1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
118 - pre/post modify transformation
123 #include "coretypes.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
134 #include "function.h"
142 #include "splay-tree.h"
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
158 #define EH_USES(REGNO) 0
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
167 /* Nonzero if the second flow pass has completed. */
170 /* Maximum register number used in this function, plus one. */
174 /* Indexed by n, giving various register information */
176 varray_type reg_n_info
;
178 /* Size of a regset for the current function,
179 in (1) bytes and (2) elements. */
184 /* Regset of regs live when calls to `setjmp'-like functions happen. */
185 /* ??? Does this exist only for the setjmp-clobbered warning message? */
187 regset regs_live_at_setjmp
;
189 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190 that have to go in the same hard reg.
191 The first two regs in the list are a pair, and the next two
192 are another pair, etc. */
195 /* Callback that determines if it's ok for a function to have no
196 noreturn attribute. */
197 int (*lang_missing_noreturn_ok_p
) (tree
);
199 /* Set of registers that may be eliminable. These are handled specially
200 in updating regs_ever_live. */
202 static HARD_REG_SET elim_reg_set
;
204 /* Holds information for tracking conditional register life information. */
205 struct reg_cond_life_info
207 /* A boolean expression of conditions under which a register is dead. */
209 /* Conditions under which a register is dead at the basic block end. */
212 /* A boolean expression of conditions under which a register has been
216 /* ??? Could store mask of bytes that are dead, so that we could finally
217 track lifetimes of multi-word registers accessed via subregs. */
220 /* For use in communicating between propagate_block and its subroutines.
221 Holds all information needed to compute life and def-use information. */
223 struct propagate_block_info
225 /* The basic block we're considering. */
228 /* Bit N is set if register N is conditionally or unconditionally live. */
231 /* Bit N is set if register N is set this insn. */
234 /* Element N is the next insn that uses (hard or pseudo) register N
235 within the current basic block; or zero, if there is no such insn. */
238 /* Contains a list of all the MEMs we are tracking for dead store
242 /* If non-null, record the set of registers set unconditionally in the
246 /* If non-null, record the set of registers set conditionally in the
248 regset cond_local_set
;
250 #ifdef HAVE_conditional_execution
251 /* Indexed by register number, holds a reg_cond_life_info for each
252 register that is not unconditionally live or dead. */
253 splay_tree reg_cond_dead
;
255 /* Bit N is set if register N is in an expression in reg_cond_dead. */
259 /* The length of mem_set_list. */
260 int mem_set_list_len
;
262 /* Nonzero if the value of CC0 is live. */
265 /* Flags controlling the set of information propagate_block collects. */
267 /* Index of instruction being processed. */
271 /* Number of dead insns removed. */
274 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
275 where given register died. When the register is marked alive, we use the
276 information to compute amount of instructions life range cross.
277 (remember, we are walking backward). This can be computed as current
278 pbi->insn_num - reg_deaths[regno].
279 At the end of processing each basic block, the remaining live registers
280 are inspected and liferanges are increased same way so liverange of global
281 registers are computed correctly.
283 The array is maintained clear for dead registers, so it can be safely reused
284 for next basic block without expensive memset of the whole array after
285 reseting pbi->insn_num to 0. */
287 static int *reg_deaths
;
289 /* Maximum length of pbi->mem_set_list before we start dropping
290 new elements on the floor. */
291 #define MAX_MEM_SET_LIST_LEN 100
293 /* Forward declarations */
294 static int verify_wide_reg_1 (rtx
*, void *);
295 static void verify_wide_reg (int, basic_block
);
296 static void verify_local_live_at_start (regset
, basic_block
);
297 static void notice_stack_pointer_modification_1 (rtx
, rtx
, void *);
298 static void notice_stack_pointer_modification (rtx
);
299 static void mark_reg (rtx
, void *);
300 static void mark_regs_live_at_end (regset
);
301 static void calculate_global_regs_live (sbitmap
, sbitmap
, int);
302 static void propagate_block_delete_insn (rtx
);
303 static rtx
propagate_block_delete_libcall (rtx
, rtx
);
304 static int insn_dead_p (struct propagate_block_info
*, rtx
, int, rtx
);
305 static int libcall_dead_p (struct propagate_block_info
*, rtx
, rtx
);
306 static void mark_set_regs (struct propagate_block_info
*, rtx
, rtx
);
307 static void mark_set_1 (struct propagate_block_info
*, enum rtx_code
, rtx
,
309 static int find_regno_partial (rtx
*, void *);
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead (struct propagate_block_info
*, int, rtx
);
313 static void free_reg_cond_life_info (splay_tree_value
);
314 static int flush_reg_cond_reg_1 (splay_tree_node
, void *);
315 static void flush_reg_cond_reg (struct propagate_block_info
*, int);
316 static rtx
elim_reg_cond (rtx
, unsigned int);
317 static rtx
ior_reg_cond (rtx
, rtx
, int);
318 static rtx
not_reg_cond (rtx
);
319 static rtx
and_reg_cond (rtx
, rtx
, int);
322 static void attempt_auto_inc (struct propagate_block_info
*, rtx
, rtx
, rtx
,
324 static void find_auto_inc (struct propagate_block_info
*, rtx
, rtx
);
325 static int try_pre_increment_1 (struct propagate_block_info
*, rtx
);
326 static int try_pre_increment (rtx
, rtx
, HOST_WIDE_INT
);
328 static void mark_used_reg (struct propagate_block_info
*, rtx
, rtx
, rtx
);
329 static void mark_used_regs (struct propagate_block_info
*, rtx
, rtx
, rtx
);
330 void debug_flow_info (void);
331 static void add_to_mem_set_list (struct propagate_block_info
*, rtx
);
332 static int invalidate_mems_from_autoinc (rtx
*, void *);
333 static void invalidate_mems_from_set (struct propagate_block_info
*, rtx
);
334 static void clear_log_links (sbitmap
);
335 static int count_or_remove_death_notes_bb (basic_block
, int);
339 check_function_return_warnings (void)
341 if (warn_missing_noreturn
342 && !TREE_THIS_VOLATILE (cfun
->decl
)
343 && EXIT_BLOCK_PTR
->pred
== NULL
344 && (lang_missing_noreturn_ok_p
345 && !lang_missing_noreturn_ok_p (cfun
->decl
)))
346 warning ("function might be possible candidate for attribute `noreturn'");
348 /* If we have a path to EXIT, then we do return. */
349 if (TREE_THIS_VOLATILE (cfun
->decl
)
350 && EXIT_BLOCK_PTR
->pred
!= NULL
)
351 warning ("`noreturn' function does return");
353 /* If the clobber_return_insn appears in some basic block, then we
354 do reach the end without returning a value. */
355 else if (warn_return_type
356 && cfun
->x_clobber_return_insn
!= NULL
357 && EXIT_BLOCK_PTR
->pred
!= NULL
)
359 int max_uid
= get_max_uid ();
361 /* If clobber_return_insn was excised by jump1, then renumber_insns
362 can make max_uid smaller than the number still recorded in our rtx.
363 That's fine, since this is a quick way of verifying that the insn
364 is no longer in the chain. */
365 if (INSN_UID (cfun
->x_clobber_return_insn
) < max_uid
)
369 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
370 if (insn
== cfun
->x_clobber_return_insn
)
372 warning ("control reaches end of non-void function");
379 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
380 note associated with the BLOCK. */
383 first_insn_after_basic_block_note (basic_block block
)
387 /* Get the first instruction in the block. */
388 insn
= BB_HEAD (block
);
390 if (insn
== NULL_RTX
)
392 if (GET_CODE (insn
) == CODE_LABEL
)
393 insn
= NEXT_INSN (insn
);
394 if (!NOTE_INSN_BASIC_BLOCK_P (insn
))
397 return NEXT_INSN (insn
);
400 /* Perform data flow analysis.
401 F is the first insn of the function; FLAGS is a set of PROP_* flags
402 to be used in accumulating flow info. */
405 life_analysis (rtx f
, FILE *file
, int flags
)
407 #ifdef ELIMINABLE_REGS
409 static const struct {const int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
412 /* Record which registers will be eliminated. We use this in
415 CLEAR_HARD_REG_SET (elim_reg_set
);
417 #ifdef ELIMINABLE_REGS
418 for (i
= 0; i
< (int) ARRAY_SIZE (eliminables
); i
++)
419 SET_HARD_REG_BIT (elim_reg_set
, eliminables
[i
].from
);
421 SET_HARD_REG_BIT (elim_reg_set
, FRAME_POINTER_REGNUM
);
425 #ifdef CANNOT_CHANGE_MODE_CLASS
426 if (flags
& PROP_REG_INFO
)
427 bitmap_initialize (&subregs_of_mode
, 1);
431 flags
&= ~(PROP_LOG_LINKS
| PROP_AUTOINC
| PROP_ALLOW_CFG_CHANGES
);
433 /* The post-reload life analysis have (on a global basis) the same
434 registers live as was computed by reload itself. elimination
435 Otherwise offsets and such may be incorrect.
437 Reload will make some registers as live even though they do not
440 We don't want to create new auto-incs after reload, since they
441 are unlikely to be useful and can cause problems with shared
443 if (reload_completed
)
444 flags
&= ~(PROP_REG_INFO
| PROP_AUTOINC
);
446 /* We want alias analysis information for local dead store elimination. */
447 if (optimize
&& (flags
& PROP_SCAN_DEAD_STORES
))
448 init_alias_analysis ();
450 /* Always remove no-op moves. Do this before other processing so
451 that we don't have to keep re-scanning them. */
452 delete_noop_moves (f
);
454 /* Some targets can emit simpler epilogues if they know that sp was
455 not ever modified during the function. After reload, of course,
456 we've already emitted the epilogue so there's no sense searching. */
457 if (! reload_completed
)
458 notice_stack_pointer_modification (f
);
460 /* Allocate and zero out data structures that will record the
461 data from lifetime analysis. */
462 allocate_reg_life_data ();
463 allocate_bb_life_data ();
465 /* Find the set of registers live on function exit. */
466 mark_regs_live_at_end (EXIT_BLOCK_PTR
->global_live_at_start
);
468 /* "Update" life info from zero. It'd be nice to begin the
469 relaxation with just the exit and noreturn blocks, but that set
470 is not immediately handy. */
472 if (flags
& PROP_REG_INFO
)
474 memset (regs_ever_live
, 0, sizeof (regs_ever_live
));
475 memset (regs_asm_clobbered
, 0, sizeof (regs_asm_clobbered
));
477 update_life_info (NULL
, UPDATE_LIFE_GLOBAL
, flags
);
485 if (optimize
&& (flags
& PROP_SCAN_DEAD_STORES
))
486 end_alias_analysis ();
489 dump_flow_info (file
);
491 free_basic_block_vars (1);
493 /* Removing dead insns should have made jumptables really dead. */
494 delete_dead_jumptables ();
497 /* A subroutine of verify_wide_reg, called through for_each_rtx.
498 Search for REGNO. If found, return 2 if it is not wider than
502 verify_wide_reg_1 (rtx
*px
, void *pregno
)
505 unsigned int regno
= *(int *) pregno
;
507 if (GET_CODE (x
) == REG
&& REGNO (x
) == regno
)
509 if (GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
)
516 /* A subroutine of verify_local_live_at_start. Search through insns
517 of BB looking for register REGNO. */
520 verify_wide_reg (int regno
, basic_block bb
)
522 rtx head
= BB_HEAD (bb
), end
= BB_END (bb
);
528 int r
= for_each_rtx (&PATTERN (head
), verify_wide_reg_1
, ®no
);
536 head
= NEXT_INSN (head
);
541 fprintf (rtl_dump_file
, "Register %d died unexpectedly.\n", regno
);
542 dump_bb (bb
, rtl_dump_file
, 0);
547 /* A subroutine of update_life_info. Verify that there are no untoward
548 changes in live_at_start during a local update. */
551 verify_local_live_at_start (regset new_live_at_start
, basic_block bb
)
553 if (reload_completed
)
555 /* After reload, there are no pseudos, nor subregs of multi-word
556 registers. The regsets should exactly match. */
557 if (! REG_SET_EQUAL_P (new_live_at_start
, bb
->global_live_at_start
))
561 fprintf (rtl_dump_file
,
562 "live_at_start mismatch in bb %d, aborting\nNew:\n",
564 debug_bitmap_file (rtl_dump_file
, new_live_at_start
);
565 fputs ("Old:\n", rtl_dump_file
);
566 dump_bb (bb
, rtl_dump_file
, 0);
575 /* Find the set of changed registers. */
576 XOR_REG_SET (new_live_at_start
, bb
->global_live_at_start
);
578 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start
, 0, i
,
580 /* No registers should die. */
581 if (REGNO_REG_SET_P (bb
->global_live_at_start
, i
))
585 fprintf (rtl_dump_file
,
586 "Register %d died unexpectedly.\n", i
);
587 dump_bb (bb
, rtl_dump_file
, 0);
592 /* Verify that the now-live register is wider than word_mode. */
593 verify_wide_reg (i
, bb
);
598 /* Updates life information starting with the basic blocks set in BLOCKS.
599 If BLOCKS is null, consider it to be the universal set.
601 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
602 we are only expecting local modifications to basic blocks. If we find
603 extra registers live at the beginning of a block, then we either killed
604 useful data, or we have a broken split that wants data not provided.
605 If we find registers removed from live_at_start, that means we have
606 a broken peephole that is killing a register it shouldn't.
608 ??? This is not true in one situation -- when a pre-reload splitter
609 generates subregs of a multi-word pseudo, current life analysis will
610 lose the kill. So we _can_ have a pseudo go live. How irritating.
612 It is also not true when a peephole decides that it doesn't need one
613 or more of the inputs.
615 Including PROP_REG_INFO does not properly refresh regs_ever_live
616 unless the caller resets it to zero. */
619 update_life_info (sbitmap blocks
, enum update_life_extent extent
, int prop_flags
)
622 regset_head tmp_head
;
624 int stabilized_prop_flags
= prop_flags
;
627 tmp
= INITIALIZE_REG_SET (tmp_head
);
630 timevar_push ((extent
== UPDATE_LIFE_LOCAL
|| blocks
)
631 ? TV_LIFE_UPDATE
: TV_LIFE
);
633 /* Changes to the CFG are only allowed when
634 doing a global update for the entire CFG. */
635 if ((prop_flags
& PROP_ALLOW_CFG_CHANGES
)
636 && (extent
== UPDATE_LIFE_LOCAL
|| blocks
))
639 /* For a global update, we go through the relaxation process again. */
640 if (extent
!= UPDATE_LIFE_LOCAL
)
646 calculate_global_regs_live (blocks
, blocks
,
647 prop_flags
& (PROP_SCAN_DEAD_CODE
648 | PROP_SCAN_DEAD_STORES
649 | PROP_ALLOW_CFG_CHANGES
));
651 if ((prop_flags
& (PROP_KILL_DEAD_CODE
| PROP_ALLOW_CFG_CHANGES
))
652 != (PROP_KILL_DEAD_CODE
| PROP_ALLOW_CFG_CHANGES
))
655 /* Removing dead code may allow the CFG to be simplified which
656 in turn may allow for further dead code detection / removal. */
657 FOR_EACH_BB_REVERSE (bb
)
659 COPY_REG_SET (tmp
, bb
->global_live_at_end
);
660 changed
|= propagate_block (bb
, tmp
, NULL
, NULL
,
661 prop_flags
& (PROP_SCAN_DEAD_CODE
662 | PROP_SCAN_DEAD_STORES
663 | PROP_KILL_DEAD_CODE
));
666 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
667 subsequent propagate_block calls, since removing or acting as
668 removing dead code can affect global register liveness, which
669 is supposed to be finalized for this call after this loop. */
670 stabilized_prop_flags
671 &= ~(PROP_SCAN_DEAD_CODE
| PROP_SCAN_DEAD_STORES
672 | PROP_KILL_DEAD_CODE
);
677 /* We repeat regardless of what cleanup_cfg says. If there were
678 instructions deleted above, that might have been only a
679 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
680 Further improvement may be possible. */
681 cleanup_cfg (CLEANUP_EXPENSIVE
);
683 /* Zap the life information from the last round. If we don't
684 do this, we can wind up with registers that no longer appear
685 in the code being marked live at entry, which twiggs bogus
686 warnings from regno_uninitialized. */
689 CLEAR_REG_SET (bb
->global_live_at_start
);
690 CLEAR_REG_SET (bb
->global_live_at_end
);
694 /* If asked, remove notes from the blocks we'll update. */
695 if (extent
== UPDATE_LIFE_GLOBAL_RM_NOTES
)
696 count_or_remove_death_notes (blocks
, 1);
699 /* Clear log links in case we are asked to (re)compute them. */
700 if (prop_flags
& PROP_LOG_LINKS
)
701 clear_log_links (blocks
);
705 EXECUTE_IF_SET_IN_SBITMAP (blocks
, 0, i
,
707 bb
= BASIC_BLOCK (i
);
709 COPY_REG_SET (tmp
, bb
->global_live_at_end
);
710 propagate_block (bb
, tmp
, NULL
, NULL
, stabilized_prop_flags
);
712 if (extent
== UPDATE_LIFE_LOCAL
)
713 verify_local_live_at_start (tmp
, bb
);
718 FOR_EACH_BB_REVERSE (bb
)
720 COPY_REG_SET (tmp
, bb
->global_live_at_end
);
722 propagate_block (bb
, tmp
, NULL
, NULL
, stabilized_prop_flags
);
724 if (extent
== UPDATE_LIFE_LOCAL
)
725 verify_local_live_at_start (tmp
, bb
);
731 if (prop_flags
& PROP_REG_INFO
)
733 /* The only pseudos that are live at the beginning of the function
734 are those that were not set anywhere in the function. local-alloc
735 doesn't know how to handle these correctly, so mark them as not
736 local to any one basic block. */
737 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR
->global_live_at_end
,
738 FIRST_PSEUDO_REGISTER
, i
,
739 { REG_BASIC_BLOCK (i
) = REG_BLOCK_GLOBAL
; });
741 /* We have a problem with any pseudoreg that lives across the setjmp.
742 ANSI says that if a user variable does not change in value between
743 the setjmp and the longjmp, then the longjmp preserves it. This
744 includes longjmp from a place where the pseudo appears dead.
745 (In principle, the value still exists if it is in scope.)
746 If the pseudo goes in a hard reg, some other value may occupy
747 that hard reg where this pseudo is dead, thus clobbering the pseudo.
748 Conclusion: such a pseudo must not go in a hard reg. */
749 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp
,
750 FIRST_PSEUDO_REGISTER
, i
,
752 if (regno_reg_rtx
[i
] != 0)
754 REG_LIVE_LENGTH (i
) = -1;
755 REG_BASIC_BLOCK (i
) = REG_BLOCK_UNKNOWN
;
764 timevar_pop ((extent
== UPDATE_LIFE_LOCAL
|| blocks
)
765 ? TV_LIFE_UPDATE
: TV_LIFE
);
766 if (ndead
&& rtl_dump_file
)
767 fprintf (rtl_dump_file
, "deleted %i dead insns\n", ndead
);
771 /* Update life information in all blocks where BB_DIRTY is set. */
774 update_life_info_in_dirty_blocks (enum update_life_extent extent
, int prop_flags
)
776 sbitmap update_life_blocks
= sbitmap_alloc (last_basic_block
);
781 sbitmap_zero (update_life_blocks
);
784 if (extent
== UPDATE_LIFE_LOCAL
)
786 if (bb
->flags
& BB_DIRTY
)
788 SET_BIT (update_life_blocks
, bb
->index
);
794 /* ??? Bootstrap with -march=pentium4 fails to terminate
795 with only a partial life update. */
796 SET_BIT (update_life_blocks
, bb
->index
);
797 if (bb
->flags
& BB_DIRTY
)
803 retval
= update_life_info (update_life_blocks
, extent
, prop_flags
);
805 sbitmap_free (update_life_blocks
);
809 /* Free the variables allocated by find_basic_blocks.
811 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
814 free_basic_block_vars (int keep_head_end_p
)
816 if (! keep_head_end_p
)
818 if (basic_block_info
)
821 VARRAY_FREE (basic_block_info
);
824 last_basic_block
= 0;
826 ENTRY_BLOCK_PTR
->aux
= NULL
;
827 ENTRY_BLOCK_PTR
->global_live_at_end
= NULL
;
828 EXIT_BLOCK_PTR
->aux
= NULL
;
829 EXIT_BLOCK_PTR
->global_live_at_start
= NULL
;
833 /* Delete any insns that copy a register to itself. */
836 delete_noop_moves (rtx f ATTRIBUTE_UNUSED
)
844 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
846 next
= NEXT_INSN (insn
);
847 if (INSN_P (insn
) && noop_move_p (insn
))
851 /* If we're about to remove the first insn of a libcall
852 then move the libcall note to the next real insn and
853 update the retval note. */
854 if ((note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
855 && XEXP (note
, 0) != insn
)
857 rtx new_libcall_insn
= next_real_insn (insn
);
858 rtx retval_note
= find_reg_note (XEXP (note
, 0),
859 REG_RETVAL
, NULL_RTX
);
860 REG_NOTES (new_libcall_insn
)
861 = gen_rtx_INSN_LIST (REG_LIBCALL
, XEXP (note
, 0),
862 REG_NOTES (new_libcall_insn
));
863 XEXP (retval_note
, 0) = new_libcall_insn
;
866 delete_insn_and_edges (insn
);
871 if (nnoops
&& rtl_dump_file
)
872 fprintf (rtl_dump_file
, "deleted %i noop moves", nnoops
);
876 /* Delete any jump tables never referenced. We can't delete them at the
877 time of removing tablejump insn as they are referenced by the preceding
878 insns computing the destination, so we delay deleting and garbagecollect
879 them once life information is computed. */
881 delete_dead_jumptables (void)
884 for (insn
= get_insns (); insn
; insn
= next
)
886 next
= NEXT_INSN (insn
);
887 if (GET_CODE (insn
) == CODE_LABEL
888 && LABEL_NUSES (insn
) == LABEL_PRESERVE_P (insn
)
889 && GET_CODE (next
) == JUMP_INSN
890 && (GET_CODE (PATTERN (next
)) == ADDR_VEC
891 || GET_CODE (PATTERN (next
)) == ADDR_DIFF_VEC
))
894 fprintf (rtl_dump_file
, "Dead jumptable %i removed\n", INSN_UID (insn
));
895 delete_insn (NEXT_INSN (insn
));
897 next
= NEXT_INSN (next
);
902 /* Determine if the stack pointer is constant over the life of the function.
903 Only useful before prologues have been emitted. */
906 notice_stack_pointer_modification_1 (rtx x
, rtx pat ATTRIBUTE_UNUSED
,
907 void *data ATTRIBUTE_UNUSED
)
909 if (x
== stack_pointer_rtx
910 /* The stack pointer is only modified indirectly as the result
911 of a push until later in flow. See the comments in rtl.texi
912 regarding Embedded Side-Effects on Addresses. */
913 || (GET_CODE (x
) == MEM
914 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == 'a'
915 && XEXP (XEXP (x
, 0), 0) == stack_pointer_rtx
))
916 current_function_sp_is_unchanging
= 0;
920 notice_stack_pointer_modification (rtx f
)
924 /* Assume that the stack pointer is unchanging if alloca hasn't
926 current_function_sp_is_unchanging
= !current_function_calls_alloca
;
927 if (! current_function_sp_is_unchanging
)
930 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
934 /* Check if insn modifies the stack pointer. */
935 note_stores (PATTERN (insn
), notice_stack_pointer_modification_1
,
937 if (! current_function_sp_is_unchanging
)
943 /* Mark a register in SET. Hard registers in large modes get all
944 of their component registers set as well. */
947 mark_reg (rtx reg
, void *xset
)
949 regset set
= (regset
) xset
;
950 int regno
= REGNO (reg
);
952 if (GET_MODE (reg
) == BLKmode
)
955 SET_REGNO_REG_SET (set
, regno
);
956 if (regno
< FIRST_PSEUDO_REGISTER
)
958 int n
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
960 SET_REGNO_REG_SET (set
, regno
+ n
);
964 /* Mark those regs which are needed at the end of the function as live
965 at the end of the last basic block. */
968 mark_regs_live_at_end (regset set
)
972 /* If exiting needs the right stack value, consider the stack pointer
973 live at the end of the function. */
974 if ((HAVE_epilogue
&& epilogue_completed
)
975 || ! EXIT_IGNORE_STACK
976 || (! FRAME_POINTER_REQUIRED
977 && ! current_function_calls_alloca
978 && flag_omit_frame_pointer
)
979 || current_function_sp_is_unchanging
)
981 SET_REGNO_REG_SET (set
, STACK_POINTER_REGNUM
);
984 /* Mark the frame pointer if needed at the end of the function. If
985 we end up eliminating it, it will be removed from the live list
986 of each basic block by reload. */
988 if (! reload_completed
|| frame_pointer_needed
)
990 SET_REGNO_REG_SET (set
, FRAME_POINTER_REGNUM
);
991 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
992 /* If they are different, also mark the hard frame pointer as live. */
993 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM
))
994 SET_REGNO_REG_SET (set
, HARD_FRAME_POINTER_REGNUM
);
998 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
999 /* Many architectures have a GP register even without flag_pic.
1000 Assume the pic register is not in use, or will be handled by
1001 other means, if it is not fixed. */
1002 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
1003 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
1004 SET_REGNO_REG_SET (set
, PIC_OFFSET_TABLE_REGNUM
);
1007 /* Mark all global registers, and all registers used by the epilogue
1008 as being live at the end of the function since they may be
1009 referenced by our caller. */
1010 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1011 if (global_regs
[i
] || EPILOGUE_USES (i
))
1012 SET_REGNO_REG_SET (set
, i
);
1014 if (HAVE_epilogue
&& epilogue_completed
)
1016 /* Mark all call-saved registers that we actually used. */
1017 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1018 if (regs_ever_live
[i
] && ! LOCAL_REGNO (i
)
1019 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1020 SET_REGNO_REG_SET (set
, i
);
1023 #ifdef EH_RETURN_DATA_REGNO
1024 /* Mark the registers that will contain data for the handler. */
1025 if (reload_completed
&& current_function_calls_eh_return
)
1028 unsigned regno
= EH_RETURN_DATA_REGNO(i
);
1029 if (regno
== INVALID_REGNUM
)
1031 SET_REGNO_REG_SET (set
, regno
);
1034 #ifdef EH_RETURN_STACKADJ_RTX
1035 if ((! HAVE_epilogue
|| ! epilogue_completed
)
1036 && current_function_calls_eh_return
)
1038 rtx tmp
= EH_RETURN_STACKADJ_RTX
;
1039 if (tmp
&& REG_P (tmp
))
1040 mark_reg (tmp
, set
);
1043 #ifdef EH_RETURN_HANDLER_RTX
1044 if ((! HAVE_epilogue
|| ! epilogue_completed
)
1045 && current_function_calls_eh_return
)
1047 rtx tmp
= EH_RETURN_HANDLER_RTX
;
1048 if (tmp
&& REG_P (tmp
))
1049 mark_reg (tmp
, set
);
1053 /* Mark function return value. */
1054 diddle_return_value (mark_reg
, set
);
1057 /* Propagate global life info around the graph of basic blocks. Begin
1058 considering blocks with their corresponding bit set in BLOCKS_IN.
1059 If BLOCKS_IN is null, consider it the universal set.
1061 BLOCKS_OUT is set for every block that was changed. */
1064 calculate_global_regs_live (sbitmap blocks_in
, sbitmap blocks_out
, int flags
)
1066 basic_block
*queue
, *qhead
, *qtail
, *qend
, bb
;
1067 regset tmp
, new_live_at_end
, invalidated_by_call
;
1068 regset_head tmp_head
, invalidated_by_call_head
;
1069 regset_head new_live_at_end_head
;
1072 /* Some passes used to forget clear aux field of basic block causing
1073 sick behavior here. */
1074 #ifdef ENABLE_CHECKING
1075 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
1080 tmp
= INITIALIZE_REG_SET (tmp_head
);
1081 new_live_at_end
= INITIALIZE_REG_SET (new_live_at_end_head
);
1082 invalidated_by_call
= INITIALIZE_REG_SET (invalidated_by_call_head
);
1084 /* Inconveniently, this is only readily available in hard reg set form. */
1085 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1086 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1087 SET_REGNO_REG_SET (invalidated_by_call
, i
);
1089 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1090 because the `head == tail' style test for an empty queue doesn't
1091 work with a full queue. */
1092 queue
= xmalloc ((n_basic_blocks
+ 2) * sizeof (*queue
));
1094 qhead
= qend
= queue
+ n_basic_blocks
+ 2;
1096 /* Queue the blocks set in the initial mask. Do this in reverse block
1097 number order so that we are more likely for the first round to do
1098 useful work. We use AUX non-null to flag that the block is queued. */
1102 if (TEST_BIT (blocks_in
, bb
->index
))
1117 /* We clean aux when we remove the initially-enqueued bbs, but we
1118 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1120 ENTRY_BLOCK_PTR
->aux
= EXIT_BLOCK_PTR
->aux
= NULL
;
1123 sbitmap_zero (blocks_out
);
1125 /* We work through the queue until there are no more blocks. What
1126 is live at the end of this block is precisely the union of what
1127 is live at the beginning of all its successors. So, we set its
1128 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1129 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1130 this block by walking through the instructions in this block in
1131 reverse order and updating as we go. If that changed
1132 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1133 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1135 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1136 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1137 must either be live at the end of the block, or used within the
1138 block. In the latter case, it will certainly never disappear
1139 from GLOBAL_LIVE_AT_START. In the former case, the register
1140 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1141 for one of the successor blocks. By induction, that cannot
1143 while (qhead
!= qtail
)
1145 int rescan
, changed
;
1154 /* Begin by propagating live_at_start from the successor blocks. */
1155 CLEAR_REG_SET (new_live_at_end
);
1158 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
1160 basic_block sb
= e
->dest
;
1162 /* Call-clobbered registers die across exception and
1164 /* ??? Abnormal call edges ignored for the moment, as this gets
1165 confused by sibling call edges, which crashes reg-stack. */
1166 if (e
->flags
& EDGE_EH
)
1168 bitmap_operation (tmp
, sb
->global_live_at_start
,
1169 invalidated_by_call
, BITMAP_AND_COMPL
);
1170 IOR_REG_SET (new_live_at_end
, tmp
);
1173 IOR_REG_SET (new_live_at_end
, sb
->global_live_at_start
);
1175 /* If a target saves one register in another (instead of on
1176 the stack) the save register will need to be live for EH. */
1177 if (e
->flags
& EDGE_EH
)
1178 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1180 SET_REGNO_REG_SET (new_live_at_end
, i
);
1184 /* This might be a noreturn function that throws. And
1185 even if it isn't, getting the unwind info right helps
1187 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1189 SET_REGNO_REG_SET (new_live_at_end
, i
);
1192 /* The all-important stack pointer must always be live. */
1193 SET_REGNO_REG_SET (new_live_at_end
, STACK_POINTER_REGNUM
);
1195 /* Before reload, there are a few registers that must be forced
1196 live everywhere -- which might not already be the case for
1197 blocks within infinite loops. */
1198 if (! reload_completed
)
1200 /* Any reference to any pseudo before reload is a potential
1201 reference of the frame pointer. */
1202 SET_REGNO_REG_SET (new_live_at_end
, FRAME_POINTER_REGNUM
);
1204 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1205 /* Pseudos with argument area equivalences may require
1206 reloading via the argument pointer. */
1207 if (fixed_regs
[ARG_POINTER_REGNUM
])
1208 SET_REGNO_REG_SET (new_live_at_end
, ARG_POINTER_REGNUM
);
1211 /* Any constant, or pseudo with constant equivalences, may
1212 require reloading from memory using the pic register. */
1213 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
1214 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
1215 SET_REGNO_REG_SET (new_live_at_end
, PIC_OFFSET_TABLE_REGNUM
);
1218 if (bb
== ENTRY_BLOCK_PTR
)
1220 COPY_REG_SET (bb
->global_live_at_end
, new_live_at_end
);
1224 /* On our first pass through this block, we'll go ahead and continue.
1225 Recognize first pass by local_set NULL. On subsequent passes, we
1226 get to skip out early if live_at_end wouldn't have changed. */
1228 if (bb
->local_set
== NULL
)
1230 bb
->local_set
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1231 bb
->cond_local_set
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1236 /* If any bits were removed from live_at_end, we'll have to
1237 rescan the block. This wouldn't be necessary if we had
1238 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1239 local_live is really dependent on live_at_end. */
1240 CLEAR_REG_SET (tmp
);
1241 rescan
= bitmap_operation (tmp
, bb
->global_live_at_end
,
1242 new_live_at_end
, BITMAP_AND_COMPL
);
1246 /* If any of the registers in the new live_at_end set are
1247 conditionally set in this basic block, we must rescan.
1248 This is because conditional lifetimes at the end of the
1249 block do not just take the live_at_end set into account,
1250 but also the liveness at the start of each successor
1251 block. We can miss changes in those sets if we only
1252 compare the new live_at_end against the previous one. */
1253 CLEAR_REG_SET (tmp
);
1254 rescan
= bitmap_operation (tmp
, new_live_at_end
,
1255 bb
->cond_local_set
, BITMAP_AND
);
1260 /* Find the set of changed bits. Take this opportunity
1261 to notice that this set is empty and early out. */
1262 CLEAR_REG_SET (tmp
);
1263 changed
= bitmap_operation (tmp
, bb
->global_live_at_end
,
1264 new_live_at_end
, BITMAP_XOR
);
1268 /* If any of the changed bits overlap with local_set,
1269 we'll have to rescan the block. Detect overlap by
1270 the AND with ~local_set turning off bits. */
1271 rescan
= bitmap_operation (tmp
, tmp
, bb
->local_set
,
1276 /* Let our caller know that BB changed enough to require its
1277 death notes updated. */
1279 SET_BIT (blocks_out
, bb
->index
);
1283 /* Add to live_at_start the set of all registers in
1284 new_live_at_end that aren't in the old live_at_end. */
1286 bitmap_operation (tmp
, new_live_at_end
, bb
->global_live_at_end
,
1288 COPY_REG_SET (bb
->global_live_at_end
, new_live_at_end
);
1290 changed
= bitmap_operation (bb
->global_live_at_start
,
1291 bb
->global_live_at_start
,
1298 COPY_REG_SET (bb
->global_live_at_end
, new_live_at_end
);
1300 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1301 into live_at_start. */
1302 propagate_block (bb
, new_live_at_end
, bb
->local_set
,
1303 bb
->cond_local_set
, flags
);
1305 /* If live_at start didn't change, no need to go farther. */
1306 if (REG_SET_EQUAL_P (bb
->global_live_at_start
, new_live_at_end
))
1309 COPY_REG_SET (bb
->global_live_at_start
, new_live_at_end
);
1312 /* Queue all predecessors of BB so that we may re-examine
1313 their live_at_end. */
1314 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
1316 basic_block pb
= e
->src
;
1317 if (pb
->aux
== NULL
)
1328 FREE_REG_SET (new_live_at_end
);
1329 FREE_REG_SET (invalidated_by_call
);
1333 EXECUTE_IF_SET_IN_SBITMAP (blocks_out
, 0, i
,
1335 basic_block bb
= BASIC_BLOCK (i
);
1336 FREE_REG_SET (bb
->local_set
);
1337 FREE_REG_SET (bb
->cond_local_set
);
1344 FREE_REG_SET (bb
->local_set
);
1345 FREE_REG_SET (bb
->cond_local_set
);
1353 /* This structure is used to pass parameters to and from the
1354 the function find_regno_partial(). It is used to pass in the
1355 register number we are looking, as well as to return any rtx
1359 unsigned regno_to_find
;
1361 } find_regno_partial_param
;
1364 /* Find the rtx for the reg numbers specified in 'data' if it is
1365 part of an expression which only uses part of the register. Return
1366 it in the structure passed in. */
1368 find_regno_partial (rtx
*ptr
, void *data
)
1370 find_regno_partial_param
*param
= (find_regno_partial_param
*)data
;
1371 unsigned reg
= param
->regno_to_find
;
1372 param
->retval
= NULL_RTX
;
1374 if (*ptr
== NULL_RTX
)
1377 switch (GET_CODE (*ptr
))
1381 case STRICT_LOW_PART
:
1382 if (GET_CODE (XEXP (*ptr
, 0)) == REG
&& REGNO (XEXP (*ptr
, 0)) == reg
)
1384 param
->retval
= XEXP (*ptr
, 0);
1390 if (GET_CODE (SUBREG_REG (*ptr
)) == REG
1391 && REGNO (SUBREG_REG (*ptr
)) == reg
)
1393 param
->retval
= SUBREG_REG (*ptr
);
1405 /* Process all immediate successors of the entry block looking for pseudo
1406 registers which are live on entry. Find all of those whose first
1407 instance is a partial register reference of some kind, and initialize
1408 them to 0 after the entry block. This will prevent bit sets within
1409 registers whose value is unknown, and may contain some kind of sticky
1410 bits we don't want. */
1413 initialize_uninitialized_subregs (void)
1417 int reg
, did_something
= 0;
1418 find_regno_partial_param param
;
1420 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
1422 basic_block bb
= e
->dest
;
1423 regset map
= bb
->global_live_at_start
;
1424 EXECUTE_IF_SET_IN_REG_SET (map
,
1425 FIRST_PSEUDO_REGISTER
, reg
,
1427 int uid
= REGNO_FIRST_UID (reg
);
1430 /* Find an insn which mentions the register we are looking for.
1431 Its preferable to have an instance of the register's rtl since
1432 there may be various flags set which we need to duplicate.
1433 If we can't find it, its probably an automatic whose initial
1434 value doesn't matter, or hopefully something we don't care about. */
1435 for (i
= get_insns (); i
&& INSN_UID (i
) != uid
; i
= NEXT_INSN (i
))
1439 /* Found the insn, now get the REG rtx, if we can. */
1440 param
.regno_to_find
= reg
;
1441 for_each_rtx (&i
, find_regno_partial
, ¶m
);
1442 if (param
.retval
!= NULL_RTX
)
1445 emit_move_insn (param
.retval
,
1446 CONST0_RTX (GET_MODE (param
.retval
)));
1447 insn
= get_insns ();
1449 insert_insn_on_edge (insn
, e
);
1457 commit_edge_insertions ();
1458 return did_something
;
1462 /* Subroutines of life analysis. */
1464 /* Allocate the permanent data structures that represent the results
1465 of life analysis. Not static since used also for stupid life analysis. */
1468 allocate_bb_life_data (void)
1472 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
1474 bb
->global_live_at_start
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1475 bb
->global_live_at_end
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1478 regs_live_at_setjmp
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1482 allocate_reg_life_data (void)
1486 max_regno
= max_reg_num ();
1489 reg_deaths
= xcalloc (sizeof (*reg_deaths
), max_regno
);
1491 /* Recalculate the register space, in case it has grown. Old style
1492 vector oriented regsets would set regset_{size,bytes} here also. */
1493 allocate_reg_info (max_regno
, FALSE
, FALSE
);
1495 /* Reset all the data we'll collect in propagate_block and its
1497 for (i
= 0; i
< max_regno
; i
++)
1501 REG_N_DEATHS (i
) = 0;
1502 REG_N_CALLS_CROSSED (i
) = 0;
1503 REG_LIVE_LENGTH (i
) = 0;
1505 REG_BASIC_BLOCK (i
) = REG_BLOCK_UNKNOWN
;
1509 /* Delete dead instructions for propagate_block. */
1512 propagate_block_delete_insn (rtx insn
)
1514 rtx inote
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
1516 /* If the insn referred to a label, and that label was attached to
1517 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1518 pretty much mandatory to delete it, because the ADDR_VEC may be
1519 referencing labels that no longer exist.
1521 INSN may reference a deleted label, particularly when a jump
1522 table has been optimized into a direct jump. There's no
1523 real good way to fix up the reference to the deleted label
1524 when the label is deleted, so we just allow it here. */
1526 if (inote
&& GET_CODE (inote
) == CODE_LABEL
)
1528 rtx label
= XEXP (inote
, 0);
1531 /* The label may be forced if it has been put in the constant
1532 pool. If that is the only use we must discard the table
1533 jump following it, but not the label itself. */
1534 if (LABEL_NUSES (label
) == 1 + LABEL_PRESERVE_P (label
)
1535 && (next
= next_nonnote_insn (label
)) != NULL
1536 && GET_CODE (next
) == JUMP_INSN
1537 && (GET_CODE (PATTERN (next
)) == ADDR_VEC
1538 || GET_CODE (PATTERN (next
)) == ADDR_DIFF_VEC
))
1540 rtx pat
= PATTERN (next
);
1541 int diff_vec_p
= GET_CODE (pat
) == ADDR_DIFF_VEC
;
1542 int len
= XVECLEN (pat
, diff_vec_p
);
1545 for (i
= 0; i
< len
; i
++)
1546 LABEL_NUSES (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0))--;
1548 delete_insn_and_edges (next
);
1553 delete_insn_and_edges (insn
);
1557 /* Delete dead libcalls for propagate_block. Return the insn
1558 before the libcall. */
1561 propagate_block_delete_libcall (rtx insn
, rtx note
)
1563 rtx first
= XEXP (note
, 0);
1564 rtx before
= PREV_INSN (first
);
1566 delete_insn_chain_and_edges (first
, insn
);
1571 /* Update the life-status of regs for one insn. Return the previous insn. */
1574 propagate_one_insn (struct propagate_block_info
*pbi
, rtx insn
)
1576 rtx prev
= PREV_INSN (insn
);
1577 int flags
= pbi
->flags
;
1578 int insn_is_dead
= 0;
1579 int libcall_is_dead
= 0;
1583 if (! INSN_P (insn
))
1586 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
1587 if (flags
& PROP_SCAN_DEAD_CODE
)
1589 insn_is_dead
= insn_dead_p (pbi
, PATTERN (insn
), 0, REG_NOTES (insn
));
1590 libcall_is_dead
= (insn_is_dead
&& note
!= 0
1591 && libcall_dead_p (pbi
, note
, insn
));
1594 /* If an instruction consists of just dead store(s) on final pass,
1596 if ((flags
& PROP_KILL_DEAD_CODE
) && insn_is_dead
)
1598 /* If we're trying to delete a prologue or epilogue instruction
1599 that isn't flagged as possibly being dead, something is wrong.
1600 But if we are keeping the stack pointer depressed, we might well
1601 be deleting insns that are used to compute the amount to update
1602 it by, so they are fine. */
1603 if (reload_completed
1604 && !(TREE_CODE (TREE_TYPE (current_function_decl
)) == FUNCTION_TYPE
1605 && (TYPE_RETURNS_STACK_DEPRESSED
1606 (TREE_TYPE (current_function_decl
))))
1607 && (((HAVE_epilogue
|| HAVE_prologue
)
1608 && prologue_epilogue_contains (insn
))
1609 || (HAVE_sibcall_epilogue
1610 && sibcall_epilogue_contains (insn
)))
1611 && find_reg_note (insn
, REG_MAYBE_DEAD
, NULL_RTX
) == 0)
1612 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn
);
1614 /* Record sets. Do this even for dead instructions, since they
1615 would have killed the values if they hadn't been deleted. */
1616 mark_set_regs (pbi
, PATTERN (insn
), insn
);
1618 /* CC0 is now known to be dead. Either this insn used it,
1619 in which case it doesn't anymore, or clobbered it,
1620 so the next insn can't use it. */
1623 if (libcall_is_dead
)
1624 prev
= propagate_block_delete_libcall ( insn
, note
);
1628 /* If INSN contains a RETVAL note and is dead, but the libcall
1629 as a whole is not dead, then we want to remove INSN, but
1630 not the whole libcall sequence.
1632 However, we need to also remove the dangling REG_LIBCALL
1633 note so that we do not have mis-matched LIBCALL/RETVAL
1634 notes. In theory we could find a new location for the
1635 REG_RETVAL note, but it hardly seems worth the effort.
1637 NOTE at this point will be the RETVAL note if it exists. */
1643 = find_reg_note (XEXP (note
, 0), REG_LIBCALL
, NULL_RTX
);
1644 remove_note (XEXP (note
, 0), libcall_note
);
1647 /* Similarly if INSN contains a LIBCALL note, remove the
1648 dangling REG_RETVAL note. */
1649 note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
1655 = find_reg_note (XEXP (note
, 0), REG_RETVAL
, NULL_RTX
);
1656 remove_note (XEXP (note
, 0), retval_note
);
1659 /* Now delete INSN. */
1660 propagate_block_delete_insn (insn
);
1666 /* See if this is an increment or decrement that can be merged into
1667 a following memory address. */
1670 rtx x
= single_set (insn
);
1672 /* Does this instruction increment or decrement a register? */
1673 if ((flags
& PROP_AUTOINC
)
1675 && GET_CODE (SET_DEST (x
)) == REG
1676 && (GET_CODE (SET_SRC (x
)) == PLUS
1677 || GET_CODE (SET_SRC (x
)) == MINUS
)
1678 && XEXP (SET_SRC (x
), 0) == SET_DEST (x
)
1679 && GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
1680 /* Ok, look for a following memory ref we can combine with.
1681 If one is found, change the memory ref to a PRE_INC
1682 or PRE_DEC, cancel this insn, and return 1.
1683 Return 0 if nothing has been done. */
1684 && try_pre_increment_1 (pbi
, insn
))
1687 #endif /* AUTO_INC_DEC */
1689 CLEAR_REG_SET (pbi
->new_set
);
1691 /* If this is not the final pass, and this insn is copying the value of
1692 a library call and it's dead, don't scan the insns that perform the
1693 library call, so that the call's arguments are not marked live. */
1694 if (libcall_is_dead
)
1696 /* Record the death of the dest reg. */
1697 mark_set_regs (pbi
, PATTERN (insn
), insn
);
1699 insn
= XEXP (note
, 0);
1700 return PREV_INSN (insn
);
1702 else if (GET_CODE (PATTERN (insn
)) == SET
1703 && SET_DEST (PATTERN (insn
)) == stack_pointer_rtx
1704 && GET_CODE (SET_SRC (PATTERN (insn
))) == PLUS
1705 && XEXP (SET_SRC (PATTERN (insn
)), 0) == stack_pointer_rtx
1706 && GET_CODE (XEXP (SET_SRC (PATTERN (insn
)), 1)) == CONST_INT
)
1707 /* We have an insn to pop a constant amount off the stack.
1708 (Such insns use PLUS regardless of the direction of the stack,
1709 and any insn to adjust the stack by a constant is always a pop.)
1710 These insns, if not dead stores, have no effect on life, though
1711 they do have an effect on the memory stores we are tracking. */
1712 invalidate_mems_from_set (pbi
, stack_pointer_rtx
);
1716 /* Any regs live at the time of a call instruction must not go
1717 in a register clobbered by calls. Find all regs now live and
1718 record this for them. */
1720 if (GET_CODE (insn
) == CALL_INSN
&& (flags
& PROP_REG_INFO
))
1721 EXECUTE_IF_SET_IN_REG_SET (pbi
->reg_live
, 0, i
,
1722 { REG_N_CALLS_CROSSED (i
)++; });
1724 /* Record sets. Do this even for dead instructions, since they
1725 would have killed the values if they hadn't been deleted. */
1726 mark_set_regs (pbi
, PATTERN (insn
), insn
);
1728 if (GET_CODE (insn
) == CALL_INSN
)
1736 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
1737 cond
= COND_EXEC_TEST (PATTERN (insn
));
1739 /* Non-constant calls clobber memory, constant calls do not
1740 clobber memory, though they may clobber outgoing arguments
1742 if (! CONST_OR_PURE_CALL_P (insn
))
1744 free_EXPR_LIST_list (&pbi
->mem_set_list
);
1745 pbi
->mem_set_list_len
= 0;
1748 invalidate_mems_from_set (pbi
, stack_pointer_rtx
);
1750 /* There may be extra registers to be clobbered. */
1751 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
1753 note
= XEXP (note
, 1))
1754 if (GET_CODE (XEXP (note
, 0)) == CLOBBER
)
1755 mark_set_1 (pbi
, CLOBBER
, XEXP (XEXP (note
, 0), 0),
1756 cond
, insn
, pbi
->flags
);
1758 /* Calls change all call-used and global registers; sibcalls do not
1759 clobber anything that must be preserved at end-of-function,
1760 except for return values. */
1762 sibcall_p
= SIBLING_CALL_P (insn
);
1763 live_at_end
= EXIT_BLOCK_PTR
->global_live_at_start
;
1764 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1765 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
)
1767 && REGNO_REG_SET_P (live_at_end
, i
)
1768 && ! refers_to_regno_p (i
, i
+1,
1769 current_function_return_rtx
,
1772 /* We do not want REG_UNUSED notes for these registers. */
1773 mark_set_1 (pbi
, CLOBBER
, regno_reg_rtx
[i
], cond
, insn
,
1774 pbi
->flags
& ~(PROP_DEATH_NOTES
| PROP_REG_INFO
));
1778 /* If an insn doesn't use CC0, it becomes dead since we assume
1779 that every insn clobbers it. So show it dead here;
1780 mark_used_regs will set it live if it is referenced. */
1785 mark_used_regs (pbi
, PATTERN (insn
), NULL_RTX
, insn
);
1786 if ((flags
& PROP_EQUAL_NOTES
)
1787 && ((note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1788 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
))))
1789 mark_used_regs (pbi
, XEXP (note
, 0), NULL_RTX
, insn
);
1791 /* Sometimes we may have inserted something before INSN (such as a move)
1792 when we make an auto-inc. So ensure we will scan those insns. */
1794 prev
= PREV_INSN (insn
);
1797 if (! insn_is_dead
&& GET_CODE (insn
) == CALL_INSN
)
1803 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
1804 cond
= COND_EXEC_TEST (PATTERN (insn
));
1806 /* Calls use their arguments, and may clobber memory which
1807 address involves some register. */
1808 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
1810 note
= XEXP (note
, 1))
1811 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1812 of which mark_used_regs knows how to handle. */
1813 mark_used_regs (pbi
, XEXP (XEXP (note
, 0), 0), cond
, insn
);
1815 /* The stack ptr is used (honorarily) by a CALL insn. */
1816 if ((flags
& PROP_REG_INFO
)
1817 && !REGNO_REG_SET_P (pbi
->reg_live
, STACK_POINTER_REGNUM
))
1818 reg_deaths
[STACK_POINTER_REGNUM
] = pbi
->insn_num
;
1819 SET_REGNO_REG_SET (pbi
->reg_live
, STACK_POINTER_REGNUM
);
1821 /* Calls may also reference any of the global registers,
1822 so they are made live. */
1823 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1825 mark_used_reg (pbi
, regno_reg_rtx
[i
], cond
, insn
);
1834 /* Initialize a propagate_block_info struct for public consumption.
1835 Note that the structure itself is opaque to this file, but that
1836 the user can use the regsets provided here. */
1838 struct propagate_block_info
*
1839 init_propagate_block_info (basic_block bb
, regset live
, regset local_set
,
1840 regset cond_local_set
, int flags
)
1842 struct propagate_block_info
*pbi
= xmalloc (sizeof (*pbi
));
1845 pbi
->reg_live
= live
;
1846 pbi
->mem_set_list
= NULL_RTX
;
1847 pbi
->mem_set_list_len
= 0;
1848 pbi
->local_set
= local_set
;
1849 pbi
->cond_local_set
= cond_local_set
;
1854 if (flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
1855 pbi
->reg_next_use
= xcalloc (max_reg_num (), sizeof (rtx
));
1857 pbi
->reg_next_use
= NULL
;
1859 pbi
->new_set
= BITMAP_XMALLOC ();
1861 #ifdef HAVE_conditional_execution
1862 pbi
->reg_cond_dead
= splay_tree_new (splay_tree_compare_ints
, NULL
,
1863 free_reg_cond_life_info
);
1864 pbi
->reg_cond_reg
= BITMAP_XMALLOC ();
1866 /* If this block ends in a conditional branch, for each register
1867 live from one side of the branch and not the other, record the
1868 register as conditionally dead. */
1869 if (GET_CODE (BB_END (bb
)) == JUMP_INSN
1870 && any_condjump_p (BB_END (bb
)))
1872 regset_head diff_head
;
1873 regset diff
= INITIALIZE_REG_SET (diff_head
);
1874 basic_block bb_true
, bb_false
;
1877 /* Identify the successor blocks. */
1878 bb_true
= bb
->succ
->dest
;
1879 if (bb
->succ
->succ_next
!= NULL
)
1881 bb_false
= bb
->succ
->succ_next
->dest
;
1883 if (bb
->succ
->flags
& EDGE_FALLTHRU
)
1885 basic_block t
= bb_false
;
1889 else if (! (bb
->succ
->succ_next
->flags
& EDGE_FALLTHRU
))
1894 /* This can happen with a conditional jump to the next insn. */
1895 if (JUMP_LABEL (BB_END (bb
)) != BB_HEAD (bb_true
))
1898 /* Simplest way to do nothing. */
1902 /* Compute which register lead different lives in the successors. */
1903 if (bitmap_operation (diff
, bb_true
->global_live_at_start
,
1904 bb_false
->global_live_at_start
, BITMAP_XOR
))
1906 /* Extract the condition from the branch. */
1907 rtx set_src
= SET_SRC (pc_set (BB_END (bb
)));
1908 rtx cond_true
= XEXP (set_src
, 0);
1909 rtx reg
= XEXP (cond_true
, 0);
1911 if (GET_CODE (reg
) == SUBREG
)
1912 reg
= SUBREG_REG (reg
);
1914 /* We can only track conditional lifetimes if the condition is
1915 in the form of a comparison of a register against zero.
1916 If the condition is more complex than that, then it is safe
1917 not to record any information. */
1918 if (GET_CODE (reg
) == REG
1919 && XEXP (cond_true
, 1) == const0_rtx
)
1922 = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true
)),
1923 GET_MODE (cond_true
), XEXP (cond_true
, 0),
1924 XEXP (cond_true
, 1));
1925 if (GET_CODE (XEXP (set_src
, 1)) == PC
)
1928 cond_false
= cond_true
;
1932 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (reg
));
1934 /* For each such register, mark it conditionally dead. */
1935 EXECUTE_IF_SET_IN_REG_SET
1938 struct reg_cond_life_info
*rcli
;
1941 rcli
= xmalloc (sizeof (*rcli
));
1943 if (REGNO_REG_SET_P (bb_true
->global_live_at_start
, i
))
1947 rcli
->condition
= cond
;
1948 rcli
->stores
= const0_rtx
;
1949 rcli
->orig_condition
= cond
;
1951 splay_tree_insert (pbi
->reg_cond_dead
, i
,
1952 (splay_tree_value
) rcli
);
1957 FREE_REG_SET (diff
);
1961 /* If this block has no successors, any stores to the frame that aren't
1962 used later in the block are dead. So make a pass over the block
1963 recording any such that are made and show them dead at the end. We do
1964 a very conservative and simple job here. */
1966 && ! (TREE_CODE (TREE_TYPE (current_function_decl
)) == FUNCTION_TYPE
1967 && (TYPE_RETURNS_STACK_DEPRESSED
1968 (TREE_TYPE (current_function_decl
))))
1969 && (flags
& PROP_SCAN_DEAD_STORES
)
1970 && (bb
->succ
== NULL
1971 || (bb
->succ
->succ_next
== NULL
1972 && bb
->succ
->dest
== EXIT_BLOCK_PTR
1973 && ! current_function_calls_eh_return
)))
1976 for (insn
= BB_END (bb
); insn
!= BB_HEAD (bb
); insn
= PREV_INSN (insn
))
1977 if (GET_CODE (insn
) == INSN
1978 && (set
= single_set (insn
))
1979 && GET_CODE (SET_DEST (set
)) == MEM
)
1981 rtx mem
= SET_DEST (set
);
1982 rtx canon_mem
= canon_rtx (mem
);
1984 if (XEXP (canon_mem
, 0) == frame_pointer_rtx
1985 || (GET_CODE (XEXP (canon_mem
, 0)) == PLUS
1986 && XEXP (XEXP (canon_mem
, 0), 0) == frame_pointer_rtx
1987 && GET_CODE (XEXP (XEXP (canon_mem
, 0), 1)) == CONST_INT
))
1988 add_to_mem_set_list (pbi
, canon_mem
);
1995 /* Release a propagate_block_info struct. */
1998 free_propagate_block_info (struct propagate_block_info
*pbi
)
2000 free_EXPR_LIST_list (&pbi
->mem_set_list
);
2002 BITMAP_XFREE (pbi
->new_set
);
2004 #ifdef HAVE_conditional_execution
2005 splay_tree_delete (pbi
->reg_cond_dead
);
2006 BITMAP_XFREE (pbi
->reg_cond_reg
);
2009 if (pbi
->flags
& PROP_REG_INFO
)
2011 int num
= pbi
->insn_num
;
2014 EXECUTE_IF_SET_IN_REG_SET (pbi
->reg_live
, 0, i
,
2015 { REG_LIVE_LENGTH (i
) += num
- reg_deaths
[i
];
2019 if (pbi
->reg_next_use
)
2020 free (pbi
->reg_next_use
);
2025 /* Compute the registers live at the beginning of a basic block BB from
2026 those live at the end.
2028 When called, REG_LIVE contains those live at the end. On return, it
2029 contains those live at the beginning.
2031 LOCAL_SET, if non-null, will be set with all registers killed
2032 unconditionally by this basic block.
2033 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2034 killed conditionally by this basic block. If there is any unconditional
2035 set of a register, then the corresponding bit will be set in LOCAL_SET
2036 and cleared in COND_LOCAL_SET.
2037 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2038 case, the resulting set will be equal to the union of the two sets that
2039 would otherwise be computed.
2041 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2044 propagate_block (basic_block bb
, regset live
, regset local_set
,
2045 regset cond_local_set
, int flags
)
2047 struct propagate_block_info
*pbi
;
2051 pbi
= init_propagate_block_info (bb
, live
, local_set
, cond_local_set
, flags
);
2053 if (flags
& PROP_REG_INFO
)
2057 /* Process the regs live at the end of the block.
2058 Mark them as not local to any one basic block. */
2059 EXECUTE_IF_SET_IN_REG_SET (live
, 0, i
,
2060 { REG_BASIC_BLOCK (i
) = REG_BLOCK_GLOBAL
; });
2063 /* Scan the block an insn at a time from end to beginning. */
2066 for (insn
= BB_END (bb
); ; insn
= prev
)
2068 /* If this is a call to `setjmp' et al, warn if any
2069 non-volatile datum is live. */
2070 if ((flags
& PROP_REG_INFO
)
2071 && GET_CODE (insn
) == CALL_INSN
2072 && find_reg_note (insn
, REG_SETJMP
, NULL
))
2073 IOR_REG_SET (regs_live_at_setjmp
, pbi
->reg_live
);
2075 prev
= propagate_one_insn (pbi
, insn
);
2077 changed
|= insn
!= get_insns ();
2079 changed
|= NEXT_INSN (prev
) != insn
;
2081 if (insn
== BB_HEAD (bb
))
2085 free_propagate_block_info (pbi
);
2090 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2091 (SET expressions whose destinations are registers dead after the insn).
2092 NEEDED is the regset that says which regs are alive after the insn.
2094 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2096 If X is the entire body of an insn, NOTES contains the reg notes
2097 pertaining to the insn. */
2100 insn_dead_p (struct propagate_block_info
*pbi
, rtx x
, int call_ok
,
2101 rtx notes ATTRIBUTE_UNUSED
)
2103 enum rtx_code code
= GET_CODE (x
);
2105 /* Don't eliminate insns that may trap. */
2106 if (flag_non_call_exceptions
&& may_trap_p (x
))
2110 /* As flow is invoked after combine, we must take existing AUTO_INC
2111 expressions into account. */
2112 for (; notes
; notes
= XEXP (notes
, 1))
2114 if (REG_NOTE_KIND (notes
) == REG_INC
)
2116 int regno
= REGNO (XEXP (notes
, 0));
2118 /* Don't delete insns to set global regs. */
2119 if ((regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2120 || REGNO_REG_SET_P (pbi
->reg_live
, regno
))
2126 /* If setting something that's a reg or part of one,
2127 see if that register's altered value will be live. */
2131 rtx r
= SET_DEST (x
);
2134 if (GET_CODE (r
) == CC0
)
2135 return ! pbi
->cc0_live
;
2138 /* A SET that is a subroutine call cannot be dead. */
2139 if (GET_CODE (SET_SRC (x
)) == CALL
)
2145 /* Don't eliminate loads from volatile memory or volatile asms. */
2146 else if (volatile_refs_p (SET_SRC (x
)))
2149 if (GET_CODE (r
) == MEM
)
2153 if (MEM_VOLATILE_P (r
) || GET_MODE (r
) == BLKmode
)
2156 canon_r
= canon_rtx (r
);
2158 /* Walk the set of memory locations we are currently tracking
2159 and see if one is an identical match to this memory location.
2160 If so, this memory write is dead (remember, we're walking
2161 backwards from the end of the block to the start). Since
2162 rtx_equal_p does not check the alias set or flags, we also
2163 must have the potential for them to conflict (anti_dependence). */
2164 for (temp
= pbi
->mem_set_list
; temp
!= 0; temp
= XEXP (temp
, 1))
2165 if (unchanging_anti_dependence (r
, XEXP (temp
, 0)))
2167 rtx mem
= XEXP (temp
, 0);
2169 if (rtx_equal_p (XEXP (canon_r
, 0), XEXP (mem
, 0))
2170 && (GET_MODE_SIZE (GET_MODE (canon_r
))
2171 <= GET_MODE_SIZE (GET_MODE (mem
))))
2175 /* Check if memory reference matches an auto increment. Only
2176 post increment/decrement or modify are valid. */
2177 if (GET_MODE (mem
) == GET_MODE (r
)
2178 && (GET_CODE (XEXP (mem
, 0)) == POST_DEC
2179 || GET_CODE (XEXP (mem
, 0)) == POST_INC
2180 || GET_CODE (XEXP (mem
, 0)) == POST_MODIFY
)
2181 && GET_MODE (XEXP (mem
, 0)) == GET_MODE (r
)
2182 && rtx_equal_p (XEXP (XEXP (mem
, 0), 0), XEXP (r
, 0)))
2189 while (GET_CODE (r
) == SUBREG
2190 || GET_CODE (r
) == STRICT_LOW_PART
2191 || GET_CODE (r
) == ZERO_EXTRACT
)
2194 if (GET_CODE (r
) == REG
)
2196 int regno
= REGNO (r
);
2199 if (REGNO_REG_SET_P (pbi
->reg_live
, regno
))
2202 /* If this is a hard register, verify that subsequent
2203 words are not needed. */
2204 if (regno
< FIRST_PSEUDO_REGISTER
)
2206 int n
= hard_regno_nregs
[regno
][GET_MODE (r
)];
2209 if (REGNO_REG_SET_P (pbi
->reg_live
, regno
+n
))
2213 /* Don't delete insns to set global regs. */
2214 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2217 /* Make sure insns to set the stack pointer aren't deleted. */
2218 if (regno
== STACK_POINTER_REGNUM
)
2221 /* ??? These bits might be redundant with the force live bits
2222 in calculate_global_regs_live. We would delete from
2223 sequential sets; whether this actually affects real code
2224 for anything but the stack pointer I don't know. */
2225 /* Make sure insns to set the frame pointer aren't deleted. */
2226 if (regno
== FRAME_POINTER_REGNUM
2227 && (! reload_completed
|| frame_pointer_needed
))
2229 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2230 if (regno
== HARD_FRAME_POINTER_REGNUM
2231 && (! reload_completed
|| frame_pointer_needed
))
2235 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2236 /* Make sure insns to set arg pointer are never deleted
2237 (if the arg pointer isn't fixed, there will be a USE
2238 for it, so we can treat it normally). */
2239 if (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
2243 /* Otherwise, the set is dead. */
2249 /* If performing several activities, insn is dead if each activity
2250 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2251 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2253 else if (code
== PARALLEL
)
2255 int i
= XVECLEN (x
, 0);
2257 for (i
--; i
>= 0; i
--)
2258 if (GET_CODE (XVECEXP (x
, 0, i
)) != CLOBBER
2259 && GET_CODE (XVECEXP (x
, 0, i
)) != USE
2260 && ! insn_dead_p (pbi
, XVECEXP (x
, 0, i
), call_ok
, NULL_RTX
))
2266 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2267 is not necessarily true for hard registers. */
2268 else if (code
== CLOBBER
&& GET_CODE (XEXP (x
, 0)) == REG
2269 && REGNO (XEXP (x
, 0)) >= FIRST_PSEUDO_REGISTER
2270 && ! REGNO_REG_SET_P (pbi
->reg_live
, REGNO (XEXP (x
, 0))))
2273 /* We do not check other CLOBBER or USE here. An insn consisting of just
2274 a CLOBBER or just a USE should not be deleted. */
2278 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2279 return 1 if the entire library call is dead.
2280 This is true if INSN copies a register (hard or pseudo)
2281 and if the hard return reg of the call insn is dead.
2282 (The caller should have tested the destination of the SET inside
2283 INSN already for death.)
2285 If this insn doesn't just copy a register, then we don't
2286 have an ordinary libcall. In that case, cse could not have
2287 managed to substitute the source for the dest later on,
2288 so we can assume the libcall is dead.
2290 PBI is the block info giving pseudoregs live before this insn.
2291 NOTE is the REG_RETVAL note of the insn. */
2294 libcall_dead_p (struct propagate_block_info
*pbi
, rtx note
, rtx insn
)
2296 rtx x
= single_set (insn
);
2300 rtx r
= SET_SRC (x
);
2302 if (GET_CODE (r
) == REG
)
2304 rtx call
= XEXP (note
, 0);
2308 /* Find the call insn. */
2309 while (call
!= insn
&& GET_CODE (call
) != CALL_INSN
)
2310 call
= NEXT_INSN (call
);
2312 /* If there is none, do nothing special,
2313 since ordinary death handling can understand these insns. */
2317 /* See if the hard reg holding the value is dead.
2318 If this is a PARALLEL, find the call within it. */
2319 call_pat
= PATTERN (call
);
2320 if (GET_CODE (call_pat
) == PARALLEL
)
2322 for (i
= XVECLEN (call_pat
, 0) - 1; i
>= 0; i
--)
2323 if (GET_CODE (XVECEXP (call_pat
, 0, i
)) == SET
2324 && GET_CODE (SET_SRC (XVECEXP (call_pat
, 0, i
))) == CALL
)
2327 /* This may be a library call that is returning a value
2328 via invisible pointer. Do nothing special, since
2329 ordinary death handling can understand these insns. */
2333 call_pat
= XVECEXP (call_pat
, 0, i
);
2336 return insn_dead_p (pbi
, call_pat
, 1, REG_NOTES (call
));
2342 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2343 live at function entry. Don't count global register variables, variables
2344 in registers that can be used for function arg passing, or variables in
2345 fixed hard registers. */
2348 regno_uninitialized (unsigned int regno
)
2350 if (n_basic_blocks
== 0
2351 || (regno
< FIRST_PSEUDO_REGISTER
2352 && (global_regs
[regno
]
2353 || fixed_regs
[regno
]
2354 || FUNCTION_ARG_REGNO_P (regno
))))
2357 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR
->global_live_at_end
, regno
);
2360 /* 1 if register REGNO was alive at a place where `setjmp' was called
2361 and was set more than once or is an argument.
2362 Such regs may be clobbered by `longjmp'. */
2365 regno_clobbered_at_setjmp (int regno
)
2367 if (n_basic_blocks
== 0)
2370 return ((REG_N_SETS (regno
) > 1
2371 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR
->global_live_at_end
, regno
))
2372 && REGNO_REG_SET_P (regs_live_at_setjmp
, regno
));
2375 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2376 maximal list size; look for overlaps in mode and select the largest. */
2378 add_to_mem_set_list (struct propagate_block_info
*pbi
, rtx mem
)
2382 /* We don't know how large a BLKmode store is, so we must not
2383 take them into consideration. */
2384 if (GET_MODE (mem
) == BLKmode
)
2387 for (i
= pbi
->mem_set_list
; i
; i
= XEXP (i
, 1))
2389 rtx e
= XEXP (i
, 0);
2390 if (rtx_equal_p (XEXP (mem
, 0), XEXP (e
, 0)))
2392 if (GET_MODE_SIZE (GET_MODE (mem
)) > GET_MODE_SIZE (GET_MODE (e
)))
2395 /* If we must store a copy of the mem, we can just modify
2396 the mode of the stored copy. */
2397 if (pbi
->flags
& PROP_AUTOINC
)
2398 PUT_MODE (e
, GET_MODE (mem
));
2407 if (pbi
->mem_set_list_len
< MAX_MEM_SET_LIST_LEN
)
2410 /* Store a copy of mem, otherwise the address may be
2411 scrogged by find_auto_inc. */
2412 if (pbi
->flags
& PROP_AUTOINC
)
2413 mem
= shallow_copy_rtx (mem
);
2415 pbi
->mem_set_list
= alloc_EXPR_LIST (0, mem
, pbi
->mem_set_list
);
2416 pbi
->mem_set_list_len
++;
2420 /* INSN references memory, possibly using autoincrement addressing modes.
2421 Find any entries on the mem_set_list that need to be invalidated due
2422 to an address change. */
2425 invalidate_mems_from_autoinc (rtx
*px
, void *data
)
2428 struct propagate_block_info
*pbi
= data
;
2430 if (GET_RTX_CLASS (GET_CODE (x
)) == 'a')
2432 invalidate_mems_from_set (pbi
, XEXP (x
, 0));
2439 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2442 invalidate_mems_from_set (struct propagate_block_info
*pbi
, rtx exp
)
2444 rtx temp
= pbi
->mem_set_list
;
2445 rtx prev
= NULL_RTX
;
2450 next
= XEXP (temp
, 1);
2451 if (reg_overlap_mentioned_p (exp
, XEXP (temp
, 0)))
2453 /* Splice this entry out of the list. */
2455 XEXP (prev
, 1) = next
;
2457 pbi
->mem_set_list
= next
;
2458 free_EXPR_LIST_node (temp
);
2459 pbi
->mem_set_list_len
--;
2467 /* Process the registers that are set within X. Their bits are set to
2468 1 in the regset DEAD, because they are dead prior to this insn.
2470 If INSN is nonzero, it is the insn being processed.
2472 FLAGS is the set of operations to perform. */
2475 mark_set_regs (struct propagate_block_info
*pbi
, rtx x
, rtx insn
)
2477 rtx cond
= NULL_RTX
;
2480 int flags
= pbi
->flags
;
2483 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2485 if (REG_NOTE_KIND (link
) == REG_INC
)
2486 mark_set_1 (pbi
, SET
, XEXP (link
, 0),
2487 (GET_CODE (x
) == COND_EXEC
2488 ? COND_EXEC_TEST (x
) : NULL_RTX
),
2492 switch (code
= GET_CODE (x
))
2495 if (GET_CODE (XEXP (x
, 1)) == ASM_OPERANDS
)
2496 flags
|= PROP_ASM_SCAN
;
2499 mark_set_1 (pbi
, code
, SET_DEST (x
), cond
, insn
, flags
);
2503 cond
= COND_EXEC_TEST (x
);
2504 x
= COND_EXEC_CODE (x
);
2511 /* We must scan forwards. If we have an asm, we need to set
2512 the PROP_ASM_SCAN flag before scanning the clobbers. */
2513 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2515 rtx sub
= XVECEXP (x
, 0, i
);
2516 switch (code
= GET_CODE (sub
))
2519 if (cond
!= NULL_RTX
)
2522 cond
= COND_EXEC_TEST (sub
);
2523 sub
= COND_EXEC_CODE (sub
);
2524 if (GET_CODE (sub
) == SET
)
2526 if (GET_CODE (sub
) == CLOBBER
)
2532 if (GET_CODE (XEXP (sub
, 1)) == ASM_OPERANDS
)
2533 flags
|= PROP_ASM_SCAN
;
2537 mark_set_1 (pbi
, code
, SET_DEST (sub
), cond
, insn
, flags
);
2541 flags
|= PROP_ASM_SCAN
;
2556 /* Process a single set, which appears in INSN. REG (which may not
2557 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2558 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2559 If the set is conditional (because it appear in a COND_EXEC), COND
2560 will be the condition. */
2563 mark_set_1 (struct propagate_block_info
*pbi
, enum rtx_code code
, rtx reg
, rtx cond
, rtx insn
, int flags
)
2565 int regno_first
= -1, regno_last
= -1;
2566 unsigned long not_dead
= 0;
2569 /* Modifying just one hardware register of a multi-reg value or just a
2570 byte field of a register does not mean the value from before this insn
2571 is now dead. Of course, if it was dead after it's unused now. */
2573 switch (GET_CODE (reg
))
2576 /* Some targets place small structures in registers for return values of
2577 functions. We have to detect this case specially here to get correct
2578 flow information. */
2579 for (i
= XVECLEN (reg
, 0) - 1; i
>= 0; i
--)
2580 if (XEXP (XVECEXP (reg
, 0, i
), 0) != 0)
2581 mark_set_1 (pbi
, code
, XEXP (XVECEXP (reg
, 0, i
), 0), cond
, insn
,
2587 case STRICT_LOW_PART
:
2588 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2590 reg
= XEXP (reg
, 0);
2591 while (GET_CODE (reg
) == SUBREG
2592 || GET_CODE (reg
) == ZERO_EXTRACT
2593 || GET_CODE (reg
) == SIGN_EXTRACT
2594 || GET_CODE (reg
) == STRICT_LOW_PART
);
2595 if (GET_CODE (reg
) == MEM
)
2597 not_dead
= (unsigned long) REGNO_REG_SET_P (pbi
->reg_live
, REGNO (reg
));
2601 regno_last
= regno_first
= REGNO (reg
);
2602 if (regno_first
< FIRST_PSEUDO_REGISTER
)
2603 regno_last
+= hard_regno_nregs
[regno_first
][GET_MODE (reg
)] - 1;
2607 if (GET_CODE (SUBREG_REG (reg
)) == REG
)
2609 enum machine_mode outer_mode
= GET_MODE (reg
);
2610 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (reg
));
2612 /* Identify the range of registers affected. This is moderately
2613 tricky for hard registers. See alter_subreg. */
2615 regno_last
= regno_first
= REGNO (SUBREG_REG (reg
));
2616 if (regno_first
< FIRST_PSEUDO_REGISTER
)
2618 regno_first
+= subreg_regno_offset (regno_first
, inner_mode
,
2621 regno_last
= (regno_first
2622 + hard_regno_nregs
[regno_first
][outer_mode
] - 1);
2624 /* Since we've just adjusted the register number ranges, make
2625 sure REG matches. Otherwise some_was_live will be clear
2626 when it shouldn't have been, and we'll create incorrect
2627 REG_UNUSED notes. */
2628 reg
= gen_rtx_REG (outer_mode
, regno_first
);
2632 /* If the number of words in the subreg is less than the number
2633 of words in the full register, we have a well-defined partial
2634 set. Otherwise the high bits are undefined.
2636 This is only really applicable to pseudos, since we just took
2637 care of multi-word hard registers. */
2638 if (((GET_MODE_SIZE (outer_mode
)
2639 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
2640 < ((GET_MODE_SIZE (inner_mode
)
2641 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))
2642 not_dead
= (unsigned long) REGNO_REG_SET_P (pbi
->reg_live
,
2645 reg
= SUBREG_REG (reg
);
2649 reg
= SUBREG_REG (reg
);
2656 /* If this set is a MEM, then it kills any aliased writes.
2657 If this set is a REG, then it kills any MEMs which use the reg. */
2658 if (optimize
&& (flags
& PROP_SCAN_DEAD_STORES
))
2660 if (GET_CODE (reg
) == REG
)
2661 invalidate_mems_from_set (pbi
, reg
);
2663 /* If the memory reference had embedded side effects (autoincrement
2664 address modes. Then we may need to kill some entries on the
2666 if (insn
&& GET_CODE (reg
) == MEM
)
2667 for_each_rtx (&PATTERN (insn
), invalidate_mems_from_autoinc
, pbi
);
2669 if (GET_CODE (reg
) == MEM
&& ! side_effects_p (reg
)
2670 /* ??? With more effort we could track conditional memory life. */
2672 add_to_mem_set_list (pbi
, canon_rtx (reg
));
2675 if (GET_CODE (reg
) == REG
2676 && ! (regno_first
== FRAME_POINTER_REGNUM
2677 && (! reload_completed
|| frame_pointer_needed
))
2678 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2679 && ! (regno_first
== HARD_FRAME_POINTER_REGNUM
2680 && (! reload_completed
|| frame_pointer_needed
))
2682 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2683 && ! (regno_first
== ARG_POINTER_REGNUM
&& fixed_regs
[regno_first
])
2687 int some_was_live
= 0, some_was_dead
= 0;
2689 for (i
= regno_first
; i
<= regno_last
; ++i
)
2691 int needed_regno
= REGNO_REG_SET_P (pbi
->reg_live
, i
);
2694 /* Order of the set operation matters here since both
2695 sets may be the same. */
2696 CLEAR_REGNO_REG_SET (pbi
->cond_local_set
, i
);
2697 if (cond
!= NULL_RTX
2698 && ! REGNO_REG_SET_P (pbi
->local_set
, i
))
2699 SET_REGNO_REG_SET (pbi
->cond_local_set
, i
);
2701 SET_REGNO_REG_SET (pbi
->local_set
, i
);
2703 if (code
!= CLOBBER
)
2704 SET_REGNO_REG_SET (pbi
->new_set
, i
);
2706 some_was_live
|= needed_regno
;
2707 some_was_dead
|= ! needed_regno
;
2710 #ifdef HAVE_conditional_execution
2711 /* Consider conditional death in deciding that the register needs
2713 if (some_was_live
&& ! not_dead
2714 /* The stack pointer is never dead. Well, not strictly true,
2715 but it's very difficult to tell from here. Hopefully
2716 combine_stack_adjustments will fix up the most egregious
2718 && regno_first
!= STACK_POINTER_REGNUM
)
2720 for (i
= regno_first
; i
<= regno_last
; ++i
)
2721 if (! mark_regno_cond_dead (pbi
, i
, cond
))
2722 not_dead
|= ((unsigned long) 1) << (i
- regno_first
);
2726 /* Additional data to record if this is the final pass. */
2727 if (flags
& (PROP_LOG_LINKS
| PROP_REG_INFO
2728 | PROP_DEATH_NOTES
| PROP_AUTOINC
))
2731 int blocknum
= pbi
->bb
->index
;
2734 if (flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
2736 y
= pbi
->reg_next_use
[regno_first
];
2738 /* The next use is no longer next, since a store intervenes. */
2739 for (i
= regno_first
; i
<= regno_last
; ++i
)
2740 pbi
->reg_next_use
[i
] = 0;
2743 if (flags
& PROP_REG_INFO
)
2745 for (i
= regno_first
; i
<= regno_last
; ++i
)
2747 /* Count (weighted) references, stores, etc. This counts a
2748 register twice if it is modified, but that is correct. */
2749 REG_N_SETS (i
) += 1;
2750 REG_N_REFS (i
) += 1;
2751 REG_FREQ (i
) += REG_FREQ_FROM_BB (pbi
->bb
);
2753 /* The insns where a reg is live are normally counted
2754 elsewhere, but we want the count to include the insn
2755 where the reg is set, and the normal counting mechanism
2756 would not count it. */
2757 REG_LIVE_LENGTH (i
) += 1;
2760 /* If this is a hard reg, record this function uses the reg. */
2761 if (regno_first
< FIRST_PSEUDO_REGISTER
)
2763 for (i
= regno_first
; i
<= regno_last
; i
++)
2764 regs_ever_live
[i
] = 1;
2765 if (flags
& PROP_ASM_SCAN
)
2766 for (i
= regno_first
; i
<= regno_last
; i
++)
2767 regs_asm_clobbered
[i
] = 1;
2771 /* Keep track of which basic blocks each reg appears in. */
2772 if (REG_BASIC_BLOCK (regno_first
) == REG_BLOCK_UNKNOWN
)
2773 REG_BASIC_BLOCK (regno_first
) = blocknum
;
2774 else if (REG_BASIC_BLOCK (regno_first
) != blocknum
)
2775 REG_BASIC_BLOCK (regno_first
) = REG_BLOCK_GLOBAL
;
2779 if (! some_was_dead
)
2781 if (flags
& PROP_LOG_LINKS
)
2783 /* Make a logical link from the next following insn
2784 that uses this register, back to this insn.
2785 The following insns have already been processed.
2787 We don't build a LOG_LINK for hard registers containing
2788 in ASM_OPERANDs. If these registers get replaced,
2789 we might wind up changing the semantics of the insn,
2790 even if reload can make what appear to be valid
2791 assignments later. */
2792 if (y
&& (BLOCK_NUM (y
) == blocknum
)
2793 && (regno_first
>= FIRST_PSEUDO_REGISTER
2794 || asm_noperands (PATTERN (y
)) < 0))
2795 LOG_LINKS (y
) = alloc_INSN_LIST (insn
, LOG_LINKS (y
));
2800 else if (! some_was_live
)
2802 if (flags
& PROP_REG_INFO
)
2803 REG_N_DEATHS (regno_first
) += 1;
2805 if (flags
& PROP_DEATH_NOTES
)
2807 /* Note that dead stores have already been deleted
2808 when possible. If we get here, we have found a
2809 dead store that cannot be eliminated (because the
2810 same insn does something useful). Indicate this
2811 by marking the reg being set as dying here. */
2813 = alloc_EXPR_LIST (REG_UNUSED
, reg
, REG_NOTES (insn
));
2818 if (flags
& PROP_DEATH_NOTES
)
2820 /* This is a case where we have a multi-word hard register
2821 and some, but not all, of the words of the register are
2822 needed in subsequent insns. Write REG_UNUSED notes
2823 for those parts that were not needed. This case should
2826 for (i
= regno_first
; i
<= regno_last
; ++i
)
2827 if (! REGNO_REG_SET_P (pbi
->reg_live
, i
))
2829 = alloc_EXPR_LIST (REG_UNUSED
,
2836 /* Mark the register as being dead. */
2838 /* The stack pointer is never dead. Well, not strictly true,
2839 but it's very difficult to tell from here. Hopefully
2840 combine_stack_adjustments will fix up the most egregious
2842 && regno_first
!= STACK_POINTER_REGNUM
)
2844 for (i
= regno_first
; i
<= regno_last
; ++i
)
2845 if (!(not_dead
& (((unsigned long) 1) << (i
- regno_first
))))
2847 if ((pbi
->flags
& PROP_REG_INFO
)
2848 && REGNO_REG_SET_P (pbi
->reg_live
, i
))
2850 REG_LIVE_LENGTH (i
) += pbi
->insn_num
- reg_deaths
[i
];
2853 CLEAR_REGNO_REG_SET (pbi
->reg_live
, i
);
2857 else if (GET_CODE (reg
) == REG
)
2859 if (flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
2860 pbi
->reg_next_use
[regno_first
] = 0;
2862 if ((flags
& PROP_REG_INFO
) != 0
2863 && (flags
& PROP_ASM_SCAN
) != 0
2864 && regno_first
< FIRST_PSEUDO_REGISTER
)
2866 for (i
= regno_first
; i
<= regno_last
; i
++)
2867 regs_asm_clobbered
[i
] = 1;
2871 /* If this is the last pass and this is a SCRATCH, show it will be dying
2872 here and count it. */
2873 else if (GET_CODE (reg
) == SCRATCH
)
2875 if (flags
& PROP_DEATH_NOTES
)
2877 = alloc_EXPR_LIST (REG_UNUSED
, reg
, REG_NOTES (insn
));
2881 #ifdef HAVE_conditional_execution
2882 /* Mark REGNO conditionally dead.
2883 Return true if the register is now unconditionally dead. */
2886 mark_regno_cond_dead (struct propagate_block_info
*pbi
, int regno
, rtx cond
)
2888 /* If this is a store to a predicate register, the value of the
2889 predicate is changing, we don't know that the predicate as seen
2890 before is the same as that seen after. Flush all dependent
2891 conditions from reg_cond_dead. This will make all such
2892 conditionally live registers unconditionally live. */
2893 if (REGNO_REG_SET_P (pbi
->reg_cond_reg
, regno
))
2894 flush_reg_cond_reg (pbi
, regno
);
2896 /* If this is an unconditional store, remove any conditional
2897 life that may have existed. */
2898 if (cond
== NULL_RTX
)
2899 splay_tree_remove (pbi
->reg_cond_dead
, regno
);
2902 splay_tree_node node
;
2903 struct reg_cond_life_info
*rcli
;
2906 /* Otherwise this is a conditional set. Record that fact.
2907 It may have been conditionally used, or there may be a
2908 subsequent set with a complimentary condition. */
2910 node
= splay_tree_lookup (pbi
->reg_cond_dead
, regno
);
2913 /* The register was unconditionally live previously.
2914 Record the current condition as the condition under
2915 which it is dead. */
2916 rcli
= xmalloc (sizeof (*rcli
));
2917 rcli
->condition
= cond
;
2918 rcli
->stores
= cond
;
2919 rcli
->orig_condition
= const0_rtx
;
2920 splay_tree_insert (pbi
->reg_cond_dead
, regno
,
2921 (splay_tree_value
) rcli
);
2923 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (XEXP (cond
, 0)));
2925 /* Not unconditionally dead. */
2930 /* The register was conditionally live previously.
2931 Add the new condition to the old. */
2932 rcli
= (struct reg_cond_life_info
*) node
->value
;
2933 ncond
= rcli
->condition
;
2934 ncond
= ior_reg_cond (ncond
, cond
, 1);
2935 if (rcli
->stores
== const0_rtx
)
2936 rcli
->stores
= cond
;
2937 else if (rcli
->stores
!= const1_rtx
)
2938 rcli
->stores
= ior_reg_cond (rcli
->stores
, cond
, 1);
2940 /* If the register is now unconditionally dead, remove the entry
2941 in the splay_tree. A register is unconditionally dead if the
2942 dead condition ncond is true. A register is also unconditionally
2943 dead if the sum of all conditional stores is an unconditional
2944 store (stores is true), and the dead condition is identically the
2945 same as the original dead condition initialized at the end of
2946 the block. This is a pointer compare, not an rtx_equal_p
2948 if (ncond
== const1_rtx
2949 || (ncond
== rcli
->orig_condition
&& rcli
->stores
== const1_rtx
))
2950 splay_tree_remove (pbi
->reg_cond_dead
, regno
);
2953 rcli
->condition
= ncond
;
2955 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (XEXP (cond
, 0)));
2957 /* Not unconditionally dead. */
2966 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2969 free_reg_cond_life_info (splay_tree_value value
)
2971 struct reg_cond_life_info
*rcli
= (struct reg_cond_life_info
*) value
;
2975 /* Helper function for flush_reg_cond_reg. */
2978 flush_reg_cond_reg_1 (splay_tree_node node
, void *data
)
2980 struct reg_cond_life_info
*rcli
;
2981 int *xdata
= (int *) data
;
2982 unsigned int regno
= xdata
[0];
2984 /* Don't need to search if last flushed value was farther on in
2985 the in-order traversal. */
2986 if (xdata
[1] >= (int) node
->key
)
2989 /* Splice out portions of the expression that refer to regno. */
2990 rcli
= (struct reg_cond_life_info
*) node
->value
;
2991 rcli
->condition
= elim_reg_cond (rcli
->condition
, regno
);
2992 if (rcli
->stores
!= const0_rtx
&& rcli
->stores
!= const1_rtx
)
2993 rcli
->stores
= elim_reg_cond (rcli
->stores
, regno
);
2995 /* If the entire condition is now false, signal the node to be removed. */
2996 if (rcli
->condition
== const0_rtx
)
2998 xdata
[1] = node
->key
;
3001 else if (rcli
->condition
== const1_rtx
)
3007 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3010 flush_reg_cond_reg (struct propagate_block_info
*pbi
, int regno
)
3016 while (splay_tree_foreach (pbi
->reg_cond_dead
,
3017 flush_reg_cond_reg_1
, pair
) == -1)
3018 splay_tree_remove (pbi
->reg_cond_dead
, pair
[1]);
3020 CLEAR_REGNO_REG_SET (pbi
->reg_cond_reg
, regno
);
3023 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3024 For ior/and, the ADD flag determines whether we want to add the new
3025 condition X to the old one unconditionally. If it is zero, we will
3026 only return a new expression if X allows us to simplify part of
3027 OLD, otherwise we return NULL to the caller.
3028 If ADD is nonzero, we will return a new condition in all cases. The
3029 toplevel caller of one of these functions should always pass 1 for
3033 ior_reg_cond (rtx old
, rtx x
, int add
)
3037 if (GET_RTX_CLASS (GET_CODE (old
)) == '<')
3039 if (GET_RTX_CLASS (GET_CODE (x
)) == '<'
3040 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x
), GET_CODE (old
))
3041 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
3043 if (GET_CODE (x
) == GET_CODE (old
)
3044 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
3048 return gen_rtx_IOR (0, old
, x
);
3051 switch (GET_CODE (old
))
3054 op0
= ior_reg_cond (XEXP (old
, 0), x
, 0);
3055 op1
= ior_reg_cond (XEXP (old
, 1), x
, 0);
3056 if (op0
!= NULL
|| op1
!= NULL
)
3058 if (op0
== const0_rtx
)
3059 return op1
? op1
: gen_rtx_IOR (0, XEXP (old
, 1), x
);
3060 if (op1
== const0_rtx
)
3061 return op0
? op0
: gen_rtx_IOR (0, XEXP (old
, 0), x
);
3062 if (op0
== const1_rtx
|| op1
== const1_rtx
)
3065 op0
= gen_rtx_IOR (0, XEXP (old
, 0), x
);
3066 else if (rtx_equal_p (x
, op0
))
3067 /* (x | A) | x ~ (x | A). */
3070 op1
= gen_rtx_IOR (0, XEXP (old
, 1), x
);
3071 else if (rtx_equal_p (x
, op1
))
3072 /* (A | x) | x ~ (A | x). */
3074 return gen_rtx_IOR (0, op0
, op1
);
3078 return gen_rtx_IOR (0, old
, x
);
3081 op0
= ior_reg_cond (XEXP (old
, 0), x
, 0);
3082 op1
= ior_reg_cond (XEXP (old
, 1), x
, 0);
3083 if (op0
!= NULL
|| op1
!= NULL
)
3085 if (op0
== const1_rtx
)
3086 return op1
? op1
: gen_rtx_IOR (0, XEXP (old
, 1), x
);
3087 if (op1
== const1_rtx
)
3088 return op0
? op0
: gen_rtx_IOR (0, XEXP (old
, 0), x
);
3089 if (op0
== const0_rtx
|| op1
== const0_rtx
)
3092 op0
= gen_rtx_IOR (0, XEXP (old
, 0), x
);
3093 else if (rtx_equal_p (x
, op0
))
3094 /* (x & A) | x ~ x. */
3097 op1
= gen_rtx_IOR (0, XEXP (old
, 1), x
);
3098 else if (rtx_equal_p (x
, op1
))
3099 /* (A & x) | x ~ x. */
3101 return gen_rtx_AND (0, op0
, op1
);
3105 return gen_rtx_IOR (0, old
, x
);
3108 op0
= and_reg_cond (XEXP (old
, 0), not_reg_cond (x
), 0);
3110 return not_reg_cond (op0
);
3113 return gen_rtx_IOR (0, old
, x
);
3121 not_reg_cond (rtx x
)
3123 enum rtx_code x_code
;
3125 if (x
== const0_rtx
)
3127 else if (x
== const1_rtx
)
3129 x_code
= GET_CODE (x
);
3132 if (GET_RTX_CLASS (x_code
) == '<'
3133 && GET_CODE (XEXP (x
, 0)) == REG
)
3135 if (XEXP (x
, 1) != const0_rtx
)
3138 return gen_rtx_fmt_ee (reverse_condition (x_code
),
3139 VOIDmode
, XEXP (x
, 0), const0_rtx
);
3141 return gen_rtx_NOT (0, x
);
3145 and_reg_cond (rtx old
, rtx x
, int add
)
3149 if (GET_RTX_CLASS (GET_CODE (old
)) == '<')
3151 if (GET_RTX_CLASS (GET_CODE (x
)) == '<'
3152 && GET_CODE (x
) == reverse_condition (GET_CODE (old
))
3153 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
3155 if (GET_CODE (x
) == GET_CODE (old
)
3156 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
3160 return gen_rtx_AND (0, old
, x
);
3163 switch (GET_CODE (old
))
3166 op0
= and_reg_cond (XEXP (old
, 0), x
, 0);
3167 op1
= and_reg_cond (XEXP (old
, 1), x
, 0);
3168 if (op0
!= NULL
|| op1
!= NULL
)
3170 if (op0
== const0_rtx
)
3171 return op1
? op1
: gen_rtx_AND (0, XEXP (old
, 1), x
);
3172 if (op1
== const0_rtx
)
3173 return op0
? op0
: gen_rtx_AND (0, XEXP (old
, 0), x
);
3174 if (op0
== const1_rtx
|| op1
== const1_rtx
)
3177 op0
= gen_rtx_AND (0, XEXP (old
, 0), x
);
3178 else if (rtx_equal_p (x
, op0
))
3179 /* (x | A) & x ~ x. */
3182 op1
= gen_rtx_AND (0, XEXP (old
, 1), x
);
3183 else if (rtx_equal_p (x
, op1
))
3184 /* (A | x) & x ~ x. */
3186 return gen_rtx_IOR (0, op0
, op1
);
3190 return gen_rtx_AND (0, old
, x
);
3193 op0
= and_reg_cond (XEXP (old
, 0), x
, 0);
3194 op1
= and_reg_cond (XEXP (old
, 1), x
, 0);
3195 if (op0
!= NULL
|| op1
!= NULL
)
3197 if (op0
== const1_rtx
)
3198 return op1
? op1
: gen_rtx_AND (0, XEXP (old
, 1), x
);
3199 if (op1
== const1_rtx
)
3200 return op0
? op0
: gen_rtx_AND (0, XEXP (old
, 0), x
);
3201 if (op0
== const0_rtx
|| op1
== const0_rtx
)
3204 op0
= gen_rtx_AND (0, XEXP (old
, 0), x
);
3205 else if (rtx_equal_p (x
, op0
))
3206 /* (x & A) & x ~ (x & A). */
3209 op1
= gen_rtx_AND (0, XEXP (old
, 1), x
);
3210 else if (rtx_equal_p (x
, op1
))
3211 /* (A & x) & x ~ (A & x). */
3213 return gen_rtx_AND (0, op0
, op1
);
3217 return gen_rtx_AND (0, old
, x
);
3220 op0
= ior_reg_cond (XEXP (old
, 0), not_reg_cond (x
), 0);
3222 return not_reg_cond (op0
);
3225 return gen_rtx_AND (0, old
, x
);
3232 /* Given a condition X, remove references to reg REGNO and return the
3233 new condition. The removal will be done so that all conditions
3234 involving REGNO are considered to evaluate to false. This function
3235 is used when the value of REGNO changes. */
3238 elim_reg_cond (rtx x
, unsigned int regno
)
3242 if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
3244 if (REGNO (XEXP (x
, 0)) == regno
)
3249 switch (GET_CODE (x
))
3252 op0
= elim_reg_cond (XEXP (x
, 0), regno
);
3253 op1
= elim_reg_cond (XEXP (x
, 1), regno
);
3254 if (op0
== const0_rtx
|| op1
== const0_rtx
)
3256 if (op0
== const1_rtx
)
3258 if (op1
== const1_rtx
)
3260 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
3262 return gen_rtx_AND (0, op0
, op1
);
3265 op0
= elim_reg_cond (XEXP (x
, 0), regno
);
3266 op1
= elim_reg_cond (XEXP (x
, 1), regno
);
3267 if (op0
== const1_rtx
|| op1
== const1_rtx
)
3269 if (op0
== const0_rtx
)
3271 if (op1
== const0_rtx
)
3273 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
3275 return gen_rtx_IOR (0, op0
, op1
);
3278 op0
= elim_reg_cond (XEXP (x
, 0), regno
);
3279 if (op0
== const0_rtx
)
3281 if (op0
== const1_rtx
)
3283 if (op0
!= XEXP (x
, 0))
3284 return not_reg_cond (op0
);
3291 #endif /* HAVE_conditional_execution */
3295 /* Try to substitute the auto-inc expression INC as the address inside
3296 MEM which occurs in INSN. Currently, the address of MEM is an expression
3297 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3298 that has a single set whose source is a PLUS of INCR_REG and something
3302 attempt_auto_inc (struct propagate_block_info
*pbi
, rtx inc
, rtx insn
,
3303 rtx mem
, rtx incr
, rtx incr_reg
)
3305 int regno
= REGNO (incr_reg
);
3306 rtx set
= single_set (incr
);
3307 rtx q
= SET_DEST (set
);
3308 rtx y
= SET_SRC (set
);
3309 int opnum
= XEXP (y
, 0) == incr_reg
? 0 : 1;
3311 /* Make sure this reg appears only once in this insn. */
3312 if (count_occurrences (PATTERN (insn
), incr_reg
, 1) != 1)
3315 if (dead_or_set_p (incr
, incr_reg
)
3316 /* Mustn't autoinc an eliminable register. */
3317 && (regno
>= FIRST_PSEUDO_REGISTER
3318 || ! TEST_HARD_REG_BIT (elim_reg_set
, regno
)))
3320 /* This is the simple case. Try to make the auto-inc. If
3321 we can't, we are done. Otherwise, we will do any
3322 needed updates below. */
3323 if (! validate_change (insn
, &XEXP (mem
, 0), inc
, 0))
3326 else if (GET_CODE (q
) == REG
3327 /* PREV_INSN used here to check the semi-open interval
3329 && ! reg_used_between_p (q
, PREV_INSN (insn
), incr
)
3330 /* We must also check for sets of q as q may be
3331 a call clobbered hard register and there may
3332 be a call between PREV_INSN (insn) and incr. */
3333 && ! reg_set_between_p (q
, PREV_INSN (insn
), incr
))
3335 /* We have *p followed sometime later by q = p+size.
3336 Both p and q must be live afterward,
3337 and q is not used between INSN and its assignment.
3338 Change it to q = p, ...*q..., q = q+size.
3339 Then fall into the usual case. */
3343 emit_move_insn (q
, incr_reg
);
3344 insns
= get_insns ();
3347 /* If we can't make the auto-inc, or can't make the
3348 replacement into Y, exit. There's no point in making
3349 the change below if we can't do the auto-inc and doing
3350 so is not correct in the pre-inc case. */
3353 validate_change (insn
, &XEXP (mem
, 0), inc
, 1);
3354 validate_change (incr
, &XEXP (y
, opnum
), q
, 1);
3355 if (! apply_change_group ())
3358 /* We now know we'll be doing this change, so emit the
3359 new insn(s) and do the updates. */
3360 emit_insn_before (insns
, insn
);
3362 if (BB_HEAD (pbi
->bb
) == insn
)
3363 BB_HEAD (pbi
->bb
) = insns
;
3365 /* INCR will become a NOTE and INSN won't contain a
3366 use of INCR_REG. If a use of INCR_REG was just placed in
3367 the insn before INSN, make that the next use.
3368 Otherwise, invalidate it. */
3369 if (GET_CODE (PREV_INSN (insn
)) == INSN
3370 && GET_CODE (PATTERN (PREV_INSN (insn
))) == SET
3371 && SET_SRC (PATTERN (PREV_INSN (insn
))) == incr_reg
)
3372 pbi
->reg_next_use
[regno
] = PREV_INSN (insn
);
3374 pbi
->reg_next_use
[regno
] = 0;
3379 /* REGNO is now used in INCR which is below INSN, but
3380 it previously wasn't live here. If we don't mark
3381 it as live, we'll put a REG_DEAD note for it
3382 on this insn, which is incorrect. */
3383 SET_REGNO_REG_SET (pbi
->reg_live
, regno
);
3385 /* We shall not do the autoinc during final pass. */
3386 if (flags
& PROP_REG_INFO
)
3389 /* If there are any calls between INSN and INCR, show
3390 that REGNO now crosses them. */
3391 for (temp
= insn
; temp
!= incr
; temp
= NEXT_INSN (temp
))
3392 if (GET_CODE (temp
) == CALL_INSN
)
3393 REG_N_CALLS_CROSSED (regno
)++;
3395 /* Invalidate alias info for Q since we just changed its value. */
3396 clear_reg_alias_info (q
);
3401 /* If we haven't returned, it means we were able to make the
3402 auto-inc, so update the status. First, record that this insn
3403 has an implicit side effect. */
3405 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_INC
, incr_reg
, REG_NOTES (insn
));
3407 /* Modify the old increment-insn to simply copy
3408 the already-incremented value of our register. */
3409 if (! validate_change (incr
, &SET_SRC (set
), incr_reg
, 0))
3412 /* If that makes it a no-op (copying the register into itself) delete
3413 it so it won't appear to be a "use" and a "set" of this
3415 if (REGNO (SET_DEST (set
)) == REGNO (incr_reg
))
3417 /* If the original source was dead, it's dead now. */
3420 /* We shall not do the autoinc during final pass. */
3421 if (flags
& PROP_REG_INFO
)
3423 while ((note
= find_reg_note (incr
, REG_DEAD
, NULL_RTX
)) != NULL_RTX
)
3425 remove_note (incr
, note
);
3426 if (XEXP (note
, 0) != incr_reg
)
3427 CLEAR_REGNO_REG_SET (pbi
->reg_live
, REGNO (XEXP (note
, 0)));
3430 PUT_CODE (incr
, NOTE
);
3431 NOTE_LINE_NUMBER (incr
) = NOTE_INSN_DELETED
;
3432 NOTE_SOURCE_FILE (incr
) = 0;
3435 if (regno
>= FIRST_PSEUDO_REGISTER
)
3437 /* Count an extra reference to the reg. When a reg is
3438 incremented, spilling it is worse, so we want to make
3439 that less likely. */
3440 REG_FREQ (regno
) += REG_FREQ_FROM_BB (pbi
->bb
);
3442 /* Count the increment as a setting of the register,
3443 even though it isn't a SET in rtl. */
3444 REG_N_SETS (regno
)++;
3448 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3452 find_auto_inc (struct propagate_block_info
*pbi
, rtx x
, rtx insn
)
3454 rtx addr
= XEXP (x
, 0);
3455 HOST_WIDE_INT offset
= 0;
3456 rtx set
, y
, incr
, inc_val
;
3458 int size
= GET_MODE_SIZE (GET_MODE (x
));
3460 if (GET_CODE (insn
) == JUMP_INSN
)
3463 /* Here we detect use of an index register which might be good for
3464 postincrement, postdecrement, preincrement, or predecrement. */
3466 if (GET_CODE (addr
) == PLUS
&& GET_CODE (XEXP (addr
, 1)) == CONST_INT
)
3467 offset
= INTVAL (XEXP (addr
, 1)), addr
= XEXP (addr
, 0);
3469 if (GET_CODE (addr
) != REG
)
3472 regno
= REGNO (addr
);
3474 /* Is the next use an increment that might make auto-increment? */
3475 incr
= pbi
->reg_next_use
[regno
];
3476 if (incr
== 0 || BLOCK_NUM (incr
) != BLOCK_NUM (insn
))
3478 set
= single_set (incr
);
3479 if (set
== 0 || GET_CODE (set
) != SET
)
3483 if (GET_CODE (y
) != PLUS
)
3486 if (REG_P (XEXP (y
, 0)) && REGNO (XEXP (y
, 0)) == REGNO (addr
))
3487 inc_val
= XEXP (y
, 1);
3488 else if (REG_P (XEXP (y
, 1)) && REGNO (XEXP (y
, 1)) == REGNO (addr
))
3489 inc_val
= XEXP (y
, 0);
3493 if (GET_CODE (inc_val
) == CONST_INT
)
3495 if (HAVE_POST_INCREMENT
3496 && (INTVAL (inc_val
) == size
&& offset
== 0))
3497 attempt_auto_inc (pbi
, gen_rtx_POST_INC (Pmode
, addr
), insn
, x
,
3499 else if (HAVE_POST_DECREMENT
3500 && (INTVAL (inc_val
) == -size
&& offset
== 0))
3501 attempt_auto_inc (pbi
, gen_rtx_POST_DEC (Pmode
, addr
), insn
, x
,
3503 else if (HAVE_PRE_INCREMENT
3504 && (INTVAL (inc_val
) == size
&& offset
== size
))
3505 attempt_auto_inc (pbi
, gen_rtx_PRE_INC (Pmode
, addr
), insn
, x
,
3507 else if (HAVE_PRE_DECREMENT
3508 && (INTVAL (inc_val
) == -size
&& offset
== -size
))
3509 attempt_auto_inc (pbi
, gen_rtx_PRE_DEC (Pmode
, addr
), insn
, x
,
3511 else if (HAVE_POST_MODIFY_DISP
&& offset
== 0)
3512 attempt_auto_inc (pbi
, gen_rtx_POST_MODIFY (Pmode
, addr
,
3513 gen_rtx_PLUS (Pmode
,
3516 insn
, x
, incr
, addr
);
3517 else if (HAVE_PRE_MODIFY_DISP
&& offset
== INTVAL (inc_val
))
3518 attempt_auto_inc (pbi
, gen_rtx_PRE_MODIFY (Pmode
, addr
,
3519 gen_rtx_PLUS (Pmode
,
3522 insn
, x
, incr
, addr
);
3524 else if (GET_CODE (inc_val
) == REG
3525 && ! reg_set_between_p (inc_val
, PREV_INSN (insn
),
3529 if (HAVE_POST_MODIFY_REG
&& offset
== 0)
3530 attempt_auto_inc (pbi
, gen_rtx_POST_MODIFY (Pmode
, addr
,
3531 gen_rtx_PLUS (Pmode
,
3534 insn
, x
, incr
, addr
);
3538 #endif /* AUTO_INC_DEC */
3541 mark_used_reg (struct propagate_block_info
*pbi
, rtx reg
,
3542 rtx cond ATTRIBUTE_UNUSED
, rtx insn
)
3544 unsigned int regno_first
, regno_last
, i
;
3545 int some_was_live
, some_was_dead
, some_not_set
;
3547 regno_last
= regno_first
= REGNO (reg
);
3548 if (regno_first
< FIRST_PSEUDO_REGISTER
)
3549 regno_last
+= hard_regno_nregs
[regno_first
][GET_MODE (reg
)] - 1;
3551 /* Find out if any of this register is live after this instruction. */
3552 some_was_live
= some_was_dead
= 0;
3553 for (i
= regno_first
; i
<= regno_last
; ++i
)
3555 int needed_regno
= REGNO_REG_SET_P (pbi
->reg_live
, i
);
3556 some_was_live
|= needed_regno
;
3557 some_was_dead
|= ! needed_regno
;
3560 /* Find out if any of the register was set this insn. */
3562 for (i
= regno_first
; i
<= regno_last
; ++i
)
3563 some_not_set
|= ! REGNO_REG_SET_P (pbi
->new_set
, i
);
3565 if (pbi
->flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
3567 /* Record where each reg is used, so when the reg is set we know
3568 the next insn that uses it. */
3569 pbi
->reg_next_use
[regno_first
] = insn
;
3572 if (pbi
->flags
& PROP_REG_INFO
)
3574 if (regno_first
< FIRST_PSEUDO_REGISTER
)
3576 /* If this is a register we are going to try to eliminate,
3577 don't mark it live here. If we are successful in
3578 eliminating it, it need not be live unless it is used for
3579 pseudos, in which case it will have been set live when it
3580 was allocated to the pseudos. If the register will not
3581 be eliminated, reload will set it live at that point.
3583 Otherwise, record that this function uses this register. */
3584 /* ??? The PPC backend tries to "eliminate" on the pic
3585 register to itself. This should be fixed. In the mean
3586 time, hack around it. */
3588 if (! (TEST_HARD_REG_BIT (elim_reg_set
, regno_first
)
3589 && (regno_first
== FRAME_POINTER_REGNUM
3590 || regno_first
== ARG_POINTER_REGNUM
)))
3591 for (i
= regno_first
; i
<= regno_last
; ++i
)
3592 regs_ever_live
[i
] = 1;
3596 /* Keep track of which basic block each reg appears in. */
3598 int blocknum
= pbi
->bb
->index
;
3599 if (REG_BASIC_BLOCK (regno_first
) == REG_BLOCK_UNKNOWN
)
3600 REG_BASIC_BLOCK (regno_first
) = blocknum
;
3601 else if (REG_BASIC_BLOCK (regno_first
) != blocknum
)
3602 REG_BASIC_BLOCK (regno_first
) = REG_BLOCK_GLOBAL
;
3604 /* Count (weighted) number of uses of each reg. */
3605 REG_FREQ (regno_first
) += REG_FREQ_FROM_BB (pbi
->bb
);
3606 REG_N_REFS (regno_first
)++;
3608 for (i
= regno_first
; i
<= regno_last
; ++i
)
3609 if (! REGNO_REG_SET_P (pbi
->reg_live
, i
))
3611 #ifdef ENABLE_CHECKING
3615 reg_deaths
[i
] = pbi
->insn_num
;
3619 /* Record and count the insns in which a reg dies. If it is used in
3620 this insn and was dead below the insn then it dies in this insn.
3621 If it was set in this insn, we do not make a REG_DEAD note;
3622 likewise if we already made such a note. */
3623 if ((pbi
->flags
& (PROP_DEATH_NOTES
| PROP_REG_INFO
))
3627 /* Check for the case where the register dying partially
3628 overlaps the register set by this insn. */
3629 if (regno_first
!= regno_last
)
3630 for (i
= regno_first
; i
<= regno_last
; ++i
)
3631 some_was_live
|= REGNO_REG_SET_P (pbi
->new_set
, i
);
3633 /* If none of the words in X is needed, make a REG_DEAD note.
3634 Otherwise, we must make partial REG_DEAD notes. */
3635 if (! some_was_live
)
3637 if ((pbi
->flags
& PROP_DEATH_NOTES
)
3638 && ! find_regno_note (insn
, REG_DEAD
, regno_first
))
3640 = alloc_EXPR_LIST (REG_DEAD
, reg
, REG_NOTES (insn
));
3642 if (pbi
->flags
& PROP_REG_INFO
)
3643 REG_N_DEATHS (regno_first
)++;
3647 /* Don't make a REG_DEAD note for a part of a register
3648 that is set in the insn. */
3649 for (i
= regno_first
; i
<= regno_last
; ++i
)
3650 if (! REGNO_REG_SET_P (pbi
->reg_live
, i
)
3651 && ! dead_or_set_regno_p (insn
, i
))
3653 = alloc_EXPR_LIST (REG_DEAD
,
3659 /* Mark the register as being live. */
3660 for (i
= regno_first
; i
<= regno_last
; ++i
)
3662 #ifdef HAVE_conditional_execution
3663 int this_was_live
= REGNO_REG_SET_P (pbi
->reg_live
, i
);
3666 SET_REGNO_REG_SET (pbi
->reg_live
, i
);
3668 #ifdef HAVE_conditional_execution
3669 /* If this is a conditional use, record that fact. If it is later
3670 conditionally set, we'll know to kill the register. */
3671 if (cond
!= NULL_RTX
)
3673 splay_tree_node node
;
3674 struct reg_cond_life_info
*rcli
;
3679 node
= splay_tree_lookup (pbi
->reg_cond_dead
, i
);
3682 /* The register was unconditionally live previously.
3683 No need to do anything. */
3687 /* The register was conditionally live previously.
3688 Subtract the new life cond from the old death cond. */
3689 rcli
= (struct reg_cond_life_info
*) node
->value
;
3690 ncond
= rcli
->condition
;
3691 ncond
= and_reg_cond (ncond
, not_reg_cond (cond
), 1);
3693 /* If the register is now unconditionally live,
3694 remove the entry in the splay_tree. */
3695 if (ncond
== const0_rtx
)
3696 splay_tree_remove (pbi
->reg_cond_dead
, i
);
3699 rcli
->condition
= ncond
;
3700 SET_REGNO_REG_SET (pbi
->reg_cond_reg
,
3701 REGNO (XEXP (cond
, 0)));
3707 /* The register was not previously live at all. Record
3708 the condition under which it is still dead. */
3709 rcli
= xmalloc (sizeof (*rcli
));
3710 rcli
->condition
= not_reg_cond (cond
);
3711 rcli
->stores
= const0_rtx
;
3712 rcli
->orig_condition
= const0_rtx
;
3713 splay_tree_insert (pbi
->reg_cond_dead
, i
,
3714 (splay_tree_value
) rcli
);
3716 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (XEXP (cond
, 0)));
3719 else if (this_was_live
)
3721 /* The register may have been conditionally live previously, but
3722 is now unconditionally live. Remove it from the conditionally
3723 dead list, so that a conditional set won't cause us to think
3725 splay_tree_remove (pbi
->reg_cond_dead
, i
);
3731 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3732 This is done assuming the registers needed from X are those that
3733 have 1-bits in PBI->REG_LIVE.
3735 INSN is the containing instruction. If INSN is dead, this function
3739 mark_used_regs (struct propagate_block_info
*pbi
, rtx x
, rtx cond
, rtx insn
)
3743 int flags
= pbi
->flags
;
3748 code
= GET_CODE (x
);
3769 /* If we are clobbering a MEM, mark any registers inside the address
3771 if (GET_CODE (XEXP (x
, 0)) == MEM
)
3772 mark_used_regs (pbi
, XEXP (XEXP (x
, 0), 0), cond
, insn
);
3776 /* Don't bother watching stores to mems if this is not the
3777 final pass. We'll not be deleting dead stores this round. */
3778 if (optimize
&& (flags
& PROP_SCAN_DEAD_STORES
))
3780 /* Invalidate the data for the last MEM stored, but only if MEM is
3781 something that can be stored into. */
3782 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
3783 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
3784 /* Needn't clear the memory set list. */
3788 rtx temp
= pbi
->mem_set_list
;
3789 rtx prev
= NULL_RTX
;
3794 next
= XEXP (temp
, 1);
3795 if (unchanging_anti_dependence (XEXP (temp
, 0), x
))
3797 /* Splice temp out of the list. */
3799 XEXP (prev
, 1) = next
;
3801 pbi
->mem_set_list
= next
;
3802 free_EXPR_LIST_node (temp
);
3803 pbi
->mem_set_list_len
--;
3811 /* If the memory reference had embedded side effects (autoincrement
3812 address modes. Then we may need to kill some entries on the
3815 for_each_rtx (&PATTERN (insn
), invalidate_mems_from_autoinc
, pbi
);
3819 if (flags
& PROP_AUTOINC
)
3820 find_auto_inc (pbi
, x
, insn
);
3825 #ifdef CANNOT_CHANGE_MODE_CLASS
3826 if ((flags
& PROP_REG_INFO
)
3827 && GET_CODE (SUBREG_REG (x
)) == REG
3828 && REGNO (SUBREG_REG (x
)) >= FIRST_PSEUDO_REGISTER
)
3829 bitmap_set_bit (&subregs_of_mode
, REGNO (SUBREG_REG (x
))
3834 /* While we're here, optimize this case. */
3836 if (GET_CODE (x
) != REG
)
3841 /* See a register other than being set => mark it as needed. */
3842 mark_used_reg (pbi
, x
, cond
, insn
);
3847 rtx testreg
= SET_DEST (x
);
3850 /* If storing into MEM, don't show it as being used. But do
3851 show the address as being used. */
3852 if (GET_CODE (testreg
) == MEM
)
3855 if (flags
& PROP_AUTOINC
)
3856 find_auto_inc (pbi
, testreg
, insn
);
3858 mark_used_regs (pbi
, XEXP (testreg
, 0), cond
, insn
);
3859 mark_used_regs (pbi
, SET_SRC (x
), cond
, insn
);
3863 /* Storing in STRICT_LOW_PART is like storing in a reg
3864 in that this SET might be dead, so ignore it in TESTREG.
3865 but in some other ways it is like using the reg.
3867 Storing in a SUBREG or a bit field is like storing the entire
3868 register in that if the register's value is not used
3869 then this SET is not needed. */
3870 while (GET_CODE (testreg
) == STRICT_LOW_PART
3871 || GET_CODE (testreg
) == ZERO_EXTRACT
3872 || GET_CODE (testreg
) == SIGN_EXTRACT
3873 || GET_CODE (testreg
) == SUBREG
)
3875 #ifdef CANNOT_CHANGE_MODE_CLASS
3876 if ((flags
& PROP_REG_INFO
)
3877 && GET_CODE (testreg
) == SUBREG
3878 && GET_CODE (SUBREG_REG (testreg
)) == REG
3879 && REGNO (SUBREG_REG (testreg
)) >= FIRST_PSEUDO_REGISTER
)
3880 bitmap_set_bit (&subregs_of_mode
, REGNO (SUBREG_REG (testreg
))
3882 + GET_MODE (testreg
));
3885 /* Modifying a single register in an alternate mode
3886 does not use any of the old value. But these other
3887 ways of storing in a register do use the old value. */
3888 if (GET_CODE (testreg
) == SUBREG
3889 && !((REG_BYTES (SUBREG_REG (testreg
))
3890 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
3891 > (REG_BYTES (testreg
)
3892 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))
3897 testreg
= XEXP (testreg
, 0);
3900 /* If this is a store into a register or group of registers,
3901 recursively scan the value being stored. */
3903 if ((GET_CODE (testreg
) == PARALLEL
3904 && GET_MODE (testreg
) == BLKmode
)
3905 || (GET_CODE (testreg
) == REG
3906 && (regno
= REGNO (testreg
),
3907 ! (regno
== FRAME_POINTER_REGNUM
3908 && (! reload_completed
|| frame_pointer_needed
)))
3909 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3910 && ! (regno
== HARD_FRAME_POINTER_REGNUM
3911 && (! reload_completed
|| frame_pointer_needed
))
3913 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3914 && ! (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
3919 mark_used_regs (pbi
, SET_DEST (x
), cond
, insn
);
3920 mark_used_regs (pbi
, SET_SRC (x
), cond
, insn
);
3927 case UNSPEC_VOLATILE
:
3931 /* Traditional and volatile asm instructions must be considered to use
3932 and clobber all hard registers, all pseudo-registers and all of
3933 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3935 Consider for instance a volatile asm that changes the fpu rounding
3936 mode. An insn should not be moved across this even if it only uses
3937 pseudo-regs because it might give an incorrectly rounded result.
3939 ?!? Unfortunately, marking all hard registers as live causes massive
3940 problems for the register allocator and marking all pseudos as live
3941 creates mountains of uninitialized variable warnings.
3943 So for now, just clear the memory set list and mark any regs
3944 we can find in ASM_OPERANDS as used. */
3945 if (code
!= ASM_OPERANDS
|| MEM_VOLATILE_P (x
))
3947 free_EXPR_LIST_list (&pbi
->mem_set_list
);
3948 pbi
->mem_set_list_len
= 0;
3951 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3952 We can not just fall through here since then we would be confused
3953 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3954 traditional asms unlike their normal usage. */
3955 if (code
== ASM_OPERANDS
)
3959 for (j
= 0; j
< ASM_OPERANDS_INPUT_LENGTH (x
); j
++)
3960 mark_used_regs (pbi
, ASM_OPERANDS_INPUT (x
, j
), cond
, insn
);
3966 if (cond
!= NULL_RTX
)
3969 mark_used_regs (pbi
, COND_EXEC_TEST (x
), NULL_RTX
, insn
);
3971 cond
= COND_EXEC_TEST (x
);
3972 x
= COND_EXEC_CODE (x
);
3979 /* Recursively scan the operands of this expression. */
3982 const char * const fmt
= GET_RTX_FORMAT (code
);
3985 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3989 /* Tail recursive case: save a function call level. */
3995 mark_used_regs (pbi
, XEXP (x
, i
), cond
, insn
);
3997 else if (fmt
[i
] == 'E')
4000 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4001 mark_used_regs (pbi
, XVECEXP (x
, i
, j
), cond
, insn
);
4010 try_pre_increment_1 (struct propagate_block_info
*pbi
, rtx insn
)
4012 /* Find the next use of this reg. If in same basic block,
4013 make it do pre-increment or pre-decrement if appropriate. */
4014 rtx x
= single_set (insn
);
4015 HOST_WIDE_INT amount
= ((GET_CODE (SET_SRC (x
)) == PLUS
? 1 : -1)
4016 * INTVAL (XEXP (SET_SRC (x
), 1)));
4017 int regno
= REGNO (SET_DEST (x
));
4018 rtx y
= pbi
->reg_next_use
[regno
];
4020 && SET_DEST (x
) != stack_pointer_rtx
4021 && BLOCK_NUM (y
) == BLOCK_NUM (insn
)
4022 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4023 mode would be better. */
4024 && ! dead_or_set_p (y
, SET_DEST (x
))
4025 && try_pre_increment (y
, SET_DEST (x
), amount
))
4027 /* We have found a suitable auto-increment and already changed
4028 insn Y to do it. So flush this increment instruction. */
4029 propagate_block_delete_insn (insn
);
4031 /* Count a reference to this reg for the increment insn we are
4032 deleting. When a reg is incremented, spilling it is worse,
4033 so we want to make that less likely. */
4034 if (regno
>= FIRST_PSEUDO_REGISTER
)
4036 REG_FREQ (regno
) += REG_FREQ_FROM_BB (pbi
->bb
);
4037 REG_N_SETS (regno
)++;
4040 /* Flush any remembered memories depending on the value of
4041 the incremented register. */
4042 invalidate_mems_from_set (pbi
, SET_DEST (x
));
4049 /* Try to change INSN so that it does pre-increment or pre-decrement
4050 addressing on register REG in order to add AMOUNT to REG.
4051 AMOUNT is negative for pre-decrement.
4052 Returns 1 if the change could be made.
4053 This checks all about the validity of the result of modifying INSN. */
4056 try_pre_increment (rtx insn
, rtx reg
, HOST_WIDE_INT amount
)
4060 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4061 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4063 /* Nonzero if we can try to make a post-increment or post-decrement.
4064 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4065 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4066 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4069 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4072 /* From the sign of increment, see which possibilities are conceivable
4073 on this target machine. */
4074 if (HAVE_PRE_INCREMENT
&& amount
> 0)
4076 if (HAVE_POST_INCREMENT
&& amount
> 0)
4079 if (HAVE_PRE_DECREMENT
&& amount
< 0)
4081 if (HAVE_POST_DECREMENT
&& amount
< 0)
4084 if (! (pre_ok
|| post_ok
))
4087 /* It is not safe to add a side effect to a jump insn
4088 because if the incremented register is spilled and must be reloaded
4089 there would be no way to store the incremented value back in memory. */
4091 if (GET_CODE (insn
) == JUMP_INSN
)
4096 use
= find_use_as_address (PATTERN (insn
), reg
, 0);
4097 if (post_ok
&& (use
== 0 || use
== (rtx
) (size_t) 1))
4099 use
= find_use_as_address (PATTERN (insn
), reg
, -amount
);
4103 if (use
== 0 || use
== (rtx
) (size_t) 1)
4106 if (GET_MODE_SIZE (GET_MODE (use
)) != (amount
> 0 ? amount
: - amount
))
4109 /* See if this combination of instruction and addressing mode exists. */
4110 if (! validate_change (insn
, &XEXP (use
, 0),
4111 gen_rtx_fmt_e (amount
> 0
4112 ? (do_post
? POST_INC
: PRE_INC
)
4113 : (do_post
? POST_DEC
: PRE_DEC
),
4117 /* Record that this insn now has an implicit side effect on X. */
4118 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_INC
, reg
, REG_NOTES (insn
));
4122 #endif /* AUTO_INC_DEC */
4124 /* Find the place in the rtx X where REG is used as a memory address.
4125 Return the MEM rtx that so uses it.
4126 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4127 (plus REG (const_int PLUSCONST)).
4129 If such an address does not appear, return 0.
4130 If REG appears more than once, or is used other than in such an address,
4134 find_use_as_address (rtx x
, rtx reg
, HOST_WIDE_INT plusconst
)
4136 enum rtx_code code
= GET_CODE (x
);
4137 const char * const fmt
= GET_RTX_FORMAT (code
);
4142 if (code
== MEM
&& XEXP (x
, 0) == reg
&& plusconst
== 0)
4145 if (code
== MEM
&& GET_CODE (XEXP (x
, 0)) == PLUS
4146 && XEXP (XEXP (x
, 0), 0) == reg
4147 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
4148 && INTVAL (XEXP (XEXP (x
, 0), 1)) == plusconst
)
4151 if (code
== SIGN_EXTRACT
|| code
== ZERO_EXTRACT
)
4153 /* If REG occurs inside a MEM used in a bit-field reference,
4154 that is unacceptable. */
4155 if (find_use_as_address (XEXP (x
, 0), reg
, 0) != 0)
4156 return (rtx
) (size_t) 1;
4160 return (rtx
) (size_t) 1;
4162 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4166 tem
= find_use_as_address (XEXP (x
, i
), reg
, plusconst
);
4170 return (rtx
) (size_t) 1;
4172 else if (fmt
[i
] == 'E')
4175 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4177 tem
= find_use_as_address (XVECEXP (x
, i
, j
), reg
, plusconst
);
4181 return (rtx
) (size_t) 1;
4189 /* Write information about registers and basic blocks into FILE.
4190 This is part of making a debugging dump. */
4193 dump_regset (regset r
, FILE *outf
)
4198 fputs (" (nil)", outf
);
4202 EXECUTE_IF_SET_IN_REG_SET (r
, 0, i
,
4204 fprintf (outf
, " %d", i
);
4205 if (i
< FIRST_PSEUDO_REGISTER
)
4206 fprintf (outf
, " [%s]",
4211 /* Print a human-readable representation of R on the standard error
4212 stream. This function is designed to be used from within the
4216 debug_regset (regset r
)
4218 dump_regset (r
, stderr
);
4219 putc ('\n', stderr
);
4222 /* Recompute register set/reference counts immediately prior to register
4225 This avoids problems with set/reference counts changing to/from values
4226 which have special meanings to the register allocators.
4228 Additionally, the reference counts are the primary component used by the
4229 register allocators to prioritize pseudos for allocation to hard regs.
4230 More accurate reference counts generally lead to better register allocation.
4232 F is the first insn to be scanned.
4234 LOOP_STEP denotes how much loop_depth should be incremented per
4235 loop nesting level in order to increase the ref count more for
4236 references in a loop.
4238 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4239 possibly other information which is used by the register allocators. */
4242 recompute_reg_usage (rtx f ATTRIBUTE_UNUSED
, int loop_step ATTRIBUTE_UNUSED
)
4244 allocate_reg_life_data ();
4245 update_life_info (NULL
, UPDATE_LIFE_LOCAL
, PROP_REG_INFO
);
4248 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4249 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4250 of the number of registers that died. */
4253 count_or_remove_death_notes (sbitmap blocks
, int kill
)
4260 /* This used to be a loop over all the blocks with a membership test
4261 inside the loop. That can be amazingly expensive on a large CFG
4262 when only a small number of bits are set in BLOCKs (for example,
4263 the calls from the scheduler typically have very few bits set).
4265 For extra credit, someone should convert BLOCKS to a bitmap rather
4269 EXECUTE_IF_SET_IN_SBITMAP (blocks
, 0, i
,
4271 count
+= count_or_remove_death_notes_bb (BASIC_BLOCK (i
), kill
);
4278 count
+= count_or_remove_death_notes_bb (bb
, kill
);
4285 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4286 block BB. Returns a count of the number of registers that died. */
4289 count_or_remove_death_notes_bb (basic_block bb
, int kill
)
4294 for (insn
= BB_HEAD (bb
); ; insn
= NEXT_INSN (insn
))
4298 rtx
*pprev
= ®_NOTES (insn
);
4303 switch (REG_NOTE_KIND (link
))
4306 if (GET_CODE (XEXP (link
, 0)) == REG
)
4308 rtx reg
= XEXP (link
, 0);
4311 if (REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
4314 n
= hard_regno_nregs
[REGNO (reg
)][GET_MODE (reg
)];
4323 rtx next
= XEXP (link
, 1);
4324 free_EXPR_LIST_node (link
);
4325 *pprev
= link
= next
;
4331 pprev
= &XEXP (link
, 1);
4338 if (insn
== BB_END (bb
))
4345 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4346 if blocks is NULL. */
4349 clear_log_links (sbitmap blocks
)
4356 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4358 free_INSN_LIST_list (&LOG_LINKS (insn
));
4361 EXECUTE_IF_SET_IN_SBITMAP (blocks
, 0, i
,
4363 basic_block bb
= BASIC_BLOCK (i
);
4365 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
4366 insn
= NEXT_INSN (insn
))
4368 free_INSN_LIST_list (&LOG_LINKS (insn
));
4372 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4373 correspond to the hard registers, if any, set in that map. This
4374 could be done far more efficiently by having all sorts of special-cases
4375 with moving single words, but probably isn't worth the trouble. */
4378 reg_set_to_hard_reg_set (HARD_REG_SET
*to
, bitmap from
)
4382 EXECUTE_IF_SET_IN_BITMAP
4385 if (i
>= FIRST_PSEUDO_REGISTER
)
4387 SET_HARD_REG_BIT (*to
, i
);