testsuite: 32 bit AIX 2 byte wchar
[official-gcc.git] / gcc / ada / exp_pakd.ads
blob40ccbd9d6fac0b3bdb3c667b34bb452f3db3146e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ P A K D --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Expand routines for manipulation of packed arrays
28 with Rtsfind; use Rtsfind;
29 with Types; use Types;
31 package Exp_Pakd is
33 -------------------------------------
34 -- Implementation of Packed Arrays --
35 -------------------------------------
37 -- When a packed array (sub)type is frozen, we create a corresponding
38 -- type that will be used to hold the bits of the packed value, and store
39 -- the entity for this type in the Packed_Array_Impl_Type field of the
40 -- E_Array_Type or E_Array_Subtype entity for the packed array.
42 -- This packed array type has the name xxxPn, where xxx is the name
43 -- of the packed type, and n is the component size. The expanded
44 -- declaration declares a type that is one of the following (sizes
45 -- below are in bytes):
47 -- For an unconstrained array with component size 1,2,4 or any other
48 -- odd component size. These are the cases in which we do not need
49 -- to align the underlying array.
51 -- type xxxPn is new Packed_Bytes1;
53 -- For an unconstrained array with component size greater than 2, that is
54 -- divisible by 2, but not divisible by 4. These are the cases in which
55 -- we can generate better code if the underlying array is 2-byte aligned
56 -- (see System.Pack_14 in file s-pack14 for example).
58 -- type xxxPn is new Packed_Bytes2;
60 -- For an unconstrained array with component size that is divisible
61 -- by 4, other than powers of 2 (which either come under the 1,2,4
62 -- exception above, or are not packed at all). These are cases where
63 -- we can generate better code if the underlying array is 4-byte
64 -- aligned (see System.Pack_20 in file s-pack20 for example).
66 -- type xxxPn is new Packed_Bytes4;
68 -- For a constrained array with a static index type where the number
69 -- of bits does not exceed the size of Unsigned:
71 -- type xxxPn is new Unsigned range 0 .. 2 ** nbits - 1;
73 -- For a constrained array with a static index type where the number
74 -- of bits is greater than the size of Unsigned, but does not exceed
75 -- the size of Long_Long_Unsigned:
77 -- type xxxPn is new Long_Long_Unsigned range 0 .. 2 ** nbits - 1;
79 -- For all other constrained arrays, we use one of
81 -- type xxxPn is new Packed_Bytes1 (0 .. m);
82 -- type xxxPn is new Packed_Bytes2 (0 .. m);
83 -- type xxxPn is new Packed_Bytes4 (0 .. m);
85 -- where m is calculated (from the length of the original packed array)
86 -- to hold the required number of bits, and the choice of the particular
87 -- Packed_Bytes{1,2,4} type is made on the basis of alignment needs as
88 -- described above for the unconstrained case.
90 -- When the packed array (sub)type is specified to have the reverse scalar
91 -- storage order, the Packed_Bytes{1,2,4} references above are replaced
92 -- with Rev_Packed_Bytes{1,2,4}. This is necessary because, although the
93 -- component type is Packed_Byte and therefore endian neutral, the scalar
94 -- storage order of the new type must be compatible with that of an outer
95 -- composite type, if this composite type contains a component whose type
96 -- is the packed array (sub)type and which does not start or does not end
97 -- on a storage unit boundary.
99 -- When a variable of packed array type is allocated, gigi will allocate
100 -- the amount of space indicated by the corresponding packed array type.
101 -- However, we do NOT attempt to rewrite the types of any references or
102 -- to retype the variable itself, since this would cause all kinds of
103 -- semantic problems in the front end (remember that expansion proceeds
104 -- at the same time as analysis).
106 -- For an indexed reference to a packed array, we simply convert the
107 -- reference to the appropriate equivalent reference to the object
108 -- of the packed array type (using unchecked conversion).
110 -- In some cases (for internally generated types, and for the subtypes
111 -- for record fields that depend on a discriminant), the corresponding
112 -- packed type cannot be easily generated in advance. In these cases,
113 -- we generate the required subtype on the fly at the reference point.
115 -- For the modular case, any unused bits are initialized to zero, and
116 -- all operations maintain these bits as zero (where necessary all
117 -- unchecked conversions from corresponding array values require
118 -- these bits to be clear, which is done automatically by gigi).
120 -- For the array cases, there can be unused bits in the last byte, and
121 -- these are neither initialized, nor treated specially in operations
122 -- (i.e. it is allowable for these bits to be clobbered, e.g. by not).
124 ---------------------------
125 -- Endian Considerations --
126 ---------------------------
128 -- The standard does not specify the way in which bits are numbered in
129 -- a packed array. There are two reasonable rules for deciding this:
131 -- Store the first bit at right end (low order) word. This means
132 -- that the scaled subscript can be used directly as a left shift
133 -- count (if we put bit 0 at the left end, then we need an extra
134 -- subtract to compute the shift count).
136 -- Layout the bits so that if the packed boolean array is overlaid on
137 -- a record, using unchecked conversion, then bit 0 of the array is
138 -- the same as the bit numbered bit 0 in a record representation
139 -- clause applying to the record. For example:
141 -- type Rec is record
142 -- C : Bits4;
143 -- D : Bits7;
144 -- E : Bits5;
145 -- end record;
147 -- for Rec use record
148 -- C at 0 range 0 .. 3;
149 -- D at 0 range 4 .. 10;
150 -- E at 0 range 11 .. 15;
151 -- end record;
153 -- type P16 is array (0 .. 15) of Boolean;
154 -- pragma Pack (P16);
156 -- Now if we use unchecked conversion to convert a value of the record
157 -- type to the packed array type, according to this second criterion,
158 -- we would expect field D to occupy bits 4..10 of the Boolean array.
160 -- Although not required, this correspondence seems a highly desirable
161 -- property, and is one that GNAT decides to guarantee. For a little
162 -- endian machine, we can also meet the first requirement, but for a
163 -- big endian machine, it will be necessary to store the first bit of
164 -- a Boolean array in the left end (most significant) bit of the word.
165 -- This may cost an extra instruction on some machines, but we consider
166 -- that a worthwhile price to pay for the consistency.
168 -- One more important point arises in the case where we have a constrained
169 -- subtype of an unconstrained array. Take the case of 20 bits. For the
170 -- unconstrained representation, we would use an array of bytes:
172 -- Little-endian case
173 -- 8-7-6-5-4-3-2-1 16-15-14-13-12-11-10-9 x-x-x-x-20-19-18-17
175 -- Big-endian case
176 -- 1-2-3-4-5-6-7-8 9-10-11-12-13-14-15-16 17-18-19-20-x-x-x-x
178 -- For the constrained case, we use a 20-bit modular value, but in
179 -- general this value may well be stored in 32 bits. Let's look at
180 -- what it looks like:
182 -- Little-endian case
184 -- x-x-x-x-x-x-x-x-x-x-x-x-20-19-18-17-...-10-9-8-7-6-5-4-3-2-1
186 -- which stored in memory looks like
188 -- 8-7-...-2-1 16-15-...-10-9 x-x-x-x-20-19-18-17 x-x-x-x-x-x-x
190 -- An important rule is that the constrained and unconstrained cases
191 -- must have the same bit representation in memory, since we will often
192 -- convert from one to the other (e.g. when calling a procedure whose
193 -- formal is unconstrained). As we see, that criterion is met for the
194 -- little-endian case above. Now let's look at the big-endian case:
196 -- Big-endian case
198 -- x-x-x-x-x-x-x-x-x-x-x-x-1-2-3-4-5-6-7-8-9-10-...-17-18-19-20
200 -- which stored in memory looks like
202 -- x-x-x-x-x-x-x-x x-x-x-x-1-2-3-4 5-6-...11-12 13-14-...-19-20
204 -- That won't do, the representation value in memory is NOT the same in
205 -- the constrained and unconstrained case. The solution is to store the
206 -- modular value left-justified:
208 -- 1-2-3-4-5-6-7-8-9-10-...-17-18-19-20-x-x-x-x-x-x-x-x-x-x-x
210 -- which stored in memory looks like
212 -- 1-2-...-7-8 9-10-...15-16 17-18-19-20-x-x-x-x x-x-x-x-x-x-x-x
214 -- and now, we do indeed have the same representation for the memory
215 -- version in the constrained and unconstrained cases.
217 ----------------------------------------------
218 -- Entity Tables for Packed Access Routines --
219 ----------------------------------------------
221 -- For the cases of component size = 3,5-7,9-15,17-31,33-63,65-127 we call
222 -- library routines. These tables provide the entity for the right routine.
223 -- They are exposed in the spec to allow checking for the presence of the
224 -- needed routine when an array is subject to pragma Pack.
226 type E_Array is array (Int range 1 .. 127) of RE_Id;
228 -- Array of Bits_nn entities. Note that we do not use library routines
229 -- for the 8-bit and 16-bit cases, but we still fill in the table, using
230 -- entries from System.Unsigned, because we also use this table for
231 -- certain special unchecked conversions in the big-endian case.
233 Bits_Id : constant E_Array :=
234 (01 => RE_Bits_1,
235 02 => RE_Bits_2,
236 03 => RE_Bits_03,
237 04 => RE_Bits_4,
238 05 => RE_Bits_05,
239 06 => RE_Bits_06,
240 07 => RE_Bits_07,
241 08 => RE_Unsigned_8,
242 09 => RE_Bits_09,
243 10 => RE_Bits_10,
244 11 => RE_Bits_11,
245 12 => RE_Bits_12,
246 13 => RE_Bits_13,
247 14 => RE_Bits_14,
248 15 => RE_Bits_15,
249 16 => RE_Unsigned_16,
250 17 => RE_Bits_17,
251 18 => RE_Bits_18,
252 19 => RE_Bits_19,
253 20 => RE_Bits_20,
254 21 => RE_Bits_21,
255 22 => RE_Bits_22,
256 23 => RE_Bits_23,
257 24 => RE_Bits_24,
258 25 => RE_Bits_25,
259 26 => RE_Bits_26,
260 27 => RE_Bits_27,
261 28 => RE_Bits_28,
262 29 => RE_Bits_29,
263 30 => RE_Bits_30,
264 31 => RE_Bits_31,
265 32 => RE_Unsigned_32,
266 33 => RE_Bits_33,
267 34 => RE_Bits_34,
268 35 => RE_Bits_35,
269 36 => RE_Bits_36,
270 37 => RE_Bits_37,
271 38 => RE_Bits_38,
272 39 => RE_Bits_39,
273 40 => RE_Bits_40,
274 41 => RE_Bits_41,
275 42 => RE_Bits_42,
276 43 => RE_Bits_43,
277 44 => RE_Bits_44,
278 45 => RE_Bits_45,
279 46 => RE_Bits_46,
280 47 => RE_Bits_47,
281 48 => RE_Bits_48,
282 49 => RE_Bits_49,
283 50 => RE_Bits_50,
284 51 => RE_Bits_51,
285 52 => RE_Bits_52,
286 53 => RE_Bits_53,
287 54 => RE_Bits_54,
288 55 => RE_Bits_55,
289 56 => RE_Bits_56,
290 57 => RE_Bits_57,
291 58 => RE_Bits_58,
292 59 => RE_Bits_59,
293 60 => RE_Bits_60,
294 61 => RE_Bits_61,
295 62 => RE_Bits_62,
296 63 => RE_Bits_63,
297 64 => RE_Unsigned_64,
298 65 => RE_Bits_65,
299 66 => RE_Bits_66,
300 67 => RE_Bits_67,
301 68 => RE_Bits_68,
302 69 => RE_Bits_69,
303 70 => RE_Bits_70,
304 71 => RE_Bits_71,
305 72 => RE_Bits_72,
306 73 => RE_Bits_73,
307 74 => RE_Bits_74,
308 75 => RE_Bits_75,
309 76 => RE_Bits_76,
310 77 => RE_Bits_77,
311 78 => RE_Bits_78,
312 79 => RE_Bits_79,
313 80 => RE_Bits_80,
314 81 => RE_Bits_81,
315 82 => RE_Bits_82,
316 83 => RE_Bits_83,
317 84 => RE_Bits_84,
318 85 => RE_Bits_85,
319 86 => RE_Bits_86,
320 87 => RE_Bits_87,
321 88 => RE_Bits_88,
322 89 => RE_Bits_89,
323 90 => RE_Bits_90,
324 91 => RE_Bits_91,
325 92 => RE_Bits_92,
326 93 => RE_Bits_93,
327 94 => RE_Bits_94,
328 95 => RE_Bits_95,
329 96 => RE_Bits_96,
330 97 => RE_Bits_97,
331 98 => RE_Bits_98,
332 99 => RE_Bits_99,
333 100 => RE_Bits_100,
334 101 => RE_Bits_101,
335 102 => RE_Bits_102,
336 103 => RE_Bits_103,
337 104 => RE_Bits_104,
338 105 => RE_Bits_105,
339 106 => RE_Bits_106,
340 107 => RE_Bits_107,
341 108 => RE_Bits_108,
342 109 => RE_Bits_109,
343 110 => RE_Bits_110,
344 111 => RE_Bits_111,
345 112 => RE_Bits_112,
346 113 => RE_Bits_113,
347 114 => RE_Bits_114,
348 115 => RE_Bits_115,
349 116 => RE_Bits_116,
350 117 => RE_Bits_117,
351 118 => RE_Bits_118,
352 119 => RE_Bits_119,
353 120 => RE_Bits_120,
354 121 => RE_Bits_121,
355 122 => RE_Bits_122,
356 123 => RE_Bits_123,
357 124 => RE_Bits_124,
358 125 => RE_Bits_125,
359 126 => RE_Bits_126,
360 127 => RE_Bits_127);
362 -- Array of Get routine entities. These are used to obtain an element from
363 -- a packed array. The N'th entry is used to obtain elements from a packed
364 -- array whose component size is N. RE_Null is used as a null entry, for
365 -- the cases where a library routine is not used.
367 Get_Id : constant E_Array :=
368 (01 => RE_Null,
369 02 => RE_Null,
370 03 => RE_Get_03,
371 04 => RE_Null,
372 05 => RE_Get_05,
373 06 => RE_Get_06,
374 07 => RE_Get_07,
375 08 => RE_Null,
376 09 => RE_Get_09,
377 10 => RE_Get_10,
378 11 => RE_Get_11,
379 12 => RE_Get_12,
380 13 => RE_Get_13,
381 14 => RE_Get_14,
382 15 => RE_Get_15,
383 16 => RE_Null,
384 17 => RE_Get_17,
385 18 => RE_Get_18,
386 19 => RE_Get_19,
387 20 => RE_Get_20,
388 21 => RE_Get_21,
389 22 => RE_Get_22,
390 23 => RE_Get_23,
391 24 => RE_Get_24,
392 25 => RE_Get_25,
393 26 => RE_Get_26,
394 27 => RE_Get_27,
395 28 => RE_Get_28,
396 29 => RE_Get_29,
397 30 => RE_Get_30,
398 31 => RE_Get_31,
399 32 => RE_Null,
400 33 => RE_Get_33,
401 34 => RE_Get_34,
402 35 => RE_Get_35,
403 36 => RE_Get_36,
404 37 => RE_Get_37,
405 38 => RE_Get_38,
406 39 => RE_Get_39,
407 40 => RE_Get_40,
408 41 => RE_Get_41,
409 42 => RE_Get_42,
410 43 => RE_Get_43,
411 44 => RE_Get_44,
412 45 => RE_Get_45,
413 46 => RE_Get_46,
414 47 => RE_Get_47,
415 48 => RE_Get_48,
416 49 => RE_Get_49,
417 50 => RE_Get_50,
418 51 => RE_Get_51,
419 52 => RE_Get_52,
420 53 => RE_Get_53,
421 54 => RE_Get_54,
422 55 => RE_Get_55,
423 56 => RE_Get_56,
424 57 => RE_Get_57,
425 58 => RE_Get_58,
426 59 => RE_Get_59,
427 60 => RE_Get_60,
428 61 => RE_Get_61,
429 62 => RE_Get_62,
430 63 => RE_Get_63,
431 64 => RE_Null,
432 65 => RE_Get_65,
433 66 => RE_Get_66,
434 67 => RE_Get_67,
435 68 => RE_Get_68,
436 69 => RE_Get_69,
437 70 => RE_Get_70,
438 71 => RE_Get_71,
439 72 => RE_Get_72,
440 73 => RE_Get_73,
441 74 => RE_Get_74,
442 75 => RE_Get_75,
443 76 => RE_Get_76,
444 77 => RE_Get_77,
445 78 => RE_Get_78,
446 79 => RE_Get_79,
447 80 => RE_Get_80,
448 81 => RE_Get_81,
449 82 => RE_Get_82,
450 83 => RE_Get_83,
451 84 => RE_Get_84,
452 85 => RE_Get_85,
453 86 => RE_Get_86,
454 87 => RE_Get_87,
455 88 => RE_Get_88,
456 89 => RE_Get_89,
457 90 => RE_Get_90,
458 91 => RE_Get_91,
459 92 => RE_Get_92,
460 93 => RE_Get_93,
461 94 => RE_Get_94,
462 95 => RE_Get_95,
463 96 => RE_Get_96,
464 97 => RE_Get_97,
465 98 => RE_Get_98,
466 99 => RE_Get_99,
467 100 => RE_Get_100,
468 101 => RE_Get_101,
469 102 => RE_Get_102,
470 103 => RE_Get_103,
471 104 => RE_Get_104,
472 105 => RE_Get_105,
473 106 => RE_Get_106,
474 107 => RE_Get_107,
475 108 => RE_Get_108,
476 109 => RE_Get_109,
477 110 => RE_Get_110,
478 111 => RE_Get_111,
479 112 => RE_Get_112,
480 113 => RE_Get_113,
481 114 => RE_Get_114,
482 115 => RE_Get_115,
483 116 => RE_Get_116,
484 117 => RE_Get_117,
485 118 => RE_Get_118,
486 119 => RE_Get_119,
487 120 => RE_Get_120,
488 121 => RE_Get_121,
489 122 => RE_Get_122,
490 123 => RE_Get_123,
491 124 => RE_Get_124,
492 125 => RE_Get_125,
493 126 => RE_Get_126,
494 127 => RE_Get_127);
496 -- Array of Get routine entities to be used in the case where the packed
497 -- array is itself a component of a packed structure, and therefore may not
498 -- be fully aligned. This only affects the even sizes, since for the odd
499 -- sizes, we do not get any fixed alignment in any case.
501 GetU_Id : constant E_Array :=
502 (01 => RE_Null,
503 02 => RE_Null,
504 03 => RE_Get_03,
505 04 => RE_Null,
506 05 => RE_Get_05,
507 06 => RE_GetU_06,
508 07 => RE_Get_07,
509 08 => RE_Null,
510 09 => RE_Get_09,
511 10 => RE_GetU_10,
512 11 => RE_Get_11,
513 12 => RE_GetU_12,
514 13 => RE_Get_13,
515 14 => RE_GetU_14,
516 15 => RE_Get_15,
517 16 => RE_Null,
518 17 => RE_Get_17,
519 18 => RE_GetU_18,
520 19 => RE_Get_19,
521 20 => RE_GetU_20,
522 21 => RE_Get_21,
523 22 => RE_GetU_22,
524 23 => RE_Get_23,
525 24 => RE_GetU_24,
526 25 => RE_Get_25,
527 26 => RE_GetU_26,
528 27 => RE_Get_27,
529 28 => RE_GetU_28,
530 29 => RE_Get_29,
531 30 => RE_GetU_30,
532 31 => RE_Get_31,
533 32 => RE_Null,
534 33 => RE_Get_33,
535 34 => RE_GetU_34,
536 35 => RE_Get_35,
537 36 => RE_GetU_36,
538 37 => RE_Get_37,
539 38 => RE_GetU_38,
540 39 => RE_Get_39,
541 40 => RE_GetU_40,
542 41 => RE_Get_41,
543 42 => RE_GetU_42,
544 43 => RE_Get_43,
545 44 => RE_GetU_44,
546 45 => RE_Get_45,
547 46 => RE_GetU_46,
548 47 => RE_Get_47,
549 48 => RE_GetU_48,
550 49 => RE_Get_49,
551 50 => RE_GetU_50,
552 51 => RE_Get_51,
553 52 => RE_GetU_52,
554 53 => RE_Get_53,
555 54 => RE_GetU_54,
556 55 => RE_Get_55,
557 56 => RE_GetU_56,
558 57 => RE_Get_57,
559 58 => RE_GetU_58,
560 59 => RE_Get_59,
561 60 => RE_GetU_60,
562 61 => RE_Get_61,
563 62 => RE_GetU_62,
564 63 => RE_Get_63,
565 64 => RE_Null,
566 65 => RE_Get_65,
567 66 => RE_GetU_66,
568 67 => RE_Get_67,
569 68 => RE_GetU_68,
570 69 => RE_Get_69,
571 70 => RE_GetU_70,
572 71 => RE_Get_71,
573 72 => RE_GetU_72,
574 73 => RE_Get_73,
575 74 => RE_GetU_74,
576 75 => RE_Get_75,
577 76 => RE_GetU_76,
578 77 => RE_Get_77,
579 78 => RE_GetU_78,
580 79 => RE_Get_79,
581 80 => RE_GetU_80,
582 81 => RE_Get_81,
583 82 => RE_GetU_82,
584 83 => RE_Get_83,
585 84 => RE_GetU_84,
586 85 => RE_Get_85,
587 86 => RE_GetU_86,
588 87 => RE_Get_87,
589 88 => RE_GetU_88,
590 89 => RE_Get_89,
591 90 => RE_GetU_90,
592 91 => RE_Get_91,
593 92 => RE_GetU_92,
594 93 => RE_Get_93,
595 94 => RE_GetU_94,
596 95 => RE_Get_95,
597 96 => RE_GetU_96,
598 97 => RE_Get_97,
599 98 => RE_GetU_98,
600 99 => RE_Get_99,
601 100 => RE_GetU_100,
602 101 => RE_Get_101,
603 102 => RE_GetU_102,
604 103 => RE_Get_103,
605 104 => RE_GetU_104,
606 105 => RE_Get_105,
607 106 => RE_GetU_106,
608 107 => RE_Get_107,
609 108 => RE_GetU_108,
610 109 => RE_Get_109,
611 110 => RE_GetU_110,
612 111 => RE_Get_111,
613 112 => RE_GetU_112,
614 113 => RE_Get_113,
615 114 => RE_GetU_114,
616 115 => RE_Get_115,
617 116 => RE_GetU_116,
618 117 => RE_Get_117,
619 118 => RE_GetU_118,
620 119 => RE_Get_119,
621 120 => RE_GetU_120,
622 121 => RE_Get_121,
623 122 => RE_GetU_122,
624 123 => RE_Get_123,
625 124 => RE_GetU_124,
626 125 => RE_Get_125,
627 126 => RE_GetU_126,
628 127 => RE_Get_127);
630 -- Array of Set routine entities. These are used to assign an element of a
631 -- packed array. The N'th entry is used to assign elements for a packed
632 -- array whose component size is N. RE_Null is used as a null entry, for
633 -- the cases where a library routine is not used.
635 Set_Id : constant E_Array :=
636 (01 => RE_Null,
637 02 => RE_Null,
638 03 => RE_Set_03,
639 04 => RE_Null,
640 05 => RE_Set_05,
641 06 => RE_Set_06,
642 07 => RE_Set_07,
643 08 => RE_Null,
644 09 => RE_Set_09,
645 10 => RE_Set_10,
646 11 => RE_Set_11,
647 12 => RE_Set_12,
648 13 => RE_Set_13,
649 14 => RE_Set_14,
650 15 => RE_Set_15,
651 16 => RE_Null,
652 17 => RE_Set_17,
653 18 => RE_Set_18,
654 19 => RE_Set_19,
655 20 => RE_Set_20,
656 21 => RE_Set_21,
657 22 => RE_Set_22,
658 23 => RE_Set_23,
659 24 => RE_Set_24,
660 25 => RE_Set_25,
661 26 => RE_Set_26,
662 27 => RE_Set_27,
663 28 => RE_Set_28,
664 29 => RE_Set_29,
665 30 => RE_Set_30,
666 31 => RE_Set_31,
667 32 => RE_Null,
668 33 => RE_Set_33,
669 34 => RE_Set_34,
670 35 => RE_Set_35,
671 36 => RE_Set_36,
672 37 => RE_Set_37,
673 38 => RE_Set_38,
674 39 => RE_Set_39,
675 40 => RE_Set_40,
676 41 => RE_Set_41,
677 42 => RE_Set_42,
678 43 => RE_Set_43,
679 44 => RE_Set_44,
680 45 => RE_Set_45,
681 46 => RE_Set_46,
682 47 => RE_Set_47,
683 48 => RE_Set_48,
684 49 => RE_Set_49,
685 50 => RE_Set_50,
686 51 => RE_Set_51,
687 52 => RE_Set_52,
688 53 => RE_Set_53,
689 54 => RE_Set_54,
690 55 => RE_Set_55,
691 56 => RE_Set_56,
692 57 => RE_Set_57,
693 58 => RE_Set_58,
694 59 => RE_Set_59,
695 60 => RE_Set_60,
696 61 => RE_Set_61,
697 62 => RE_Set_62,
698 63 => RE_Set_63,
699 64 => RE_Null,
700 65 => RE_Set_65,
701 66 => RE_Set_66,
702 67 => RE_Set_67,
703 68 => RE_Set_68,
704 69 => RE_Set_69,
705 70 => RE_Set_70,
706 71 => RE_Set_71,
707 72 => RE_Set_72,
708 73 => RE_Set_73,
709 74 => RE_Set_74,
710 75 => RE_Set_75,
711 76 => RE_Set_76,
712 77 => RE_Set_77,
713 78 => RE_Set_78,
714 79 => RE_Set_79,
715 80 => RE_Set_80,
716 81 => RE_Set_81,
717 82 => RE_Set_82,
718 83 => RE_Set_83,
719 84 => RE_Set_84,
720 85 => RE_Set_85,
721 86 => RE_Set_86,
722 87 => RE_Set_87,
723 88 => RE_Set_88,
724 89 => RE_Set_89,
725 90 => RE_Set_90,
726 91 => RE_Set_91,
727 92 => RE_Set_92,
728 93 => RE_Set_93,
729 94 => RE_Set_94,
730 95 => RE_Set_95,
731 96 => RE_Set_96,
732 97 => RE_Set_97,
733 98 => RE_Set_98,
734 99 => RE_Set_99,
735 100 => RE_Set_100,
736 101 => RE_Set_101,
737 102 => RE_Set_102,
738 103 => RE_Set_103,
739 104 => RE_Set_104,
740 105 => RE_Set_105,
741 106 => RE_Set_106,
742 107 => RE_Set_107,
743 108 => RE_Set_108,
744 109 => RE_Set_109,
745 110 => RE_Set_110,
746 111 => RE_Set_111,
747 112 => RE_Set_112,
748 113 => RE_Set_113,
749 114 => RE_Set_114,
750 115 => RE_Set_115,
751 116 => RE_Set_116,
752 117 => RE_Set_117,
753 118 => RE_Set_118,
754 119 => RE_Set_119,
755 120 => RE_Set_120,
756 121 => RE_Set_121,
757 122 => RE_Set_122,
758 123 => RE_Set_123,
759 124 => RE_Set_124,
760 125 => RE_Set_125,
761 126 => RE_Set_126,
762 127 => RE_Set_127);
764 -- Array of Set routine entities to be used in the case where the packed
765 -- array is itself a component of a packed structure, and therefore may not
766 -- be fully aligned. This only affects the even sizes, since for the odd
767 -- sizes, we do not get any fixed alignment in any case.
769 SetU_Id : constant E_Array :=
770 (01 => RE_Null,
771 02 => RE_Null,
772 03 => RE_Set_03,
773 04 => RE_Null,
774 05 => RE_Set_05,
775 06 => RE_SetU_06,
776 07 => RE_Set_07,
777 08 => RE_Null,
778 09 => RE_Set_09,
779 10 => RE_SetU_10,
780 11 => RE_Set_11,
781 12 => RE_SetU_12,
782 13 => RE_Set_13,
783 14 => RE_SetU_14,
784 15 => RE_Set_15,
785 16 => RE_Null,
786 17 => RE_Set_17,
787 18 => RE_SetU_18,
788 19 => RE_Set_19,
789 20 => RE_SetU_20,
790 21 => RE_Set_21,
791 22 => RE_SetU_22,
792 23 => RE_Set_23,
793 24 => RE_SetU_24,
794 25 => RE_Set_25,
795 26 => RE_SetU_26,
796 27 => RE_Set_27,
797 28 => RE_SetU_28,
798 29 => RE_Set_29,
799 30 => RE_SetU_30,
800 31 => RE_Set_31,
801 32 => RE_Null,
802 33 => RE_Set_33,
803 34 => RE_SetU_34,
804 35 => RE_Set_35,
805 36 => RE_SetU_36,
806 37 => RE_Set_37,
807 38 => RE_SetU_38,
808 39 => RE_Set_39,
809 40 => RE_SetU_40,
810 41 => RE_Set_41,
811 42 => RE_SetU_42,
812 43 => RE_Set_43,
813 44 => RE_SetU_44,
814 45 => RE_Set_45,
815 46 => RE_SetU_46,
816 47 => RE_Set_47,
817 48 => RE_SetU_48,
818 49 => RE_Set_49,
819 50 => RE_SetU_50,
820 51 => RE_Set_51,
821 52 => RE_SetU_52,
822 53 => RE_Set_53,
823 54 => RE_SetU_54,
824 55 => RE_Set_55,
825 56 => RE_SetU_56,
826 57 => RE_Set_57,
827 58 => RE_SetU_58,
828 59 => RE_Set_59,
829 60 => RE_SetU_60,
830 61 => RE_Set_61,
831 62 => RE_SetU_62,
832 63 => RE_Set_63,
833 64 => RE_Null,
834 65 => RE_Set_65,
835 66 => RE_SetU_66,
836 67 => RE_Set_67,
837 68 => RE_SetU_68,
838 69 => RE_Set_69,
839 70 => RE_SetU_70,
840 71 => RE_Set_71,
841 72 => RE_SetU_72,
842 73 => RE_Set_73,
843 74 => RE_SetU_74,
844 75 => RE_Set_75,
845 76 => RE_SetU_76,
846 77 => RE_Set_77,
847 78 => RE_SetU_78,
848 79 => RE_Set_79,
849 80 => RE_SetU_80,
850 81 => RE_Set_81,
851 82 => RE_SetU_82,
852 83 => RE_Set_83,
853 84 => RE_SetU_84,
854 85 => RE_Set_85,
855 86 => RE_SetU_86,
856 87 => RE_Set_87,
857 88 => RE_SetU_88,
858 89 => RE_Set_89,
859 90 => RE_SetU_90,
860 91 => RE_Set_91,
861 92 => RE_SetU_92,
862 93 => RE_Set_93,
863 94 => RE_SetU_94,
864 95 => RE_Set_95,
865 96 => RE_SetU_96,
866 97 => RE_Set_97,
867 98 => RE_SetU_98,
868 99 => RE_Set_99,
869 100 => RE_SetU_100,
870 101 => RE_Set_101,
871 102 => RE_SetU_102,
872 103 => RE_Set_103,
873 104 => RE_SetU_104,
874 105 => RE_Set_105,
875 106 => RE_SetU_106,
876 107 => RE_Set_107,
877 108 => RE_SetU_108,
878 109 => RE_Set_109,
879 110 => RE_SetU_110,
880 111 => RE_Set_111,
881 112 => RE_SetU_112,
882 113 => RE_Set_113,
883 114 => RE_SetU_114,
884 115 => RE_Set_115,
885 116 => RE_SetU_116,
886 117 => RE_Set_117,
887 118 => RE_SetU_118,
888 119 => RE_Set_119,
889 120 => RE_SetU_120,
890 121 => RE_Set_121,
891 122 => RE_SetU_122,
892 123 => RE_Set_123,
893 124 => RE_SetU_124,
894 125 => RE_Set_125,
895 126 => RE_SetU_126,
896 127 => RE_Set_127);
898 -----------------
899 -- Subprograms --
900 -----------------
902 procedure Create_Packed_Array_Impl_Type (Typ : Entity_Id);
903 -- Typ is a array type or subtype to which pragma Pack applies. If the
904 -- Packed_Array_Impl_Type field of Typ is already set, then the call has
905 -- no effect, otherwise a suitable type or subtype is created and stored in
906 -- the Packed_Array_Impl_Type field of Typ. This created type is an Itype
907 -- so that Gigi will simply elaborate and freeze the type on first use
908 -- (which is typically the definition of the corresponding array type).
910 -- Note: although this routine is included in the expander package for
911 -- packed types, it is actually called unconditionally from Freeze,
912 -- whether or not expansion (and code generation) is enabled. We do this
913 -- since we want gigi to be able to properly compute type characteristics
914 -- (for the Data Decomposition Annex of ASIS, and possible other future
915 -- uses) even if code generation is not active. Strictly this means that
916 -- this procedure is not part of the expander, but it seems appropriate
917 -- to keep it together with the other expansion routines that have to do
918 -- with packed array types.
920 procedure Expand_Packed_Boolean_Operator (N : Node_Id);
921 -- N is an N_Op_And, N_Op_Or or N_Op_Xor node whose operand type is a
922 -- packed boolean array. This routine expands the appropriate operations
923 -- to carry out the logical operation on the packed arrays. It handles
924 -- both the modular and array representation cases.
926 procedure Expand_Packed_Element_Reference (N : Node_Id);
927 -- N is an N_Indexed_Component node whose prefix is a packed array. In
928 -- the bit packed case, this routine can only be used for the expression
929 -- evaluation case, not the assignment case, since the result is not a
930 -- variable. See Expand_Bit_Packed_Element_Set for how the assignment case
931 -- is handled in the bit packed case. For the enumeration case, the result
932 -- of this call is always a variable, so the call can be used for both the
933 -- expression evaluation and assignment cases.
935 procedure Expand_Bit_Packed_Element_Set (N : Node_Id);
936 -- N is an N_Assignment_Statement node whose name is an indexed
937 -- component of a bit-packed array. This procedure rewrites the entire
938 -- assignment statement with appropriate code to set the referenced
939 -- bits of the packed array type object. Note that this procedure is
940 -- used only for the bit-packed case, not for the enumeration case.
942 procedure Expand_Packed_Eq (N : Node_Id);
943 -- N is an N_Op_Eq node where the operands are packed arrays whose
944 -- representation is an array-of-bytes type (the case where a modular
945 -- type is used for the representation does not require any special
946 -- handling, because in the modular case, unused bits are zeroes).
948 procedure Expand_Packed_Not (N : Node_Id);
949 -- N is an N_Op_Not node where the operand is packed array of Boolean
950 -- in standard representation (i.e. component size is one bit). This
951 -- procedure expands the corresponding not operation. Note that the
952 -- non-standard representation case is handled by using a loop through
953 -- elements generated by the normal non-packed circuitry.
955 function Involves_Packed_Array_Reference (N : Node_Id) return Boolean;
956 -- N is the node for a name. This function returns true if the name
957 -- involves a packed array reference. A node involves a packed array
958 -- reference if it is itself an indexed component referring to a bit-
959 -- packed array, or it is a selected component whose prefix involves
960 -- a packed array reference.
962 procedure Expand_Packed_Address_Reference (N : Node_Id);
963 -- The node N is an attribute reference for the 'Address reference, where
964 -- the prefix involves a packed array reference. This routine expands the
965 -- necessary code for performing the address reference in this case.
967 procedure Expand_Packed_Bit_Reference (N : Node_Id);
968 -- The node N is an attribute reference for the 'Bit reference, where the
969 -- prefix involves a packed array reference. This routine expands the
970 -- necessary code for performing the bit reference in this case.
972 end Exp_Pakd;