur while analyzing a use_type_clause, in
5327 -- which case the type marks are not resolved yet, so guard against that
5328 -- here.
5330 if Is_Entity_Name (Id) and then Present (Entity (Id)) then
5331 T := Entity (Id);
5333 if T = Any_Type or else From_Limited_With (T) then
5334 null;
5336 -- Note that the use_type_clause may mention a subtype of the type
5337 -- whose primitive operations have been made visible. Here as
5338 -- elsewhere, it is the base type that matters for visibility.
5340 elsif In_Open_Scopes (Scope (Base_Type (T))) then
5341 null;
5343 elsif not Redundant_Use (Id) then
5344 Set_In_Use (T, False);
5345 Set_In_Use (Base_Type (T), False);
5346 Set_Current_Use_Clause (T, Empty);
5347 Set_Current_Use_Clause (Base_Type (T), Empty);
5349 -- See Use_One_Type for the rationale. This is a bit on the naive
5350 -- side, but should be good enough in practice.
5352 if Is_Tagged_Type (T) then
5353 Set_In_Use (Class_Wide_Type (T), False);
5354 end if;
5355 end if;
5356 end if;
5358 if Is_Empty_Elmt_List (Used_Operations (N)) then
5359 return;
5361 else
5362 Elmt := First_Elmt (Used_Operations (N));
5363 while Present (Elmt) loop
5364 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
5365 Next_Elmt (Elmt);
5366 end loop;
5367 end if;
5368 end End_Use_Type;
5370 --------------------
5371 -- Entity_Of_Unit --
5372 --------------------
5374 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
5375 begin
5376 if Nkind (U) = N_Package_Instantiation and then Analyzed (U) then
5377 return Defining_Entity (Instance_Spec (U));
5378 else
5379 return Defining_Entity (U);
5380 end if;
5381 end Entity_Of_Unit;
5383 --------------------------------------
5384 -- Error_Missing_With_Of_Known_Unit --
5385 --------------------------------------
5387 procedure Error_Missing_With_Of_Known_Unit (Pkg : Node_Id) is
5388 Selectors : array (1 .. 6) of Node_Id;
5389 -- Contains the chars of the full package name up to maximum number
5390 -- allowed as per Errout.Error_Msg_Name_# variables.
5392 Count : Integer := Selectors'First;
5393 -- Count of selector names forming the full package name
5395 Current_Pkg : Node_Id := Parent (Pkg);
5397 begin
5398 Selectors (Count) := Pkg;
5400 -- Gather all the selectors we can display
5402 while Nkind (Current_Pkg) = N_Selected_Component
5403 and then Is_Known_Unit (Current_Pkg)
5404 and then Count < Selectors'Length
5405 loop
5406 Count := Count + 1;
5407 Selectors (Count) := Selector_Name (Current_Pkg);
5408 Current_Pkg := Parent (Current_Pkg);
5409 end loop;
5411 -- Display the error message based on the number of selectors found
5413 case Count is
5414 when 1 =>
5415 Error_Msg_Node_1 := Selectors (1);
5416 Error_Msg_N -- CODEFIX
5417 ("\\missing `WITH &;`", Pkg);
5418 when 2 =>
5419 Error_Msg_Node_1 := Selectors (1);
5420 Error_Msg_Node_2 := Selectors (2);
5421 Error_Msg_N -- CODEFIX
5422 ("\\missing `WITH &.&;`", Pkg);
5423 when 3 =>
5424 Error_Msg_Node_1 := Selectors (1);
5425 Error_Msg_Node_2 := Selectors (2);
5426 Error_Msg_Node_3 := Selectors (3);
5427 Error_Msg_N -- CODEFIX
5428 ("\\missing `WITH &.&.&;`", Pkg);
5429 when 4 =>
5430 Error_Msg_Node_1 := Selectors (1);
5431 Error_Msg_Node_2 := Selectors (2);
5432 Error_Msg_Node_3 := Selectors (3);
5433 Error_Msg_Node_3 := Selectors (4);
5434 Error_Msg_N -- CODEFIX
5435 ("\\missing `WITH &.&.&.&;`", Pkg);
5436 when 5 =>
5437 Error_Msg_Node_1 := Selectors (1);
5438 Error_Msg_Node_2 := Selectors (2);
5439 Error_Msg_Node_3 := Selectors (3);
5440 Error_Msg_Node_3 := Selectors (4);
5441 Error_Msg_Node_3 := Selectors (5);
5442 Error_Msg_N -- CODEFIX
5443 ("\\missing `WITH &.&.&.&.&;`", Pkg);
5444 when 6 =>
5445 Error_Msg_Node_1 := Selectors (1);
5446 Error_Msg_Node_2 := Selectors (2);
5447 Error_Msg_Node_3 := Selectors (3);
5448 Error_Msg_Node_4 := Selectors (4);
5449 Error_Msg_Node_5 := Selectors (5);
5450 Error_Msg_Node_6 := Selectors (6);
5451 Error_Msg_N -- CODEFIX
5452 ("\\missing `WITH &.&.&.&.&.&;`", Pkg);
5453 when others =>
5454 raise Program_Error;
5455 end case;
5456 end Error_Missing_With_Of_Known_Unit;
5458 --------------------
5459 -- Is_Self_Hidden --
5460 --------------------
5462 function Is_Self_Hidden (E : Entity_Id) return Boolean is
5463 begin
5464 if Is_Not_Self_Hidden (E) then
5465 return Ekind (E) = E_Void;
5466 else
5467 return True;
5468 end if;
5469 end Is_Self_Hidden;
5471 ----------------------
5472 -- Find_Direct_Name --
5473 ----------------------
5475 procedure Find_Direct_Name (N : Node_Id) is
5476 E : Entity_Id;
5477 E2 : Entity_Id;
5478 Msg : Boolean;
5480 Homonyms : Entity_Id;
5481 -- Saves start of homonym chain
5483 Inst : Entity_Id := Empty;
5484 -- Enclosing instance, if any
5486 Nvis_Entity : Boolean;
5487 -- Set True to indicate that there is at least one entity on the homonym
5488 -- chain which, while not visible, is visible enough from the user point
5489 -- of view to warrant an error message of "not visible" rather than
5490 -- undefined.
5492 Nvis_Is_Private_Subprg : Boolean := False;
5493 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
5494 -- effect concerning library subprograms has been detected. Used to
5495 -- generate the precise error message.
5497 function From_Actual_Package (E : Entity_Id) return Boolean;
5498 -- Returns true if the entity is an actual for a package that is itself
5499 -- an actual for a formal package of the current instance. Such an
5500 -- entity requires special handling because it may be use-visible but
5501 -- hides directly visible entities defined outside the instance, because
5502 -- the corresponding formal did so in the generic.
5504 function Is_Actual_Parameter return Boolean;
5505 -- This function checks if the node N is an identifier that is an actual
5506 -- parameter of a procedure call. If so it returns True, otherwise it
5507 -- return False. The reason for this check is that at this stage we do
5508 -- not know what procedure is being called if the procedure might be
5509 -- overloaded, so it is premature to go setting referenced flags or
5510 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
5511 -- for that processing.
5512 -- Note: there is a similar routine Sem_Util.Is_Actual_Parameter, but
5513 -- it works for both function and procedure calls, while here we are
5514 -- only concerned with procedure calls (and with entry calls as well,
5515 -- but they are parsed as procedure calls and only later rewritten to
5516 -- entry calls).
5518 function Known_But_Invisible (E : Entity_Id) return Boolean;
5519 -- This function determines whether a reference to the entity E, which
5520 -- is not visible, can reasonably be considered to be known to the
5521 -- writer of the reference. This is a heuristic test, used only for
5522 -- the purposes of figuring out whether we prefer to complain that an
5523 -- entity is undefined or invisible (and identify the declaration of
5524 -- the invisible entity in the latter case). The point here is that we
5525 -- don't want to complain that something is invisible and then point to
5526 -- something entirely mysterious to the writer.
5528 procedure Nvis_Messages;
5529 -- Called if there are no visible entries for N, but there is at least
5530 -- one non-directly visible, or hidden declaration. This procedure
5531 -- outputs an appropriate set of error messages.
5533 procedure Undefined (Nvis : Boolean);
5534 -- This function is called if the current node has no corresponding
5535 -- visible entity or entities. The value set in Msg indicates whether
5536 -- an error message was generated (multiple error messages for the
5537 -- same variable are generally suppressed, see body for details).
5538 -- Msg is True if an error message was generated, False if not. This
5539 -- value is used by the caller to determine whether or not to output
5540 -- additional messages where appropriate. The parameter is set False
5541 -- to get the message "X is undefined", and True to get the message
5542 -- "X is not visible".
5544 -------------------------
5545 -- From_Actual_Package --
5546 -------------------------
5548 function From_Actual_Package (E : Entity_Id) return Boolean is
5549 Scop : constant Entity_Id := Scope (E);
5550 -- Declared scope of candidate entity
5552 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
5553 -- Recursive function that does the work and examines actuals of
5554 -- actual packages of current instance.
5556 ------------------------
5557 -- Declared_In_Actual --
5558 ------------------------
5560 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
5561 pragma Assert (Ekind (Pack) = E_Package);
5562 Act : Entity_Id;
5563 begin
5564 if No (Associated_Formal_Package (Pack)) then
5565 return False;
5567 else
5568 Act := First_Entity (Pack);
5569 while Present (Act) loop
5570 if Renamed_Entity (Pack) = Scop then
5571 return True;
5573 -- Check for end of list of actuals
5575 elsif Ekind (Act) = E_Package
5576 and then Renamed_Entity (Act) = Pack
5577 then
5578 return False;
5580 elsif Ekind (Act) = E_Package
5581 and then Declared_In_Actual (Act)
5582 then
5583 return True;
5584 end if;
5586 Next_Entity (Act);
5587 end loop;
5589 return False;
5590 end if;
5591 end Declared_In_Actual;
5593 -- Local variables
5595 Act : Entity_Id;
5597 -- Start of processing for From_Actual_Package
5599 begin
5600 if not In_Instance then
5601 return False;
5603 else
5604 Inst := Current_Scope;
5605 while Present (Inst)
5606 and then Ekind (Inst) /= E_Package
5607 and then not Is_Generic_Instance (Inst)
5608 loop
5609 Inst := Scope (Inst);
5610 end loop;
5612 if No (Inst) then
5613 return False;
5614 end if;
5616 Act := First_Entity (Inst);
5617 while Present (Act) loop
5618 if Ekind (Act) = E_Package
5619 and then Declared_In_Actual (Act)
5620 then
5621 return True;
5622 end if;
5624 Next_Entity (Act);
5625 end loop;
5627 return False;
5628 end if;
5629 end From_Actual_Package;
5631 -------------------------
5632 -- Is_Actual_Parameter --
5633 -------------------------
5635 function Is_Actual_Parameter return Boolean is
5636 begin
5637 if Nkind (N) = N_Identifier then
5638 case Nkind (Parent (N)) is
5639 when N_Procedure_Call_Statement =>
5640 return Is_List_Member (N)
5641 and then List_Containing (N) =
5642 Parameter_Associations (Parent (N));
5644 when N_Parameter_Association =>
5645 return N = Explicit_Actual_Parameter (Parent (N))
5646 and then Nkind (Parent (Parent (N))) =
5647 N_Procedure_Call_Statement;
5649 when others =>
5650 return False;
5651 end case;
5652 else
5653 return False;
5654 end if;
5655 end Is_Actual_Parameter;
5657 -------------------------
5658 -- Known_But_Invisible --
5659 -------------------------
5661 function Known_But_Invisible (E : Entity_Id) return Boolean is
5662 Fname : File_Name_Type;
5664 begin
5665 -- Entities in Standard are always considered to be known
5667 if Sloc (E) <= Standard_Location then
5668 return True;
5670 -- An entity that does not come from source is always considered
5671 -- to be unknown, since it is an artifact of code expansion.
5673 elsif not Comes_From_Source (E) then
5674 return False;
5675 end if;
5677 -- Here we have an entity that is not from package Standard, and
5678 -- which comes from Source. See if it comes from an internal file.
5680 Fname := Unit_File_Name (Get_Source_Unit (E));
5682 -- Case of from internal file
5684 if In_Internal_Unit (E) then
5686 -- Private part entities in internal files are never considered
5687 -- to be known to the writer of normal application code.
5689 if Is_Hidden (E) then
5690 return False;
5691 end if;
5693 -- Entities from System packages other than System and
5694 -- System.Storage_Elements are not considered to be known.
5695 -- System.Auxxxx files are also considered known to the user.
5697 -- Should refine this at some point to generally distinguish
5698 -- between known and unknown internal files ???
5700 Get_Name_String (Fname);
5702 return
5703 Name_Len < 2
5704 or else
5705 Name_Buffer (1 .. 2) /= "s-"
5706 or else
5707 Name_Buffer (3 .. 8) = "stoele"
5708 or else
5709 Name_Buffer (3 .. 5) = "aux";
5711 -- If not an internal file, then entity is definitely known, even if
5712 -- it is in a private part (the message generated will note that it
5713 -- is in a private part).
5715 else
5716 return True;
5717 end if;
5718 end Known_But_Invisible;
5720 -------------------
5721 -- Nvis_Messages --
5722 -------------------
5724 procedure Nvis_Messages is
5725 Comp_Unit : Node_Id;
5726 Ent : Entity_Id;
5727 Found : Boolean := False;
5728 Hidden : Boolean := False;
5729 Item : Node_Id;
5731 begin
5732 -- Ada 2005 (AI-262): Generate a precise error concerning the
5733 -- Beaujolais effect that was previously detected
5735 if Nvis_Is_Private_Subprg then
5737 pragma Assert (Nkind (E2) = N_Defining_Identifier
5738 and then Ekind (E2) = E_Function
5739 and then Scope (E2) = Standard_Standard
5740 and then Has_Private_With (E2));
5742 -- Find the sloc corresponding to the private with'ed unit
5744 Comp_Unit := Cunit (Current_Sem_Unit);
5745 Error_Msg_Sloc := No_Location;
5747 Item := First (Context_Items (Comp_Unit));
5748 while Present (Item) loop
5749 if Nkind (Item) = N_With_Clause
5750 and then Private_Present (Item)
5751 and then Entity (Name (Item)) = E2
5752 then
5753 Error_Msg_Sloc := Sloc (Item);
5754 exit;
5755 end if;
5757 Next (Item);
5758 end loop;
5760 pragma Assert (Error_Msg_Sloc /= No_Location);
5762 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
5763 return;
5764 end if;
5766 Undefined (Nvis => True);
5768 if Msg then
5770 -- First loop does hidden declarations
5772 Ent := Homonyms;
5773 while Present (Ent) loop
5774 if Is_Potentially_Use_Visible (Ent) then
5775 if not Hidden then
5776 Error_Msg_N -- CODEFIX
5777 ("multiple use clauses cause hiding!", N);
5778 Hidden := True;
5779 end if;
5781 Error_Msg_Sloc := Sloc (Ent);
5782 Error_Msg_N -- CODEFIX
5783 ("hidden declaration#!", N);
5784 end if;
5786 Ent := Homonym (Ent);
5787 end loop;
5789 -- If we found hidden declarations, then that's enough, don't
5790 -- bother looking for non-visible declarations as well.
5792 if Hidden then
5793 return;
5794 end if;
5796 -- Second loop does non-directly visible declarations
5798 Ent := Homonyms;
5799 while Present (Ent) loop
5800 if not Is_Potentially_Use_Visible (Ent) then
5802 -- Do not bother the user with unknown entities
5804 if not Known_But_Invisible (Ent) then
5805 goto Continue;
5806 end if;
5808 Error_Msg_Sloc := Sloc (Ent);
5810 -- Output message noting that there is a non-visible
5811 -- declaration, distinguishing the private part case.
5813 if Is_Hidden (Ent) then
5814 Error_Msg_N ("non-visible (private) declaration#!", N);
5816 -- If the entity is declared in a generic package, it
5817 -- cannot be visible, so there is no point in adding it
5818 -- to the list of candidates if another homograph from a
5819 -- non-generic package has been seen.
5821 elsif Ekind (Scope (Ent)) = E_Generic_Package
5822 and then Found
5823 then
5824 null;
5826 else
5827 -- When the entity comes from a generic instance the
5828 -- normal error message machinery will give the line
5829 -- number of the generic package and the location of
5830 -- the generic instance, but not the name of the
5831 -- the instance.
5833 -- So, in order to give more descriptive error messages
5834 -- in this case, we include the name of the generic
5835 -- package.
5837 if Is_Generic_Instance (Scope (Ent)) then
5838 Error_Msg_Name_1 := Chars (Scope (Ent));
5839 Error_Msg_N -- CODEFIX
5840 ("non-visible declaration from %#!", N);
5842 -- Otherwise print the message normally
5844 else
5845 Error_Msg_N -- CODEFIX
5846 ("non-visible declaration#!", N);
5847 end if;
5849 if Ekind (Scope (Ent)) /= E_Generic_Package then
5850 Found := True;
5851 end if;
5853 if Is_Compilation_Unit (Ent)
5854 and then
5855 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
5856 then
5857 Error_Msg_Qual_Level := 99;
5858 Error_Msg_NE -- CODEFIX
5859 ("\\missing `WITH &;`", N, Ent);
5860 Error_Msg_Qual_Level := 0;
5861 end if;
5863 if Ekind (Ent) = E_Discriminant
5864 and then Present (Corresponding_Discriminant (Ent))
5865 and then Scope (Corresponding_Discriminant (Ent)) =
5866 Etype (Scope (Ent))
5867 then
5868 Error_Msg_N
5869 ("inherited discriminant not allowed here" &
5870 " (RM 3.8 (12), 3.8.1 (6))!", N);
5871 end if;
5872 end if;
5874 -- Set entity and its containing package as referenced. We
5875 -- can't be sure of this, but this seems a better choice
5876 -- to avoid unused entity messages.
5878 if Comes_From_Source (Ent) then
5879 Set_Referenced (Ent);
5880 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
5881 end if;
5882 end if;
5884 <<Continue>>
5885 Ent := Homonym (Ent);
5886 end loop;
5887 end if;
5888 end Nvis_Messages;
5890 ---------------
5891 -- Undefined --
5892 ---------------
5894 procedure Undefined (Nvis : Boolean) is
5895 Emsg : Error_Msg_Id;
5897 begin
5898 -- We should never find an undefined internal name. If we do, then
5899 -- see if we have previous errors. If so, ignore on the grounds that
5900 -- it is probably a cascaded message (e.g. a block label from a badly
5901 -- formed block). If no previous errors, then we have a real internal
5902 -- error of some kind so raise an exception.
5904 if Is_Internal_Name (Chars (N)) then
5905 if Total_Errors_Detected /= 0 then
5906 return;
5907 else
5908 raise Program_Error;
5909 end if;
5910 end if;
5912 -- A very specialized error check, if the undefined variable is
5913 -- a case tag, and the case type is an enumeration type, check
5914 -- for a possible misspelling, and if so, modify the identifier
5916 -- Named aggregate should also be handled similarly ???
5918 if Nkind (N) = N_Identifier
5919 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5920 then
5921 declare
5922 Case_Stm : constant Node_Id := Parent (Parent (N));
5923 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5925 Lit : Node_Id;
5927 begin
5928 if Is_Enumeration_Type (Case_Typ)
5929 and then not Is_Standard_Character_Type (Case_Typ)
5930 then
5931 Lit := First_Literal (Case_Typ);
5932 Get_Name_String (Chars (Lit));
5934 if Chars (Lit) /= Chars (N)
5935 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5936 then
5937 Error_Msg_Node_2 := Lit;
5938 Error_Msg_N -- CODEFIX
5939 ("& is undefined, assume misspelling of &", N);
5940 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5941 return;
5942 end if;
5944 Next_Literal (Lit);
5945 end if;
5946 end;
5947 end if;
5949 -- Normal processing
5951 Set_Entity (N, Any_Id);
5952 Set_Etype (N, Any_Type);
5954 -- We use the table Urefs to keep track of entities for which we
5955 -- have issued errors for undefined references. Multiple errors
5956 -- for a single name are normally suppressed, however we modify
5957 -- the error message to alert the programmer to this effect.
5959 for J in Urefs.First .. Urefs.Last loop
5960 if Chars (N) = Chars (Urefs.Table (J).Node) then
5961 if Urefs.Table (J).Err /= No_Error_Msg
5962 and then Sloc (N) /= Urefs.Table (J).Loc
5963 then
5964 Error_Msg_Node_1 := Urefs.Table (J).Node;
5966 if Urefs.Table (J).Nvis then
5967 Change_Error_Text (Urefs.Table (J).Err,
5968 "& is not visible (more references follow)");
5969 else
5970 Change_Error_Text (Urefs.Table (J).Err,
5971 "& is undefined (more references follow)");
5972 end if;
5974 Urefs.Table (J).Err := No_Error_Msg;
5975 end if;
5977 -- Although we will set Msg False, and thus suppress the
5978 -- message, we also set Error_Posted True, to avoid any
5979 -- cascaded messages resulting from the undefined reference.
5981 Msg := False;
5982 Set_Error_Posted (N);
5983 return;
5984 end if;
5985 end loop;
5987 -- If entry not found, this is first undefined occurrence
5989 if Nvis then
5990 Error_Msg_N ("& is not visible!", N);
5991 Emsg := Get_Msg_Id;
5993 else
5994 Error_Msg_N ("& is undefined!", N);
5995 Emsg := Get_Msg_Id;
5997 -- A very bizarre special check, if the undefined identifier
5998 -- is Put or Put_Line, then add a special error message (since
5999 -- this is a very common error for beginners to make).
6001 if Chars (N) in Name_Put | Name_Put_Line then
6002 Error_Msg_N -- CODEFIX
6003 ("\\possible missing `WITH Ada.Text_'I'O; " &
6004 "USE Ada.Text_'I'O`!", N);
6006 -- Another special check if N is the prefix of a selected
6007 -- component which is a known unit: add message complaining
6008 -- about missing with for this unit.
6010 elsif Nkind (Parent (N)) = N_Selected_Component
6011 and then N = Prefix (Parent (N))
6012 and then Is_Known_Unit (Parent (N))
6013 then
6014 Error_Missing_With_Of_Known_Unit (N);
6015 end if;
6017 -- Now check for possible misspellings
6019 declare
6020 E : Entity_Id;
6021 Ematch : Entity_Id := Empty;
6022 begin
6023 for Nam in First_Name_Id .. Last_Name_Id loop
6024 E := Get_Name_Entity_Id (Nam);
6026 if Present (E)
6027 and then (Is_Immediately_Visible (E)
6028 or else
6029 Is_Potentially_Use_Visible (E))
6030 then
6031 if Is_Bad_Spelling_Of (Chars (N), Nam) then
6032 Ematch := E;
6033 exit;
6034 end if;
6035 end if;
6036 end loop;
6038 if Present (Ematch) then
6039 Error_Msg_NE -- CODEFIX
6040 ("\possible misspelling of&", N, Ematch);
6041 end if;
6042 end;
6043 end if;
6045 -- Make entry in undefined references table unless the full errors
6046 -- switch is set, in which case by refraining from generating the
6047 -- table entry we guarantee that we get an error message for every
6048 -- undefined reference. The entry is not added if we are ignoring
6049 -- errors.
6051 if not All_Errors_Mode
6052 and then Ignore_Errors_Enable = 0
6053 and then not Get_Ignore_Errors
6054 then
6055 Urefs.Append (
6056 (Node => N,
6057 Err => Emsg,
6058 Nvis => Nvis,
6059 Loc => Sloc (N)));
6060 end if;
6062 Msg := True;
6063 end Undefined;
6065 -- Local variables
6067 Nested_Inst : Entity_Id := Empty;
6068 -- The entity of a nested instance which appears within Inst (if any)
6070 -- Start of processing for Find_Direct_Name
6072 begin
6073 -- If the entity pointer is already set, this is an internal node, or
6074 -- a node that is analyzed more than once, after a tree modification.
6075 -- In such a case there is no resolution to perform, just set the type.
6077 if Present (Entity (N)) then
6078 if Is_Type (Entity (N)) then
6079 Set_Etype (N, Entity (N));
6081 else
6082 declare
6083 Entyp : constant Entity_Id := Etype (Entity (N));
6085 begin
6086 -- One special case here. If the Etype field is already set,
6087 -- and references the packed array type corresponding to the
6088 -- etype of the referenced entity, then leave it alone. This
6089 -- happens for trees generated from Exp_Pakd, where expressions
6090 -- can be deliberately "mis-typed" to the packed array type.
6092 if Is_Packed_Array (Entyp)
6093 and then Present (Etype (N))
6094 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
6095 then
6096 null;
6098 -- If not that special case, then just reset the Etype
6100 else
6101 Set_Etype (N, Entyp);
6102 end if;
6103 end;
6104 end if;
6106 -- Although the marking of use clauses happens at the end of
6107 -- Find_Direct_Name, a certain case where a generic actual satisfies
6108 -- a use clause must be checked here due to how the generic machinery
6109 -- handles the analysis of said actuals.
6111 if In_Instance
6112 and then Nkind (Parent (N)) = N_Generic_Association
6113 then
6114 Mark_Use_Clauses (Entity (N));
6115 end if;
6117 return;
6118 end if;
6120 -- Preserve relevant elaboration-related attributes of the context which
6121 -- are no longer available or very expensive to recompute once analysis,
6122 -- resolution, and expansion are over.
6124 if Nkind (N) = N_Identifier then
6125 Mark_Elaboration_Attributes
6126 (N_Id => N,
6127 Checks => True,
6128 Modes => True,
6129 Warnings => True);
6130 end if;
6132 -- Here if Entity pointer was not set, we need full visibility analysis
6133 -- First we generate debugging output if the debug E flag is set.
6135 if Debug_Flag_E then
6136 Write_Str ("Looking for ");
6137 Write_Name (Chars (N));
6138 Write_Eol;
6139 end if;
6141 Homonyms := Current_Entity (N);
6142 Nvis_Entity := False;
6144 E := Homonyms;
6145 while Present (E) loop
6147 -- If entity is immediately visible or potentially use visible, then
6148 -- process the entity and we are done.
6150 if Is_Immediately_Visible (E) then
6151 goto Immediately_Visible_Entity;
6153 elsif Is_Potentially_Use_Visible (E) then
6154 goto Potentially_Use_Visible_Entity;
6156 -- Note if a known but invisible entity encountered
6158 elsif Known_But_Invisible (E) then
6159 Nvis_Entity := True;
6160 end if;
6162 -- Move to next entity in chain and continue search
6164 E := Homonym (E);
6165 end loop;
6167 -- If no entries on homonym chain that were potentially visible,
6168 -- and no entities reasonably considered as non-visible, then
6169 -- we have a plain undefined reference, with no additional
6170 -- explanation required.
6172 if not Nvis_Entity then
6173 Undefined (Nvis => False);
6175 -- Otherwise there is at least one entry on the homonym chain that
6176 -- is reasonably considered as being known and non-visible.
6178 else
6179 Nvis_Messages;
6180 end if;
6182 goto Done;
6184 -- Processing for a potentially use visible entry found. We must search
6185 -- the rest of the homonym chain for two reasons. First, if there is a
6186 -- directly visible entry, then none of the potentially use-visible
6187 -- entities are directly visible (RM 8.4(10)). Second, we need to check
6188 -- for the case of multiple potentially use-visible entries hiding one
6189 -- another and as a result being non-directly visible (RM 8.4(11)).
6191 <<Potentially_Use_Visible_Entity>> declare
6192 Only_One_Visible : Boolean := True;
6193 All_Overloadable : Boolean := Is_Overloadable (E);
6195 begin
6196 E2 := Homonym (E);
6197 while Present (E2) loop
6198 if Is_Immediately_Visible (E2) then
6200 -- If the use-visible entity comes from the actual for a
6201 -- formal package, it hides a directly visible entity from
6202 -- outside the instance.
6204 if From_Actual_Package (E)
6205 and then Scope_Depth (Scope (E2)) < Scope_Depth (Inst)
6206 then
6207 goto Found;
6208 else
6209 E := E2;
6210 goto Immediately_Visible_Entity;
6211 end if;
6213 elsif Is_Potentially_Use_Visible (E2) then
6214 Only_One_Visible := False;
6215 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
6217 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
6218 -- that can occur in private_with clauses. Example:
6220 -- with A;
6221 -- private with B; package A is
6222 -- package C is function B return Integer;
6223 -- use A; end A;
6224 -- V1 : Integer := B;
6225 -- private function B return Integer;
6226 -- V2 : Integer := B;
6227 -- end C;
6229 -- V1 resolves to A.B, but V2 resolves to library unit B
6231 elsif Ekind (E2) = E_Function
6232 and then Scope (E2) = Standard_Standard
6233 and then Has_Private_With (E2)
6234 then
6235 Only_One_Visible := False;
6236 All_Overloadable := False;
6237 Nvis_Is_Private_Subprg := True;
6238 exit;
6239 end if;
6241 E2 := Homonym (E2);
6242 end loop;
6244 -- On falling through this loop, we have checked that there are no
6245 -- immediately visible entities. Only_One_Visible is set if exactly
6246 -- one potentially use visible entity exists. All_Overloadable is
6247 -- set if all the potentially use visible entities are overloadable.
6248 -- The condition for legality is that either there is one potentially
6249 -- use visible entity, or if there is more than one, then all of them
6250 -- are overloadable.
6252 if Only_One_Visible or All_Overloadable then
6253 goto Found;
6255 -- If there is more than one potentially use-visible entity and at
6256 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
6257 -- Note that E points to the first such entity on the homonym list.
6259 else
6260 -- If one of the entities is declared in an actual package, it
6261 -- was visible in the generic, and takes precedence over other
6262 -- entities that are potentially use-visible. The same applies
6263 -- if the entity is declared in a local instantiation of the
6264 -- current instance.
6266 if In_Instance then
6268 -- Find the current instance
6270 Inst := Current_Scope;
6271 while Present (Inst) and then Inst /= Standard_Standard loop
6272 if Is_Generic_Instance (Inst) then
6273 exit;
6274 end if;
6276 Inst := Scope (Inst);
6277 end loop;
6279 -- Reexamine the candidate entities, giving priority to those
6280 -- that were visible within the generic.
6282 E2 := E;
6283 while Present (E2) loop
6284 Nested_Inst := Nearest_Enclosing_Instance (E2);
6286 -- The entity is declared within an actual package, or in a
6287 -- nested instance. The ">=" accounts for the case where the
6288 -- current instance and the nested instance are the same.
6290 if From_Actual_Package (E2)
6291 or else (Present (Nested_Inst)
6292 and then Scope_Depth (Nested_Inst) >=
6293 Scope_Depth (Inst))
6294 then
6295 E := E2;
6296 goto Found;
6297 end if;
6299 E2 := Homonym (E2);
6300 end loop;
6302 Nvis_Messages;
6303 goto Done;
6305 elsif Is_Predefined_Unit (Current_Sem_Unit) then
6306 -- A use clause in the body of a system file creates conflict
6307 -- with some entity in a user scope, while rtsfind is active.
6308 -- Keep only the entity coming from another predefined unit.
6310 E2 := E;
6311 while Present (E2) loop
6312 if In_Predefined_Unit (E2) then
6313 E := E2;
6314 goto Found;
6315 end if;
6317 E2 := Homonym (E2);
6318 end loop;
6320 -- Entity must exist because predefined unit is correct
6322 raise Program_Error;
6324 else
6325 Nvis_Messages;
6326 goto Done;
6327 end if;
6328 end if;
6329 end;
6331 -- Come here with E set to the first immediately visible entity on
6332 -- the homonym chain. This is the one we want unless there is another
6333 -- immediately visible entity further on in the chain for an inner
6334 -- scope (RM 8.3(8)).
6336 <<Immediately_Visible_Entity>> declare
6337 Level : Int;
6338 Scop : Entity_Id;
6340 begin
6341 -- Find scope level of initial entity. When compiling through
6342 -- Rtsfind, the previous context is not completely invisible, and
6343 -- an outer entity may appear on the chain, whose scope is below
6344 -- the entry for Standard that delimits the current scope stack.
6345 -- Indicate that the level for this spurious entry is outside of
6346 -- the current scope stack.
6348 Level := Scope_Stack.Last;
6349 loop
6350 Scop := Scope_Stack.Table (Level).Entity;
6351 exit when Scop = Scope (E);
6352 Level := Level - 1;
6353 exit when Scop = Standard_Standard;
6354 end loop;
6356 -- Now search remainder of homonym chain for more inner entry
6357 -- If the entity is Standard itself, it has no scope, and we
6358 -- compare it with the stack entry directly.
6360 E2 := Homonym (E);
6361 while Present (E2) loop
6362 if Is_Immediately_Visible (E2) then
6364 -- If a generic package contains a local declaration that
6365 -- has the same name as the generic, there may be a visibility
6366 -- conflict in an instance, where the local declaration must
6367 -- also hide the name of the corresponding package renaming.
6368 -- We check explicitly for a package declared by a renaming,
6369 -- whose renamed entity is an instance that is on the scope
6370 -- stack, and that contains a homonym in the same scope. Once
6371 -- we have found it, we know that the package renaming is not
6372 -- immediately visible, and that the identifier denotes the
6373 -- other entity (and its homonyms if overloaded).
6375 if Scope (E) = Scope (E2)
6376 and then Ekind (E) = E_Package
6377 and then Present (Renamed_Entity (E))
6378 and then Is_Generic_Instance (Renamed_Entity (E))
6379 and then In_Open_Scopes (Renamed_Entity (E))
6380 and then Comes_From_Source (N)
6381 then
6382 Set_Is_Immediately_Visible (E, False);
6383 E := E2;
6385 else
6386 for J in Level + 1 .. Scope_Stack.Last loop
6387 if Scope_Stack.Table (J).Entity = Scope (E2)
6388 or else Scope_Stack.Table (J).Entity = E2
6389 then
6390 Level := J;
6391 E := E2;
6392 exit;
6393 end if;
6394 end loop;
6395 end if;
6396 end if;
6398 E2 := Homonym (E2);
6399 end loop;
6401 -- At the end of that loop, E is the innermost immediately
6402 -- visible entity, so we are all set.
6403 end;
6405 -- Come here with entity found, and stored in E
6407 <<Found>> begin
6409 -- Check violation of No_Wide_Characters restriction
6411 Check_Wide_Character_Restriction (E, N);
6413 -- When distribution features are available (Get_PCS_Name /=
6414 -- Name_No_DSA), a remote access-to-subprogram type is converted
6415 -- into a record type holding whatever information is needed to
6416 -- perform a remote call on an RCI subprogram. In that case we
6417 -- rewrite any occurrence of the RAS type into the equivalent record
6418 -- type here. 'Access attribute references and RAS dereferences are
6419 -- then implemented using specific TSSs. However when distribution is
6420 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
6421 -- generation of these TSSs, and we must keep the RAS type in its
6422 -- original access-to-subprogram form (since all calls through a
6423 -- value of such type will be local anyway in the absence of a PCS).
6425 if Comes_From_Source (N)
6426 and then Is_Remote_Access_To_Subprogram_Type (E)
6427 and then Ekind (E) = E_Access_Subprogram_Type
6428 and then Expander_Active
6429 and then Get_PCS_Name /= Name_No_DSA
6430 then
6431 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
6432 goto Done;
6433 end if;
6435 -- Set the entity. Note that the reason we call Set_Entity for the
6436 -- overloadable case, as opposed to Set_Entity_With_Checks is
6437 -- that in the overloaded case, the initial call can set the wrong
6438 -- homonym. The call that sets the right homonym is in Sem_Res and
6439 -- that call does use Set_Entity_With_Checks, so we don't miss
6440 -- a style check.
6442 if Is_Overloadable (E) then
6443 Set_Entity (N, E);
6444 else
6445 Set_Entity_With_Checks (N, E);
6446 end if;
6448 if Is_Type (E) then
6449 Set_Etype (N, E);
6450 else
6451 Set_Etype (N, Get_Full_View (Etype (E)));
6452 end if;
6454 if Debug_Flag_E then
6455 Write_Str (" found ");
6456 Write_Entity_Info (E, " ");
6457 end if;
6459 if Is_Self_Hidden (E)
6460 and then
6461 (not Is_Record_Type (Current_Scope)
6462 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
6463 then
6464 Premature_Usage (N);
6466 -- If the entity is overloadable, collect all interpretations of the
6467 -- name for subsequent overload resolution. We optimize a bit here to
6468 -- do this only if we have an overloadable entity that is not on its
6469 -- own on the homonym chain.
6471 elsif Is_Overloadable (E)
6472 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
6473 then
6474 Collect_Interps (N);
6476 -- Background: for an instance of a generic, expansion sets
6477 -- entity fields on names that refer to things declared
6478 -- outside of the instance, but leaves the entity field
6479 -- unset on names that should end up referring to things
6480 -- declared within the instance. These will instead be set by
6481 -- analysis - the idea is that if a name resolves a certain
6482 -- way in the generic, then we should get corresponding results
6483 -- if we resolve the corresponding name in an instance. For this
6484 -- to work, we have to prevent unrelated declarations that
6485 -- happen to be visible at the point of the instantiation from
6486 -- participating in resolution and causing problems (typically
6487 -- ambiguities, but incorrect resolutions are also probably
6488 -- possible). So here we filter out such unwanted interpretations.
6490 -- Note that there are other problems with this approach to
6491 -- implementing generic instances that are not addressed here.
6492 -- Inside a generic, we might have no trouble resolving a call
6493 -- where the two candidates are a function that returns a
6494 -- formal type and a function that returns Standard.Integer.
6495 -- If we instantiate that generic and the corresponding actual
6496 -- type is Standard.Integer, then we may incorrectly reject the
6497 -- corresponding call in the instance as ambiguous (or worse,
6498 -- we may quietly choose the wrong resolution).
6500 -- Another such problem can occur with a type derived from a
6501 -- formal derived type. In an instance, such a type may have
6502 -- inherited subprograms that are not present in the generic.
6503 -- These can then interfere with name resolution (e.g., if
6504 -- some declaration is visible via a use-clause in the generic
6505 -- and some name in the generic refers to it, then the
6506 -- corresponding declaration in an instance may be hidden by
6507 -- a directly visible inherited subprogram and the corresponding
6508 -- name in the instance may then incorrectly refer to the
6509 -- inherited subprogram).
6511 if In_Instance then
6512 declare
6513 function Is_Actual_Subp_Of_Inst
6514 (E : Entity_Id; Inst : Entity_Id) return Boolean;
6515 -- Return True if E is an actual parameter
6516 -- corresponding to a formal subprogram of the
6517 -- instantiation Inst.
6519 function Is_Extraneously_Visible
6520 (E : Entity_Id; Inst : Entity_Id) return Boolean;
6521 -- Return True if E is an interpretation that should
6522 -- be filtered out. That is, if E is an "unwanted"
6523 -- resolution candidate as described in the
6524 -- preceding "Background:" commment.
6526 function Is_Generic_Actual_Subp_Name
6527 (N : Node_Id) return Boolean;
6528 -- Return True if N is the name of a subprogram
6529 -- renaming generated for a generic actual.
6531 ----------------------------
6532 -- Is_Actual_Subp_Of_Inst --
6533 ----------------------------
6535 function Is_Actual_Subp_Of_Inst
6536 (E : Entity_Id; Inst : Entity_Id) return Boolean
6538 Decl : Node_Id;
6539 Generic_From_E, Generic_From_Inst : Entity_Id;
6540 begin
6541 -- ???
6542 -- Why is Is_Generic_Actual_Subprogram undefined
6543 -- in the E_Operator case?
6545 if Ekind (E) not in E_Function | E_Procedure
6546 or else not Is_Generic_Actual_Subprogram (E)
6547 then
6548 return False;
6549 end if;
6551 Decl := Enclosing_Declaration (E);
6553 -- Enclosing_Declaration does not always return a
6554 -- declaration; cope with this irregularity.
6555 if Decl in N_Subprogram_Specification_Id
6556 and then Nkind (Parent (Decl)) in
6557 N_Subprogram_Body | N_Subprogram_Declaration
6558 | N_Subprogram_Renaming_Declaration
6559 then
6560 Decl := Parent (Decl);
6561 end if;
6563 -- Look for the suprogram renaming declaration built
6564 -- for a generic actual subprogram. Unclear why
6565 -- Original_Node call is needed, but sometimes it is.
6567 if Decl not in N_Subprogram_Renaming_Declaration_Id then
6568 Decl := Original_Node (Decl);
6569 end if;
6571 if Decl in N_Subprogram_Renaming_Declaration_Id then
6572 Generic_From_E :=
6573 Scope (Corresponding_Formal_Spec (Decl));
6574 else
6575 -- ??? In the case of a generic formal subprogram
6576 -- which has a pre/post condition, it is unclear how
6577 -- to find the Corresponding_Formal_Spec-bearing node.
6579 Generic_From_E := Empty;
6580 end if;
6582 declare
6583 Inst_Parent : Node_Id := Parent (Inst);
6584 begin
6585 if Nkind (Inst_Parent) = N_Defining_Program_Unit_Name
6586 then
6587 Inst_Parent := Parent (Inst_Parent);
6588 end if;
6590 Generic_From_Inst := Generic_Parent (Inst_Parent);
6591 end;
6593 return Generic_From_E = Generic_From_Inst
6594 and then Present (Generic_From_E);
6595 end Is_Actual_Subp_Of_Inst;
6597 -----------------------------
6598 -- Is_Extraneously_Visible --
6599 -----------------------------
6601 function Is_Extraneously_Visible
6602 (E : Entity_Id; Inst : Entity_Id) return Boolean is
6603 begin
6604 -- Return False in various non-extraneous cases.
6605 -- If none of those apply, then return True.
6607 if Within_Scope (E, Inst) then
6608 -- return False if E declared within Inst
6609 return False;
6611 elsif Is_Actual_Subp_Of_Inst (E, Inst) then
6612 -- Return False if E is an actual subprogram,
6613 -- and therefore may be referenced within Inst.
6614 return False;
6616 elsif Nkind (Parent (E)) = N_Subtype_Declaration
6617 and then Defining_Identifier (Parent (E)) /= E
6618 then
6619 -- Return False for a primitive subp of an
6620 -- actual corresponding to a formal type.
6622 return False;
6624 elsif not In_Open_Scopes (Scope (E)) then
6625 -- Return False if this candidate is not
6626 -- declared in a currently open scope.
6628 return False;
6630 else
6631 declare
6632 -- We want to know whether the declaration of
6633 -- E comes textually after the declaration of
6634 -- the generic that Inst is an instance of
6635 -- (and after the generic body if there is one).
6636 -- To compare, we climb up the deeper of the two
6637 -- scope chains until we the levels match.
6638 -- There is a separate loop for each starting
6639 -- point, but we will execute zero iterations
6640 -- for at least one of the two loops.
6641 -- For each Xxx_Scope, we have a corresponding
6642 -- Xxx_Trailer; the latter is the predecessor of
6643 -- the former in the scope traversal.
6645 E_Trailer : Entity_Id := E;
6646 E_Scope : Entity_Id := Scope (E);
6647 pragma Assert (Present (E_Scope));
6649 -- the generic that Inst is an instance of
6650 Gen_Trailer : Entity_Id :=
6651 Generic_Parent (Specification
6652 (Unit_Declaration_Node (Inst)));
6653 Gen_Scope : Entity_Id;
6655 function Has_Formal_Package_Parameter
6656 (Generic_Id : Entity_Id) return Boolean;
6657 -- Return True iff given generic has at least one
6658 -- formal package parameter.
6660 ----------------------------------
6661 -- Has_Formal_Package_Parameter --
6662 ----------------------------------
6664 function Has_Formal_Package_Parameter
6665 (Generic_Id : Entity_Id) return Boolean is
6666 Formal_Decl : Node_Id :=
6667 First (Generic_Formal_Declarations
6668 (Enclosing_Generic_Unit (Generic_Id)));
6669 begin
6670 while Present (Formal_Decl) loop
6671 if Nkind (Original_Node (Formal_Decl)) =
6672 N_Formal_Package_Declaration
6673 then
6674 return True;
6675 end if;
6677 Next (Formal_Decl);
6678 end loop;
6679 return False;
6680 end Has_Formal_Package_Parameter;
6682 begin
6683 if No (Gen_Trailer) then
6684 -- Dunno how this can happen, but it can.
6685 return False;
6686 else
6687 if Has_Formal_Package_Parameter (Gen_Trailer)
6688 then
6689 -- Punt on sorting out what is visible via a
6690 -- formal package.
6692 return False;
6693 end if;
6695 if Is_Child_Unit (Gen_Trailer)
6696 and then Is_Generic_Unit
6697 (Entity (Name
6698 (Parent (Gen_Trailer))))
6699 then
6700 -- Punt on dealing with how the FE fails
6701 -- to build a tree for a "sprouted" generic
6702 -- so that what should be a reference to
6703 -- I1.G2 instead points into G1.G2 .
6705 return False;
6706 end if;
6708 Gen_Scope := Scope (Gen_Trailer);
6710 while Scope_Depth (E_Scope)
6711 > Scope_Depth (Gen_Scope)
6712 loop
6713 E_Trailer := E_Scope;
6714 E_Scope := Scope (E_Scope);
6715 end loop;
6716 while Scope_Depth (E_Scope)
6717 < Scope_Depth (Gen_Scope)
6718 loop
6719 Gen_Trailer := Gen_Scope;
6720 Gen_Scope := Scope (Gen_Scope);
6721 end loop;
6722 end if;
6724 if Gen_Scope = E_Scope then
6725 -- if Gen_Trailer and E_Trailer are declared
6726 -- in the same declarative part and E_Trailer
6727 -- occurs after the declaration (and body, if
6728 -- there is one) of Gen_Trailer, then
6729 -- return True because E was declared after
6730 -- the generic that Inst is an instance of
6731 -- (and also after that generic's body, if it
6732 -- has one).
6734 if Is_Package_Or_Generic_Package (Gen_Trailer)
6735 and then Present (Package_Body (Gen_Trailer))
6736 then
6737 Gen_Trailer :=
6738 Corresponding_Body
6739 (Package_Spec (Gen_Trailer));
6740 end if;
6742 declare
6743 Id : Entity_Id := Gen_Trailer;
6744 begin
6745 loop
6746 if not Present (Id) then
6747 -- E_Trailer presumably occurred
6748 -- earlier on the entity list than
6749 -- Gen_Trailer. So E preceded the
6750 -- generic that Inst is an instance
6751 -- of (or the body of that generic if
6752 -- it has one) and so could have
6753 -- been referenced within the generic.
6754 return False;
6755 end if;
6756 exit when Id = E_Trailer;
6757 Next_Entity (Id);
6758 end loop;
6759 end;
6760 end if;
6761 end;
6762 end if;
6764 if Present (Nearest_Enclosing_Instance (Inst)) then
6765 return Is_Extraneously_Visible
6766 (E => E, Inst => Nearest_Enclosing_Instance (Inst));
6768 -- The preceding Nearest_Enclosing_Instance test
6769 -- doesn't handle the case of an instance of a
6770 -- "sprouted" generic. For example, if Inst=I2 in
6771 -- generic package G1
6772 -- generic package G1.G2;
6773 -- package I1 is new G1;
6774 -- package I2 is new I1.G2;
6775 -- then N_E_I (Inst) = Empty. So deal with that case.
6777 elsif Present (Nearest_Enclosing_Instance (E)) then
6778 return Is_Extraneously_Visible
6779 (E => Nearest_Enclosing_Instance (E),
6780 Inst => Inst);
6781 end if;
6783 return True;
6784 end Is_Extraneously_Visible;
6786 ---------------------------------
6787 -- Is_Generic_Actual_Subp_Name --
6788 ---------------------------------
6790 function Is_Generic_Actual_Subp_Name
6791 (N : Node_Id) return Boolean
6793 Decl : constant Node_Id := Enclosing_Declaration (N);
6794 begin
6795 return Nkind (Decl) = N_Subprogram_Renaming_Declaration
6796 and then Present (Corresponding_Formal_Spec (Decl));
6797 end Is_Generic_Actual_Subp_Name;
6799 I : Interp_Index;
6800 It : Interp;
6801 Inst : Entity_Id := Current_Scope;
6803 begin
6804 while Present (Inst)
6805 and then not Is_Generic_Instance (Inst)
6806 loop
6807 Inst := Scope (Inst);
6808 end loop;
6810 if Present (Inst) then
6811 Get_First_Interp (N, I, It);
6812 while Present (It.Nam) loop
6813 if Is_Extraneously_Visible (E => It.Nam, Inst => Inst)
6814 and then not Is_Generic_Actual_Subp_Name (N)
6815 then
6816 Remove_Interp (I);
6817 end if;
6818 Get_Next_Interp (I, It);
6819 end loop;
6820 end if;
6821 end;
6822 end if;
6824 -- If no homonyms were visible, the entity is unambiguous
6826 if not Is_Overloaded (N) then
6827 if not Is_Actual_Parameter then
6828 Generate_Reference (E, N);
6829 end if;
6830 end if;
6832 -- Case of non-overloadable entity, set the entity providing that
6833 -- we do not have the case of a discriminant reference within a
6834 -- default expression. Such references are replaced with the
6835 -- corresponding discriminal, which is the formal corresponding to
6836 -- to the discriminant in the initialization procedure.
6838 else
6839 -- Entity is unambiguous, indicate that it is referenced here
6841 -- For a renaming of an object, always generate simple reference,
6842 -- we don't try to keep track of assignments in this case, except
6843 -- in SPARK mode where renamings are traversed for generating
6844 -- local effects of subprograms.
6846 if Is_Object (E)
6847 and then Present (Renamed_Object (E))
6848 and then not GNATprove_Mode
6849 then
6850 Generate_Reference (E, N);
6852 -- If the renamed entity is a private protected component,
6853 -- reference the original component as well. This needs to be
6854 -- done because the private renamings are installed before any
6855 -- analysis has occurred. Reference to a private component will
6856 -- resolve to the renaming and the original component will be
6857 -- left unreferenced, hence the following.
6859 if Is_Prival (E) then
6860 Generate_Reference (Prival_Link (E), N);
6861 end if;
6863 -- One odd case is that we do not want to set the Referenced flag
6864 -- if the entity is a label, and the identifier is the label in
6865 -- the source, since this is not a reference from the point of
6866 -- view of the user.
6868 elsif Nkind (Parent (N)) = N_Label then
6869 declare
6870 R : constant Boolean := Referenced (E);
6872 begin
6873 -- Generate reference unless this is an actual parameter
6874 -- (see comment below).
6876 if not Is_Actual_Parameter then
6877 Generate_Reference (E, N);
6878 Set_Referenced (E, R);
6879 end if;
6880 end;
6882 -- Normal case, not a label: generate reference
6884 else
6885 if not Is_Actual_Parameter then
6887 -- Package or generic package is always a simple reference
6889 if Is_Package_Or_Generic_Package (E) then
6890 Generate_Reference (E, N, 'r');
6892 -- Else see if we have a left hand side
6894 else
6895 case Known_To_Be_Assigned (N, Only_LHS => True) is
6896 when True =>
6897 Generate_Reference (E, N, 'm');
6899 when False =>
6900 Generate_Reference (E, N, 'r');
6902 end case;
6903 end if;
6904 end if;
6905 end if;
6907 Set_Entity_Or_Discriminal (N, E);
6909 -- The name may designate a generalized reference, in which case
6910 -- the dereference interpretation will be included. Context is
6911 -- one in which a name is legal.
6913 if Ada_Version >= Ada_2012
6914 and then
6915 (Nkind (Parent (N)) in N_Subexpr
6916 or else Nkind (Parent (N)) in N_Assignment_Statement
6917 | N_Object_Declaration
6918 | N_Parameter_Association)
6919 then
6920 Check_Implicit_Dereference (N, Etype (E));
6921 end if;
6922 end if;
6923 end;
6925 -- Mark relevant use-type and use-package clauses as effective if the
6926 -- node in question is not overloaded and therefore does not require
6927 -- resolution.
6929 -- Note: Generic actual subprograms do not follow the normal resolution
6930 -- path, so ignore the fact that they are overloaded and mark them
6931 -- anyway.
6933 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
6934 Mark_Use_Clauses (N);
6935 end if;
6937 -- Come here with entity set
6939 <<Done>>
6940 Check_Restriction_No_Use_Of_Entity (N);
6942 -- Annotate the tree by creating a variable reference marker in case the
6943 -- original variable reference is folded or optimized away. The variable
6944 -- reference marker is automatically saved for later examination by the
6945 -- ABE Processing phase. Variable references which act as actuals in a
6946 -- call require special processing and are left to Resolve_Actuals. The
6947 -- reference is a write when it appears on the left hand side of an
6948 -- assignment.
6950 if Needs_Variable_Reference_Marker (N => N, Calls_OK => False) then
6951 declare
6952 Is_Assignment_LHS : constant Boolean := Known_To_Be_Assigned (N);
6954 begin
6955 Build_Variable_Reference_Marker
6956 (N => N,
6957 Read => not Is_Assignment_LHS,
6958 Write => Is_Assignment_LHS);
6959 end;
6960 end if;
6961 end Find_Direct_Name;
6963 ------------------------
6964 -- Find_Expanded_Name --
6965 ------------------------
6967 -- This routine searches the homonym chain of the entity until it finds
6968 -- an entity declared in the scope denoted by the prefix. If the entity
6969 -- is private, it may nevertheless be immediately visible, if we are in
6970 -- the scope of its declaration.
6972 procedure Find_Expanded_Name (N : Node_Id) is
6973 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean;
6974 -- Determine whether expanded name Nod appears within a pragma which is
6975 -- a suitable context for an abstract view of a state or variable. The
6976 -- following pragmas fall in this category:
6977 -- Depends
6978 -- Global
6979 -- Initializes
6980 -- Refined_Depends
6981 -- Refined_Global
6983 -- In addition, pragma Abstract_State is also considered suitable even
6984 -- though it is an illegal context for an abstract view as this allows
6985 -- for proper resolution of abstract views of variables. This illegal
6986 -- context is later flagged in the analysis of indicator Part_Of.
6988 -----------------------------
6989 -- In_Abstract_View_Pragma --
6990 -----------------------------
6992 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean is
6993 Par : Node_Id;
6995 begin
6996 -- Climb the parent chain looking for a pragma
6998 Par := Nod;
6999 while Present (Par) loop
7000 if Nkind (Par) = N_Pragma then
7001 if Pragma_Name_Unmapped (Par)
7002 in Name_Abstract_State
7003 | Name_Depends
7004 | Name_Global
7005 | Name_Initializes
7006 | Name_Refined_Depends
7007 | Name_Refined_Global
7008 then
7009 return True;
7011 -- Otherwise the pragma is not a legal context for an abstract
7012 -- view.
7014 else
7015 exit;
7016 end if;
7018 -- Prevent the search from going too far
7020 elsif Is_Body_Or_Package_Declaration (Par) then
7021 exit;
7022 end if;
7024 Par := Parent (Par);
7025 end loop;
7027 return False;
7028 end In_Abstract_View_Pragma;
7030 -- Local variables
7032 Selector : constant Node_Id := Selector_Name (N);
7034 Candidate : Entity_Id := Empty;
7035 P_Name : Entity_Id;
7036 Id : Entity_Id;
7038 -- Start of processing for Find_Expanded_Name
7040 begin
7041 P_Name := Entity (Prefix (N));
7043 -- If the prefix is a renamed package, look for the entity in the
7044 -- original package.
7046 if Ekind (P_Name) = E_Package
7047 and then Present (Renamed_Entity (P_Name))
7048 then
7049 P_Name := Renamed_Entity (P_Name);
7051 if From_Limited_With (P_Name)
7052 and then not Unit_Is_Visible (Cunit (Get_Source_Unit (P_Name)))
7053 then
7054 Error_Msg_NE
7055 ("renaming of limited view of package & not usable in this"
7056 & " context (RM 8.5.3(3.1/2))", Prefix (N), P_Name);
7058 elsif Has_Limited_View (P_Name)
7059 and then not Unit_Is_Visible (Cunit (Get_Source_Unit (P_Name)))
7060 and then not Is_Visible_Through_Renamings (P_Name)
7061 then
7062 Error_Msg_NE
7063 ("renaming of limited view of package & not usable in this"
7064 & " context (RM 8.5.3(3.1/2))", Prefix (N), P_Name);
7065 end if;
7067 -- Rewrite node with entity field pointing to renamed object
7069 Rewrite (Prefix (N), New_Copy (Prefix (N)));
7070 Set_Entity (Prefix (N), P_Name);
7072 -- If the prefix is an object of a concurrent type, look for
7073 -- the entity in the associated task or protected type.
7075 elsif Is_Concurrent_Type (Etype (P_Name)) then
7076 P_Name := Etype (P_Name);
7077 end if;
7079 Id := Current_Entity (Selector);
7081 declare
7082 Is_New_Candidate : Boolean;
7084 begin
7085 while Present (Id) loop
7086 if Scope (Id) = P_Name then
7087 Candidate := Id;
7088 Is_New_Candidate := True;
7090 -- Handle abstract views of states and variables. These are
7091 -- acceptable candidates only when the reference to the view
7092 -- appears in certain pragmas.
7094 if Ekind (Id) = E_Abstract_State
7095 and then From_Limited_With (Id)
7096 and then Present (Non_Limited_View (Id))
7097 then
7098 if In_Abstract_View_Pragma (N) then
7099 Candidate := Non_Limited_View (Id);
7100 Is_New_Candidate := True;
7102 -- Hide the candidate because it is not used in a proper
7103 -- context.
7105 else
7106 Candidate := Empty;
7107 Is_New_Candidate := False;
7108 end if;
7109 end if;
7111 -- Ada 2005 (AI-217): Handle shadow entities associated with
7112 -- types declared in limited-withed nested packages. We don't need
7113 -- to handle E_Incomplete_Subtype entities because the entities
7114 -- in the limited view are always E_Incomplete_Type and
7115 -- E_Class_Wide_Type entities (see Build_Limited_Views).
7117 -- Regarding the expression used to evaluate the scope, it
7118 -- is important to note that the limited view also has shadow
7119 -- entities associated nested packages. For this reason the
7120 -- correct scope of the entity is the scope of the real entity.
7121 -- The non-limited view may itself be incomplete, in which case
7122 -- get the full view if available.
7124 elsif Ekind (Id) in E_Incomplete_Type | E_Class_Wide_Type
7125 and then From_Limited_With (Id)
7126 and then Present (Non_Limited_View (Id))
7127 and then Scope (Non_Limited_View (Id)) = P_Name
7128 then
7129 Candidate := Get_Full_View (Non_Limited_View (Id));
7130 Is_New_Candidate := True;
7132 -- Handle special case where the prefix is a renaming of a shadow
7133 -- package which is visible. Required to avoid reporting spurious
7134 -- errors.
7136 elsif Ekind (P_Name) = E_Package
7137 and then From_Limited_With (P_Name)
7138 and then not From_Limited_With (Id)
7139 and then Sloc (Scope (Id)) = Sloc (P_Name)
7140 and then Unit_Is_Visible (Cunit (Get_Source_Unit (P_Name)))
7141 then
7142 Candidate := Get_Full_View (Id);
7143 Is_New_Candidate := True;
7145 -- An unusual case arises with a fully qualified name for an
7146 -- entity local to a generic child unit package, within an
7147 -- instantiation of that package. The name of the unit now
7148 -- denotes the renaming created within the instance. This is
7149 -- only relevant in an instance body, see below.
7151 elsif Is_Generic_Instance (Scope (Id))
7152 and then In_Open_Scopes (Scope (Id))
7153 and then In_Instance_Body
7154 and then Ekind (Scope (Id)) = E_Package
7155 and then Ekind (Id) = E_Package
7156 and then Renamed_Entity (Id) = Scope (Id)
7157 and then Is_Immediately_Visible (P_Name)
7158 then
7159 Is_New_Candidate := True;
7161 else
7162 Is_New_Candidate := False;
7163 end if;
7165 if Is_New_Candidate then
7167 -- If entity is a child unit, either it is a visible child of
7168 -- the prefix, or we are in the body of a generic prefix, as
7169 -- will happen when a child unit is instantiated in the body
7170 -- of a generic parent. This is because the instance body does
7171 -- not restore the full compilation context, given that all
7172 -- non-local references have been captured.
7174 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
7175 exit when Is_Visible_Lib_Unit (Id)
7176 or else (Is_Child_Unit (Id)
7177 and then In_Open_Scopes (Scope (Id))
7178 and then In_Instance_Body);
7179 else
7180 exit when not Is_Hidden (Id);
7181 end if;
7183 exit when Is_Immediately_Visible (Id);
7184 end if;
7186 Id := Homonym (Id);
7187 end loop;
7188 end;
7190 if No (Id)
7191 and then Ekind (P_Name) in E_Procedure | E_Function
7192 and then Is_Generic_Instance (P_Name)
7193 then
7194 -- Expanded name denotes entity in (instance of) generic subprogram.
7195 -- The entity may be in the subprogram instance, or may denote one of
7196 -- the formals, which is declared in the enclosing wrapper package.
7198 P_Name := Scope (P_Name);
7200 Id := Current_Entity (Selector);
7201 while Present (Id) loop
7202 exit when Scope (Id) = P_Name;
7203 Id := Homonym (Id);
7204 end loop;
7205 end if;
7207 if No (Id) or else Chars (Id) /= Chars (Selector) then
7208 Set_Etype (N, Any_Type);
7210 -- If we are looking for an entity defined in System, try to find it
7211 -- in the child package that may have been provided as an extension
7212 -- to System. The Extend_System pragma will have supplied the name of
7213 -- the extension, which may have to be loaded.
7215 if Chars (P_Name) = Name_System
7216 and then Scope (P_Name) = Standard_Standard
7217 and then Present (System_Extend_Unit)
7218 and then Present_System_Aux (N)
7219 then
7220 Set_Entity (Prefix (N), System_Aux_Id);
7221 Find_Expanded_Name (N);
7222 return;
7224 -- There is an implicit instance of the predefined operator in
7225 -- the given scope. The operator entity is defined in Standard.
7226 -- Has_Implicit_Operator makes the node into an Expanded_Name.
7228 elsif Nkind (Selector) = N_Operator_Symbol
7229 and then Has_Implicit_Operator (N)
7230 then
7231 return;
7233 -- If there is no literal defined in the scope denoted by the
7234 -- prefix, the literal may belong to (a type derived from)
7235 -- Standard_Character, for which we have no explicit literals.
7237 elsif Nkind (Selector) = N_Character_Literal
7238 and then Has_Implicit_Character_Literal (N)
7239 then
7240 return;
7242 else
7243 -- If the prefix is a single concurrent object, use its name in
7244 -- the error message, rather than that of the anonymous type.
7246 if Is_Concurrent_Type (P_Name)
7247 and then Is_Internal_Name (Chars (P_Name))
7248 then
7249 Error_Msg_Node_2 := Entity (Prefix (N));
7250 else
7251 Error_Msg_Node_2 := P_Name;
7252 end if;
7254 if P_Name = System_Aux_Id then
7255 P_Name := Scope (P_Name);
7256 Set_Entity (Prefix (N), P_Name);
7257 end if;
7259 if Present (Candidate) then
7261 -- If we know that the unit is a child unit we can give a more
7262 -- accurate error message.
7264 if Is_Child_Unit (Candidate) then
7266 -- If the candidate is a private child unit and we are in
7267 -- the visible part of a public unit, specialize the error
7268 -- message. There might be a private with_clause for it,
7269 -- but it is not currently active.
7271 if Is_Private_Descendant (Candidate)
7272 and then Ekind (Current_Scope) = E_Package
7273 and then not In_Private_Part (Current_Scope)
7274 and then not Is_Private_Descendant (Current_Scope)
7275 then
7276 Error_Msg_N
7277 ("private child unit& is not visible here", Selector);
7279 -- Normal case where we have a missing with for a child unit
7281 else
7282 Error_Msg_Qual_Level := 99;
7283 Error_Msg_NE -- CODEFIX
7284 ("missing `WITH &;`", Selector, Candidate);
7285 Error_Msg_Qual_Level := 0;
7286 end if;
7288 -- Here we don't know that this is a child unit
7290 else
7291 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
7292 end if;
7294 else
7295 -- Within the instantiation of a child unit, the prefix may
7296 -- denote the parent instance, but the selector has the name
7297 -- of the original child. That is to say, when A.B appears
7298 -- within an instantiation of generic child unit B, the scope
7299 -- stack includes an instance of A (P_Name) and an instance
7300 -- of B under some other name. We scan the scope to find this
7301 -- child instance, which is the desired entity.
7302 -- Note that the parent may itself be a child instance, if
7303 -- the reference is of the form A.B.C, in which case A.B has
7304 -- already been rewritten with the proper entity.
7306 if In_Open_Scopes (P_Name)
7307 and then Is_Generic_Instance (P_Name)
7308 then
7309 declare
7310 Gen_Par : constant Entity_Id :=
7311 Generic_Parent (Specification
7312 (Unit_Declaration_Node (P_Name)));
7313 S : Entity_Id := Current_Scope;
7314 P : Entity_Id;
7316 begin
7317 for J in reverse 0 .. Scope_Stack.Last loop
7318 S := Scope_Stack.Table (J).Entity;
7320 exit when S = Standard_Standard;
7322 if Ekind (S) in E_Function | E_Package | E_Procedure
7323 then
7324 P :=
7325 Generic_Parent (Specification
7326 (Unit_Declaration_Node (S)));
7328 -- Check that P is a generic child of the generic
7329 -- parent of the prefix.
7331 if Present (P)
7332 and then Chars (P) = Chars (Selector)
7333 and then Scope (P) = Gen_Par
7334 then
7335 Id := S;
7336 goto Found;
7337 end if;
7338 end if;
7340 end loop;
7341 end;
7342 end if;
7344 -- If this is a selection from Ada, System or Interfaces, then
7345 -- we assume a missing with for the corresponding package.
7347 if Is_Known_Unit (N)
7348 and then not (Present (Entity (Prefix (N)))
7349 and then Scope (Entity (Prefix (N))) /=
7350 Standard_Standard)
7351 then
7352 if not Error_Posted (N) then
7353 Error_Msg_NE
7354 ("& is not a visible entity of&", Prefix (N), Selector);
7355 Error_Missing_With_Of_Known_Unit (Prefix (N));
7356 end if;
7358 -- If this is a selection from a dummy package, then suppress
7359 -- the error message, of course the entity is missing if the
7360 -- package is missing.
7362 elsif Sloc (Error_Msg_Node_2) = No_Location then
7363 null;
7365 -- Here we have the case of an undefined component
7367 else
7368 -- The prefix may hide a homonym in the context that
7369 -- declares the desired entity. This error can use a
7370 -- specialized message.
7372 if In_Open_Scopes (P_Name) then
7373 declare
7374 H : constant Entity_Id := Homonym (P_Name);
7376 begin
7377 if Present (H)
7378 and then Is_Compilation_Unit (H)
7379 and then
7380 (Is_Immediately_Visible (H)
7381 or else Is_Visible_Lib_Unit (H))
7382 then
7383 Id := First_Entity (H);
7384 while Present (Id) loop
7385 if Chars (Id) = Chars (Selector) then
7386 Error_Msg_Qual_Level := 99;
7387 Error_Msg_Name_1 := Chars (Selector);
7388 Error_Msg_NE
7389 ("% not declared in&", N, P_Name);
7390 Error_Msg_NE
7391 ("\use fully qualified name starting with "
7392 & "Standard to make& visible", N, H);
7393 Error_Msg_Qual_Level := 0;
7394 goto Done;
7395 end if;
7397 Next_Entity (Id);
7398 end loop;
7399 end if;
7401 -- If not found, standard error message
7403 Error_Msg_NE ("& not declared in&", N, Selector);
7405 <<Done>> null;
7406 end;
7408 else
7409 -- Might be worth specializing the case when the prefix
7410 -- is a limited view.
7411 -- ... not declared in limited view of...
7413 Error_Msg_NE ("& not declared in&", N, Selector);
7414 end if;
7416 -- Check for misspelling of some entity in prefix
7418 Id := First_Entity (P_Name);
7419 while Present (Id) loop
7420 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
7421 and then not Is_Internal_Name (Chars (Id))
7422 then
7423 Error_Msg_NE -- CODEFIX
7424 ("possible misspelling of&", Selector, Id);
7425 exit;
7426 end if;
7428 Next_Entity (Id);
7429 end loop;
7431 -- Specialize the message if this may be an instantiation
7432 -- of a child unit that was not mentioned in the context.
7434 if Nkind (Parent (N)) = N_Package_Instantiation
7435 and then Is_Generic_Instance (Entity (Prefix (N)))
7436 and then Is_Compilation_Unit
7437 (Generic_Parent (Parent (Entity (Prefix (N)))))
7438 then
7439 Error_Msg_Node_2 := Selector;
7440 Error_Msg_N -- CODEFIX
7441 ("\missing `WITH &.&;`", Prefix (N));
7442 end if;
7443 end if;
7444 end if;
7446 Id := Any_Id;
7447 end if;
7448 end if;
7450 <<Found>>
7451 if Comes_From_Source (N)
7452 and then Is_Remote_Access_To_Subprogram_Type (Id)
7453 and then Ekind (Id) = E_Access_Subprogram_Type
7454 and then Present (Equivalent_Type (Id))
7455 then
7456 -- If we are not actually generating distribution code (i.e. the
7457 -- current PCS is the dummy non-distributed version), then the
7458 -- Equivalent_Type will be missing, and Id should be treated as
7459 -- a regular access-to-subprogram type.
7461 Id := Equivalent_Type (Id);
7462 Set_Chars (Selector, Chars (Id));
7463 end if;
7465 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
7467 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
7468 if From_Limited_With (Id)
7469 or else Is_Type (Id)
7470 or else Ekind (Id) = E_Package
7471 then
7472 null;
7473 else
7474 Error_Msg_N
7475 ("limited withed package can only be used to access incomplete "
7476 & "types", N);
7477 end if;
7478 end if;
7480 if Is_Task_Type (P_Name)
7481 and then ((Ekind (Id) = E_Entry
7482 and then Nkind (Parent (N)) /= N_Attribute_Reference)
7483 or else
7484 (Ekind (Id) = E_Entry_Family
7485 and then
7486 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
7487 then
7488 -- If both the task type and the entry are in scope, this may still
7489 -- be the expanded name of an entry formal.
7491 if In_Open_Scopes (Id)
7492 and then Nkind (Parent (N)) = N_Selected_Component
7493 then
7494 null;
7496 else
7497 -- It is an entry call after all, either to the current task
7498 -- (which will deadlock) or to an enclosing task.
7500 Analyze_Selected_Component (N);
7501 return;
7502 end if;
7503 end if;
7505 case Nkind (N) is
7506 when N_Selected_Component =>
7507 Reinit_Field_To_Zero (N, F_Is_Prefixed_Call);
7508 Change_Selected_Component_To_Expanded_Name (N);
7510 when N_Expanded_Name =>
7511 null;
7513 when others =>
7514 pragma Assert (False);
7515 end case;
7517 -- Preserve relevant elaboration-related attributes of the context which
7518 -- are no longer available or very expensive to recompute once analysis,
7519 -- resolution, and expansion are over.
7521 Mark_Elaboration_Attributes
7522 (N_Id => N,
7523 Checks => True,
7524 Modes => True,
7525 Warnings => True);
7527 -- Set appropriate type
7529 if Is_Type (Id) then
7530 Set_Etype (N, Id);
7531 else
7532 Set_Etype (N, Get_Full_View (Etype (Id)));
7533 end if;
7535 -- Do style check and generate reference, but skip both steps if this
7536 -- entity has homonyms, since we may not have the right homonym set yet.
7537 -- The proper homonym will be set during the resolve phase.
7539 if Has_Homonym (Id) then
7540 Set_Entity (N, Id);
7542 else
7543 Set_Entity_Or_Discriminal (N, Id);
7545 case Known_To_Be_Assigned (N, Only_LHS => True) is
7546 when True =>
7547 Generate_Reference (Id, N, 'm');
7549 when False =>
7550 Generate_Reference (Id, N, 'r');
7552 end case;
7553 end if;
7555 -- Check for violation of No_Wide_Characters
7557 Check_Wide_Character_Restriction (Id, N);
7559 if Is_Self_Hidden (Id) then
7560 Premature_Usage (N);
7562 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
7563 declare
7564 H : Entity_Id := Homonym (Id);
7566 begin
7567 while Present (H) loop
7568 if Scope (H) = Scope (Id)
7569 and then (not Is_Hidden (H)
7570 or else Is_Immediately_Visible (H))
7571 then
7572 Collect_Interps (N);
7573 exit;
7574 end if;
7576 H := Homonym (H);
7577 end loop;
7579 -- If an extension of System is present, collect possible explicit
7580 -- overloadings declared in the extension.
7582 if Chars (P_Name) = Name_System
7583 and then Scope (P_Name) = Standard_Standard
7584 and then Present (System_Extend_Unit)
7585 and then Present_System_Aux (N)
7586 then
7587 H := Current_Entity (Id);
7589 while Present (H) loop
7590 if Scope (H) = System_Aux_Id then
7591 Add_One_Interp (N, H, Etype (H));
7592 end if;
7594 H := Homonym (H);
7595 end loop;
7596 end if;
7597 end;
7598 end if;
7600 if Nkind (Selector_Name (N)) = N_Operator_Symbol
7601 and then Scope (Id) /= Standard_Standard
7602 then
7603 -- In addition to user-defined operators in the given scope, there
7604 -- may be an implicit instance of the predefined operator. The
7605 -- operator (defined in Standard) is found in Has_Implicit_Operator,
7606 -- and added to the interpretations. Procedure Add_One_Interp will
7607 -- determine which hides which.
7609 if Has_Implicit_Operator (N) then
7610 null;
7611 end if;
7612 end if;
7614 -- If there is a single interpretation for N we can generate a
7615 -- reference to the unique entity found.
7617 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
7618 Generate_Reference (Id, N);
7619 end if;
7621 -- Mark relevant use-type and use-package clauses as effective if the
7622 -- node in question is not overloaded and therefore does not require
7623 -- resolution.
7625 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
7626 Mark_Use_Clauses (N);
7627 end if;
7629 Check_Restriction_No_Use_Of_Entity (N);
7631 -- Annotate the tree by creating a variable reference marker in case the
7632 -- original variable reference is folded or optimized away. The variable
7633 -- reference marker is automatically saved for later examination by the
7634 -- ABE Processing phase. Variable references which act as actuals in a
7635 -- call require special processing and are left to Resolve_Actuals. The
7636 -- reference is a write when it appears on the left hand side of an
7637 -- assignment.
7639 if Needs_Variable_Reference_Marker
7640 (N => N,
7641 Calls_OK => False)
7642 then
7643 declare
7644 Is_Assignment_LHS : constant Boolean := Known_To_Be_Assigned (N);
7646 begin
7647 Build_Variable_Reference_Marker
7648 (N => N,
7649 Read => not Is_Assignment_LHS,
7650 Write => Is_Assignment_LHS);
7651 end;
7652 end if;
7653 end Find_Expanded_Name;
7655 --------------------
7656 -- Find_First_Use --
7657 --------------------
7659 function Find_First_Use (Use_Clause : Node_Id) return Node_Id is
7660 Curr : Node_Id;
7662 begin
7663 -- Loop through the Prev_Use_Clause chain
7665 Curr := Use_Clause;
7666 while Present (Prev_Use_Clause (Curr)) loop
7667 Curr := Prev_Use_Clause (Curr);
7668 end loop;
7670 return Curr;
7671 end Find_First_Use;
7673 -------------------------
7674 -- Find_Renamed_Entity --
7675 -------------------------
7677 function Find_Renamed_Entity
7678 (N : Node_Id;
7679 Nam : Node_Id;
7680 New_S : Entity_Id;
7681 Is_Actual : Boolean := False) return Entity_Id
7683 Ind : Interp_Index;
7684 I1 : Interp_Index := 0; -- Suppress junk warnings
7685 It : Interp;
7686 It1 : Interp;
7687 Old_S : Entity_Id;
7688 Inst : Entity_Id;
7690 function Find_Nearer_Entity
7691 (New_S : Entity_Id;
7692 Old1_S : Entity_Id;
7693 Old2_S : Entity_Id) return Entity_Id;
7694 -- Determine whether one of Old_S1 and Old_S2 is nearer to New_S than
7695 -- the other, and return it if so. Return Empty otherwise. We use this
7696 -- in conjunction with Inherit_Renamed_Profile to simplify later type
7697 -- disambiguation for actual subprograms in instances.
7699 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
7700 -- If the renamed entity is an implicit operator, check whether it is
7701 -- visible because its operand type is properly visible. This check
7702 -- applies to explicit renamed entities that appear in the source in a
7703 -- renaming declaration or a formal subprogram instance, but not to
7704 -- default generic actuals with a name.
7706 function Report_Overload return Entity_Id;
7707 -- List possible interpretations, and specialize message in the
7708 -- case of a generic actual.
7710 function Within (Inner, Outer : Entity_Id) return Boolean;
7711 -- Determine whether a candidate subprogram is defined within the
7712 -- enclosing instance. If yes, it has precedence over outer candidates.
7714 --------------------------
7715 -- Find_Nearer_Entity --
7716 --------------------------
7718 function Find_Nearer_Entity
7719 (New_S : Entity_Id;
7720 Old1_S : Entity_Id;
7721 Old2_S : Entity_Id) return Entity_Id
7723 New_F : Entity_Id;
7724 Old1_F : Entity_Id;
7725 Old2_F : Entity_Id;
7726 Anc_T : Entity_Id;
7728 begin
7729 New_F := First_Formal (New_S);
7730 Old1_F := First_Formal (Old1_S);
7731 Old2_F := First_Formal (Old2_S);
7733 -- The criterion is whether the type of the formals of one of Old1_S
7734 -- and Old2_S is an ancestor subtype of the type of the corresponding
7735 -- formals of New_S while the other is not (we already know that they
7736 -- are all subtypes of the same base type).
7738 -- This makes it possible to find the more correct renamed entity in
7739 -- the case of a generic instantiation nested in an enclosing one for
7740 -- which different formal types get the same actual type, which will
7741 -- in turn make it possible for Inherit_Renamed_Profile to preserve
7742 -- types on formal parameters and ultimately simplify disambiguation.
7744 -- Consider the follow package G:
7746 -- generic
7747 -- type Item_T is private;
7748 -- with function Compare (L, R: Item_T) return Boolean is <>;
7750 -- type Bound_T is private;
7751 -- with function Compare (L, R : Bound_T) return Boolean is <>;
7752 -- package G is
7753 -- ...
7754 -- end G;
7756 -- package body G is
7757 -- package My_Inner is Inner_G (Bound_T);
7758 -- ...
7759 -- end G;
7761 -- with the following package Inner_G:
7763 -- generic
7764 -- type T is private;
7765 -- with function Compare (L, R: T) return Boolean is <>;
7766 -- package Inner_G is
7767 -- function "<" (L, R: T) return Boolean is (Compare (L, R));
7768 -- end Inner_G;
7770 -- If G is instantiated on the same actual type with a single Compare
7771 -- function:
7773 -- type T is ...
7774 -- function Compare (L, R : T) return Boolean;
7775 -- package My_G is new (T, T);
7777 -- then the renaming generated for Compare in the inner instantiation
7778 -- is ambiguous: it can rename either of the renamings generated for
7779 -- the outer instantiation. Now if the first one is picked up, then
7780 -- the subtypes of the formal parameters of the renaming will not be
7781 -- preserved in Inherit_Renamed_Profile because they are subtypes of
7782 -- the Bound_T formal type and not of the Item_T formal type, so we
7783 -- need to arrange for the second one to be picked up instead.
7785 while Present (New_F) loop
7786 if Etype (Old1_F) /= Etype (Old2_F) then
7787 Anc_T := Ancestor_Subtype (Etype (New_F));
7789 if Etype (Old1_F) = Anc_T then
7790 return Old1_S;
7791 elsif Etype (Old2_F) = Anc_T then
7792 return Old2_S;
7793 end if;
7794 end if;
7796 Next_Formal (New_F);
7797 Next_Formal (Old1_F);
7798 Next_Formal (Old2_F);
7799 end loop;
7801 pragma Assert (No (Old1_F));
7802 pragma Assert (No (Old2_F));
7804 return Empty;
7805 end Find_Nearer_Entity;
7807 --------------------------
7808 -- Is_Visible_Operation --
7809 --------------------------
7811 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
7812 Scop : Entity_Id;
7813 Typ : Entity_Id;
7814 Btyp : Entity_Id;
7816 begin
7817 if Ekind (Op) /= E_Operator
7818 or else Scope (Op) /= Standard_Standard
7819 or else (In_Instance
7820 and then (not Is_Actual
7821 or else Present (Enclosing_Instance)))
7822 then
7823 return True;
7825 else
7826 -- For a fixed point type operator, check the resulting type,
7827 -- because it may be a mixed mode integer * fixed operation.
7829 if Present (Next_Formal (First_Formal (New_S)))
7830 and then Is_Fixed_Point_Type (Etype (New_S))
7831 then
7832 Typ := Etype (New_S);
7833 else
7834 Typ := Etype (First_Formal (New_S));
7835 end if;
7837 Btyp := Base_Type (Typ);
7839 if Nkind (Nam) /= N_Expanded_Name then
7840 return (In_Open_Scopes (Scope (Btyp))
7841 or else Is_Potentially_Use_Visible (Btyp)
7842 or else In_Use (Btyp)
7843 or else In_Use (Scope (Btyp)));
7845 else
7846 Scop := Entity (Prefix (Nam));
7848 if Ekind (Scop) = E_Package
7849 and then Present (Renamed_Entity (Scop))
7850 then
7851 Scop := Renamed_Entity (Scop);
7852 end if;
7854 -- Operator is visible if prefix of expanded name denotes
7855 -- scope of type, or else type is defined in System_Aux
7856 -- and the prefix denotes System.
7858 return Scope (Btyp) = Scop
7859 or else (Scope (Btyp) = System_Aux_Id
7860 and then Scope (Scope (Btyp)) = Scop);
7861 end if;
7862 end if;
7863 end Is_Visible_Operation;
7865 ------------
7866 -- Within --
7867 ------------
7869 function Within (Inner, Outer : Entity_Id) return Boolean is
7870 Sc : Entity_Id;
7872 begin
7873 Sc := Scope (Inner);
7874 while Sc /= Standard_Standard loop
7875 if Sc = Outer then
7876 return True;
7877 else
7878 Sc := Scope (Sc);
7879 end if;
7880 end loop;
7882 return False;
7883 end Within;
7885 ---------------------
7886 -- Report_Overload --
7887 ---------------------
7889 function Report_Overload return Entity_Id is
7890 begin
7891 if Is_Actual then
7892 Error_Msg_NE -- CODEFIX
7893 ("ambiguous actual subprogram&, " &
7894 "possible interpretations:", N, Nam);
7895 else
7896 Error_Msg_N -- CODEFIX
7897 ("ambiguous subprogram, " &
7898 "possible interpretations:", N);
7899 end if;
7901 List_Interps (Nam, N);
7902 return Old_S;
7903 end Report_Overload;
7905 -- Start of processing for Find_Renamed_Entity
7907 begin
7908 Old_S := Any_Id;
7909 Candidate_Renaming := Empty;
7911 if Is_Overloaded (Nam) then
7912 Get_First_Interp (Nam, Ind, It);
7913 while Present (It.Nam) loop
7914 if Entity_Matches_Spec (It.Nam, New_S)
7915 and then Is_Visible_Operation (It.Nam)
7916 then
7917 if Old_S /= Any_Id then
7919 -- Note: The call to Disambiguate only happens if a
7920 -- previous interpretation was found, in which case I1
7921 -- has received a value.
7923 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
7925 if It1 = No_Interp then
7926 Inst := Enclosing_Instance;
7928 if Present (Inst) then
7929 if Within (It.Nam, Inst) then
7930 if Within (Old_S, Inst) then
7931 declare
7932 It_D : constant Uint :=
7933 Scope_Depth_Default_0 (It.Nam);
7934 Old_D : constant Uint :=
7935 Scope_Depth_Default_0 (Old_S);
7936 N_Ent : Entity_Id;
7937 begin
7938 -- Choose the innermost subprogram, which
7939 -- would hide the outer one in the generic.
7941 if Old_D > It_D then
7942 return Old_S;
7943 elsif It_D > Old_D then
7944 return It.Nam;
7945 end if;
7947 -- Otherwise, if we can determine that one
7948 -- of the entities is nearer to the renaming
7949 -- than the other, choose it. If not, then
7950 -- return the newer one as done historically.
7952 N_Ent :=
7953 Find_Nearer_Entity (New_S, Old_S, It.Nam);
7954 if Present (N_Ent) then
7955 return N_Ent;
7956 else
7957 return It.Nam;
7958 end if;
7959 end;
7960 end if;
7962 elsif Within (Old_S, Inst) then
7963 return Old_S;
7965 else
7966 return Report_Overload;
7967 end if;
7969 -- If not within an instance, ambiguity is real
7971 else
7972 return Report_Overload;
7973 end if;
7975 else
7976 Old_S := It1.Nam;
7977 exit;
7978 end if;
7980 else
7981 I1 := Ind;
7982 Old_S := It.Nam;
7983 end if;
7985 elsif
7986 Present (First_Formal (It.Nam))
7987 and then Present (First_Formal (New_S))
7988 and then Base_Type (Etype (First_Formal (It.Nam))) =
7989 Base_Type (Etype (First_Formal (New_S)))
7990 then
7991 Candidate_Renaming := It.Nam;
7992 end if;
7994 Get_Next_Interp (Ind, It);
7995 end loop;
7997 Set_Entity (Nam, Old_S);
7999 if Old_S /= Any_Id then
8000 Set_Is_Overloaded (Nam, False);
8001 end if;
8003 -- Non-overloaded case
8005 else
8006 if Is_Actual
8007 and then Present (Enclosing_Instance)
8008 and then Entity_Matches_Spec (Entity (Nam), New_S)
8009 then
8010 Old_S := Entity (Nam);
8012 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
8013 Candidate_Renaming := New_S;
8015 if Is_Visible_Operation (Entity (Nam)) then
8016 Old_S := Entity (Nam);
8017 end if;
8019 elsif Present (First_Formal (Entity (Nam)))
8020 and then Present (First_Formal (New_S))
8021 and then Base_Type (Etype (First_Formal (Entity (Nam)))) =
8022 Base_Type (Etype (First_Formal (New_S)))
8023 then
8024 Candidate_Renaming := Entity (Nam);
8025 end if;
8026 end if;
8028 return Old_S;
8029 end Find_Renamed_Entity;
8031 -----------------------------
8032 -- Find_Selected_Component --
8033 -----------------------------
8035 procedure Find_Selected_Component (N : Node_Id) is
8036 P : constant Node_Id := Prefix (N);
8038 P_Name : Entity_Id;
8039 -- Entity denoted by prefix
8041 P_Type : Entity_Id;
8042 -- and its type
8044 Nam : Node_Id;
8046 function Available_Subtype return Boolean;
8047 -- A small optimization: if the prefix is constrained and the component
8048 -- is an array type we may already have a usable subtype for it, so we
8049 -- can use it rather than generating a new one, because the bounds
8050 -- will be the values of the discriminants and not discriminant refs.
8051 -- This simplifies value tracing in GNATprove. For consistency, both
8052 -- the entity name and the subtype come from the constrained component.
8054 -- This is only used in GNATprove mode: when generating code it may be
8055 -- necessary to create an itype in the scope of use of the selected
8056 -- component, e.g. in the context of a expanded record equality.
8058 function Is_Reference_In_Subunit return Boolean;
8059 -- In a subunit, the scope depth is not a proper measure of hiding,
8060 -- because the context of the proper body may itself hide entities in
8061 -- parent units. This rare case requires inspecting the tree directly
8062 -- because the proper body is inserted in the main unit and its context
8063 -- is simply added to that of the parent.
8065 -----------------------
8066 -- Available_Subtype --
8067 -----------------------
8069 function Available_Subtype return Boolean is
8070 Comp : Entity_Id;
8072 begin
8073 if GNATprove_Mode then
8074 Comp := First_Entity (Etype (P));
8075 while Present (Comp) loop
8076 if Chars (Comp) = Chars (Selector_Name (N)) then
8077 Set_Etype (N, Etype (Comp));
8078 Set_Entity (Selector_Name (N), Comp);
8079 Set_Etype (Selector_Name (N), Etype (Comp));
8080 return True;
8081 end if;
8083 Next_Component (Comp);
8084 end loop;
8085 end if;
8087 return False;
8088 end Available_Subtype;
8090 -----------------------------
8091 -- Is_Reference_In_Subunit --
8092 -----------------------------
8094 function Is_Reference_In_Subunit return Boolean is
8095 Clause : Node_Id;
8096 Comp_Unit : Node_Id;
8098 begin
8099 Comp_Unit := N;
8100 while Present (Comp_Unit)
8101 and then Nkind (Comp_Unit) /= N_Compilation_Unit
8102 loop
8103 Comp_Unit := Parent (Comp_Unit);
8104 end loop;
8106 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
8107 return False;
8108 end if;
8110 -- Now check whether the package is in the context of the subunit
8112 Clause := First (Context_Items (Comp_Unit));
8113 while Present (Clause) loop
8114 if Nkind (Clause) = N_With_Clause
8115 and then Entity (Name (Clause)) = P_Name
8116 then
8117 return True;
8118 end if;
8120 Next (Clause);
8121 end loop;
8123 return False;
8124 end Is_Reference_In_Subunit;
8126 -- Start of processing for Find_Selected_Component
8128 begin
8129 Analyze (P);
8131 if Nkind (P) = N_Error then
8132 return;
8133 end if;
8135 -- If the selector already has an entity, the node has been constructed
8136 -- in the course of expansion, and is known to be valid. Do not verify
8137 -- that it is defined for the type (it may be a private component used
8138 -- in the expansion of record equality).
8140 if Present (Entity (Selector_Name (N))) then
8141 if No (Etype (N)) or else Etype (N) = Any_Type then
8142 declare
8143 Sel_Name : constant Node_Id := Selector_Name (N);
8144 Selector : constant Entity_Id := Entity (Sel_Name);
8145 C_Etype : Node_Id;
8147 begin
8148 Set_Etype (Sel_Name, Etype (Selector));
8150 if not Is_Entity_Name (P) then
8151 Resolve (P);
8152 end if;
8154 -- Build an actual subtype except for the first parameter
8155 -- of an init proc, where this actual subtype is by
8156 -- definition incorrect, since the object is uninitialized
8157 -- (and does not even have defined discriminants etc.)
8159 if Is_Entity_Name (P)
8160 and then Ekind (Entity (P)) = E_Function
8161 then
8162 Nam := New_Copy (P);
8164 if Is_Overloaded (P) then
8165 Save_Interps (P, Nam);
8166 end if;
8168 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
8169 Analyze_Call (P);
8170 Analyze_Selected_Component (N);
8171 return;
8173 elsif Ekind (Selector) = E_Component
8174 and then (not Is_Entity_Name (P)
8175 or else Chars (Entity (P)) /= Name_uInit)
8176 then
8177 -- Check if we already have an available subtype we can use
8179 if Ekind (Etype (P)) = E_Record_Subtype
8180 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
8181 and then Is_Array_Type (Etype (Selector))
8182 and then not Is_Packed (Etype (Selector))
8183 and then Available_Subtype
8184 then
8185 return;
8187 -- Do not build the subtype when referencing components of
8188 -- dispatch table wrappers. Required to avoid generating
8189 -- elaboration code with HI runtimes.
8191 elsif Is_RTE (Scope (Selector), RE_Dispatch_Table_Wrapper)
8192 or else
8193 Is_RTE (Scope (Selector), RE_No_Dispatch_Table_Wrapper)
8194 then
8195 C_Etype := Empty;
8196 else
8197 C_Etype :=
8198 Build_Actual_Subtype_Of_Component
8199 (Etype (Selector), N);
8200 end if;
8202 else
8203 C_Etype := Empty;
8204 end if;
8206 if No (C_Etype) then
8207 C_Etype := Etype (Selector);
8208 else
8209 Insert_Action (N, C_Etype);
8210 C_Etype := Defining_Identifier (C_Etype);
8211 end if;
8213 Set_Etype (N, C_Etype);
8214 end;
8216 -- If the selected component appears within a default expression
8217 -- and it has an actual subtype, the preanalysis has not yet
8218 -- completed its analysis, because Insert_Actions is disabled in
8219 -- that context. Within the init proc of the enclosing type we
8220 -- must complete this analysis, if an actual subtype was created.
8222 elsif Inside_Init_Proc then
8223 declare
8224 Typ : constant Entity_Id := Etype (N);
8225 Decl : constant Node_Id := Declaration_Node (Typ);
8226 begin
8227 if Nkind (Decl) = N_Subtype_Declaration
8228 and then not Analyzed (Decl)
8229 and then Is_List_Member (Decl)
8230 and then No (Parent (Decl))
8231 then
8232 Remove (Decl);
8233 Insert_Action (N, Decl);
8234 end if;
8235 end;
8236 end if;
8238 return;
8240 elsif Is_Entity_Name (P) then
8241 P_Name := Entity (P);
8243 -- The prefix may denote an enclosing type which is the completion
8244 -- of an incomplete type declaration.
8246 if Is_Type (P_Name) then
8247 Set_Entity (P, Get_Full_View (P_Name));
8248 Set_Etype (P, Entity (P));
8249 P_Name := Entity (P);
8250 end if;
8252 P_Type := Base_Type (Etype (P));
8254 if Debug_Flag_E then
8255 Write_Str ("Found prefix type to be ");
8256 Write_Entity_Info (P_Type, " "); Write_Eol;
8257 end if;
8259 -- If the prefix's type is an access type, get to the record type
8261 if Is_Access_Type (P_Type) then
8262 P_Type := Implicitly_Designated_Type (P_Type);
8263 end if;
8265 -- First check for components of a record object (not the result of
8266 -- a call, which is handled below). This also covers the case where
8267 -- the extension feature that supports the prefixed form of calls
8268 -- for primitives of untagged types is enabled (excluding concurrent
8269 -- cases, which are handled further below).
8271 if Is_Type (P_Type)
8272 and then (Has_Components (P_Type)
8273 or else (Core_Extensions_Allowed
8274 and then not Is_Concurrent_Type (P_Type)))
8275 and then not Is_Overloadable (P_Name)
8276 and then not Is_Type (P_Name)
8277 then
8278 -- Selected component of record. Type checking will validate
8279 -- name of selector.
8281 -- ??? Could we rewrite an implicit dereference into an explicit
8282 -- one here?
8284 Analyze_Selected_Component (N);
8286 -- Reference to type name in predicate/invariant expression
8288 elsif Is_Concurrent_Type (P_Type)
8289 and then not In_Open_Scopes (P_Name)
8290 and then (not Is_Concurrent_Type (Etype (P_Name))
8291 or else not In_Open_Scopes (Etype (P_Name)))
8292 then
8293 -- Call to protected operation or entry. Type checking is
8294 -- needed on the prefix.
8296 Analyze_Selected_Component (N);
8298 elsif (In_Open_Scopes (P_Name)
8299 and then Ekind (P_Name) /= E_Void
8300 and then not Is_Overloadable (P_Name))
8301 or else (Is_Concurrent_Type (Etype (P_Name))
8302 and then In_Open_Scopes (Etype (P_Name)))
8303 then
8304 -- Prefix denotes an enclosing loop, block, or task, i.e. an
8305 -- enclosing construct that is not a subprogram or accept.
8307 -- A special case: a protected body may call an operation
8308 -- on an external object of the same type, in which case it
8309 -- is not an expanded name. If the prefix is the type itself,
8310 -- or the context is a single synchronized object it can only
8311 -- be interpreted as an expanded name.
8313 if Is_Concurrent_Type (Etype (P_Name)) then
8314 if Is_Type (P_Name)
8315 or else Present (Anonymous_Object (Etype (P_Name)))
8316 then
8317 Find_Expanded_Name (N);
8319 else
8320 Analyze_Selected_Component (N);
8321 return;
8322 end if;
8324 else
8325 Find_Expanded_Name (N);
8326 end if;
8328 elsif Ekind (P_Name) = E_Package then
8329 Find_Expanded_Name (N);
8331 elsif Is_Overloadable (P_Name) then
8333 -- The subprogram may be a renaming (of an enclosing scope) as
8334 -- in the case of the name of the generic within an instantiation.
8336 if Ekind (P_Name) in E_Procedure | E_Function
8337 and then Present (Alias (P_Name))
8338 and then Is_Generic_Instance (Alias (P_Name))
8339 then
8340 P_Name := Alias (P_Name);
8341 end if;
8343 if Is_Overloaded (P) then
8345 -- The prefix must resolve to a unique enclosing construct
8347 declare
8348 Found : Boolean := False;
8349 Ind : Interp_Index;
8350 It : Interp;
8352 begin
8353 Get_First_Interp (P, Ind, It);
8354 while Present (It.Nam) loop
8355 if In_Open_Scopes (It.Nam) then
8356 if Found then
8357 Error_Msg_N (
8358 "prefix must be unique enclosing scope", N);
8359 Set_Entity (N, Any_Id);
8360 Set_Etype (N, Any_Type);
8361 return;
8363 else
8364 Found := True;
8365 P_Name := It.Nam;
8366 end if;
8367 end if;
8369 Get_Next_Interp (Ind, It);
8370 end loop;
8371 end;
8372 end if;
8374 if In_Open_Scopes (P_Name) then
8375 Set_Entity (P, P_Name);
8376 Set_Is_Overloaded (P, False);
8377 Find_Expanded_Name (N);
8379 else
8380 -- If no interpretation as an expanded name is possible, it
8381 -- must be a selected component of a record returned by a
8382 -- function call. Reformat prefix as a function call, the rest
8383 -- is done by type resolution.
8385 -- Error if the prefix is procedure or entry, as is P.X
8387 if Ekind (P_Name) /= E_Function
8388 and then
8389 (not Is_Overloaded (P)
8390 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
8391 then
8392 -- Prefix may mention a package that is hidden by a local
8393 -- declaration: let the user know. Scan the full homonym
8394 -- chain, the candidate package may be anywhere on it.
8396 if Present (Homonym (Current_Entity (P_Name))) then
8397 P_Name := Current_Entity (P_Name);
8399 while Present (P_Name) loop
8400 exit when Ekind (P_Name) = E_Package;
8401 P_Name := Homonym (P_Name);
8402 end loop;
8404 if Present (P_Name) then
8405 if not Is_Reference_In_Subunit then
8406 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
8407 Error_Msg_NE
8408 ("package& is hidden by declaration#", N, P_Name);
8409 end if;
8411 Set_Entity (Prefix (N), P_Name);
8412 Find_Expanded_Name (N);
8413 return;
8415 else
8416 P_Name := Entity (Prefix (N));
8417 end if;
8418 end if;
8420 Error_Msg_NE
8421 ("invalid prefix in selected component&", N, P_Name);
8422 Change_Selected_Component_To_Expanded_Name (N);
8423 Set_Entity (N, Any_Id);
8424 Set_Etype (N, Any_Type);
8426 -- Here we have a function call, so do the reformatting
8428 else
8429 Nam := New_Copy (P);
8430 Save_Interps (P, Nam);
8432 -- We use Replace here because this is one of those cases
8433 -- where the parser has missclassified the node, and we fix
8434 -- things up and then do the semantic analysis on the fixed
8435 -- up node. Normally we do this using one of the Sinfo.CN
8436 -- routines, but this is too tricky for that.
8438 -- Note that using Rewrite would be wrong, because we would
8439 -- have a tree where the original node is unanalyzed.
8441 Replace (P,
8442 Make_Function_Call (Sloc (P), Name => Nam));
8444 -- Now analyze the reformatted node
8446 Analyze_Call (P);
8448 -- If the prefix is illegal after this transformation, there
8449 -- may be visibility errors on the prefix. The safest is to
8450 -- treat the selected component as an error.
8452 if Error_Posted (P) then
8453 Set_Etype (N, Any_Type);
8454 return;
8456 else
8457 Analyze_Selected_Component (N);
8458 end if;
8459 end if;
8460 end if;
8462 -- Remaining cases generate various error messages
8464 else
8465 -- Format node as expanded name, to avoid cascaded errors
8467 Change_Selected_Component_To_Expanded_Name (N);
8468 Set_Entity (N, Any_Id);
8469 Set_Etype (N, Any_Type);
8471 -- Issue error message, but avoid this if error issued already.
8472 -- Use identifier of prefix if one is available.
8474 if P_Name = Any_Id then
8475 null;
8477 -- It is not an error if the prefix is the current instance of
8478 -- type name, e.g. the expression of a type aspect, when it is
8479 -- analyzed within a generic unit. We still have to verify that a
8480 -- component of that name exists, and decorate the node
8481 -- accordingly.
8483 elsif Is_Entity_Name (P) and then Is_Current_Instance (P) then
8484 declare
8485 Comp : Entity_Id;
8487 begin
8488 Comp := First_Entity (Entity (P));
8489 while Present (Comp) loop
8490 if Chars (Comp) = Chars (Selector_Name (N)) then
8491 Set_Entity (N, Comp);
8492 Set_Etype (N, Etype (Comp));
8493 Set_Entity (Selector_Name (N), Comp);
8494 Set_Etype (Selector_Name (N), Etype (Comp));
8495 return;
8496 end if;
8498 Next_Entity (Comp);
8499 end loop;
8500 end;
8502 elsif Is_Self_Hidden (P_Name) then
8503 Premature_Usage (P);
8505 elsif Ekind (P_Name) = E_Generic_Package then
8506 Error_Msg_N ("prefix must not be a generic package", N);
8507 Error_Msg_N ("\use package instantiation as prefix instead", N);
8509 elsif Nkind (P) /= N_Attribute_Reference then
8511 -- This may have been meant as a prefixed call to a primitive
8512 -- of an untagged type. If it is a function call check type of
8513 -- its first formal and add explanation.
8515 declare
8516 F : constant Entity_Id :=
8517 Current_Entity (Selector_Name (N));
8518 begin
8519 if Present (F)
8520 and then Is_Overloadable (F)
8521 and then Present (First_Entity (F))
8522 and then not Is_Tagged_Type (Etype (First_Entity (F)))
8523 then
8524 Error_Msg_N
8525 ("prefixed call is only allowed for objects of a "
8526 & "tagged type unless -gnatX is used", N);
8528 if not Core_Extensions_Allowed
8529 and then
8530 Try_Object_Operation (N, Allow_Extensions => True)
8531 then
8532 Error_Msg_N
8533 ("\using -gnatX would make the prefixed call legal",
8535 end if;
8536 end if;
8537 end;
8539 Error_Msg_N ("invalid prefix in selected component&", P);
8541 if Is_Incomplete_Type (P_Type)
8542 and then Is_Access_Type (Etype (P))
8543 then
8544 Error_Msg_N
8545 ("\dereference must not be of an incomplete type "
8546 & "(RM 3.10.1)", P);
8547 end if;
8549 else
8550 Error_Msg_N ("invalid prefix in selected component", P);
8551 end if;
8552 end if;
8553 else
8554 -- If prefix is not the name of an entity, it must be an expression,
8555 -- whose type is appropriate for a record. This is determined by
8556 -- type resolution.
8558 Analyze_Selected_Component (N);
8559 end if;
8561 Analyze_Dimension (N);
8562 end Find_Selected_Component;
8564 ---------------
8565 -- Find_Type --
8566 ---------------
8568 procedure Find_Type (N : Node_Id) is
8569 C : Entity_Id;
8570 Typ : Entity_Id;
8571 T : Entity_Id;
8572 T_Name : Entity_Id;
8574 begin
8575 if N = Error then
8576 return;
8578 elsif Nkind (N) = N_Attribute_Reference then
8580 -- Class attribute. This is not valid in Ada 83 mode, but we do not
8581 -- need to enforce that at this point, since the declaration of the
8582 -- tagged type in the prefix would have been flagged already.
8584 if Attribute_Name (N) = Name_Class then
8585 Check_Restriction (No_Dispatch, N);
8586 Find_Type (Prefix (N));
8588 -- Propagate error from bad prefix
8590 if Etype (Prefix (N)) = Any_Type then
8591 Set_Entity (N, Any_Type);
8592 Set_Etype (N, Any_Type);
8593 return;
8594 end if;
8596 T := Base_Type (Entity (Prefix (N)));
8598 -- Case where type is not known to be tagged. Its appearance in
8599 -- the prefix of the 'Class attribute indicates that the full view
8600 -- will be tagged.
8602 if not Is_Tagged_Type (T) then
8603 if Ekind (T) = E_Incomplete_Type then
8605 -- It is legal to denote the class type of an incomplete
8606 -- type. The full type will have to be tagged, of course.
8607 -- In Ada 2005 this usage is declared obsolescent, so we
8608 -- warn accordingly. This usage is only legal if the type
8609 -- is completed in the current scope, and not for a limited
8610 -- view of a type.
8612 if Ada_Version >= Ada_2005 then
8614 -- Test whether the Available_View of a limited type view
8615 -- is tagged, since the limited view may not be marked as
8616 -- tagged if the type itself has an untagged incomplete
8617 -- type view in its package.
8619 if From_Limited_With (T)
8620 and then not Is_Tagged_Type (Available_View (T))
8621 then
8622 Error_Msg_N
8623 ("prefix of Class attribute must be tagged", N);
8624 Set_Etype (N, Any_Type);
8625 Set_Entity (N, Any_Type);
8626 return;
8628 else
8629 if Restriction_Check_Required (No_Obsolescent_Features)
8630 then
8631 Check_Restriction
8632 (No_Obsolescent_Features, Prefix (N));
8633 end if;
8635 if Warn_On_Obsolescent_Feature then
8636 Error_Msg_N
8637 ("applying ''Class to an untagged incomplete type"
8638 & " is an obsolescent feature (RM J.11)?r?", N);
8639 end if;
8640 end if;
8641 end if;
8643 Set_Is_Tagged_Type (T);
8644 Set_Direct_Primitive_Operations (T, New_Elmt_List);
8645 Make_Class_Wide_Type (T);
8646 Set_Entity (N, Class_Wide_Type (T));
8647 Set_Etype (N, Class_Wide_Type (T));
8649 elsif Ekind (T) = E_Private_Type
8650 and then not Is_Generic_Type (T)
8651 and then In_Private_Part (Scope (T))
8652 then
8653 -- The Class attribute can be applied to an untagged private
8654 -- type fulfilled by a tagged type prior to the full type
8655 -- declaration (but only within the parent package's private
8656 -- part). Create the class-wide type now and check that the
8657 -- full type is tagged later during its analysis. Note that
8658 -- we do not mark the private type as tagged, unlike the
8659 -- case of incomplete types, because the type must still
8660 -- appear untagged to outside units.
8662 if No (Class_Wide_Type (T)) then
8663 Make_Class_Wide_Type (T);
8664 end if;
8666 Set_Entity (N, Class_Wide_Type (T));
8667 Set_Etype (N, Class_Wide_Type (T));
8669 else
8670 -- Should we introduce a type Any_Tagged and use Wrong_Type
8671 -- here, it would be a bit more consistent???
8673 Error_Msg_NE
8674 ("tagged type required, found}",
8675 Prefix (N), First_Subtype (T));
8676 Set_Entity (N, Any_Type);
8677 return;
8678 end if;
8680 -- Case of tagged type
8682 else
8683 if Is_Concurrent_Type (T) then
8684 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
8686 -- Previous error. Create a class-wide type for the
8687 -- synchronized type itself, with minimal semantic
8688 -- attributes, to catch other errors in some ACATS tests.
8690 pragma Assert (Serious_Errors_Detected /= 0);
8691 Make_Class_Wide_Type (T);
8692 C := Class_Wide_Type (T);
8693 Set_First_Entity (C, First_Entity (T));
8695 else
8696 C := Class_Wide_Type
8697 (Corresponding_Record_Type (Entity (Prefix (N))));
8698 end if;
8700 else
8701 C := Class_Wide_Type (Entity (Prefix (N)));
8702 end if;
8704 Set_Entity_With_Checks (N, C);
8705 Generate_Reference (C, N);
8706 Set_Etype (N, C);
8707 end if;
8709 -- Base attribute, not allowed in Ada 83
8711 elsif Attribute_Name (N) = Name_Base then
8712 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
8713 Error_Msg_N
8714 ("(Ada 83) Base attribute not allowed in subtype mark", N);
8716 else
8717 Find_Type (Prefix (N));
8718 Typ := Entity (Prefix (N));
8720 if Ada_Version >= Ada_95
8721 and then not Is_Scalar_Type (Typ)
8722 and then not Is_Generic_Type (Typ)
8723 then
8724 Error_Msg_N
8725 ("prefix of Base attribute must be scalar type",
8726 Prefix (N));
8728 elsif Warn_On_Redundant_Constructs
8729 and then Base_Type (Typ) = Typ
8730 then
8731 Error_Msg_NE -- CODEFIX
8732 ("redundant attribute, & is its own base type?r?", N, Typ);
8733 end if;
8735 T := Base_Type (Typ);
8737 -- Rewrite attribute reference with type itself (see similar
8738 -- processing in Analyze_Attribute, case Base). Preserve prefix
8739 -- if present, for other legality checks.
8741 if Nkind (Prefix (N)) = N_Expanded_Name then
8742 Rewrite (N,
8743 Make_Expanded_Name (Sloc (N),
8744 Chars => Chars (T),
8745 Prefix => New_Copy (Prefix (Prefix (N))),
8746 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
8748 else
8749 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
8750 end if;
8752 Set_Entity (N, T);
8753 Set_Etype (N, T);
8754 end if;
8756 elsif Attribute_Name (N) = Name_Stub_Type then
8758 -- This is handled in Analyze_Attribute
8760 Analyze (N);
8762 -- All other attributes are invalid in a subtype mark
8764 else
8765 Error_Msg_N ("invalid attribute in subtype mark", N);
8766 end if;
8768 else
8769 Analyze (N);
8771 if Is_Entity_Name (N) then
8772 T_Name := Entity (N);
8773 else
8774 Error_Msg_N ("subtype mark required in this context", N);
8775 Set_Etype (N, Any_Type);
8776 return;
8777 end if;
8779 if T_Name = Any_Id or else Etype (N) = Any_Type then
8781 -- Undefined id. Make it into a valid type
8783 Set_Entity (N, Any_Type);
8785 elsif not Is_Type (T_Name)
8786 and then T_Name /= Standard_Void_Type
8787 then
8788 Error_Msg_Sloc := Sloc (T_Name);
8789 Error_Msg_N ("subtype mark required in this context", N);
8790 Error_Msg_NE ("\\found & declared#", N, T_Name);
8791 Set_Entity (N, Any_Type);
8793 else
8794 -- If the type is an incomplete type created to handle
8795 -- anonymous access components of a record type, then the
8796 -- incomplete type is the visible entity and subsequent
8797 -- references will point to it. Mark the original full
8798 -- type as referenced, to prevent spurious warnings.
8800 if Is_Incomplete_Type (T_Name)
8801 and then Present (Full_View (T_Name))
8802 and then not Comes_From_Source (T_Name)
8803 then
8804 Set_Referenced (Full_View (T_Name));
8805 end if;
8807 T_Name := Get_Full_View (T_Name);
8809 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
8810 -- limited-with clauses
8812 if From_Limited_With (T_Name)
8813 and then Is_Incomplete_Type (T_Name)
8814 and then Present (Non_Limited_View (T_Name))
8815 and then Is_Interface (Non_Limited_View (T_Name))
8816 then
8817 T_Name := Non_Limited_View (T_Name);
8818 end if;
8820 if In_Open_Scopes (T_Name) then
8821 if Ekind (Base_Type (T_Name)) = E_Task_Type then
8823 -- In Ada 2005, a task name can be used in an access
8824 -- definition within its own body.
8826 if Ada_Version >= Ada_2005
8827 and then Nkind (Parent (N)) = N_Access_Definition
8828 then
8829 Set_Entity (N, T_Name);
8830 Set_Etype (N, T_Name);
8831 return;
8833 else
8834 Error_Msg_N
8835 ("task type cannot be used as type mark " &
8836 "within its own spec or body", N);
8837 end if;
8839 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
8841 -- In Ada 2005, a protected name can be used in an access
8842 -- definition within its own body.
8844 if Ada_Version >= Ada_2005
8845 and then Nkind (Parent (N)) = N_Access_Definition
8846 then
8847 Set_Entity (N, T_Name);
8848 Set_Etype (N, T_Name);
8849 return;
8851 else
8852 Error_Msg_N
8853 ("protected type cannot be used as type mark " &
8854 "within its own spec or body", N);
8855 end if;
8857 else
8858 Error_Msg_N ("type declaration cannot refer to itself", N);
8859 end if;
8861 Set_Etype (N, Any_Type);
8862 Set_Entity (N, Any_Type);
8863 Set_Error_Posted (T_Name);
8864 return;
8865 end if;
8867 Set_Entity (N, T_Name);
8868 Set_Etype (N, T_Name);
8869 end if;
8870 end if;
8872 if Present (Etype (N)) and then Comes_From_Source (N) then
8873 if Is_Fixed_Point_Type (Etype (N)) then
8874 Check_Restriction (No_Fixed_Point, N);
8875 elsif Is_Floating_Point_Type (Etype (N)) then
8876 Check_Restriction (No_Floating_Point, N);
8877 end if;
8879 -- A Ghost type must appear in a specific context
8881 if Is_Ghost_Entity (Etype (N)) then
8882 Check_Ghost_Context (Etype (N), N);
8883 end if;
8884 end if;
8885 end Find_Type;
8887 --------------------
8888 -- Has_Components --
8889 --------------------
8891 function Has_Components (Typ : Entity_Id) return Boolean is
8892 begin
8893 return Is_Record_Type (Typ)
8894 or else (Is_Private_Type (Typ) and then Has_Discriminants (Typ))
8895 or else (Is_Task_Type (Typ) and then Has_Discriminants (Typ))
8896 or else (Is_Incomplete_Type (Typ)
8897 and then From_Limited_With (Typ)
8898 and then Is_Record_Type (Available_View (Typ)));
8899 end Has_Components;
8901 ------------------------------------
8902 -- Has_Implicit_Character_Literal --
8903 ------------------------------------
8905 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
8906 Id : Entity_Id;
8907 Found : Boolean := False;
8908 P : constant Entity_Id := Entity (Prefix (N));
8909 Priv_Id : Entity_Id := Empty;
8911 begin
8912 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
8913 Priv_Id := First_Private_Entity (P);
8914 end if;
8916 if P = Standard_Standard then
8917 Change_Selected_Component_To_Expanded_Name (N);
8918 Rewrite (N, Selector_Name (N));
8919 Analyze (N);
8920 Set_Etype (Original_Node (N), Standard_Character);
8921 return True;
8922 end if;
8924 Id := First_Entity (P);
8925 while Present (Id) and then Id /= Priv_Id loop
8926 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
8928 -- We replace the node with the literal itself, resolve as a
8929 -- character, and set the type correctly.
8931 if not Found then
8932 Change_Selected_Component_To_Expanded_Name (N);
8933 Rewrite (N, Selector_Name (N));
8934 Analyze (N);
8935 Set_Etype (N, Id);
8936 Set_Etype (Original_Node (N), Id);
8937 Found := True;
8939 else
8940 -- More than one type derived from Character in given scope.
8941 -- Collect all possible interpretations.
8943 Add_One_Interp (N, Id, Id);
8944 end if;
8945 end if;
8947 Next_Entity (Id);
8948 end loop;
8950 return Found;
8951 end Has_Implicit_Character_Literal;
8953 ----------------------
8954 -- Has_Private_With --
8955 ----------------------
8957 function Has_Private_With (E : Entity_Id) return Boolean is
8958 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
8959 Item : Node_Id;
8961 begin
8962 Item := First (Context_Items (Comp_Unit));
8963 while Present (Item) loop
8964 if Nkind (Item) = N_With_Clause
8965 and then Private_Present (Item)
8966 and then Entity (Name (Item)) = E
8967 then
8968 return True;
8969 end if;
8971 Next (Item);
8972 end loop;
8974 return False;
8975 end Has_Private_With;
8977 ---------------------------
8978 -- Has_Implicit_Operator --
8979 ---------------------------
8981 function Has_Implicit_Operator (N : Node_Id) return Boolean is
8982 Op_Id : constant Name_Id := Chars (Selector_Name (N));
8983 P : constant Entity_Id := Entity (Prefix (N));
8984 Id : Entity_Id;
8985 Priv_Id : Entity_Id := Empty;
8987 procedure Add_Implicit_Operator
8988 (T : Entity_Id;
8989 Op_Type : Entity_Id := Empty);
8990 -- Add implicit interpretation to node N, using the type for which a
8991 -- predefined operator exists. If the operator yields a boolean type,
8992 -- the Operand_Type is implicitly referenced by the operator, and a
8993 -- reference to it must be generated.
8995 ---------------------------
8996 -- Add_Implicit_Operator --
8997 ---------------------------
8999 procedure Add_Implicit_Operator
9000 (T : Entity_Id;
9001 Op_Type : Entity_Id := Empty)
9003 Predef_Op : Entity_Id;
9005 begin
9006 Predef_Op := Current_Entity (Selector_Name (N));
9007 while Present (Predef_Op)
9008 and then Scope (Predef_Op) /= Standard_Standard
9009 loop
9010 Predef_Op := Homonym (Predef_Op);
9011 end loop;
9013 if Nkind (N) = N_Selected_Component then
9014 Change_Selected_Component_To_Expanded_Name (N);
9015 end if;
9017 -- If the context is an unanalyzed function call, determine whether
9018 -- a binary or unary interpretation is required.
9020 if Nkind (Parent (N)) = N_Indexed_Component then
9021 declare
9022 Is_Binary_Call : constant Boolean :=
9023 Present
9024 (Next (First (Expressions (Parent (N)))));
9025 Is_Binary_Op : constant Boolean :=
9026 First_Entity
9027 (Predef_Op) /= Last_Entity (Predef_Op);
9028 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
9030 begin
9031 if Is_Binary_Call then
9032 if Is_Binary_Op then
9033 Add_One_Interp (N, Predef_Op, T);
9034 else
9035 Add_One_Interp (N, Predef_Op2, T);
9036 end if;
9037 else
9038 if not Is_Binary_Op then
9039 Add_One_Interp (N, Predef_Op, T);
9041 -- Predef_Op2 may be empty in case of previous errors
9043 elsif Present (Predef_Op2) then
9044 Add_One_Interp (N, Predef_Op2, T);
9045 end if;
9046 end if;
9047 end;
9049 else
9050 Add_One_Interp (N, Predef_Op, T);
9052 -- For operators with unary and binary interpretations, if
9053 -- context is not a call, add both
9055 if Present (Homonym (Predef_Op)) then
9056 Add_One_Interp (N, Homonym (Predef_Op), T);
9057 end if;
9058 end if;
9060 -- The node is a reference to a predefined operator, and
9061 -- an implicit reference to the type of its operands.
9063 if Present (Op_Type) then
9064 Generate_Operator_Reference (N, Op_Type);
9065 else
9066 Generate_Operator_Reference (N, T);
9067 end if;
9068 end Add_Implicit_Operator;
9070 -- Start of processing for Has_Implicit_Operator
9072 begin
9073 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
9074 Priv_Id := First_Private_Entity (P);
9075 end if;
9077 Id := First_Entity (P);
9079 case Op_Id is
9081 -- Boolean operators: an implicit declaration exists if the scope
9082 -- contains a declaration for a derived Boolean type, or for an
9083 -- array of Boolean type.
9085 when Name_Op_And
9086 | Name_Op_Not
9087 | Name_Op_Or
9088 | Name_Op_Xor
9090 while Id /= Priv_Id loop
9091 if Is_Type (Id)
9092 and then Valid_Boolean_Arg (Id)
9093 and then Is_Base_Type (Id)
9094 then
9095 Add_Implicit_Operator (Id);
9096 return True;
9097 end if;
9099 Next_Entity (Id);
9100 end loop;
9102 -- Equality: look for any non-limited type (result is Boolean)
9104 when Name_Op_Eq
9105 | Name_Op_Ne
9107 while Id /= Priv_Id loop
9108 if Is_Type (Id)
9109 and then Valid_Equality_Arg (Id)
9110 and then Is_Base_Type (Id)
9111 then
9112 Add_Implicit_Operator (Standard_Boolean, Id);
9113 return True;
9114 end if;
9116 Next_Entity (Id);
9117 end loop;
9119 -- Comparison operators: scalar type, or array of scalar
9121 when Name_Op_Ge
9122 | Name_Op_Gt
9123 | Name_Op_Le
9124 | Name_Op_Lt
9126 while Id /= Priv_Id loop
9127 if Is_Type (Id)
9128 and then Valid_Comparison_Arg (Id)
9129 and then Is_Base_Type (Id)
9130 then
9131 Add_Implicit_Operator (Standard_Boolean, Id);
9132 return True;
9133 end if;
9135 Next_Entity (Id);
9136 end loop;
9138 -- Arithmetic operators: any numeric type
9140 when Name_Op_Abs
9141 | Name_Op_Add
9142 | Name_Op_Divide
9143 | Name_Op_Expon
9144 | Name_Op_Mod
9145 | Name_Op_Multiply
9146 | Name_Op_Rem
9147 | Name_Op_Subtract
9149 while Id /= Priv_Id loop
9150 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
9151 Add_Implicit_Operator (Id);
9152 return True;
9153 end if;
9155 Next_Entity (Id);
9156 end loop;
9158 -- Concatenation: any one-dimensional array type
9160 when Name_Op_Concat =>
9161 while Id /= Priv_Id loop
9162 if Is_Array_Type (Id)
9163 and then Number_Dimensions (Id) = 1
9164 and then Is_Base_Type (Id)
9165 then
9166 Add_Implicit_Operator (Id);
9167 return True;
9168 end if;
9170 Next_Entity (Id);
9171 end loop;
9173 -- What is the others condition here? Should we be using a
9174 -- subtype of Name_Id that would restrict to operators ???
9176 when others =>
9177 null;
9178 end case;
9180 -- If we fall through, then we do not have an implicit operator
9182 return False;
9183 end Has_Implicit_Operator;
9185 -----------------------------------
9186 -- Has_Loop_In_Inner_Open_Scopes --
9187 -----------------------------------
9189 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
9190 begin
9191 -- Several scope stacks are maintained by Scope_Stack. The base of the
9192 -- currently active scope stack is denoted by the Is_Active_Stack_Base
9193 -- flag in the scope stack entry. Note that the scope stacks used to
9194 -- simply be delimited implicitly by the presence of Standard_Standard
9195 -- at their base, but there now are cases where this is not sufficient
9196 -- because Standard_Standard actually may appear in the middle of the
9197 -- active set of scopes.
9199 for J in reverse 0 .. Scope_Stack.Last loop
9201 -- S was reached without seing a loop scope first
9203 if Scope_Stack.Table (J).Entity = S then
9204 return False;
9206 -- S was not yet reached, so it contains at least one inner loop
9208 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
9209 return True;
9210 end if;
9212 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
9213 -- cases where Standard_Standard appears in the middle of the active
9214 -- set of scopes. This affects the declaration and overriding of
9215 -- private inherited operations in instantiations of generic child
9216 -- units.
9218 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
9219 end loop;
9221 raise Program_Error; -- unreachable
9222 end Has_Loop_In_Inner_Open_Scopes;
9224 --------------------
9225 -- In_Open_Scopes --
9226 --------------------
9228 function In_Open_Scopes (S : Entity_Id) return Boolean is
9229 begin
9230 -- Several scope stacks are maintained by Scope_Stack. The base of the
9231 -- currently active scope stack is denoted by the Is_Active_Stack_Base
9232 -- flag in the scope stack entry. Note that the scope stacks used to
9233 -- simply be delimited implicitly by the presence of Standard_Standard
9234 -- at their base, but there now are cases where this is not sufficient
9235 -- because Standard_Standard actually may appear in the middle of the
9236 -- active set of scopes.
9238 for J in reverse 0 .. Scope_Stack.Last loop
9239 if Scope_Stack.Table (J).Entity = S then
9240 return True;
9241 end if;
9243 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
9244 -- cases where Standard_Standard appears in the middle of the active
9245 -- set of scopes. This affects the declaration and overriding of
9246 -- private inherited operations in instantiations of generic child
9247 -- units.
9249 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
9250 end loop;
9252 return False;
9253 end In_Open_Scopes;
9255 -----------------------------
9256 -- Inherit_Renamed_Profile --
9257 -----------------------------
9259 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
9260 New_F : Entity_Id;
9261 Old_F : Entity_Id;
9262 Old_T : Entity_Id;
9263 New_T : Entity_Id;
9265 begin
9266 if Ekind (Old_S) = E_Operator then
9267 New_F := First_Formal (New_S);
9269 while Present (New_F) loop
9270 Set_Etype (New_F, Base_Type (Etype (New_F)));
9271 Next_Formal (New_F);
9272 end loop;
9274 Set_Etype (New_S, Base_Type (Etype (New_S)));
9276 else
9277 New_F := First_Formal (New_S);
9278 Old_F := First_Formal (Old_S);
9280 while Present (New_F) loop
9281 New_T := Etype (New_F);
9282 Old_T := Etype (Old_F);
9284 -- If the new type is a renaming of the old one, as is the case
9285 -- for actuals in instances, retain its name, to simplify later
9286 -- disambiguation.
9288 if Nkind (Parent (New_T)) = N_Subtype_Declaration
9289 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
9290 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
9291 then
9292 null;
9293 else
9294 Set_Etype (New_F, Old_T);
9295 end if;
9297 Next_Formal (New_F);
9298 Next_Formal (Old_F);
9299 end loop;
9301 pragma Assert (No (Old_F));
9303 if Ekind (Old_S) in E_Function | E_Enumeration_Literal then
9304 Set_Etype (New_S, Etype (Old_S));
9305 end if;
9306 end if;
9307 end Inherit_Renamed_Profile;
9309 ----------------
9310 -- Initialize --
9311 ----------------
9313 procedure Initialize is
9314 begin
9315 Urefs.Init;
9316 end Initialize;
9318 -------------------------
9319 -- Install_Use_Clauses --
9320 -------------------------
9322 procedure Install_Use_Clauses
9323 (Clause : Node_Id;
9324 Force_Installation : Boolean := False)
9326 U : Node_Id;
9328 begin
9329 U := Clause;
9330 while Present (U) loop
9332 -- Case of USE package
9334 if Nkind (U) = N_Use_Package_Clause then
9335 Use_One_Package (U, Name (U), True);
9337 -- Case of USE TYPE
9339 else
9340 Use_One_Type (Subtype_Mark (U), Force => Force_Installation);
9342 end if;
9344 Next_Use_Clause (U);
9345 end loop;
9346 end Install_Use_Clauses;
9348 ----------------------
9349 -- Mark_Use_Clauses --
9350 ----------------------
9352 procedure Mark_Use_Clauses (Id : Node_Or_Entity_Id) is
9353 procedure Mark_Parameters (Call : Entity_Id);
9354 -- Perform use_type_clause marking for all parameters in a subprogram
9355 -- or operator call.
9357 procedure Mark_Use_Package (Pak : Entity_Id);
9358 -- Move up the Prev_Use_Clause chain for packages denoted by Pak -
9359 -- marking each clause in the chain as effective in the process.
9361 procedure Mark_Use_Type (E : Entity_Id);
9362 -- Similar to Do_Use_Package_Marking except we move up the
9363 -- Prev_Use_Clause chain for the type denoted by E.
9365 ---------------------
9366 -- Mark_Parameters --
9367 ---------------------
9369 procedure Mark_Parameters (Call : Entity_Id) is
9370 Curr : Node_Id;
9372 begin
9373 -- Move through all of the formals
9375 Curr := First_Formal (Call);
9376 while Present (Curr) loop
9377 Mark_Use_Type (Curr);
9379 Next_Formal (Curr);
9380 end loop;
9382 -- Handle the return type
9384 Mark_Use_Type (Call);
9385 end Mark_Parameters;
9387 ----------------------
9388 -- Mark_Use_Package --
9389 ----------------------
9391 procedure Mark_Use_Package (Pak : Entity_Id) is
9392 Curr : Node_Id;
9394 begin
9395 -- Ignore cases where the scope of the type is not a package (e.g.
9396 -- Standard_Standard).
9398 if Ekind (Pak) /= E_Package then
9399 return;
9400 end if;
9402 Curr := Current_Use_Clause (Pak);
9403 while Present (Curr)
9404 and then not Is_Effective_Use_Clause (Curr)
9405 loop
9406 -- We need to mark the previous use clauses as effective, but
9407 -- each use clause may in turn render other use_package_clauses
9408 -- effective. Additionally, it is possible to have a parent
9409 -- package renamed as a child of itself so we must check the
9410 -- prefix entity is not the same as the package we are marking.
9412 if Nkind (Name (Curr)) /= N_Identifier
9413 and then Present (Prefix (Name (Curr)))
9414 and then Entity (Prefix (Name (Curr))) /= Pak
9415 then
9416 Mark_Use_Package (Entity (Prefix (Name (Curr))));
9418 -- It is also possible to have a child package without a prefix
9419 -- that relies on a previous use_package_clause.
9421 elsif Nkind (Name (Curr)) = N_Identifier
9422 and then Is_Child_Unit (Entity (Name (Curr)))
9423 then
9424 Mark_Use_Package (Scope (Entity (Name (Curr))));
9425 end if;
9427 -- Mark the use_package_clause as effective and move up the chain
9429 Set_Is_Effective_Use_Clause (Curr);
9431 Curr := Prev_Use_Clause (Curr);
9432 end loop;
9433 end Mark_Use_Package;
9435 -------------------
9436 -- Mark_Use_Type --
9437 -------------------
9439 procedure Mark_Use_Type (E : Entity_Id) is
9440 Curr : Node_Id;
9441 Base : Entity_Id;
9443 begin
9444 -- Ignore void types and unresolved string literals and primitives
9446 if Nkind (E) = N_String_Literal
9447 or else Nkind (Etype (E)) not in N_Entity
9448 or else not Is_Type (Etype (E))
9449 then
9450 return;
9451 end if;
9453 -- Primitives with class-wide operands might additionally render
9454 -- their base type's use_clauses effective - so do a recursive check
9455 -- here.
9457 Base := Base_Type (Etype (E));
9459 if Ekind (Base) = E_Class_Wide_Type then
9460 Mark_Use_Type (Base);
9461 end if;
9463 -- The package containing the type or operator function being used
9464 -- may be in use as well, so mark any use_package_clauses for it as
9465 -- effective. There are also additional sanity checks performed here
9466 -- for ignoring previous errors.
9468 Mark_Use_Package (Scope (Base));
9470 if Nkind (E) in N_Op
9471 and then Present (Entity (E))
9472 and then Present (Scope (Entity (E)))
9473 then
9474 Mark_Use_Package (Scope (Entity (E)));
9475 end if;
9477 Curr := Current_Use_Clause (Base);
9478 while Present (Curr)
9479 and then not Is_Effective_Use_Clause (Curr)
9480 loop
9481 -- Current use_type_clause may render other use_package_clauses
9482 -- effective.
9484 if Nkind (Subtype_Mark (Curr)) /= N_Identifier
9485 and then Present (Prefix (Subtype_Mark (Curr)))
9486 then
9487 Mark_Use_Package (Entity (Prefix (Subtype_Mark (Curr))));
9488 end if;
9490 -- Mark the use_type_clause as effective and move up the chain
9492 Set_Is_Effective_Use_Clause (Curr);
9494 Curr := Prev_Use_Clause (Curr);
9495 end loop;
9496 end Mark_Use_Type;
9498 -- Start of processing for Mark_Use_Clauses
9500 begin
9501 -- Use clauses in and of themselves do not count as a "use" of a
9502 -- package.
9504 if Nkind (Parent (Id)) in N_Use_Package_Clause | N_Use_Type_Clause then
9505 return;
9506 end if;
9508 -- Handle entities
9510 if Nkind (Id) in N_Entity then
9512 -- Mark the entity's package
9514 if Is_Potentially_Use_Visible (Id) then
9515 Mark_Use_Package (Scope (Id));
9516 end if;
9518 -- Mark enumeration literals
9520 if Ekind (Id) = E_Enumeration_Literal then
9521 Mark_Use_Type (Id);
9523 -- Mark primitives
9525 elsif (Is_Overloadable (Id)
9526 or else Is_Generic_Subprogram (Id))
9527 and then (Is_Potentially_Use_Visible (Id)
9528 or else Is_Intrinsic_Subprogram (Id)
9529 or else (Ekind (Id) in E_Function | E_Procedure
9530 and then Is_Generic_Actual_Subprogram (Id)))
9531 then
9532 Mark_Parameters (Id);
9533 end if;
9535 -- Handle nodes
9537 else
9538 -- Mark operators
9540 if Nkind (Id) in N_Op then
9542 -- At this point the left operand may not be resolved if we are
9543 -- encountering multiple operators next to eachother in an
9544 -- expression.
9546 if Nkind (Id) in N_Binary_Op
9547 and then not (Nkind (Left_Opnd (Id)) in N_Op)
9548 then
9549 Mark_Use_Type (Left_Opnd (Id));
9550 end if;
9552 Mark_Use_Type (Right_Opnd (Id));
9553 Mark_Use_Type (Id);
9555 -- Mark entity identifiers
9557 elsif Nkind (Id) in N_Has_Entity
9558 and then (Is_Potentially_Use_Visible (Entity (Id))
9559 or else (Is_Generic_Instance (Entity (Id))
9560 and then Is_Immediately_Visible (Entity (Id))))
9561 then
9562 -- Ignore fully qualified names as they do not count as a "use" of
9563 -- a package.
9565 if Nkind (Id) in N_Identifier | N_Operator_Symbol
9566 or else (Present (Prefix (Id))
9567 and then Scope (Entity (Id)) /= Entity (Prefix (Id)))
9568 then
9569 Mark_Use_Clauses (Entity (Id));
9570 end if;
9571 end if;
9572 end if;
9573 end Mark_Use_Clauses;
9575 --------------------------------
9576 -- Most_Descendant_Use_Clause --
9577 --------------------------------
9579 function Most_Descendant_Use_Clause
9580 (Clause1 : Entity_Id;
9581 Clause2 : Entity_Id) return Entity_Id
9583 function Determine_Package_Scope (Clause : Node_Id) return Entity_Id;
9584 -- Given a use clause, determine which package it belongs to
9586 -----------------------------
9587 -- Determine_Package_Scope --
9588 -----------------------------
9590 function Determine_Package_Scope (Clause : Node_Id) return Entity_Id is
9591 begin
9592 -- Check if the clause appears in the context area
9594 -- Note we cannot employ Enclosing_Packge for use clauses within
9595 -- context clauses since they are not actually "enclosed."
9597 if Nkind (Parent (Clause)) = N_Compilation_Unit then
9598 return Entity_Of_Unit (Unit (Parent (Clause)));
9599 end if;
9601 -- Otherwise, obtain the enclosing package normally
9603 return Enclosing_Package (Clause);
9604 end Determine_Package_Scope;
9606 Scope1 : Entity_Id;
9607 Scope2 : Entity_Id;
9609 -- Start of processing for Most_Descendant_Use_Clause
9611 begin
9612 if Clause1 = Clause2 then
9613 return Clause1;
9614 end if;
9616 -- We determine which one is the most descendant by the scope distance
9617 -- to the ultimate parent unit.
9619 Scope1 := Determine_Package_Scope (Clause1);
9620 Scope2 := Determine_Package_Scope (Clause2);
9621 while Scope1 /= Standard_Standard
9622 and then Scope2 /= Standard_Standard
9623 loop
9624 Scope1 := Scope (Scope1);
9625 Scope2 := Scope (Scope2);
9627 if No (Scope1) then
9628 return Clause1;
9629 elsif No (Scope2) then
9630 return Clause2;
9631 end if;
9632 end loop;
9634 if Scope1 = Standard_Standard then
9635 return Clause1;
9636 end if;
9638 return Clause2;
9639 end Most_Descendant_Use_Clause;
9641 ---------------
9642 -- Pop_Scope --
9643 ---------------
9645 procedure Pop_Scope is
9646 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
9647 S : constant Scope_Kind_Id := SST.Entity;
9649 begin
9650 if Debug_Flag_E then
9651 Write_Info;
9652 end if;
9654 -- Set Default_Storage_Pool field of the library unit if necessary
9656 if Is_Package_Or_Generic_Package (S)
9657 and then
9658 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
9659 then
9660 declare
9661 Aux : constant Node_Id :=
9662 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
9663 begin
9664 if No (Default_Storage_Pool (Aux)) then
9665 Set_Default_Storage_Pool (Aux, Default_Pool);
9666 end if;
9667 end;
9668 end if;
9670 Scope_Suppress := SST.Save_Scope_Suppress;
9671 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
9672 Check_Policy_List := SST.Save_Check_Policy_List;
9673 Default_Pool := SST.Save_Default_Storage_Pool;
9674 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
9675 SPARK_Mode := SST.Save_SPARK_Mode;
9676 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
9677 Default_SSO := SST.Save_Default_SSO;
9678 Uneval_Old := SST.Save_Uneval_Old;
9680 if Debug_Flag_W then
9681 Write_Str ("<-- exiting scope: ");
9682 Write_Name (Chars (Current_Scope));
9683 Write_Str (", Depth=");
9684 Write_Int (Int (Scope_Stack.Last));
9685 Write_Eol;
9686 end if;
9688 End_Use_Clauses (SST.First_Use_Clause);
9690 -- If the actions to be wrapped are still there they will get lost
9691 -- causing incomplete code to be generated. It is better to abort in
9692 -- this case (and we do the abort even with assertions off since the
9693 -- penalty is incorrect code generation).
9695 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
9696 raise Program_Error;
9697 end if;
9699 -- Free last subprogram name if allocated, and pop scope
9701 Free (SST.Last_Subprogram_Name);
9702 Scope_Stack.Decrement_Last;
9703 end Pop_Scope;
9705 ----------------
9706 -- Push_Scope --
9707 ----------------
9709 procedure Push_Scope (S : Scope_Kind_Id) is
9710 E : constant Entity_Id := Scope (S);
9712 function Component_Alignment_Default return Component_Alignment_Kind;
9713 -- Return Component_Alignment_Kind for the newly-pushed scope.
9715 function Component_Alignment_Default return Component_Alignment_Kind is
9716 begin
9717 -- Each new scope pushed onto the scope stack inherits the component
9718 -- alignment of the previous scope. This emulates the "visibility"
9719 -- semantics of pragma Component_Alignment.
9721 if Scope_Stack.Last > Scope_Stack.First then
9722 return Scope_Stack.Table
9723 (Scope_Stack.Last - 1).Component_Alignment_Default;
9725 -- Otherwise, this is the first scope being pushed on the scope
9726 -- stack. Inherit the component alignment from the configuration
9727 -- form of pragma Component_Alignment (if any).
9729 else
9730 return Configuration_Component_Alignment;
9731 end if;
9732 end Component_Alignment_Default;
9734 begin
9735 if Ekind (S) = E_Void then
9736 null;
9738 -- Set scope depth if not a nonconcurrent type, and we have not yet set
9739 -- the scope depth. This means that we have the first occurrence of the
9740 -- scope, and this is where the depth is set.
9742 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
9743 and then not Scope_Depth_Set (S)
9744 then
9745 if S = Standard_Standard then
9746 Set_Scope_Depth_Value (S, Uint_0);
9748 elsif Is_Child_Unit (S) then
9749 Set_Scope_Depth_Value (S, Uint_1);
9751 elsif not Is_Record_Type (Current_Scope) then
9752 if Scope_Depth_Set (Current_Scope) then
9753 if Ekind (S) = E_Loop then
9754 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
9755 else
9756 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
9757 end if;
9758 end if;
9759 end if;
9760 end if;
9762 Scope_Stack.Increment_Last;
9764 Scope_Stack.Table (Scope_Stack.Last) :=
9765 (Entity => S,
9766 Save_Scope_Suppress => Scope_Suppress,
9767 Save_Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
9768 Save_Check_Policy_List => Check_Policy_List,
9769 Save_Default_Storage_Pool => Default_Pool,
9770 Save_No_Tagged_Streams => No_Tagged_Streams,
9771 Save_SPARK_Mode => SPARK_Mode,
9772 Save_SPARK_Mode_Pragma => SPARK_Mode_Pragma,
9773 Save_Default_SSO => Default_SSO,
9774 Save_Uneval_Old => Uneval_Old,
9775 Component_Alignment_Default => Component_Alignment_Default,
9776 Last_Subprogram_Name => null,
9777 Is_Transient => False,
9778 Node_To_Be_Wrapped => Empty,
9779 Pending_Freeze_Actions => No_List,
9780 Actions_To_Be_Wrapped => (others => No_List),
9781 First_Use_Clause => Empty,
9782 Is_Active_Stack_Base => False,
9783 Previous_Visibility => False,
9784 Locked_Shared_Objects => No_Elist);
9786 if Debug_Flag_W then
9787 Write_Str ("--> new scope: ");
9788 Write_Name (Chars (Current_Scope));
9789 Write_Str (", Id=");
9790 Write_Int (Int (Current_Scope));
9791 Write_Str (", Depth=");
9792 Write_Int (Int (Scope_Stack.Last));
9793 Write_Eol;
9794 end if;
9796 -- Deal with copying flags from the previous scope to this one. This is
9797 -- not necessary if either scope is standard, or if the new scope is a
9798 -- child unit.
9800 if S /= Standard_Standard
9801 and then Scope (S) /= Standard_Standard
9802 and then not Is_Child_Unit (S)
9803 then
9804 if Nkind (E) not in N_Entity then
9805 return;
9806 end if;
9808 -- Copy categorization flags from Scope (S) to S, this is not done
9809 -- when Scope (S) is Standard_Standard since propagation is from
9810 -- library unit entity inwards. Copy other relevant attributes as
9811 -- well (Discard_Names in particular).
9813 -- We only propagate inwards for library level entities,
9814 -- inner level subprograms do not inherit the categorization.
9816 if Is_Library_Level_Entity (S) then
9817 Set_Is_Preelaborated (S, Is_Preelaborated (E));
9818 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
9819 Set_Discard_Names (S, Discard_Names (E));
9820 Set_Suppress_Value_Tracking_On_Call
9821 (S, Suppress_Value_Tracking_On_Call (E));
9822 Set_Categorization_From_Scope (E => S, Scop => E);
9823 end if;
9824 end if;
9826 if Is_Child_Unit (S)
9827 and then Present (E)
9828 and then Is_Package_Or_Generic_Package (E)
9829 and then
9830 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
9831 then
9832 declare
9833 Aux : constant Node_Id :=
9834 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
9835 begin
9836 if Present (Default_Storage_Pool (Aux)) then
9837 Default_Pool := Default_Storage_Pool (Aux);
9838 end if;
9839 end;
9840 end if;
9841 end Push_Scope;
9843 ---------------------
9844 -- Premature_Usage --
9845 ---------------------
9847 procedure Premature_Usage (N : Node_Id) is
9848 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
9849 E : Entity_Id := Entity (N);
9851 begin
9852 -- Within an instance, the analysis of the actual for a formal object
9853 -- does not see the name of the object itself. This is significant only
9854 -- if the object is an aggregate, where its analysis does not do any
9855 -- name resolution on component associations. (see 4717-008). In such a
9856 -- case, look for the visible homonym on the chain.
9858 if In_Instance and then Present (Homonym (E)) then
9859 E := Homonym (E);
9860 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
9861 E := Homonym (E);
9862 end loop;
9864 if Present (E) then
9865 Set_Entity (N, E);
9866 Set_Etype (N, Etype (E));
9867 return;
9868 end if;
9869 end if;
9871 case Kind is
9872 when N_Component_Declaration =>
9873 Error_Msg_N
9874 ("component&! cannot be used before end of record declaration",
9877 when N_Parameter_Specification =>
9878 Error_Msg_N
9879 ("formal parameter&! cannot be used before end of specification",
9882 when N_Discriminant_Specification =>
9883 Error_Msg_N
9884 ("discriminant&! cannot be used before end of discriminant part",
9887 when N_Procedure_Specification | N_Function_Specification =>
9888 Error_Msg_N
9889 ("subprogram&! cannot be used before end of its declaration",
9892 when N_Full_Type_Declaration | N_Subtype_Declaration =>
9893 Error_Msg_N
9894 ("type& cannot be used before end of its declaration!", N);
9896 when others =>
9897 Error_Msg_N
9898 ("object& cannot be used before end of its declaration!", N);
9900 -- If the premature reference appears as the expression in its own
9901 -- declaration, rewrite it to prevent compiler loops in subsequent
9902 -- uses of this mangled declaration in address clauses.
9904 if Nkind (Parent (N)) = N_Object_Declaration then
9905 Set_Entity (N, Any_Id);
9906 end if;
9907 end case;
9908 end Premature_Usage;
9910 ------------------------
9911 -- Present_System_Aux --
9912 ------------------------
9914 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
9915 Loc : Source_Ptr;
9916 Aux_Name : Unit_Name_Type;
9917 Unum : Unit_Number_Type;
9918 Withn : Node_Id;
9919 With_Sys : Node_Id;
9920 The_Unit : Node_Id;
9922 function Find_System (C_Unit : Node_Id) return Entity_Id;
9923 -- Scan context clause of compilation unit to find with_clause
9924 -- for System.
9926 -----------------
9927 -- Find_System --
9928 -----------------
9930 function Find_System (C_Unit : Node_Id) return Entity_Id is
9931 With_Clause : Node_Id;
9933 begin
9934 With_Clause := First (Context_Items (C_Unit));
9935 while Present (With_Clause) loop
9936 if (Nkind (With_Clause) = N_With_Clause
9937 and then Chars (Name (With_Clause)) = Name_System)
9938 and then Comes_From_Source (With_Clause)
9939 then
9940 return With_Clause;
9941 end if;
9943 Next (With_Clause);
9944 end loop;
9946 return Empty;
9947 end Find_System;
9949 -- Start of processing for Present_System_Aux
9951 begin
9952 -- The child unit may have been loaded and analyzed already
9954 if Present (System_Aux_Id) then
9955 return True;
9957 -- If no previous pragma for System.Aux, nothing to load
9959 elsif No (System_Extend_Unit) then
9960 return False;
9962 -- Use the unit name given in the pragma to retrieve the unit.
9963 -- Verify that System itself appears in the context clause of the
9964 -- current compilation. If System is not present, an error will
9965 -- have been reported already.
9967 else
9968 With_Sys := Find_System (Cunit (Current_Sem_Unit));
9970 The_Unit := Unit (Cunit (Current_Sem_Unit));
9972 if No (With_Sys)
9973 and then
9974 (Nkind (The_Unit) = N_Package_Body
9975 or else (Nkind (The_Unit) = N_Subprogram_Body
9976 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
9977 then
9978 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
9979 end if;
9981 if No (With_Sys) and then Present (N) then
9983 -- If we are compiling a subunit, we need to examine its
9984 -- context as well (Current_Sem_Unit is the parent unit);
9986 The_Unit := Parent (N);
9987 while Nkind (The_Unit) /= N_Compilation_Unit loop
9988 The_Unit := Parent (The_Unit);
9989 end loop;
9991 if Nkind (Unit (The_Unit)) = N_Subunit then
9992 With_Sys := Find_System (The_Unit);
9993 end if;
9994 end if;
9996 if No (With_Sys) then
9997 return False;
9998 end if;
10000 Loc := Sloc (With_Sys);
10001 Get_Name_String (Chars (Expression (System_Extend_Unit)));
10002 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
10003 Name_Buffer (1 .. 7) := "system.";
10004 Name_Buffer (Name_Len + 8) := '%';
10005 Name_Buffer (Name_Len + 9) := 's';
10006 Name_Len := Name_Len + 9;
10007 Aux_Name := Name_Find;
10009 Unum :=
10010 Load_Unit
10011 (Load_Name => Aux_Name,
10012 Required => False,
10013 Subunit => False,
10014 Error_Node => With_Sys);
10016 if Unum /= No_Unit then
10017 Semantics (Cunit (Unum));
10018 System_Aux_Id :=
10019 Defining_Entity (Specification (Unit (Cunit (Unum))));
10021 Withn :=
10022 Make_With_Clause (Loc,
10023 Name =>
10024 Make_Expanded_Name (Loc,
10025 Chars => Chars (System_Aux_Id),
10026 Prefix =>
10027 New_Occurrence_Of (Scope (System_Aux_Id), Loc),
10028 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
10030 Set_Entity (Name (Withn), System_Aux_Id);
10032 Set_Corresponding_Spec (Withn, System_Aux_Id);
10033 Set_First_Name (Withn);
10034 Set_Implicit_With (Withn);
10035 Set_Library_Unit (Withn, Cunit (Unum));
10037 Insert_After (With_Sys, Withn);
10038 Mark_Rewrite_Insertion (Withn);
10039 Set_Context_Installed (Withn);
10041 return True;
10043 -- Here if unit load failed
10045 else
10046 Error_Msg_Name_1 := Name_System;
10047 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
10048 Error_Msg_N
10049 ("extension package `%.%` does not exist",
10050 Opt.System_Extend_Unit);
10051 return False;
10052 end if;
10053 end if;
10054 end Present_System_Aux;
10056 -------------------------
10057 -- Restore_Scope_Stack --
10058 -------------------------
10060 procedure Restore_Scope_Stack
10061 (List : Elist_Id;
10062 Handle_Use : Boolean := True)
10064 SS_Last : constant Int := Scope_Stack.Last;
10065 Elmt : Elmt_Id;
10067 begin
10068 -- Restore visibility of previous scope stack, if any, using the list
10069 -- we saved (we use Remove, since this list will not be used again).
10071 loop
10072 Elmt := First_Elmt (List);
10073 exit when Elmt = No_Elmt;
10074 Set_Is_Immediately_Visible (Node (Elmt));
10075 Remove_Elmt (List, Elmt);
10076 end loop;
10078 -- Restore use clauses
10080 if SS_Last >= Scope_Stack.First
10081 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
10082 and then Handle_Use
10083 then
10084 Install_Use_Clauses
10085 (Scope_Stack.Table (SS_Last).First_Use_Clause,
10086 Force_Installation => True);
10087 end if;
10088 end Restore_Scope_Stack;
10090 ----------------------
10091 -- Save_Scope_Stack --
10092 ----------------------
10094 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
10095 -- consuming any memory. That is, Save_Scope_Stack took care of removing
10096 -- from immediate visibility entities and Restore_Scope_Stack took care
10097 -- of restoring their visibility analyzing the context of each entity. The
10098 -- problem of such approach is that it was fragile and caused unexpected
10099 -- visibility problems, and indeed one test was found where there was a
10100 -- real problem.
10102 -- Furthermore, the following experiment was carried out:
10104 -- - Save_Scope_Stack was modified to store in an Elist1 all those
10105 -- entities whose attribute Is_Immediately_Visible is modified
10106 -- from True to False.
10108 -- - Restore_Scope_Stack was modified to store in another Elist2
10109 -- all the entities whose attribute Is_Immediately_Visible is
10110 -- modified from False to True.
10112 -- - Extra code was added to verify that all the elements of Elist1
10113 -- are found in Elist2
10115 -- This test shows that there may be more occurrences of this problem which
10116 -- have not yet been detected. As a result, we replaced that approach by
10117 -- the current one in which Save_Scope_Stack returns the list of entities
10118 -- whose visibility is changed, and that list is passed to Restore_Scope_
10119 -- Stack to undo that change. This approach is simpler and safer, although
10120 -- it consumes more memory.
10122 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
10123 Result : constant Elist_Id := New_Elmt_List;
10124 E : Entity_Id;
10125 S : Entity_Id;
10126 SS_Last : constant Int := Scope_Stack.Last;
10128 procedure Remove_From_Visibility (E : Entity_Id);
10129 -- If E is immediately visible then append it to the result and remove
10130 -- it temporarily from visibility.
10132 ----------------------------
10133 -- Remove_From_Visibility --
10134 ----------------------------
10136 procedure Remove_From_Visibility (E : Entity_Id) is
10137 begin
10138 if Is_Immediately_Visible (E) then
10139 Append_Elmt (E, Result);
10140 Set_Is_Immediately_Visible (E, False);
10141 end if;
10142 end Remove_From_Visibility;
10144 -- Start of processing for Save_Scope_Stack
10146 begin
10147 if SS_Last >= Scope_Stack.First
10148 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
10149 then
10150 if Handle_Use then
10151 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
10152 end if;
10154 -- If the call is from within a compilation unit, as when called from
10155 -- Rtsfind, make current entries in scope stack invisible while we
10156 -- analyze the new unit.
10158 for J in reverse 0 .. SS_Last loop
10159 exit when Scope_Stack.Table (J).Entity = Standard_Standard
10160 or else No (Scope_Stack.Table (J).Entity);
10162 S := Scope_Stack.Table (J).Entity;
10164 Remove_From_Visibility (S);
10166 E := First_Entity (S);
10167 while Present (E) loop
10168 Remove_From_Visibility (E);
10169 Next_Entity (E);
10170 end loop;
10171 end loop;
10173 end if;
10175 return Result;
10176 end Save_Scope_Stack;
10178 -------------
10179 -- Set_Use --
10180 -------------
10182 procedure Set_Use (L : List_Id) is
10183 Decl : Node_Id;
10185 begin
10186 Decl := First (L);
10187 while Present (Decl) loop
10188 if Nkind (Decl) = N_Use_Package_Clause then
10189 Chain_Use_Clause (Decl);
10190 Use_One_Package (Decl, Name (Decl));
10192 elsif Nkind (Decl) = N_Use_Type_Clause then
10193 Chain_Use_Clause (Decl);
10194 Use_One_Type (Subtype_Mark (Decl));
10196 end if;
10198 Next (Decl);
10199 end loop;
10200 end Set_Use;
10202 -----------------------------
10203 -- Update_Use_Clause_Chain --
10204 -----------------------------
10206 procedure Update_Use_Clause_Chain is
10208 procedure Update_Chain_In_Scope (Level : Int);
10209 -- Iterate through one level in the scope stack verifying each use-type
10210 -- clause within said level is used then reset the Current_Use_Clause
10211 -- to a redundant use clause outside of the current ending scope if such
10212 -- a clause exists.
10214 ---------------------------
10215 -- Update_Chain_In_Scope --
10216 ---------------------------
10218 procedure Update_Chain_In_Scope (Level : Int) is
10219 Curr : Node_Id;
10220 N : Node_Id;
10222 begin
10223 -- Loop through all use clauses within the scope dictated by Level
10225 Curr := Scope_Stack.Table (Level).First_Use_Clause;
10226 while Present (Curr) loop
10228 -- Retrieve the subtype mark or name within the current current
10229 -- use clause.
10231 if Nkind (Curr) = N_Use_Type_Clause then
10232 N := Subtype_Mark (Curr);
10233 else
10234 N := Name (Curr);
10235 end if;
10237 -- If warnings for unreferenced entities are enabled and the
10238 -- current use clause has not been marked effective.
10240 if Check_Unreferenced
10241 and then Comes_From_Source (Curr)
10242 and then not Is_Effective_Use_Clause (Curr)
10243 and then not In_Instance
10244 and then not In_Inlined_Body
10245 then
10246 -- We are dealing with a potentially unused use_package_clause
10248 if Nkind (Curr) = N_Use_Package_Clause then
10250 -- Renamings and formal subprograms may cause the associated
10251 -- node to be marked as effective instead of the original.
10253 if not (Present (Associated_Node (N))
10254 and then Present
10255 (Current_Use_Clause
10256 (Associated_Node (N)))
10257 and then Is_Effective_Use_Clause
10258 (Current_Use_Clause
10259 (Associated_Node (N))))
10260 then
10261 Error_Msg_Node_1 := Entity (N);
10262 Error_Msg_NE
10263 ("use clause for package & has no effect?u?",
10264 Curr, Entity (N));
10265 end if;
10267 -- We are dealing with an unused use_type_clause
10269 else
10270 Error_Msg_Node_1 := Etype (N);
10271 Error_Msg_NE
10272 ("use clause for } has no effect?u?", Curr, Etype (N));
10273 end if;
10274 end if;
10276 -- Verify that we haven't already processed a redundant
10277 -- use_type_clause within the same scope before we move the
10278 -- current use clause up to a previous one for type T.
10280 if Present (Prev_Use_Clause (Curr)) then
10281 Set_Current_Use_Clause (Entity (N), Prev_Use_Clause (Curr));
10282 end if;
10284 Next_Use_Clause (Curr);
10285 end loop;
10286 end Update_Chain_In_Scope;
10288 -- Start of processing for Update_Use_Clause_Chain
10290 begin
10291 Update_Chain_In_Scope (Scope_Stack.Last);
10293 -- Deal with use clauses within the context area if the current
10294 -- scope is a compilation unit.
10296 if Is_Compilation_Unit (Current_Scope)
10297 and then Sloc (Scope_Stack.Table
10298 (Scope_Stack.Last - 1).Entity) = Standard_Location
10299 then
10300 Update_Chain_In_Scope (Scope_Stack.Last - 1);
10301 end if;
10302 end Update_Use_Clause_Chain;
10304 ---------------------
10305 -- Use_One_Package --
10306 ---------------------
10308 procedure Use_One_Package
10309 (N : Node_Id;
10310 Pack_Name : Entity_Id := Empty;
10311 Force : Boolean := False)
10313 procedure Note_Redundant_Use (Clause : Node_Id);
10314 -- Mark the name in a use clause as redundant if the corresponding
10315 -- entity is already use-visible. Emit a warning if the use clause comes
10316 -- from source and the proper warnings are enabled.
10318 ------------------------
10319 -- Note_Redundant_Use --
10320 ------------------------
10322 procedure Note_Redundant_Use (Clause : Node_Id) is
10323 Decl : constant Node_Id := Parent (Clause);
10324 Pack_Name : constant Entity_Id := Entity (Clause);
10326 Cur_Use : Node_Id := Current_Use_Clause (Pack_Name);
10327 Prev_Use : Node_Id := Empty;
10328 Redundant : Node_Id := Empty;
10329 -- The Use_Clause which is actually redundant. In the simplest case
10330 -- it is Pack itself, but when we compile a body we install its
10331 -- context before that of its spec, in which case it is the
10332 -- use_clause in the spec that will appear to be redundant, and we
10333 -- want the warning to be placed on the body. Similar complications
10334 -- appear when the redundancy is between a child unit and one of its
10335 -- ancestors.
10337 begin
10338 -- Could be renamed...
10340 if No (Cur_Use) then
10341 Cur_Use := Current_Use_Clause (Renamed_Entity (Pack_Name));
10342 end if;
10344 Set_Redundant_Use (Clause, True);
10346 -- Do not check for redundant use if clause is generated, or in an
10347 -- instance, or in a predefined unit to avoid misleading warnings
10348 -- that may occur as part of a rtsfind load.
10350 if not Comes_From_Source (Clause)
10351 or else In_Instance
10352 or else not Warn_On_Redundant_Constructs
10353 or else Is_Predefined_Unit (Current_Sem_Unit)
10354 then
10355 return;
10356 end if;
10358 if not Is_Compilation_Unit (Current_Scope) then
10360 -- If the use_clause is in an inner scope, it is made redundant by
10361 -- some clause in the current context, with one exception: If we
10362 -- are compiling a nested package body, and the use_clause comes
10363 -- from then corresponding spec, the clause is not necessarily
10364 -- fully redundant, so we should not warn. If a warning was
10365 -- warranted, it would have been given when the spec was
10366 -- processed.
10368 if Nkind (Parent (Decl)) = N_Package_Specification then
10369 declare
10370 Package_Spec_Entity : constant Entity_Id :=
10371 Defining_Unit_Name (Parent (Decl));
10372 begin
10373 if In_Package_Body (Package_Spec_Entity) then
10374 return;
10375 end if;
10376 end;
10377 end if;
10379 Redundant := Clause;
10380 Prev_Use := Cur_Use;
10382 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
10383 declare
10384 Cur_Unit : constant Unit_Number_Type :=
10385 Get_Source_Unit (Cur_Use);
10386 New_Unit : constant Unit_Number_Type :=
10387 Get_Source_Unit (Clause);
10389 Scop : Entity_Id;
10391 begin
10392 if Cur_Unit = New_Unit then
10394 -- Redundant clause in same body
10396 Redundant := Clause;
10397 Prev_Use := Cur_Use;
10399 elsif Cur_Unit = Current_Sem_Unit then
10401 -- If the new clause is not in the current unit it has been
10402 -- analyzed first, and it makes the other one redundant.
10403 -- However, if the new clause appears in a subunit, Cur_Unit
10404 -- is still the parent, and in that case the redundant one
10405 -- is the one appearing in the subunit.
10407 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
10408 Redundant := Clause;
10409 Prev_Use := Cur_Use;
10411 -- Most common case: redundant clause in body, original
10412 -- clause in spec. Current scope is spec entity.
10414 elsif Current_Scope = Cunit_Entity (Current_Sem_Unit) then
10415 Redundant := Cur_Use;
10416 Prev_Use := Clause;
10418 else
10419 -- The new clause may appear in an unrelated unit, when
10420 -- the parents of a generic are being installed prior to
10421 -- instantiation. In this case there must be no warning.
10422 -- We detect this case by checking whether the current
10423 -- top of the stack is related to the current
10424 -- compilation.
10426 Scop := Current_Scope;
10427 while Present (Scop)
10428 and then Scop /= Standard_Standard
10429 loop
10430 if Is_Compilation_Unit (Scop)
10431 and then not Is_Child_Unit (Scop)
10432 then
10433 return;
10435 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
10436 exit;
10437 end if;
10439 Scop := Scope (Scop);
10440 end loop;
10442 Redundant := Cur_Use;
10443 Prev_Use := Clause;
10444 end if;
10446 elsif New_Unit = Current_Sem_Unit then
10447 Redundant := Clause;
10448 Prev_Use := Cur_Use;
10450 else
10451 -- Neither is the current unit, so they appear in parent or
10452 -- sibling units. Warning will be emitted elsewhere.
10454 return;
10455 end if;
10456 end;
10458 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
10459 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
10460 then
10461 -- Use_clause is in child unit of current unit, and the child unit
10462 -- appears in the context of the body of the parent, so it has
10463 -- been installed first, even though it is the redundant one.
10464 -- Depending on their placement in the context, the visible or the
10465 -- private parts of the two units, either might appear as
10466 -- redundant, but the message has to be on the current unit.
10468 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
10469 Redundant := Cur_Use;
10470 Prev_Use := Clause;
10471 else
10472 Redundant := Clause;
10473 Prev_Use := Cur_Use;
10474 end if;
10476 -- If the new use clause appears in the private part of a parent
10477 -- unit it may appear to be redundant w.r.t. a use clause in a
10478 -- child unit, but the previous use clause was needed in the
10479 -- visible part of the child, and no warning should be emitted.
10481 if Nkind (Parent (Decl)) = N_Package_Specification
10482 and then List_Containing (Decl) =
10483 Private_Declarations (Parent (Decl))
10484 then
10485 declare
10486 Par : constant Entity_Id :=
10487 Defining_Entity (Parent (Decl));
10488 Spec : constant Node_Id :=
10489 Specification (Unit (Cunit (Current_Sem_Unit)));
10490 Cur_List : constant List_Id := List_Containing (Cur_Use);
10492 begin
10493 if Is_Compilation_Unit (Par)
10494 and then Par /= Cunit_Entity (Current_Sem_Unit)
10495 then
10496 if Cur_List = Context_Items (Cunit (Current_Sem_Unit))
10497 or else Cur_List = Visible_Declarations (Spec)
10498 then
10499 return;
10500 end if;
10501 end if;
10502 end;
10503 end if;
10505 -- Finally, if the current use clause is in the context then the
10506 -- clause is redundant when it is nested within the unit.
10508 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
10509 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
10510 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
10511 then
10512 Redundant := Clause;
10513 Prev_Use := Cur_Use;
10514 end if;
10516 if Present (Redundant) and then Parent (Redundant) /= Prev_Use then
10518 -- Make sure we are looking at most-descendant use_package_clause
10519 -- by traversing the chain with Find_First_Use and then verifying
10520 -- there is no scope manipulation via Most_Descendant_Use_Clause.
10522 if Nkind (Prev_Use) = N_Use_Package_Clause
10523 and then
10524 (Nkind (Parent (Prev_Use)) /= N_Compilation_Unit
10525 or else Most_Descendant_Use_Clause
10526 (Prev_Use, Find_First_Use (Prev_Use)) /= Prev_Use)
10527 then
10528 Prev_Use := Find_First_Use (Prev_Use);
10529 end if;
10531 Error_Msg_Sloc := Sloc (Prev_Use);
10532 Error_Msg_NE -- CODEFIX
10533 ("& is already use-visible through previous use_clause #?r?",
10534 Redundant, Pack_Name);
10535 end if;
10536 end Note_Redundant_Use;
10538 -- Local variables
10540 Current_Instance : Entity_Id := Empty;
10541 Id : Entity_Id;
10542 P : Entity_Id;
10543 Prev : Entity_Id;
10544 Private_With_OK : Boolean := False;
10545 Real_P : Entity_Id;
10547 -- Start of processing for Use_One_Package
10549 begin
10550 -- Use_One_Package may have been called recursively to handle an
10551 -- implicit use for a auxiliary system package, so set P accordingly
10552 -- and skip redundancy checks.
10554 if No (Pack_Name) and then Present_System_Aux (N) then
10555 P := System_Aux_Id;
10557 -- Check for redundant use_package_clauses
10559 else
10560 -- Ignore cases where we are dealing with a non user defined package
10561 -- like Standard_Standard or something other than a valid package.
10563 if not Is_Entity_Name (Pack_Name)
10564 or else No (Entity (Pack_Name))
10565 or else Ekind (Entity (Pack_Name)) /= E_Package
10566 then
10567 return;
10568 end if;
10570 -- When a renaming exists we must check it for redundancy. The
10571 -- original package would have already been seen at this point.
10573 if Present (Renamed_Entity (Entity (Pack_Name))) then
10574 P := Renamed_Entity (Entity (Pack_Name));
10575 else
10576 P := Entity (Pack_Name);
10577 end if;
10579 -- Check for redundant clauses then set the current use clause for
10580 -- P if were are not "forcing" an installation from a scope
10581 -- reinstallation that is done throughout analysis for various
10582 -- reasons.
10584 if In_Use (P) then
10585 Note_Redundant_Use (Pack_Name);
10587 if not Force then
10588 Set_Current_Use_Clause (P, N);
10589 end if;
10591 return;
10593 -- Warn about detected redundant clauses
10595 elsif not Force
10596 and then In_Open_Scopes (P)
10597 and then not Is_Hidden_Open_Scope (P)
10598 then
10599 if Warn_On_Redundant_Constructs and then P = Current_Scope then
10600 Error_Msg_NE -- CODEFIX
10601 ("& is already use-visible within itself?r?",
10602 Pack_Name, P);
10603 end if;
10605 return;
10606 end if;
10608 -- Set P back to the non-renamed package so that visibility of the
10609 -- entities within the package can be properly set below.
10611 P := Entity (Pack_Name);
10612 end if;
10614 Set_In_Use (P);
10615 Set_Current_Use_Clause (P, N);
10617 -- Ada 2005 (AI-50217): Check restriction
10619 if From_Limited_With (P) then
10620 Error_Msg_N ("limited withed package cannot appear in use clause", N);
10621 end if;
10623 -- Find enclosing instance, if any
10625 if In_Instance then
10626 Current_Instance := Current_Scope;
10627 while not Is_Generic_Instance (Current_Instance) loop
10628 Current_Instance := Scope (Current_Instance);
10629 end loop;
10631 if No (Hidden_By_Use_Clause (N)) then
10632 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
10633 end if;
10634 end if;
10636 -- If unit is a package renaming, indicate that the renamed package is
10637 -- also in use (the flags on both entities must remain consistent, and a
10638 -- subsequent use of either of them should be recognized as redundant).
10640 if Present (Renamed_Entity (P)) then
10641 Set_In_Use (Renamed_Entity (P));
10642 Set_Current_Use_Clause (Renamed_Entity (P), N);
10643 Real_P := Renamed_Entity (P);
10644 else
10645 Real_P := P;
10646 end if;
10648 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
10649 -- found in the private part of a package specification
10651 if In_Private_Part (Current_Scope)
10652 and then Has_Private_With (P)
10653 and then Is_Child_Unit (Current_Scope)
10654 and then Is_Child_Unit (P)
10655 and then Is_Ancestor_Package (Scope (Current_Scope), P)
10656 then
10657 Private_With_OK := True;
10658 end if;
10660 -- Loop through entities in one package making them potentially
10661 -- use-visible.
10663 Id := First_Entity (P);
10664 while Present (Id)
10665 and then (Id /= First_Private_Entity (P)
10666 or else Private_With_OK) -- Ada 2005 (AI-262)
10667 loop
10668 Prev := Current_Entity (Id);
10669 while Present (Prev) loop
10670 if Is_Immediately_Visible (Prev)
10671 and then (not Is_Overloadable (Prev)
10672 or else not Is_Overloadable (Id)
10673 or else Type_Conformant (Id, Prev))
10674 then
10675 if No (Current_Instance) then
10677 -- Potentially use-visible entity remains hidden
10679 if Warn_On_Hiding then
10680 Warn_On_Hiding_Entity (N, Hidden => Id, Visible => Prev,
10681 On_Use_Clause => True);
10682 end if;
10684 goto Next_Usable_Entity;
10686 -- A use clause within an instance hides outer global entities,
10687 -- which are not used to resolve local entities in the
10688 -- instance. Note that the predefined entities in Standard
10689 -- could not have been hidden in the generic by a use clause,
10690 -- and therefore remain visible. Other compilation units whose
10691 -- entities appear in Standard must be hidden in an instance.
10693 -- To determine whether an entity is external to the instance
10694 -- we compare the scope depth of its scope with that of the
10695 -- current instance. However, a generic actual of a subprogram
10696 -- instance is declared in the wrapper package but will not be
10697 -- hidden by a use-visible entity. similarly, an entity that is
10698 -- declared in an enclosing instance will not be hidden by an
10699 -- an entity declared in a generic actual, which can only have
10700 -- been use-visible in the generic and will not have hidden the
10701 -- entity in the generic parent.
10703 -- If Id is called Standard, the predefined package with the
10704 -- same name is in the homonym chain. It has to be ignored
10705 -- because it has no defined scope (being the only entity in
10706 -- the system with this mandated behavior).
10708 elsif not Is_Hidden (Id)
10709 and then Present (Scope (Prev))
10710 and then not Is_Wrapper_Package (Scope (Prev))
10711 and then Scope_Depth (Scope (Prev)) <
10712 Scope_Depth (Current_Instance)
10713 and then (Scope (Prev) /= Standard_Standard
10714 or else Sloc (Prev) > Standard_Location)
10715 then
10716 if In_Open_Scopes (Scope (Prev))
10717 and then Is_Generic_Instance (Scope (Prev))
10718 and then Present (Associated_Formal_Package (P))
10719 then
10720 null;
10722 else
10723 Set_Is_Potentially_Use_Visible (Id);
10724 Set_Is_Immediately_Visible (Prev, False);
10725 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
10726 end if;
10727 end if;
10729 -- A user-defined operator is not use-visible if the predefined
10730 -- operator for the type is immediately visible, which is the case
10731 -- if the type of the operand is in an open scope. This does not
10732 -- apply to user-defined operators that have operands of different
10733 -- types, because the predefined mixed mode operations (multiply
10734 -- and divide) apply to universal types and do not hide anything.
10736 elsif Ekind (Prev) = E_Operator
10737 and then Operator_Matches_Spec (Prev, Id)
10738 and then In_Open_Scopes
10739 (Scope (Base_Type (Etype (First_Formal (Id)))))
10740 and then (No (Next_Formal (First_Formal (Id)))
10741 or else Etype (First_Formal (Id)) =
10742 Etype (Next_Formal (First_Formal (Id)))
10743 or else Chars (Prev) = Name_Op_Expon)
10744 then
10745 goto Next_Usable_Entity;
10747 -- In an instance, two homonyms may become use_visible through the
10748 -- actuals of distinct formal packages. In the generic, only the
10749 -- current one would have been visible, so make the other one
10750 -- not use_visible.
10752 -- In certain pathological cases it is possible that unrelated
10753 -- homonyms from distinct formal packages may exist in an
10754 -- uninstalled scope. We must test for that here.
10756 elsif Present (Current_Instance)
10757 and then Is_Potentially_Use_Visible (Prev)
10758 and then not Is_Overloadable (Prev)
10759 and then Scope (Id) /= Scope (Prev)
10760 and then Used_As_Generic_Actual (Scope (Prev))
10761 and then Used_As_Generic_Actual (Scope (Id))
10762 and then Is_List_Member (Scope (Prev))
10763 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
10764 Current_Use_Clause (Scope (Id)))
10765 then
10766 Set_Is_Potentially_Use_Visible (Prev, False);
10767 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
10768 end if;
10770 Prev := Homonym (Prev);
10771 end loop;
10773 -- On exit, we know entity is not hidden, unless it is private
10775 if not Is_Hidden (Id)
10776 and then (not Is_Child_Unit (Id) or else Is_Visible_Lib_Unit (Id))
10777 then
10778 Set_Is_Potentially_Use_Visible (Id);
10780 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
10781 Set_Is_Potentially_Use_Visible (Full_View (Id));
10782 end if;
10783 end if;
10785 <<Next_Usable_Entity>>
10786 Next_Entity (Id);
10787 end loop;
10789 -- Child units are also made use-visible by a use clause, but they may
10790 -- appear after all visible declarations in the parent entity list.
10792 while Present (Id) loop
10793 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
10794 Set_Is_Potentially_Use_Visible (Id);
10795 end if;
10797 Next_Entity (Id);
10798 end loop;
10800 if Chars (Real_P) = Name_System
10801 and then Scope (Real_P) = Standard_Standard
10802 and then Present_System_Aux (N)
10803 then
10804 Use_One_Package (N);
10805 end if;
10806 end Use_One_Package;
10808 ------------------
10809 -- Use_One_Type --
10810 ------------------
10812 procedure Use_One_Type
10813 (Id : Node_Id;
10814 Installed : Boolean := False;
10815 Force : Boolean := False)
10817 function Spec_Reloaded_For_Body return Boolean;
10818 -- Determine whether the compilation unit is a package body and the use
10819 -- type clause is in the spec of the same package. Even though the spec
10820 -- was analyzed first, its context is reloaded when analysing the body.
10822 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
10823 -- AI05-150: if the use_type_clause carries the "all" qualifier,
10824 -- class-wide operations of ancestor types are use-visible if the
10825 -- ancestor type is visible.
10827 ----------------------------
10828 -- Spec_Reloaded_For_Body --
10829 ----------------------------
10831 function Spec_Reloaded_For_Body return Boolean is
10832 begin
10833 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
10834 declare
10835 Spec : constant Node_Id :=
10836 Parent (List_Containing (Parent (Id)));
10838 begin
10839 -- Check whether type is declared in a package specification,
10840 -- and current unit is the corresponding package body. The
10841 -- use clauses themselves may be within a nested package.
10843 return
10844 Nkind (Spec) = N_Package_Specification
10845 and then In_Same_Source_Unit
10846 (Corresponding_Body (Parent (Spec)),
10847 Cunit_Entity (Current_Sem_Unit));
10848 end;
10849 end if;
10851 return False;
10852 end Spec_Reloaded_For_Body;
10854 -------------------------------
10855 -- Use_Class_Wide_Operations --
10856 -------------------------------
10858 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
10859 function Is_Class_Wide_Operation_Of
10860 (Op : Entity_Id;
10861 T : Entity_Id) return Boolean;
10862 -- Determine whether a subprogram has a class-wide parameter or
10863 -- result that is T'Class.
10865 ---------------------------------
10866 -- Is_Class_Wide_Operation_Of --
10867 ---------------------------------
10869 function Is_Class_Wide_Operation_Of
10870 (Op : Entity_Id;
10871 T : Entity_Id) return Boolean
10873 Formal : Entity_Id;
10875 begin
10876 Formal := First_Formal (Op);
10877 while Present (Formal) loop
10878 if Etype (Formal) = Class_Wide_Type (T) then
10879 return True;
10880 end if;
10882 Next_Formal (Formal);
10883 end loop;
10885 if Etype (Op) = Class_Wide_Type (T) then
10886 return True;
10887 end if;
10889 return False;
10890 end Is_Class_Wide_Operation_Of;
10892 -- Local variables
10894 Ent : Entity_Id;
10895 Scop : Entity_Id;
10897 -- Start of processing for Use_Class_Wide_Operations
10899 begin
10900 Scop := Scope (Typ);
10901 if not Is_Hidden (Scop) then
10902 Ent := First_Entity (Scop);
10903 while Present (Ent) loop
10904 if Is_Overloadable (Ent)
10905 and then Is_Class_Wide_Operation_Of (Ent, Typ)
10906 and then not Is_Potentially_Use_Visible (Ent)
10907 then
10908 Set_Is_Potentially_Use_Visible (Ent);
10909 Append_Elmt (Ent, Used_Operations (Parent (Id)));
10910 end if;
10912 Next_Entity (Ent);
10913 end loop;
10914 end if;
10916 if Is_Derived_Type (Typ) then
10917 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
10918 end if;
10919 end Use_Class_Wide_Operations;
10921 -- Local variables
10923 Elmt : Elmt_Id;
10924 Is_Known_Used : Boolean;
10925 Op_List : Elist_Id;
10926 T : Entity_Id;
10928 -- Start of processing for Use_One_Type
10930 begin
10931 if Entity (Id) = Any_Type then
10932 return;
10933 end if;
10935 -- It is the type determined by the subtype mark (8.4(8)) whose
10936 -- operations become potentially use-visible.
10938 T := Base_Type (Entity (Id));
10940 -- Either the type itself is used, the package where it is declared is
10941 -- in use or the entity is declared in the current package, thus
10942 -- use-visible.
10944 Is_Known_Used :=
10945 (In_Use (T)
10946 and then ((Present (Current_Use_Clause (T))
10947 and then All_Present (Current_Use_Clause (T)))
10948 or else not All_Present (Parent (Id))))
10949 or else In_Use (Scope (T))
10950 or else Scope (T) = Current_Scope;
10952 Set_Redundant_Use (Id,
10953 Is_Known_Used or else Is_Potentially_Use_Visible (T));
10955 if Ekind (T) = E_Incomplete_Type then
10956 Error_Msg_N ("premature usage of incomplete type", Id);
10958 elsif In_Open_Scopes (Scope (T)) then
10959 null;
10961 -- A limited view cannot appear in a use_type_clause. However, an access
10962 -- type whose designated type is limited has the flag but is not itself
10963 -- a limited view unless we only have a limited view of its enclosing
10964 -- package.
10966 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
10967 Error_Msg_N
10968 ("incomplete type from limited view cannot appear in use clause",
10969 Id);
10971 -- If the use clause is redundant, Used_Operations will usually be
10972 -- empty, but we need to set it to empty here in one case: If we are
10973 -- instantiating a generic library unit, then we install the ancestors
10974 -- of that unit in the scope stack, which involves reprocessing use
10975 -- clauses in those ancestors. Such a use clause will typically have a
10976 -- nonempty Used_Operations unless it was redundant in the generic unit,
10977 -- even if it is redundant at the place of the instantiation.
10979 elsif Redundant_Use (Id) then
10980 Set_Used_Operations (Parent (Id), New_Elmt_List);
10982 -- If the subtype mark designates a subtype in a different package,
10983 -- we have to check that the parent type is visible, otherwise the
10984 -- use_type_clause is a no-op. Not clear how to do that???
10986 else
10987 Set_Current_Use_Clause (T, Parent (Id));
10988 Set_In_Use (T);
10990 -- If T is tagged, primitive operators on class-wide operands are
10991 -- also deemed available. Note that this is really necessary only
10992 -- in semantics-only mode, because the primitive operators are not
10993 -- fully constructed in this mode, but we do it in all modes for the
10994 -- sake of uniformity, as this should not matter in practice.
10996 if Is_Tagged_Type (T) then
10997 Set_In_Use (Class_Wide_Type (T));
10998 end if;
11000 -- Iterate over primitive operations of the type. If an operation is
11001 -- already use_visible, it is the result of a previous use_clause,
11002 -- and already appears on the corresponding entity chain. If the
11003 -- clause is being reinstalled, operations are already use-visible.
11005 if Installed then
11006 null;
11008 else
11009 Op_List := Collect_Primitive_Operations (T);
11010 Elmt := First_Elmt (Op_List);
11011 while Present (Elmt) loop
11012 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
11013 or else Chars (Node (Elmt)) in Any_Operator_Name)
11014 and then not Is_Hidden (Node (Elmt))
11015 and then not Is_Potentially_Use_Visible (Node (Elmt))
11016 then
11017 Set_Is_Potentially_Use_Visible (Node (Elmt));
11018 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
11020 elsif Ada_Version >= Ada_2012
11021 and then All_Present (Parent (Id))
11022 and then not Is_Hidden (Node (Elmt))
11023 and then not Is_Potentially_Use_Visible (Node (Elmt))
11024 then
11025 Set_Is_Potentially_Use_Visible (Node (Elmt));
11026 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
11027 end if;
11029 Next_Elmt (Elmt);
11030 end loop;
11031 end if;
11033 if Ada_Version >= Ada_2012
11034 and then All_Present (Parent (Id))
11035 and then Is_Tagged_Type (T)
11036 then
11037 Use_Class_Wide_Operations (T);
11038 end if;
11039 end if;
11041 -- If warning on redundant constructs, check for unnecessary WITH
11043 if not Force
11044 and then Warn_On_Redundant_Constructs
11045 and then Is_Known_Used
11047 -- with P; with P; use P;
11048 -- package P is package X is package body X is
11049 -- type T ... use P.T;
11051 -- The compilation unit is the body of X. GNAT first compiles the
11052 -- spec of X, then proceeds to the body. At that point P is marked
11053 -- as use visible. The analysis then reinstalls the spec along with
11054 -- its context. The use clause P.T is now recognized as redundant,
11055 -- but in the wrong context. Do not emit a warning in such cases.
11056 -- Do not emit a warning either if we are in an instance, there is
11057 -- no redundancy between an outer use_clause and one that appears
11058 -- within the generic.
11060 and then not Spec_Reloaded_For_Body
11061 and then not In_Instance
11062 and then not In_Inlined_Body
11063 then
11064 -- The type already has a use clause
11066 if In_Use (T) then
11068 -- Case where we know the current use clause for the type
11070 if Present (Current_Use_Clause (T)) then
11071 Use_Clause_Known : declare
11072 Clause1 : constant Node_Id :=
11073 Find_First_Use (Current_Use_Clause (T));
11074 Clause2 : constant Node_Id := Parent (Id);
11075 Ent1 : Entity_Id;
11076 Ent2 : Entity_Id;
11077 Err_No : Node_Id;
11078 Unit1 : Node_Id;
11079 Unit2 : Node_Id;
11081 -- Start of processing for Use_Clause_Known
11083 begin
11084 -- If the unit is a subprogram body that acts as spec, the
11085 -- context clause is shared with the constructed subprogram
11086 -- spec. Clearly there is no redundancy.
11088 if Clause1 = Clause2 then
11089 return;
11090 end if;
11092 Unit1 := Unit (Enclosing_Comp_Unit_Node (Clause1));
11093 Unit2 := Unit (Enclosing_Comp_Unit_Node (Clause2));
11095 -- If both clauses are on same unit, or one is the body of
11096 -- the other, or one of them is in a subunit, report
11097 -- redundancy on the later one.
11099 if Unit1 = Unit2
11100 or else Nkind (Unit1) = N_Subunit
11101 or else
11102 (Nkind (Unit2) in N_Package_Body | N_Subprogram_Body
11103 and then Nkind (Unit1) /= Nkind (Unit2)
11104 and then Nkind (Unit1) /= N_Subunit)
11105 then
11106 Error_Msg_Sloc := Sloc (Clause1);
11107 Error_Msg_NE -- CODEFIX
11108 ("& is already use-visible through previous "
11109 & "use_type_clause #?r?", Clause2, T);
11110 return;
11111 end if;
11113 -- If there is a redundant use_type_clause in a child unit
11114 -- determine which of the units is more deeply nested. If a
11115 -- unit is a package instance, retrieve the entity and its
11116 -- scope from the instance spec.
11118 Ent1 := Entity_Of_Unit (Unit1);
11119 Ent2 := Entity_Of_Unit (Unit2);
11121 -- When the scope of both units' entities are
11122 -- Standard_Standard then neither Unit1 or Unit2 are child
11123 -- units - so return in that case.
11125 if Scope (Ent1) = Standard_Standard
11126 and then Scope (Ent2) = Standard_Standard
11127 then
11128 return;
11130 -- Otherwise, determine if one of the units is not a child
11132 elsif Scope (Ent2) = Standard_Standard then
11133 Error_Msg_Sloc := Sloc (Clause2);
11134 Err_No := Clause1;
11136 elsif Scope (Ent1) = Standard_Standard then
11137 Error_Msg_Sloc := Sloc (Id);
11138 Err_No := Clause2;
11140 -- If both units are child units, we determine which one is
11141 -- the descendant by the scope distance to the ultimate
11142 -- parent unit.
11144 else
11145 declare
11146 S1 : Entity_Id;
11147 S2 : Entity_Id;
11149 begin
11150 S1 := Scope (Ent1);
11151 S2 := Scope (Ent2);
11152 while Present (S1)
11153 and then Present (S2)
11154 and then S1 /= Standard_Standard
11155 and then S2 /= Standard_Standard
11156 loop
11157 S1 := Scope (S1);
11158 S2 := Scope (S2);
11159 end loop;
11161 if S1 = Standard_Standard then
11162 Error_Msg_Sloc := Sloc (Id);
11163 Err_No := Clause2;
11164 else
11165 Error_Msg_Sloc := Sloc (Clause2);
11166 Err_No := Clause1;
11167 end if;
11168 end;
11169 end if;
11171 if Parent (Id) /= Err_No then
11172 if Most_Descendant_Use_Clause
11173 (Err_No, Parent (Id)) = Parent (Id)
11174 then
11175 Error_Msg_Sloc := Sloc (Err_No);
11176 Err_No := Parent (Id);
11177 end if;
11179 Error_Msg_NE -- CODEFIX
11180 ("& is already use-visible through previous "
11181 & "use_type_clause #?r?", Err_No, Id);
11182 end if;
11183 end Use_Clause_Known;
11185 -- Here Current_Use_Clause is not set for T, so we do not have the
11186 -- location information available.
11188 else
11189 Error_Msg_NE -- CODEFIX
11190 ("& is already use-visible through previous "
11191 & "use_type_clause?r?", Id, T);
11192 end if;
11194 -- The package where T is declared is already used
11196 elsif In_Use (Scope (T)) then
11197 -- Due to expansion of contracts we could be attempting to issue
11198 -- a spurious warning - so verify there is a previous use clause.
11200 if Current_Use_Clause (Scope (T)) /=
11201 Find_First_Use (Current_Use_Clause (Scope (T)))
11202 then
11203 Error_Msg_Sloc :=
11204 Sloc (Find_First_Use (Current_Use_Clause (Scope (T))));
11205 Error_Msg_NE -- CODEFIX
11206 ("& is already use-visible through package use clause #?r?",
11207 Id, T);
11208 end if;
11210 -- The current scope is the package where T is declared
11212 else
11213 Error_Msg_Node_2 := Scope (T);
11214 Error_Msg_NE -- CODEFIX
11215 ("& is already use-visible inside package &?r?", Id, T);
11216 end if;
11217 end if;
11218 end Use_One_Type;
11220 ----------------
11221 -- Write_Info --
11222 ----------------
11224 procedure Write_Info is
11225 Id : Entity_Id := First_Entity (Current_Scope);
11227 begin
11228 -- No point in dumping standard entities
11230 if Current_Scope = Standard_Standard then
11231 return;
11232 end if;
11234 Write_Str ("========================================================");
11235 Write_Eol;
11236 Write_Str (" Defined Entities in ");
11237 Write_Name (Chars (Current_Scope));
11238 Write_Eol;
11239 Write_Str ("========================================================");
11240 Write_Eol;
11242 if No (Id) then
11243 Write_Str ("-- none --");
11244 Write_Eol;
11246 else
11247 while Present (Id) loop
11248 Write_Entity_Info (Id, " ");
11249 Next_Entity (Id);
11250 end loop;
11251 end if;
11253 if Scope (Current_Scope) = Standard_Standard then
11255 -- Print information on the current unit itself
11257 Write_Entity_Info (Current_Scope, " ");
11258 end if;
11260 Write_Eol;
11261 end Write_Info;
11263 --------
11264 -- ws --
11265 --------
11267 procedure ws is
11268 S : Entity_Id;
11269 begin
11270 for J in reverse 1 .. Scope_Stack.Last loop
11271 S := Scope_Stack.Table (J).Entity;
11272 Write_Int (Int (S));
11273 Write_Str (" === ");
11274 Write_Name (Chars (S));
11275 Write_Eol;
11276 end loop;
11277 end ws;
11279 --------
11280 -- we --
11281 --------
11283 procedure we (S : Entity_Id) is
11284 E : Entity_Id;
11285 begin
11286 E := First_Entity (S);
11287 while Present (E) loop
11288 Write_Int (Int (E));
11289 Write_Str (" === ");
11290 Write_Name (Chars (E));
11291 Write_Eol;
11292 Next_Entity (E);
11293 end loop;
11294 end we;
11295 end Sem_Ch8;