1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
5 -- A C C E S S I B I L I T Y --
9 -- Copyright (C) 2022-2023, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Einfo
.Entities
; use Einfo
.Entities
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Einfo
.Utils
; use Einfo
.Utils
;
34 with Exp_Atag
; use Exp_Atag
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch7
; use Exp_Ch7
;
37 with Exp_Tss
; use Exp_Tss
;
38 with Exp_Util
; use Exp_Util
;
39 with Namet
; use Namet
;
40 with Nlists
; use Nlists
;
41 with Nmake
; use Nmake
;
43 with Restrict
; use Restrict
;
44 with Rtsfind
; use Rtsfind
;
46 with Sem_Aux
; use Sem_Aux
;
47 with Sem_Ch8
; use Sem_Ch8
;
48 with Sem_Res
; use Sem_Res
;
49 with Sem_Util
; use Sem_Util
;
50 with Sinfo
; use Sinfo
;
51 with Sinfo
.Nodes
; use Sinfo
.Nodes
;
52 with Sinfo
.Utils
; use Sinfo
.Utils
;
53 with Snames
; use Snames
;
54 with Stand
; use Stand
;
55 with Tbuild
; use Tbuild
;
57 package body Accessibility
is
59 ---------------------------
60 -- Accessibility_Message --
61 ---------------------------
63 procedure Accessibility_Message
(N
: Node_Id
; Typ
: Entity_Id
) is
64 Loc
: constant Source_Ptr
:= Sloc
(N
);
65 P
: constant Node_Id
:= Prefix
(N
);
66 Indic
: Node_Id
:= Parent
(Parent
(N
));
69 -- In an instance, this is a runtime check, but one we know will fail,
70 -- so generate an appropriate warning.
72 if In_Instance_Body
then
73 Error_Msg_Warn
:= SPARK_Mode
/= On
;
75 ("non-local pointer cannot point to local object<<", P
);
76 Error_Msg_F
("\Program_Error [<<", P
);
78 Make_Raise_Program_Error
(Loc
,
79 Reason
=> PE_Accessibility_Check_Failed
));
84 Error_Msg_F
("non-local pointer cannot point to local object", P
);
86 -- Check for case where we have a missing access definition
88 if Is_Record_Type
(Current_Scope
)
90 Nkind
(Parent
(N
)) in N_Discriminant_Association
91 | N_Index_Or_Discriminant_Constraint
93 Indic
:= Parent
(Parent
(N
));
95 and then Nkind
(Indic
) /= N_Subtype_Indication
97 Indic
:= Parent
(Indic
);
100 if Present
(Indic
) then
102 ("\use an access definition for" &
103 " the access discriminant of&",
104 N
, Entity
(Subtype_Mark
(Indic
)));
108 end Accessibility_Message
;
110 -------------------------
111 -- Accessibility_Level --
112 -------------------------
114 function Accessibility_Level
116 Level
: Accessibility_Level_Kind
;
117 In_Return_Context
: Boolean := False;
118 Allow_Alt_Model
: Boolean := True) return Node_Id
120 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
122 function Accessibility_Level
(Expr
: Node_Id
) return Node_Id
is
124 (Expr
, Level
, In_Return_Context
, Allow_Alt_Model
));
125 -- Renaming of the enclosing function to facilitate recursive calls
127 function Make_Level_Literal
(Level
: Uint
) return Node_Id
;
128 -- Construct an integer literal representing an accessibility level with
129 -- its type set to Natural.
131 function Innermost_Master_Scope_Depth
(N
: Node_Id
) return Uint
;
132 -- Returns the scope depth of the given node's innermost enclosing scope
133 -- (effectively the accessibility level of the innermost enclosing
136 function Function_Call_Or_Allocator_Level
(N
: Node_Id
) return Node_Id
;
137 -- Centralized processing of subprogram calls which may appear in prefix
140 function Typ_Access_Level
(Typ
: Entity_Id
) return Uint
141 is (Type_Access_Level
(Typ
, Allow_Alt_Model
));
142 -- Renaming of Type_Access_Level with Allow_Alt_Model specified to avoid
143 -- passing the parameter specifically in every call.
145 ----------------------------------
146 -- Innermost_Master_Scope_Depth --
147 ----------------------------------
149 function Innermost_Master_Scope_Depth
(N
: Node_Id
) return Uint
is
150 Encl_Scop
: Entity_Id
;
152 Node_Par
: Node_Id
:= Parent
(N
);
153 Master_Lvl_Modifier
: Int
:= 0;
156 -- Locate the nearest enclosing node (by traversing Parents)
157 -- that Defining_Entity can be applied to, and return the
158 -- depth of that entity's nearest enclosing scope.
160 -- The RM 7.6.1(3) definition of "master" includes statements
161 -- and conditions for loops among other things. Are these cases
162 -- detected properly ???
164 while Present
(Node_Par
) loop
165 Ent
:= Defining_Entity_Or_Empty
(Node_Par
);
167 if Present
(Ent
) then
168 -- X'Old is nested within the current subprogram, so we do not
169 -- want Find_Enclosing_Scope of that subprogram. If this is an
170 -- allocator, then we're looking for the innermost master of
171 -- the call, so again we do not want Find_Enclosing_Scope.
173 if (Nkind
(N
) = N_Attribute_Reference
174 and then Attribute_Name
(N
) = Name_Old
)
175 or else Nkind
(N
) = N_Allocator
179 Encl_Scop
:= Find_Enclosing_Scope
(Ent
);
182 -- Ignore transient scopes made during expansion while also
183 -- taking into account certain expansions - like iterators
184 -- which get expanded into renamings and thus not marked
185 -- as coming from source.
187 if Comes_From_Source
(Node_Par
)
188 or else (Nkind
(Node_Par
) = N_Object_Renaming_Declaration
189 and then Comes_From_Iterator
(Node_Par
))
191 -- Note that in some rare cases the scope depth may not be
192 -- set, for example, when we are in the middle of analyzing
193 -- a type and the enclosing scope is said type. In that case
194 -- simply return zero for the outermost scope.
196 if Scope_Depth_Set
(Encl_Scop
) then
197 return Scope_Depth
(Encl_Scop
) + Master_Lvl_Modifier
;
203 -- For a return statement within a function, return
204 -- the depth of the function itself. This is not just
205 -- a small optimization, but matters when analyzing
206 -- the expression in an expression function before
207 -- the body is created.
209 elsif Nkind
(Node_Par
) in N_Extended_Return_Statement
210 | N_Simple_Return_Statement
212 return Scope_Depth
(Enclosing_Subprogram
(Node_Par
));
214 -- Statements are counted as masters
216 elsif Is_Master
(Node_Par
) then
217 Master_Lvl_Modifier
:= Master_Lvl_Modifier
+ 1;
221 Node_Par
:= Parent
(Node_Par
);
224 -- Should never reach the following return
226 pragma Assert
(False);
228 return Scope_Depth
(Current_Scope
) + 1;
229 end Innermost_Master_Scope_Depth
;
231 ------------------------
232 -- Make_Level_Literal --
233 ------------------------
235 function Make_Level_Literal
(Level
: Uint
) return Node_Id
is
236 Result
: constant Node_Id
:= Make_Integer_Literal
(Loc
, Level
);
239 Set_Etype
(Result
, Standard_Natural
);
241 end Make_Level_Literal
;
243 --------------------------------------
244 -- Function_Call_Or_Allocator_Level --
245 --------------------------------------
247 function Function_Call_Or_Allocator_Level
(N
: Node_Id
) return Node_Id
is
251 -- Results of functions are objects, so we either get the
252 -- accessibility of the function or, in case of a call which is
253 -- indirect, the level of the access-to-subprogram type.
255 -- This code looks wrong ???
257 if Nkind
(N
) = N_Function_Call
258 and then Ada_Version
< Ada_2005
260 if Is_Entity_Name
(Name
(N
)) then
261 return Make_Level_Literal
262 (Subprogram_Access_Level
(Entity
(Name
(N
))));
264 return Make_Level_Literal
265 (Typ_Access_Level
(Etype
(Prefix
(Name
(N
)))));
268 -- We ignore coextensions as they cannot be implemented under the
269 -- "small-integer" model.
271 elsif Nkind
(N
) = N_Allocator
272 and then (Is_Static_Coextension
(N
)
273 or else Is_Dynamic_Coextension
(N
))
275 return Make_Level_Literal
(Scope_Depth
(Standard_Standard
));
278 -- Named access types have a designated level
280 if Is_Named_Access_Type
(Etype
(N
)) then
281 return Make_Level_Literal
(Typ_Access_Level
(Etype
(N
)));
283 -- Otherwise, the level is dictated by RM 3.10.2 (10.7/3)
286 -- Check No_Dynamic_Accessibility_Checks restriction override for
287 -- alternative accessibility model.
290 and then No_Dynamic_Accessibility_Checks_Enabled
(N
)
291 and then Is_Anonymous_Access_Type
(Etype
(N
))
293 -- In the alternative model the level is that of the
296 if Debug_Flag_Underscore_B
then
297 return Make_Level_Literal
(Typ_Access_Level
(Etype
(N
)));
299 -- For function calls the level is that of the innermost
300 -- master, otherwise (for allocators etc.) we get the level
301 -- of the corresponding anonymous access type, which is
302 -- calculated through the normal path of execution.
304 elsif Nkind
(N
) = N_Function_Call
then
305 return Make_Level_Literal
306 (Innermost_Master_Scope_Depth
(Expr
));
310 if Nkind
(N
) = N_Function_Call
then
311 -- Dynamic checks are generated when we are within a return
312 -- value or we are in a function call within an anonymous
313 -- access discriminant constraint of a return object (signified
314 -- by In_Return_Context) on the side of the callee.
316 -- So, in this case, return accessibility level of the
317 -- enclosing subprogram.
319 if In_Return_Value
(N
)
320 or else In_Return_Context
322 return Make_Level_Literal
323 (Subprogram_Access_Level
(Current_Subprogram
));
327 -- When the call is being dereferenced the level is that of the
328 -- enclosing master of the dereferenced call.
330 if Nkind
(Parent
(N
)) in N_Explicit_Dereference
331 | N_Indexed_Component
332 | N_Selected_Component
334 return Make_Level_Literal
335 (Innermost_Master_Scope_Depth
(Expr
));
338 -- Find any relevant enclosing parent nodes that designate an
339 -- object being initialized.
341 -- Note: The above is only relevant if the result is used "in its
342 -- entirety" as RM 3.10.2 (10.2/3) states. However, this is
343 -- accounted for in the case statement in the main body of
344 -- Accessibility_Level for N_Selected_Component.
346 Par
:= Parent
(Expr
);
348 while Present
(Par
) loop
349 -- Detect an expanded implicit conversion, typically this
350 -- occurs on implicitly converted actuals in calls.
352 -- Does this catch all implicit conversions ???
354 if Nkind
(Par
) = N_Type_Conversion
355 and then Is_Named_Access_Type
(Etype
(Par
))
357 return Make_Level_Literal
358 (Typ_Access_Level
(Etype
(Par
)));
361 -- Jump out when we hit an object declaration or the right-hand
362 -- side of an assignment, or a construct such as an aggregate
363 -- subtype indication which would be the result is not used
364 -- "in its entirety."
366 exit when Nkind
(Par
) in N_Object_Declaration
367 or else (Nkind
(Par
) = N_Assignment_Statement
368 and then Name
(Par
) /= Prev_Par
);
374 -- Assignment statements are handled in a similar way in
375 -- accordance to the left-hand part. However, strictly speaking,
376 -- this is illegal according to the RM, but this change is needed
377 -- to pass an ACATS C-test and is useful in general ???
380 when N_Object_Declaration
=>
381 return Make_Level_Literal
383 (Scope
(Defining_Identifier
(Par
))));
385 when N_Assignment_Statement
=>
386 -- Return the accessibility level of the left-hand part
388 return Accessibility_Level
390 Level
=> Object_Decl_Level
,
391 In_Return_Context
=> In_Return_Context
);
394 return Make_Level_Literal
395 (Innermost_Master_Scope_Depth
(Expr
));
398 end Function_Call_Or_Allocator_Level
;
402 E
: Node_Id
:= Original_Node
(Expr
);
405 -- Start of processing for Accessibility_Level
408 -- We could be looking at a reference to a formal due to the expansion
409 -- of entries and other cases, so obtain the renaming if necessary.
411 if Present
(Param_Entity
(Expr
)) then
412 E
:= Param_Entity
(Expr
);
415 -- Extract the entity
417 if Nkind
(E
) in N_Has_Entity
and then Present
(Entity
(E
)) then
420 -- Deal with a possible renaming of a private protected component
422 if Ekind
(E
) in E_Constant | E_Variable
and then Is_Prival
(E
) then
423 E
:= Prival_Link
(E
);
427 -- Perform the processing on the expression
430 -- The level of an aggregate is that of the innermost master that
431 -- evaluates it as defined in RM 3.10.2 (10/4).
434 return Make_Level_Literal
(Innermost_Master_Scope_Depth
(Expr
));
436 -- The accessibility level is that of the access type, except for
437 -- anonymous allocators which have special rules defined in RM 3.10.2
441 return Function_Call_Or_Allocator_Level
(E
);
443 -- We could reach this point for two reasons. Either the expression
444 -- applies to a special attribute ('Loop_Entry, 'Result, or 'Old), or
445 -- we are looking at the access attributes directly ('Access,
446 -- 'Address, or 'Unchecked_Access).
448 when N_Attribute_Reference
=>
449 Pre
:= Original_Node
(Prefix
(E
));
451 -- Regular 'Access attribute presence means we have to look at the
454 if Attribute_Name
(E
) = Name_Access
then
455 return Accessibility_Level
(Prefix
(E
));
457 -- Unchecked or unrestricted attributes have unlimited depth
459 elsif Attribute_Name
(E
) in Name_Address
460 | Name_Unchecked_Access
461 | Name_Unrestricted_Access
463 return Make_Level_Literal
(Scope_Depth
(Standard_Standard
));
465 -- 'Access can be taken further against other special attributes,
466 -- so handle these cases explicitly.
468 elsif Attribute_Name
(E
)
469 in Name_Old | Name_Loop_Entry | Name_Result
471 -- Named access types
473 if Is_Named_Access_Type
(Etype
(Pre
)) then
474 return Make_Level_Literal
475 (Typ_Access_Level
(Etype
(Pre
)));
477 -- Anonymous access types
479 elsif Nkind
(Pre
) in N_Has_Entity
480 and then Ekind
(Entity
(Pre
)) not in Subprogram_Kind
481 and then Present
(Get_Dynamic_Accessibility
(Entity
(Pre
)))
482 and then Level
= Dynamic_Level
484 pragma Assert
(Is_Anonymous_Access_Type
(Etype
(Pre
)));
485 return New_Occurrence_Of
486 (Get_Dynamic_Accessibility
(Entity
(Pre
)), Loc
);
488 -- Otherwise the level is treated in a similar way as
489 -- aggregates according to RM 6.1.1 (35.1/4) which concerns
490 -- an implicit constant declaration - in turn defining the
491 -- accessibility level to be that of the implicit constant
495 return Make_Level_Literal
496 (Innermost_Master_Scope_Depth
(Expr
));
503 -- This is the "base case" for accessibility level calculations which
504 -- means we are near the end of our recursive traversal.
506 when N_Defining_Identifier
=>
507 -- A dynamic check is performed on the side of the callee when we
508 -- are within a return statement, so return a library-level
509 -- accessibility level to null out checks on the side of the
512 if Is_Explicitly_Aliased
(E
)
513 and then (In_Return_Context
514 or else (Level
/= Dynamic_Level
515 and then In_Return_Value
(Expr
)))
517 return Make_Level_Literal
(Scope_Depth
(Standard_Standard
));
519 -- Something went wrong and an extra accessibility formal has not
520 -- been generated when one should have ???
523 and then No
(Get_Dynamic_Accessibility
(E
))
524 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
526 return Make_Level_Literal
(Scope_Depth
(Standard_Standard
));
528 -- Stand-alone object of an anonymous access type "SAOAAT"
531 or else Ekind
(E
) in E_Variable
533 and then Present
(Get_Dynamic_Accessibility
(E
))
534 and then (Level
= Dynamic_Level
535 or else Level
= Zero_On_Dynamic_Level
)
537 if Level
= Zero_On_Dynamic_Level
then
538 return Make_Level_Literal
539 (Scope_Depth
(Standard_Standard
));
542 -- No_Dynamic_Accessibility_Checks restriction override for
543 -- alternative accessibility model.
546 and then No_Dynamic_Accessibility_Checks_Enabled
(E
)
548 -- In the alternative model the level is that of the
549 -- designated type entity's context.
551 if Debug_Flag_Underscore_B
then
552 return Make_Level_Literal
(Typ_Access_Level
(Etype
(E
)));
554 -- Otherwise the level depends on the entity's context
556 elsif Is_Formal
(E
) then
557 return Make_Level_Literal
558 (Subprogram_Access_Level
559 (Enclosing_Subprogram
(E
)));
561 return Make_Level_Literal
562 (Scope_Depth
(Enclosing_Dynamic_Scope
(E
)));
566 -- Return the dynamic level in the normal case
568 return New_Occurrence_Of
569 (Get_Dynamic_Accessibility
(E
), Loc
);
571 -- Initialization procedures have a special extra accessibility
572 -- parameter associated with the level at which the object
573 -- being initialized exists
575 elsif Ekind
(E
) = E_Record_Type
576 and then Is_Limited_Record
(E
)
577 and then Current_Scope
= Init_Proc
(E
)
578 and then Present
(Init_Proc_Level_Formal
(Current_Scope
))
580 return New_Occurrence_Of
581 (Init_Proc_Level_Formal
(Current_Scope
), Loc
);
583 -- Current instance of the type is deeper than that of the type
584 -- according to RM 3.10.2 (21).
586 elsif Is_Type
(E
) then
587 -- When restriction No_Dynamic_Accessibility_Checks is active
588 -- along with -gnatd_b.
591 and then No_Dynamic_Accessibility_Checks_Enabled
(E
)
592 and then Debug_Flag_Underscore_B
594 return Make_Level_Literal
(Typ_Access_Level
(E
));
599 return Make_Level_Literal
(Typ_Access_Level
(E
) + 1);
601 -- Move up the renamed entity or object if it came from source
602 -- since expansion may have created a dummy renaming under
603 -- certain circumstances.
605 -- Note: We check if the original node of the renaming comes
606 -- from source because the node may have been rewritten.
608 elsif Present
(Renamed_Entity_Or_Object
(E
))
609 and then Comes_From_Source
610 (Original_Node
(Renamed_Entity_Or_Object
(E
)))
612 return Accessibility_Level
(Renamed_Entity_Or_Object
(E
));
614 -- Named access types get their level from their associated type
616 elsif Is_Named_Access_Type
(Etype
(E
)) then
617 return Make_Level_Literal
618 (Typ_Access_Level
(Etype
(E
)));
620 -- Check if E is an expansion-generated renaming of an iterator
621 -- by examining Related_Expression. If so, determine the
622 -- accessibility level based on the original expression.
624 elsif Ekind
(E
) in E_Constant | E_Variable
625 and then Present
(Related_Expression
(E
))
627 return Accessibility_Level
(Related_Expression
(E
));
629 elsif Level
= Dynamic_Level
630 and then Ekind
(E
) in E_In_Parameter | E_In_Out_Parameter
631 and then Present
(Init_Proc_Level_Formal
(Scope
(E
)))
633 return New_Occurrence_Of
634 (Init_Proc_Level_Formal
(Scope
(E
)), Loc
);
636 -- Normal object - get the level of the enclosing scope
639 return Make_Level_Literal
640 (Scope_Depth
(Enclosing_Dynamic_Scope
(E
)));
643 -- Handle indexed and selected components including the special cases
644 -- whereby there is an implicit dereference, a component of a
645 -- composite type, or a function call in prefix notation.
647 -- We don't handle function calls in prefix notation correctly ???
649 when N_Indexed_Component | N_Selected_Component | N_Slice
=>
652 -- Fetch the original node when the prefix comes from the result
653 -- of expanding a function call since we want to find the level
654 -- of the original source call.
656 if not Comes_From_Source
(Pre
)
657 and then Nkind
(Original_Node
(Pre
)) = N_Function_Call
659 Pre
:= Original_Node
(Pre
);
662 -- When E is an indexed component or selected component and
663 -- the current Expr is a function call, we know that we are
664 -- looking at an expanded call in prefix notation.
666 if Nkind
(Expr
) = N_Function_Call
then
667 return Function_Call_Or_Allocator_Level
(Expr
);
669 -- If the prefix is a named access type, then we are dealing
670 -- with an implicit deferences. In that case the level is that
671 -- of the named access type in the prefix.
673 elsif Is_Named_Access_Type
(Etype
(Pre
)) then
674 return Make_Level_Literal
675 (Typ_Access_Level
(Etype
(Pre
)));
677 -- The current expression is a named access type, so there is no
678 -- reason to look at the prefix. Instead obtain the level of E's
679 -- named access type.
681 elsif Is_Named_Access_Type
(Etype
(E
)) then
682 return Make_Level_Literal
683 (Typ_Access_Level
(Etype
(E
)));
685 -- A nondiscriminant selected component where the component
686 -- is an anonymous access type means that its associated
687 -- level is that of the containing type - see RM 3.10.2 (16).
689 -- Note that when restriction No_Dynamic_Accessibility_Checks is
690 -- in effect we treat discriminant components as regular
694 (Nkind
(E
) = N_Selected_Component
695 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
696 and then Ekind
(Etype
(Pre
)) /= E_Anonymous_Access_Type
697 and then (not (Nkind
(Selector_Name
(E
)) in N_Has_Entity
698 and then Ekind
(Entity
(Selector_Name
(E
)))
701 -- The alternative accessibility models both treat
702 -- discriminants as regular components.
704 or else (No_Dynamic_Accessibility_Checks_Enabled
(E
)
705 and then Allow_Alt_Model
)))
707 -- Arrays featuring components of anonymous access components
708 -- get their corresponding level from their containing type's
712 (Nkind
(E
) = N_Indexed_Component
713 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
714 and then Ekind
(Etype
(Pre
)) in Array_Kind
715 and then Ekind
(Component_Type
(Base_Type
(Etype
(Pre
))))
716 = E_Anonymous_Access_Type
)
718 -- When restriction No_Dynamic_Accessibility_Checks is active
719 -- and -gnatd_b set, the level is that of the designated type.
722 and then No_Dynamic_Accessibility_Checks_Enabled
(E
)
723 and then Debug_Flag_Underscore_B
725 return Make_Level_Literal
726 (Typ_Access_Level
(Etype
(E
)));
729 -- Otherwise proceed normally
731 return Make_Level_Literal
732 (Typ_Access_Level
(Etype
(Prefix
(E
))));
734 -- The accessibility calculation routine that handles function
735 -- calls (Function_Call_Level) assumes, in the case the
736 -- result is of an anonymous access type, that the result will be
737 -- used "in its entirety" when the call is present within an
738 -- assignment or object declaration.
740 -- To properly handle cases where the result is not used in its
741 -- entirety, we test if the prefix of the component in question is
742 -- a function call, which tells us that one of its components has
743 -- been identified and is being accessed. Therefore we can
744 -- conclude that the result is not used "in its entirety"
745 -- according to RM 3.10.2 (10.2/3).
747 elsif Nkind
(Pre
) = N_Function_Call
748 and then not Is_Named_Access_Type
(Etype
(Pre
))
750 -- Dynamic checks are generated when we are within a return
751 -- value or we are in a function call within an anonymous
752 -- access discriminant constraint of a return object (signified
753 -- by In_Return_Context) on the side of the callee.
755 -- So, in this case, return a library accessibility level to
756 -- null out the check on the side of the caller.
758 if (In_Return_Value
(E
)
759 or else In_Return_Context
)
760 and then Level
/= Dynamic_Level
762 return Make_Level_Literal
763 (Scope_Depth
(Standard_Standard
));
766 return Make_Level_Literal
767 (Innermost_Master_Scope_Depth
(Expr
));
769 -- Otherwise, continue recursing over the expression prefixes
772 return Accessibility_Level
(Prefix
(E
));
775 -- Qualified expressions
777 when N_Qualified_Expression
=>
778 if Is_Named_Access_Type
(Etype
(E
)) then
779 return Make_Level_Literal
780 (Typ_Access_Level
(Etype
(E
)));
782 return Accessibility_Level
(Expression
(E
));
785 -- Handle function calls
787 when N_Function_Call
=>
788 return Function_Call_Or_Allocator_Level
(E
);
790 -- Explicit dereference accessibility level calculation
792 when N_Explicit_Dereference
=>
793 Pre
:= Original_Node
(Prefix
(E
));
795 -- The prefix is a named access type so the level is taken from
798 if Is_Named_Access_Type
(Etype
(Pre
)) then
799 return Make_Level_Literal
(Typ_Access_Level
(Etype
(Pre
)));
801 -- Otherwise, recurse deeper
804 return Accessibility_Level
(Prefix
(E
));
809 when N_Type_Conversion | N_Unchecked_Type_Conversion
=>
810 -- View conversions are special in that they require use to
811 -- inspect the expression of the type conversion.
813 -- Allocators of anonymous access types are internally generated,
814 -- so recurse deeper in that case as well.
816 if Is_View_Conversion
(E
)
817 or else Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
819 return Accessibility_Level
(Expression
(E
));
821 -- We don't care about the master if we are looking at a named
824 elsif Is_Named_Access_Type
(Etype
(E
)) then
825 return Make_Level_Literal
826 (Typ_Access_Level
(Etype
(E
)));
828 -- In section RM 3.10.2 (10/4) the accessibility rules for
829 -- aggregates and value conversions are outlined. Are these
830 -- followed in the case of initialization of an object ???
832 -- Should use Innermost_Master_Scope_Depth ???
835 return Accessibility_Level
(Current_Scope
);
838 -- Default to the type accessibility level for the type of the
839 -- expression's entity.
842 return Make_Level_Literal
(Typ_Access_Level
(Etype
(E
)));
844 end Accessibility_Level
;
846 -------------------------------
847 -- Apply_Accessibility_Check --
848 -------------------------------
850 procedure Apply_Accessibility_Check
853 Insert_Node
: Node_Id
)
855 Loc
: constant Source_Ptr
:= Sloc
(N
);
857 Check_Cond
: Node_Id
;
858 Param_Ent
: Entity_Id
:= Param_Entity
(N
);
859 Param_Level
: Node_Id
;
860 Type_Level
: Node_Id
;
863 -- Verify we haven't tried to add a dynamic accessibility check when we
866 pragma Assert
(not No_Dynamic_Accessibility_Checks_Enabled
(N
));
868 if Ada_Version
>= Ada_2012
869 and then No
(Param_Ent
)
870 and then Is_Entity_Name
(N
)
871 and then Ekind
(Entity
(N
)) in E_Constant | E_Variable
872 and then Present
(Effective_Extra_Accessibility
(Entity
(N
)))
874 Param_Ent
:= Entity
(N
);
875 while Present
(Renamed_Object
(Param_Ent
)) loop
876 -- Renamed_Object must return an Entity_Name here
877 -- because of preceding "Present (E_E_A (...))" test.
879 Param_Ent
:= Entity
(Renamed_Object
(Param_Ent
));
883 if Inside_A_Generic
then
886 -- Only apply the run-time check if the access parameter has an
887 -- associated extra access level parameter and when accessibility checks
890 elsif Present
(Param_Ent
)
891 and then Present
(Get_Dynamic_Accessibility
(Param_Ent
))
892 and then not Accessibility_Checks_Suppressed
(Param_Ent
)
893 and then not Accessibility_Checks_Suppressed
(Typ
)
895 -- Obtain the parameter's accessibility level
898 New_Occurrence_Of
(Get_Dynamic_Accessibility
(Param_Ent
), Loc
);
900 -- Use the dynamic accessibility parameter for the function's result
901 -- when one has been created instead of statically referring to the
902 -- deepest type level so as to appropriatly handle the rules for
903 -- RM 3.10.2 (10.1/3).
905 if Ekind
(Scope
(Param_Ent
)) = E_Function
906 and then In_Return_Value
(N
)
907 and then Ekind
(Typ
) = E_Anonymous_Access_Type
909 -- Associate the level of the result type to the extra result
910 -- accessibility parameter belonging to the current function.
912 if Present
(Extra_Accessibility_Of_Result
(Scope
(Param_Ent
))) then
915 (Extra_Accessibility_Of_Result
(Scope
(Param_Ent
)), Loc
);
917 -- In Ada 2005 and earlier modes, a result extra accessibility
918 -- parameter is not generated and no dynamic check is performed.
924 -- Otherwise get the type's accessibility level normally
928 Make_Integer_Literal
(Loc
, Deepest_Type_Access_Level
(Typ
));
931 -- Raise Program_Error if the accessibility level of the access
932 -- parameter is deeper than the level of the target access type.
936 Left_Opnd
=> Param_Level
,
937 Right_Opnd
=> Type_Level
);
939 Insert_Action
(Insert_Node
,
940 Make_Raise_Program_Error
(Loc
,
941 Condition
=> Check_Cond
,
942 Reason
=> PE_Accessibility_Check_Failed
));
944 Analyze_And_Resolve
(N
);
946 -- If constant folding has happened on the condition for the
947 -- generated error, then warn about it being unconditional.
949 if Nkind
(Check_Cond
) = N_Identifier
950 and then Entity
(Check_Cond
) = Standard_True
952 Error_Msg_Warn
:= SPARK_Mode
/= On
;
953 Error_Msg_N
("accessibility check fails<<", N
);
954 Error_Msg_N
("\Program_Error [<<", N
);
957 end Apply_Accessibility_Check
;
959 ---------------------------------------------
960 -- Apply_Accessibility_Check_For_Allocator --
961 ---------------------------------------------
963 procedure Apply_Accessibility_Check_For_Allocator
967 Built_In_Place
: Boolean := False)
969 Loc
: constant Source_Ptr
:= Sloc
(N
);
970 PtrT
: constant Entity_Id
:= Etype
(N
);
971 DesigT
: constant Entity_Id
:= Designated_Type
(PtrT
);
972 Pool_Id
: constant Entity_Id
:= Associated_Storage_Pool
(PtrT
);
980 if Ada_Version
>= Ada_2005
981 and then Is_Class_Wide_Type
(DesigT
)
982 and then Tagged_Type_Expansion
983 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
984 and then not No_Dynamic_Accessibility_Checks_Enabled
(Ref
)
986 (Type_Access_Level
(Etype
(Exp
)) > Type_Access_Level
(PtrT
)
988 (Is_Class_Wide_Type
(Etype
(Exp
))
989 and then Scope
(PtrT
) /= Current_Scope
))
991 -- If the allocator was built in place, Ref is already a reference
992 -- to the access object initialized to the result of the allocator
993 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
994 -- Remove_Side_Effects for cases where the build-in-place call may
995 -- still be the prefix of the reference (to avoid generating
996 -- duplicate calls). Otherwise, it is the entity associated with
997 -- the object containing the address of the allocated object.
999 if Built_In_Place
then
1000 Remove_Side_Effects
(Ref
);
1001 Obj_Ref
:= New_Copy_Tree
(Ref
);
1003 Obj_Ref
:= New_Occurrence_Of
(Ref
, Loc
);
1006 -- For access to interface types we must generate code to displace
1007 -- the pointer to the base of the object since the subsequent code
1008 -- references components located in the TSD of the object (which
1009 -- is associated with the primary dispatch table --see a-tags.ads)
1010 -- and also generates code invoking Free, which requires also a
1011 -- reference to the base of the unallocated object.
1013 if Is_Interface
(DesigT
) and then Tagged_Type_Expansion
then
1015 Unchecked_Convert_To
(Etype
(Obj_Ref
),
1016 Make_Function_Call
(Loc
,
1018 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
1019 Parameter_Associations
=> New_List
(
1020 Unchecked_Convert_To
(RTE
(RE_Address
),
1021 New_Copy_Tree
(Obj_Ref
)))));
1024 -- Step 1: Create the object clean up code
1028 -- Deallocate the object if the accessibility check fails. This is
1029 -- done only on targets or profiles that support deallocation.
1033 if RTE_Available
(RE_Free
) then
1034 Free_Stmt
:= Make_Free_Statement
(Loc
, New_Copy_Tree
(Obj_Ref
));
1035 Set_Storage_Pool
(Free_Stmt
, Pool_Id
);
1037 Append_To
(Stmts
, Free_Stmt
);
1039 -- The target or profile cannot deallocate objects
1045 -- Finalize the object if applicable. Generate:
1047 -- [Deep_]Finalize (Obj_Ref.all);
1049 if Needs_Finalization
(DesigT
)
1050 and then not No_Heap_Finalization
(PtrT
)
1055 Make_Explicit_Dereference
(Loc
, New_Copy
(Obj_Ref
)),
1058 -- Guard against a missing [Deep_]Finalize when the designated
1059 -- type was not properly frozen.
1061 if No
(Fin_Call
) then
1062 Fin_Call
:= Make_Null_Statement
(Loc
);
1065 -- When the target or profile supports deallocation, wrap the
1066 -- finalization call in a block to ensure proper deallocation even
1067 -- if finalization fails. Generate:
1077 if Present
(Free_Stmt
) then
1079 Make_Block_Statement
(Loc
,
1080 Handled_Statement_Sequence
=>
1081 Make_Handled_Sequence_Of_Statements
(Loc
,
1082 Statements
=> New_List
(Fin_Call
),
1084 Exception_Handlers
=> New_List
(
1085 Make_Exception_Handler
(Loc
,
1086 Exception_Choices
=> New_List
(
1087 Make_Others_Choice
(Loc
)),
1088 Statements
=> New_List
(
1089 New_Copy_Tree
(Free_Stmt
),
1090 Make_Raise_Statement
(Loc
))))));
1093 Prepend_To
(Stmts
, Fin_Call
);
1096 -- Signal the accessibility failure through a Program_Error
1099 Make_Raise_Program_Error
(Loc
,
1100 Reason
=> PE_Accessibility_Check_Failed
));
1102 -- Step 2: Create the accessibility comparison
1108 Make_Attribute_Reference
(Loc
,
1110 Attribute_Name
=> Name_Tag
);
1112 -- For tagged types, determine the accessibility level by looking at
1113 -- the type specific data of the dispatch table. Generate:
1115 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
1117 if Tagged_Type_Expansion
then
1118 Cond
:= Build_Get_Access_Level
(Loc
, Obj_Ref
);
1120 -- Use a runtime call to determine the accessibility level when
1121 -- compiling on virtual machine targets. Generate:
1123 -- Get_Access_Level (Ref'Tag)
1127 Make_Function_Call
(Loc
,
1129 New_Occurrence_Of
(RTE
(RE_Get_Access_Level
), Loc
),
1130 Parameter_Associations
=> New_List
(Obj_Ref
));
1136 Right_Opnd
=> Accessibility_Level
(N
, Dynamic_Level
));
1138 -- Due to the complexity and side effects of the check, utilize an if
1139 -- statement instead of the regular Program_Error circuitry.
1142 Make_Implicit_If_Statement
(N
,
1144 Then_Statements
=> Stmts
));
1146 end Apply_Accessibility_Check_For_Allocator
;
1148 ------------------------------------------
1149 -- Check_Return_Construct_Accessibility --
1150 ------------------------------------------
1152 procedure Check_Return_Construct_Accessibility
1153 (Return_Stmt
: Node_Id
;
1154 Stm_Entity
: Entity_Id
)
1156 Loc
: constant Source_Ptr
:= Sloc
(Return_Stmt
);
1157 Scope_Id
: constant Entity_Id
:= Return_Applies_To
(Stm_Entity
);
1159 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
1160 -- Function result subtype
1162 function First_Selector
(Assoc
: Node_Id
) return Node_Id
;
1163 -- Obtain the first selector or choice from a given association
1165 function Is_Formal_Of_Current_Function
1166 (Assoc_Expr
: Node_Id
) return Boolean;
1167 -- Predicate to test if a given expression associated with a
1168 -- discriminant is a formal parameter to the function in which the
1169 -- return construct we checking applies to.
1171 --------------------
1172 -- First_Selector --
1173 --------------------
1175 function First_Selector
(Assoc
: Node_Id
) return Node_Id
is
1177 if Nkind
(Assoc
) = N_Component_Association
then
1178 return First
(Choices
(Assoc
));
1180 elsif Nkind
(Assoc
) = N_Discriminant_Association
then
1181 return (First
(Selector_Names
(Assoc
)));
1184 raise Program_Error
;
1188 -----------------------------------
1189 -- Is_Formal_Of_Current_Function --
1190 -----------------------------------
1192 function Is_Formal_Of_Current_Function
1193 (Assoc_Expr
: Node_Id
) return Boolean is
1195 return Is_Entity_Name
(Assoc_Expr
)
1196 and then Enclosing_Subprogram
1197 (Entity
(Assoc_Expr
)) = Scope_Id
1198 and then Is_Formal
(Entity
(Assoc_Expr
));
1199 end Is_Formal_Of_Current_Function
;
1201 -- Local declarations
1203 Assoc
: Node_Id
:= Empty
;
1204 -- Assoc should perhaps be renamed and declared as a
1205 -- Node_Or_Entity_Id since it encompasses not only component and
1206 -- discriminant associations, but also discriminant components within
1207 -- a type declaration or subtype indication ???
1209 Assoc_Expr
: Node_Id
;
1210 Assoc_Present
: Boolean := False;
1212 Check_Cond
: Node_Id
;
1213 Unseen_Disc_Count
: Nat
:= 0;
1214 Seen_Discs
: Elist_Id
;
1216 First_Disc
: Entity_Id
;
1219 Return_Con
: Node_Id
;
1222 -- Start of processing for Check_Return_Construct_Accessibility
1225 -- Only perform checks on record types with access discriminants and
1226 -- non-internally generated functions.
1228 if not Is_Record_Type
(R_Type
)
1229 or else not Has_Anonymous_Access_Discriminant
(R_Type
)
1230 or else not Comes_From_Source
(Return_Stmt
)
1235 -- We are only interested in return statements
1237 if Nkind
(Return_Stmt
) not in
1238 N_Extended_Return_Statement | N_Simple_Return_Statement
1243 -- Fetch the object from the return statement, in the case of a
1244 -- simple return statement the expression is part of the node.
1246 if Nkind
(Return_Stmt
) = N_Extended_Return_Statement
then
1247 -- Obtain the object definition from the expanded extended return
1249 Return_Con
:= First
(Return_Object_Declarations
(Return_Stmt
));
1250 while Present
(Return_Con
) loop
1251 -- Inspect the original node to avoid object declarations
1252 -- expanded into renamings.
1254 if Nkind
(Original_Node
(Return_Con
)) = N_Object_Declaration
1255 and then Comes_From_Source
(Original_Node
(Return_Con
))
1260 Nlists
.Next
(Return_Con
);
1263 pragma Assert
(Present
(Return_Con
));
1265 -- Could be dealing with a renaming
1267 Return_Con
:= Original_Node
(Return_Con
);
1269 Return_Con
:= Expression
(Return_Stmt
);
1272 -- Obtain the accessibility levels of the expressions associated
1273 -- with all anonymous access discriminants, then generate a
1274 -- dynamic check or static error when relevant.
1276 -- Note the repeated use of Original_Node to avoid checking
1279 Unqual
:= Original_Node
(Unqualify
(Original_Node
(Return_Con
)));
1281 -- Get the corresponding declaration based on the return object's
1284 if Nkind
(Unqual
) = N_Identifier
1285 and then Nkind
(Parent
(Entity
(Unqual
)))
1286 in N_Object_Declaration
1287 | N_Object_Renaming_Declaration
1289 Obj_Decl
:= Original_Node
(Parent
(Entity
(Unqual
)));
1291 -- We were passed the object declaration directly, so use it
1293 elsif Nkind
(Unqual
) in N_Object_Declaration
1294 | N_Object_Renaming_Declaration
1298 -- Otherwise, we are looking at something else
1305 -- Hop up object renamings when present
1307 if Present
(Obj_Decl
)
1308 and then Nkind
(Obj_Decl
) = N_Object_Renaming_Declaration
1310 while Nkind
(Obj_Decl
) = N_Object_Renaming_Declaration
loop
1312 if Nkind
(Name
(Obj_Decl
)) not in N_Entity
then
1313 -- We may be looking at the expansion of iterators or
1314 -- some other internally generated construct, so it is safe
1315 -- to ignore checks ???
1317 if not Comes_From_Source
(Obj_Decl
) then
1321 Obj_Decl
:= Original_Node
1323 (Ultimate_Prefix
(Name
(Obj_Decl
))));
1325 -- Move up to the next declaration based on the object's name
1328 Obj_Decl
:= Original_Node
1329 (Declaration_Node
(Name
(Obj_Decl
)));
1334 -- Obtain the discriminant values from the return aggregate
1336 -- Do we cover extension aggregates correctly ???
1338 if Nkind
(Unqual
) = N_Aggregate
then
1339 if Present
(Expressions
(Unqual
)) then
1340 Assoc
:= First
(Expressions
(Unqual
));
1342 Assoc
:= First
(Component_Associations
(Unqual
));
1345 -- There is an object declaration for the return object
1347 elsif Present
(Obj_Decl
) then
1348 -- When a subtype indication is present in an object declaration
1349 -- it must contain the object's discriminants.
1351 if Nkind
(Object_Definition
(Obj_Decl
)) = N_Subtype_Indication
then
1355 (Object_Definition
(Obj_Decl
))));
1357 -- The object declaration contains an aggregate
1359 elsif Present
(Expression
(Obj_Decl
)) then
1361 if Nkind
(Unqualify
(Expression
(Obj_Decl
))) = N_Aggregate
then
1362 -- Grab the first associated discriminant expresion
1365 (Expressions
(Unqualify
(Expression
(Obj_Decl
))))
1369 (Unqualify
(Expression
(Obj_Decl
))));
1372 (Component_Associations
1373 (Unqualify
(Expression
(Obj_Decl
))));
1376 -- Otherwise, this is something else
1382 -- There are no supplied discriminants in the object declaration,
1383 -- so get them from the type definition since they must be default
1386 -- Do we handle constrained subtypes correctly ???
1388 elsif Nkind
(Unqual
) = N_Object_Declaration
then
1389 Assoc
:= First_Discriminant
1390 (Etype
(Object_Definition
(Obj_Decl
)));
1393 Assoc
:= First_Discriminant
(Etype
(Unqual
));
1396 -- When we are not looking at an aggregate or an identifier, return
1397 -- since any other construct (like a function call) is not
1398 -- applicable since checks will be performed on the side of the
1405 -- Obtain the discriminants so we know the actual type in case the
1406 -- value of their associated expression gets implicitly converted.
1408 if No
(Obj_Decl
) then
1409 pragma Assert
(Nkind
(Unqual
) = N_Aggregate
);
1411 Disc
:= First_Discriminant
(Etype
(Unqual
));
1414 Disc
:= First_Discriminant
1415 (Etype
(Defining_Identifier
(Obj_Decl
)));
1418 -- Preserve the first discriminant for checking named associations
1422 -- Count the number of discriminants for processing an aggregate
1423 -- which includes an others.
1426 while Present
(Disc
) loop
1427 Unseen_Disc_Count
:= Unseen_Disc_Count
+ 1;
1429 Next_Discriminant
(Disc
);
1432 Seen_Discs
:= New_Elmt_List
;
1434 -- Loop through each of the discriminants and check each expression
1435 -- associated with an anonymous access discriminant.
1437 -- When named associations occur in the return aggregate then
1438 -- discriminants can be in any order, so we need to ensure we do
1439 -- not continue to loop when all discriminants have been seen.
1442 while Present
(Assoc
)
1443 and then (Present
(Disc
) or else Assoc_Present
)
1444 and then Unseen_Disc_Count
> 0
1446 -- Handle named associations by searching through the names of
1447 -- the relevant discriminant components.
1450 in N_Component_Association | N_Discriminant_Association
1452 Assoc_Expr
:= Expression
(Assoc
);
1453 Assoc_Present
:= True;
1455 -- We currently don't handle box initialized discriminants,
1456 -- however, since default initialized anonymous access
1457 -- discriminants are a corner case, this is ok for now ???
1459 if Nkind
(Assoc
) = N_Component_Association
1460 and then Box_Present
(Assoc
)
1462 if Nkind
(First_Selector
(Assoc
)) = N_Others_Choice
then
1463 Unseen_Disc_Count
:= 0;
1466 -- When others is present we must identify a discriminant we
1467 -- haven't already seen so as to get the appropriate type for
1468 -- the static accessibility check.
1470 -- This works because all components within an others clause
1471 -- must have the same type.
1473 elsif Nkind
(First_Selector
(Assoc
)) = N_Others_Choice
then
1476 Outer
: while Present
(Disc
) loop
1478 Current_Seen_Disc
: Elmt_Id
;
1480 -- Move through the list of identified discriminants
1482 Current_Seen_Disc
:= First_Elmt
(Seen_Discs
);
1483 while Present
(Current_Seen_Disc
) loop
1484 -- Exit the loop when we found a match
1487 Chars
(Node
(Current_Seen_Disc
)) = Chars
(Disc
);
1489 Next_Elmt
(Current_Seen_Disc
);
1492 -- When we have exited the above loop without finding
1493 -- a match then we know that Disc has not been seen.
1495 exit Outer
when No
(Current_Seen_Disc
);
1498 Next_Discriminant
(Disc
);
1501 -- If we got to an others clause with a non-zero
1502 -- discriminant count there must be a discriminant left to
1505 pragma Assert
(Present
(Disc
));
1507 -- Set the unseen discriminant count to zero because we know
1508 -- an others clause sets all remaining components of an
1511 Unseen_Disc_Count
:= 0;
1513 -- Move through each of the selectors in the named association
1514 -- and obtain a discriminant for accessibility checking if one
1515 -- is referenced in the list. Also track which discriminants
1516 -- are referenced for the purpose of handling an others clause.
1520 Assoc_Choice
: Node_Id
;
1521 Curr_Disc
: Node_Id
;
1525 Curr_Disc
:= First_Disc
;
1526 while Present
(Curr_Disc
) loop
1527 -- Check each of the choices in the associations for a
1528 -- match to the name of the current discriminant.
1530 Assoc_Choice
:= First_Selector
(Assoc
);
1531 while Present
(Assoc_Choice
) loop
1532 -- When the name matches we track that we have seen
1533 -- the discriminant, but instead of exiting the
1534 -- loop we continue iterating to make sure all the
1535 -- discriminants within the named association get
1538 if Chars
(Assoc_Choice
) = Chars
(Curr_Disc
) then
1539 Append_Elmt
(Curr_Disc
, Seen_Discs
);
1542 Unseen_Disc_Count
:= Unseen_Disc_Count
- 1;
1545 Next
(Assoc_Choice
);
1548 Next_Discriminant
(Curr_Disc
);
1553 -- Unwrap the associated expression if we are looking at a default
1554 -- initialized type declaration. In this case Assoc is not really
1555 -- an association, but a component declaration. Should Assoc be
1556 -- renamed in some way to be more clear ???
1558 -- This occurs when the return object does not initialize
1559 -- discriminant and instead relies on the type declaration for
1560 -- their supplied values.
1562 elsif Nkind
(Assoc
) in N_Entity
1563 and then Ekind
(Assoc
) = E_Discriminant
1565 Append_Elmt
(Disc
, Seen_Discs
);
1567 Assoc_Expr
:= Discriminant_Default_Value
(Assoc
);
1568 Unseen_Disc_Count
:= Unseen_Disc_Count
- 1;
1570 -- Otherwise, there is nothing to do because Assoc is an
1571 -- expression within the return aggregate itself.
1574 Append_Elmt
(Disc
, Seen_Discs
);
1576 Assoc_Expr
:= Assoc
;
1577 Unseen_Disc_Count
:= Unseen_Disc_Count
- 1;
1580 -- Check the accessibility level of the expression when the
1581 -- discriminant is of an anonymous access type.
1583 if Present
(Assoc_Expr
)
1584 and then Present
(Disc
)
1585 and then Ekind
(Etype
(Disc
)) = E_Anonymous_Access_Type
1587 -- We disable the check when we have a tagged return type and
1588 -- the associated expression for the discriminant is a formal
1589 -- parameter since the check would require us to compare the
1590 -- accessibility level of Assoc_Expr to the level of the
1591 -- Extra_Accessibility_Of_Result of the function - which is
1592 -- currently disabled for functions with tagged return types.
1593 -- This may change in the future ???
1595 -- See Needs_Result_Accessibility_Level for details.
1598 (No
(Extra_Accessibility_Of_Result
(Scope_Id
))
1599 and then Is_Formal_Of_Current_Function
(Assoc_Expr
)
1600 and then Is_Tagged_Type
(Etype
(Scope_Id
)))
1602 -- Generate a dynamic check based on the extra accessibility of
1603 -- the result or the scope of the current function.
1607 Left_Opnd
=> Accessibility_Level
1608 (Expr
=> Assoc_Expr
,
1609 Level
=> Dynamic_Level
,
1610 In_Return_Context
=> True),
1612 (if Present
(Extra_Accessibility_Of_Result
(Scope_Id
))
1614 -- When Assoc_Expr is a formal we have to look at the
1615 -- extra accessibility-level formal associated with
1618 and then Is_Formal_Of_Current_Function
(Assoc_Expr
)
1621 (Extra_Accessibility_Of_Result
(Scope_Id
), Loc
)
1623 -- Otherwise, we compare the level of Assoc_Expr to the
1624 -- scope of the current function.
1627 Make_Integer_Literal
1628 (Loc
, Scope_Depth
(Scope
(Scope_Id
)))));
1630 Insert_Before_And_Analyze
(Return_Stmt
,
1631 Make_Raise_Program_Error
(Loc
,
1632 Condition
=> Check_Cond
,
1633 Reason
=> PE_Accessibility_Check_Failed
));
1635 -- If constant folding has happened on the condition for the
1636 -- generated error, then warn about it being unconditional when
1637 -- we know an error will be raised.
1639 if Nkind
(Check_Cond
) = N_Identifier
1640 and then Entity
(Check_Cond
) = Standard_True
1643 ("access discriminant in return object would be a dangling"
1644 & " reference", Return_Stmt
);
1648 -- Iterate over the discriminants, except when we have encountered
1649 -- a named association since the discriminant order becomes
1650 -- irrelevant in that case.
1652 if not Assoc_Present
then
1653 Next_Discriminant
(Disc
);
1656 -- Iterate over associations
1658 if not Is_List_Member
(Assoc
) then
1661 Nlists
.Next
(Assoc
);
1664 end Check_Return_Construct_Accessibility
;
1666 -------------------------------
1667 -- Deepest_Type_Access_Level --
1668 -------------------------------
1670 function Deepest_Type_Access_Level
1672 Allow_Alt_Model
: Boolean := True) return Uint
1675 if Ekind
(Typ
) = E_Anonymous_Access_Type
1676 and then not Is_Local_Anonymous_Access
(Typ
)
1677 and then Nkind
(Associated_Node_For_Itype
(Typ
)) = N_Object_Declaration
1679 -- No_Dynamic_Accessibility_Checks override for alternative
1680 -- accessibility model.
1683 and then No_Dynamic_Accessibility_Checks_Enabled
(Typ
)
1685 return Type_Access_Level
(Typ
, Allow_Alt_Model
);
1688 -- Typ is the type of an Ada 2012 stand-alone object of an anonymous
1692 Scope_Depth
(Enclosing_Dynamic_Scope
1693 (Defining_Identifier
1694 (Associated_Node_For_Itype
(Typ
))));
1696 -- For generic formal type, return Int'Last (infinite).
1697 -- See comment preceding Is_Generic_Type call in Type_Access_Level.
1699 elsif Is_Generic_Type
(Root_Type
(Typ
)) then
1700 return UI_From_Int
(Int
'Last);
1703 return Type_Access_Level
(Typ
, Allow_Alt_Model
);
1705 end Deepest_Type_Access_Level
;
1707 -----------------------------------
1708 -- Effective_Extra_Accessibility --
1709 -----------------------------------
1711 function Effective_Extra_Accessibility
(Id
: Entity_Id
) return Entity_Id
is
1713 if Present
(Renamed_Object
(Id
))
1714 and then Is_Entity_Name
(Renamed_Object
(Id
))
1716 return Effective_Extra_Accessibility
(Entity
(Renamed_Object
(Id
)));
1718 return Extra_Accessibility
(Id
);
1720 end Effective_Extra_Accessibility
;
1722 -------------------------------
1723 -- Get_Dynamic_Accessibility --
1724 -------------------------------
1726 function Get_Dynamic_Accessibility
(E
: Entity_Id
) return Entity_Id
is
1728 -- When minimum accessibility is set for E then we utilize it - except
1729 -- in a few edge cases like the expansion of select statements where
1730 -- generated subprogram may attempt to unnecessarily use a minimum
1731 -- accessibility object declared outside of scope.
1733 -- To avoid these situations where expansion may get complex we verify
1734 -- that the minimum accessibility object is within scope.
1737 and then Present
(Minimum_Accessibility
(E
))
1738 and then In_Open_Scopes
(Scope
(Minimum_Accessibility
(E
)))
1740 return Minimum_Accessibility
(E
);
1743 return Extra_Accessibility
(E
);
1744 end Get_Dynamic_Accessibility
;
1746 -----------------------
1747 -- Has_Access_Values --
1748 -----------------------
1750 function Has_Access_Values
(T
: Entity_Id
) return Boolean
1752 Typ
: constant Entity_Id
:= Underlying_Type
(T
);
1755 -- Case of a private type which is not completed yet. This can only
1756 -- happen in the case of a generic formal type appearing directly, or
1757 -- as a component of the type to which this function is being applied
1758 -- at the top level. Return False in this case, since we certainly do
1759 -- not know that the type contains access types.
1764 elsif Is_Access_Type
(Typ
) then
1767 elsif Is_Array_Type
(Typ
) then
1768 return Has_Access_Values
(Component_Type
(Typ
));
1770 elsif Is_Record_Type
(Typ
) then
1775 -- Loop to check components
1777 Comp
:= First_Component_Or_Discriminant
(Typ
);
1778 while Present
(Comp
) loop
1780 -- Check for access component, tag field does not count, even
1781 -- though it is implemented internally using an access type.
1783 if Has_Access_Values
(Etype
(Comp
))
1784 and then Chars
(Comp
) /= Name_uTag
1789 Next_Component_Or_Discriminant
(Comp
);
1798 end Has_Access_Values
;
1800 ---------------------------------------
1801 -- Has_Anonymous_Access_Discriminant --
1802 ---------------------------------------
1804 function Has_Anonymous_Access_Discriminant
(Typ
: Entity_Id
) return Boolean
1809 if not Has_Discriminants
(Typ
) then
1813 Disc
:= First_Discriminant
(Typ
);
1814 while Present
(Disc
) loop
1815 if Ekind
(Etype
(Disc
)) = E_Anonymous_Access_Type
then
1819 Next_Discriminant
(Disc
);
1823 end Has_Anonymous_Access_Discriminant
;
1825 --------------------------------------------
1826 -- Has_Unconstrained_Access_Discriminants --
1827 --------------------------------------------
1829 function Has_Unconstrained_Access_Discriminants
1830 (Subtyp
: Entity_Id
) return Boolean
1835 if Has_Discriminants
(Subtyp
)
1836 and then not Is_Constrained
(Subtyp
)
1838 Discr
:= First_Discriminant
(Subtyp
);
1839 while Present
(Discr
) loop
1840 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
then
1844 Next_Discriminant
(Discr
);
1849 end Has_Unconstrained_Access_Discriminants
;
1851 --------------------------------
1852 -- Is_Anonymous_Access_Actual --
1853 --------------------------------
1855 function Is_Anonymous_Access_Actual
(N
: Node_Id
) return Boolean is
1858 if Ekind
(Etype
(N
)) /= E_Anonymous_Access_Type
then
1864 and then Nkind
(Par
) in N_Case_Expression
1866 | N_Parameter_Association
1868 Par
:= Parent
(Par
);
1870 return Nkind
(Par
) in N_Subprogram_Call
;
1871 end Is_Anonymous_Access_Actual
;
1873 --------------------------------------
1874 -- Is_Special_Aliased_Formal_Access --
1875 --------------------------------------
1877 function Is_Special_Aliased_Formal_Access
1879 In_Return_Context
: Boolean := False) return Boolean
1881 Scop
: constant Entity_Id
:= Current_Subprogram
;
1883 -- Verify the expression is an access reference to 'Access within a
1884 -- return statement as this is the only time an explicitly aliased
1885 -- formal has different semantics.
1887 if Nkind
(Exp
) /= N_Attribute_Reference
1888 or else Get_Attribute_Id
(Attribute_Name
(Exp
)) /= Attribute_Access
1889 or else not (In_Return_Value
(Exp
)
1890 or else In_Return_Context
)
1891 or else not Needs_Result_Accessibility_Level
(Scop
)
1896 -- Check if the prefix of the reference is indeed an explicitly aliased
1897 -- formal parameter for the function Scop. Additionally, we must check
1898 -- that Scop returns an anonymous access type, otherwise the special
1899 -- rules dictating a need for a dynamic check are not in effect.
1901 return Is_Entity_Name
(Prefix
(Exp
))
1902 and then Is_Explicitly_Aliased
(Entity
(Prefix
(Exp
)));
1903 end Is_Special_Aliased_Formal_Access
;
1905 --------------------------------------
1906 -- Needs_Result_Accessibility_Level --
1907 --------------------------------------
1909 function Needs_Result_Accessibility_Level
1910 (Func_Id
: Entity_Id
) return Boolean
1912 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
1914 function Has_Unconstrained_Access_Discriminant_Component
1915 (Comp_Typ
: Entity_Id
) return Boolean;
1916 -- Returns True if any component of the type has an unconstrained access
1919 -----------------------------------------------------
1920 -- Has_Unconstrained_Access_Discriminant_Component --
1921 -----------------------------------------------------
1923 function Has_Unconstrained_Access_Discriminant_Component
1924 (Comp_Typ
: Entity_Id
) return Boolean
1927 if not Is_Limited_Type
(Comp_Typ
) then
1930 -- Only limited types can have access discriminants with
1933 elsif Has_Unconstrained_Access_Discriminants
(Comp_Typ
) then
1936 elsif Is_Array_Type
(Comp_Typ
) then
1937 return Has_Unconstrained_Access_Discriminant_Component
1938 (Underlying_Type
(Component_Type
(Comp_Typ
)));
1940 elsif Is_Record_Type
(Comp_Typ
) then
1945 Comp
:= First_Component
(Comp_Typ
);
1946 while Present
(Comp
) loop
1947 if Has_Unconstrained_Access_Discriminant_Component
1948 (Underlying_Type
(Etype
(Comp
)))
1953 Next_Component
(Comp
);
1959 end Has_Unconstrained_Access_Discriminant_Component
;
1961 Disable_Tagged_Cases
: constant Boolean := True;
1962 -- Flag used to temporarily disable a "True" result for tagged types.
1963 -- See comments further below for details.
1965 -- Start of processing for Needs_Result_Accessibility_Level
1968 -- False if completion unavailable, which can happen when we are
1969 -- analyzing an abstract subprogram or if the subprogram has
1970 -- delayed freezing.
1972 if No
(Func_Typ
) then
1975 -- False if not a function, also handle enum-lit renames case
1977 elsif Func_Typ
= Standard_Void_Type
1978 or else Is_Scalar_Type
(Func_Typ
)
1982 -- Handle a corner case, a cross-dialect subp renaming. For example,
1983 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
1984 -- an Ada 2005 (or earlier) unit references predefined run-time units.
1986 elsif Present
(Alias
(Func_Id
)) then
1988 -- Unimplemented: a cross-dialect subp renaming which does not set
1989 -- the Alias attribute (e.g., a rename of a dereference of an access
1990 -- to subprogram value). ???
1992 return Present
(Extra_Accessibility_Of_Result
(Alias
(Func_Id
)));
1994 -- Remaining cases require Ada 2012 mode, unless they are dispatching
1995 -- operations, since they may be overridden by Ada_2012 primitives.
1997 elsif Ada_Version
< Ada_2012
1998 and then not Is_Dispatching_Operation
(Func_Id
)
2002 -- Handle the situation where a result is an anonymous access type
2003 -- RM 3.10.2 (10.3/3).
2005 elsif Ekind
(Func_Typ
) = E_Anonymous_Access_Type
then
2008 -- In the case of, say, a null tagged record result type, the need for
2009 -- this extra parameter might not be obvious so this function returns
2010 -- True for all tagged types for compatibility reasons.
2012 -- A function with, say, a tagged null controlling result type might
2013 -- be overridden by a primitive of an extension having an access
2014 -- discriminant and the overrider and overridden must have compatible
2015 -- calling conventions (including implicitly declared parameters).
2017 -- Similarly, values of one access-to-subprogram type might designate
2018 -- both a primitive subprogram of a given type and a function which is,
2019 -- for example, not a primitive subprogram of any type. Again, this
2020 -- requires calling convention compatibility. It might be possible to
2021 -- solve these issues by introducing wrappers, but that is not the
2022 -- approach that was chosen.
2024 -- Note: Despite the reasoning noted above, the extra accessibility
2025 -- parameter for tagged types is disabled for performance reasons.
2027 elsif Is_Tagged_Type
(Func_Typ
) then
2028 return not Disable_Tagged_Cases
;
2030 elsif Has_Unconstrained_Access_Discriminants
(Func_Typ
) then
2033 elsif Has_Unconstrained_Access_Discriminant_Component
(Func_Typ
) then
2036 -- False for all other cases
2041 end Needs_Result_Accessibility_Level
;
2043 ------------------------------------------
2044 -- Prefix_With_Safe_Accessibility_Level --
2045 ------------------------------------------
2047 function Prefix_With_Safe_Accessibility_Level
2049 Typ
: Entity_Id
) return Boolean
2051 P
: constant Node_Id
:= Prefix
(N
);
2052 Aname
: constant Name_Id
:= Attribute_Name
(N
);
2053 Attr_Id
: constant Attribute_Id
:= Get_Attribute_Id
(Aname
);
2054 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
2056 function Safe_Value_Conversions
return Boolean;
2057 -- Return False if the prefix has a value conversion of an array type
2059 ----------------------------
2060 -- Safe_Value_Conversions --
2061 ----------------------------
2063 function Safe_Value_Conversions
return Boolean is
2068 if Nkind
(PP
) in N_Selected_Component | N_Indexed_Component
then
2071 elsif Comes_From_Source
(PP
)
2072 and then Nkind
(PP
) in N_Type_Conversion
2073 | N_Unchecked_Type_Conversion
2074 and then Is_Array_Type
(Etype
(PP
))
2078 elsif Comes_From_Source
(PP
)
2079 and then Nkind
(PP
) = N_Qualified_Expression
2080 and then Is_Array_Type
(Etype
(PP
))
2081 and then Nkind
(Original_Node
(Expression
(PP
))) in
2082 N_Aggregate | N_Extension_Aggregate
2092 end Safe_Value_Conversions
;
2094 -- Start of processing for Prefix_With_Safe_Accessibility_Level
2097 -- No check required for unchecked and unrestricted access
2099 if Attr_Id
= Attribute_Unchecked_Access
2100 or else Attr_Id
= Attribute_Unrestricted_Access
2104 -- Check value conversions
2106 elsif Ekind
(Btyp
) = E_General_Access_Type
2107 and then not Safe_Value_Conversions
2113 end Prefix_With_Safe_Accessibility_Level
;
2115 -----------------------------
2116 -- Subprogram_Access_Level --
2117 -----------------------------
2119 function Subprogram_Access_Level
(Subp
: Entity_Id
) return Uint
is
2121 if Present
(Alias
(Subp
)) then
2122 return Subprogram_Access_Level
(Alias
(Subp
));
2124 return Scope_Depth
(Enclosing_Dynamic_Scope
(Subp
));
2126 end Subprogram_Access_Level
;
2128 --------------------------------
2129 -- Static_Accessibility_Level --
2130 --------------------------------
2132 function Static_Accessibility_Level
2134 Level
: Static_Accessibility_Level_Kind
;
2135 In_Return_Context
: Boolean := False) return Uint
2139 (Accessibility_Level
(Expr
, Level
, In_Return_Context
));
2140 end Static_Accessibility_Level
;
2142 -----------------------
2143 -- Type_Access_Level --
2144 -----------------------
2146 function Type_Access_Level
2148 Allow_Alt_Model
: Boolean := True;
2149 Assoc_Ent
: Entity_Id
:= Empty
) return Uint
2151 Btyp
: Entity_Id
:= Base_Type
(Typ
);
2152 Def_Ent
: Entity_Id
;
2155 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
2156 -- simply use the level where the type is declared. This is true for
2157 -- stand-alone object declarations, and for anonymous access types
2158 -- associated with components the level is the same as that of the
2159 -- enclosing composite type. However, special treatment is needed for
2160 -- the cases of access parameters, return objects of an anonymous access
2161 -- type, and, in Ada 95, access discriminants of limited types.
2163 if Is_Access_Type
(Btyp
) then
2164 if Ekind
(Btyp
) = E_Anonymous_Access_Type
then
2165 -- No_Dynamic_Accessibility_Checks restriction override for
2166 -- alternative accessibility model.
2169 and then No_Dynamic_Accessibility_Checks_Enabled
(Btyp
)
2171 -- In the -gnatd_b model, the level of an anonymous access
2172 -- type is always that of the designated type.
2174 if Debug_Flag_Underscore_B
then
2175 return Type_Access_Level
2176 (Designated_Type
(Btyp
), Allow_Alt_Model
);
2179 -- When an anonymous access type's Assoc_Ent is specified,
2180 -- calculate the result based on the general accessibility
2183 -- We would like to use Associated_Node_For_Itype here instead,
2184 -- but in some cases it is not fine grained enough ???
2186 if Present
(Assoc_Ent
) then
2187 return Static_Accessibility_Level
2188 (Assoc_Ent
, Object_Decl_Level
);
2191 -- Otherwise take the context of the anonymous access type into
2194 -- Obtain the defining entity for the internally generated
2195 -- anonymous access type.
2197 Def_Ent
:= Defining_Entity_Or_Empty
2198 (Associated_Node_For_Itype
(Typ
));
2200 if Present
(Def_Ent
) then
2201 -- When the defining entity is a subprogram then we know the
2202 -- anonymous access type Typ has been generated to either
2203 -- describe an anonymous access type formal or an anonymous
2204 -- access result type.
2206 -- Since we are only interested in the formal case, avoid
2207 -- the anonymous access result type.
2209 if Is_Subprogram
(Def_Ent
)
2210 and then not (Ekind
(Def_Ent
) = E_Function
2211 and then Etype
(Def_Ent
) = Typ
)
2213 -- When the type comes from an anonymous access
2214 -- parameter, the level is that of the subprogram
2217 return Scope_Depth
(Def_Ent
);
2219 -- When the type is an access discriminant, the level is
2220 -- that of the type.
2222 elsif Ekind
(Def_Ent
) = E_Discriminant
then
2223 return Scope_Depth
(Scope
(Def_Ent
));
2227 -- If the type is a nonlocal anonymous access type (such as for
2228 -- an access parameter) we treat it as being declared at the
2229 -- library level to ensure that names such as X.all'access don't
2230 -- fail static accessibility checks.
2232 elsif not Is_Local_Anonymous_Access
(Typ
) then
2233 return Scope_Depth
(Standard_Standard
);
2235 -- If this is a return object, the accessibility level is that of
2236 -- the result subtype of the enclosing function. The test here is
2237 -- little complicated, because we have to account for extended
2238 -- return statements that have been rewritten as blocks, in which
2239 -- case we have to find and the Is_Return_Object attribute of the
2240 -- itype's associated object. It would be nice to find a way to
2241 -- simplify this test, but it doesn't seem worthwhile to add a new
2242 -- flag just for purposes of this test. ???
2244 elsif Ekind
(Scope
(Btyp
)) = E_Return_Statement
2247 and then Nkind
(Associated_Node_For_Itype
(Btyp
)) =
2248 N_Object_Declaration
2249 and then Is_Return_Object
2250 (Defining_Identifier
2251 (Associated_Node_For_Itype
(Btyp
))))
2257 Scop
:= Scope
(Scope
(Btyp
));
2258 while Present
(Scop
) loop
2259 exit when Ekind
(Scop
) = E_Function
;
2260 Scop
:= Scope
(Scop
);
2263 -- Treat the return object's type as having the level of the
2264 -- function's result subtype (as per RM05-6.5(5.3/2)).
2266 return Type_Access_Level
(Etype
(Scop
), Allow_Alt_Model
);
2271 Btyp
:= Root_Type
(Btyp
);
2273 -- The accessibility level of anonymous access types associated with
2274 -- discriminants is that of the current instance of the type, and
2275 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
2277 -- AI-402: access discriminants have accessibility based on the
2278 -- object rather than the type in Ada 2005, so the above paragraph
2281 -- ??? Needs completion with rules from AI-416
2283 if Ada_Version
<= Ada_95
2284 and then Ekind
(Typ
) = E_Anonymous_Access_Type
2285 and then Present
(Associated_Node_For_Itype
(Typ
))
2286 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
2287 N_Discriminant_Specification
2289 return Scope_Depth
(Enclosing_Dynamic_Scope
(Btyp
)) + 1;
2293 -- Return library level for a generic formal type. This is done because
2294 -- RM(10.3.2) says that "The statically deeper relationship does not
2295 -- apply to ... a descendant of a generic formal type". Rather than
2296 -- checking at each point where a static accessibility check is
2297 -- performed to see if we are dealing with a formal type, this rule is
2298 -- implemented by having Type_Access_Level and Deepest_Type_Access_Level
2299 -- return extreme values for a formal type; Deepest_Type_Access_Level
2300 -- returns Int'Last. By calling the appropriate function from among the
2301 -- two, we ensure that the static accessibility check will pass if we
2302 -- happen to run into a formal type. More specifically, we should call
2303 -- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
2304 -- call occurs as part of a static accessibility check and the error
2305 -- case is the case where the type's level is too shallow (as opposed
2308 if Is_Generic_Type
(Root_Type
(Btyp
)) then
2309 return Scope_Depth
(Standard_Standard
);
2312 return Scope_Depth
(Enclosing_Dynamic_Scope
(Btyp
));
2313 end Type_Access_Level
;