* Makefile.in (C_COMMON_OBJS): Depend on c-cilkplus.o.
[official-gcc.git] / gcc / vec.h
blobb1ebda44f5e17049d9f27da7f4523191a3b86f5c
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
25 /* FIXME - When compiling some of the gen* binaries, we cannot enable GC
26 support because the headers generated by gengtype are still not
27 present. In particular, the header file gtype-desc.h is missing,
28 so compilation may fail if we try to include ggc.h.
30 Since we use some of those declarations, we need to provide them
31 (even if the GC-based templates are not used). This is not a
32 problem because the code that runs before gengtype is built will
33 never need to use GC vectors. But it does force us to declare
34 these functions more than once. */
35 #ifdef GENERATOR_FILE
36 #define VEC_GC_ENABLED 0
37 #else
38 #define VEC_GC_ENABLED 1
39 #endif // GENERATOR_FILE
41 #include "statistics.h" // For CXX_MEM_STAT_INFO.
43 #if VEC_GC_ENABLED
44 #include "ggc.h"
45 #else
46 # ifndef GCC_GGC_H
47 /* Even if we think that GC is not enabled, the test that sets it is
48 weak. There are files compiled with -DGENERATOR_FILE that already
49 include ggc.h. We only need to provide these definitions if ggc.h
50 has not been included. Sigh. */
51 extern void ggc_free (void *);
52 extern size_t ggc_round_alloc_size (size_t requested_size);
53 extern void *ggc_realloc_stat (void *, size_t MEM_STAT_DECL);
54 # endif // GCC_GGC_H
55 #endif // VEC_GC_ENABLED
57 /* Templated vector type and associated interfaces.
59 The interface functions are typesafe and use inline functions,
60 sometimes backed by out-of-line generic functions. The vectors are
61 designed to interoperate with the GTY machinery.
63 There are both 'index' and 'iterate' accessors. The index accessor
64 is implemented by operator[]. The iterator returns a boolean
65 iteration condition and updates the iteration variable passed by
66 reference. Because the iterator will be inlined, the address-of
67 can be optimized away.
69 Each operation that increases the number of active elements is
70 available in 'quick' and 'safe' variants. The former presumes that
71 there is sufficient allocated space for the operation to succeed
72 (it dies if there is not). The latter will reallocate the
73 vector, if needed. Reallocation causes an exponential increase in
74 vector size. If you know you will be adding N elements, it would
75 be more efficient to use the reserve operation before adding the
76 elements with the 'quick' operation. This will ensure there are at
77 least as many elements as you ask for, it will exponentially
78 increase if there are too few spare slots. If you want reserve a
79 specific number of slots, but do not want the exponential increase
80 (for instance, you know this is the last allocation), use the
81 reserve_exact operation. You can also create a vector of a
82 specific size from the get go.
84 You should prefer the push and pop operations, as they append and
85 remove from the end of the vector. If you need to remove several
86 items in one go, use the truncate operation. The insert and remove
87 operations allow you to change elements in the middle of the
88 vector. There are two remove operations, one which preserves the
89 element ordering 'ordered_remove', and one which does not
90 'unordered_remove'. The latter function copies the end element
91 into the removed slot, rather than invoke a memmove operation. The
92 'lower_bound' function will determine where to place an item in the
93 array using insert that will maintain sorted order.
95 Vectors are template types with three arguments: the type of the
96 elements in the vector, the allocation strategy, and the physical
97 layout to use
99 Four allocation strategies are supported:
101 - Heap: allocation is done using malloc/free. This is the
102 default allocation strategy.
104 - GC: allocation is done using ggc_alloc/ggc_free.
106 - GC atomic: same as GC with the exception that the elements
107 themselves are assumed to be of an atomic type that does
108 not need to be garbage collected. This means that marking
109 routines do not need to traverse the array marking the
110 individual elements. This increases the performance of
111 GC activities.
113 Two physical layouts are supported:
115 - Embedded: The vector is structured using the trailing array
116 idiom. The last member of the structure is an array of size
117 1. When the vector is initially allocated, a single memory
118 block is created to hold the vector's control data and the
119 array of elements. These vectors cannot grow without
120 reallocation (see discussion on embeddable vectors below).
122 - Space efficient: The vector is structured as a pointer to an
123 embedded vector. This is the default layout. It means that
124 vectors occupy a single word of storage before initial
125 allocation. Vectors are allowed to grow (the internal
126 pointer is reallocated but the main vector instance does not
127 need to relocate).
129 The type, allocation and layout are specified when the vector is
130 declared.
132 If you need to directly manipulate a vector, then the 'address'
133 accessor will return the address of the start of the vector. Also
134 the 'space' predicate will tell you whether there is spare capacity
135 in the vector. You will not normally need to use these two functions.
137 Notes on the different layout strategies
139 * Embeddable vectors (vec<T, A, vl_embed>)
141 These vectors are suitable to be embedded in other data
142 structures so that they can be pre-allocated in a contiguous
143 memory block.
145 Embeddable vectors are implemented using the trailing array
146 idiom, thus they are not resizeable without changing the address
147 of the vector object itself. This means you cannot have
148 variables or fields of embeddable vector type -- always use a
149 pointer to a vector. The one exception is the final field of a
150 structure, which could be a vector type.
152 You will have to use the embedded_size & embedded_init calls to
153 create such objects, and they will not be resizeable (so the
154 'safe' allocation variants are not available).
156 Properties of embeddable vectors:
158 - The whole vector and control data are allocated in a single
159 contiguous block. It uses the trailing-vector idiom, so
160 allocation must reserve enough space for all the elements
161 in the vector plus its control data.
162 - The vector cannot be re-allocated.
163 - The vector cannot grow nor shrink.
164 - No indirections needed for access/manipulation.
165 - It requires 2 words of storage (prior to vector allocation).
168 * Space efficient vector (vec<T, A, vl_ptr>)
170 These vectors can grow dynamically and are allocated together
171 with their control data. They are suited to be included in data
172 structures. Prior to initial allocation, they only take a single
173 word of storage.
175 These vectors are implemented as a pointer to embeddable vectors.
176 The semantics allow for this pointer to be NULL to represent
177 empty vectors. This way, empty vectors occupy minimal space in
178 the structure containing them.
180 Properties:
182 - The whole vector and control data are allocated in a single
183 contiguous block.
184 - The whole vector may be re-allocated.
185 - Vector data may grow and shrink.
186 - Access and manipulation requires a pointer test and
187 indirection.
188 - It requires 1 word of storage (prior to vector allocation).
190 An example of their use would be,
192 struct my_struct {
193 // A space-efficient vector of tree pointers in GC memory.
194 vec<tree, va_gc, vl_ptr> v;
197 struct my_struct *s;
199 if (s->v.length ()) { we have some contents }
200 s->v.safe_push (decl); // append some decl onto the end
201 for (ix = 0; s->v.iterate (ix, &elt); ix++)
202 { do something with elt }
205 /* Support function for statistics. */
206 extern void dump_vec_loc_statistics (void);
209 /* Control data for vectors. This contains the number of allocated
210 and used slots inside a vector. */
212 struct vec_prefix
214 /* FIXME - These fields should be private, but we need to cater to
215 compilers that have stricter notions of PODness for types. */
217 /* Memory allocation support routines in vec.c. */
218 void register_overhead (size_t, const char *, int, const char *);
219 void release_overhead (void);
220 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
222 /* Note that vec_prefix should be a base class for vec, but we use
223 offsetof() on vector fields of tree structures (e.g.,
224 tree_binfo::base_binfos), and offsetof only supports base types.
226 To compensate, we make vec_prefix a field inside vec and make
227 vec a friend class of vec_prefix so it can access its fields. */
228 template <typename, typename, typename> friend struct vec;
230 /* The allocator types also need access to our internals. */
231 friend struct va_gc;
232 friend struct va_gc_atomic;
233 friend struct va_heap;
235 unsigned m_alloc : 31;
236 unsigned m_has_auto_buf : 1;
237 unsigned m_num;
240 template<typename, typename, typename> struct vec;
242 /* Valid vector layouts
244 vl_embed - Embeddable vector that uses the trailing array idiom.
245 vl_ptr - Space efficient vector that uses a pointer to an
246 embeddable vector. */
247 struct vl_embed { };
248 struct vl_ptr { };
251 /* Types of supported allocations
253 va_heap - Allocation uses malloc/free.
254 va_gc - Allocation uses ggc_alloc.
255 va_gc_atomic - Same as GC, but individual elements of the array
256 do not need to be marked during collection. */
258 /* Allocator type for heap vectors. */
259 struct va_heap
261 /* Heap vectors are frequently regular instances, so use the vl_ptr
262 layout for them. */
263 typedef vl_ptr default_layout;
265 template<typename T>
266 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
267 CXX_MEM_STAT_INFO);
269 template<typename T>
270 static void release (vec<T, va_heap, vl_embed> *&);
274 /* Allocator for heap memory. Ensure there are at least RESERVE free
275 slots in V. If EXACT is true, grow exactly, else grow
276 exponentially. As a special case, if the vector had not been
277 allocated and and RESERVE is 0, no vector will be created. */
279 template<typename T>
280 inline void
281 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
282 MEM_STAT_DECL)
284 unsigned alloc
285 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
286 gcc_assert (alloc);
288 if (GATHER_STATISTICS && v)
289 v->m_vecpfx.release_overhead ();
291 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
292 unsigned nelem = v ? v->length () : 0;
293 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
294 v->embedded_init (alloc, nelem);
296 if (GATHER_STATISTICS)
297 v->m_vecpfx.register_overhead (size FINAL_PASS_MEM_STAT);
301 /* Free the heap space allocated for vector V. */
303 template<typename T>
304 void
305 va_heap::release (vec<T, va_heap, vl_embed> *&v)
307 if (v == NULL)
308 return;
310 if (GATHER_STATISTICS)
311 v->m_vecpfx.release_overhead ();
312 ::free (v);
313 v = NULL;
317 /* Allocator type for GC vectors. Notice that we need the structure
318 declaration even if GC is not enabled. */
320 struct va_gc
322 /* Use vl_embed as the default layout for GC vectors. Due to GTY
323 limitations, GC vectors must always be pointers, so it is more
324 efficient to use a pointer to the vl_embed layout, rather than
325 using a pointer to a pointer as would be the case with vl_ptr. */
326 typedef vl_embed default_layout;
328 template<typename T, typename A>
329 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
330 CXX_MEM_STAT_INFO);
332 template<typename T, typename A>
333 static void release (vec<T, A, vl_embed> *&v);
337 /* Free GC memory used by V and reset V to NULL. */
339 template<typename T, typename A>
340 inline void
341 va_gc::release (vec<T, A, vl_embed> *&v)
343 if (v)
344 ::ggc_free (v);
345 v = NULL;
349 /* Allocator for GC memory. Ensure there are at least RESERVE free
350 slots in V. If EXACT is true, grow exactly, else grow
351 exponentially. As a special case, if the vector had not been
352 allocated and and RESERVE is 0, no vector will be created. */
354 template<typename T, typename A>
355 void
356 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
357 MEM_STAT_DECL)
359 unsigned alloc
360 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
361 if (!alloc)
363 ::ggc_free (v);
364 v = NULL;
365 return;
368 /* Calculate the amount of space we want. */
369 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
371 /* Ask the allocator how much space it will really give us. */
372 size = ::ggc_round_alloc_size (size);
374 /* Adjust the number of slots accordingly. */
375 size_t vec_offset = sizeof (vec_prefix);
376 size_t elt_size = sizeof (T);
377 alloc = (size - vec_offset) / elt_size;
379 /* And finally, recalculate the amount of space we ask for. */
380 size = vec_offset + alloc * elt_size;
382 unsigned nelem = v ? v->length () : 0;
383 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc_stat (v, size
384 PASS_MEM_STAT));
385 v->embedded_init (alloc, nelem);
389 /* Allocator type for GC vectors. This is for vectors of types
390 atomics w.r.t. collection, so allocation and deallocation is
391 completely inherited from va_gc. */
392 struct va_gc_atomic : va_gc
397 /* Generic vector template. Default values for A and L indicate the
398 most commonly used strategies.
400 FIXME - Ideally, they would all be vl_ptr to encourage using regular
401 instances for vectors, but the existing GTY machinery is limited
402 in that it can only deal with GC objects that are pointers
403 themselves.
405 This means that vector operations that need to deal with
406 potentially NULL pointers, must be provided as free
407 functions (see the vec_safe_* functions above). */
408 template<typename T,
409 typename A = va_heap,
410 typename L = typename A::default_layout>
411 struct GTY((user)) vec
415 /* Type to provide NULL values for vec<T, A, L>. This is used to
416 provide nil initializers for vec instances. Since vec must be
417 a POD, we cannot have proper ctor/dtor for it. To initialize
418 a vec instance, you can assign it the value vNULL. */
419 struct vnull
421 template <typename T, typename A, typename L>
422 operator vec<T, A, L> () { return vec<T, A, L>(); }
424 extern vnull vNULL;
427 /* Embeddable vector. These vectors are suitable to be embedded
428 in other data structures so that they can be pre-allocated in a
429 contiguous memory block.
431 Embeddable vectors are implemented using the trailing array idiom,
432 thus they are not resizeable without changing the address of the
433 vector object itself. This means you cannot have variables or
434 fields of embeddable vector type -- always use a pointer to a
435 vector. The one exception is the final field of a structure, which
436 could be a vector type.
438 You will have to use the embedded_size & embedded_init calls to
439 create such objects, and they will not be resizeable (so the 'safe'
440 allocation variants are not available).
442 Properties:
444 - The whole vector and control data are allocated in a single
445 contiguous block. It uses the trailing-vector idiom, so
446 allocation must reserve enough space for all the elements
447 in the vector plus its control data.
448 - The vector cannot be re-allocated.
449 - The vector cannot grow nor shrink.
450 - No indirections needed for access/manipulation.
451 - It requires 2 words of storage (prior to vector allocation). */
453 template<typename T, typename A>
454 struct GTY((user)) vec<T, A, vl_embed>
456 public:
457 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
458 unsigned length (void) const { return m_vecpfx.m_num; }
459 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
460 T *address (void) { return m_vecdata; }
461 const T *address (void) const { return m_vecdata; }
462 const T &operator[] (unsigned) const;
463 T &operator[] (unsigned);
464 T &last (void);
465 bool space (unsigned) const;
466 bool iterate (unsigned, T *) const;
467 bool iterate (unsigned, T **) const;
468 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
469 void splice (vec &);
470 void splice (vec *src);
471 T *quick_push (const T &);
472 T &pop (void);
473 void truncate (unsigned);
474 void quick_insert (unsigned, const T &);
475 void ordered_remove (unsigned);
476 void unordered_remove (unsigned);
477 void block_remove (unsigned, unsigned);
478 void qsort (int (*) (const void *, const void *));
479 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
480 static size_t embedded_size (unsigned);
481 void embedded_init (unsigned, unsigned = 0);
482 void quick_grow (unsigned len);
483 void quick_grow_cleared (unsigned len);
485 /* vec class can access our internal data and functions. */
486 template <typename, typename, typename> friend struct vec;
488 /* The allocator types also need access to our internals. */
489 friend struct va_gc;
490 friend struct va_gc_atomic;
491 friend struct va_heap;
493 /* FIXME - These fields should be private, but we need to cater to
494 compilers that have stricter notions of PODness for types. */
495 vec_prefix m_vecpfx;
496 T m_vecdata[1];
500 /* Convenience wrapper functions to use when dealing with pointers to
501 embedded vectors. Some functionality for these vectors must be
502 provided via free functions for these reasons:
504 1- The pointer may be NULL (e.g., before initial allocation).
506 2- When the vector needs to grow, it must be reallocated, so
507 the pointer will change its value.
509 Because of limitations with the current GC machinery, all vectors
510 in GC memory *must* be pointers. */
513 /* If V contains no room for NELEMS elements, return false. Otherwise,
514 return true. */
515 template<typename T, typename A>
516 inline bool
517 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
519 return v ? v->space (nelems) : nelems == 0;
523 /* If V is NULL, return 0. Otherwise, return V->length(). */
524 template<typename T, typename A>
525 inline unsigned
526 vec_safe_length (const vec<T, A, vl_embed> *v)
528 return v ? v->length () : 0;
532 /* If V is NULL, return NULL. Otherwise, return V->address(). */
533 template<typename T, typename A>
534 inline T *
535 vec_safe_address (vec<T, A, vl_embed> *v)
537 return v ? v->address () : NULL;
541 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
542 template<typename T, typename A>
543 inline bool
544 vec_safe_is_empty (vec<T, A, vl_embed> *v)
546 return v ? v->is_empty () : true;
550 /* If V does not have space for NELEMS elements, call
551 V->reserve(NELEMS, EXACT). */
552 template<typename T, typename A>
553 inline bool
554 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
555 CXX_MEM_STAT_INFO)
557 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
558 if (extend)
559 A::reserve (v, nelems, exact PASS_MEM_STAT);
560 return extend;
563 template<typename T, typename A>
564 inline bool
565 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
566 CXX_MEM_STAT_INFO)
568 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
572 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
573 is 0, V is initialized to NULL. */
575 template<typename T, typename A>
576 inline void
577 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
579 v = NULL;
580 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
584 /* Free the GC memory allocated by vector V and set it to NULL. */
586 template<typename T, typename A>
587 inline void
588 vec_free (vec<T, A, vl_embed> *&v)
590 A::release (v);
594 /* Grow V to length LEN. Allocate it, if necessary. */
595 template<typename T, typename A>
596 inline void
597 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
599 unsigned oldlen = vec_safe_length (v);
600 gcc_checking_assert (len >= oldlen);
601 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
602 v->quick_grow (len);
606 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
607 template<typename T, typename A>
608 inline void
609 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
611 unsigned oldlen = vec_safe_length (v);
612 vec_safe_grow (v, len PASS_MEM_STAT);
613 memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
617 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
618 template<typename T, typename A>
619 inline bool
620 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
622 if (v)
623 return v->iterate (ix, ptr);
624 else
626 *ptr = 0;
627 return false;
631 template<typename T, typename A>
632 inline bool
633 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
635 if (v)
636 return v->iterate (ix, ptr);
637 else
639 *ptr = 0;
640 return false;
645 /* If V has no room for one more element, reallocate it. Then call
646 V->quick_push(OBJ). */
647 template<typename T, typename A>
648 inline T *
649 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
651 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
652 return v->quick_push (obj);
656 /* if V has no room for one more element, reallocate it. Then call
657 V->quick_insert(IX, OBJ). */
658 template<typename T, typename A>
659 inline void
660 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
661 CXX_MEM_STAT_INFO)
663 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
664 v->quick_insert (ix, obj);
668 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
669 template<typename T, typename A>
670 inline void
671 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
673 if (v)
674 v->truncate (size);
678 /* If SRC is not NULL, return a pointer to a copy of it. */
679 template<typename T, typename A>
680 inline vec<T, A, vl_embed> *
681 vec_safe_copy (vec<T, A, vl_embed> *src)
683 return src ? src->copy () : NULL;
686 /* Copy the elements from SRC to the end of DST as if by memcpy.
687 Reallocate DST, if necessary. */
688 template<typename T, typename A>
689 inline void
690 vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
691 CXX_MEM_STAT_INFO)
693 unsigned src_len = vec_safe_length (src);
694 if (src_len)
696 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
697 PASS_MEM_STAT);
698 dst->splice (*src);
703 /* Index into vector. Return the IX'th element. IX must be in the
704 domain of the vector. */
706 template<typename T, typename A>
707 inline const T &
708 vec<T, A, vl_embed>::operator[] (unsigned ix) const
710 gcc_checking_assert (ix < m_vecpfx.m_num);
711 return m_vecdata[ix];
714 template<typename T, typename A>
715 inline T &
716 vec<T, A, vl_embed>::operator[] (unsigned ix)
718 gcc_checking_assert (ix < m_vecpfx.m_num);
719 return m_vecdata[ix];
723 /* Get the final element of the vector, which must not be empty. */
725 template<typename T, typename A>
726 inline T &
727 vec<T, A, vl_embed>::last (void)
729 gcc_checking_assert (m_vecpfx.m_num > 0);
730 return (*this)[m_vecpfx.m_num - 1];
734 /* If this vector has space for NELEMS additional entries, return
735 true. You usually only need to use this if you are doing your
736 own vector reallocation, for instance on an embedded vector. This
737 returns true in exactly the same circumstances that vec::reserve
738 will. */
740 template<typename T, typename A>
741 inline bool
742 vec<T, A, vl_embed>::space (unsigned nelems) const
744 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
748 /* Return iteration condition and update PTR to point to the IX'th
749 element of this vector. Use this to iterate over the elements of a
750 vector as follows,
752 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
753 continue; */
755 template<typename T, typename A>
756 inline bool
757 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
759 if (ix < m_vecpfx.m_num)
761 *ptr = m_vecdata[ix];
762 return true;
764 else
766 *ptr = 0;
767 return false;
772 /* Return iteration condition and update *PTR to point to the
773 IX'th element of this vector. Use this to iterate over the
774 elements of a vector as follows,
776 for (ix = 0; v->iterate (ix, &ptr); ix++)
777 continue;
779 This variant is for vectors of objects. */
781 template<typename T, typename A>
782 inline bool
783 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
785 if (ix < m_vecpfx.m_num)
787 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
788 return true;
790 else
792 *ptr = 0;
793 return false;
798 /* Return a pointer to a copy of this vector. */
800 template<typename T, typename A>
801 inline vec<T, A, vl_embed> *
802 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
804 vec<T, A, vl_embed> *new_vec = NULL;
805 unsigned len = length ();
806 if (len)
808 vec_alloc (new_vec, len PASS_MEM_STAT);
809 new_vec->embedded_init (len, len);
810 memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
812 return new_vec;
816 /* Copy the elements from SRC to the end of this vector as if by memcpy.
817 The vector must have sufficient headroom available. */
819 template<typename T, typename A>
820 inline void
821 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
823 unsigned len = src.length ();
824 if (len)
826 gcc_checking_assert (space (len));
827 memcpy (address () + length (), src.address (), len * sizeof (T));
828 m_vecpfx.m_num += len;
832 template<typename T, typename A>
833 inline void
834 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
836 if (src)
837 splice (*src);
841 /* Push OBJ (a new element) onto the end of the vector. There must be
842 sufficient space in the vector. Return a pointer to the slot
843 where OBJ was inserted. */
845 template<typename T, typename A>
846 inline T *
847 vec<T, A, vl_embed>::quick_push (const T &obj)
849 gcc_checking_assert (space (1));
850 T *slot = &m_vecdata[m_vecpfx.m_num++];
851 *slot = obj;
852 return slot;
856 /* Pop and return the last element off the end of the vector. */
858 template<typename T, typename A>
859 inline T &
860 vec<T, A, vl_embed>::pop (void)
862 gcc_checking_assert (length () > 0);
863 return m_vecdata[--m_vecpfx.m_num];
867 /* Set the length of the vector to SIZE. The new length must be less
868 than or equal to the current length. This is an O(1) operation. */
870 template<typename T, typename A>
871 inline void
872 vec<T, A, vl_embed>::truncate (unsigned size)
874 gcc_checking_assert (length () >= size);
875 m_vecpfx.m_num = size;
879 /* Insert an element, OBJ, at the IXth position of this vector. There
880 must be sufficient space. */
882 template<typename T, typename A>
883 inline void
884 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
886 gcc_checking_assert (length () < allocated ());
887 gcc_checking_assert (ix <= length ());
888 T *slot = &m_vecdata[ix];
889 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
890 *slot = obj;
894 /* Remove an element from the IXth position of this vector. Ordering of
895 remaining elements is preserved. This is an O(N) operation due to
896 memmove. */
898 template<typename T, typename A>
899 inline void
900 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
902 gcc_checking_assert (ix < length ());
903 T *slot = &m_vecdata[ix];
904 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
908 /* Remove an element from the IXth position of this vector. Ordering of
909 remaining elements is destroyed. This is an O(1) operation. */
911 template<typename T, typename A>
912 inline void
913 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
915 gcc_checking_assert (ix < length ());
916 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
920 /* Remove LEN elements starting at the IXth. Ordering is retained.
921 This is an O(N) operation due to memmove. */
923 template<typename T, typename A>
924 inline void
925 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
927 gcc_checking_assert (ix + len <= length ());
928 T *slot = &m_vecdata[ix];
929 m_vecpfx.m_num -= len;
930 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
934 /* Sort the contents of this vector with qsort. CMP is the comparison
935 function to pass to qsort. */
937 template<typename T, typename A>
938 inline void
939 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
941 ::qsort (address (), length (), sizeof (T), cmp);
945 /* Find and return the first position in which OBJ could be inserted
946 without changing the ordering of this vector. LESSTHAN is a
947 function that returns true if the first argument is strictly less
948 than the second. */
950 template<typename T, typename A>
951 unsigned
952 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
953 const
955 unsigned int len = length ();
956 unsigned int half, middle;
957 unsigned int first = 0;
958 while (len > 0)
960 half = len / 2;
961 middle = first;
962 middle += half;
963 T middle_elem = (*this)[middle];
964 if (lessthan (middle_elem, obj))
966 first = middle;
967 ++first;
968 len = len - half - 1;
970 else
971 len = half;
973 return first;
977 /* Return the number of bytes needed to embed an instance of an
978 embeddable vec inside another data structure.
980 Use these methods to determine the required size and initialization
981 of a vector V of type T embedded within another structure (as the
982 final member):
984 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
985 void v->embedded_init (unsigned alloc, unsigned num);
987 These allow the caller to perform the memory allocation. */
989 template<typename T, typename A>
990 inline size_t
991 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
993 typedef vec<T, A, vl_embed> vec_embedded;
994 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
998 /* Initialize the vector to contain room for ALLOC elements and
999 NUM active elements. */
1001 template<typename T, typename A>
1002 inline void
1003 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num)
1005 m_vecpfx.m_alloc = alloc;
1006 m_vecpfx.m_has_auto_buf = 0;
1007 m_vecpfx.m_num = num;
1011 /* Grow the vector to a specific length. LEN must be as long or longer than
1012 the current length. The new elements are uninitialized. */
1014 template<typename T, typename A>
1015 inline void
1016 vec<T, A, vl_embed>::quick_grow (unsigned len)
1018 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1019 m_vecpfx.m_num = len;
1023 /* Grow the vector to a specific length. LEN must be as long or longer than
1024 the current length. The new elements are initialized to zero. */
1026 template<typename T, typename A>
1027 inline void
1028 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1030 unsigned oldlen = length ();
1031 quick_grow (len);
1032 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1036 /* Garbage collection support for vec<T, A, vl_embed>. */
1038 template<typename T>
1039 void
1040 gt_ggc_mx (vec<T, va_gc> *v)
1042 extern void gt_ggc_mx (T &);
1043 for (unsigned i = 0; i < v->length (); i++)
1044 gt_ggc_mx ((*v)[i]);
1047 template<typename T>
1048 void
1049 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1051 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1052 be traversed. */
1056 /* PCH support for vec<T, A, vl_embed>. */
1058 template<typename T, typename A>
1059 void
1060 gt_pch_nx (vec<T, A, vl_embed> *v)
1062 extern void gt_pch_nx (T &);
1063 for (unsigned i = 0; i < v->length (); i++)
1064 gt_pch_nx ((*v)[i]);
1067 template<typename T, typename A>
1068 void
1069 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1071 for (unsigned i = 0; i < v->length (); i++)
1072 op (&((*v)[i]), cookie);
1075 template<typename T, typename A>
1076 void
1077 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1079 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1080 for (unsigned i = 0; i < v->length (); i++)
1081 gt_pch_nx (&((*v)[i]), op, cookie);
1085 /* Space efficient vector. These vectors can grow dynamically and are
1086 allocated together with their control data. They are suited to be
1087 included in data structures. Prior to initial allocation, they
1088 only take a single word of storage.
1090 These vectors are implemented as a pointer to an embeddable vector.
1091 The semantics allow for this pointer to be NULL to represent empty
1092 vectors. This way, empty vectors occupy minimal space in the
1093 structure containing them.
1095 Properties:
1097 - The whole vector and control data are allocated in a single
1098 contiguous block.
1099 - The whole vector may be re-allocated.
1100 - Vector data may grow and shrink.
1101 - Access and manipulation requires a pointer test and
1102 indirection.
1103 - It requires 1 word of storage (prior to vector allocation).
1106 Limitations:
1108 These vectors must be PODs because they are stored in unions.
1109 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1110 As long as we use C++03, we cannot have constructors nor
1111 destructors in classes that are stored in unions. */
1113 template<typename T>
1114 struct vec<T, va_heap, vl_ptr>
1116 public:
1117 /* Memory allocation and deallocation for the embedded vector.
1118 Needed because we cannot have proper ctors/dtors defined. */
1119 void create (unsigned nelems CXX_MEM_STAT_INFO);
1120 void release (void);
1122 /* Vector operations. */
1123 bool exists (void) const
1124 { return m_vec != NULL; }
1126 bool is_empty (void) const
1127 { return m_vec ? m_vec->is_empty () : true; }
1129 unsigned length (void) const
1130 { return m_vec ? m_vec->length () : 0; }
1132 T *address (void)
1133 { return m_vec ? m_vec->m_vecdata : NULL; }
1135 const T *address (void) const
1136 { return m_vec ? m_vec->m_vecdata : NULL; }
1138 const T &operator[] (unsigned ix) const
1139 { return (*m_vec)[ix]; }
1141 bool operator!=(const vec &other) const
1142 { return !(*this == other); }
1144 bool operator==(const vec &other) const
1145 { return address () == other.address (); }
1147 T &operator[] (unsigned ix)
1148 { return (*m_vec)[ix]; }
1150 T &last (void)
1151 { return m_vec->last (); }
1153 bool space (int nelems) const
1154 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1156 bool iterate (unsigned ix, T *p) const;
1157 bool iterate (unsigned ix, T **p) const;
1158 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1159 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1160 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1161 void splice (vec &);
1162 void safe_splice (vec & CXX_MEM_STAT_INFO);
1163 T *quick_push (const T &);
1164 T *safe_push (const T &CXX_MEM_STAT_INFO);
1165 T &pop (void);
1166 void truncate (unsigned);
1167 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1168 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1169 void quick_grow (unsigned);
1170 void quick_grow_cleared (unsigned);
1171 void quick_insert (unsigned, const T &);
1172 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1173 void ordered_remove (unsigned);
1174 void unordered_remove (unsigned);
1175 void block_remove (unsigned, unsigned);
1176 void qsort (int (*) (const void *, const void *));
1177 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1179 bool using_auto_storage () const;
1181 /* FIXME - This field should be private, but we need to cater to
1182 compilers that have stricter notions of PODness for types. */
1183 vec<T, va_heap, vl_embed> *m_vec;
1187 /* stack_vec is a subclass of vec containing N elements of internal storage.
1188 You probably only want to allocate this on the stack because if the array
1189 ends up being larger or much smaller than N it will be wasting space. */
1190 template<typename T, size_t N>
1191 class stack_vec : public vec<T, va_heap>
1193 public:
1194 stack_vec ()
1196 m_header.m_alloc = N;
1197 m_header.m_has_auto_buf = 1;
1198 m_header.m_num = 0;
1199 this->m_vec = reinterpret_cast<vec<T, va_heap, vl_embed> *> (&m_header);
1202 ~stack_vec ()
1204 this->release ();
1207 private:
1208 friend class vec<T, va_heap, vl_ptr>;
1210 vec_prefix m_header;
1211 T m_data[N];
1215 /* Allocate heap memory for pointer V and create the internal vector
1216 with space for NELEMS elements. If NELEMS is 0, the internal
1217 vector is initialized to empty. */
1219 template<typename T>
1220 inline void
1221 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1223 v = new vec<T>;
1224 v->create (nelems PASS_MEM_STAT);
1228 /* Conditionally allocate heap memory for VEC and its internal vector. */
1230 template<typename T>
1231 inline void
1232 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1234 if (!vec)
1235 vec_alloc (vec, nelems PASS_MEM_STAT);
1239 /* Free the heap memory allocated by vector V and set it to NULL. */
1241 template<typename T>
1242 inline void
1243 vec_free (vec<T> *&v)
1245 if (v == NULL)
1246 return;
1248 v->release ();
1249 delete v;
1250 v = NULL;
1254 /* Return iteration condition and update PTR to point to the IX'th
1255 element of this vector. Use this to iterate over the elements of a
1256 vector as follows,
1258 for (ix = 0; v.iterate (ix, &ptr); ix++)
1259 continue; */
1261 template<typename T>
1262 inline bool
1263 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1265 if (m_vec)
1266 return m_vec->iterate (ix, ptr);
1267 else
1269 *ptr = 0;
1270 return false;
1275 /* Return iteration condition and update *PTR to point to the
1276 IX'th element of this vector. Use this to iterate over the
1277 elements of a vector as follows,
1279 for (ix = 0; v->iterate (ix, &ptr); ix++)
1280 continue;
1282 This variant is for vectors of objects. */
1284 template<typename T>
1285 inline bool
1286 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1288 if (m_vec)
1289 return m_vec->iterate (ix, ptr);
1290 else
1292 *ptr = 0;
1293 return false;
1298 /* Convenience macro for forward iteration. */
1299 #define FOR_EACH_VEC_ELT(V, I, P) \
1300 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1302 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1303 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1305 /* Likewise, but start from FROM rather than 0. */
1306 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1307 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1309 /* Convenience macro for reverse iteration. */
1310 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1311 for (I = (V).length () - 1; \
1312 (V).iterate ((I), &(P)); \
1313 (I)--)
1315 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1316 for (I = vec_safe_length (V) - 1; \
1317 vec_safe_iterate ((V), (I), &(P)); \
1318 (I)--)
1321 /* Return a copy of this vector. */
1323 template<typename T>
1324 inline vec<T, va_heap, vl_ptr>
1325 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1327 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1328 if (length ())
1329 new_vec.m_vec = m_vec->copy ();
1330 return new_vec;
1334 /* Ensure that the vector has at least RESERVE slots available (if
1335 EXACT is false), or exactly RESERVE slots available (if EXACT is
1336 true).
1338 This may create additional headroom if EXACT is false.
1340 Note that this can cause the embedded vector to be reallocated.
1341 Returns true iff reallocation actually occurred. */
1343 template<typename T>
1344 inline bool
1345 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1347 if (!nelems || space (nelems))
1348 return false;
1350 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1351 this is necessary because it doesn't have enough information to know the
1352 embedded vector is in auto storage, and so should not be freed. */
1353 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1354 unsigned int oldsize = 0;
1355 bool handle_auto_vec = m_vec && using_auto_storage ();
1356 if (handle_auto_vec)
1358 m_vec = NULL;
1359 oldsize = oldvec->length ();
1360 nelems += oldsize;
1363 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1364 if (handle_auto_vec)
1366 memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
1367 m_vec->m_vecpfx.m_num = oldsize;
1370 return true;
1374 /* Ensure that this vector has exactly NELEMS slots available. This
1375 will not create additional headroom. Note this can cause the
1376 embedded vector to be reallocated. Returns true iff reallocation
1377 actually occurred. */
1379 template<typename T>
1380 inline bool
1381 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1383 return reserve (nelems, true PASS_MEM_STAT);
1387 /* Create the internal vector and reserve NELEMS for it. This is
1388 exactly like vec::reserve, but the internal vector is
1389 unconditionally allocated from scratch. The old one, if it
1390 existed, is lost. */
1392 template<typename T>
1393 inline void
1394 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1396 m_vec = NULL;
1397 if (nelems > 0)
1398 reserve_exact (nelems PASS_MEM_STAT);
1402 /* Free the memory occupied by the embedded vector. */
1404 template<typename T>
1405 inline void
1406 vec<T, va_heap, vl_ptr>::release (void)
1408 if (!m_vec)
1409 return;
1411 if (using_auto_storage ())
1413 static_cast<stack_vec<T, 1> *> (this)->m_header.m_num = 0;
1414 return;
1417 va_heap::release (m_vec);
1420 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1421 SRC and this vector must be allocated with the same memory
1422 allocation mechanism. This vector is assumed to have sufficient
1423 headroom available. */
1425 template<typename T>
1426 inline void
1427 vec<T, va_heap, vl_ptr>::splice (vec<T, va_heap, vl_ptr> &src)
1429 if (src.m_vec)
1430 m_vec->splice (*(src.m_vec));
1434 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1435 SRC and this vector must be allocated with the same mechanism.
1436 If there is not enough headroom in this vector, it will be reallocated
1437 as needed. */
1439 template<typename T>
1440 inline void
1441 vec<T, va_heap, vl_ptr>::safe_splice (vec<T, va_heap, vl_ptr> &src
1442 MEM_STAT_DECL)
1444 if (src.length ())
1446 reserve_exact (src.length ());
1447 splice (src);
1452 /* Push OBJ (a new element) onto the end of the vector. There must be
1453 sufficient space in the vector. Return a pointer to the slot
1454 where OBJ was inserted. */
1456 template<typename T>
1457 inline T *
1458 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1460 return m_vec->quick_push (obj);
1464 /* Push a new element OBJ onto the end of this vector. Reallocates
1465 the embedded vector, if needed. Return a pointer to the slot where
1466 OBJ was inserted. */
1468 template<typename T>
1469 inline T *
1470 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1472 reserve (1, false PASS_MEM_STAT);
1473 return quick_push (obj);
1477 /* Pop and return the last element off the end of the vector. */
1479 template<typename T>
1480 inline T &
1481 vec<T, va_heap, vl_ptr>::pop (void)
1483 return m_vec->pop ();
1487 /* Set the length of the vector to LEN. The new length must be less
1488 than or equal to the current length. This is an O(1) operation. */
1490 template<typename T>
1491 inline void
1492 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1494 if (m_vec)
1495 m_vec->truncate (size);
1496 else
1497 gcc_checking_assert (size == 0);
1501 /* Grow the vector to a specific length. LEN must be as long or
1502 longer than the current length. The new elements are
1503 uninitialized. Reallocate the internal vector, if needed. */
1505 template<typename T>
1506 inline void
1507 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1509 unsigned oldlen = length ();
1510 gcc_checking_assert (oldlen <= len);
1511 reserve_exact (len - oldlen PASS_MEM_STAT);
1512 m_vec->quick_grow (len);
1516 /* Grow the embedded vector to a specific length. LEN must be as
1517 long or longer than the current length. The new elements are
1518 initialized to zero. Reallocate the internal vector, if needed. */
1520 template<typename T>
1521 inline void
1522 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1524 unsigned oldlen = length ();
1525 safe_grow (len PASS_MEM_STAT);
1526 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1530 /* Same as vec::safe_grow but without reallocation of the internal vector.
1531 If the vector cannot be extended, a runtime assertion will be triggered. */
1533 template<typename T>
1534 inline void
1535 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1537 gcc_checking_assert (m_vec);
1538 m_vec->quick_grow (len);
1542 /* Same as vec::quick_grow_cleared but without reallocation of the
1543 internal vector. If the vector cannot be extended, a runtime
1544 assertion will be triggered. */
1546 template<typename T>
1547 inline void
1548 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1550 gcc_checking_assert (m_vec);
1551 m_vec->quick_grow_cleared (len);
1555 /* Insert an element, OBJ, at the IXth position of this vector. There
1556 must be sufficient space. */
1558 template<typename T>
1559 inline void
1560 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1562 m_vec->quick_insert (ix, obj);
1566 /* Insert an element, OBJ, at the IXth position of the vector.
1567 Reallocate the embedded vector, if necessary. */
1569 template<typename T>
1570 inline void
1571 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1573 reserve (1, false PASS_MEM_STAT);
1574 quick_insert (ix, obj);
1578 /* Remove an element from the IXth position of this vector. Ordering of
1579 remaining elements is preserved. This is an O(N) operation due to
1580 a memmove. */
1582 template<typename T>
1583 inline void
1584 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1586 m_vec->ordered_remove (ix);
1590 /* Remove an element from the IXth position of this vector. Ordering
1591 of remaining elements is destroyed. This is an O(1) operation. */
1593 template<typename T>
1594 inline void
1595 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1597 m_vec->unordered_remove (ix);
1601 /* Remove LEN elements starting at the IXth. Ordering is retained.
1602 This is an O(N) operation due to memmove. */
1604 template<typename T>
1605 inline void
1606 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1608 m_vec->block_remove (ix, len);
1612 /* Sort the contents of this vector with qsort. CMP is the comparison
1613 function to pass to qsort. */
1615 template<typename T>
1616 inline void
1617 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1619 if (m_vec)
1620 m_vec->qsort (cmp);
1624 /* Find and return the first position in which OBJ could be inserted
1625 without changing the ordering of this vector. LESSTHAN is a
1626 function that returns true if the first argument is strictly less
1627 than the second. */
1629 template<typename T>
1630 inline unsigned
1631 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1632 bool (*lessthan)(const T &, const T &))
1633 const
1635 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1638 template<typename T>
1639 inline bool
1640 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1642 if (!m_vec->m_vecpfx.m_has_auto_buf)
1643 return false;
1645 const vec_prefix *auto_header
1646 = &static_cast<const stack_vec<T, 1> *> (this)->m_header;
1647 return reinterpret_cast<vec_prefix *> (m_vec) == auto_header;
1650 #if (GCC_VERSION >= 3000)
1651 # pragma GCC poison m_vec m_vecpfx m_vecdata
1652 #endif
1654 #endif // GCC_VEC_H