* final.c (shorten_branches): Fix last change.
[official-gcc.git] / gcc / except.c
blobaa9f19a00405942205210b7576dbf6775764912e
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992-1999 Free Software Foundation, Inc.
3 Contributed by Mike Stump <mrs@cygnus.com>.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
26 be transferred to any arbitrary code associated with a function call
27 several levels up the stack.
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
48 approach, which is the default. -fno-sjlj-exceptions can be used to
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
74 In the current implementation, cleanups are handled by allocating an
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
92 __register_exceptions with the address of its local
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
100 __register_frame_info. On other targets, the information for each
101 translation unit is registered from the file generated by collect2.
102 __register_frame_info is defined in frame.c, and is responsible for
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
106 The function __throw is actually responsible for doing the
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
109 per-object-file basis for each source file compiled with
110 -fexceptions by the C++ frontend. Before __throw is invoked,
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
114 __throw attempts to find the appropriate exception handler for the
115 PC value stored in __eh_pc by calling __find_first_exception_table_match
116 (which is defined in libgcc2.c). If __find_first_exception_table_match
117 finds a relevant handler, __throw transfers control directly to it.
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
132 Internal implementation details:
134 To associate a user-defined handler with a block of statements, the
135 function expand_start_try_stmts is used to mark the start of the
136 block of statements with which the handler is to be associated
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
140 A call to expand_start_all_catch marks the end of the try block,
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
155 handler. expand_end_all_catch and expand_leftover_cleanups
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
163 to the topmost entry's label via expand_goto will resume normal
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
177 global variable to hold the value. (This will be changing in the
178 future.)
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
186 Internally-generated exception regions (cleanups) are marked by
187 calling expand_eh_region_start to mark the start of the region,
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
209 Cleanups can also be specified by using add_partial_entry (handler)
210 and end_protect_partials. add_partial_entry creates the start of
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
217 group of calls to add_partial_entry as the entries are queued
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
234 can be safely optimized away (along with its exception handlers)
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
247 Walking the stack:
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
253 Unwinding the stack:
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
282 should call __terminate.
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
303 On some platforms it is possible that neither __unwind_function
304 nor inlined unwinders are available. For these platforms it is not
305 possible to throw through a function call, and abort will be
306 invoked instead of performing the throw.
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
320 Future directions:
322 Currently __throw makes no differentiation between cleanups and
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
333 A two-pass scheme could then be used by __throw to iterate
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
343 __throw to be able to determine if a given user-defined
344 exception handler will actually be executed, given the type of
345 exception.
347 One scheme is to add additional information to exception_table_list
348 as to the types of exceptions accepted by each handler. __throw
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
352 There is currently no significant level of debugging support
353 available, other than to place a breakpoint on __throw. While
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
359 scheme by adding additional labels to __throw for appropriate
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
380 table, and no calls to __register_exceptions. __sjthrow is used
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
391 #include "config.h"
392 #include "defaults.h"
393 #include "eh-common.h"
394 #include "system.h"
395 #include "rtl.h"
396 #include "tree.h"
397 #include "flags.h"
398 #include "except.h"
399 #include "function.h"
400 #include "insn-flags.h"
401 #include "expr.h"
402 #include "insn-codes.h"
403 #include "regs.h"
404 #include "hard-reg-set.h"
405 #include "insn-config.h"
406 #include "recog.h"
407 #include "output.h"
408 #include "toplev.h"
409 #include "intl.h"
410 #include "obstack.h"
411 #include "ggc.h"
413 /* One to use setjmp/longjmp method of generating code for exception
414 handling. */
416 int exceptions_via_longjmp = 2;
418 /* One to enable asynchronous exception support. */
420 int asynchronous_exceptions = 0;
422 /* One to protect cleanup actions with a handler that calls
423 __terminate, zero otherwise. */
425 int protect_cleanup_actions_with_terminate;
427 /* A list of labels used for exception handlers. Created by
428 find_exception_handler_labels for the optimization passes. */
430 rtx exception_handler_labels;
432 /* Keeps track of the label used as the context of a throw to rethrow an
433 exception to the outer exception region. */
435 struct label_node *outer_context_label_stack = NULL;
437 /* Pseudos used to hold exception return data in the interim between
438 __builtin_eh_return and the end of the function. */
440 static rtx eh_return_context;
441 static rtx eh_return_stack_adjust;
442 static rtx eh_return_handler;
444 /* This is used for targets which can call rethrow with an offset instead
445 of an address. This is subtracted from the rethrow label we are
446 interested in. */
448 static rtx first_rethrow_symbol = NULL_RTX;
449 static rtx final_rethrow = NULL_RTX;
450 static rtx last_rethrow_symbol = NULL_RTX;
453 /* Prototypes for local functions. */
455 static void push_eh_entry PROTO((struct eh_stack *));
456 static struct eh_entry * pop_eh_entry PROTO((struct eh_stack *));
457 static void enqueue_eh_entry PROTO((struct eh_queue *, struct eh_entry *));
458 static struct eh_entry * dequeue_eh_entry PROTO((struct eh_queue *));
459 static rtx call_get_eh_context PROTO((void));
460 static void start_dynamic_cleanup PROTO((tree, tree));
461 static void start_dynamic_handler PROTO((void));
462 static void expand_rethrow PROTO((rtx));
463 static void output_exception_table_entry PROTO((FILE *, int));
464 static int can_throw PROTO((rtx));
465 static rtx scan_region PROTO((rtx, int, int *));
466 static void eh_regs PROTO((rtx *, rtx *, rtx *, int));
467 static void set_insn_eh_region PROTO((rtx *, int));
468 #ifdef DONT_USE_BUILTIN_SETJMP
469 static void jumpif_rtx PROTO((rtx, rtx));
470 #endif
471 static void mark_eh_node PROTO((struct eh_node *));
472 static void mark_eh_stack PROTO((struct eh_stack *));
473 static void mark_eh_queue PROTO((struct eh_queue *));
474 static void mark_tree_label_node PROTO ((struct label_node *));
476 rtx expand_builtin_return_addr PROTO((enum built_in_function, int, rtx));
478 /* Various support routines to manipulate the various data structures
479 used by the exception handling code. */
481 extern struct obstack permanent_obstack;
483 /* Generate a SYMBOL_REF for rethrow to use */
484 static rtx
485 create_rethrow_ref (region_num)
486 int region_num;
488 rtx def;
489 char *ptr;
490 char buf[60];
492 push_obstacks_nochange ();
493 end_temporary_allocation ();
495 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
496 ptr = (char *) obstack_copy0 (&permanent_obstack, buf, strlen (buf));
497 def = gen_rtx_SYMBOL_REF (Pmode, ptr);
498 SYMBOL_REF_NEED_ADJUST (def) = 1;
500 pop_obstacks ();
501 return def;
504 /* Push a label entry onto the given STACK. */
506 void
507 push_label_entry (stack, rlabel, tlabel)
508 struct label_node **stack;
509 rtx rlabel;
510 tree tlabel;
512 struct label_node *newnode
513 = (struct label_node *) xmalloc (sizeof (struct label_node));
515 if (rlabel)
516 newnode->u.rlabel = rlabel;
517 else
518 newnode->u.tlabel = tlabel;
519 newnode->chain = *stack;
520 *stack = newnode;
523 /* Pop a label entry from the given STACK. */
526 pop_label_entry (stack)
527 struct label_node **stack;
529 rtx label;
530 struct label_node *tempnode;
532 if (! *stack)
533 return NULL_RTX;
535 tempnode = *stack;
536 label = tempnode->u.rlabel;
537 *stack = (*stack)->chain;
538 free (tempnode);
540 return label;
543 /* Return the top element of the given STACK. */
545 tree
546 top_label_entry (stack)
547 struct label_node **stack;
549 if (! *stack)
550 return NULL_TREE;
552 return (*stack)->u.tlabel;
555 /* get an exception label. These must be on the permanent obstack */
558 gen_exception_label ()
560 rtx lab;
561 lab = gen_label_rtx ();
562 return lab;
565 /* Push a new eh_node entry onto STACK. */
567 static void
568 push_eh_entry (stack)
569 struct eh_stack *stack;
571 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
572 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
574 rtx rlab = gen_exception_label ();
575 entry->finalization = NULL_TREE;
576 entry->label_used = 0;
577 entry->exception_handler_label = rlab;
578 entry->false_label = NULL_RTX;
579 if (! flag_new_exceptions)
580 entry->outer_context = gen_label_rtx ();
581 else
582 entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
583 entry->rethrow_label = entry->outer_context;
585 node->entry = entry;
586 node->chain = stack->top;
587 stack->top = node;
590 /* push an existing entry onto a stack. */
591 static void
592 push_entry (stack, entry)
593 struct eh_stack *stack;
594 struct eh_entry *entry;
596 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
597 node->entry = entry;
598 node->chain = stack->top;
599 stack->top = node;
602 /* Pop an entry from the given STACK. */
604 static struct eh_entry *
605 pop_eh_entry (stack)
606 struct eh_stack *stack;
608 struct eh_node *tempnode;
609 struct eh_entry *tempentry;
611 tempnode = stack->top;
612 tempentry = tempnode->entry;
613 stack->top = stack->top->chain;
614 free (tempnode);
616 return tempentry;
619 /* Enqueue an ENTRY onto the given QUEUE. */
621 static void
622 enqueue_eh_entry (queue, entry)
623 struct eh_queue *queue;
624 struct eh_entry *entry;
626 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
628 node->entry = entry;
629 node->chain = NULL;
631 if (queue->head == NULL)
633 queue->head = node;
635 else
637 queue->tail->chain = node;
639 queue->tail = node;
642 /* Dequeue an entry from the given QUEUE. */
644 static struct eh_entry *
645 dequeue_eh_entry (queue)
646 struct eh_queue *queue;
648 struct eh_node *tempnode;
649 struct eh_entry *tempentry;
651 if (queue->head == NULL)
652 return NULL;
654 tempnode = queue->head;
655 queue->head = queue->head->chain;
657 tempentry = tempnode->entry;
658 free (tempnode);
660 return tempentry;
663 static void
664 receive_exception_label (handler_label)
665 rtx handler_label;
667 emit_label (handler_label);
669 #ifdef HAVE_exception_receiver
670 if (! exceptions_via_longjmp)
671 if (HAVE_exception_receiver)
672 emit_insn (gen_exception_receiver ());
673 #endif
675 #ifdef HAVE_nonlocal_goto_receiver
676 if (! exceptions_via_longjmp)
677 if (HAVE_nonlocal_goto_receiver)
678 emit_insn (gen_nonlocal_goto_receiver ());
679 #endif
683 struct func_eh_entry
685 int range_number; /* EH region number from EH NOTE insn's. */
686 rtx rethrow_label; /* Label for rethrow. */
687 int rethrow_ref; /* Is rethrow referenced? */
688 struct handler_info *handlers;
692 /* table of function eh regions */
693 static struct func_eh_entry *function_eh_regions = NULL;
694 static int num_func_eh_entries = 0;
695 static int current_func_eh_entry = 0;
697 #define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
699 /* Add a new eh_entry for this function, and base it off of the information
700 in the EH_ENTRY parameter. A NULL parameter is invalid.
701 OUTER_CONTEXT is a label which is used for rethrowing. The number
702 returned is an number which uniquely identifies this exception range. */
704 static int
705 new_eh_region_entry (note_eh_region, rethrow)
706 int note_eh_region;
707 rtx rethrow;
709 if (current_func_eh_entry == num_func_eh_entries)
711 if (num_func_eh_entries == 0)
713 function_eh_regions =
714 (struct func_eh_entry *) xmalloc (SIZE_FUNC_EH (50));
715 num_func_eh_entries = 50;
717 else
719 num_func_eh_entries = num_func_eh_entries * 3 / 2;
720 function_eh_regions = (struct func_eh_entry *)
721 xrealloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
724 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
725 if (rethrow == NULL_RTX)
726 function_eh_regions[current_func_eh_entry].rethrow_label =
727 create_rethrow_ref (note_eh_region);
728 else
729 function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
730 function_eh_regions[current_func_eh_entry].handlers = NULL;
732 return current_func_eh_entry++;
735 /* Add new handler information to an exception range. The first parameter
736 specifies the range number (returned from new_eh_entry()). The second
737 parameter specifies the handler. By default the handler is inserted at
738 the end of the list. A handler list may contain only ONE NULL_TREE
739 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
740 is always output as the LAST handler in the exception table for a region. */
742 void
743 add_new_handler (region, newhandler)
744 int region;
745 struct handler_info *newhandler;
747 struct handler_info *last;
749 newhandler->next = NULL;
750 last = function_eh_regions[region].handlers;
751 if (last == NULL)
752 function_eh_regions[region].handlers = newhandler;
753 else
755 for ( ; ; last = last->next)
757 if (last->type_info == CATCH_ALL_TYPE)
758 pedwarn ("additional handler after ...");
759 if (last->next == NULL)
760 break;
762 last->next = newhandler;
766 /* Remove a handler label. The handler label is being deleted, so all
767 regions which reference this handler should have it removed from their
768 list of possible handlers. Any region which has the final handler
769 removed can be deleted. */
771 void remove_handler (removing_label)
772 rtx removing_label;
774 struct handler_info *handler, *last;
775 int x;
776 for (x = 0 ; x < current_func_eh_entry; ++x)
778 last = NULL;
779 handler = function_eh_regions[x].handlers;
780 for ( ; handler; last = handler, handler = handler->next)
781 if (handler->handler_label == removing_label)
783 if (last)
785 last->next = handler->next;
786 handler = last;
788 else
789 function_eh_regions[x].handlers = handler->next;
794 /* This function will return a malloc'd pointer to an array of
795 void pointer representing the runtime match values that
796 currently exist in all regions. */
798 int
799 find_all_handler_type_matches (array)
800 void ***array;
802 struct handler_info *handler, *last;
803 int x,y;
804 void *val;
805 void **ptr;
806 int max_ptr;
807 int n_ptr = 0;
809 *array = NULL;
811 if (!doing_eh (0) || ! flag_new_exceptions)
812 return 0;
814 max_ptr = 100;
815 ptr = (void **) xmalloc (max_ptr * sizeof (void *));
817 for (x = 0 ; x < current_func_eh_entry; x++)
819 last = NULL;
820 handler = function_eh_regions[x].handlers;
821 for ( ; handler; last = handler, handler = handler->next)
823 val = handler->type_info;
824 if (val != NULL && val != CATCH_ALL_TYPE)
826 /* See if this match value has already been found. */
827 for (y = 0; y < n_ptr; y++)
828 if (ptr[y] == val)
829 break;
831 /* If we break early, we already found this value. */
832 if (y < n_ptr)
833 continue;
835 /* Do we need to allocate more space? */
836 if (n_ptr >= max_ptr)
838 max_ptr += max_ptr / 2;
839 ptr = (void **) xrealloc (ptr, max_ptr * sizeof (void *));
841 ptr[n_ptr] = val;
842 n_ptr++;
846 *array = ptr;
847 return n_ptr;
850 /* Create a new handler structure initialized with the handler label and
851 typeinfo fields passed in. */
853 struct handler_info *
854 get_new_handler (handler, typeinfo)
855 rtx handler;
856 void *typeinfo;
858 struct handler_info* ptr;
859 ptr = (struct handler_info *) xmalloc (sizeof (struct handler_info));
860 ptr->handler_label = handler;
861 ptr->handler_number = CODE_LABEL_NUMBER (handler);
862 ptr->type_info = typeinfo;
863 ptr->next = NULL;
865 return ptr;
870 /* Find the index in function_eh_regions associated with a NOTE region. If
871 the region cannot be found, a -1 is returned. This should never happen! */
873 int
874 find_func_region (insn_region)
875 int insn_region;
877 int x;
878 for (x = 0; x < current_func_eh_entry; x++)
879 if (function_eh_regions[x].range_number == insn_region)
880 return x;
882 return -1;
885 /* Get a pointer to the first handler in an exception region's list. */
887 struct handler_info *
888 get_first_handler (region)
889 int region;
891 return function_eh_regions[find_func_region (region)].handlers;
894 /* Clean out the function_eh_region table and free all memory */
896 static void
897 clear_function_eh_region ()
899 int x;
900 struct handler_info *ptr, *next;
901 for (x = 0; x < current_func_eh_entry; x++)
902 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
904 next = ptr->next;
905 free (ptr);
907 free (function_eh_regions);
908 num_func_eh_entries = 0;
909 current_func_eh_entry = 0;
912 /* Make a duplicate of an exception region by copying all the handlers
913 for an exception region. Return the new handler index. The final
914 parameter is a routine which maps old labels to new ones. */
916 int
917 duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
918 int old_note_eh_region, new_note_eh_region;
919 rtx (*map) PARAMS ((rtx));
921 struct handler_info *ptr, *new_ptr;
922 int new_region, region;
924 region = find_func_region (old_note_eh_region);
925 if (region == -1)
926 fatal ("Cannot duplicate non-existant exception region.");
928 /* duplicate_eh_handlers may have been called during a symbol remap. */
929 new_region = find_func_region (new_note_eh_region);
930 if (new_region != -1)
931 return (new_region);
933 new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);
935 ptr = function_eh_regions[region].handlers;
937 for ( ; ptr; ptr = ptr->next)
939 new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
940 add_new_handler (new_region, new_ptr);
943 return new_region;
947 /* Given a rethrow symbol, find the EH region number this is for. */
948 int
949 eh_region_from_symbol (sym)
950 rtx sym;
952 int x;
953 if (sym == last_rethrow_symbol)
954 return 1;
955 for (x = 0; x < current_func_eh_entry; x++)
956 if (function_eh_regions[x].rethrow_label == sym)
957 return function_eh_regions[x].range_number;
958 return -1;
962 /* When inlining/unrolling, we have to map the symbols passed to
963 __rethrow as well. This performs the remap. If a symbol isn't foiund,
964 the original one is returned. This is not an efficient routine,
965 so don't call it on everything!! */
966 rtx
967 rethrow_symbol_map (sym, map)
968 rtx sym;
969 rtx (*map) PARAMS ((rtx));
971 int x, y;
972 for (x = 0; x < current_func_eh_entry; x++)
973 if (function_eh_regions[x].rethrow_label == sym)
975 /* We've found the original region, now lets determine which region
976 this now maps to. */
977 rtx l1 = function_eh_regions[x].handlers->handler_label;
978 rtx l2 = map (l1);
979 y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
980 x = find_func_region (y); /* Get the new permanent region */
981 if (x == -1) /* Hmm, Doesn't exist yet */
983 x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
984 /* Since we're mapping it, it must be used. */
985 function_eh_regions[x].rethrow_ref = 1;
987 return function_eh_regions[x].rethrow_label;
989 return sym;
992 int
993 rethrow_used (region)
994 int region;
996 if (flag_new_exceptions)
998 int ret = function_eh_regions[find_func_region (region)].rethrow_ref;
999 return ret;
1001 return 0;
1005 /* Routine to see if exception handling is turned on.
1006 DO_WARN is non-zero if we want to inform the user that exception
1007 handling is turned off.
1009 This is used to ensure that -fexceptions has been specified if the
1010 compiler tries to use any exception-specific functions. */
1013 doing_eh (do_warn)
1014 int do_warn;
1016 if (! flag_exceptions)
1018 static int warned = 0;
1019 if (! warned && do_warn)
1021 error ("exception handling disabled, use -fexceptions to enable");
1022 warned = 1;
1024 return 0;
1026 return 1;
1029 /* Given a return address in ADDR, determine the address we should use
1030 to find the corresponding EH region. */
1033 eh_outer_context (addr)
1034 rtx addr;
1036 /* First mask out any unwanted bits. */
1037 #ifdef MASK_RETURN_ADDR
1038 expand_and (addr, MASK_RETURN_ADDR, addr);
1039 #endif
1041 /* Then adjust to find the real return address. */
1042 #if defined (RETURN_ADDR_OFFSET)
1043 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
1044 #endif
1046 return addr;
1049 /* Start a new exception region for a region of code that has a
1050 cleanup action and push the HANDLER for the region onto
1051 protect_list. All of the regions created with add_partial_entry
1052 will be ended when end_protect_partials is invoked. */
1054 void
1055 add_partial_entry (handler)
1056 tree handler;
1058 expand_eh_region_start ();
1060 /* Make sure the entry is on the correct obstack. */
1061 push_obstacks_nochange ();
1062 resume_temporary_allocation ();
1064 /* Because this is a cleanup action, we may have to protect the handler
1065 with __terminate. */
1066 handler = protect_with_terminate (handler);
1068 protect_list = tree_cons (NULL_TREE, handler, protect_list);
1069 pop_obstacks ();
1072 /* Emit code to get EH context to current function. */
1074 static rtx
1075 call_get_eh_context ()
1077 static tree fn;
1078 tree expr;
1080 if (fn == NULL_TREE)
1082 tree fntype;
1083 fn = get_identifier ("__get_eh_context");
1084 push_obstacks_nochange ();
1085 end_temporary_allocation ();
1086 fntype = build_pointer_type (build_pointer_type
1087 (build_pointer_type (void_type_node)));
1088 fntype = build_function_type (fntype, NULL_TREE);
1089 fn = build_decl (FUNCTION_DECL, fn, fntype);
1090 DECL_EXTERNAL (fn) = 1;
1091 TREE_PUBLIC (fn) = 1;
1092 DECL_ARTIFICIAL (fn) = 1;
1093 TREE_READONLY (fn) = 1;
1094 make_decl_rtl (fn, NULL_PTR, 1);
1095 assemble_external (fn);
1096 pop_obstacks ();
1099 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1100 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1101 expr, NULL_TREE, NULL_TREE);
1102 TREE_SIDE_EFFECTS (expr) = 1;
1104 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
1107 /* Get a reference to the EH context.
1108 We will only generate a register for the current function EH context here,
1109 and emit a USE insn to mark that this is a EH context register.
1111 Later, emit_eh_context will emit needed call to __get_eh_context
1112 in libgcc2, and copy the value to the register we have generated. */
1115 get_eh_context ()
1117 if (current_function_ehc == 0)
1119 rtx insn;
1121 current_function_ehc = gen_reg_rtx (Pmode);
1123 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1124 current_function_ehc);
1125 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1127 REG_NOTES (insn)
1128 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1129 REG_NOTES (insn));
1131 return current_function_ehc;
1134 /* Get a reference to the dynamic handler chain. It points to the
1135 pointer to the next element in the dynamic handler chain. It ends
1136 when there are no more elements in the dynamic handler chain, when
1137 the value is &top_elt from libgcc2.c. Immediately after the
1138 pointer, is an area suitable for setjmp/longjmp when
1139 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1140 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1141 isn't defined. */
1144 get_dynamic_handler_chain ()
1146 rtx ehc, dhc, result;
1148 ehc = get_eh_context ();
1150 /* This is the offset of dynamic_handler_chain in the eh_context struct
1151 declared in eh-common.h. If its location is change, change this offset */
1152 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
1154 result = copy_to_reg (dhc);
1156 /* We don't want a copy of the dcc, but rather, the single dcc. */
1157 return gen_rtx_MEM (Pmode, result);
1160 /* Get a reference to the dynamic cleanup chain. It points to the
1161 pointer to the next element in the dynamic cleanup chain.
1162 Immediately after the pointer, are two Pmode variables, one for a
1163 pointer to a function that performs the cleanup action, and the
1164 second, the argument to pass to that function. */
1167 get_dynamic_cleanup_chain ()
1169 rtx dhc, dcc, result;
1171 dhc = get_dynamic_handler_chain ();
1172 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
1174 result = copy_to_reg (dcc);
1176 /* We don't want a copy of the dcc, but rather, the single dcc. */
1177 return gen_rtx_MEM (Pmode, result);
1180 #ifdef DONT_USE_BUILTIN_SETJMP
1181 /* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1182 LABEL is an rtx of code CODE_LABEL, in this function. */
1184 static void
1185 jumpif_rtx (x, label)
1186 rtx x;
1187 rtx label;
1189 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1191 #endif
1193 /* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1194 We just need to create an element for the cleanup list, and push it
1195 into the chain.
1197 A dynamic cleanup is a cleanup action implied by the presence of an
1198 element on the EH runtime dynamic cleanup stack that is to be
1199 performed when an exception is thrown. The cleanup action is
1200 performed by __sjthrow when an exception is thrown. Only certain
1201 actions can be optimized into dynamic cleanup actions. For the
1202 restrictions on what actions can be performed using this routine,
1203 see expand_eh_region_start_tree. */
1205 static void
1206 start_dynamic_cleanup (func, arg)
1207 tree func;
1208 tree arg;
1210 rtx dcc;
1211 rtx new_func, new_arg;
1212 rtx x, buf;
1213 int size;
1215 /* We allocate enough room for a pointer to the function, and
1216 one argument. */
1217 size = 2;
1219 /* XXX, FIXME: The stack space allocated this way is too long lived,
1220 but there is no allocation routine that allocates at the level of
1221 the last binding contour. */
1222 buf = assign_stack_local (BLKmode,
1223 GET_MODE_SIZE (Pmode)*(size+1),
1226 buf = change_address (buf, Pmode, NULL_RTX);
1228 /* Store dcc into the first word of the newly allocated buffer. */
1230 dcc = get_dynamic_cleanup_chain ();
1231 emit_move_insn (buf, dcc);
1233 /* Store func and arg into the cleanup list element. */
1235 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1236 GET_MODE_SIZE (Pmode)));
1237 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1238 GET_MODE_SIZE (Pmode)*2));
1239 x = expand_expr (func, new_func, Pmode, 0);
1240 if (x != new_func)
1241 emit_move_insn (new_func, x);
1243 x = expand_expr (arg, new_arg, Pmode, 0);
1244 if (x != new_arg)
1245 emit_move_insn (new_arg, x);
1247 /* Update the cleanup chain. */
1249 x = force_operand (XEXP (buf, 0), dcc);
1250 if (x != dcc)
1251 emit_move_insn (dcc, x);
1254 /* Emit RTL to start a dynamic handler on the EH runtime dynamic
1255 handler stack. This should only be used by expand_eh_region_start
1256 or expand_eh_region_start_tree. */
1258 static void
1259 start_dynamic_handler ()
1261 rtx dhc, dcc;
1262 rtx x, arg, buf;
1263 int size;
1265 #ifndef DONT_USE_BUILTIN_SETJMP
1266 /* The number of Pmode words for the setjmp buffer, when using the
1267 builtin setjmp/longjmp, see expand_builtin, case
1268 BUILT_IN_LONGJMP. */
1269 size = 5;
1270 #else
1271 #ifdef JMP_BUF_SIZE
1272 size = JMP_BUF_SIZE;
1273 #else
1274 /* Should be large enough for most systems, if it is not,
1275 JMP_BUF_SIZE should be defined with the proper value. It will
1276 also tend to be larger than necessary for most systems, a more
1277 optimal port will define JMP_BUF_SIZE. */
1278 size = FIRST_PSEUDO_REGISTER+2;
1279 #endif
1280 #endif
1281 /* XXX, FIXME: The stack space allocated this way is too long lived,
1282 but there is no allocation routine that allocates at the level of
1283 the last binding contour. */
1284 arg = assign_stack_local (BLKmode,
1285 GET_MODE_SIZE (Pmode)*(size+1),
1288 arg = change_address (arg, Pmode, NULL_RTX);
1290 /* Store dhc into the first word of the newly allocated buffer. */
1292 dhc = get_dynamic_handler_chain ();
1293 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1294 GET_MODE_SIZE (Pmode)));
1295 emit_move_insn (arg, dhc);
1297 /* Zero out the start of the cleanup chain. */
1298 emit_move_insn (dcc, const0_rtx);
1300 /* The jmpbuf starts two words into the area allocated. */
1301 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
1303 #ifdef DONT_USE_BUILTIN_SETJMP
1304 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
1305 buf, Pmode);
1306 /* If we come back here for a catch, transfer control to the handler. */
1307 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
1308 #else
1310 /* A label to continue execution for the no exception case. */
1311 rtx noex = gen_label_rtx();
1312 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1313 ehstack.top->entry->exception_handler_label);
1314 emit_label (noex);
1316 #endif
1318 /* We are committed to this, so update the handler chain. */
1320 emit_move_insn (dhc, force_operand (XEXP (arg, 0), NULL_RTX));
1323 /* Start an exception handling region for the given cleanup action.
1324 All instructions emitted after this point are considered to be part
1325 of the region until expand_eh_region_end is invoked. CLEANUP is
1326 the cleanup action to perform. The return value is true if the
1327 exception region was optimized away. If that case,
1328 expand_eh_region_end does not need to be called for this cleanup,
1329 nor should it be.
1331 This routine notices one particular common case in C++ code
1332 generation, and optimizes it so as to not need the exception
1333 region. It works by creating a dynamic cleanup action, instead of
1334 a using an exception region. */
1337 expand_eh_region_start_tree (decl, cleanup)
1338 tree decl;
1339 tree cleanup;
1341 /* This is the old code. */
1342 if (! doing_eh (0))
1343 return 0;
1345 /* The optimization only applies to actions protected with
1346 terminate, and only applies if we are using the setjmp/longjmp
1347 codegen method. */
1348 if (exceptions_via_longjmp
1349 && protect_cleanup_actions_with_terminate)
1351 tree func, arg;
1352 tree args;
1354 /* Ignore any UNSAVE_EXPR. */
1355 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1356 cleanup = TREE_OPERAND (cleanup, 0);
1358 /* Further, it only applies if the action is a call, if there
1359 are 2 arguments, and if the second argument is 2. */
1361 if (TREE_CODE (cleanup) == CALL_EXPR
1362 && (args = TREE_OPERAND (cleanup, 1))
1363 && (func = TREE_OPERAND (cleanup, 0))
1364 && (arg = TREE_VALUE (args))
1365 && (args = TREE_CHAIN (args))
1367 /* is the second argument 2? */
1368 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1369 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1370 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1372 /* Make sure there are no other arguments. */
1373 && TREE_CHAIN (args) == NULL_TREE)
1375 /* Arrange for returns and gotos to pop the entry we make on the
1376 dynamic cleanup stack. */
1377 expand_dcc_cleanup (decl);
1378 start_dynamic_cleanup (func, arg);
1379 return 1;
1383 expand_eh_region_start_for_decl (decl);
1384 ehstack.top->entry->finalization = cleanup;
1386 return 0;
1389 /* Just like expand_eh_region_start, except if a cleanup action is
1390 entered on the cleanup chain, the TREE_PURPOSE of the element put
1391 on the chain is DECL. DECL should be the associated VAR_DECL, if
1392 any, otherwise it should be NULL_TREE. */
1394 void
1395 expand_eh_region_start_for_decl (decl)
1396 tree decl;
1398 rtx note;
1400 /* This is the old code. */
1401 if (! doing_eh (0))
1402 return;
1404 /* We need a new block to record the start and end of the
1405 dynamic handler chain. We also want to prevent jumping into
1406 a try block. */
1407 expand_start_bindings (0);
1409 /* But we don't need or want a new temporary level. */
1410 pop_temp_slots ();
1412 /* Mark this block as created by expand_eh_region_start. This
1413 is so that we can pop the block with expand_end_bindings
1414 automatically. */
1415 mark_block_as_eh_region ();
1417 if (exceptions_via_longjmp)
1419 /* Arrange for returns and gotos to pop the entry we make on the
1420 dynamic handler stack. */
1421 expand_dhc_cleanup (decl);
1424 push_eh_entry (&ehstack);
1425 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1426 NOTE_BLOCK_NUMBER (note)
1427 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
1428 if (exceptions_via_longjmp)
1429 start_dynamic_handler ();
1432 /* Start an exception handling region. All instructions emitted after
1433 this point are considered to be part of the region until
1434 expand_eh_region_end is invoked. */
1436 void
1437 expand_eh_region_start ()
1439 expand_eh_region_start_for_decl (NULL_TREE);
1442 /* End an exception handling region. The information about the region
1443 is found on the top of ehstack.
1445 HANDLER is either the cleanup for the exception region, or if we're
1446 marking the end of a try block, HANDLER is integer_zero_node.
1448 HANDLER will be transformed to rtl when expand_leftover_cleanups
1449 is invoked. */
1451 void
1452 expand_eh_region_end (handler)
1453 tree handler;
1455 struct eh_entry *entry;
1456 rtx note;
1457 int ret, r;
1459 if (! doing_eh (0))
1460 return;
1462 entry = pop_eh_entry (&ehstack);
1464 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1465 ret = NOTE_BLOCK_NUMBER (note)
1466 = CODE_LABEL_NUMBER (entry->exception_handler_label);
1467 if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
1468 /* We share outer_context between regions; only emit it once. */
1469 && INSN_UID (entry->outer_context) == 0)
1471 rtx label;
1473 label = gen_label_rtx ();
1474 emit_jump (label);
1476 /* Emit a label marking the end of this exception region that
1477 is used for rethrowing into the outer context. */
1478 emit_label (entry->outer_context);
1479 expand_internal_throw ();
1481 emit_label (label);
1484 entry->finalization = handler;
1486 /* create region entry in final exception table */
1487 r = new_eh_region_entry (NOTE_BLOCK_NUMBER (note), entry->rethrow_label);
1489 enqueue_eh_entry (&ehqueue, entry);
1491 /* If we have already started ending the bindings, don't recurse. */
1492 if (is_eh_region ())
1494 /* Because we don't need or want a new temporary level and
1495 because we didn't create one in expand_eh_region_start,
1496 create a fake one now to avoid removing one in
1497 expand_end_bindings. */
1498 push_temp_slots ();
1500 mark_block_as_not_eh_region ();
1502 expand_end_bindings (NULL_TREE, 0, 0);
1506 /* End the EH region for a goto fixup. We only need them in the region-based
1507 EH scheme. */
1509 void
1510 expand_fixup_region_start ()
1512 if (! doing_eh (0) || exceptions_via_longjmp)
1513 return;
1515 expand_eh_region_start ();
1518 /* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1519 expanded; to avoid running it twice if it throws, we look through the
1520 ehqueue for a matching region and rethrow from its outer_context. */
1522 void
1523 expand_fixup_region_end (cleanup)
1524 tree cleanup;
1526 struct eh_node *node;
1527 int dont_issue;
1529 if (! doing_eh (0) || exceptions_via_longjmp)
1530 return;
1532 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1533 node = node->chain;
1534 if (node == 0)
1535 for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
1536 node = node->chain;
1537 if (node == 0)
1538 abort ();
1540 /* If the outer context label has not been issued yet, we don't want
1541 to issue it as a part of this region, unless this is the
1542 correct region for the outer context. If we did, then the label for
1543 the outer context will be WITHIN the begin/end labels,
1544 and we could get an infinte loop when it tried to rethrow, or just
1545 generally incorrect execution following a throw. */
1547 if (flag_new_exceptions)
1548 dont_issue = 0;
1549 else
1550 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1551 && (ehstack.top->entry != node->entry));
1553 ehstack.top->entry->outer_context = node->entry->outer_context;
1555 /* Since we are rethrowing to the OUTER region, we know we don't need
1556 a jump around sequence for this region, so we'll pretend the outer
1557 context label has been issued by setting INSN_UID to 1, then clearing
1558 it again afterwards. */
1560 if (dont_issue)
1561 INSN_UID (node->entry->outer_context) = 1;
1563 /* Just rethrow. size_zero_node is just a NOP. */
1564 expand_eh_region_end (size_zero_node);
1566 if (dont_issue)
1567 INSN_UID (node->entry->outer_context) = 0;
1570 /* If we are using the setjmp/longjmp EH codegen method, we emit a
1571 call to __sjthrow.
1573 Otherwise, we emit a call to __throw and note that we threw
1574 something, so we know we need to generate the necessary code for
1575 __throw.
1577 Before invoking throw, the __eh_pc variable must have been set up
1578 to contain the PC being thrown from. This address is used by
1579 __throw to determine which exception region (if any) is
1580 responsible for handling the exception. */
1582 void
1583 emit_throw ()
1585 if (exceptions_via_longjmp)
1587 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1589 else
1591 #ifdef JUMP_TO_THROW
1592 emit_indirect_jump (throw_libfunc);
1593 #else
1594 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
1595 #endif
1597 emit_barrier ();
1600 /* Throw the current exception. If appropriate, this is done by jumping
1601 to the next handler. */
1603 void
1604 expand_internal_throw ()
1606 emit_throw ();
1609 /* Called from expand_exception_blocks and expand_end_catch_block to
1610 emit any pending handlers/cleanups queued from expand_eh_region_end. */
1612 void
1613 expand_leftover_cleanups ()
1615 struct eh_entry *entry;
1617 while ((entry = dequeue_eh_entry (&ehqueue)) != 0)
1619 rtx prev;
1621 /* A leftover try block. Shouldn't be one here. */
1622 if (entry->finalization == integer_zero_node)
1623 abort ();
1625 /* Output the label for the start of the exception handler. */
1627 receive_exception_label (entry->exception_handler_label);
1629 /* register a handler for this cleanup region */
1630 add_new_handler (
1631 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1632 get_new_handler (entry->exception_handler_label, NULL));
1634 /* And now generate the insns for the handler. */
1635 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1637 prev = get_last_insn ();
1638 if (prev == NULL || GET_CODE (prev) != BARRIER)
1639 /* Emit code to throw to the outer context if we fall off
1640 the end of the handler. */
1641 expand_rethrow (entry->outer_context);
1643 do_pending_stack_adjust ();
1644 free (entry);
1648 /* Called at the start of a block of try statements. */
1649 void
1650 expand_start_try_stmts ()
1652 if (! doing_eh (1))
1653 return;
1655 expand_eh_region_start ();
1658 /* Called to begin a catch clause. The parameter is the object which
1659 will be passed to the runtime type check routine. */
1660 void
1661 start_catch_handler (rtime)
1662 tree rtime;
1664 rtx handler_label;
1665 int insn_region_num;
1666 int eh_region_entry;
1668 if (! doing_eh (1))
1669 return;
1671 handler_label = catchstack.top->entry->exception_handler_label;
1672 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1673 eh_region_entry = find_func_region (insn_region_num);
1675 /* If we've already issued this label, pick a new one */
1676 if (catchstack.top->entry->label_used)
1677 handler_label = gen_exception_label ();
1678 else
1679 catchstack.top->entry->label_used = 1;
1681 receive_exception_label (handler_label);
1683 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
1685 if (flag_new_exceptions && ! exceptions_via_longjmp)
1686 return;
1688 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1689 issue code to compare 'rtime' to the value in eh_info, via the
1690 matching function in eh_info. If its is false, we branch around
1691 the handler we are about to issue. */
1693 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1695 rtx call_rtx, rtime_address;
1697 if (catchstack.top->entry->false_label != NULL_RTX)
1699 error ("Never issued previous false_label");
1700 abort ();
1702 catchstack.top->entry->false_label = gen_exception_label ();
1704 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
1705 #ifdef POINTERS_EXTEND_UNSIGNED
1706 rtime_address = convert_memory_address (Pmode, rtime_address);
1707 #endif
1708 rtime_address = force_reg (Pmode, rtime_address);
1710 /* Now issue the call, and branch around handler if needed */
1711 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1712 0, SImode, 1, rtime_address, Pmode);
1714 /* Did the function return true? */
1715 emit_cmp_and_jump_insns (call_rtx, const0_rtx, EQ, NULL_RTX,
1716 GET_MODE (call_rtx), 0, 0,
1717 catchstack.top->entry->false_label);
1721 /* Called to end a catch clause. If we aren't using the new exception
1722 model tabel mechanism, we need to issue the branch-around label
1723 for the end of the catch block. */
1725 void
1726 end_catch_handler ()
1728 if (! doing_eh (1))
1729 return;
1731 if (flag_new_exceptions && ! exceptions_via_longjmp)
1733 emit_barrier ();
1734 return;
1737 /* A NULL label implies the catch clause was a catch all or cleanup */
1738 if (catchstack.top->entry->false_label == NULL_RTX)
1739 return;
1741 emit_label (catchstack.top->entry->false_label);
1742 catchstack.top->entry->false_label = NULL_RTX;
1745 /* Generate RTL for the start of a group of catch clauses.
1747 It is responsible for starting a new instruction sequence for the
1748 instructions in the catch block, and expanding the handlers for the
1749 internally-generated exception regions nested within the try block
1750 corresponding to this catch block. */
1752 void
1753 expand_start_all_catch ()
1755 struct eh_entry *entry;
1756 tree label;
1757 rtx outer_context;
1759 if (! doing_eh (1))
1760 return;
1762 outer_context = ehstack.top->entry->outer_context;
1764 /* End the try block. */
1765 expand_eh_region_end (integer_zero_node);
1767 emit_line_note (input_filename, lineno);
1768 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1770 /* The label for the exception handling block that we will save.
1771 This is Lresume in the documentation. */
1772 expand_label (label);
1774 /* Push the label that points to where normal flow is resumed onto
1775 the top of the label stack. */
1776 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1778 /* Start a new sequence for all the catch blocks. We will add this
1779 to the global sequence catch_clauses when we have completed all
1780 the handlers in this handler-seq. */
1781 start_sequence ();
1783 entry = dequeue_eh_entry (&ehqueue);
1784 for ( ; entry->finalization != integer_zero_node;
1785 entry = dequeue_eh_entry (&ehqueue))
1787 rtx prev;
1789 /* Emit the label for the cleanup handler for this region, and
1790 expand the code for the handler.
1792 Note that a catch region is handled as a side-effect here;
1793 for a try block, entry->finalization will contain
1794 integer_zero_node, so no code will be generated in the
1795 expand_expr call below. But, the label for the handler will
1796 still be emitted, so any code emitted after this point will
1797 end up being the handler. */
1799 receive_exception_label (entry->exception_handler_label);
1801 /* register a handler for this cleanup region */
1802 add_new_handler (
1803 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1804 get_new_handler (entry->exception_handler_label, NULL));
1806 /* And now generate the insns for the cleanup handler. */
1807 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1809 prev = get_last_insn ();
1810 if (prev == NULL || GET_CODE (prev) != BARRIER)
1811 /* Code to throw out to outer context when we fall off end
1812 of the handler. We can't do this here for catch blocks,
1813 so it's done in expand_end_all_catch instead. */
1814 expand_rethrow (entry->outer_context);
1816 do_pending_stack_adjust ();
1817 free (entry);
1820 /* At this point, all the cleanups are done, and the ehqueue now has
1821 the current exception region at its head. We dequeue it, and put it
1822 on the catch stack. */
1824 push_entry (&catchstack, entry);
1826 /* If we are not doing setjmp/longjmp EH, because we are reordered
1827 out of line, we arrange to rethrow in the outer context. We need to
1828 do this because we are not physically within the region, if any, that
1829 logically contains this catch block. */
1830 if (! exceptions_via_longjmp)
1832 expand_eh_region_start ();
1833 ehstack.top->entry->outer_context = outer_context;
1838 /* Finish up the catch block. At this point all the insns for the
1839 catch clauses have already been generated, so we only have to add
1840 them to the catch_clauses list. We also want to make sure that if
1841 we fall off the end of the catch clauses that we rethrow to the
1842 outer EH region. */
1844 void
1845 expand_end_all_catch ()
1847 rtx new_catch_clause;
1848 struct eh_entry *entry;
1850 if (! doing_eh (1))
1851 return;
1853 /* Dequeue the current catch clause region. */
1854 entry = pop_eh_entry (&catchstack);
1855 free (entry);
1857 if (! exceptions_via_longjmp)
1859 rtx outer_context = ehstack.top->entry->outer_context;
1861 /* Finish the rethrow region. size_zero_node is just a NOP. */
1862 expand_eh_region_end (size_zero_node);
1863 /* New exceptions handling models will never have a fall through
1864 of a catch clause */
1865 if (!flag_new_exceptions)
1866 expand_rethrow (outer_context);
1868 else
1869 expand_rethrow (NULL_RTX);
1871 /* Code to throw out to outer context, if we fall off end of catch
1872 handlers. This is rethrow (Lresume, same id, same obj) in the
1873 documentation. We use Lresume because we know that it will throw
1874 to the correct context.
1876 In other words, if the catch handler doesn't exit or return, we
1877 do a "throw" (using the address of Lresume as the point being
1878 thrown from) so that the outer EH region can then try to process
1879 the exception. */
1881 /* Now we have the complete catch sequence. */
1882 new_catch_clause = get_insns ();
1883 end_sequence ();
1885 /* This level of catch blocks is done, so set up the successful
1886 catch jump label for the next layer of catch blocks. */
1887 pop_label_entry (&caught_return_label_stack);
1888 pop_label_entry (&outer_context_label_stack);
1890 /* Add the new sequence of catches to the main one for this function. */
1891 push_to_sequence (catch_clauses);
1892 emit_insns (new_catch_clause);
1893 catch_clauses = get_insns ();
1894 end_sequence ();
1896 /* Here we fall through into the continuation code. */
1899 /* Rethrow from the outer context LABEL. */
1901 static void
1902 expand_rethrow (label)
1903 rtx label;
1905 if (exceptions_via_longjmp)
1906 emit_throw ();
1907 else
1908 if (flag_new_exceptions)
1910 rtx insn;
1911 int region;
1912 if (label == NULL_RTX)
1913 label = last_rethrow_symbol;
1914 emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
1915 region = find_func_region (eh_region_from_symbol (label));
1916 function_eh_regions[region].rethrow_ref = 1;
1918 /* Search backwards for the actual call insn. */
1919 insn = get_last_insn ();
1920 while (GET_CODE (insn) != CALL_INSN)
1921 insn = PREV_INSN (insn);
1922 delete_insns_since (insn);
1924 /* Mark the label/symbol on the call. */
1925 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, label,
1926 REG_NOTES (insn));
1927 emit_barrier ();
1929 else
1930 emit_jump (label);
1933 /* End all the pending exception regions on protect_list. The handlers
1934 will be emitted when expand_leftover_cleanups is invoked. */
1936 void
1937 end_protect_partials ()
1939 while (protect_list)
1941 expand_eh_region_end (TREE_VALUE (protect_list));
1942 protect_list = TREE_CHAIN (protect_list);
1946 /* Arrange for __terminate to be called if there is an unhandled throw
1947 from within E. */
1949 tree
1950 protect_with_terminate (e)
1951 tree e;
1953 /* We only need to do this when using setjmp/longjmp EH and the
1954 language requires it, as otherwise we protect all of the handlers
1955 at once, if we need to. */
1956 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
1958 tree handler, result;
1960 /* All cleanups must be on the function_obstack. */
1961 push_obstacks_nochange ();
1962 resume_temporary_allocation ();
1964 handler = make_node (RTL_EXPR);
1965 TREE_TYPE (handler) = void_type_node;
1966 RTL_EXPR_RTL (handler) = const0_rtx;
1967 TREE_SIDE_EFFECTS (handler) = 1;
1968 start_sequence_for_rtl_expr (handler);
1970 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
1971 emit_barrier ();
1973 RTL_EXPR_SEQUENCE (handler) = get_insns ();
1974 end_sequence ();
1976 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
1977 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
1978 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
1979 TREE_READONLY (result) = TREE_READONLY (e);
1981 pop_obstacks ();
1983 e = result;
1986 return e;
1989 /* The exception table that we build that is used for looking up and
1990 dispatching exceptions, the current number of entries, and its
1991 maximum size before we have to extend it.
1993 The number in eh_table is the code label number of the exception
1994 handler for the region. This is added by add_eh_table_entry and
1995 used by output_exception_table_entry. */
1997 static int *eh_table = NULL;
1998 static int eh_table_size = 0;
1999 static int eh_table_max_size = 0;
2001 /* Note the need for an exception table entry for region N. If we
2002 don't need to output an explicit exception table, avoid all of the
2003 extra work.
2005 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
2006 (Or NOTE_INSN_EH_REGION_END sometimes)
2007 N is the NOTE_BLOCK_NUMBER of the note, which comes from the code
2008 label number of the exception handler for the region. */
2010 void
2011 add_eh_table_entry (n)
2012 int n;
2014 #ifndef OMIT_EH_TABLE
2015 if (eh_table_size >= eh_table_max_size)
2017 if (eh_table)
2019 eh_table_max_size += eh_table_max_size>>1;
2021 if (eh_table_max_size < 0)
2022 abort ();
2024 eh_table = (int *) xrealloc (eh_table,
2025 eh_table_max_size * sizeof (int));
2027 else
2029 eh_table_max_size = 252;
2030 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
2033 eh_table[eh_table_size++] = n;
2034 #endif
2037 /* Return a non-zero value if we need to output an exception table.
2039 On some platforms, we don't have to output a table explicitly.
2040 This routine doesn't mean we don't have one. */
2043 exception_table_p ()
2045 if (eh_table)
2046 return 1;
2048 return 0;
2051 /* Output the entry of the exception table corresponding to the
2052 exception region numbered N to file FILE.
2054 N is the code label number corresponding to the handler of the
2055 region. */
2057 static void
2058 output_exception_table_entry (file, n)
2059 FILE *file;
2060 int n;
2062 char buf[256];
2063 rtx sym;
2064 struct handler_info *handler = get_first_handler (n);
2065 int index = find_func_region (n);
2066 rtx rethrow;
2068 /* form and emit the rethrow label, if needed */
2069 rethrow = function_eh_regions[index].rethrow_label;
2070 if (rethrow != NULL_RTX && !flag_new_exceptions)
2071 rethrow = NULL_RTX;
2072 if (rethrow != NULL_RTX && handler == NULL)
2073 if (! function_eh_regions[index].rethrow_ref)
2074 rethrow = NULL_RTX;
2077 for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
2079 /* rethrow label should indicate the LAST entry for a region */
2080 if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
2082 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
2083 assemble_label(buf);
2084 rethrow = NULL_RTX;
2087 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
2088 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2089 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2091 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
2092 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2093 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2095 if (handler == NULL)
2096 assemble_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
2097 else
2099 ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
2100 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2101 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2104 if (flag_new_exceptions)
2106 if (handler == NULL || handler->type_info == NULL)
2107 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2108 else
2109 if (handler->type_info == CATCH_ALL_TYPE)
2110 assemble_integer (GEN_INT (CATCH_ALL_TYPE),
2111 POINTER_SIZE / BITS_PER_UNIT, 1);
2112 else
2113 output_constant ((tree)(handler->type_info),
2114 POINTER_SIZE / BITS_PER_UNIT);
2116 putc ('\n', file); /* blank line */
2117 /* We only output the first label under the old scheme */
2118 if (! flag_new_exceptions || handler == NULL)
2119 break;
2123 /* Output the exception table if we have and need one. */
2125 static short language_code = 0;
2126 static short version_code = 0;
2128 /* This routine will set the language code for exceptions. */
2129 void
2130 set_exception_lang_code (code)
2131 int code;
2133 language_code = code;
2136 /* This routine will set the language version code for exceptions. */
2137 void
2138 set_exception_version_code (code)
2139 int code;
2141 version_code = code;
2145 void
2146 output_exception_table ()
2148 int i;
2149 char buf[256];
2150 extern FILE *asm_out_file;
2152 if (! doing_eh (0) || ! eh_table)
2153 return;
2155 exception_section ();
2157 /* Beginning marker for table. */
2158 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
2159 assemble_label ("__EXCEPTION_TABLE__");
2161 if (flag_new_exceptions)
2163 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
2164 POINTER_SIZE / BITS_PER_UNIT, 1);
2165 assemble_integer (GEN_INT (language_code), 2 , 1);
2166 assemble_integer (GEN_INT (version_code), 2 , 1);
2168 /* Add enough padding to make sure table aligns on a pointer boundry. */
2169 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2170 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2172 if (i != 0)
2173 assemble_integer (const0_rtx, i , 1);
2175 /* Generate the label for offset calculations on rethrows */
2176 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
2177 assemble_label(buf);
2180 for (i = 0; i < eh_table_size; ++i)
2181 output_exception_table_entry (asm_out_file, eh_table[i]);
2183 free (eh_table);
2184 clear_function_eh_region ();
2186 /* Ending marker for table. */
2187 /* Generate the label for end of table. */
2188 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
2189 assemble_label(buf);
2190 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2192 /* for binary compatability, the old __throw checked the second
2193 position for a -1, so we should output at least 2 -1's */
2194 if (! flag_new_exceptions)
2195 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2197 putc ('\n', asm_out_file); /* blank line */
2200 /* Emit code to get EH context.
2202 We have to scan thru the code to find possible EH context registers.
2203 Inlined functions may use it too, and thus we'll have to be able
2204 to change them too.
2206 This is done only if using exceptions_via_longjmp. */
2208 void
2209 emit_eh_context ()
2211 rtx insn;
2212 rtx ehc = 0;
2214 if (! doing_eh (0))
2215 return;
2217 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2218 if (GET_CODE (insn) == INSN
2219 && GET_CODE (PATTERN (insn)) == USE)
2221 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2222 if (reg)
2224 rtx insns;
2226 start_sequence ();
2228 /* If this is the first use insn, emit the call here. This
2229 will always be at the top of our function, because if
2230 expand_inline_function notices a REG_EH_CONTEXT note, it
2231 adds a use insn to this function as well. */
2232 if (ehc == 0)
2233 ehc = call_get_eh_context ();
2235 emit_move_insn (XEXP (reg, 0), ehc);
2236 insns = get_insns ();
2237 end_sequence ();
2239 emit_insns_before (insns, insn);
2241 /* At -O0, we must make the context register stay alive so
2242 that the stupid.c register allocator doesn't get confused. */
2243 if (obey_regdecls != 0)
2245 insns = gen_rtx_USE (GET_MODE (XEXP (reg,0)), XEXP (reg,0));
2246 emit_insn_before (insns, get_last_insn ());
2252 /* Scan the current insns and build a list of handler labels. The
2253 resulting list is placed in the global variable exception_handler_labels.
2255 It is called after the last exception handling region is added to
2256 the current function (when the rtl is almost all built for the
2257 current function) and before the jump optimization pass. */
2259 void
2260 find_exception_handler_labels ()
2262 rtx insn;
2264 exception_handler_labels = NULL_RTX;
2266 /* If we aren't doing exception handling, there isn't much to check. */
2267 if (! doing_eh (0))
2268 return;
2270 /* For each start of a region, add its label to the list. */
2272 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2274 struct handler_info* ptr;
2275 if (GET_CODE (insn) == NOTE
2276 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2278 ptr = get_first_handler (NOTE_BLOCK_NUMBER (insn));
2279 for ( ; ptr; ptr = ptr->next)
2281 /* make sure label isn't in the list already */
2282 rtx x;
2283 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2284 if (XEXP (x, 0) == ptr->handler_label)
2285 break;
2286 if (! x)
2287 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2288 ptr->handler_label, exception_handler_labels);
2294 /* Return a value of 1 if the parameter label number is an exception handler
2295 label. Return 0 otherwise. */
2298 is_exception_handler_label (lab)
2299 int lab;
2301 rtx x;
2302 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2303 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2304 return 1;
2305 return 0;
2308 /* Perform sanity checking on the exception_handler_labels list.
2310 Can be called after find_exception_handler_labels is called to
2311 build the list of exception handlers for the current function and
2312 before we finish processing the current function. */
2314 void
2315 check_exception_handler_labels ()
2317 rtx insn, insn2;
2319 /* If we aren't doing exception handling, there isn't much to check. */
2320 if (! doing_eh (0))
2321 return;
2323 /* Make sure there is no more than 1 copy of a label */
2324 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
2326 int count = 0;
2327 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2328 if (XEXP (insn, 0) == XEXP (insn2, 0))
2329 count++;
2330 if (count != 1)
2331 warning ("Counted %d copies of EH region %d in list.\n", count,
2332 CODE_LABEL_NUMBER (insn));
2337 /* Mark the children of NODE for GC. */
2339 static void
2340 mark_eh_node (node)
2341 struct eh_node *node;
2343 while (node)
2345 if (node->entry)
2347 ggc_mark_rtx (node->entry->outer_context);
2348 ggc_mark_rtx (node->entry->exception_handler_label);
2349 ggc_mark_tree (node->entry->finalization);
2351 node = node ->chain;
2355 /* Mark S for GC. */
2357 static void
2358 mark_eh_stack (s)
2359 struct eh_stack *s;
2361 if (s)
2362 mark_eh_node (s->top);
2365 /* Mark Q for GC. */
2367 static void
2368 mark_eh_queue (q)
2369 struct eh_queue *q;
2371 if (q)
2372 mark_eh_node (q->head);
2375 /* Mark NODE for GC. A label_node contains a union containing either
2376 a tree or an rtx. This label_node will contain a tree. */
2378 static void
2379 mark_tree_label_node (node)
2380 struct label_node *node;
2382 while (node)
2384 ggc_mark_tree (node->u.tlabel);
2385 node = node->chain;
2389 /* Mark EH for GC. */
2391 void
2392 mark_eh_state (eh)
2393 struct eh_status *eh;
2395 mark_eh_stack (&eh->x_ehstack);
2396 mark_eh_queue (&eh->x_ehqueue);
2397 ggc_mark_rtx (eh->x_catch_clauses);
2399 lang_mark_false_label_stack (eh->x_false_label_stack);
2400 mark_tree_label_node (eh->x_caught_return_label_stack);
2402 ggc_mark_tree (eh->x_protect_list);
2403 ggc_mark_rtx (eh->ehc);
2406 /* This group of functions initializes the exception handling data
2407 structures at the start of the compilation, initializes the data
2408 structures at the start of a function, and saves and restores the
2409 exception handling data structures for the start/end of a nested
2410 function. */
2412 /* Toplevel initialization for EH things. */
2414 void
2415 init_eh ()
2417 first_rethrow_symbol = create_rethrow_ref (0);
2418 final_rethrow = gen_exception_label ();
2419 last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
2422 /* Initialize the per-function EH information. */
2424 void
2425 init_eh_for_function ()
2427 current_function->eh = (struct eh_status *) xmalloc (sizeof (struct eh_status));
2429 ehstack.top = 0;
2430 catchstack.top = 0;
2431 ehqueue.head = ehqueue.tail = 0;
2432 catch_clauses = NULL_RTX;
2433 false_label_stack = 0;
2434 caught_return_label_stack = 0;
2435 protect_list = NULL_TREE;
2436 current_function_ehc = NULL_RTX;
2437 eh_return_context = NULL_RTX;
2438 eh_return_stack_adjust = NULL_RTX;
2439 eh_return_handler = NULL_RTX;
2440 eh_return_stub_label = NULL_RTX;
2443 /* This section is for the exception handling specific optimization
2444 pass. First are the internal routines, and then the main
2445 optimization pass. */
2447 /* Determine if the given INSN can throw an exception. */
2449 static int
2450 can_throw (insn)
2451 rtx insn;
2453 /* Calls can always potentially throw exceptions, unless they have
2454 a REG_EH_REGION note with a value of 0 or less. */
2455 if (GET_CODE (insn) == CALL_INSN)
2457 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2458 if (!note || XINT (XEXP (note, 0), 0) > 0)
2459 return 1;
2462 if (asynchronous_exceptions)
2464 /* If we wanted asynchronous exceptions, then everything but NOTEs
2465 and CODE_LABELs could throw. */
2466 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2467 return 1;
2470 return 0;
2473 /* Scan a exception region looking for the matching end and then
2474 remove it if possible. INSN is the start of the region, N is the
2475 region number, and DELETE_OUTER is to note if anything in this
2476 region can throw.
2478 Regions are removed if they cannot possibly catch an exception.
2479 This is determined by invoking can_throw on each insn within the
2480 region; if can_throw returns true for any of the instructions, the
2481 region can catch an exception, since there is an insn within the
2482 region that is capable of throwing an exception.
2484 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
2485 calls abort if it can't find one.
2487 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
2488 correspond to the region number, or if DELETE_OUTER is NULL. */
2490 static rtx
2491 scan_region (insn, n, delete_outer)
2492 rtx insn;
2493 int n;
2494 int *delete_outer;
2496 rtx start = insn;
2498 /* Assume we can delete the region. */
2499 int delete = 1;
2501 /* Can't delete something which is rethrown to. */
2502 if (rethrow_used (n))
2503 delete = 0;
2505 if (insn == NULL_RTX
2506 || GET_CODE (insn) != NOTE
2507 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2508 || NOTE_BLOCK_NUMBER (insn) != n
2509 || delete_outer == NULL)
2510 abort ();
2512 insn = NEXT_INSN (insn);
2514 /* Look for the matching end. */
2515 while (! (GET_CODE (insn) == NOTE
2516 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2518 /* If anything can throw, we can't remove the region. */
2519 if (delete && can_throw (insn))
2521 delete = 0;
2524 /* Watch out for and handle nested regions. */
2525 if (GET_CODE (insn) == NOTE
2526 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2528 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &delete);
2531 insn = NEXT_INSN (insn);
2534 /* The _BEG/_END NOTEs must match and nest. */
2535 if (NOTE_BLOCK_NUMBER (insn) != n)
2536 abort ();
2538 /* If anything in this exception region can throw, we can throw. */
2539 if (! delete)
2540 *delete_outer = 0;
2541 else
2543 /* Delete the start and end of the region. */
2544 delete_insn (start);
2545 delete_insn (insn);
2547 /* We no longer removed labels here, since flow will now remove any
2548 handler which cannot be called any more. */
2550 #if 0
2551 /* Only do this part if we have built the exception handler
2552 labels. */
2553 if (exception_handler_labels)
2555 rtx x, *prev = &exception_handler_labels;
2557 /* Find it in the list of handlers. */
2558 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2560 rtx label = XEXP (x, 0);
2561 if (CODE_LABEL_NUMBER (label) == n)
2563 /* If we are the last reference to the handler,
2564 delete it. */
2565 if (--LABEL_NUSES (label) == 0)
2566 delete_insn (label);
2568 if (optimize)
2570 /* Remove it from the list of exception handler
2571 labels, if we are optimizing. If we are not, then
2572 leave it in the list, as we are not really going to
2573 remove the region. */
2574 *prev = XEXP (x, 1);
2575 XEXP (x, 1) = 0;
2576 XEXP (x, 0) = 0;
2579 break;
2581 prev = &XEXP (x, 1);
2584 #endif
2586 return insn;
2589 /* Perform various interesting optimizations for exception handling
2590 code.
2592 We look for empty exception regions and make them go (away). The
2593 jump optimization code will remove the handler if nothing else uses
2594 it. */
2596 void
2597 exception_optimize ()
2599 rtx insn;
2600 int n;
2602 /* Remove empty regions. */
2603 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2605 if (GET_CODE (insn) == NOTE
2606 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2608 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
2609 insn, we will indirectly skip through all the insns
2610 inbetween. We are also guaranteed that the value of insn
2611 returned will be valid, as otherwise scan_region won't
2612 return. */
2613 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &n);
2618 /* This function determines whether any of the exception regions in the
2619 current function are targets of a rethrow or not, and set the
2620 reference flag according. */
2621 void
2622 update_rethrow_references ()
2624 rtx insn;
2625 int x, region;
2626 int *saw_region, *saw_rethrow;
2628 if (!flag_new_exceptions)
2629 return;
2631 saw_region = (int *) alloca (current_func_eh_entry * sizeof (int));
2632 saw_rethrow = (int *) alloca (current_func_eh_entry * sizeof (int));
2633 bzero ((char *) saw_region, (current_func_eh_entry * sizeof (int)));
2634 bzero ((char *) saw_rethrow, (current_func_eh_entry * sizeof (int)));
2636 /* Determine what regions exist, and whether there are any rethrows
2637 to those regions or not. */
2638 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2639 if (GET_CODE (insn) == CALL_INSN)
2641 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
2642 if (note)
2644 region = eh_region_from_symbol (XEXP (note, 0));
2645 region = find_func_region (region);
2646 saw_rethrow[region] = 1;
2649 else
2650 if (GET_CODE (insn) == NOTE)
2652 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2654 region = find_func_region (NOTE_BLOCK_NUMBER (insn));
2655 saw_region[region] = 1;
2659 /* For any regions we did see, set the referenced flag. */
2660 for (x = 0; x < current_func_eh_entry; x++)
2661 if (saw_region[x])
2662 function_eh_regions[x].rethrow_ref = saw_rethrow[x];
2665 /* Various hooks for the DWARF 2 __throw routine. */
2667 /* Do any necessary initialization to access arbitrary stack frames.
2668 On the SPARC, this means flushing the register windows. */
2670 void
2671 expand_builtin_unwind_init ()
2673 /* Set this so all the registers get saved in our frame; we need to be
2674 able to copy the saved values for any registers from frames we unwind. */
2675 current_function_has_nonlocal_label = 1;
2677 #ifdef SETUP_FRAME_ADDRESSES
2678 SETUP_FRAME_ADDRESSES ();
2679 #endif
2682 /* Given a value extracted from the return address register or stack slot,
2683 return the actual address encoded in that value. */
2686 expand_builtin_extract_return_addr (addr_tree)
2687 tree addr_tree;
2689 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2690 return eh_outer_context (addr);
2693 /* Given an actual address in addr_tree, do any necessary encoding
2694 and return the value to be stored in the return address register or
2695 stack slot so the epilogue will return to that address. */
2698 expand_builtin_frob_return_addr (addr_tree)
2699 tree addr_tree;
2701 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2702 #ifdef RETURN_ADDR_OFFSET
2703 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2704 #endif
2705 return addr;
2708 /* Choose three registers for communication between the main body of
2709 __throw and the epilogue (or eh stub) and the exception handler.
2710 We must do this with hard registers because the epilogue itself
2711 will be generated after reload, at which point we may not reference
2712 pseudos at all.
2714 The first passes the exception context to the handler. For this
2715 we use the return value register for a void*.
2717 The second holds the stack pointer value to be restored. For
2718 this we use the static chain register if it exists and is different
2719 from the previous, otherwise some arbitrary call-clobbered register.
2721 The third holds the address of the handler itself. Here we use
2722 some arbitrary call-clobbered register. */
2724 static void
2725 eh_regs (pcontext, psp, pra, outgoing)
2726 rtx *pcontext, *psp, *pra;
2727 int outgoing;
2729 rtx rcontext, rsp, rra;
2730 int i;
2732 #ifdef FUNCTION_OUTGOING_VALUE
2733 if (outgoing)
2734 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2735 current_function_decl);
2736 else
2737 #endif
2738 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
2739 current_function_decl);
2741 #ifdef STATIC_CHAIN_REGNUM
2742 if (outgoing)
2743 rsp = static_chain_incoming_rtx;
2744 else
2745 rsp = static_chain_rtx;
2746 if (REGNO (rsp) == REGNO (rcontext))
2747 #endif /* STATIC_CHAIN_REGNUM */
2748 rsp = NULL_RTX;
2750 if (rsp == NULL_RTX)
2752 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2753 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
2754 break;
2755 if (i == FIRST_PSEUDO_REGISTER)
2756 abort();
2758 rsp = gen_rtx_REG (Pmode, i);
2761 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2762 if (call_used_regs[i] && ! fixed_regs[i]
2763 && i != REGNO (rcontext) && i != REGNO (rsp))
2764 break;
2765 if (i == FIRST_PSEUDO_REGISTER)
2766 abort();
2768 rra = gen_rtx_REG (Pmode, i);
2770 *pcontext = rcontext;
2771 *psp = rsp;
2772 *pra = rra;
2775 /* Retrieve the register which contains the pointer to the eh_context
2776 structure set the __throw. */
2778 rtx
2779 get_reg_for_handler ()
2781 rtx reg1;
2782 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2783 current_function_decl);
2784 return reg1;
2787 /* Set up the epilogue with the magic bits we'll need to return to the
2788 exception handler. */
2790 void
2791 expand_builtin_eh_return (context, stack, handler)
2792 tree context, stack, handler;
2794 if (eh_return_context)
2795 error("Duplicate call to __builtin_eh_return");
2797 eh_return_context
2798 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
2799 eh_return_stack_adjust
2800 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
2801 eh_return_handler
2802 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
2805 void
2806 expand_eh_return ()
2808 rtx reg1, reg2, reg3;
2809 rtx stub_start, after_stub;
2810 rtx ra, tmp;
2812 if (!eh_return_context)
2813 return;
2815 current_function_cannot_inline = N_("function uses __builtin_eh_return");
2817 eh_regs (&reg1, &reg2, &reg3, 1);
2818 #ifdef POINTERS_EXTEND_UNSIGNED
2819 eh_return_context = convert_memory_address (Pmode, eh_return_context);
2820 eh_return_stack_adjust =
2821 convert_memory_address (Pmode, eh_return_stack_adjust);
2822 eh_return_handler = convert_memory_address (Pmode, eh_return_handler);
2823 #endif
2824 emit_move_insn (reg1, eh_return_context);
2825 emit_move_insn (reg2, eh_return_stack_adjust);
2826 emit_move_insn (reg3, eh_return_handler);
2828 /* Talk directly to the target's epilogue code when possible. */
2830 #ifdef HAVE_eh_epilogue
2831 if (HAVE_eh_epilogue)
2833 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
2834 return;
2836 #endif
2838 /* Otherwise, use the same stub technique we had before. */
2840 eh_return_stub_label = stub_start = gen_label_rtx ();
2841 after_stub = gen_label_rtx ();
2843 /* Set the return address to the stub label. */
2845 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
2846 0, hard_frame_pointer_rtx);
2847 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
2848 abort();
2850 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
2851 #ifdef RETURN_ADDR_OFFSET
2852 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
2853 #endif
2854 tmp = force_operand (tmp, ra);
2855 if (tmp != ra)
2856 emit_move_insn (ra, tmp);
2858 /* Indicate that the registers are in fact used. */
2859 emit_insn (gen_rtx_USE (VOIDmode, reg1));
2860 emit_insn (gen_rtx_USE (VOIDmode, reg2));
2861 emit_insn (gen_rtx_USE (VOIDmode, reg3));
2862 if (GET_CODE (ra) == REG)
2863 emit_insn (gen_rtx_USE (VOIDmode, ra));
2865 /* Generate the stub. */
2867 emit_jump (after_stub);
2868 emit_label (stub_start);
2870 eh_regs (&reg1, &reg2, &reg3, 0);
2871 adjust_stack (reg2);
2872 emit_indirect_jump (reg3);
2874 emit_label (after_stub);
2878 /* This contains the code required to verify whether arbitrary instructions
2879 are in the same exception region. */
2881 static int *insn_eh_region = (int *)0;
2882 static int maximum_uid;
2884 static void
2885 set_insn_eh_region (first, region_num)
2886 rtx *first;
2887 int region_num;
2889 rtx insn;
2890 int rnum;
2892 for (insn = *first; insn; insn = NEXT_INSN (insn))
2894 if ((GET_CODE (insn) == NOTE) &&
2895 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
2897 rnum = NOTE_BLOCK_NUMBER (insn);
2898 insn_eh_region[INSN_UID (insn)] = rnum;
2899 insn = NEXT_INSN (insn);
2900 set_insn_eh_region (&insn, rnum);
2901 /* Upon return, insn points to the EH_REGION_END of nested region */
2902 continue;
2904 insn_eh_region[INSN_UID (insn)] = region_num;
2905 if ((GET_CODE (insn) == NOTE) &&
2906 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2907 break;
2909 *first = insn;
2912 /* Free the insn table, an make sure it cannot be used again. */
2914 void
2915 free_insn_eh_region ()
2917 if (!doing_eh (0))
2918 return;
2920 if (insn_eh_region)
2922 free (insn_eh_region);
2923 insn_eh_region = (int *)0;
2927 /* Initialize the table. max_uid must be calculated and handed into
2928 this routine. If it is unavailable, passing a value of 0 will
2929 cause this routine to calculate it as well. */
2931 void
2932 init_insn_eh_region (first, max_uid)
2933 rtx first;
2934 int max_uid;
2936 rtx insn;
2938 if (!doing_eh (0))
2939 return;
2941 if (insn_eh_region)
2942 free_insn_eh_region();
2944 if (max_uid == 0)
2945 for (insn = first; insn; insn = NEXT_INSN (insn))
2946 if (INSN_UID (insn) > max_uid) /* find largest UID */
2947 max_uid = INSN_UID (insn);
2949 maximum_uid = max_uid;
2950 insn_eh_region = (int *) xmalloc ((max_uid + 1) * sizeof (int));
2951 insn = first;
2952 set_insn_eh_region (&insn, 0);
2956 /* Check whether 2 instructions are within the same region. */
2958 int
2959 in_same_eh_region (insn1, insn2)
2960 rtx insn1, insn2;
2962 int ret, uid1, uid2;
2964 /* If no exceptions, instructions are always in same region. */
2965 if (!doing_eh (0))
2966 return 1;
2968 /* If the table isn't allocated, assume the worst. */
2969 if (!insn_eh_region)
2970 return 0;
2972 uid1 = INSN_UID (insn1);
2973 uid2 = INSN_UID (insn2);
2975 /* if instructions have been allocated beyond the end, either
2976 the table is out of date, or this is a late addition, or
2977 something... Assume the worst. */
2978 if (uid1 > maximum_uid || uid2 > maximum_uid)
2979 return 0;
2981 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
2982 return ret;
2986 /* This function will initialize the handler list for a specified block.
2987 It may recursively call itself if the outer block hasn't been processed
2988 yet. At some point in the future we can trim out handlers which we
2989 know cannot be called. (ie, if a block has an INT type handler,
2990 control will never be passed to an outer INT type handler). */
2991 static void
2992 process_nestinfo (block, info, nested_eh_region)
2993 int block;
2994 eh_nesting_info *info;
2995 int *nested_eh_region;
2997 handler_info *ptr, *last_ptr = NULL;
2998 int x, y, count = 0;
2999 int extra = 0;
3000 handler_info **extra_handlers;
3001 int index = info->region_index[block];
3003 /* If we've already processed this block, simply return. */
3004 if (info->num_handlers[index] > 0)
3005 return;
3007 for (ptr = get_first_handler (block); ptr; last_ptr = ptr, ptr = ptr->next)
3008 count++;
3010 /* pick up any information from the next outer region. It will already
3011 contain a summary of itself and all outer regions to it. */
3013 if (nested_eh_region [block] != 0)
3015 int nested_index = info->region_index[nested_eh_region[block]];
3016 process_nestinfo (nested_eh_region[block], info, nested_eh_region);
3017 extra = info->num_handlers[nested_index];
3018 extra_handlers = info->handlers[nested_index];
3019 info->outer_index[index] = nested_index;
3022 /* If the last handler is either a CATCH_ALL or a cleanup, then we
3023 won't use the outer ones since we know control will not go past the
3024 catch-all or cleanup. */
3026 if (last_ptr != NULL && (last_ptr->type_info == NULL
3027 || last_ptr->type_info == CATCH_ALL_TYPE))
3028 extra = 0;
3030 info->num_handlers[index] = count + extra;
3031 info->handlers[index] = (handler_info **) xmalloc ((count + extra)
3032 * sizeof (handler_info **));
3034 /* First put all our handlers into the list. */
3035 ptr = get_first_handler (block);
3036 for (x = 0; x < count; x++)
3038 info->handlers[index][x] = ptr;
3039 ptr = ptr->next;
3042 /* Now add all the outer region handlers, if they aren't they same as
3043 one of the types in the current block. We won't worry about
3044 derived types yet, we'll just look for the exact type. */
3045 for (y =0, x = 0; x < extra ; x++)
3047 int i, ok;
3048 ok = 1;
3049 /* Check to see if we have a type duplication. */
3050 for (i = 0; i < count; i++)
3051 if (info->handlers[index][i]->type_info == extra_handlers[x]->type_info)
3053 ok = 0;
3054 /* Record one less handler. */
3055 (info->num_handlers[index])--;
3056 break;
3058 if (ok)
3060 info->handlers[index][y + count] = extra_handlers[x];
3061 y++;
3066 /* This function will allocate and initialize an eh_nesting_info structure.
3067 It returns a pointer to the completed data structure. If there are
3068 no exception regions, a NULL value is returned. */
3069 eh_nesting_info *
3070 init_eh_nesting_info ()
3072 int *nested_eh_region;
3073 int region_count = 0;
3074 rtx eh_note = NULL_RTX;
3075 eh_nesting_info *info;
3076 rtx insn;
3077 int x;
3079 info = (eh_nesting_info *) xmalloc (sizeof (eh_nesting_info));
3080 info->region_index = (int *) xcalloc ((max_label_num () + 1), sizeof (int));
3082 nested_eh_region = (int *) alloca ((max_label_num () + 1) * sizeof (int));
3083 bzero ((char *) nested_eh_region, (max_label_num () + 1) * sizeof (int));
3085 /* Create the nested_eh_region list. If indexed with a block number, it
3086 returns the block number of the next outermost region, if any.
3087 We can count the number of regions and initialize the region_index
3088 vector at the same time. */
3089 for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
3091 if (GET_CODE (insn) == NOTE)
3093 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
3095 int block = NOTE_BLOCK_NUMBER (insn);
3096 region_count++;
3097 info->region_index[block] = region_count;
3098 if (eh_note)
3099 nested_eh_region [block] =
3100 NOTE_BLOCK_NUMBER (XEXP (eh_note, 0));
3101 else
3102 nested_eh_region [block] = 0;
3103 eh_note = gen_rtx_EXPR_LIST (VOIDmode, insn, eh_note);
3105 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
3106 eh_note = XEXP (eh_note, 1);
3110 /* If there are no regions, wrap it up now. */
3111 if (region_count == 0)
3113 free (info->region_index);
3114 free (info);
3115 return NULL;
3118 region_count++;
3119 info->handlers = (handler_info ***) xcalloc (region_count,
3120 sizeof (handler_info ***));
3121 info->num_handlers = (int *) xcalloc (region_count, sizeof (int));
3122 info->outer_index = (int *) xcalloc (region_count, sizeof (int));
3124 /* Now initialize the handler lists for all exception blocks. */
3125 for (x = 0; x <= max_label_num (); x++)
3127 if (info->region_index[x] != 0)
3128 process_nestinfo (x, info, nested_eh_region);
3130 info->region_count = region_count;
3131 return info;
3135 /* This function is used to retreive the vector of handlers which
3136 can be reached by a given insn in a given exception region.
3137 BLOCK is the exception block the insn is in.
3138 INFO is the eh_nesting_info structure.
3139 INSN is the (optional) insn within the block. If insn is not NULL_RTX,
3140 it may contain reg notes which modify its throwing behavior, and
3141 these will be obeyed. If NULL_RTX is passed, then we simply return the
3142 handlers for block.
3143 HANDLERS is the address of a pointer to a vector of handler_info pointers.
3144 Upon return, this will have the handlers which can be reached by block.
3145 This function returns the number of elements in the handlers vector. */
3146 int
3147 reachable_handlers (block, info, insn, handlers)
3148 int block;
3149 eh_nesting_info *info;
3150 rtx insn ;
3151 handler_info ***handlers;
3153 int index = 0;
3154 *handlers = NULL;
3156 if (info == NULL)
3157 return 0;
3158 if (block > 0)
3159 index = info->region_index[block];
3161 if (insn && GET_CODE (insn) == CALL_INSN)
3163 /* RETHROWs specify a region number from which we are going to rethrow.
3164 This means we wont pass control to handlers in the specified
3165 region, but rather any region OUTSIDE the specified region.
3166 We accomplish this by setting block to the outer_index of the
3167 specified region. */
3168 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
3169 if (note)
3171 index = eh_region_from_symbol (XEXP (note, 0));
3172 index = info->region_index[index];
3173 if (index)
3174 index = info->outer_index[index];
3176 else
3178 /* If there is no rethrow, we look for a REG_EH_REGION, and
3179 we'll throw from that block. A value of 0 or less
3180 indicates that this insn cannot throw. */
3181 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3182 if (note)
3184 int b = XINT (XEXP (note, 0), 0);
3185 if (b <= 0)
3186 index = 0;
3187 else
3188 index = info->region_index[b];
3192 /* If we reach this point, and index is 0, there is no throw. */
3193 if (index == 0)
3194 return 0;
3196 *handlers = info->handlers[index];
3197 return info->num_handlers[index];
3201 /* This function will free all memory associated with the eh_nesting info. */
3203 void
3204 free_eh_nesting_info (info)
3205 eh_nesting_info *info;
3207 int x;
3208 if (info != NULL)
3210 if (info->region_index)
3211 free (info->region_index);
3212 if (info->num_handlers)
3213 free (info->num_handlers);
3214 if (info->outer_index)
3215 free (info->outer_index);
3216 if (info->handlers)
3218 for (x = 0; x < info->region_count; x++)
3219 if (info->handlers[x])
3220 free (info->handlers[x]);
3221 free (info->handlers);