2013-11-19 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / cfgloopmanip.c
blob714c7e1177f8468851bd519beb1e1fa932c269ae
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "basic-block.h"
26 #include "cfgloop.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "gimple-iterator.h"
30 #include "gimplify-me.h"
31 #include "tree-ssa-loop-manip.h"
32 #include "dumpfile.h"
34 static void copy_loops_to (struct loop **, int,
35 struct loop *);
36 static void loop_redirect_edge (edge, basic_block);
37 static void remove_bbs (basic_block *, int);
38 static bool rpe_enum_p (const_basic_block, const void *);
39 static int find_path (edge, basic_block **);
40 static void fix_loop_placements (struct loop *, bool *);
41 static bool fix_bb_placement (basic_block);
42 static void fix_bb_placements (basic_block, bool *, bitmap);
44 /* Checks whether basic block BB is dominated by DATA. */
45 static bool
46 rpe_enum_p (const_basic_block bb, const void *data)
48 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
51 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
53 static void
54 remove_bbs (basic_block *bbs, int nbbs)
56 int i;
58 for (i = 0; i < nbbs; i++)
59 delete_basic_block (bbs[i]);
62 /* Find path -- i.e. the basic blocks dominated by edge E and put them
63 into array BBS, that will be allocated large enough to contain them.
64 E->dest must have exactly one predecessor for this to work (it is
65 easy to achieve and we do not put it here because we do not want to
66 alter anything by this function). The number of basic blocks in the
67 path is returned. */
68 static int
69 find_path (edge e, basic_block **bbs)
71 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
73 /* Find bbs in the path. */
74 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
75 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
76 n_basic_blocks_for_fn (cfun), e->dest);
79 /* Fix placement of basic block BB inside loop hierarchy --
80 Let L be a loop to that BB belongs. Then every successor of BB must either
81 1) belong to some superloop of loop L, or
82 2) be a header of loop K such that K->outer is superloop of L
83 Returns true if we had to move BB into other loop to enforce this condition,
84 false if the placement of BB was already correct (provided that placements
85 of its successors are correct). */
86 static bool
87 fix_bb_placement (basic_block bb)
89 edge e;
90 edge_iterator ei;
91 struct loop *loop = current_loops->tree_root, *act;
93 FOR_EACH_EDGE (e, ei, bb->succs)
95 if (e->dest == EXIT_BLOCK_PTR)
96 continue;
98 act = e->dest->loop_father;
99 if (act->header == e->dest)
100 act = loop_outer (act);
102 if (flow_loop_nested_p (loop, act))
103 loop = act;
106 if (loop == bb->loop_father)
107 return false;
109 remove_bb_from_loops (bb);
110 add_bb_to_loop (bb, loop);
112 return true;
115 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
116 of LOOP to that leads at least one exit edge of LOOP, and set it
117 as the immediate superloop of LOOP. Return true if the immediate superloop
118 of LOOP changed.
120 IRRED_INVALIDATED is set to true if a change in the loop structures might
121 invalidate the information about irreducible regions. */
123 static bool
124 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
126 unsigned i;
127 edge e;
128 vec<edge> exits = get_loop_exit_edges (loop);
129 struct loop *father = current_loops->tree_root, *act;
130 bool ret = false;
132 FOR_EACH_VEC_ELT (exits, i, e)
134 act = find_common_loop (loop, e->dest->loop_father);
135 if (flow_loop_nested_p (father, act))
136 father = act;
139 if (father != loop_outer (loop))
141 for (act = loop_outer (loop); act != father; act = loop_outer (act))
142 act->num_nodes -= loop->num_nodes;
143 flow_loop_tree_node_remove (loop);
144 flow_loop_tree_node_add (father, loop);
146 /* The exit edges of LOOP no longer exits its original immediate
147 superloops; remove them from the appropriate exit lists. */
148 FOR_EACH_VEC_ELT (exits, i, e)
150 /* We may need to recompute irreducible loops. */
151 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
152 *irred_invalidated = true;
153 rescan_loop_exit (e, false, false);
156 ret = true;
159 exits.release ();
160 return ret;
163 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
164 enforce condition condition stated in description of fix_bb_placement. We
165 start from basic block FROM that had some of its successors removed, so that
166 his placement no longer has to be correct, and iteratively fix placement of
167 its predecessors that may change if placement of FROM changed. Also fix
168 placement of subloops of FROM->loop_father, that might also be altered due
169 to this change; the condition for them is similar, except that instead of
170 successors we consider edges coming out of the loops.
172 If the changes may invalidate the information about irreducible regions,
173 IRRED_INVALIDATED is set to true.
175 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
176 changed loop_father are collected there. */
178 static void
179 fix_bb_placements (basic_block from,
180 bool *irred_invalidated,
181 bitmap loop_closed_ssa_invalidated)
183 sbitmap in_queue;
184 basic_block *queue, *qtop, *qbeg, *qend;
185 struct loop *base_loop, *target_loop;
186 edge e;
188 /* We pass through blocks back-reachable from FROM, testing whether some
189 of their successors moved to outer loop. It may be necessary to
190 iterate several times, but it is finite, as we stop unless we move
191 the basic block up the loop structure. The whole story is a bit
192 more complicated due to presence of subloops, those are moved using
193 fix_loop_placement. */
195 base_loop = from->loop_father;
196 /* If we are already in the outermost loop, the basic blocks cannot be moved
197 outside of it. If FROM is the header of the base loop, it cannot be moved
198 outside of it, either. In both cases, we can end now. */
199 if (base_loop == current_loops->tree_root
200 || from == base_loop->header)
201 return;
203 in_queue = sbitmap_alloc (last_basic_block);
204 bitmap_clear (in_queue);
205 bitmap_set_bit (in_queue, from->index);
206 /* Prevent us from going out of the base_loop. */
207 bitmap_set_bit (in_queue, base_loop->header->index);
209 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
210 qtop = queue + base_loop->num_nodes + 1;
211 qbeg = queue;
212 qend = queue + 1;
213 *qbeg = from;
215 while (qbeg != qend)
217 edge_iterator ei;
218 from = *qbeg;
219 qbeg++;
220 if (qbeg == qtop)
221 qbeg = queue;
222 bitmap_clear_bit (in_queue, from->index);
224 if (from->loop_father->header == from)
226 /* Subloop header, maybe move the loop upward. */
227 if (!fix_loop_placement (from->loop_father, irred_invalidated))
228 continue;
229 target_loop = loop_outer (from->loop_father);
230 if (loop_closed_ssa_invalidated)
232 basic_block *bbs = get_loop_body (from->loop_father);
233 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
234 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
235 free (bbs);
238 else
240 /* Ordinary basic block. */
241 if (!fix_bb_placement (from))
242 continue;
243 target_loop = from->loop_father;
244 if (loop_closed_ssa_invalidated)
245 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
248 FOR_EACH_EDGE (e, ei, from->succs)
250 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
251 *irred_invalidated = true;
254 /* Something has changed, insert predecessors into queue. */
255 FOR_EACH_EDGE (e, ei, from->preds)
257 basic_block pred = e->src;
258 struct loop *nca;
260 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
261 *irred_invalidated = true;
263 if (bitmap_bit_p (in_queue, pred->index))
264 continue;
266 /* If it is subloop, then it either was not moved, or
267 the path up the loop tree from base_loop do not contain
268 it. */
269 nca = find_common_loop (pred->loop_father, base_loop);
270 if (pred->loop_father != base_loop
271 && (nca == base_loop
272 || nca != pred->loop_father))
273 pred = pred->loop_father->header;
274 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
276 /* If PRED is already higher in the loop hierarchy than the
277 TARGET_LOOP to that we moved FROM, the change of the position
278 of FROM does not affect the position of PRED, so there is no
279 point in processing it. */
280 continue;
283 if (bitmap_bit_p (in_queue, pred->index))
284 continue;
286 /* Schedule the basic block. */
287 *qend = pred;
288 qend++;
289 if (qend == qtop)
290 qend = queue;
291 bitmap_set_bit (in_queue, pred->index);
294 free (in_queue);
295 free (queue);
298 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
299 and update loop structures and dominators. Return true if we were able
300 to remove the path, false otherwise (and nothing is affected then). */
301 bool
302 remove_path (edge e)
304 edge ae;
305 basic_block *rem_bbs, *bord_bbs, from, bb;
306 vec<basic_block> dom_bbs;
307 int i, nrem, n_bord_bbs;
308 sbitmap seen;
309 bool irred_invalidated = false;
310 edge_iterator ei;
311 struct loop *l, *f;
313 if (!can_remove_branch_p (e))
314 return false;
316 /* Keep track of whether we need to update information about irreducible
317 regions. This is the case if the removed area is a part of the
318 irreducible region, or if the set of basic blocks that belong to a loop
319 that is inside an irreducible region is changed, or if such a loop is
320 removed. */
321 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
322 irred_invalidated = true;
324 /* We need to check whether basic blocks are dominated by the edge
325 e, but we only have basic block dominators. This is easy to
326 fix -- when e->dest has exactly one predecessor, this corresponds
327 to blocks dominated by e->dest, if not, split the edge. */
328 if (!single_pred_p (e->dest))
329 e = single_pred_edge (split_edge (e));
331 /* It may happen that by removing path we remove one or more loops
332 we belong to. In this case first unloop the loops, then proceed
333 normally. We may assume that e->dest is not a header of any loop,
334 as it now has exactly one predecessor. */
335 for (l = e->src->loop_father; loop_outer (l); l = f)
337 f = loop_outer (l);
338 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
339 unloop (l, &irred_invalidated, NULL);
342 /* Identify the path. */
343 nrem = find_path (e, &rem_bbs);
345 n_bord_bbs = 0;
346 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
347 seen = sbitmap_alloc (last_basic_block);
348 bitmap_clear (seen);
350 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
351 for (i = 0; i < nrem; i++)
352 bitmap_set_bit (seen, rem_bbs[i]->index);
353 if (!irred_invalidated)
354 FOR_EACH_EDGE (ae, ei, e->src->succs)
355 if (ae != e && ae->dest != EXIT_BLOCK_PTR && !bitmap_bit_p (seen, ae->dest->index)
356 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
358 irred_invalidated = true;
359 break;
362 for (i = 0; i < nrem; i++)
364 bb = rem_bbs[i];
365 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
366 if (ae->dest != EXIT_BLOCK_PTR && !bitmap_bit_p (seen, ae->dest->index))
368 bitmap_set_bit (seen, ae->dest->index);
369 bord_bbs[n_bord_bbs++] = ae->dest;
371 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
372 irred_invalidated = true;
376 /* Remove the path. */
377 from = e->src;
378 remove_branch (e);
379 dom_bbs.create (0);
381 /* Cancel loops contained in the path. */
382 for (i = 0; i < nrem; i++)
383 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
384 cancel_loop_tree (rem_bbs[i]->loop_father);
386 remove_bbs (rem_bbs, nrem);
387 free (rem_bbs);
389 /* Find blocks whose dominators may be affected. */
390 bitmap_clear (seen);
391 for (i = 0; i < n_bord_bbs; i++)
393 basic_block ldom;
395 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
396 if (bitmap_bit_p (seen, bb->index))
397 continue;
398 bitmap_set_bit (seen, bb->index);
400 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
401 ldom;
402 ldom = next_dom_son (CDI_DOMINATORS, ldom))
403 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
404 dom_bbs.safe_push (ldom);
407 free (seen);
409 /* Recount dominators. */
410 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
411 dom_bbs.release ();
412 free (bord_bbs);
414 /* Fix placements of basic blocks inside loops and the placement of
415 loops in the loop tree. */
416 fix_bb_placements (from, &irred_invalidated, NULL);
417 fix_loop_placements (from->loop_father, &irred_invalidated);
419 if (irred_invalidated
420 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
421 mark_irreducible_loops ();
423 return true;
426 /* Creates place for a new LOOP in loops structure of FN. */
428 void
429 place_new_loop (struct function *fn, struct loop *loop)
431 loop->num = number_of_loops (fn);
432 vec_safe_push (loops_for_fn (fn)->larray, loop);
435 /* Given LOOP structure with filled header and latch, find the body of the
436 corresponding loop and add it to loops tree. Insert the LOOP as a son of
437 outer. */
439 void
440 add_loop (struct loop *loop, struct loop *outer)
442 basic_block *bbs;
443 int i, n;
444 struct loop *subloop;
445 edge e;
446 edge_iterator ei;
448 /* Add it to loop structure. */
449 place_new_loop (cfun, loop);
450 flow_loop_tree_node_add (outer, loop);
452 /* Find its nodes. */
453 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
454 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
456 for (i = 0; i < n; i++)
458 if (bbs[i]->loop_father == outer)
460 remove_bb_from_loops (bbs[i]);
461 add_bb_to_loop (bbs[i], loop);
462 continue;
465 loop->num_nodes++;
467 /* If we find a direct subloop of OUTER, move it to LOOP. */
468 subloop = bbs[i]->loop_father;
469 if (loop_outer (subloop) == outer
470 && subloop->header == bbs[i])
472 flow_loop_tree_node_remove (subloop);
473 flow_loop_tree_node_add (loop, subloop);
477 /* Update the information about loop exit edges. */
478 for (i = 0; i < n; i++)
480 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
482 rescan_loop_exit (e, false, false);
486 free (bbs);
489 /* Multiply all frequencies in LOOP by NUM/DEN. */
491 void
492 scale_loop_frequencies (struct loop *loop, int num, int den)
494 basic_block *bbs;
496 bbs = get_loop_body (loop);
497 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
498 free (bbs);
501 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE.
502 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
503 to iterate too many times. */
505 void
506 scale_loop_profile (struct loop *loop, int scale, gcov_type iteration_bound)
508 gcov_type iterations = expected_loop_iterations_unbounded (loop);
509 edge e;
510 edge_iterator ei;
512 if (dump_file && (dump_flags & TDF_DETAILS))
513 fprintf (dump_file, ";; Scaling loop %i with scale %f, "
514 "bounding iterations to %i from guessed %i\n",
515 loop->num, (double)scale / REG_BR_PROB_BASE,
516 (int)iteration_bound, (int)iterations);
518 /* See if loop is predicted to iterate too many times. */
519 if (iteration_bound && iterations > 0
520 && apply_probability (iterations, scale) > iteration_bound)
522 /* Fixing loop profile for different trip count is not trivial; the exit
523 probabilities has to be updated to match and frequencies propagated down
524 to the loop body.
526 We fully update only the simple case of loop with single exit that is
527 either from the latch or BB just before latch and leads from BB with
528 simple conditional jump. This is OK for use in vectorizer. */
529 e = single_exit (loop);
530 if (e)
532 edge other_e;
533 int freq_delta;
534 gcov_type count_delta;
536 FOR_EACH_EDGE (other_e, ei, e->src->succs)
537 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
538 && e != other_e)
539 break;
541 /* Probability of exit must be 1/iterations. */
542 freq_delta = EDGE_FREQUENCY (e);
543 e->probability = REG_BR_PROB_BASE / iteration_bound;
544 other_e->probability = inverse_probability (e->probability);
545 freq_delta -= EDGE_FREQUENCY (e);
547 /* Adjust counts accordingly. */
548 count_delta = e->count;
549 e->count = apply_probability (e->src->count, e->probability);
550 other_e->count = apply_probability (e->src->count, other_e->probability);
551 count_delta -= e->count;
553 /* If latch exists, change its frequency and count, since we changed
554 probability of exit. Theoretically we should update everything from
555 source of exit edge to latch, but for vectorizer this is enough. */
556 if (loop->latch
557 && loop->latch != e->src)
559 loop->latch->frequency += freq_delta;
560 if (loop->latch->frequency < 0)
561 loop->latch->frequency = 0;
562 loop->latch->count += count_delta;
563 if (loop->latch->count < 0)
564 loop->latch->count = 0;
568 /* Roughly speaking we want to reduce the loop body profile by the
569 the difference of loop iterations. We however can do better if
570 we look at the actual profile, if it is available. */
571 scale = RDIV (iteration_bound * scale, iterations);
572 if (loop->header->count)
574 gcov_type count_in = 0;
576 FOR_EACH_EDGE (e, ei, loop->header->preds)
577 if (e->src != loop->latch)
578 count_in += e->count;
580 if (count_in != 0)
581 scale = GCOV_COMPUTE_SCALE (count_in * iteration_bound,
582 loop->header->count);
584 else if (loop->header->frequency)
586 int freq_in = 0;
588 FOR_EACH_EDGE (e, ei, loop->header->preds)
589 if (e->src != loop->latch)
590 freq_in += EDGE_FREQUENCY (e);
592 if (freq_in != 0)
593 scale = GCOV_COMPUTE_SCALE (freq_in * iteration_bound,
594 loop->header->frequency);
596 if (!scale)
597 scale = 1;
600 if (scale == REG_BR_PROB_BASE)
601 return;
603 /* Scale the actual probabilities. */
604 scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
605 if (dump_file && (dump_flags & TDF_DETAILS))
606 fprintf (dump_file, ";; guessed iterations are now %i\n",
607 (int)expected_loop_iterations_unbounded (loop));
610 /* Recompute dominance information for basic blocks outside LOOP. */
612 static void
613 update_dominators_in_loop (struct loop *loop)
615 vec<basic_block> dom_bbs = vNULL;
616 sbitmap seen;
617 basic_block *body;
618 unsigned i;
620 seen = sbitmap_alloc (last_basic_block);
621 bitmap_clear (seen);
622 body = get_loop_body (loop);
624 for (i = 0; i < loop->num_nodes; i++)
625 bitmap_set_bit (seen, body[i]->index);
627 for (i = 0; i < loop->num_nodes; i++)
629 basic_block ldom;
631 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
632 ldom;
633 ldom = next_dom_son (CDI_DOMINATORS, ldom))
634 if (!bitmap_bit_p (seen, ldom->index))
636 bitmap_set_bit (seen, ldom->index);
637 dom_bbs.safe_push (ldom);
641 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
642 free (body);
643 free (seen);
644 dom_bbs.release ();
647 /* Creates an if region as shown above. CONDITION is used to create
648 the test for the if.
651 | ------------- -------------
652 | | pred_bb | | pred_bb |
653 | ------------- -------------
654 | | |
655 | | | ENTRY_EDGE
656 | | ENTRY_EDGE V
657 | | ====> -------------
658 | | | cond_bb |
659 | | | CONDITION |
660 | | -------------
661 | V / \
662 | ------------- e_false / \ e_true
663 | | succ_bb | V V
664 | ------------- ----------- -----------
665 | | false_bb | | true_bb |
666 | ----------- -----------
667 | \ /
668 | \ /
669 | V V
670 | -------------
671 | | join_bb |
672 | -------------
673 | | exit_edge (result)
675 | -----------
676 | | succ_bb |
677 | -----------
681 edge
682 create_empty_if_region_on_edge (edge entry_edge, tree condition)
685 basic_block cond_bb, true_bb, false_bb, join_bb;
686 edge e_true, e_false, exit_edge;
687 gimple cond_stmt;
688 tree simple_cond;
689 gimple_stmt_iterator gsi;
691 cond_bb = split_edge (entry_edge);
693 /* Insert condition in cond_bb. */
694 gsi = gsi_last_bb (cond_bb);
695 simple_cond =
696 force_gimple_operand_gsi (&gsi, condition, true, NULL,
697 false, GSI_NEW_STMT);
698 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
699 gsi = gsi_last_bb (cond_bb);
700 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
702 join_bb = split_edge (single_succ_edge (cond_bb));
704 e_true = single_succ_edge (cond_bb);
705 true_bb = split_edge (e_true);
707 e_false = make_edge (cond_bb, join_bb, 0);
708 false_bb = split_edge (e_false);
710 e_true->flags &= ~EDGE_FALLTHRU;
711 e_true->flags |= EDGE_TRUE_VALUE;
712 e_false->flags &= ~EDGE_FALLTHRU;
713 e_false->flags |= EDGE_FALSE_VALUE;
715 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
716 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
717 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
718 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
720 exit_edge = single_succ_edge (join_bb);
722 if (single_pred_p (exit_edge->dest))
723 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
725 return exit_edge;
728 /* create_empty_loop_on_edge
730 | - pred_bb - ------ pred_bb ------
731 | | | | iv0 = initial_value |
732 | -----|----- ---------|-----------
733 | | ______ | entry_edge
734 | | entry_edge / | |
735 | | ====> | -V---V- loop_header -------------
736 | V | | iv_before = phi (iv0, iv_after) |
737 | - succ_bb - | ---|-----------------------------
738 | | | | |
739 | ----------- | ---V--- loop_body ---------------
740 | | | iv_after = iv_before + stride |
741 | | | if (iv_before < upper_bound) |
742 | | ---|--------------\--------------
743 | | | \ exit_e
744 | | V \
745 | | - loop_latch - V- succ_bb -
746 | | | | | |
747 | | /------------- -----------
748 | \ ___ /
750 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
751 that is used before the increment of IV. IV_BEFORE should be used for
752 adding code to the body that uses the IV. OUTER is the outer loop in
753 which the new loop should be inserted.
755 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
756 inserted on the loop entry edge. This implies that this function
757 should be used only when the UPPER_BOUND expression is a loop
758 invariant. */
760 struct loop *
761 create_empty_loop_on_edge (edge entry_edge,
762 tree initial_value,
763 tree stride, tree upper_bound,
764 tree iv,
765 tree *iv_before,
766 tree *iv_after,
767 struct loop *outer)
769 basic_block loop_header, loop_latch, succ_bb, pred_bb;
770 struct loop *loop;
771 gimple_stmt_iterator gsi;
772 gimple_seq stmts;
773 gimple cond_expr;
774 tree exit_test;
775 edge exit_e;
776 int prob;
778 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
780 /* Create header, latch and wire up the loop. */
781 pred_bb = entry_edge->src;
782 loop_header = split_edge (entry_edge);
783 loop_latch = split_edge (single_succ_edge (loop_header));
784 succ_bb = single_succ (loop_latch);
785 make_edge (loop_header, succ_bb, 0);
786 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
788 /* Set immediate dominator information. */
789 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
790 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
791 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
793 /* Initialize a loop structure and put it in a loop hierarchy. */
794 loop = alloc_loop ();
795 loop->header = loop_header;
796 loop->latch = loop_latch;
797 add_loop (loop, outer);
799 /* TODO: Fix frequencies and counts. */
800 prob = REG_BR_PROB_BASE / 2;
802 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
804 /* Update dominators. */
805 update_dominators_in_loop (loop);
807 /* Modify edge flags. */
808 exit_e = single_exit (loop);
809 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
810 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
812 /* Construct IV code in loop. */
813 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
814 if (stmts)
816 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
817 gsi_commit_edge_inserts ();
820 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
821 if (stmts)
823 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
824 gsi_commit_edge_inserts ();
827 gsi = gsi_last_bb (loop_header);
828 create_iv (initial_value, stride, iv, loop, &gsi, false,
829 iv_before, iv_after);
831 /* Insert loop exit condition. */
832 cond_expr = gimple_build_cond
833 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
835 exit_test = gimple_cond_lhs (cond_expr);
836 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
837 false, GSI_NEW_STMT);
838 gimple_cond_set_lhs (cond_expr, exit_test);
839 gsi = gsi_last_bb (exit_e->src);
840 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
842 split_block_after_labels (loop_header);
844 return loop;
847 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
848 latch to header and update loop tree and dominators
849 accordingly. Everything between them plus LATCH_EDGE destination must
850 be dominated by HEADER_EDGE destination, and back-reachable from
851 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
852 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
853 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
854 Returns the newly created loop. Frequencies and counts in the new loop
855 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
857 struct loop *
858 loopify (edge latch_edge, edge header_edge,
859 basic_block switch_bb, edge true_edge, edge false_edge,
860 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
862 basic_block succ_bb = latch_edge->dest;
863 basic_block pred_bb = header_edge->src;
864 struct loop *loop = alloc_loop ();
865 struct loop *outer = loop_outer (succ_bb->loop_father);
866 int freq;
867 gcov_type cnt;
868 edge e;
869 edge_iterator ei;
871 loop->header = header_edge->dest;
872 loop->latch = latch_edge->src;
874 freq = EDGE_FREQUENCY (header_edge);
875 cnt = header_edge->count;
877 /* Redirect edges. */
878 loop_redirect_edge (latch_edge, loop->header);
879 loop_redirect_edge (true_edge, succ_bb);
881 /* During loop versioning, one of the switch_bb edge is already properly
882 set. Do not redirect it again unless redirect_all_edges is true. */
883 if (redirect_all_edges)
885 loop_redirect_edge (header_edge, switch_bb);
886 loop_redirect_edge (false_edge, loop->header);
888 /* Update dominators. */
889 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
890 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
893 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
895 /* Compute new loop. */
896 add_loop (loop, outer);
898 /* Add switch_bb to appropriate loop. */
899 if (switch_bb->loop_father)
900 remove_bb_from_loops (switch_bb);
901 add_bb_to_loop (switch_bb, outer);
903 /* Fix frequencies. */
904 if (redirect_all_edges)
906 switch_bb->frequency = freq;
907 switch_bb->count = cnt;
908 FOR_EACH_EDGE (e, ei, switch_bb->succs)
910 e->count = apply_probability (switch_bb->count, e->probability);
913 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
914 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
915 update_dominators_in_loop (loop);
917 return loop;
920 /* Remove the latch edge of a LOOP and update loops to indicate that
921 the LOOP was removed. After this function, original loop latch will
922 have no successor, which caller is expected to fix somehow.
924 If this may cause the information about irreducible regions to become
925 invalid, IRRED_INVALIDATED is set to true.
927 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
928 basic blocks that had non-trivial update on their loop_father.*/
930 void
931 unloop (struct loop *loop, bool *irred_invalidated,
932 bitmap loop_closed_ssa_invalidated)
934 basic_block *body;
935 struct loop *ploop;
936 unsigned i, n;
937 basic_block latch = loop->latch;
938 bool dummy = false;
940 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
941 *irred_invalidated = true;
943 /* This is relatively straightforward. The dominators are unchanged, as
944 loop header dominates loop latch, so the only thing we have to care of
945 is the placement of loops and basic blocks inside the loop tree. We
946 move them all to the loop->outer, and then let fix_bb_placements do
947 its work. */
949 body = get_loop_body (loop);
950 n = loop->num_nodes;
951 for (i = 0; i < n; i++)
952 if (body[i]->loop_father == loop)
954 remove_bb_from_loops (body[i]);
955 add_bb_to_loop (body[i], loop_outer (loop));
957 free (body);
959 while (loop->inner)
961 ploop = loop->inner;
962 flow_loop_tree_node_remove (ploop);
963 flow_loop_tree_node_add (loop_outer (loop), ploop);
966 /* Remove the loop and free its data. */
967 delete_loop (loop);
969 remove_edge (single_succ_edge (latch));
971 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
972 there is an irreducible region inside the cancelled loop, the flags will
973 be still correct. */
974 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
977 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
978 condition stated in description of fix_loop_placement holds for them.
979 It is used in case when we removed some edges coming out of LOOP, which
980 may cause the right placement of LOOP inside loop tree to change.
982 IRRED_INVALIDATED is set to true if a change in the loop structures might
983 invalidate the information about irreducible regions. */
985 static void
986 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
988 struct loop *outer;
990 while (loop_outer (loop))
992 outer = loop_outer (loop);
993 if (!fix_loop_placement (loop, irred_invalidated))
994 break;
996 /* Changing the placement of a loop in the loop tree may alter the
997 validity of condition 2) of the description of fix_bb_placement
998 for its preheader, because the successor is the header and belongs
999 to the loop. So call fix_bb_placements to fix up the placement
1000 of the preheader and (possibly) of its predecessors. */
1001 fix_bb_placements (loop_preheader_edge (loop)->src,
1002 irred_invalidated, NULL);
1003 loop = outer;
1007 /* Duplicate loop bounds and other information we store about
1008 the loop into its duplicate. */
1010 void
1011 copy_loop_info (struct loop *loop, struct loop *target)
1013 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1014 target->any_upper_bound = loop->any_upper_bound;
1015 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1016 target->any_estimate = loop->any_estimate;
1017 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1018 target->estimate_state = loop->estimate_state;
1021 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1022 created loop into loops structure. */
1023 struct loop *
1024 duplicate_loop (struct loop *loop, struct loop *target)
1026 struct loop *cloop;
1027 cloop = alloc_loop ();
1028 place_new_loop (cfun, cloop);
1030 copy_loop_info (loop, cloop);
1032 /* Mark the new loop as copy of LOOP. */
1033 set_loop_copy (loop, cloop);
1035 /* Add it to target. */
1036 flow_loop_tree_node_add (target, cloop);
1038 return cloop;
1041 /* Copies structure of subloops of LOOP into TARGET loop, placing
1042 newly created loops into loop tree. */
1043 void
1044 duplicate_subloops (struct loop *loop, struct loop *target)
1046 struct loop *aloop, *cloop;
1048 for (aloop = loop->inner; aloop; aloop = aloop->next)
1050 cloop = duplicate_loop (aloop, target);
1051 duplicate_subloops (aloop, cloop);
1055 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1056 into TARGET loop, placing newly created loops into loop tree. */
1057 static void
1058 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1060 struct loop *aloop;
1061 int i;
1063 for (i = 0; i < n; i++)
1065 aloop = duplicate_loop (copied_loops[i], target);
1066 duplicate_subloops (copied_loops[i], aloop);
1070 /* Redirects edge E to basic block DEST. */
1071 static void
1072 loop_redirect_edge (edge e, basic_block dest)
1074 if (e->dest == dest)
1075 return;
1077 redirect_edge_and_branch_force (e, dest);
1080 /* Check whether LOOP's body can be duplicated. */
1081 bool
1082 can_duplicate_loop_p (const struct loop *loop)
1084 int ret;
1085 basic_block *bbs = get_loop_body (loop);
1087 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1088 free (bbs);
1090 return ret;
1093 /* Sets probability and count of edge E to zero. The probability and count
1094 is redistributed evenly to the remaining edges coming from E->src. */
1096 static void
1097 set_zero_probability (edge e)
1099 basic_block bb = e->src;
1100 edge_iterator ei;
1101 edge ae, last = NULL;
1102 unsigned n = EDGE_COUNT (bb->succs);
1103 gcov_type cnt = e->count, cnt1;
1104 unsigned prob = e->probability, prob1;
1106 gcc_assert (n > 1);
1107 cnt1 = cnt / (n - 1);
1108 prob1 = prob / (n - 1);
1110 FOR_EACH_EDGE (ae, ei, bb->succs)
1112 if (ae == e)
1113 continue;
1115 ae->probability += prob1;
1116 ae->count += cnt1;
1117 last = ae;
1120 /* Move the rest to one of the edges. */
1121 last->probability += prob % (n - 1);
1122 last->count += cnt % (n - 1);
1124 e->probability = 0;
1125 e->count = 0;
1128 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1129 loop structure and dominators. E's destination must be LOOP header for
1130 this to work, i.e. it must be entry or latch edge of this loop; these are
1131 unique, as the loops must have preheaders for this function to work
1132 correctly (in case E is latch, the function unrolls the loop, if E is entry
1133 edge, it peels the loop). Store edges created by copying ORIG edge from
1134 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1135 original LOOP body, the other copies are numbered in order given by control
1136 flow through them) into TO_REMOVE array. Returns false if duplication is
1137 impossible. */
1139 bool
1140 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1141 unsigned int ndupl, sbitmap wont_exit,
1142 edge orig, vec<edge> *to_remove,
1143 int flags)
1145 struct loop *target, *aloop;
1146 struct loop **orig_loops;
1147 unsigned n_orig_loops;
1148 basic_block header = loop->header, latch = loop->latch;
1149 basic_block *new_bbs, *bbs, *first_active;
1150 basic_block new_bb, bb, first_active_latch = NULL;
1151 edge ae, latch_edge;
1152 edge spec_edges[2], new_spec_edges[2];
1153 #define SE_LATCH 0
1154 #define SE_ORIG 1
1155 unsigned i, j, n;
1156 int is_latch = (latch == e->src);
1157 int scale_act = 0, *scale_step = NULL, scale_main = 0;
1158 int scale_after_exit = 0;
1159 int p, freq_in, freq_le, freq_out_orig;
1160 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1161 int add_irreducible_flag;
1162 basic_block place_after;
1163 bitmap bbs_to_scale = NULL;
1164 bitmap_iterator bi;
1166 gcc_assert (e->dest == loop->header);
1167 gcc_assert (ndupl > 0);
1169 if (orig)
1171 /* Orig must be edge out of the loop. */
1172 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1173 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1176 n = loop->num_nodes;
1177 bbs = get_loop_body_in_dom_order (loop);
1178 gcc_assert (bbs[0] == loop->header);
1179 gcc_assert (bbs[n - 1] == loop->latch);
1181 /* Check whether duplication is possible. */
1182 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1184 free (bbs);
1185 return false;
1187 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1189 /* In case we are doing loop peeling and the loop is in the middle of
1190 irreducible region, the peeled copies will be inside it too. */
1191 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1192 gcc_assert (!is_latch || !add_irreducible_flag);
1194 /* Find edge from latch. */
1195 latch_edge = loop_latch_edge (loop);
1197 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1199 /* Calculate coefficients by that we have to scale frequencies
1200 of duplicated loop bodies. */
1201 freq_in = header->frequency;
1202 freq_le = EDGE_FREQUENCY (latch_edge);
1203 if (freq_in == 0)
1204 freq_in = 1;
1205 if (freq_in < freq_le)
1206 freq_in = freq_le;
1207 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1208 if (freq_out_orig > freq_in - freq_le)
1209 freq_out_orig = freq_in - freq_le;
1210 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1211 prob_pass_wont_exit =
1212 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1214 if (orig
1215 && REG_BR_PROB_BASE - orig->probability != 0)
1217 /* The blocks that are dominated by a removed exit edge ORIG have
1218 frequencies scaled by this. */
1219 scale_after_exit
1220 = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE,
1221 REG_BR_PROB_BASE - orig->probability);
1222 bbs_to_scale = BITMAP_ALLOC (NULL);
1223 for (i = 0; i < n; i++)
1225 if (bbs[i] != orig->src
1226 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1227 bitmap_set_bit (bbs_to_scale, i);
1231 scale_step = XNEWVEC (int, ndupl);
1233 for (i = 1; i <= ndupl; i++)
1234 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1235 ? prob_pass_wont_exit
1236 : prob_pass_thru;
1238 /* Complete peeling is special as the probability of exit in last
1239 copy becomes 1. */
1240 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1242 int wanted_freq = EDGE_FREQUENCY (e);
1244 if (wanted_freq > freq_in)
1245 wanted_freq = freq_in;
1247 gcc_assert (!is_latch);
1248 /* First copy has frequency of incoming edge. Each subsequent
1249 frequency should be reduced by prob_pass_wont_exit. Caller
1250 should've managed the flags so all except for original loop
1251 has won't exist set. */
1252 scale_act = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1253 /* Now simulate the duplication adjustments and compute header
1254 frequency of the last copy. */
1255 for (i = 0; i < ndupl; i++)
1256 wanted_freq = combine_probabilities (wanted_freq, scale_step[i]);
1257 scale_main = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1259 else if (is_latch)
1261 prob_pass_main = bitmap_bit_p (wont_exit, 0)
1262 ? prob_pass_wont_exit
1263 : prob_pass_thru;
1264 p = prob_pass_main;
1265 scale_main = REG_BR_PROB_BASE;
1266 for (i = 0; i < ndupl; i++)
1268 scale_main += p;
1269 p = combine_probabilities (p, scale_step[i]);
1271 scale_main = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE, scale_main);
1272 scale_act = combine_probabilities (scale_main, prob_pass_main);
1274 else
1276 scale_main = REG_BR_PROB_BASE;
1277 for (i = 0; i < ndupl; i++)
1278 scale_main = combine_probabilities (scale_main, scale_step[i]);
1279 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1281 for (i = 0; i < ndupl; i++)
1282 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1283 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1284 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1287 /* Loop the new bbs will belong to. */
1288 target = e->src->loop_father;
1290 /* Original loops. */
1291 n_orig_loops = 0;
1292 for (aloop = loop->inner; aloop; aloop = aloop->next)
1293 n_orig_loops++;
1294 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1295 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1296 orig_loops[i] = aloop;
1298 set_loop_copy (loop, target);
1300 first_active = XNEWVEC (basic_block, n);
1301 if (is_latch)
1303 memcpy (first_active, bbs, n * sizeof (basic_block));
1304 first_active_latch = latch;
1307 spec_edges[SE_ORIG] = orig;
1308 spec_edges[SE_LATCH] = latch_edge;
1310 place_after = e->src;
1311 for (j = 0; j < ndupl; j++)
1313 /* Copy loops. */
1314 copy_loops_to (orig_loops, n_orig_loops, target);
1316 /* Copy bbs. */
1317 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1318 place_after, true);
1319 place_after = new_spec_edges[SE_LATCH]->src;
1321 if (flags & DLTHE_RECORD_COPY_NUMBER)
1322 for (i = 0; i < n; i++)
1324 gcc_assert (!new_bbs[i]->aux);
1325 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1328 /* Note whether the blocks and edges belong to an irreducible loop. */
1329 if (add_irreducible_flag)
1331 for (i = 0; i < n; i++)
1332 new_bbs[i]->flags |= BB_DUPLICATED;
1333 for (i = 0; i < n; i++)
1335 edge_iterator ei;
1336 new_bb = new_bbs[i];
1337 if (new_bb->loop_father == target)
1338 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1340 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1341 if ((ae->dest->flags & BB_DUPLICATED)
1342 && (ae->src->loop_father == target
1343 || ae->dest->loop_father == target))
1344 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1346 for (i = 0; i < n; i++)
1347 new_bbs[i]->flags &= ~BB_DUPLICATED;
1350 /* Redirect the special edges. */
1351 if (is_latch)
1353 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1354 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1355 loop->header);
1356 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1357 latch = loop->latch = new_bbs[n - 1];
1358 e = latch_edge = new_spec_edges[SE_LATCH];
1360 else
1362 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1363 loop->header);
1364 redirect_edge_and_branch_force (e, new_bbs[0]);
1365 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1366 e = new_spec_edges[SE_LATCH];
1369 /* Record exit edge in this copy. */
1370 if (orig && bitmap_bit_p (wont_exit, j + 1))
1372 if (to_remove)
1373 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1374 set_zero_probability (new_spec_edges[SE_ORIG]);
1376 /* Scale the frequencies of the blocks dominated by the exit. */
1377 if (bbs_to_scale)
1379 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1381 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1382 REG_BR_PROB_BASE);
1387 /* Record the first copy in the control flow order if it is not
1388 the original loop (i.e. in case of peeling). */
1389 if (!first_active_latch)
1391 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1392 first_active_latch = new_bbs[n - 1];
1395 /* Set counts and frequencies. */
1396 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1398 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1399 scale_act = combine_probabilities (scale_act, scale_step[j]);
1402 free (new_bbs);
1403 free (orig_loops);
1405 /* Record the exit edge in the original loop body, and update the frequencies. */
1406 if (orig && bitmap_bit_p (wont_exit, 0))
1408 if (to_remove)
1409 to_remove->safe_push (orig);
1410 set_zero_probability (orig);
1412 /* Scale the frequencies of the blocks dominated by the exit. */
1413 if (bbs_to_scale)
1415 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1417 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1418 REG_BR_PROB_BASE);
1423 /* Update the original loop. */
1424 if (!is_latch)
1425 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1426 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1428 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1429 free (scale_step);
1432 /* Update dominators of outer blocks if affected. */
1433 for (i = 0; i < n; i++)
1435 basic_block dominated, dom_bb;
1436 vec<basic_block> dom_bbs;
1437 unsigned j;
1439 bb = bbs[i];
1440 bb->aux = 0;
1442 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1443 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1445 if (flow_bb_inside_loop_p (loop, dominated))
1446 continue;
1447 dom_bb = nearest_common_dominator (
1448 CDI_DOMINATORS, first_active[i], first_active_latch);
1449 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1451 dom_bbs.release ();
1453 free (first_active);
1455 free (bbs);
1456 BITMAP_FREE (bbs_to_scale);
1458 return true;
1461 /* A callback for make_forwarder block, to redirect all edges except for
1462 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1463 whether to redirect it. */
1465 edge mfb_kj_edge;
1466 bool
1467 mfb_keep_just (edge e)
1469 return e != mfb_kj_edge;
1472 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1474 static bool
1475 has_preds_from_loop (basic_block block, struct loop *loop)
1477 edge e;
1478 edge_iterator ei;
1480 FOR_EACH_EDGE (e, ei, block->preds)
1481 if (e->src->loop_father == loop)
1482 return true;
1483 return false;
1486 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1487 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1488 entry; otherwise we also force preheader block to have only one successor.
1489 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1490 to be a fallthru predecessor to the loop header and to have only
1491 predecessors from outside of the loop.
1492 The function also updates dominators. */
1494 basic_block
1495 create_preheader (struct loop *loop, int flags)
1497 edge e, fallthru;
1498 basic_block dummy;
1499 int nentry = 0;
1500 bool irred = false;
1501 bool latch_edge_was_fallthru;
1502 edge one_succ_pred = NULL, single_entry = NULL;
1503 edge_iterator ei;
1505 FOR_EACH_EDGE (e, ei, loop->header->preds)
1507 if (e->src == loop->latch)
1508 continue;
1509 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1510 nentry++;
1511 single_entry = e;
1512 if (single_succ_p (e->src))
1513 one_succ_pred = e;
1515 gcc_assert (nentry);
1516 if (nentry == 1)
1518 bool need_forwarder_block = false;
1520 /* We do not allow entry block to be the loop preheader, since we
1521 cannot emit code there. */
1522 if (single_entry->src == ENTRY_BLOCK_PTR)
1523 need_forwarder_block = true;
1524 else
1526 /* If we want simple preheaders, also force the preheader to have
1527 just a single successor. */
1528 if ((flags & CP_SIMPLE_PREHEADERS)
1529 && !single_succ_p (single_entry->src))
1530 need_forwarder_block = true;
1531 /* If we want fallthru preheaders, also create forwarder block when
1532 preheader ends with a jump or has predecessors from loop. */
1533 else if ((flags & CP_FALLTHRU_PREHEADERS)
1534 && (JUMP_P (BB_END (single_entry->src))
1535 || has_preds_from_loop (single_entry->src, loop)))
1536 need_forwarder_block = true;
1538 if (! need_forwarder_block)
1539 return NULL;
1542 mfb_kj_edge = loop_latch_edge (loop);
1543 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1544 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1545 dummy = fallthru->src;
1546 loop->header = fallthru->dest;
1548 /* Try to be clever in placing the newly created preheader. The idea is to
1549 avoid breaking any "fallthruness" relationship between blocks.
1551 The preheader was created just before the header and all incoming edges
1552 to the header were redirected to the preheader, except the latch edge.
1553 So the only problematic case is when this latch edge was a fallthru
1554 edge: it is not anymore after the preheader creation so we have broken
1555 the fallthruness. We're therefore going to look for a better place. */
1556 if (latch_edge_was_fallthru)
1558 if (one_succ_pred)
1559 e = one_succ_pred;
1560 else
1561 e = EDGE_PRED (dummy, 0);
1563 move_block_after (dummy, e->src);
1566 if (irred)
1568 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1569 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1572 if (dump_file)
1573 fprintf (dump_file, "Created preheader block for loop %i\n",
1574 loop->num);
1576 if (flags & CP_FALLTHRU_PREHEADERS)
1577 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1578 && !JUMP_P (BB_END (dummy)));
1580 return dummy;
1583 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1585 void
1586 create_preheaders (int flags)
1588 struct loop *loop;
1590 if (!current_loops)
1591 return;
1593 FOR_EACH_LOOP (loop, 0)
1594 create_preheader (loop, flags);
1595 loops_state_set (LOOPS_HAVE_PREHEADERS);
1598 /* Forces all loop latches to have only single successor. */
1600 void
1601 force_single_succ_latches (void)
1603 struct loop *loop;
1604 edge e;
1606 FOR_EACH_LOOP (loop, 0)
1608 if (loop->latch != loop->header && single_succ_p (loop->latch))
1609 continue;
1611 e = find_edge (loop->latch, loop->header);
1612 gcc_checking_assert (e != NULL);
1614 split_edge (e);
1616 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1619 /* This function is called from loop_version. It splits the entry edge
1620 of the loop we want to version, adds the versioning condition, and
1621 adjust the edges to the two versions of the loop appropriately.
1622 e is an incoming edge. Returns the basic block containing the
1623 condition.
1625 --- edge e ---- > [second_head]
1627 Split it and insert new conditional expression and adjust edges.
1629 --- edge e ---> [cond expr] ---> [first_head]
1631 +---------> [second_head]
1633 THEN_PROB is the probability of then branch of the condition. */
1635 static basic_block
1636 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1637 edge e, void *cond_expr, unsigned then_prob)
1639 basic_block new_head = NULL;
1640 edge e1;
1642 gcc_assert (e->dest == second_head);
1644 /* Split edge 'e'. This will create a new basic block, where we can
1645 insert conditional expr. */
1646 new_head = split_edge (e);
1648 lv_add_condition_to_bb (first_head, second_head, new_head,
1649 cond_expr);
1651 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1652 e = single_succ_edge (new_head);
1653 e1 = make_edge (new_head, first_head,
1654 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1655 e1->probability = then_prob;
1656 e->probability = REG_BR_PROB_BASE - then_prob;
1657 e1->count = apply_probability (e->count, e1->probability);
1658 e->count = apply_probability (e->count, e->probability);
1660 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1661 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1663 /* Adjust loop header phi nodes. */
1664 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1666 return new_head;
1669 /* Main entry point for Loop Versioning transformation.
1671 This transformation given a condition and a loop, creates
1672 -if (condition) { loop_copy1 } else { loop_copy2 },
1673 where loop_copy1 is the loop transformed in one way, and loop_copy2
1674 is the loop transformed in another way (or unchanged). 'condition'
1675 may be a run time test for things that were not resolved by static
1676 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1678 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1679 is the ratio by that the frequencies in the original loop should
1680 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1681 new loop should be scaled.
1683 If PLACE_AFTER is true, we place the new loop after LOOP in the
1684 instruction stream, otherwise it is placed before LOOP. */
1686 struct loop *
1687 loop_version (struct loop *loop,
1688 void *cond_expr, basic_block *condition_bb,
1689 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1690 bool place_after)
1692 basic_block first_head, second_head;
1693 edge entry, latch_edge, true_edge, false_edge;
1694 int irred_flag;
1695 struct loop *nloop;
1696 basic_block cond_bb;
1698 /* Record entry and latch edges for the loop */
1699 entry = loop_preheader_edge (loop);
1700 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1701 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1703 /* Note down head of loop as first_head. */
1704 first_head = entry->dest;
1706 /* Duplicate loop. */
1707 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1708 NULL, NULL, NULL, 0))
1710 entry->flags |= irred_flag;
1711 return NULL;
1714 /* After duplication entry edge now points to new loop head block.
1715 Note down new head as second_head. */
1716 second_head = entry->dest;
1718 /* Split loop entry edge and insert new block with cond expr. */
1719 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1720 entry, cond_expr, then_prob);
1721 if (condition_bb)
1722 *condition_bb = cond_bb;
1724 if (!cond_bb)
1726 entry->flags |= irred_flag;
1727 return NULL;
1730 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1732 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1733 nloop = loopify (latch_edge,
1734 single_pred_edge (get_bb_copy (loop->header)),
1735 cond_bb, true_edge, false_edge,
1736 false /* Do not redirect all edges. */,
1737 then_scale, else_scale);
1739 copy_loop_info (loop, nloop);
1741 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1742 lv_flush_pending_stmts (latch_edge);
1744 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1745 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1746 lv_flush_pending_stmts (false_edge);
1747 /* Adjust irreducible flag. */
1748 if (irred_flag)
1750 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1751 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1752 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1753 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1756 if (place_after)
1758 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1759 unsigned i;
1761 after = loop->latch;
1763 for (i = 0; i < nloop->num_nodes; i++)
1765 move_block_after (bbs[i], after);
1766 after = bbs[i];
1768 free (bbs);
1771 /* At this point condition_bb is loop preheader with two successors,
1772 first_head and second_head. Make sure that loop preheader has only
1773 one successor. */
1774 split_edge (loop_preheader_edge (loop));
1775 split_edge (loop_preheader_edge (nloop));
1777 return nloop;