* basic-block.h (last_basic_block): Defined as synonym for
[official-gcc.git] / gcc / regrename.c
blobffe170e279575b025c667ed7932c3f79f8c07666
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #define REG_OK_STRICT
23 #include "config.h"
24 #include "system.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "reload.h"
32 #include "output.h"
33 #include "function.h"
34 #include "recog.h"
35 #include "flags.h"
36 #include "toplev.h"
37 #include "obstack.h"
39 #define obstack_chunk_alloc xmalloc
40 #define obstack_chunk_free free
42 #ifndef REGNO_MODE_OK_FOR_BASE_P
43 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
44 #endif
46 #ifndef REG_MODE_OK_FOR_BASE_P
47 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
48 #endif
50 static const char *const reg_class_names[] = REG_CLASS_NAMES;
52 struct du_chain
54 struct du_chain *next_chain;
55 struct du_chain *next_use;
57 rtx insn;
58 rtx *loc;
59 enum reg_class class;
60 unsigned int need_caller_save_reg:1;
61 unsigned int earlyclobber:1;
64 enum scan_actions
66 terminate_all_read,
67 terminate_overlapping_read,
68 terminate_write,
69 terminate_dead,
70 mark_read,
71 mark_write
74 static const char * const scan_actions_name[] =
76 "terminate_all_read",
77 "terminate_overlapping_read",
78 "terminate_write",
79 "terminate_dead",
80 "mark_read",
81 "mark_write"
84 static struct obstack rename_obstack;
86 static void do_replace PARAMS ((struct du_chain *, int));
87 static void scan_rtx_reg PARAMS ((rtx, rtx *, enum reg_class,
88 enum scan_actions, enum op_type, int));
89 static void scan_rtx_address PARAMS ((rtx, rtx *, enum reg_class,
90 enum scan_actions, enum machine_mode));
91 static void scan_rtx PARAMS ((rtx, rtx *, enum reg_class,
92 enum scan_actions, enum op_type, int));
93 static struct du_chain *build_def_use PARAMS ((basic_block));
94 static void dump_def_use_chain PARAMS ((struct du_chain *));
95 static void note_sets PARAMS ((rtx, rtx, void *));
96 static void clear_dead_regs PARAMS ((HARD_REG_SET *, enum machine_mode, rtx));
97 static void merge_overlapping_regs PARAMS ((basic_block, HARD_REG_SET *,
98 struct du_chain *));
100 /* Called through note_stores from update_life. Find sets of registers, and
101 record them in *DATA (which is actually a HARD_REG_SET *). */
103 static void
104 note_sets (x, set, data)
105 rtx x;
106 rtx set ATTRIBUTE_UNUSED;
107 void *data;
109 HARD_REG_SET *pset = (HARD_REG_SET *) data;
110 unsigned int regno;
111 int nregs;
112 if (GET_CODE (x) != REG)
113 return;
114 regno = REGNO (x);
115 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
117 /* There must not be pseudos at this point. */
118 if (regno + nregs > FIRST_PSEUDO_REGISTER)
119 abort ();
121 while (nregs-- > 0)
122 SET_HARD_REG_BIT (*pset, regno + nregs);
125 /* Clear all registers from *PSET for which a note of kind KIND can be found
126 in the list NOTES. */
128 static void
129 clear_dead_regs (pset, kind, notes)
130 HARD_REG_SET *pset;
131 enum machine_mode kind;
132 rtx notes;
134 rtx note;
135 for (note = notes; note; note = XEXP (note, 1))
136 if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
138 rtx reg = XEXP (note, 0);
139 unsigned int regno = REGNO (reg);
140 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
142 /* There must not be pseudos at this point. */
143 if (regno + nregs > FIRST_PSEUDO_REGISTER)
144 abort ();
146 while (nregs-- > 0)
147 CLEAR_HARD_REG_BIT (*pset, regno + nregs);
151 /* For a def-use chain CHAIN in basic block B, find which registers overlap
152 its lifetime and set the corresponding bits in *PSET. */
154 static void
155 merge_overlapping_regs (b, pset, chain)
156 basic_block b;
157 HARD_REG_SET *pset;
158 struct du_chain *chain;
160 struct du_chain *t = chain;
161 rtx insn;
162 HARD_REG_SET live;
164 REG_SET_TO_HARD_REG_SET (live, b->global_live_at_start);
165 insn = b->head;
166 while (t)
168 /* Search forward until the next reference to the register to be
169 renamed. */
170 while (insn != t->insn)
172 if (INSN_P (insn))
174 clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
175 note_stores (PATTERN (insn), note_sets, (void *) &live);
176 /* Only record currently live regs if we are inside the
177 reg's live range. */
178 if (t != chain)
179 IOR_HARD_REG_SET (*pset, live);
180 clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
182 insn = NEXT_INSN (insn);
185 IOR_HARD_REG_SET (*pset, live);
187 /* For the last reference, also merge in all registers set in the
188 same insn.
189 @@@ We only have take earlyclobbered sets into account. */
190 if (! t->next_use)
191 note_stores (PATTERN (insn), note_sets, (void *) pset);
193 t = t->next_use;
197 /* Perform register renaming on the current function. */
199 void
200 regrename_optimize ()
202 int tick[FIRST_PSEUDO_REGISTER];
203 int this_tick = 0;
204 basic_block bb;
205 char *first_obj;
207 memset (tick, 0, sizeof tick);
209 gcc_obstack_init (&rename_obstack);
210 first_obj = (char *) obstack_alloc (&rename_obstack, 0);
212 FOR_EACH_BB (bb)
214 struct du_chain *all_chains = 0;
215 HARD_REG_SET unavailable;
216 HARD_REG_SET regs_seen;
218 CLEAR_HARD_REG_SET (unavailable);
220 if (rtl_dump_file)
221 fprintf (rtl_dump_file, "\nBasic block %d:\n", bb->index);
223 all_chains = build_def_use (bb);
225 if (rtl_dump_file)
226 dump_def_use_chain (all_chains);
228 CLEAR_HARD_REG_SET (unavailable);
229 /* Don't clobber traceback for noreturn functions. */
230 if (frame_pointer_needed)
232 int i;
234 for (i = HARD_REGNO_NREGS (FRAME_POINTER_REGNUM, Pmode); i--;)
235 SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);
237 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
238 for (i = HARD_REGNO_NREGS (HARD_FRAME_POINTER_REGNUM, Pmode); i--;)
239 SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
240 #endif
243 CLEAR_HARD_REG_SET (regs_seen);
244 while (all_chains)
246 int new_reg, best_new_reg = -1;
247 int n_uses;
248 struct du_chain *this = all_chains;
249 struct du_chain *tmp, *last;
250 HARD_REG_SET this_unavailable;
251 int reg = REGNO (*this->loc);
252 int i;
254 all_chains = this->next_chain;
256 #if 0 /* This just disables optimization opportunities. */
257 /* Only rename once we've seen the reg more than once. */
258 if (! TEST_HARD_REG_BIT (regs_seen, reg))
260 SET_HARD_REG_BIT (regs_seen, reg);
261 continue;
263 #endif
265 if (fixed_regs[reg] || global_regs[reg]
266 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
267 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
268 #else
269 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
270 #endif
272 continue;
274 COPY_HARD_REG_SET (this_unavailable, unavailable);
276 /* Find last entry on chain (which has the need_caller_save bit),
277 count number of uses, and narrow the set of registers we can
278 use for renaming. */
279 n_uses = 0;
280 for (last = this; last->next_use; last = last->next_use)
282 n_uses++;
283 IOR_COMPL_HARD_REG_SET (this_unavailable,
284 reg_class_contents[last->class]);
286 if (n_uses < 1)
287 continue;
289 IOR_COMPL_HARD_REG_SET (this_unavailable,
290 reg_class_contents[last->class]);
292 if (this->need_caller_save_reg)
293 IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
295 merge_overlapping_regs (bb, &this_unavailable, this);
297 /* Now potential_regs is a reasonable approximation, let's
298 have a closer look at each register still in there. */
299 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
301 int nregs = HARD_REGNO_NREGS (new_reg, GET_MODE (*this->loc));
303 for (i = nregs - 1; i >= 0; --i)
304 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
305 || fixed_regs[new_reg + i]
306 || global_regs[new_reg + i]
307 /* Can't use regs which aren't saved by the prologue. */
308 || (! regs_ever_live[new_reg + i]
309 && ! call_used_regs[new_reg + i])
310 #ifdef LEAF_REGISTERS
311 /* We can't use a non-leaf register if we're in a
312 leaf function. */
313 || (current_function_is_leaf
314 && !LEAF_REGISTERS[new_reg + i])
315 #endif
316 #ifdef HARD_REGNO_RENAME_OK
317 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
318 #endif
320 break;
321 if (i >= 0)
322 continue;
324 /* See whether it accepts all modes that occur in
325 definition and uses. */
326 for (tmp = this; tmp; tmp = tmp->next_use)
327 if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
328 || (tmp->need_caller_save_reg
329 && ! (HARD_REGNO_CALL_PART_CLOBBERED
330 (reg, GET_MODE (*tmp->loc)))
331 && (HARD_REGNO_CALL_PART_CLOBBERED
332 (new_reg, GET_MODE (*tmp->loc)))))
333 break;
334 if (! tmp)
336 if (best_new_reg == -1
337 || tick[best_new_reg] > tick[new_reg])
338 best_new_reg = new_reg;
342 if (rtl_dump_file)
344 fprintf (rtl_dump_file, "Register %s in insn %d",
345 reg_names[reg], INSN_UID (last->insn));
346 if (last->need_caller_save_reg)
347 fprintf (rtl_dump_file, " crosses a call");
350 if (best_new_reg == -1)
352 if (rtl_dump_file)
353 fprintf (rtl_dump_file, "; no available registers\n");
354 continue;
357 do_replace (this, best_new_reg);
358 tick[best_new_reg] = this_tick++;
360 if (rtl_dump_file)
361 fprintf (rtl_dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
364 obstack_free (&rename_obstack, first_obj);
367 obstack_free (&rename_obstack, NULL);
369 if (rtl_dump_file)
370 fputc ('\n', rtl_dump_file);
372 count_or_remove_death_notes (NULL, 1);
373 update_life_info (NULL, UPDATE_LIFE_LOCAL,
374 PROP_REG_INFO | PROP_DEATH_NOTES);
377 static void
378 do_replace (chain, reg)
379 struct du_chain *chain;
380 int reg;
382 while (chain)
384 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
385 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
386 if (regno >= FIRST_PSEUDO_REGISTER)
387 ORIGINAL_REGNO (*chain->loc) = regno;
388 chain = chain->next_use;
393 static struct du_chain *open_chains;
394 static struct du_chain *closed_chains;
396 static void
397 scan_rtx_reg (insn, loc, class, action, type, earlyclobber)
398 rtx insn;
399 rtx *loc;
400 enum reg_class class;
401 enum scan_actions action;
402 enum op_type type;
403 int earlyclobber;
405 struct du_chain **p;
406 rtx x = *loc;
407 enum machine_mode mode = GET_MODE (x);
408 int this_regno = REGNO (x);
409 int this_nregs = HARD_REGNO_NREGS (this_regno, mode);
411 if (action == mark_write)
413 if (type == OP_OUT)
415 struct du_chain *this = (struct du_chain *)
416 obstack_alloc (&rename_obstack, sizeof (struct du_chain));
417 this->next_use = 0;
418 this->next_chain = open_chains;
419 this->loc = loc;
420 this->insn = insn;
421 this->class = class;
422 this->need_caller_save_reg = 0;
423 this->earlyclobber = earlyclobber;
424 open_chains = this;
426 return;
429 if ((type == OP_OUT && action != terminate_write)
430 || (type != OP_OUT && action == terminate_write))
431 return;
433 for (p = &open_chains; *p;)
435 struct du_chain *this = *p;
437 /* Check if the chain has been terminated if it has then skip to
438 the next chain.
440 This can happen when we've already appended the location to
441 the chain in Step 3, but are trying to hide in-out operands
442 from terminate_write in Step 5. */
444 if (*this->loc == cc0_rtx)
445 p = &this->next_chain;
446 else
448 int regno = REGNO (*this->loc);
449 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (*this->loc));
450 int exact_match = (regno == this_regno && nregs == this_nregs);
452 if (regno + nregs <= this_regno
453 || this_regno + this_nregs <= regno)
455 p = &this->next_chain;
456 continue;
459 if (action == mark_read)
461 if (! exact_match)
462 abort ();
464 /* ??? Class NO_REGS can happen if the md file makes use of
465 EXTRA_CONSTRAINTS to match registers. Which is arguably
466 wrong, but there we are. Since we know not what this may
467 be replaced with, terminate the chain. */
468 if (class != NO_REGS)
470 this = (struct du_chain *)
471 obstack_alloc (&rename_obstack, sizeof (struct du_chain));
472 this->next_use = 0;
473 this->next_chain = (*p)->next_chain;
474 this->loc = loc;
475 this->insn = insn;
476 this->class = class;
477 this->need_caller_save_reg = 0;
478 while (*p)
479 p = &(*p)->next_use;
480 *p = this;
481 return;
485 if (action != terminate_overlapping_read || ! exact_match)
487 struct du_chain *next = this->next_chain;
489 /* Whether the terminated chain can be used for renaming
490 depends on the action and this being an exact match.
491 In either case, we remove this element from open_chains. */
493 if ((action == terminate_dead || action == terminate_write)
494 && exact_match)
496 this->next_chain = closed_chains;
497 closed_chains = this;
498 if (rtl_dump_file)
499 fprintf (rtl_dump_file,
500 "Closing chain %s at insn %d (%s)\n",
501 reg_names[REGNO (*this->loc)], INSN_UID (insn),
502 scan_actions_name[(int) action]);
504 else
506 if (rtl_dump_file)
507 fprintf (rtl_dump_file,
508 "Discarding chain %s at insn %d (%s)\n",
509 reg_names[REGNO (*this->loc)], INSN_UID (insn),
510 scan_actions_name[(int) action]);
512 *p = next;
514 else
515 p = &this->next_chain;
520 /* Adapted from find_reloads_address_1. CLASS is INDEX_REG_CLASS or
521 BASE_REG_CLASS depending on how the register is being considered. */
523 static void
524 scan_rtx_address (insn, loc, class, action, mode)
525 rtx insn;
526 rtx *loc;
527 enum reg_class class;
528 enum scan_actions action;
529 enum machine_mode mode;
531 rtx x = *loc;
532 RTX_CODE code = GET_CODE (x);
533 const char *fmt;
534 int i, j;
536 if (action == mark_write)
537 return;
539 switch (code)
541 case PLUS:
543 rtx orig_op0 = XEXP (x, 0);
544 rtx orig_op1 = XEXP (x, 1);
545 RTX_CODE code0 = GET_CODE (orig_op0);
546 RTX_CODE code1 = GET_CODE (orig_op1);
547 rtx op0 = orig_op0;
548 rtx op1 = orig_op1;
549 rtx *locI = NULL;
550 rtx *locB = NULL;
552 if (GET_CODE (op0) == SUBREG)
554 op0 = SUBREG_REG (op0);
555 code0 = GET_CODE (op0);
558 if (GET_CODE (op1) == SUBREG)
560 op1 = SUBREG_REG (op1);
561 code1 = GET_CODE (op1);
564 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
565 || code0 == ZERO_EXTEND || code1 == MEM)
567 locI = &XEXP (x, 0);
568 locB = &XEXP (x, 1);
570 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
571 || code1 == ZERO_EXTEND || code0 == MEM)
573 locI = &XEXP (x, 1);
574 locB = &XEXP (x, 0);
576 else if (code0 == CONST_INT || code0 == CONST
577 || code0 == SYMBOL_REF || code0 == LABEL_REF)
578 locB = &XEXP (x, 1);
579 else if (code1 == CONST_INT || code1 == CONST
580 || code1 == SYMBOL_REF || code1 == LABEL_REF)
581 locB = &XEXP (x, 0);
582 else if (code0 == REG && code1 == REG)
584 int index_op;
586 if (REG_OK_FOR_INDEX_P (op0)
587 && REG_MODE_OK_FOR_BASE_P (op1, mode))
588 index_op = 0;
589 else if (REG_OK_FOR_INDEX_P (op1)
590 && REG_MODE_OK_FOR_BASE_P (op0, mode))
591 index_op = 1;
592 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
593 index_op = 0;
594 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
595 index_op = 1;
596 else if (REG_OK_FOR_INDEX_P (op1))
597 index_op = 1;
598 else
599 index_op = 0;
601 locI = &XEXP (x, index_op);
602 locB = &XEXP (x, !index_op);
604 else if (code0 == REG)
606 locI = &XEXP (x, 0);
607 locB = &XEXP (x, 1);
609 else if (code1 == REG)
611 locI = &XEXP (x, 1);
612 locB = &XEXP (x, 0);
615 if (locI)
616 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
617 if (locB)
618 scan_rtx_address (insn, locB, MODE_BASE_REG_CLASS (mode), action, mode);
619 return;
622 case POST_INC:
623 case POST_DEC:
624 case POST_MODIFY:
625 case PRE_INC:
626 case PRE_DEC:
627 case PRE_MODIFY:
628 #ifndef AUTO_INC_DEC
629 /* If the target doesn't claim to handle autoinc, this must be
630 something special, like a stack push. Kill this chain. */
631 action = terminate_all_read;
632 #endif
633 break;
635 case MEM:
636 scan_rtx_address (insn, &XEXP (x, 0),
637 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
638 GET_MODE (x));
639 return;
641 case REG:
642 scan_rtx_reg (insn, loc, class, action, OP_IN, 0);
643 return;
645 default:
646 break;
649 fmt = GET_RTX_FORMAT (code);
650 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
652 if (fmt[i] == 'e')
653 scan_rtx_address (insn, &XEXP (x, i), class, action, mode);
654 else if (fmt[i] == 'E')
655 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
656 scan_rtx_address (insn, &XVECEXP (x, i, j), class, action, mode);
660 static void
661 scan_rtx (insn, loc, class, action, type, earlyclobber)
662 rtx insn;
663 rtx *loc;
664 enum reg_class class;
665 enum scan_actions action;
666 enum op_type type;
667 int earlyclobber;
669 const char *fmt;
670 rtx x = *loc;
671 enum rtx_code code = GET_CODE (x);
672 int i, j;
674 code = GET_CODE (x);
675 switch (code)
677 case CONST:
678 case CONST_INT:
679 case CONST_DOUBLE:
680 case CONST_VECTOR:
681 case SYMBOL_REF:
682 case LABEL_REF:
683 case CC0:
684 case PC:
685 return;
687 case REG:
688 scan_rtx_reg (insn, loc, class, action, type, earlyclobber);
689 return;
691 case MEM:
692 scan_rtx_address (insn, &XEXP (x, 0),
693 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
694 GET_MODE (x));
695 return;
697 case SET:
698 scan_rtx (insn, &SET_SRC (x), class, action, OP_IN, 0);
699 scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 0);
700 return;
702 case STRICT_LOW_PART:
703 scan_rtx (insn, &XEXP (x, 0), class, action, OP_INOUT, earlyclobber);
704 return;
706 case ZERO_EXTRACT:
707 case SIGN_EXTRACT:
708 scan_rtx (insn, &XEXP (x, 0), class, action,
709 type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
710 scan_rtx (insn, &XEXP (x, 1), class, action, OP_IN, 0);
711 scan_rtx (insn, &XEXP (x, 2), class, action, OP_IN, 0);
712 return;
714 case POST_INC:
715 case PRE_INC:
716 case POST_DEC:
717 case PRE_DEC:
718 case POST_MODIFY:
719 case PRE_MODIFY:
720 /* Should only happen inside MEM. */
721 abort ();
723 case CLOBBER:
724 scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 1);
725 return;
727 case EXPR_LIST:
728 scan_rtx (insn, &XEXP (x, 0), class, action, type, 0);
729 if (XEXP (x, 1))
730 scan_rtx (insn, &XEXP (x, 1), class, action, type, 0);
731 return;
733 default:
734 break;
737 fmt = GET_RTX_FORMAT (code);
738 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
740 if (fmt[i] == 'e')
741 scan_rtx (insn, &XEXP (x, i), class, action, type, 0);
742 else if (fmt[i] == 'E')
743 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
744 scan_rtx (insn, &XVECEXP (x, i, j), class, action, type, 0);
748 /* Build def/use chain */
750 static struct du_chain *
751 build_def_use (bb)
752 basic_block bb;
754 rtx insn;
756 open_chains = closed_chains = NULL;
758 for (insn = bb->head; ; insn = NEXT_INSN (insn))
760 if (INSN_P (insn))
762 int n_ops;
763 rtx note;
764 rtx old_operands[MAX_RECOG_OPERANDS];
765 rtx old_dups[MAX_DUP_OPERANDS];
766 int i, icode;
767 int alt;
768 int predicated;
770 /* Process the insn, determining its effect on the def-use
771 chains. We perform the following steps with the register
772 references in the insn:
773 (1) Any read that overlaps an open chain, but doesn't exactly
774 match, causes that chain to be closed. We can't deal
775 with overlaps yet.
776 (2) Any read outside an operand causes any chain it overlaps
777 with to be closed, since we can't replace it.
778 (3) Any read inside an operand is added if there's already
779 an open chain for it.
780 (4) For any REG_DEAD note we find, close open chains that
781 overlap it.
782 (5) For any write we find, close open chains that overlap it.
783 (6) For any write we find in an operand, make a new chain.
784 (7) For any REG_UNUSED, close any chains we just opened. */
786 icode = recog_memoized (insn);
787 extract_insn (insn);
788 if (! constrain_operands (1))
789 fatal_insn_not_found (insn);
790 preprocess_constraints ();
791 alt = which_alternative;
792 n_ops = recog_data.n_operands;
794 /* Simplify the code below by rewriting things to reflect
795 matching constraints. Also promote OP_OUT to OP_INOUT
796 in predicated instructions. */
798 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
799 for (i = 0; i < n_ops; ++i)
801 int matches = recog_op_alt[i][alt].matches;
802 if (matches >= 0)
803 recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
804 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
805 || (predicated && recog_data.operand_type[i] == OP_OUT))
806 recog_data.operand_type[i] = OP_INOUT;
809 /* Step 1: Close chains for which we have overlapping reads. */
810 for (i = 0; i < n_ops; i++)
811 scan_rtx (insn, recog_data.operand_loc[i],
812 NO_REGS, terminate_overlapping_read,
813 recog_data.operand_type[i], 0);
815 /* Step 2: Close chains for which we have reads outside operands.
816 We do this by munging all operands into CC0, and closing
817 everything remaining. */
819 for (i = 0; i < n_ops; i++)
821 old_operands[i] = recog_data.operand[i];
822 /* Don't squash match_operator or match_parallel here, since
823 we don't know that all of the contained registers are
824 reachable by proper operands. */
825 if (recog_data.constraints[i][0] == '\0')
826 continue;
827 *recog_data.operand_loc[i] = cc0_rtx;
829 for (i = 0; i < recog_data.n_dups; i++)
831 int dup_num = recog_data.dup_num[i];
833 old_dups[i] = *recog_data.dup_loc[i];
834 *recog_data.dup_loc[i] = cc0_rtx;
836 /* For match_dup of match_operator or match_parallel, share
837 them, so that we don't miss changes in the dup. */
838 if (icode >= 0
839 && insn_data[icode].operand[dup_num].eliminable == 0)
840 old_dups[i] = recog_data.operand[dup_num];
843 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
844 OP_IN, 0);
846 for (i = 0; i < recog_data.n_dups; i++)
847 *recog_data.dup_loc[i] = old_dups[i];
848 for (i = 0; i < n_ops; i++)
849 *recog_data.operand_loc[i] = old_operands[i];
851 /* Step 2B: Can't rename function call argument registers. */
852 if (GET_CODE (insn) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (insn))
853 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
854 NO_REGS, terminate_all_read, OP_IN, 0);
856 /* Step 2C: Can't rename asm operands that were originally
857 hard registers. */
858 if (asm_noperands (PATTERN (insn)) > 0)
859 for (i = 0; i < n_ops; i++)
861 rtx *loc = recog_data.operand_loc[i];
862 rtx op = *loc;
864 if (GET_CODE (op) == REG
865 && REGNO (op) == ORIGINAL_REGNO (op)
866 && (recog_data.operand_type[i] == OP_IN
867 || recog_data.operand_type[i] == OP_INOUT))
868 scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
871 /* Step 3: Append to chains for reads inside operands. */
872 for (i = 0; i < n_ops + recog_data.n_dups; i++)
874 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
875 rtx *loc = (i < n_ops
876 ? recog_data.operand_loc[opn]
877 : recog_data.dup_loc[i - n_ops]);
878 enum reg_class class = recog_op_alt[opn][alt].class;
879 enum op_type type = recog_data.operand_type[opn];
881 /* Don't scan match_operand here, since we've no reg class
882 information to pass down. Any operands that we could
883 substitute in will be represented elsewhere. */
884 if (recog_data.constraints[opn][0] == '\0')
885 continue;
887 if (recog_op_alt[opn][alt].is_address)
888 scan_rtx_address (insn, loc, class, mark_read, VOIDmode);
889 else
890 scan_rtx (insn, loc, class, mark_read, type, 0);
893 /* Step 4: Close chains for registers that die here.
894 Also record updates for REG_INC notes. */
895 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
897 if (REG_NOTE_KIND (note) == REG_DEAD)
898 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
899 OP_IN, 0);
900 else if (REG_NOTE_KIND (note) == REG_INC)
901 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
902 OP_INOUT, 0);
905 /* Step 4B: If this is a call, any chain live at this point
906 requires a caller-saved reg. */
907 if (GET_CODE (insn) == CALL_INSN)
909 struct du_chain *p;
910 for (p = open_chains; p; p = p->next_chain)
911 p->need_caller_save_reg = 1;
914 /* Step 5: Close open chains that overlap writes. Similar to
915 step 2, we hide in-out operands, since we do not want to
916 close these chains. */
918 for (i = 0; i < n_ops; i++)
920 old_operands[i] = recog_data.operand[i];
921 if (recog_data.operand_type[i] == OP_INOUT)
922 *recog_data.operand_loc[i] = cc0_rtx;
924 for (i = 0; i < recog_data.n_dups; i++)
926 int opn = recog_data.dup_num[i];
927 old_dups[i] = *recog_data.dup_loc[i];
928 if (recog_data.operand_type[opn] == OP_INOUT)
929 *recog_data.dup_loc[i] = cc0_rtx;
932 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
934 for (i = 0; i < recog_data.n_dups; i++)
935 *recog_data.dup_loc[i] = old_dups[i];
936 for (i = 0; i < n_ops; i++)
937 *recog_data.operand_loc[i] = old_operands[i];
939 /* Step 6: Begin new chains for writes inside operands. */
940 /* ??? Many targets have output constraints on the SET_DEST
941 of a call insn, which is stupid, since these are certainly
942 ABI defined hard registers. Don't change calls at all.
943 Similarly take special care for asm statement that originally
944 referenced hard registers. */
945 if (asm_noperands (PATTERN (insn)) > 0)
947 for (i = 0; i < n_ops; i++)
948 if (recog_data.operand_type[i] == OP_OUT)
950 rtx *loc = recog_data.operand_loc[i];
951 rtx op = *loc;
952 enum reg_class class = recog_op_alt[i][alt].class;
954 if (GET_CODE (op) == REG
955 && REGNO (op) == ORIGINAL_REGNO (op))
956 continue;
958 scan_rtx (insn, loc, class, mark_write, OP_OUT,
959 recog_op_alt[i][alt].earlyclobber);
962 else if (GET_CODE (insn) != CALL_INSN)
963 for (i = 0; i < n_ops + recog_data.n_dups; i++)
965 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
966 rtx *loc = (i < n_ops
967 ? recog_data.operand_loc[opn]
968 : recog_data.dup_loc[i - n_ops]);
969 enum reg_class class = recog_op_alt[opn][alt].class;
971 if (recog_data.operand_type[opn] == OP_OUT)
972 scan_rtx (insn, loc, class, mark_write, OP_OUT,
973 recog_op_alt[opn][alt].earlyclobber);
976 /* Step 7: Close chains for registers that were never
977 really used here. */
978 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
979 if (REG_NOTE_KIND (note) == REG_UNUSED)
980 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
981 OP_IN, 0);
983 if (insn == bb->end)
984 break;
987 /* Since we close every chain when we find a REG_DEAD note, anything that
988 is still open lives past the basic block, so it can't be renamed. */
989 return closed_chains;
992 /* Dump all def/use chains in CHAINS to RTL_DUMP_FILE. They are
993 printed in reverse order as that's how we build them. */
995 static void
996 dump_def_use_chain (chains)
997 struct du_chain *chains;
999 while (chains)
1001 struct du_chain *this = chains;
1002 int r = REGNO (*this->loc);
1003 int nregs = HARD_REGNO_NREGS (r, GET_MODE (*this->loc));
1004 fprintf (rtl_dump_file, "Register %s (%d):", reg_names[r], nregs);
1005 while (this)
1007 fprintf (rtl_dump_file, " %d [%s]", INSN_UID (this->insn),
1008 reg_class_names[this->class]);
1009 this = this->next_use;
1011 fprintf (rtl_dump_file, "\n");
1012 chains = chains->next_chain;
1016 /* The following code does forward propagation of hard register copies.
1017 The object is to eliminate as many dependencies as possible, so that
1018 we have the most scheduling freedom. As a side effect, we also clean
1019 up some silly register allocation decisions made by reload. This
1020 code may be obsoleted by a new register allocator. */
1022 /* For each register, we have a list of registers that contain the same
1023 value. The OLDEST_REGNO field points to the head of the list, and
1024 the NEXT_REGNO field runs through the list. The MODE field indicates
1025 what mode the data is known to be in; this field is VOIDmode when the
1026 register is not known to contain valid data. */
1028 struct value_data_entry
1030 enum machine_mode mode;
1031 unsigned int oldest_regno;
1032 unsigned int next_regno;
1035 struct value_data
1037 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
1038 unsigned int max_value_regs;
1041 static void kill_value_regno PARAMS ((unsigned, struct value_data *));
1042 static void kill_value PARAMS ((rtx, struct value_data *));
1043 static void set_value_regno PARAMS ((unsigned, enum machine_mode,
1044 struct value_data *));
1045 static void init_value_data PARAMS ((struct value_data *));
1046 static void kill_clobbered_value PARAMS ((rtx, rtx, void *));
1047 static void kill_set_value PARAMS ((rtx, rtx, void *));
1048 static int kill_autoinc_value PARAMS ((rtx *, void *));
1049 static void copy_value PARAMS ((rtx, rtx, struct value_data *));
1050 static bool mode_change_ok PARAMS ((enum machine_mode, enum machine_mode,
1051 unsigned int));
1052 static rtx find_oldest_value_reg PARAMS ((enum reg_class, rtx,
1053 struct value_data *));
1054 static bool replace_oldest_value_reg PARAMS ((rtx *, enum reg_class, rtx,
1055 struct value_data *));
1056 static bool replace_oldest_value_addr PARAMS ((rtx *, enum reg_class,
1057 enum machine_mode, rtx,
1058 struct value_data *));
1059 static bool replace_oldest_value_mem PARAMS ((rtx, rtx, struct value_data *));
1060 static bool copyprop_hardreg_forward_1 PARAMS ((basic_block,
1061 struct value_data *));
1062 extern void debug_value_data PARAMS ((struct value_data *));
1063 #ifdef ENABLE_CHECKING
1064 static void validate_value_data PARAMS ((struct value_data *));
1065 #endif
1067 /* Kill register REGNO. This involves removing it from any value lists,
1068 and resetting the value mode to VOIDmode. */
1070 static void
1071 kill_value_regno (regno, vd)
1072 unsigned int regno;
1073 struct value_data *vd;
1075 unsigned int i, next;
1077 if (vd->e[regno].oldest_regno != regno)
1079 for (i = vd->e[regno].oldest_regno;
1080 vd->e[i].next_regno != regno;
1081 i = vd->e[i].next_regno)
1082 continue;
1083 vd->e[i].next_regno = vd->e[regno].next_regno;
1085 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
1087 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
1088 vd->e[i].oldest_regno = next;
1091 vd->e[regno].mode = VOIDmode;
1092 vd->e[regno].oldest_regno = regno;
1093 vd->e[regno].next_regno = INVALID_REGNUM;
1095 #ifdef ENABLE_CHECKING
1096 validate_value_data (vd);
1097 #endif
1100 /* Kill X. This is a convenience function for kill_value_regno
1101 so that we mind the mode the register is in. */
1103 static void
1104 kill_value (x, vd)
1105 rtx x;
1106 struct value_data *vd;
1108 /* SUBREGS are supposed to have been eliminated by now. But some
1109 ports, e.g. i386 sse, use them to smuggle vector type information
1110 through to instruction selection. Each such SUBREG should simplify,
1111 so if we get a NULL we've done something wrong elsewhere. */
1113 if (GET_CODE (x) == SUBREG)
1114 x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
1115 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
1116 if (REG_P (x))
1118 unsigned int regno = REGNO (x);
1119 unsigned int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
1120 unsigned int i, j;
1122 /* Kill the value we're told to kill. */
1123 for (i = 0; i < n; ++i)
1124 kill_value_regno (regno + i, vd);
1126 /* Kill everything that overlapped what we're told to kill. */
1127 if (regno < vd->max_value_regs)
1128 j = 0;
1129 else
1130 j = regno - vd->max_value_regs;
1131 for (; j < regno; ++j)
1133 if (vd->e[j].mode == VOIDmode)
1134 continue;
1135 n = HARD_REGNO_NREGS (j, vd->e[j].mode);
1136 if (j + n > regno)
1137 for (i = 0; i < n; ++i)
1138 kill_value_regno (j + i, vd);
1143 /* Remember that REGNO is valid in MODE. */
1145 static void
1146 set_value_regno (regno, mode, vd)
1147 unsigned int regno;
1148 enum machine_mode mode;
1149 struct value_data *vd;
1151 unsigned int nregs;
1153 vd->e[regno].mode = mode;
1155 nregs = HARD_REGNO_NREGS (regno, mode);
1156 if (nregs > vd->max_value_regs)
1157 vd->max_value_regs = nregs;
1160 /* Initialize VD such that there are no known relationships between regs. */
1162 static void
1163 init_value_data (vd)
1164 struct value_data *vd;
1166 int i;
1167 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1169 vd->e[i].mode = VOIDmode;
1170 vd->e[i].oldest_regno = i;
1171 vd->e[i].next_regno = INVALID_REGNUM;
1173 vd->max_value_regs = 0;
1176 /* Called through note_stores. If X is clobbered, kill its value. */
1178 static void
1179 kill_clobbered_value (x, set, data)
1180 rtx x;
1181 rtx set;
1182 void *data;
1184 struct value_data *vd = data;
1185 if (GET_CODE (set) == CLOBBER)
1186 kill_value (x, vd);
1189 /* Called through note_stores. If X is set, not clobbered, kill its
1190 current value and install it as the root of its own value list. */
1192 static void
1193 kill_set_value (x, set, data)
1194 rtx x;
1195 rtx set;
1196 void *data;
1198 struct value_data *vd = data;
1199 if (GET_CODE (set) != CLOBBER)
1201 kill_value (x, vd);
1202 if (REG_P (x))
1203 set_value_regno (REGNO (x), GET_MODE (x), vd);
1207 /* Called through for_each_rtx. Kill any register used as the base of an
1208 auto-increment expression, and install that register as the root of its
1209 own value list. */
1211 static int
1212 kill_autoinc_value (px, data)
1213 rtx *px;
1214 void *data;
1216 rtx x = *px;
1217 struct value_data *vd = data;
1219 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
1221 x = XEXP (x, 0);
1222 kill_value (x, vd);
1223 set_value_regno (REGNO (x), Pmode, vd);
1224 return -1;
1227 return 0;
1230 /* Assert that SRC has been copied to DEST. Adjust the data structures
1231 to reflect that SRC contains an older copy of the shared value. */
1233 static void
1234 copy_value (dest, src, vd)
1235 rtx dest;
1236 rtx src;
1237 struct value_data *vd;
1239 unsigned int dr = REGNO (dest);
1240 unsigned int sr = REGNO (src);
1241 unsigned int dn, sn;
1242 unsigned int i;
1244 /* ??? At present, it's possible to see noop sets. It'd be nice if
1245 this were cleaned up beforehand... */
1246 if (sr == dr)
1247 return;
1249 /* Do not propagate copies to the stack pointer, as that can leave
1250 memory accesses with no scheduling dependancy on the stack update. */
1251 if (dr == STACK_POINTER_REGNUM)
1252 return;
1254 /* Likewise with the frame pointer, if we're using one. */
1255 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
1256 return;
1258 /* If SRC and DEST overlap, don't record anything. */
1259 dn = HARD_REGNO_NREGS (dr, GET_MODE (dest));
1260 sn = HARD_REGNO_NREGS (sr, GET_MODE (dest));
1261 if ((dr > sr && dr < sr + sn)
1262 || (sr > dr && sr < dr + dn))
1263 return;
1265 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1266 assign it now and assume the value came from an input argument
1267 or somesuch. */
1268 if (vd->e[sr].mode == VOIDmode)
1269 set_value_regno (sr, vd->e[dr].mode, vd);
1271 /* If SRC had been assigned a mode narrower than the copy, we can't
1272 link DEST into the chain, because not all of the pieces of the
1273 copy came from oldest_regno. */
1274 else if (sn > (unsigned int) HARD_REGNO_NREGS (sr, vd->e[sr].mode))
1275 return;
1277 /* Link DR at the end of the value chain used by SR. */
1279 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
1281 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
1282 continue;
1283 vd->e[i].next_regno = dr;
1285 #ifdef ENABLE_CHECKING
1286 validate_value_data (vd);
1287 #endif
1290 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1292 static bool
1293 mode_change_ok (orig_mode, new_mode, regno)
1294 enum machine_mode orig_mode, new_mode;
1295 unsigned int regno ATTRIBUTE_UNUSED;
1297 if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
1298 return false;
1300 #ifdef CLASS_CANNOT_CHANGE_MODE
1301 if (TEST_HARD_REG_BIT (reg_class_contents[CLASS_CANNOT_CHANGE_MODE], regno)
1302 && CLASS_CANNOT_CHANGE_MODE_P (orig_mode, new_mode))
1303 return false;
1304 #endif
1306 return true;
1309 /* Find the oldest copy of the value contained in REGNO that is in
1310 register class CLASS and has mode MODE. If found, return an rtx
1311 of that oldest register, otherwise return NULL. */
1313 static rtx
1314 find_oldest_value_reg (class, reg, vd)
1315 enum reg_class class;
1316 rtx reg;
1317 struct value_data *vd;
1319 unsigned int regno = REGNO (reg);
1320 enum machine_mode mode = GET_MODE (reg);
1321 unsigned int i;
1323 /* If we are accessing REG in some mode other that what we set it in,
1324 make sure that the replacement is valid. In particular, consider
1325 (set (reg:DI r11) (...))
1326 (set (reg:SI r9) (reg:SI r11))
1327 (set (reg:SI r10) (...))
1328 (set (...) (reg:DI r9))
1329 Replacing r9 with r11 is invalid. */
1330 if (mode != vd->e[regno].mode)
1332 if (HARD_REGNO_NREGS (regno, mode)
1333 > HARD_REGNO_NREGS (regno, vd->e[regno].mode))
1334 return NULL_RTX;
1337 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
1338 if (TEST_HARD_REG_BIT (reg_class_contents[class], i)
1339 && (vd->e[i].mode == mode
1340 || mode_change_ok (vd->e[i].mode, mode, i)))
1342 rtx new = gen_rtx_raw_REG (mode, i);
1343 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
1344 return new;
1347 return NULL_RTX;
1350 /* If possible, replace the register at *LOC with the oldest register
1351 in register class CLASS. Return true if successfully replaced. */
1353 static bool
1354 replace_oldest_value_reg (loc, class, insn, vd)
1355 rtx *loc;
1356 enum reg_class class;
1357 rtx insn;
1358 struct value_data *vd;
1360 rtx new = find_oldest_value_reg (class, *loc, vd);
1361 if (new)
1363 if (rtl_dump_file)
1364 fprintf (rtl_dump_file, "insn %u: replaced reg %u with %u\n",
1365 INSN_UID (insn), REGNO (*loc), REGNO (new));
1367 *loc = new;
1368 return true;
1370 return false;
1373 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1374 Adapted from find_reloads_address_1. CLASS is INDEX_REG_CLASS or
1375 BASE_REG_CLASS depending on how the register is being considered. */
1377 static bool
1378 replace_oldest_value_addr (loc, class, mode, insn, vd)
1379 rtx *loc;
1380 enum reg_class class;
1381 enum machine_mode mode;
1382 rtx insn;
1383 struct value_data *vd;
1385 rtx x = *loc;
1386 RTX_CODE code = GET_CODE (x);
1387 const char *fmt;
1388 int i, j;
1389 bool changed = false;
1391 switch (code)
1393 case PLUS:
1395 rtx orig_op0 = XEXP (x, 0);
1396 rtx orig_op1 = XEXP (x, 1);
1397 RTX_CODE code0 = GET_CODE (orig_op0);
1398 RTX_CODE code1 = GET_CODE (orig_op1);
1399 rtx op0 = orig_op0;
1400 rtx op1 = orig_op1;
1401 rtx *locI = NULL;
1402 rtx *locB = NULL;
1404 if (GET_CODE (op0) == SUBREG)
1406 op0 = SUBREG_REG (op0);
1407 code0 = GET_CODE (op0);
1410 if (GET_CODE (op1) == SUBREG)
1412 op1 = SUBREG_REG (op1);
1413 code1 = GET_CODE (op1);
1416 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1417 || code0 == ZERO_EXTEND || code1 == MEM)
1419 locI = &XEXP (x, 0);
1420 locB = &XEXP (x, 1);
1422 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1423 || code1 == ZERO_EXTEND || code0 == MEM)
1425 locI = &XEXP (x, 1);
1426 locB = &XEXP (x, 0);
1428 else if (code0 == CONST_INT || code0 == CONST
1429 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1430 locB = &XEXP (x, 1);
1431 else if (code1 == CONST_INT || code1 == CONST
1432 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1433 locB = &XEXP (x, 0);
1434 else if (code0 == REG && code1 == REG)
1436 int index_op;
1438 if (REG_OK_FOR_INDEX_P (op0)
1439 && REG_MODE_OK_FOR_BASE_P (op1, mode))
1440 index_op = 0;
1441 else if (REG_OK_FOR_INDEX_P (op1)
1442 && REG_MODE_OK_FOR_BASE_P (op0, mode))
1443 index_op = 1;
1444 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
1445 index_op = 0;
1446 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
1447 index_op = 1;
1448 else if (REG_OK_FOR_INDEX_P (op1))
1449 index_op = 1;
1450 else
1451 index_op = 0;
1453 locI = &XEXP (x, index_op);
1454 locB = &XEXP (x, !index_op);
1456 else if (code0 == REG)
1458 locI = &XEXP (x, 0);
1459 locB = &XEXP (x, 1);
1461 else if (code1 == REG)
1463 locI = &XEXP (x, 1);
1464 locB = &XEXP (x, 0);
1467 if (locI)
1468 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
1469 insn, vd);
1470 if (locB)
1471 changed |= replace_oldest_value_addr (locB,
1472 MODE_BASE_REG_CLASS (mode),
1473 mode, insn, vd);
1474 return changed;
1477 case POST_INC:
1478 case POST_DEC:
1479 case POST_MODIFY:
1480 case PRE_INC:
1481 case PRE_DEC:
1482 case PRE_MODIFY:
1483 return false;
1485 case MEM:
1486 return replace_oldest_value_mem (x, insn, vd);
1488 case REG:
1489 return replace_oldest_value_reg (loc, class, insn, vd);
1491 default:
1492 break;
1495 fmt = GET_RTX_FORMAT (code);
1496 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1498 if (fmt[i] == 'e')
1499 changed |= replace_oldest_value_addr (&XEXP (x, i), class, mode,
1500 insn, vd);
1501 else if (fmt[i] == 'E')
1502 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1503 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), class,
1504 mode, insn, vd);
1507 return changed;
1510 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1512 static bool
1513 replace_oldest_value_mem (x, insn, vd)
1514 rtx x;
1515 rtx insn;
1516 struct value_data *vd;
1518 return replace_oldest_value_addr (&XEXP (x, 0),
1519 MODE_BASE_REG_CLASS (GET_MODE (x)),
1520 GET_MODE (x), insn, vd);
1523 /* Perform the forward copy propagation on basic block BB. */
1525 static bool
1526 copyprop_hardreg_forward_1 (bb, vd)
1527 basic_block bb;
1528 struct value_data *vd;
1530 bool changed = false;
1531 rtx insn;
1533 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1535 int n_ops, i, alt, predicated;
1536 bool is_asm;
1537 rtx set;
1539 if (! INSN_P (insn))
1541 if (insn == bb->end)
1542 break;
1543 else
1544 continue;
1547 set = single_set (insn);
1548 extract_insn (insn);
1549 if (! constrain_operands (1))
1550 fatal_insn_not_found (insn);
1551 preprocess_constraints ();
1552 alt = which_alternative;
1553 n_ops = recog_data.n_operands;
1554 is_asm = asm_noperands (PATTERN (insn)) >= 0;
1556 /* Simplify the code below by rewriting things to reflect
1557 matching constraints. Also promote OP_OUT to OP_INOUT
1558 in predicated instructions. */
1560 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1561 for (i = 0; i < n_ops; ++i)
1563 int matches = recog_op_alt[i][alt].matches;
1564 if (matches >= 0)
1565 recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
1566 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
1567 || (predicated && recog_data.operand_type[i] == OP_OUT))
1568 recog_data.operand_type[i] = OP_INOUT;
1571 /* For each earlyclobber operand, zap the value data. */
1572 for (i = 0; i < n_ops; i++)
1573 if (recog_op_alt[i][alt].earlyclobber)
1574 kill_value (recog_data.operand[i], vd);
1576 /* Within asms, a clobber cannot overlap inputs or outputs.
1577 I wouldn't think this were true for regular insns, but
1578 scan_rtx treats them like that... */
1579 note_stores (PATTERN (insn), kill_clobbered_value, vd);
1581 /* Kill all auto-incremented values. */
1582 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1583 for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
1585 /* Kill all early-clobbered operands. */
1586 for (i = 0; i < n_ops; i++)
1587 if (recog_op_alt[i][alt].earlyclobber)
1588 kill_value (recog_data.operand[i], vd);
1590 /* Special-case plain move instructions, since we may well
1591 be able to do the move from a different register class. */
1592 if (set && REG_P (SET_SRC (set)))
1594 rtx src = SET_SRC (set);
1595 unsigned int regno = REGNO (src);
1596 enum machine_mode mode = GET_MODE (src);
1597 unsigned int i;
1598 rtx new;
1600 /* If we are accessing SRC in some mode other that what we
1601 set it in, make sure that the replacement is valid. */
1602 if (mode != vd->e[regno].mode)
1604 if (HARD_REGNO_NREGS (regno, mode)
1605 > HARD_REGNO_NREGS (regno, vd->e[regno].mode))
1606 goto no_move_special_case;
1609 /* If the destination is also a register, try to find a source
1610 register in the same class. */
1611 if (REG_P (SET_DEST (set)))
1613 new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
1614 if (new && validate_change (insn, &SET_SRC (set), new, 0))
1616 if (rtl_dump_file)
1617 fprintf (rtl_dump_file,
1618 "insn %u: replaced reg %u with %u\n",
1619 INSN_UID (insn), regno, REGNO (new));
1620 changed = true;
1621 goto did_replacement;
1625 /* Otherwise, try all valid registers and see if its valid. */
1626 for (i = vd->e[regno].oldest_regno; i != regno;
1627 i = vd->e[i].next_regno)
1628 if (vd->e[i].mode == mode
1629 || mode_change_ok (vd->e[i].mode, mode, i))
1631 new = gen_rtx_raw_REG (mode, i);
1632 if (validate_change (insn, &SET_SRC (set), new, 0))
1634 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
1635 if (rtl_dump_file)
1636 fprintf (rtl_dump_file,
1637 "insn %u: replaced reg %u with %u\n",
1638 INSN_UID (insn), regno, REGNO (new));
1639 changed = true;
1640 goto did_replacement;
1644 no_move_special_case:
1646 /* For each input operand, replace a hard register with the
1647 eldest live copy that's in an appropriate register class. */
1648 for (i = 0; i < n_ops; i++)
1650 bool replaced = false;
1652 /* Don't scan match_operand here, since we've no reg class
1653 information to pass down. Any operands that we could
1654 substitute in will be represented elsewhere. */
1655 if (recog_data.constraints[i][0] == '\0')
1656 continue;
1658 /* Don't replace in asms intentionally referencing hard regs. */
1659 if (is_asm && GET_CODE (recog_data.operand[i]) == REG
1660 && (REGNO (recog_data.operand[i])
1661 == ORIGINAL_REGNO (recog_data.operand[i])))
1662 continue;
1664 if (recog_data.operand_type[i] == OP_IN)
1666 if (recog_op_alt[i][alt].is_address)
1667 replaced
1668 = replace_oldest_value_addr (recog_data.operand_loc[i],
1669 recog_op_alt[i][alt].class,
1670 VOIDmode, insn, vd);
1671 else if (REG_P (recog_data.operand[i]))
1672 replaced
1673 = replace_oldest_value_reg (recog_data.operand_loc[i],
1674 recog_op_alt[i][alt].class,
1675 insn, vd);
1676 else if (GET_CODE (recog_data.operand[i]) == MEM)
1677 replaced = replace_oldest_value_mem (recog_data.operand[i],
1678 insn, vd);
1680 else if (GET_CODE (recog_data.operand[i]) == MEM)
1681 replaced = replace_oldest_value_mem (recog_data.operand[i],
1682 insn, vd);
1684 /* If we performed any replacement, update match_dups. */
1685 if (replaced)
1687 int j;
1688 rtx new;
1690 changed = true;
1692 new = *recog_data.operand_loc[i];
1693 recog_data.operand[i] = new;
1694 for (j = 0; j < recog_data.n_dups; j++)
1695 if (recog_data.dup_num[j] == i)
1696 *recog_data.dup_loc[j] = new;
1700 did_replacement:
1701 /* Clobber call-clobbered registers. */
1702 if (GET_CODE (insn) == CALL_INSN)
1703 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1704 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1705 kill_value_regno (i, vd);
1707 /* Notice stores. */
1708 note_stores (PATTERN (insn), kill_set_value, vd);
1710 /* Notice copies. */
1711 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
1712 copy_value (SET_DEST (set), SET_SRC (set), vd);
1714 if (insn == bb->end)
1715 break;
1718 return changed;
1721 /* Main entry point for the forward copy propagation optimization. */
1723 void
1724 copyprop_hardreg_forward ()
1726 struct value_data *all_vd;
1727 bool need_refresh;
1728 basic_block bb, bbp;
1730 need_refresh = false;
1732 all_vd = xmalloc (sizeof (struct value_data) * last_basic_block);
1734 FOR_EACH_BB (bb)
1736 /* If a block has a single predecessor, that we've already
1737 processed, begin with the value data that was live at
1738 the end of the predecessor block. */
1739 /* ??? Ought to use more intelligent queueing of blocks. */
1740 if (bb->pred)
1741 for (bbp = bb; bbp && bbp != bb->pred->src; bbp = bbp->prev_bb);
1742 if (bb->pred
1743 && ! bb->pred->pred_next
1744 && ! (bb->pred->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1745 && bb->pred->src != ENTRY_BLOCK_PTR
1746 && bbp)
1747 all_vd[bb->index] = all_vd[bb->pred->src->index];
1748 else
1749 init_value_data (all_vd + bb->index);
1751 if (copyprop_hardreg_forward_1 (bb, all_vd + bb->index))
1752 need_refresh = true;
1755 if (need_refresh)
1757 if (rtl_dump_file)
1758 fputs ("\n\n", rtl_dump_file);
1760 /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
1761 to scan, so we have to do a life update with no initial set of
1762 blocks Just In Case. */
1763 delete_noop_moves (get_insns ());
1764 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1765 PROP_DEATH_NOTES
1766 | PROP_SCAN_DEAD_CODE
1767 | PROP_KILL_DEAD_CODE);
1770 free (all_vd);
1773 /* Dump the value chain data to stderr. */
1775 void
1776 debug_value_data (vd)
1777 struct value_data *vd;
1779 HARD_REG_SET set;
1780 unsigned int i, j;
1782 CLEAR_HARD_REG_SET (set);
1784 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1785 if (vd->e[i].oldest_regno == i)
1787 if (vd->e[i].mode == VOIDmode)
1789 if (vd->e[i].next_regno != INVALID_REGNUM)
1790 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1791 i, vd->e[i].next_regno);
1792 continue;
1795 SET_HARD_REG_BIT (set, i);
1796 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1798 for (j = vd->e[i].next_regno;
1799 j != INVALID_REGNUM;
1800 j = vd->e[j].next_regno)
1802 if (TEST_HARD_REG_BIT (set, j))
1804 fprintf (stderr, "[%u] Loop in regno chain\n", j);
1805 return;
1808 if (vd->e[j].oldest_regno != i)
1810 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1811 j, vd->e[j].oldest_regno);
1812 return;
1814 SET_HARD_REG_BIT (set, j);
1815 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1817 fputc ('\n', stderr);
1820 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1821 if (! TEST_HARD_REG_BIT (set, i)
1822 && (vd->e[i].mode != VOIDmode
1823 || vd->e[i].oldest_regno != i
1824 || vd->e[i].next_regno != INVALID_REGNUM))
1825 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1826 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1827 vd->e[i].next_regno);
1830 #ifdef ENABLE_CHECKING
1831 static void
1832 validate_value_data (vd)
1833 struct value_data *vd;
1835 HARD_REG_SET set;
1836 unsigned int i, j;
1838 CLEAR_HARD_REG_SET (set);
1840 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1841 if (vd->e[i].oldest_regno == i)
1843 if (vd->e[i].mode == VOIDmode)
1845 if (vd->e[i].next_regno != INVALID_REGNUM)
1846 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1847 i, vd->e[i].next_regno);
1848 continue;
1851 SET_HARD_REG_BIT (set, i);
1853 for (j = vd->e[i].next_regno;
1854 j != INVALID_REGNUM;
1855 j = vd->e[j].next_regno)
1857 if (TEST_HARD_REG_BIT (set, j))
1858 internal_error ("validate_value_data: Loop in regno chain (%u)",
1860 if (vd->e[j].oldest_regno != i)
1861 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1862 j, vd->e[j].oldest_regno);
1864 SET_HARD_REG_BIT (set, j);
1868 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1869 if (! TEST_HARD_REG_BIT (set, i)
1870 && (vd->e[i].mode != VOIDmode
1871 || vd->e[i].oldest_regno != i
1872 || vd->e[i].next_regno != INVALID_REGNUM))
1873 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1874 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1875 vd->e[i].next_regno);
1877 #endif