1 ------------------------------------------------------------------------------
3 -- GNAT LIBRARY COMPONENTS --
5 -- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_KEYS --
9 -- Copyright (C) 2004-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 package body Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Keys
is
32 package Ops
renames Tree_Operations
;
41 (Tree
: Tree_Type
'Class;
42 Key
: Key_Type
) return Count_Type
46 N
: Nodes_Type
renames Tree
.Nodes
;
53 if Is_Greater_Key_Node
(Key
, N
(X
)) then
54 X
:= Ops
.Right
(N
(X
));
57 X
:= Ops
.Left
(N
(X
));
69 (Tree
: Tree_Type
'Class;
70 Key
: Key_Type
) return Count_Type
74 N
: Nodes_Type
renames Tree
.Nodes
;
81 if Is_Greater_Key_Node
(Key
, N
(X
)) then
82 X
:= Ops
.Right
(N
(X
));
85 X
:= Ops
.Left
(N
(X
));
93 if Is_Less_Key_Node
(Key
, N
(Y
)) then
105 (Tree
: Tree_Type
'Class;
106 Key
: Key_Type
) return Count_Type
110 N
: Nodes_Type
renames Tree
.Nodes
;
117 if Is_Less_Key_Node
(Key
, N
(X
)) then
118 X
:= Ops
.Left
(N
(X
));
121 X
:= Ops
.Right
(N
(X
));
128 --------------------------------
129 -- Generic_Conditional_Insert --
130 --------------------------------
132 procedure Generic_Conditional_Insert
133 (Tree
: in out Tree_Type
'Class;
135 Node
: out Count_Type
;
136 Inserted
: out Boolean)
140 N
: Nodes_Type
renames Tree
.Nodes
;
143 -- This is a "conditional" insertion, meaning that the insertion request
144 -- can "fail" in the sense that no new node is created. If the Key is
145 -- equivalent to an existing node, then we return the existing node and
146 -- Inserted is set to False. Otherwise, we allocate a new node (via
147 -- Insert_Post) and Inserted is set to True.
149 -- Note that we are testing for equivalence here, not equality. Key must
150 -- be strictly less than its next neighbor, and strictly greater than
151 -- its previous neighbor, in order for the conditional insertion to
154 -- We search the tree to find the nearest neighbor of Key, which is
155 -- either the smallest node greater than Key (Inserted is True), or the
156 -- largest node less or equivalent to Key (Inserted is False).
163 Inserted
:= Is_Less_Key_Node
(Key
, N
(X
));
164 X
:= (if Inserted
then Ops
.Left
(N
(X
)) else Ops
.Right
(N
(X
)));
169 -- Either Tree is empty, or Key is less than Y. If Y is the first
170 -- node in the tree, then there are no other nodes that we need to
171 -- search for, and we insert a new node into the tree.
173 if Y
= Tree
.First
then
174 Insert_Post
(Tree
, Y
, True, Node
);
178 -- Y is the next nearest-neighbor of Key. We know that Key is not
179 -- equivalent to Y (because Key is strictly less than Y), so we move
180 -- to the previous node, the nearest-neighbor just smaller or
181 -- equivalent to Key.
183 Node
:= Ops
.Previous
(Tree
, Y
);
186 -- Y is the previous nearest-neighbor of Key. We know that Key is not
187 -- less than Y, which means either that Key is equivalent to Y, or
193 -- Key is equivalent to or greater than Node. We must resolve which is
194 -- the case, to determine whether the conditional insertion succeeds.
196 if Is_Greater_Key_Node
(Key
, N
(Node
)) then
198 -- Key is strictly greater than Node, which means that Key is not
199 -- equivalent to Node. In this case, the insertion succeeds, and we
200 -- insert a new node into the tree.
202 Insert_Post
(Tree
, Y
, Inserted
, Node
);
207 -- Key is equivalent to Node. This is a conditional insertion, so we do
208 -- not insert a new node in this case. We return the existing node and
209 -- report that no insertion has occurred.
212 end Generic_Conditional_Insert
;
214 ------------------------------------------
215 -- Generic_Conditional_Insert_With_Hint --
216 ------------------------------------------
218 procedure Generic_Conditional_Insert_With_Hint
219 (Tree
: in out Tree_Type
'Class;
220 Position
: Count_Type
;
222 Node
: out Count_Type
;
223 Inserted
: out Boolean)
225 N
: Nodes_Type
renames Tree
.Nodes
;
228 -- The purpose of a hint is to avoid a search from the root of
229 -- tree. If we have it hint it means we only need to traverse the
230 -- subtree rooted at the hint to find the nearest neighbor. Note
231 -- that finding the neighbor means merely walking the tree; this
232 -- is not a search and the only comparisons that occur are with
233 -- the hint and its neighbor.
235 -- If Position is 0, this is interpreted to mean that Key is
236 -- large relative to the nodes in the tree. If the tree is empty,
237 -- or Key is greater than the last node in the tree, then we're
238 -- done; otherwise the hint was "wrong" and we must search.
240 if Position
= 0 then -- largest
242 or else Is_Greater_Key_Node
(Key
, N
(Tree
.Last
))
244 Insert_Post
(Tree
, Tree
.Last
, False, Node
);
247 Conditional_Insert_Sans_Hint
(Tree
, Key
, Node
, Inserted
);
253 pragma Assert
(Tree
.Length
> 0);
255 -- A hint can either name the node that immediately follows Key,
256 -- or immediately precedes Key. We first test whether Key is
257 -- less than the hint, and if so we compare Key to the node that
258 -- precedes the hint. If Key is both less than the hint and
259 -- greater than the hint's preceding neighbor, then we're done;
260 -- otherwise we must search.
262 -- Note also that a hint can either be an anterior node or a leaf
263 -- node. A new node is always inserted at the bottom of the tree
264 -- (at least prior to rebalancing), becoming the new left or
265 -- right child of leaf node (which prior to the insertion must
266 -- necessarily be null, since this is a leaf). If the hint names
267 -- an anterior node then its neighbor must be a leaf, and so
268 -- (here) we insert after the neighbor. If the hint names a leaf
269 -- then its neighbor must be anterior and so we insert before the
272 if Is_Less_Key_Node
(Key
, N
(Position
)) then
274 Before
: constant Count_Type
:= Ops
.Previous
(Tree
, Position
);
278 Insert_Post
(Tree
, Tree
.First
, True, Node
);
281 elsif Is_Greater_Key_Node
(Key
, N
(Before
)) then
282 if Ops
.Right
(N
(Before
)) = 0 then
283 Insert_Post
(Tree
, Before
, False, Node
);
285 Insert_Post
(Tree
, Position
, True, Node
);
291 Conditional_Insert_Sans_Hint
(Tree
, Key
, Node
, Inserted
);
298 -- We know that Key isn't less than the hint so we try again,
299 -- this time to see if it's greater than the hint. If so we
300 -- compare Key to the node that follows the hint. If Key is both
301 -- greater than the hint and less than the hint's next neighbor,
302 -- then we're done; otherwise we must search.
304 if Is_Greater_Key_Node
(Key
, N
(Position
)) then
306 After
: constant Count_Type
:= Ops
.Next
(Tree
, Position
);
310 Insert_Post
(Tree
, Tree
.Last
, False, Node
);
313 elsif Is_Less_Key_Node
(Key
, N
(After
)) then
314 if Ops
.Right
(N
(Position
)) = 0 then
315 Insert_Post
(Tree
, Position
, False, Node
);
317 Insert_Post
(Tree
, After
, True, Node
);
323 Conditional_Insert_Sans_Hint
(Tree
, Key
, Node
, Inserted
);
330 -- We know that Key is neither less than the hint nor greater
331 -- than the hint, and that's the definition of equivalence.
332 -- There's nothing else we need to do, since a search would just
333 -- reach the same conclusion.
337 end Generic_Conditional_Insert_With_Hint
;
339 -------------------------
340 -- Generic_Insert_Post --
341 -------------------------
343 procedure Generic_Insert_Post
344 (Tree
: in out Tree_Type
'Class;
349 N
: Nodes_Type
renames Tree
.Nodes
;
354 if Checks
and then Tree
.Length
>= Tree
.Capacity
then
355 raise Capacity_Error
with "not enough capacity to insert new item";
359 pragma Assert
(Z
/= 0);
362 pragma Assert
(Tree
.Length
= 0);
363 pragma Assert
(Tree
.Root
= 0);
364 pragma Assert
(Tree
.First
= 0);
365 pragma Assert
(Tree
.Last
= 0);
372 pragma Assert
(Ops
.Left
(N
(Y
)) = 0);
374 Ops
.Set_Left
(N
(Y
), Z
);
376 if Y
= Tree
.First
then
381 pragma Assert
(Ops
.Right
(N
(Y
)) = 0);
383 Ops
.Set_Right
(N
(Y
), Z
);
385 if Y
= Tree
.Last
then
390 Ops
.Set_Color
(N
(Z
), Red
);
391 Ops
.Set_Parent
(N
(Z
), Y
);
392 Ops
.Rebalance_For_Insert
(Tree
, Z
);
393 Tree
.Length
:= Tree
.Length
+ 1;
394 end Generic_Insert_Post
;
396 -----------------------
397 -- Generic_Iteration --
398 -----------------------
400 procedure Generic_Iteration
401 (Tree
: Tree_Type
'Class;
404 procedure Iterate
(Index
: Count_Type
);
410 procedure Iterate
(Index
: Count_Type
) is
412 N
: Nodes_Type
renames Tree
.Nodes
;
417 if Is_Less_Key_Node
(Key
, N
(J
)) then
418 J
:= Ops
.Left
(N
(J
));
419 elsif Is_Greater_Key_Node
(Key
, N
(J
)) then
420 J
:= Ops
.Right
(N
(J
));
422 Iterate
(Ops
.Left
(N
(J
)));
424 J
:= Ops
.Right
(N
(J
));
429 -- Start of processing for Generic_Iteration
433 end Generic_Iteration
;
435 -------------------------------
436 -- Generic_Reverse_Iteration --
437 -------------------------------
439 procedure Generic_Reverse_Iteration
440 (Tree
: Tree_Type
'Class;
443 procedure Iterate
(Index
: Count_Type
);
449 procedure Iterate
(Index
: Count_Type
) is
451 N
: Nodes_Type
renames Tree
.Nodes
;
456 if Is_Less_Key_Node
(Key
, N
(J
)) then
457 J
:= Ops
.Left
(N
(J
));
458 elsif Is_Greater_Key_Node
(Key
, N
(J
)) then
459 J
:= Ops
.Right
(N
(J
));
461 Iterate
(Ops
.Right
(N
(J
)));
463 J
:= Ops
.Left
(N
(J
));
468 -- Start of processing for Generic_Reverse_Iteration
472 end Generic_Reverse_Iteration
;
474 ----------------------------------
475 -- Generic_Unconditional_Insert --
476 ----------------------------------
478 procedure Generic_Unconditional_Insert
479 (Tree
: in out Tree_Type
'Class;
481 Node
: out Count_Type
)
485 N
: Nodes_Type
renames Tree
.Nodes
;
496 Before
:= Is_Less_Key_Node
(Key
, N
(X
));
497 X
:= (if Before
then Ops
.Left
(N
(X
)) else Ops
.Right
(N
(X
)));
500 Insert_Post
(Tree
, Y
, Before
, Node
);
501 end Generic_Unconditional_Insert
;
503 --------------------------------------------
504 -- Generic_Unconditional_Insert_With_Hint --
505 --------------------------------------------
507 procedure Generic_Unconditional_Insert_With_Hint
508 (Tree
: in out Tree_Type
'Class;
511 Node
: out Count_Type
)
513 N
: Nodes_Type
renames Tree
.Nodes
;
516 -- There are fewer constraints for an unconditional insertion
517 -- than for a conditional insertion, since we allow duplicate
518 -- keys. So instead of having to check (say) whether Key is
519 -- (strictly) greater than the hint's previous neighbor, here we
520 -- allow Key to be equal to or greater than the previous node.
522 -- There is the issue of what to do if Key is equivalent to the
523 -- hint. Does the new node get inserted before or after the hint?
524 -- We decide that it gets inserted after the hint, reasoning that
525 -- this is consistent with behavior for non-hint insertion, which
526 -- inserts a new node after existing nodes with equivalent keys.
528 -- First we check whether the hint is null, which is interpreted
529 -- to mean that Key is large relative to existing nodes.
530 -- Following our rule above, if Key is equal to or greater than
531 -- the last node, then we insert the new node immediately after
532 -- last. (We don't have an operation for testing whether a key is
533 -- "equal to or greater than" a node, so we must say instead "not
534 -- less than", which is equivalent.)
536 if Hint
= 0 then -- largest
537 if Tree
.Last
= 0 then
538 Insert_Post
(Tree
, 0, False, Node
);
539 elsif Is_Less_Key_Node
(Key
, N
(Tree
.Last
)) then
540 Unconditional_Insert_Sans_Hint
(Tree
, Key
, Node
);
542 Insert_Post
(Tree
, Tree
.Last
, False, Node
);
548 pragma Assert
(Tree
.Length
> 0);
550 -- We decide here whether to insert the new node prior to the
551 -- hint. Key could be equivalent to the hint, so in theory we
552 -- could write the following test as "not greater than" (same as
553 -- "less than or equal to"). If Key were equivalent to the hint,
554 -- that would mean that the new node gets inserted before an
555 -- equivalent node. That wouldn't break any container invariants,
556 -- but our rule above says that new nodes always get inserted
557 -- after equivalent nodes. So here we test whether Key is both
558 -- less than the hint and equal to or greater than the hint's
559 -- previous neighbor, and if so insert it before the hint.
561 if Is_Less_Key_Node
(Key
, N
(Hint
)) then
563 Before
: constant Count_Type
:= Ops
.Previous
(Tree
, Hint
);
566 Insert_Post
(Tree
, Hint
, True, Node
);
567 elsif Is_Less_Key_Node
(Key
, N
(Before
)) then
568 Unconditional_Insert_Sans_Hint
(Tree
, Key
, Node
);
569 elsif Ops
.Right
(N
(Before
)) = 0 then
570 Insert_Post
(Tree
, Before
, False, Node
);
572 Insert_Post
(Tree
, Hint
, True, Node
);
579 -- We know that Key isn't less than the hint, so it must be equal
580 -- or greater. So we just test whether Key is less than or equal
581 -- to (same as "not greater than") the hint's next neighbor, and
582 -- if so insert it after the hint.
585 After
: constant Count_Type
:= Ops
.Next
(Tree
, Hint
);
588 Insert_Post
(Tree
, Hint
, False, Node
);
589 elsif Is_Greater_Key_Node
(Key
, N
(After
)) then
590 Unconditional_Insert_Sans_Hint
(Tree
, Key
, Node
);
591 elsif Ops
.Right
(N
(Hint
)) = 0 then
592 Insert_Post
(Tree
, Hint
, False, Node
);
594 Insert_Post
(Tree
, After
, True, Node
);
597 end Generic_Unconditional_Insert_With_Hint
;
604 (Tree
: Tree_Type
'Class;
605 Key
: Key_Type
) return Count_Type
609 N
: Nodes_Type
renames Tree
.Nodes
;
616 if Is_Less_Key_Node
(Key
, N
(X
)) then
618 X
:= Ops
.Left
(N
(X
));
620 X
:= Ops
.Right
(N
(X
));
627 end Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Keys
;